1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/CodeGen/LiveRangeEdit.h" 20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/VirtRegMap.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/DebugLoc.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/BlockFrequency.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <iterator> 42 #include <limits> 43 #include <tuple> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc" 48 49 STATISTIC(NumFinished, "Number of splits finished"); 50 STATISTIC(NumSimple, "Number of splits that were simple"); 51 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 53 54 //===----------------------------------------------------------------------===// 55 // Last Insert Point Analysis 56 //===----------------------------------------------------------------------===// 57 58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 59 unsigned BBNum) 60 : LIS(lis), LastInsertPoint(BBNum) {} 61 62 SlotIndex 63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 64 const MachineBasicBlock &MBB) { 65 unsigned Num = MBB.getNumber(); 66 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 67 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 68 69 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors; 70 bool EHPadSuccessor = false; 71 for (const MachineBasicBlock *SMBB : MBB.successors()) { 72 if (SMBB->isEHPad()) { 73 ExceptionalSuccessors.push_back(SMBB); 74 EHPadSuccessor = true; 75 } else if (SMBB->isInlineAsmBrIndirectTarget()) 76 ExceptionalSuccessors.push_back(SMBB); 77 } 78 79 // Compute insert points on the first call. The pair is independent of the 80 // current live interval. 81 if (!LIP.first.isValid()) { 82 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 83 if (FirstTerm == MBB.end()) 84 LIP.first = MBBEnd; 85 else 86 LIP.first = LIS.getInstructionIndex(*FirstTerm); 87 88 // If there is a landing pad or inlineasm_br successor, also find the 89 // instruction. If there is no such instruction, we don't need to do 90 // anything special. We assume there cannot be multiple instructions that 91 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we 92 // assume that if there are any, they will be after any other call 93 // instructions in the block. 94 if (ExceptionalSuccessors.empty()) 95 return LIP.first; 96 for (const MachineInstr &MI : llvm::reverse(MBB)) { 97 if ((EHPadSuccessor && MI.isCall()) || 98 MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 99 LIP.second = LIS.getInstructionIndex(MI); 100 break; 101 } 102 } 103 } 104 105 // If CurLI is live into a landing pad successor, move the last insert point 106 // back to the call that may throw. 107 if (!LIP.second) 108 return LIP.first; 109 110 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) { 111 return LIS.isLiveInToMBB(CurLI, EHPad); 112 })) 113 return LIP.first; 114 115 // Find the value leaving MBB. 116 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 117 if (!VNI) 118 return LIP.first; 119 120 // The def of statepoint instruction is a gc relocation and it should be alive 121 // in landing pad. So we cannot split interval after statepoint instruction. 122 if (SlotIndex::isSameInstr(VNI->def, LIP.second)) 123 if (auto *I = LIS.getInstructionFromIndex(LIP.second)) 124 if (I->getOpcode() == TargetOpcode::STATEPOINT) 125 return LIP.second; 126 127 // If the value leaving MBB was defined after the call in MBB, it can't 128 // really be live-in to the landing pad. This can happen if the landing pad 129 // has a PHI, and this register is undef on the exceptional edge. 130 // <rdar://problem/10664933> 131 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 132 return LIP.first; 133 134 // Value is properly live-in to the landing pad. 135 // Only allow inserts before the call. 136 return LIP.second; 137 } 138 139 MachineBasicBlock::iterator 140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 141 MachineBasicBlock &MBB) { 142 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 143 if (LIP == LIS.getMBBEndIdx(&MBB)) 144 return MBB.end(); 145 return LIS.getInstructionFromIndex(LIP); 146 } 147 148 //===----------------------------------------------------------------------===// 149 // Split Analysis 150 //===----------------------------------------------------------------------===// 151 152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 153 const MachineLoopInfo &mli) 154 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 155 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 156 157 void SplitAnalysis::clear() { 158 UseSlots.clear(); 159 UseBlocks.clear(); 160 ThroughBlocks.clear(); 161 CurLI = nullptr; 162 } 163 164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 165 void SplitAnalysis::analyzeUses() { 166 assert(UseSlots.empty() && "Call clear first"); 167 168 // First get all the defs from the interval values. This provides the correct 169 // slots for early clobbers. 170 for (const VNInfo *VNI : CurLI->valnos) 171 if (!VNI->isPHIDef() && !VNI->isUnused()) 172 UseSlots.push_back(VNI->def); 173 174 // Get use slots form the use-def chain. 175 const MachineRegisterInfo &MRI = MF.getRegInfo(); 176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg())) 177 if (!MO.isUndef()) 178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 179 180 array_pod_sort(UseSlots.begin(), UseSlots.end()); 181 182 // Remove duplicates, keeping the smaller slot for each instruction. 183 // That is what we want for early clobbers. 184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 185 SlotIndex::isSameInstr), 186 UseSlots.end()); 187 188 // Compute per-live block info. 189 calcLiveBlockInfo(); 190 191 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 192 << UseBlocks.size() << " blocks, through " 193 << NumThroughBlocks << " blocks.\n"); 194 } 195 196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 197 /// where CurLI is live. 198 void SplitAnalysis::calcLiveBlockInfo() { 199 ThroughBlocks.resize(MF.getNumBlockIDs()); 200 NumThroughBlocks = NumGapBlocks = 0; 201 if (CurLI->empty()) 202 return; 203 204 LiveInterval::const_iterator LVI = CurLI->begin(); 205 LiveInterval::const_iterator LVE = CurLI->end(); 206 207 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 208 UseI = UseSlots.begin(); 209 UseE = UseSlots.end(); 210 211 // Loop over basic blocks where CurLI is live. 212 MachineFunction::iterator MFI = 213 LIS.getMBBFromIndex(LVI->start)->getIterator(); 214 while (true) { 215 BlockInfo BI; 216 BI.MBB = &*MFI; 217 SlotIndex Start, Stop; 218 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 219 220 // If the block contains no uses, the range must be live through. At one 221 // point, RegisterCoalescer could create dangling ranges that ended 222 // mid-block. 223 if (UseI == UseE || *UseI >= Stop) { 224 ++NumThroughBlocks; 225 ThroughBlocks.set(BI.MBB->getNumber()); 226 // The range shouldn't end mid-block if there are no uses. This shouldn't 227 // happen. 228 assert(LVI->end >= Stop && "range ends mid block with no uses"); 229 } else { 230 // This block has uses. Find the first and last uses in the block. 231 BI.FirstInstr = *UseI; 232 assert(BI.FirstInstr >= Start); 233 do ++UseI; 234 while (UseI != UseE && *UseI < Stop); 235 BI.LastInstr = UseI[-1]; 236 assert(BI.LastInstr < Stop); 237 238 // LVI is the first live segment overlapping MBB. 239 BI.LiveIn = LVI->start <= Start; 240 241 // When not live in, the first use should be a def. 242 if (!BI.LiveIn) { 243 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 244 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 245 BI.FirstDef = BI.FirstInstr; 246 } 247 248 // Look for gaps in the live range. 249 BI.LiveOut = true; 250 while (LVI->end < Stop) { 251 SlotIndex LastStop = LVI->end; 252 if (++LVI == LVE || LVI->start >= Stop) { 253 BI.LiveOut = false; 254 BI.LastInstr = LastStop; 255 break; 256 } 257 258 if (LastStop < LVI->start) { 259 // There is a gap in the live range. Create duplicate entries for the 260 // live-in snippet and the live-out snippet. 261 ++NumGapBlocks; 262 263 // Push the Live-in part. 264 BI.LiveOut = false; 265 UseBlocks.push_back(BI); 266 UseBlocks.back().LastInstr = LastStop; 267 268 // Set up BI for the live-out part. 269 BI.LiveIn = false; 270 BI.LiveOut = true; 271 BI.FirstInstr = BI.FirstDef = LVI->start; 272 } 273 274 // A Segment that starts in the middle of the block must be a def. 275 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 276 if (!BI.FirstDef) 277 BI.FirstDef = LVI->start; 278 } 279 280 UseBlocks.push_back(BI); 281 282 // LVI is now at LVE or LVI->end >= Stop. 283 if (LVI == LVE) 284 break; 285 } 286 287 // Live segment ends exactly at Stop. Move to the next segment. 288 if (LVI->end == Stop && ++LVI == LVE) 289 break; 290 291 // Pick the next basic block. 292 if (LVI->start < Stop) 293 ++MFI; 294 else 295 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 296 } 297 298 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 299 } 300 301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 302 if (cli->empty()) 303 return 0; 304 LiveInterval *li = const_cast<LiveInterval*>(cli); 305 LiveInterval::iterator LVI = li->begin(); 306 LiveInterval::iterator LVE = li->end(); 307 unsigned Count = 0; 308 309 // Loop over basic blocks where li is live. 310 MachineFunction::const_iterator MFI = 311 LIS.getMBBFromIndex(LVI->start)->getIterator(); 312 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 313 while (true) { 314 ++Count; 315 LVI = li->advanceTo(LVI, Stop); 316 if (LVI == LVE) 317 return Count; 318 do { 319 ++MFI; 320 Stop = LIS.getMBBEndIdx(&*MFI); 321 } while (Stop <= LVI->start); 322 } 323 } 324 325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 326 unsigned OrigReg = VRM.getOriginal(CurLI->reg()); 327 const LiveInterval &Orig = LIS.getInterval(OrigReg); 328 assert(!Orig.empty() && "Splitting empty interval?"); 329 LiveInterval::const_iterator I = Orig.find(Idx); 330 331 // Range containing Idx should begin at Idx. 332 if (I != Orig.end() && I->start <= Idx) 333 return I->start == Idx; 334 335 // Range does not contain Idx, previous must end at Idx. 336 return I != Orig.begin() && (--I)->end == Idx; 337 } 338 339 void SplitAnalysis::analyze(const LiveInterval *li) { 340 clear(); 341 CurLI = li; 342 analyzeUses(); 343 } 344 345 //===----------------------------------------------------------------------===// 346 // Split Editor 347 //===----------------------------------------------------------------------===// 348 349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 350 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM, 351 MachineDominatorTree &MDT, 352 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) 353 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()), 354 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), 355 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), 356 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} 357 358 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 359 Edit = &LRE; 360 SpillMode = SM; 361 OpenIdx = 0; 362 RegAssign.clear(); 363 Values.clear(); 364 365 // Reset the LiveIntervalCalc instances needed for this spill mode. 366 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 367 &LIS.getVNInfoAllocator()); 368 if (SpillMode) 369 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 370 &LIS.getVNInfoAllocator()); 371 372 Edit->anyRematerializable(); 373 } 374 375 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 376 LLVM_DUMP_METHOD void SplitEditor::dump() const { 377 if (RegAssign.empty()) { 378 dbgs() << " empty\n"; 379 return; 380 } 381 382 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 383 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 384 dbgs() << '\n'; 385 } 386 #endif 387 388 /// Find a subrange corresponding to the exact lane mask @p LM in the live 389 /// interval @p LI. The interval @p LI is assumed to contain such a subrange. 390 /// This function is used to find corresponding subranges between the 391 /// original interval and the new intervals. 392 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) { 393 for (auto &S : LI.subranges()) 394 if (S.LaneMask == LM) 395 return S; 396 llvm_unreachable("SubRange for this mask not found"); 397 } 398 399 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, 400 LiveInterval &LI) { 401 return getSubrangeImpl(LM, LI); 402 } 403 404 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, 405 const LiveInterval &LI) { 406 return getSubrangeImpl(LM, LI); 407 } 408 409 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it, 410 /// in the live interval @p LI. The interval @p LI is assumed to contain such 411 /// a subrange. This function is used to find corresponding subranges between 412 /// the original interval and the new intervals. 413 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM, 414 const LiveInterval &LI) { 415 for (const LiveInterval::SubRange &S : LI.subranges()) 416 if ((S.LaneMask & LM) == LM) 417 return S; 418 llvm_unreachable("SubRange for this mask not found"); 419 } 420 421 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 422 if (!LI.hasSubRanges()) { 423 LI.createDeadDef(VNI); 424 return; 425 } 426 427 SlotIndex Def = VNI->def; 428 if (Original) { 429 // If we are transferring a def from the original interval, make sure 430 // to only update the subranges for which the original subranges had 431 // a def at this location. 432 for (LiveInterval::SubRange &S : LI.subranges()) { 433 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 434 VNInfo *PV = PS.getVNInfoAt(Def); 435 if (PV != nullptr && PV->def == Def) 436 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 437 } 438 } else { 439 // This is a new def: either from rematerialization, or from an inserted 440 // copy. Since rematerialization can regenerate a definition of a sub- 441 // register, we need to check which subranges need to be updated. 442 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 443 assert(DefMI != nullptr); 444 LaneBitmask LM; 445 for (const MachineOperand &DefOp : DefMI->defs()) { 446 Register R = DefOp.getReg(); 447 if (R != LI.reg()) 448 continue; 449 if (unsigned SR = DefOp.getSubReg()) 450 LM |= TRI.getSubRegIndexLaneMask(SR); 451 else { 452 LM = MRI.getMaxLaneMaskForVReg(R); 453 break; 454 } 455 } 456 for (LiveInterval::SubRange &S : LI.subranges()) 457 if ((S.LaneMask & LM).any()) 458 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 459 } 460 } 461 462 VNInfo *SplitEditor::defValue(unsigned RegIdx, 463 const VNInfo *ParentVNI, 464 SlotIndex Idx, 465 bool Original) { 466 assert(ParentVNI && "Mapping NULL value"); 467 assert(Idx.isValid() && "Invalid SlotIndex"); 468 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 469 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 470 471 // Create a new value. 472 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 473 474 bool Force = LI->hasSubRanges(); 475 ValueForcePair FP(Force ? nullptr : VNI, Force); 476 // Use insert for lookup, so we can add missing values with a second lookup. 477 std::pair<ValueMap::iterator, bool> InsP = 478 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 479 480 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 481 // forced. Keep it as a simple def without any liveness. 482 if (!Force && InsP.second) 483 return VNI; 484 485 // If the previous value was a simple mapping, add liveness for it now. 486 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 487 addDeadDef(*LI, OldVNI, Original); 488 489 // No longer a simple mapping. Switch to a complex mapping. If the 490 // interval has subranges, make it a forced mapping. 491 InsP.first->second = ValueForcePair(nullptr, Force); 492 } 493 494 // This is a complex mapping, add liveness for VNI 495 addDeadDef(*LI, VNI, Original); 496 return VNI; 497 } 498 499 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 500 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 501 VNInfo *VNI = VFP.getPointer(); 502 503 // ParentVNI was either unmapped or already complex mapped. Either way, just 504 // set the force bit. 505 if (!VNI) { 506 VFP.setInt(true); 507 return; 508 } 509 510 // This was previously a single mapping. Make sure the old def is represented 511 // by a trivial live range. 512 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 513 514 // Mark as complex mapped, forced. 515 VFP = ValueForcePair(nullptr, true); 516 } 517 518 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg, 519 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 520 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 521 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 522 bool FirstCopy = !Def.isValid(); 523 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 524 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 525 | getInternalReadRegState(!FirstCopy), SubIdx) 526 .addReg(FromReg, 0, SubIdx); 527 528 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 529 if (FirstCopy) { 530 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 531 } else { 532 CopyMI->bundleWithPred(); 533 } 534 return Def; 535 } 536 537 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, 538 LaneBitmask LaneMask, MachineBasicBlock &MBB, 539 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 540 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 541 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 542 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 543 // The full vreg is copied. 544 MachineInstr *CopyMI = 545 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 546 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 547 } 548 549 // Only a subset of lanes needs to be copied. The following is a simple 550 // heuristic to construct a sequence of COPYs. We could add a target 551 // specific callback if this turns out to be suboptimal. 552 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 553 554 // First pass: Try to find a perfectly matching subregister index. If none 555 // exists find the one covering the most lanemask bits. 556 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 557 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 558 559 SmallVector<unsigned, 8> SubIndexes; 560 561 // Abort if we cannot possibly implement the COPY with the given indexes. 562 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes)) 563 report_fatal_error("Impossible to implement partial COPY"); 564 565 SlotIndex Def; 566 for (unsigned BestIdx : SubIndexes) { 567 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 568 DestLI, Late, Def); 569 } 570 571 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 572 DestLI.refineSubRanges( 573 Allocator, LaneMask, 574 [Def, &Allocator](LiveInterval::SubRange &SR) { 575 SR.createDeadDef(Def, Allocator); 576 }, 577 Indexes, TRI); 578 579 return Def; 580 } 581 582 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI, 583 SlotIndex UseIdx, MachineBasicBlock &MBB, 584 MachineBasicBlock::iterator I) { 585 SlotIndex Def; 586 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 587 588 // We may be trying to avoid interference that ends at a deleted instruction, 589 // so always begin RegIdx 0 early and all others late. 590 bool Late = RegIdx != 0; 591 592 // Attempt cheap-as-a-copy rematerialization. 593 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 594 LiveInterval &OrigLI = LIS.getInterval(Original); 595 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 596 597 Register Reg = LI->reg(); 598 bool DidRemat = false; 599 if (OrigVNI) { 600 LiveRangeEdit::Remat RM(ParentVNI); 601 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 602 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 603 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 604 ++NumRemats; 605 DidRemat = true; 606 } 607 } 608 if (!DidRemat) { 609 LaneBitmask LaneMask; 610 if (OrigLI.hasSubRanges()) { 611 LaneMask = LaneBitmask::getNone(); 612 for (LiveInterval::SubRange &S : OrigLI.subranges()) { 613 if (S.liveAt(UseIdx)) 614 LaneMask |= S.LaneMask; 615 } 616 } else { 617 LaneMask = LaneBitmask::getAll(); 618 } 619 620 if (LaneMask.none()) { 621 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF); 622 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg); 623 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 624 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot(); 625 } else { 626 ++NumCopies; 627 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 628 } 629 } 630 631 // Define the value in Reg. 632 return defValue(RegIdx, ParentVNI, Def, false); 633 } 634 635 /// Create a new virtual register and live interval. 636 unsigned SplitEditor::openIntv() { 637 // Create the complement as index 0. 638 if (Edit->empty()) 639 Edit->createEmptyInterval(); 640 641 // Create the open interval. 642 OpenIdx = Edit->size(); 643 Edit->createEmptyInterval(); 644 return OpenIdx; 645 } 646 647 void SplitEditor::selectIntv(unsigned Idx) { 648 assert(Idx != 0 && "Cannot select the complement interval"); 649 assert(Idx < Edit->size() && "Can only select previously opened interval"); 650 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 651 OpenIdx = Idx; 652 } 653 654 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 655 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 656 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 657 Idx = Idx.getBaseIndex(); 658 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 659 if (!ParentVNI) { 660 LLVM_DEBUG(dbgs() << ": not live\n"); 661 return Idx; 662 } 663 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 664 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 665 assert(MI && "enterIntvBefore called with invalid index"); 666 667 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 668 return VNI->def; 669 } 670 671 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 672 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 673 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 674 Idx = Idx.getBoundaryIndex(); 675 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 676 if (!ParentVNI) { 677 LLVM_DEBUG(dbgs() << ": not live\n"); 678 return Idx; 679 } 680 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 681 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 682 assert(MI && "enterIntvAfter called with invalid index"); 683 684 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 685 std::next(MachineBasicBlock::iterator(MI))); 686 return VNI->def; 687 } 688 689 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 690 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 691 SlotIndex End = LIS.getMBBEndIdx(&MBB); 692 SlotIndex Last = End.getPrevSlot(); 693 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 694 << Last); 695 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 696 if (!ParentVNI) { 697 LLVM_DEBUG(dbgs() << ": not live\n"); 698 return End; 699 } 700 SlotIndex LSP = SA.getLastSplitPoint(&MBB); 701 if (LSP < Last) { 702 // It could be that the use after LSP is a def, and thus the ParentVNI 703 // just selected starts at that def. For this case to exist, the def 704 // must be part of a tied def/use pair (as otherwise we'd have split 705 // distinct live ranges into individual live intervals), and thus we 706 // can insert the def into the VNI of the use and the tied def/use 707 // pair can live in the resulting interval. 708 Last = LSP; 709 ParentVNI = Edit->getParent().getVNInfoAt(Last); 710 if (!ParentVNI) { 711 // undef use --> undef tied def 712 LLVM_DEBUG(dbgs() << ": tied use not live\n"); 713 return End; 714 } 715 } 716 717 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 718 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 719 SA.getLastSplitPointIter(&MBB)); 720 RegAssign.insert(VNI->def, End, OpenIdx); 721 LLVM_DEBUG(dump()); 722 return VNI->def; 723 } 724 725 /// useIntv - indicate that all instructions in MBB should use OpenLI. 726 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 727 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 728 } 729 730 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 731 assert(OpenIdx && "openIntv not called before useIntv"); 732 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 733 RegAssign.insert(Start, End, OpenIdx); 734 LLVM_DEBUG(dump()); 735 } 736 737 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 738 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 739 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 740 741 // The interval must be live beyond the instruction at Idx. 742 SlotIndex Boundary = Idx.getBoundaryIndex(); 743 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 744 if (!ParentVNI) { 745 LLVM_DEBUG(dbgs() << ": not live\n"); 746 return Boundary.getNextSlot(); 747 } 748 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 749 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 750 assert(MI && "No instruction at index"); 751 752 // In spill mode, make live ranges as short as possible by inserting the copy 753 // before MI. This is only possible if that instruction doesn't redefine the 754 // value. The inserted COPY is not a kill, and we don't need to recompute 755 // the source live range. The spiller also won't try to hoist this copy. 756 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 757 MI->readsVirtualRegister(Edit->getReg())) { 758 forceRecompute(0, *ParentVNI); 759 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 760 return Idx; 761 } 762 763 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 764 std::next(MachineBasicBlock::iterator(MI))); 765 return VNI->def; 766 } 767 768 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 769 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 770 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 771 772 // The interval must be live into the instruction at Idx. 773 Idx = Idx.getBaseIndex(); 774 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 775 if (!ParentVNI) { 776 LLVM_DEBUG(dbgs() << ": not live\n"); 777 return Idx.getNextSlot(); 778 } 779 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 780 781 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 782 assert(MI && "No instruction at index"); 783 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 784 return VNI->def; 785 } 786 787 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 788 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 789 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 790 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 791 << Start); 792 793 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 794 if (!ParentVNI) { 795 LLVM_DEBUG(dbgs() << ": not live\n"); 796 return Start; 797 } 798 799 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 800 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 801 RegAssign.insert(Start, VNI->def, OpenIdx); 802 LLVM_DEBUG(dump()); 803 return VNI->def; 804 } 805 806 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) { 807 return any_of(MI.defs(), [Reg](const MachineOperand &MO) { 808 return MO.isReg() && MO.isTied() && MO.getReg() == Reg; 809 }); 810 } 811 812 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 813 assert(OpenIdx && "openIntv not called before overlapIntv"); 814 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 815 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 816 "Parent changes value in extended range"); 817 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 818 "Range cannot span basic blocks"); 819 820 // The complement interval will be extended as needed by LICalc.extend(). 821 if (ParentVNI) 822 forceRecompute(0, *ParentVNI); 823 824 // If the last use is tied to a def, we can't mark it as live for the 825 // interval which includes only the use. That would cause the tied pair 826 // to end up in two different intervals. 827 if (auto *MI = LIS.getInstructionFromIndex(End)) 828 if (hasTiedUseOf(*MI, Edit->getReg())) { 829 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n"); 830 return; 831 } 832 833 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 834 RegAssign.insert(Start, End, OpenIdx); 835 LLVM_DEBUG(dump()); 836 } 837 838 //===----------------------------------------------------------------------===// 839 // Spill modes 840 //===----------------------------------------------------------------------===// 841 842 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 843 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 844 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 845 RegAssignMap::iterator AssignI; 846 AssignI.setMap(RegAssign); 847 848 for (const VNInfo *C : Copies) { 849 SlotIndex Def = C->def; 850 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 851 assert(MI && "No instruction for back-copy"); 852 853 MachineBasicBlock *MBB = MI->getParent(); 854 MachineBasicBlock::iterator MBBI(MI); 855 bool AtBegin; 856 do AtBegin = MBBI == MBB->begin(); 857 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); 858 859 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 860 LIS.removeVRegDefAt(*LI, Def); 861 LIS.RemoveMachineInstrFromMaps(*MI); 862 MI->eraseFromParent(); 863 864 // Adjust RegAssign if a register assignment is killed at Def. We want to 865 // avoid calculating the live range of the source register if possible. 866 AssignI.find(Def.getPrevSlot()); 867 if (!AssignI.valid() || AssignI.start() >= Def) 868 continue; 869 // If MI doesn't kill the assigned register, just leave it. 870 if (AssignI.stop() != Def) 871 continue; 872 unsigned RegIdx = AssignI.value(); 873 // We could hoist back-copy right after another back-copy. As a result 874 // MMBI points to copy instruction which is actually dead now. 875 // We cannot set its stop to MBBI which will be the same as start and 876 // interval does not support that. 877 SlotIndex Kill = 878 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot(); 879 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) || 880 Kill <= AssignI.start()) { 881 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 882 << '\n'); 883 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 884 } else { 885 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 886 AssignI.setStop(Kill); 887 } 888 } 889 } 890 891 MachineBasicBlock* 892 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 893 MachineBasicBlock *DefMBB) { 894 if (MBB == DefMBB) 895 return MBB; 896 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 897 898 const MachineLoopInfo &Loops = SA.Loops; 899 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 900 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 901 902 // Best candidate so far. 903 MachineBasicBlock *BestMBB = MBB; 904 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 905 906 while (true) { 907 const MachineLoop *Loop = Loops.getLoopFor(MBB); 908 909 // MBB isn't in a loop, it doesn't get any better. All dominators have a 910 // higher frequency by definition. 911 if (!Loop) { 912 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 913 << " dominates " << printMBBReference(*MBB) 914 << " at depth 0\n"); 915 return MBB; 916 } 917 918 // We'll never be able to exit the DefLoop. 919 if (Loop == DefLoop) { 920 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 921 << " dominates " << printMBBReference(*MBB) 922 << " in the same loop\n"); 923 return MBB; 924 } 925 926 // Least busy dominator seen so far. 927 unsigned Depth = Loop->getLoopDepth(); 928 if (Depth < BestDepth) { 929 BestMBB = MBB; 930 BestDepth = Depth; 931 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 932 << " dominates " << printMBBReference(*MBB) 933 << " at depth " << Depth << '\n'); 934 } 935 936 // Leave loop by going to the immediate dominator of the loop header. 937 // This is a bigger stride than simply walking up the dominator tree. 938 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 939 940 // Too far up the dominator tree? 941 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 942 return BestMBB; 943 944 MBB = IDom->getBlock(); 945 } 946 } 947 948 void SplitEditor::computeRedundantBackCopies( 949 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 950 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 951 const LiveInterval *Parent = &Edit->getParent(); 952 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 953 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 954 955 // Aggregate VNIs having the same value as ParentVNI. 956 for (VNInfo *VNI : LI->valnos) { 957 if (VNI->isUnused()) 958 continue; 959 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 960 EqualVNs[ParentVNI->id].insert(VNI); 961 } 962 963 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 964 // redundant VNIs to BackCopies. 965 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 966 const VNInfo *ParentVNI = Parent->getValNumInfo(i); 967 if (!NotToHoistSet.count(ParentVNI->id)) 968 continue; 969 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 970 SmallPtrSetIterator<VNInfo *> It2 = It1; 971 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 972 It2 = It1; 973 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 974 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 975 continue; 976 977 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 978 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 979 if (MBB1 == MBB2) { 980 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 981 } else if (MDT.dominates(MBB1, MBB2)) { 982 DominatedVNIs.insert(*It2); 983 } else if (MDT.dominates(MBB2, MBB1)) { 984 DominatedVNIs.insert(*It1); 985 } 986 } 987 } 988 if (!DominatedVNIs.empty()) { 989 forceRecompute(0, *ParentVNI); 990 append_range(BackCopies, DominatedVNIs); 991 DominatedVNIs.clear(); 992 } 993 } 994 } 995 996 /// For SM_Size mode, find a common dominator for all the back-copies for 997 /// the same ParentVNI and hoist the backcopies to the dominator BB. 998 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 999 /// to do the hoisting, simply remove the dominated backcopies for the same 1000 /// ParentVNI. 1001 void SplitEditor::hoistCopies() { 1002 // Get the complement interval, always RegIdx 0. 1003 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1004 const LiveInterval *Parent = &Edit->getParent(); 1005 1006 // Track the nearest common dominator for all back-copies for each ParentVNI, 1007 // indexed by ParentVNI->id. 1008 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1009 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1010 // The total cost of all the back-copies for each ParentVNI. 1011 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1012 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1013 // for Speed. 1014 DenseSet<unsigned> NotToHoistSet; 1015 1016 // Find the nearest common dominator for parent values with multiple 1017 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1018 for (VNInfo *VNI : LI->valnos) { 1019 if (VNI->isUnused()) 1020 continue; 1021 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1022 assert(ParentVNI && "Parent not live at complement def"); 1023 1024 // Don't hoist remats. The complement is probably going to disappear 1025 // completely anyway. 1026 if (Edit->didRematerialize(ParentVNI)) 1027 continue; 1028 1029 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1030 1031 DomPair &Dom = NearestDom[ParentVNI->id]; 1032 1033 // Keep directly defined parent values. This is either a PHI or an 1034 // instruction in the complement range. All other copies of ParentVNI 1035 // should be eliminated. 1036 if (VNI->def == ParentVNI->def) { 1037 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1038 Dom = DomPair(ValMBB, VNI->def); 1039 continue; 1040 } 1041 // Skip the singly mapped values. There is nothing to gain from hoisting a 1042 // single back-copy. 1043 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1044 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1045 continue; 1046 } 1047 1048 if (!Dom.first) { 1049 // First time we see ParentVNI. VNI dominates itself. 1050 Dom = DomPair(ValMBB, VNI->def); 1051 } else if (Dom.first == ValMBB) { 1052 // Two defs in the same block. Pick the earlier def. 1053 if (!Dom.second.isValid() || VNI->def < Dom.second) 1054 Dom.second = VNI->def; 1055 } else { 1056 // Different basic blocks. Check if one dominates. 1057 MachineBasicBlock *Near = 1058 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1059 if (Near == ValMBB) 1060 // Def ValMBB dominates. 1061 Dom = DomPair(ValMBB, VNI->def); 1062 else if (Near != Dom.first) 1063 // None dominate. Hoist to common dominator, need new def. 1064 Dom = DomPair(Near, SlotIndex()); 1065 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1066 } 1067 1068 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1069 << VNI->def << " for parent " << ParentVNI->id << '@' 1070 << ParentVNI->def << " hoist to " 1071 << printMBBReference(*Dom.first) << ' ' << Dom.second 1072 << '\n'); 1073 } 1074 1075 // Insert the hoisted copies. 1076 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1077 DomPair &Dom = NearestDom[i]; 1078 if (!Dom.first || Dom.second.isValid()) 1079 continue; 1080 // This value needs a hoisted copy inserted at the end of Dom.first. 1081 const VNInfo *ParentVNI = Parent->getValNumInfo(i); 1082 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1083 // Get a less loopy dominator than Dom.first. 1084 Dom.first = findShallowDominator(Dom.first, DefMBB); 1085 if (SpillMode == SM_Speed && 1086 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1087 NotToHoistSet.insert(ParentVNI->id); 1088 continue; 1089 } 1090 SlotIndex LSP = SA.getLastSplitPoint(Dom.first); 1091 if (LSP <= ParentVNI->def) { 1092 NotToHoistSet.insert(ParentVNI->id); 1093 continue; 1094 } 1095 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first, 1096 SA.getLastSplitPointIter(Dom.first))->def; 1097 } 1098 1099 // Remove redundant back-copies that are now known to be dominated by another 1100 // def with the same value. 1101 SmallVector<VNInfo*, 8> BackCopies; 1102 for (VNInfo *VNI : LI->valnos) { 1103 if (VNI->isUnused()) 1104 continue; 1105 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1106 const DomPair &Dom = NearestDom[ParentVNI->id]; 1107 if (!Dom.first || Dom.second == VNI->def || 1108 NotToHoistSet.count(ParentVNI->id)) 1109 continue; 1110 BackCopies.push_back(VNI); 1111 forceRecompute(0, *ParentVNI); 1112 } 1113 1114 // If it is not beneficial to hoist all the BackCopies, simply remove 1115 // redundant BackCopies in speed mode. 1116 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1117 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1118 1119 removeBackCopies(BackCopies); 1120 } 1121 1122 /// transferValues - Transfer all possible values to the new live ranges. 1123 /// Values that were rematerialized are left alone, they need LICalc.extend(). 1124 bool SplitEditor::transferValues() { 1125 bool Skipped = false; 1126 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1127 for (const LiveRange::Segment &S : Edit->getParent()) { 1128 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1129 VNInfo *ParentVNI = S.valno; 1130 // RegAssign has holes where RegIdx 0 should be used. 1131 SlotIndex Start = S.start; 1132 AssignI.advanceTo(Start); 1133 do { 1134 unsigned RegIdx; 1135 SlotIndex End = S.end; 1136 if (!AssignI.valid()) { 1137 RegIdx = 0; 1138 } else if (AssignI.start() <= Start) { 1139 RegIdx = AssignI.value(); 1140 if (AssignI.stop() < End) { 1141 End = AssignI.stop(); 1142 ++AssignI; 1143 } 1144 } else { 1145 RegIdx = 0; 1146 End = std::min(End, AssignI.start()); 1147 } 1148 1149 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1150 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1151 << printReg(Edit->get(RegIdx)) << ')'); 1152 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1153 1154 // Check for a simply defined value that can be blitted directly. 1155 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1156 if (VNInfo *VNI = VFP.getPointer()) { 1157 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1158 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1159 Start = End; 1160 continue; 1161 } 1162 1163 // Skip values with forced recomputation. 1164 if (VFP.getInt()) { 1165 LLVM_DEBUG(dbgs() << "(recalc)"); 1166 Skipped = true; 1167 Start = End; 1168 continue; 1169 } 1170 1171 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1172 1173 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1174 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1175 // LiveInBlocks. 1176 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1177 SlotIndex BlockStart, BlockEnd; 1178 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1179 1180 // The first block may be live-in, or it may have its own def. 1181 if (Start != BlockStart) { 1182 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1183 assert(VNI && "Missing def for complex mapped value"); 1184 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1185 // MBB has its own def. Is it also live-out? 1186 if (BlockEnd <= End) 1187 LIC.setLiveOutValue(&*MBB, VNI); 1188 1189 // Skip to the next block for live-in. 1190 ++MBB; 1191 BlockStart = BlockEnd; 1192 } 1193 1194 // Handle the live-in blocks covered by [Start;End). 1195 assert(Start <= BlockStart && "Expected live-in block"); 1196 while (BlockStart < End) { 1197 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1198 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1199 if (BlockStart == ParentVNI->def) { 1200 // This block has the def of a parent PHI, so it isn't live-in. 1201 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1202 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1203 assert(VNI && "Missing def for complex mapped parent PHI"); 1204 if (End >= BlockEnd) 1205 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1206 } else { 1207 // This block needs a live-in value. The last block covered may not 1208 // be live-out. 1209 if (End < BlockEnd) 1210 LIC.addLiveInBlock(LI, MDT[&*MBB], End); 1211 else { 1212 // Live-through, and we don't know the value. 1213 LIC.addLiveInBlock(LI, MDT[&*MBB]); 1214 LIC.setLiveOutValue(&*MBB, nullptr); 1215 } 1216 } 1217 BlockStart = BlockEnd; 1218 ++MBB; 1219 } 1220 Start = End; 1221 } while (Start != S.end); 1222 LLVM_DEBUG(dbgs() << '\n'); 1223 } 1224 1225 LICalc[0].calculateValues(); 1226 if (SpillMode) 1227 LICalc[1].calculateValues(); 1228 1229 return Skipped; 1230 } 1231 1232 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1233 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1234 if (Seg == nullptr) 1235 return true; 1236 if (Seg->end != Def.getDeadSlot()) 1237 return false; 1238 // This is a dead PHI. Remove it. 1239 LR.removeSegment(*Seg, true); 1240 return true; 1241 } 1242 1243 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, 1244 LiveRange &LR, LaneBitmask LM, 1245 ArrayRef<SlotIndex> Undefs) { 1246 for (MachineBasicBlock *P : B.predecessors()) { 1247 SlotIndex End = LIS.getMBBEndIdx(P); 1248 SlotIndex LastUse = End.getPrevSlot(); 1249 // The predecessor may not have a live-out value. That is OK, like an 1250 // undef PHI operand. 1251 const LiveInterval &PLI = Edit->getParent(); 1252 // Need the cast because the inputs to ?: would otherwise be deemed 1253 // "incompatible": SubRange vs LiveInterval. 1254 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI) 1255 : static_cast<const LiveRange &>(PLI); 1256 if (PSR.liveAt(LastUse)) 1257 LIC.extend(LR, End, /*PhysReg=*/0, Undefs); 1258 } 1259 } 1260 1261 void SplitEditor::extendPHIKillRanges() { 1262 // Extend live ranges to be live-out for successor PHI values. 1263 1264 // Visit each PHI def slot in the parent live interval. If the def is dead, 1265 // remove it. Otherwise, extend the live interval to reach the end indexes 1266 // of all predecessor blocks. 1267 1268 const LiveInterval &ParentLI = Edit->getParent(); 1269 for (const VNInfo *V : ParentLI.valnos) { 1270 if (V->isUnused() || !V->isPHIDef()) 1271 continue; 1272 1273 unsigned RegIdx = RegAssign.lookup(V->def); 1274 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1275 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1276 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1277 if (!removeDeadSegment(V->def, LI)) 1278 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1279 } 1280 1281 SmallVector<SlotIndex, 4> Undefs; 1282 LiveIntervalCalc SubLIC; 1283 1284 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) { 1285 for (const VNInfo *V : PS.valnos) { 1286 if (V->isUnused() || !V->isPHIDef()) 1287 continue; 1288 unsigned RegIdx = RegAssign.lookup(V->def); 1289 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1290 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI); 1291 if (removeDeadSegment(V->def, S)) 1292 continue; 1293 1294 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1295 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1296 &LIS.getVNInfoAllocator()); 1297 Undefs.clear(); 1298 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1299 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); 1300 } 1301 } 1302 } 1303 1304 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1305 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1306 struct ExtPoint { 1307 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1308 : MO(O), RegIdx(R), Next(N) {} 1309 1310 MachineOperand MO; 1311 unsigned RegIdx; 1312 SlotIndex Next; 1313 }; 1314 1315 SmallVector<ExtPoint,4> ExtPoints; 1316 1317 for (MachineOperand &MO : 1318 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) { 1319 MachineInstr *MI = MO.getParent(); 1320 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1321 if (MI->isDebugValue()) { 1322 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1323 MO.setReg(0); 1324 continue; 1325 } 1326 1327 // <undef> operands don't really read the register, so it doesn't matter 1328 // which register we choose. When the use operand is tied to a def, we must 1329 // use the same register as the def, so just do that always. 1330 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1331 if (MO.isDef() || MO.isUndef()) 1332 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1333 1334 // Rewrite to the mapped register at Idx. 1335 unsigned RegIdx = RegAssign.lookup(Idx); 1336 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1337 MO.setReg(LI.reg()); 1338 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1339 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1340 1341 // Extend liveness to Idx if the instruction reads reg. 1342 if (!ExtendRanges || MO.isUndef()) 1343 continue; 1344 1345 // Skip instructions that don't read Reg. 1346 if (MO.isDef()) { 1347 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1348 continue; 1349 // We may want to extend a live range for a partial redef, or for a use 1350 // tied to an early clobber. 1351 if (!Edit->getParent().liveAt(Idx.getPrevSlot())) 1352 continue; 1353 } else { 1354 assert(MO.isUse()); 1355 bool IsEarlyClobber = false; 1356 if (MO.isTied()) { 1357 // We want to extend a live range into `e` slot rather than `r` slot if 1358 // tied-def is early clobber, because the `e` slot already contained 1359 // in the live range of early-clobber tied-def operand, give an example 1360 // here: 1361 // 0 %0 = ... 1362 // 16 early-clobber %0 = Op %0 (tied-def 0), ... 1363 // 32 ... = Op %0 1364 // Before extend: 1365 // %0 = [0r, 0d) [16e, 32d) 1366 // The point we want to extend is 0d to 16e not 16r in this case, but if 1367 // we use 16r here we will extend nothing because that already contained 1368 // in [16e, 32d). 1369 unsigned OpIdx = MI->getOperandNo(&MO); 1370 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx); 1371 const MachineOperand &DefOp = MI->getOperand(DefOpIdx); 1372 IsEarlyClobber = DefOp.isEarlyClobber(); 1373 } 1374 1375 Idx = Idx.getRegSlot(IsEarlyClobber); 1376 } 1377 1378 SlotIndex Next = Idx; 1379 if (LI.hasSubRanges()) { 1380 // We have to delay extending subranges until we have seen all operands 1381 // defining the register. This is because a <def,read-undef> operand 1382 // will create an "undef" point, and we cannot extend any subranges 1383 // until all of them have been accounted for. 1384 if (MO.isUse()) 1385 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1386 } else { 1387 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1388 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1389 } 1390 } 1391 1392 for (ExtPoint &EP : ExtPoints) { 1393 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1394 assert(LI.hasSubRanges()); 1395 1396 LiveIntervalCalc SubLIC; 1397 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1398 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1399 : MRI.getMaxLaneMaskForVReg(Reg); 1400 for (LiveInterval::SubRange &S : LI.subranges()) { 1401 if ((S.LaneMask & LM).none()) 1402 continue; 1403 // The problem here can be that the new register may have been created 1404 // for a partially defined original register. For example: 1405 // %0:subreg_hireg<def,read-undef> = ... 1406 // ... 1407 // %1 = COPY %0 1408 if (S.empty()) 1409 continue; 1410 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1411 &LIS.getVNInfoAllocator()); 1412 SmallVector<SlotIndex, 4> Undefs; 1413 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1414 SubLIC.extend(S, EP.Next, 0, Undefs); 1415 } 1416 } 1417 1418 for (Register R : *Edit) { 1419 LiveInterval &LI = LIS.getInterval(R); 1420 if (!LI.hasSubRanges()) 1421 continue; 1422 LI.clear(); 1423 LI.removeEmptySubRanges(); 1424 LIS.constructMainRangeFromSubranges(LI); 1425 } 1426 } 1427 1428 void SplitEditor::deleteRematVictims() { 1429 SmallVector<MachineInstr*, 8> Dead; 1430 for (const Register &R : *Edit) { 1431 LiveInterval *LI = &LIS.getInterval(R); 1432 for (const LiveRange::Segment &S : LI->segments) { 1433 // Dead defs end at the dead slot. 1434 if (S.end != S.valno->def.getDeadSlot()) 1435 continue; 1436 if (S.valno->isPHIDef()) 1437 continue; 1438 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1439 assert(MI && "Missing instruction for dead def"); 1440 MI->addRegisterDead(LI->reg(), &TRI); 1441 1442 if (!MI->allDefsAreDead()) 1443 continue; 1444 1445 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1446 Dead.push_back(MI); 1447 } 1448 } 1449 1450 if (Dead.empty()) 1451 return; 1452 1453 Edit->eliminateDeadDefs(Dead, None); 1454 } 1455 1456 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1457 // Fast-path for common case. 1458 if (!ParentVNI.isPHIDef()) { 1459 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1460 forceRecompute(I, ParentVNI); 1461 return; 1462 } 1463 1464 // Trace value through phis. 1465 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1466 SmallVector<const VNInfo *, 4> WorkList; 1467 Visited.insert(&ParentVNI); 1468 WorkList.push_back(&ParentVNI); 1469 1470 const LiveInterval &ParentLI = Edit->getParent(); 1471 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1472 do { 1473 const VNInfo &VNI = *WorkList.back(); 1474 WorkList.pop_back(); 1475 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1476 forceRecompute(I, VNI); 1477 if (!VNI.isPHIDef()) 1478 continue; 1479 1480 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1481 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1482 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1483 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1484 assert(PredVNI && "Value available in PhiVNI predecessor"); 1485 if (Visited.insert(PredVNI).second) 1486 WorkList.push_back(PredVNI); 1487 } 1488 } while(!WorkList.empty()); 1489 } 1490 1491 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1492 ++NumFinished; 1493 1494 // At this point, the live intervals in Edit contain VNInfos corresponding to 1495 // the inserted copies. 1496 1497 // Add the original defs from the parent interval. 1498 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1499 if (ParentVNI->isUnused()) 1500 continue; 1501 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1502 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1503 1504 // Force rematted values to be recomputed everywhere. 1505 // The new live ranges may be truncated. 1506 if (Edit->didRematerialize(ParentVNI)) 1507 forceRecomputeVNI(*ParentVNI); 1508 } 1509 1510 // Hoist back-copies to the complement interval when in spill mode. 1511 switch (SpillMode) { 1512 case SM_Partition: 1513 // Leave all back-copies as is. 1514 break; 1515 case SM_Size: 1516 case SM_Speed: 1517 // hoistCopies will behave differently between size and speed. 1518 hoistCopies(); 1519 } 1520 1521 // Transfer the simply mapped values, check if any are skipped. 1522 bool Skipped = transferValues(); 1523 1524 // Rewrite virtual registers, possibly extending ranges. 1525 rewriteAssigned(Skipped); 1526 1527 if (Skipped) 1528 extendPHIKillRanges(); 1529 else 1530 ++NumSimple; 1531 1532 // Delete defs that were rematted everywhere. 1533 if (Skipped) 1534 deleteRematVictims(); 1535 1536 // Get rid of unused values and set phi-kill flags. 1537 for (Register Reg : *Edit) { 1538 LiveInterval &LI = LIS.getInterval(Reg); 1539 LI.removeEmptySubRanges(); 1540 LI.RenumberValues(); 1541 } 1542 1543 // Provide a reverse mapping from original indices to Edit ranges. 1544 if (LRMap) { 1545 auto Seq = llvm::seq<unsigned>(0, Edit->size()); 1546 LRMap->assign(Seq.begin(), Seq.end()); 1547 } 1548 1549 // Now check if any registers were separated into multiple components. 1550 ConnectedVNInfoEqClasses ConEQ(LIS); 1551 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1552 // Don't use iterators, they are invalidated by create() below. 1553 Register VReg = Edit->get(i); 1554 LiveInterval &LI = LIS.getInterval(VReg); 1555 SmallVector<LiveInterval*, 8> SplitLIs; 1556 LIS.splitSeparateComponents(LI, SplitLIs); 1557 Register Original = VRM.getOriginal(VReg); 1558 for (LiveInterval *SplitLI : SplitLIs) 1559 VRM.setIsSplitFromReg(SplitLI->reg(), Original); 1560 1561 // The new intervals all map back to i. 1562 if (LRMap) 1563 LRMap->resize(Edit->size(), i); 1564 } 1565 1566 // Calculate spill weight and allocation hints for new intervals. 1567 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); 1568 1569 assert(!LRMap || LRMap->size() == Edit->size()); 1570 } 1571 1572 //===----------------------------------------------------------------------===// 1573 // Single Block Splitting 1574 //===----------------------------------------------------------------------===// 1575 1576 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1577 bool SingleInstrs) const { 1578 // Always split for multiple instructions. 1579 if (!BI.isOneInstr()) 1580 return true; 1581 // Don't split for single instructions unless explicitly requested. 1582 if (!SingleInstrs) 1583 return false; 1584 // Splitting a live-through range always makes progress. 1585 if (BI.LiveIn && BI.LiveOut) 1586 return true; 1587 // No point in isolating a copy. It has no register class constraints. 1588 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1589 return false; 1590 // Finally, don't isolate an end point that was created by earlier splits. 1591 return isOriginalEndpoint(BI.FirstInstr); 1592 } 1593 1594 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1595 openIntv(); 1596 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB); 1597 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1598 LastSplitPoint)); 1599 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1600 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1601 } else { 1602 // The last use is after the last valid split point. 1603 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1604 useIntv(SegStart, SegStop); 1605 overlapIntv(SegStop, BI.LastInstr); 1606 } 1607 } 1608 1609 //===----------------------------------------------------------------------===// 1610 // Global Live Range Splitting Support 1611 //===----------------------------------------------------------------------===// 1612 1613 // These methods support a method of global live range splitting that uses a 1614 // global algorithm to decide intervals for CFG edges. They will insert split 1615 // points and color intervals in basic blocks while avoiding interference. 1616 // 1617 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1618 // are on the stack. 1619 1620 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1621 unsigned IntvIn, SlotIndex LeaveBefore, 1622 unsigned IntvOut, SlotIndex EnterAfter){ 1623 SlotIndex Start, Stop; 1624 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1625 1626 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1627 << ") intf " << LeaveBefore << '-' << EnterAfter 1628 << ", live-through " << IntvIn << " -> " << IntvOut); 1629 1630 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1631 1632 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1633 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1634 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1635 1636 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1637 1638 if (!IntvOut) { 1639 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1640 // 1641 // <<<<<<<<< Possible LeaveBefore interference. 1642 // |-----------| Live through. 1643 // -____________ Spill on entry. 1644 // 1645 selectIntv(IntvIn); 1646 SlotIndex Idx = leaveIntvAtTop(*MBB); 1647 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1648 (void)Idx; 1649 return; 1650 } 1651 1652 if (!IntvIn) { 1653 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1654 // 1655 // >>>>>>> Possible EnterAfter interference. 1656 // |-----------| Live through. 1657 // ___________-- Reload on exit. 1658 // 1659 selectIntv(IntvOut); 1660 SlotIndex Idx = enterIntvAtEnd(*MBB); 1661 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1662 (void)Idx; 1663 return; 1664 } 1665 1666 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1667 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1668 // 1669 // |-----------| Live through. 1670 // ------------- Straight through, same intv, no interference. 1671 // 1672 selectIntv(IntvOut); 1673 useIntv(Start, Stop); 1674 return; 1675 } 1676 1677 // We cannot legally insert splits after LSP. 1678 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1679 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1680 1681 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1682 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1683 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1684 // 1685 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1686 // |-----------| Live through. 1687 // ------======= Switch intervals between interference. 1688 // 1689 selectIntv(IntvOut); 1690 SlotIndex Idx; 1691 if (LeaveBefore && LeaveBefore < LSP) { 1692 Idx = enterIntvBefore(LeaveBefore); 1693 useIntv(Idx, Stop); 1694 } else { 1695 Idx = enterIntvAtEnd(*MBB); 1696 } 1697 selectIntv(IntvIn); 1698 useIntv(Start, Idx); 1699 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1700 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1701 return; 1702 } 1703 1704 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1705 // 1706 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1707 // |-----------| Live through. 1708 // ==---------== Switch intervals before/after interference. 1709 // 1710 assert(LeaveBefore <= EnterAfter && "Missed case"); 1711 1712 selectIntv(IntvOut); 1713 SlotIndex Idx = enterIntvAfter(EnterAfter); 1714 useIntv(Idx, Stop); 1715 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1716 1717 selectIntv(IntvIn); 1718 Idx = leaveIntvBefore(LeaveBefore); 1719 useIntv(Start, Idx); 1720 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1721 } 1722 1723 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1724 unsigned IntvIn, SlotIndex LeaveBefore) { 1725 SlotIndex Start, Stop; 1726 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1727 1728 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1729 << Stop << "), uses " << BI.FirstInstr << '-' 1730 << BI.LastInstr << ", reg-in " << IntvIn 1731 << ", leave before " << LeaveBefore 1732 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1733 1734 assert(IntvIn && "Must have register in"); 1735 assert(BI.LiveIn && "Must be live-in"); 1736 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1737 1738 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1739 LLVM_DEBUG(dbgs() << " before interference.\n"); 1740 // 1741 // <<< Interference after kill. 1742 // |---o---x | Killed in block. 1743 // ========= Use IntvIn everywhere. 1744 // 1745 selectIntv(IntvIn); 1746 useIntv(Start, BI.LastInstr); 1747 return; 1748 } 1749 1750 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1751 1752 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1753 // 1754 // <<< Possible interference after last use. 1755 // |---o---o---| Live-out on stack. 1756 // =========____ Leave IntvIn after last use. 1757 // 1758 // < Interference after last use. 1759 // |---o---o--o| Live-out on stack, late last use. 1760 // ============ Copy to stack after LSP, overlap IntvIn. 1761 // \_____ Stack interval is live-out. 1762 // 1763 if (BI.LastInstr < LSP) { 1764 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1765 selectIntv(IntvIn); 1766 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1767 useIntv(Start, Idx); 1768 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1769 } else { 1770 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1771 selectIntv(IntvIn); 1772 SlotIndex Idx = leaveIntvBefore(LSP); 1773 overlapIntv(Idx, BI.LastInstr); 1774 useIntv(Start, Idx); 1775 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1776 } 1777 return; 1778 } 1779 1780 // The interference is overlapping somewhere we wanted to use IntvIn. That 1781 // means we need to create a local interval that can be allocated a 1782 // different register. 1783 unsigned LocalIntv = openIntv(); 1784 (void)LocalIntv; 1785 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1786 1787 if (!BI.LiveOut || BI.LastInstr < LSP) { 1788 // 1789 // <<<<<<< Interference overlapping uses. 1790 // |---o---o---| Live-out on stack. 1791 // =====----____ Leave IntvIn before interference, then spill. 1792 // 1793 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1794 SlotIndex From = enterIntvBefore(LeaveBefore); 1795 useIntv(From, To); 1796 selectIntv(IntvIn); 1797 useIntv(Start, From); 1798 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1799 return; 1800 } 1801 1802 // <<<<<<< Interference overlapping uses. 1803 // |---o---o--o| Live-out on stack, late last use. 1804 // =====------- Copy to stack before LSP, overlap LocalIntv. 1805 // \_____ Stack interval is live-out. 1806 // 1807 SlotIndex To = leaveIntvBefore(LSP); 1808 overlapIntv(To, BI.LastInstr); 1809 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1810 useIntv(From, To); 1811 selectIntv(IntvIn); 1812 useIntv(Start, From); 1813 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1814 } 1815 1816 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1817 unsigned IntvOut, SlotIndex EnterAfter) { 1818 SlotIndex Start, Stop; 1819 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1820 1821 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1822 << Stop << "), uses " << BI.FirstInstr << '-' 1823 << BI.LastInstr << ", reg-out " << IntvOut 1824 << ", enter after " << EnterAfter 1825 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1826 1827 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1828 1829 assert(IntvOut && "Must have register out"); 1830 assert(BI.LiveOut && "Must be live-out"); 1831 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1832 1833 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1834 LLVM_DEBUG(dbgs() << " after interference.\n"); 1835 // 1836 // >>>> Interference before def. 1837 // | o---o---| Defined in block. 1838 // ========= Use IntvOut everywhere. 1839 // 1840 selectIntv(IntvOut); 1841 useIntv(BI.FirstInstr, Stop); 1842 return; 1843 } 1844 1845 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1846 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1847 // 1848 // >>>> Interference before def. 1849 // |---o---o---| Live-through, stack-in. 1850 // ____========= Enter IntvOut before first use. 1851 // 1852 selectIntv(IntvOut); 1853 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1854 useIntv(Idx, Stop); 1855 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1856 return; 1857 } 1858 1859 // The interference is overlapping somewhere we wanted to use IntvOut. That 1860 // means we need to create a local interval that can be allocated a 1861 // different register. 1862 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1863 // 1864 // >>>>>>> Interference overlapping uses. 1865 // |---o---o---| Live-through, stack-in. 1866 // ____---====== Create local interval for interference range. 1867 // 1868 selectIntv(IntvOut); 1869 SlotIndex Idx = enterIntvAfter(EnterAfter); 1870 useIntv(Idx, Stop); 1871 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1872 1873 openIntv(); 1874 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1875 useIntv(From, Idx); 1876 } 1877 1878 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { 1879 OS << "{" << printMBBReference(*MBB) << ", " 1880 << "uses " << FirstInstr << " to " << LastInstr << ", " 1881 << "1st def " << FirstDef << ", " 1882 << (LiveIn ? "live in" : "dead in") << ", " 1883 << (LiveOut ? "live out" : "dead out") << "}"; 1884 } 1885 1886 void SplitAnalysis::BlockInfo::dump() const { 1887 print(dbgs()); 1888 dbgs() << "\n"; 1889 } 1890