xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SplitKit.h (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- SplitKit.h - Toolkit for splitting live ranges -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_CODEGEN_SPLITKIT_H
15 #define LLVM_LIB_CODEGEN_SPLITKIT_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/IntervalMap.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervals.h"
27 #include "llvm/CodeGen/LiveRangeCalc.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/MC/LaneBitmask.h"
32 #include "llvm/Support/Compiler.h"
33 #include <utility>
34 
35 namespace llvm {
36 
37 class LiveIntervals;
38 class LiveRangeEdit;
39 class MachineBlockFrequencyInfo;
40 class MachineDominatorTree;
41 class MachineLoopInfo;
42 class MachineRegisterInfo;
43 class TargetInstrInfo;
44 class TargetRegisterInfo;
45 class VirtRegMap;
46 
47 /// Determines the latest safe point in a block in which we can insert a split,
48 /// spill or other instruction related with CurLI.
49 class LLVM_LIBRARY_VISIBILITY InsertPointAnalysis {
50 private:
51   const LiveIntervals &LIS;
52 
53   /// Last legal insert point in each basic block in the current function.
54   /// The first entry is the first terminator, the second entry is the
55   /// last valid point to insert a split or spill for a variable that is
56   /// live into a landing pad successor.
57   SmallVector<std::pair<SlotIndex, SlotIndex>, 8> LastInsertPoint;
58 
59   SlotIndex computeLastInsertPoint(const LiveInterval &CurLI,
60                                    const MachineBasicBlock &MBB);
61 
62 public:
63   InsertPointAnalysis(const LiveIntervals &lis, unsigned BBNum);
64 
65   /// Return the base index of the last valid insert point for \pCurLI in \pMBB.
66   SlotIndex getLastInsertPoint(const LiveInterval &CurLI,
67                                const MachineBasicBlock &MBB) {
68     unsigned Num = MBB.getNumber();
69     // Inline the common simple case.
70     if (LastInsertPoint[Num].first.isValid() &&
71         !LastInsertPoint[Num].second.isValid())
72       return LastInsertPoint[Num].first;
73     return computeLastInsertPoint(CurLI, MBB);
74   }
75 
76   /// Returns the last insert point as an iterator for \pCurLI in \pMBB.
77   MachineBasicBlock::iterator getLastInsertPointIter(const LiveInterval &CurLI,
78                                                      MachineBasicBlock &MBB);
79 
80   /// Return the base index of the first insert point in \pMBB.
81   SlotIndex getFirstInsertPoint(MachineBasicBlock &MBB) {
82     SlotIndex Res = LIS.getMBBStartIdx(&MBB);
83     if (!MBB.empty()) {
84       MachineBasicBlock::iterator MII = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
85       if (MII != MBB.end())
86         Res = LIS.getInstructionIndex(*MII);
87     }
88     return Res;
89   }
90 
91 };
92 
93 /// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting
94 /// opportunities.
95 class LLVM_LIBRARY_VISIBILITY SplitAnalysis {
96 public:
97   const MachineFunction &MF;
98   const VirtRegMap &VRM;
99   const LiveIntervals &LIS;
100   const MachineLoopInfo &Loops;
101   const TargetInstrInfo &TII;
102 
103   /// Additional information about basic blocks where the current variable is
104   /// live. Such a block will look like one of these templates:
105   ///
106   ///  1. |   o---x   | Internal to block. Variable is only live in this block.
107   ///  2. |---x       | Live-in, kill.
108   ///  3. |       o---| Def, live-out.
109   ///  4. |---x   o---| Live-in, kill, def, live-out. Counted by NumGapBlocks.
110   ///  5. |---o---o---| Live-through with uses or defs.
111   ///  6. |-----------| Live-through without uses. Counted by NumThroughBlocks.
112   ///
113   /// Two BlockInfo entries are created for template 4. One for the live-in
114   /// segment, and one for the live-out segment. These entries look as if the
115   /// block were split in the middle where the live range isn't live.
116   ///
117   /// Live-through blocks without any uses don't get BlockInfo entries. They
118   /// are simply listed in ThroughBlocks instead.
119   ///
120   struct BlockInfo {
121     MachineBasicBlock *MBB;
122     SlotIndex FirstInstr; ///< First instr accessing current reg.
123     SlotIndex LastInstr;  ///< Last instr accessing current reg.
124     SlotIndex FirstDef;   ///< First non-phi valno->def, or SlotIndex().
125     bool LiveIn;          ///< Current reg is live in.
126     bool LiveOut;         ///< Current reg is live out.
127 
128     /// isOneInstr - Returns true when this BlockInfo describes a single
129     /// instruction.
130     bool isOneInstr() const {
131       return SlotIndex::isSameInstr(FirstInstr, LastInstr);
132     }
133   };
134 
135 private:
136   // Current live interval.
137   const LiveInterval *CurLI = nullptr;
138 
139   /// Insert Point Analysis.
140   InsertPointAnalysis IPA;
141 
142   // Sorted slot indexes of using instructions.
143   SmallVector<SlotIndex, 8> UseSlots;
144 
145   /// UseBlocks - Blocks where CurLI has uses.
146   SmallVector<BlockInfo, 8> UseBlocks;
147 
148   /// NumGapBlocks - Number of duplicate entries in UseBlocks for blocks where
149   /// the live range has a gap.
150   unsigned NumGapBlocks;
151 
152   /// ThroughBlocks - Block numbers where CurLI is live through without uses.
153   BitVector ThroughBlocks;
154 
155   /// NumThroughBlocks - Number of live-through blocks.
156   unsigned NumThroughBlocks;
157 
158   /// DidRepairRange - analyze was forced to shrinkToUses().
159   bool DidRepairRange;
160 
161   // Sumarize statistics by counting instructions using CurLI.
162   void analyzeUses();
163 
164   /// calcLiveBlockInfo - Compute per-block information about CurLI.
165   bool calcLiveBlockInfo();
166 
167 public:
168   SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
169                 const MachineLoopInfo &mli);
170 
171   /// analyze - set CurLI to the specified interval, and analyze how it may be
172   /// split.
173   void analyze(const LiveInterval *li);
174 
175   /// didRepairRange() - Returns true if CurLI was invalid and has been repaired
176   /// by analyze(). This really shouldn't happen, but sometimes the coalescer
177   /// can create live ranges that end in mid-air.
178   bool didRepairRange() const { return DidRepairRange; }
179 
180   /// clear - clear all data structures so SplitAnalysis is ready to analyze a
181   /// new interval.
182   void clear();
183 
184   /// getParent - Return the last analyzed interval.
185   const LiveInterval &getParent() const { return *CurLI; }
186 
187   /// isOriginalEndpoint - Return true if the original live range was killed or
188   /// (re-)defined at Idx. Idx should be the 'def' slot for a normal kill/def,
189   /// and 'use' for an early-clobber def.
190   /// This can be used to recognize code inserted by earlier live range
191   /// splitting.
192   bool isOriginalEndpoint(SlotIndex Idx) const;
193 
194   /// getUseSlots - Return an array of SlotIndexes of instructions using CurLI.
195   /// This include both use and def operands, at most one entry per instruction.
196   ArrayRef<SlotIndex> getUseSlots() const { return UseSlots; }
197 
198   /// getUseBlocks - Return an array of BlockInfo objects for the basic blocks
199   /// where CurLI has uses.
200   ArrayRef<BlockInfo> getUseBlocks() const { return UseBlocks; }
201 
202   /// getNumThroughBlocks - Return the number of through blocks.
203   unsigned getNumThroughBlocks() const { return NumThroughBlocks; }
204 
205   /// isThroughBlock - Return true if CurLI is live through MBB without uses.
206   bool isThroughBlock(unsigned MBB) const { return ThroughBlocks.test(MBB); }
207 
208   /// getThroughBlocks - Return the set of through blocks.
209   const BitVector &getThroughBlocks() const { return ThroughBlocks; }
210 
211   /// getNumLiveBlocks - Return the number of blocks where CurLI is live.
212   unsigned getNumLiveBlocks() const {
213     return getUseBlocks().size() - NumGapBlocks + getNumThroughBlocks();
214   }
215 
216   /// countLiveBlocks - Return the number of blocks where li is live. This is
217   /// guaranteed to return the same number as getNumLiveBlocks() after calling
218   /// analyze(li).
219   unsigned countLiveBlocks(const LiveInterval *li) const;
220 
221   using BlockPtrSet = SmallPtrSet<const MachineBasicBlock *, 16>;
222 
223   /// shouldSplitSingleBlock - Returns true if it would help to create a local
224   /// live range for the instructions in BI. There is normally no benefit to
225   /// creating a live range for a single instruction, but it does enable
226   /// register class inflation if the instruction has a restricted register
227   /// class.
228   ///
229   /// @param BI           The block to be isolated.
230   /// @param SingleInstrs True when single instructions should be isolated.
231   bool shouldSplitSingleBlock(const BlockInfo &BI, bool SingleInstrs) const;
232 
233   SlotIndex getLastSplitPoint(unsigned Num) {
234     return IPA.getLastInsertPoint(*CurLI, *MF.getBlockNumbered(Num));
235   }
236 
237   MachineBasicBlock::iterator getLastSplitPointIter(MachineBasicBlock *BB) {
238     return IPA.getLastInsertPointIter(*CurLI, *BB);
239   }
240 
241   SlotIndex getFirstSplitPoint(unsigned Num) {
242     return IPA.getFirstInsertPoint(*MF.getBlockNumbered(Num));
243   }
244 };
245 
246 /// SplitEditor - Edit machine code and LiveIntervals for live range
247 /// splitting.
248 ///
249 /// - Create a SplitEditor from a SplitAnalysis.
250 /// - Start a new live interval with openIntv.
251 /// - Mark the places where the new interval is entered using enterIntv*
252 /// - Mark the ranges where the new interval is used with useIntv*
253 /// - Mark the places where the interval is exited with exitIntv*.
254 /// - Finish the current interval with closeIntv and repeat from 2.
255 /// - Rewrite instructions with finish().
256 ///
257 class LLVM_LIBRARY_VISIBILITY SplitEditor {
258   SplitAnalysis &SA;
259   AliasAnalysis &AA;
260   LiveIntervals &LIS;
261   VirtRegMap &VRM;
262   MachineRegisterInfo &MRI;
263   MachineDominatorTree &MDT;
264   const TargetInstrInfo &TII;
265   const TargetRegisterInfo &TRI;
266   const MachineBlockFrequencyInfo &MBFI;
267 
268 public:
269   /// ComplementSpillMode - Select how the complement live range should be
270   /// created.  SplitEditor automatically creates interval 0 to contain
271   /// anything that isn't added to another interval.  This complement interval
272   /// can get quite complicated, and it can sometimes be an advantage to allow
273   /// it to overlap the other intervals.  If it is going to spill anyway, no
274   /// registers are wasted by keeping a value in two places at the same time.
275   enum ComplementSpillMode {
276     /// SM_Partition(Default) - Try to create the complement interval so it
277     /// doesn't overlap any other intervals, and the original interval is
278     /// partitioned.  This may require a large number of back copies and extra
279     /// PHI-defs.  Only segments marked with overlapIntv will be overlapping.
280     SM_Partition,
281 
282     /// SM_Size - Overlap intervals to minimize the number of inserted COPY
283     /// instructions.  Copies to the complement interval are hoisted to their
284     /// common dominator, so only one COPY is required per value in the
285     /// complement interval.  This also means that no extra PHI-defs need to be
286     /// inserted in the complement interval.
287     SM_Size,
288 
289     /// SM_Speed - Overlap intervals to minimize the expected execution
290     /// frequency of the inserted copies.  This is very similar to SM_Size, but
291     /// the complement interval may get some extra PHI-defs.
292     SM_Speed
293   };
294 
295 private:
296   /// Edit - The current parent register and new intervals created.
297   LiveRangeEdit *Edit = nullptr;
298 
299   /// Index into Edit of the currently open interval.
300   /// The index 0 is used for the complement, so the first interval started by
301   /// openIntv will be 1.
302   unsigned OpenIdx = 0;
303 
304   /// The current spill mode, selected by reset().
305   ComplementSpillMode SpillMode = SM_Partition;
306 
307   using RegAssignMap = IntervalMap<SlotIndex, unsigned>;
308 
309   /// Allocator for the interval map. This will eventually be shared with
310   /// SlotIndexes and LiveIntervals.
311   RegAssignMap::Allocator Allocator;
312 
313   /// RegAssign - Map of the assigned register indexes.
314   /// Edit.get(RegAssign.lookup(Idx)) is the register that should be live at
315   /// Idx.
316   RegAssignMap RegAssign;
317 
318   using ValueForcePair = PointerIntPair<VNInfo *, 1>;
319   using ValueMap = DenseMap<std::pair<unsigned, unsigned>, ValueForcePair>;
320 
321   /// Values - keep track of the mapping from parent values to values in the new
322   /// intervals. Given a pair (RegIdx, ParentVNI->id), Values contains:
323   ///
324   /// 1. No entry - the value is not mapped to Edit.get(RegIdx).
325   /// 2. (Null, false) - the value is mapped to multiple values in
326   ///    Edit.get(RegIdx).  Each value is represented by a minimal live range at
327   ///    its def.  The full live range can be inferred exactly from the range
328   ///    of RegIdx in RegAssign.
329   /// 3. (Null, true).  As above, but the ranges in RegAssign are too large, and
330   ///    the live range must be recomputed using LiveRangeCalc::extend().
331   /// 4. (VNI, false) The value is mapped to a single new value.
332   ///    The new value has no live ranges anywhere.
333   ValueMap Values;
334 
335   /// LRCalc - Cache for computing live ranges and SSA update.  Each instance
336   /// can only handle non-overlapping live ranges, so use a separate
337   /// LiveRangeCalc instance for the complement interval when in spill mode.
338   LiveRangeCalc LRCalc[2];
339 
340   /// getLRCalc - Return the LRCalc to use for RegIdx.  In spill mode, the
341   /// complement interval can overlap the other intervals, so it gets its own
342   /// LRCalc instance.  When not in spill mode, all intervals can share one.
343   LiveRangeCalc &getLRCalc(unsigned RegIdx) {
344     return LRCalc[SpillMode != SM_Partition && RegIdx != 0];
345   }
346 
347   /// Find a subrange corresponding to the lane mask @p LM in the live
348   /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
349   /// This function is used to find corresponding subranges between the
350   /// original interval and the new intervals.
351   LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM, LiveInterval &LI);
352 
353   /// Add a segment to the interval LI for the value number VNI. If LI has
354   /// subranges, corresponding segments will be added to them as well, but
355   /// with newly created value numbers. If Original is true, dead def will
356   /// only be added a subrange of LI if the corresponding subrange of the
357   /// original interval has a def at this index. Otherwise, all subranges
358   /// of LI will be updated.
359   void addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original);
360 
361   /// defValue - define a value in RegIdx from ParentVNI at Idx.
362   /// Idx does not have to be ParentVNI->def, but it must be contained within
363   /// ParentVNI's live range in ParentLI. The new value is added to the value
364   /// map. The value being defined may either come from rematerialization
365   /// (or an inserted copy), or it may be coming from the original interval.
366   /// The parameter Original should be true in the latter case, otherwise
367   /// it should be false.
368   /// Return the new LI value.
369   VNInfo *defValue(unsigned RegIdx, const VNInfo *ParentVNI, SlotIndex Idx,
370                    bool Original);
371 
372   /// forceRecompute - Force the live range of ParentVNI in RegIdx to be
373   /// recomputed by LiveRangeCalc::extend regardless of the number of defs.
374   /// This is used for values whose live range doesn't match RegAssign exactly.
375   /// They could have rematerialized, or back-copies may have been moved.
376   void forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI);
377 
378   /// Calls forceRecompute() on any affected regidx and on ParentVNI
379   /// predecessors in case of a phi definition.
380   void forceRecomputeVNI(const VNInfo &ParentVNI);
381 
382   /// defFromParent - Define Reg from ParentVNI at UseIdx using either
383   /// rematerialization or a COPY from parent. Return the new value.
384   VNInfo *defFromParent(unsigned RegIdx,
385                         VNInfo *ParentVNI,
386                         SlotIndex UseIdx,
387                         MachineBasicBlock &MBB,
388                         MachineBasicBlock::iterator I);
389 
390   /// removeBackCopies - Remove the copy instructions that defines the values
391   /// in the vector in the complement interval.
392   void removeBackCopies(SmallVectorImpl<VNInfo*> &Copies);
393 
394   /// getShallowDominator - Returns the least busy dominator of MBB that is
395   /// also dominated by DefMBB.  Busy is measured by loop depth.
396   MachineBasicBlock *findShallowDominator(MachineBasicBlock *MBB,
397                                           MachineBasicBlock *DefMBB);
398 
399   /// Find out all the backCopies dominated by others.
400   void computeRedundantBackCopies(DenseSet<unsigned> &NotToHoistSet,
401                                   SmallVectorImpl<VNInfo *> &BackCopies);
402 
403   /// Hoist back-copies to the complement interval. It tries to hoist all
404   /// the back-copies to one BB if it is beneficial, or else simply remove
405   /// redundant backcopies dominated by others.
406   void hoistCopies();
407 
408   /// transferValues - Transfer values to the new ranges.
409   /// Return true if any ranges were skipped.
410   bool transferValues();
411 
412   /// Live range @p LR corresponding to the lane Mask @p LM has a live
413   /// PHI def at the beginning of block @p B. Extend the range @p LR of
414   /// all predecessor values that reach this def. If @p LR is a subrange,
415   /// the array @p Undefs is the set of all locations where it is undefined
416   /// via <def,read-undef> in other subranges for the same register.
417   void extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
418                       LiveRange &LR, LaneBitmask LM,
419                       ArrayRef<SlotIndex> Undefs);
420 
421   /// extendPHIKillRanges - Extend the ranges of all values killed by original
422   /// parent PHIDefs.
423   void extendPHIKillRanges();
424 
425   /// rewriteAssigned - Rewrite all uses of Edit.getReg() to assigned registers.
426   void rewriteAssigned(bool ExtendRanges);
427 
428   /// deleteRematVictims - Delete defs that are dead after rematerializing.
429   void deleteRematVictims();
430 
431   /// Add a copy instruction copying \p FromReg to \p ToReg before
432   /// \p InsertBefore. This can be invoked with a \p LaneMask which may make it
433   /// necessary to construct a sequence of copies to cover it exactly.
434   SlotIndex buildCopy(unsigned FromReg, unsigned ToReg, LaneBitmask LaneMask,
435       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
436       bool Late, unsigned RegIdx);
437 
438   SlotIndex buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
439       MachineBasicBlock &MB, MachineBasicBlock::iterator InsertBefore,
440       unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def);
441 
442 public:
443   /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
444   /// Newly created intervals will be appended to newIntervals.
445   SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, LiveIntervals &lis,
446               VirtRegMap &vrm, MachineDominatorTree &mdt,
447               MachineBlockFrequencyInfo &mbfi);
448 
449   /// reset - Prepare for a new split.
450   void reset(LiveRangeEdit&, ComplementSpillMode = SM_Partition);
451 
452   /// Create a new virtual register and live interval.
453   /// Return the interval index, starting from 1. Interval index 0 is the
454   /// implicit complement interval.
455   unsigned openIntv();
456 
457   /// currentIntv - Return the current interval index.
458   unsigned currentIntv() const { return OpenIdx; }
459 
460   /// selectIntv - Select a previously opened interval index.
461   void selectIntv(unsigned Idx);
462 
463   /// enterIntvBefore - Enter the open interval before the instruction at Idx.
464   /// If the parent interval is not live before Idx, a COPY is not inserted.
465   /// Return the beginning of the new live range.
466   SlotIndex enterIntvBefore(SlotIndex Idx);
467 
468   /// enterIntvAfter - Enter the open interval after the instruction at Idx.
469   /// Return the beginning of the new live range.
470   SlotIndex enterIntvAfter(SlotIndex Idx);
471 
472   /// enterIntvAtEnd - Enter the open interval at the end of MBB.
473   /// Use the open interval from the inserted copy to the MBB end.
474   /// Return the beginning of the new live range.
475   SlotIndex enterIntvAtEnd(MachineBasicBlock &MBB);
476 
477   /// useIntv - indicate that all instructions in MBB should use OpenLI.
478   void useIntv(const MachineBasicBlock &MBB);
479 
480   /// useIntv - indicate that all instructions in range should use OpenLI.
481   void useIntv(SlotIndex Start, SlotIndex End);
482 
483   /// leaveIntvAfter - Leave the open interval after the instruction at Idx.
484   /// Return the end of the live range.
485   SlotIndex leaveIntvAfter(SlotIndex Idx);
486 
487   /// leaveIntvBefore - Leave the open interval before the instruction at Idx.
488   /// Return the end of the live range.
489   SlotIndex leaveIntvBefore(SlotIndex Idx);
490 
491   /// leaveIntvAtTop - Leave the interval at the top of MBB.
492   /// Add liveness from the MBB top to the copy.
493   /// Return the end of the live range.
494   SlotIndex leaveIntvAtTop(MachineBasicBlock &MBB);
495 
496   /// overlapIntv - Indicate that all instructions in range should use the open
497   /// interval, but also let the complement interval be live.
498   ///
499   /// This doubles the register pressure, but is sometimes required to deal with
500   /// register uses after the last valid split point.
501   ///
502   /// The Start index should be a return value from a leaveIntv* call, and End
503   /// should be in the same basic block. The parent interval must have the same
504   /// value across the range.
505   ///
506   void overlapIntv(SlotIndex Start, SlotIndex End);
507 
508   /// finish - after all the new live ranges have been created, compute the
509   /// remaining live range, and rewrite instructions to use the new registers.
510   /// @param LRMap When not null, this vector will map each live range in Edit
511   ///              back to the indices returned by openIntv.
512   ///              There may be extra indices created by dead code elimination.
513   void finish(SmallVectorImpl<unsigned> *LRMap = nullptr);
514 
515   /// dump - print the current interval mapping to dbgs().
516   void dump() const;
517 
518   // ===--- High level methods ---===
519 
520   /// splitSingleBlock - Split CurLI into a separate live interval around the
521   /// uses in a single block. This is intended to be used as part of a larger
522   /// split, and doesn't call finish().
523   void splitSingleBlock(const SplitAnalysis::BlockInfo &BI);
524 
525   /// splitLiveThroughBlock - Split CurLI in the given block such that it
526   /// enters the block in IntvIn and leaves it in IntvOut. There may be uses in
527   /// the block, but they will be ignored when placing split points.
528   ///
529   /// @param MBBNum      Block number.
530   /// @param IntvIn      Interval index entering the block.
531   /// @param LeaveBefore When set, leave IntvIn before this point.
532   /// @param IntvOut     Interval index leaving the block.
533   /// @param EnterAfter  When set, enter IntvOut after this point.
534   void splitLiveThroughBlock(unsigned MBBNum,
535                              unsigned IntvIn, SlotIndex LeaveBefore,
536                              unsigned IntvOut, SlotIndex EnterAfter);
537 
538   /// splitRegInBlock - Split CurLI in the given block such that it enters the
539   /// block in IntvIn and leaves it on the stack (or not at all). Split points
540   /// are placed in a way that avoids putting uses in the stack interval. This
541   /// may require creating a local interval when there is interference.
542   ///
543   /// @param BI          Block descriptor.
544   /// @param IntvIn      Interval index entering the block. Not 0.
545   /// @param LeaveBefore When set, leave IntvIn before this point.
546   void splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
547                        unsigned IntvIn, SlotIndex LeaveBefore);
548 
549   /// splitRegOutBlock - Split CurLI in the given block such that it enters the
550   /// block on the stack (or isn't live-in at all) and leaves it in IntvOut.
551   /// Split points are placed to avoid interference and such that the uses are
552   /// not in the stack interval. This may require creating a local interval
553   /// when there is interference.
554   ///
555   /// @param BI          Block descriptor.
556   /// @param IntvOut     Interval index leaving the block.
557   /// @param EnterAfter  When set, enter IntvOut after this point.
558   void splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
559                         unsigned IntvOut, SlotIndex EnterAfter);
560 };
561 
562 } // end namespace llvm
563 
564 #endif // LLVM_LIB_CODEGEN_SPLITKIT_H
565