1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetOpcodes.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/Support/Allocator.h" 34 #include "llvm/Support/BlockFrequency.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cassert> 40 #include <iterator> 41 #include <limits> 42 #include <tuple> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "regalloc" 47 48 static cl::opt<bool> 49 EnableLoopIVHeuristic("enable-split-loopiv-heuristic", 50 cl::desc("Enable loop iv regalloc heuristic"), 51 cl::init(true)); 52 53 STATISTIC(NumFinished, "Number of splits finished"); 54 STATISTIC(NumSimple, "Number of splits that were simple"); 55 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 56 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 57 58 //===----------------------------------------------------------------------===// 59 // Last Insert Point Analysis 60 //===----------------------------------------------------------------------===// 61 62 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 63 unsigned BBNum) 64 : LIS(lis), LastInsertPoint(BBNum) {} 65 66 SlotIndex 67 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 68 const MachineBasicBlock &MBB) { 69 unsigned Num = MBB.getNumber(); 70 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 71 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 72 73 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors; 74 bool EHPadSuccessor = false; 75 for (const MachineBasicBlock *SMBB : MBB.successors()) { 76 if (SMBB->isEHPad()) { 77 ExceptionalSuccessors.push_back(SMBB); 78 EHPadSuccessor = true; 79 } else if (SMBB->isInlineAsmBrIndirectTarget()) 80 ExceptionalSuccessors.push_back(SMBB); 81 } 82 83 // Compute insert points on the first call. The pair is independent of the 84 // current live interval. 85 if (!LIP.first.isValid()) { 86 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 87 if (FirstTerm == MBB.end()) 88 LIP.first = MBBEnd; 89 else 90 LIP.first = LIS.getInstructionIndex(*FirstTerm); 91 92 // If there is a landing pad or inlineasm_br successor, also find the 93 // instruction. If there is no such instruction, we don't need to do 94 // anything special. We assume there cannot be multiple instructions that 95 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we 96 // assume that if there are any, they will be after any other call 97 // instructions in the block. 98 if (ExceptionalSuccessors.empty()) 99 return LIP.first; 100 for (const MachineInstr &MI : llvm::reverse(MBB)) { 101 if ((EHPadSuccessor && MI.isCall()) || 102 MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 103 LIP.second = LIS.getInstructionIndex(MI); 104 break; 105 } 106 } 107 } 108 109 // If CurLI is live into a landing pad successor, move the last insert point 110 // back to the call that may throw. 111 if (!LIP.second) 112 return LIP.first; 113 114 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) { 115 return LIS.isLiveInToMBB(CurLI, EHPad); 116 })) 117 return LIP.first; 118 119 // Find the value leaving MBB. 120 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 121 if (!VNI) 122 return LIP.first; 123 124 // The def of statepoint instruction is a gc relocation and it should be alive 125 // in landing pad. So we cannot split interval after statepoint instruction. 126 if (SlotIndex::isSameInstr(VNI->def, LIP.second)) 127 if (auto *I = LIS.getInstructionFromIndex(LIP.second)) 128 if (I->getOpcode() == TargetOpcode::STATEPOINT) 129 return LIP.second; 130 131 // If the value leaving MBB was defined after the call in MBB, it can't 132 // really be live-in to the landing pad. This can happen if the landing pad 133 // has a PHI, and this register is undef on the exceptional edge. 134 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 135 return LIP.first; 136 137 // Value is properly live-in to the landing pad. 138 // Only allow inserts before the call. 139 return LIP.second; 140 } 141 142 MachineBasicBlock::iterator 143 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 144 MachineBasicBlock &MBB) { 145 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 146 if (LIP == LIS.getMBBEndIdx(&MBB)) 147 return MBB.end(); 148 return LIS.getInstructionFromIndex(LIP); 149 } 150 151 //===----------------------------------------------------------------------===// 152 // Split Analysis 153 //===----------------------------------------------------------------------===// 154 155 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 156 const MachineLoopInfo &mli) 157 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 158 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 159 160 void SplitAnalysis::clear() { 161 UseSlots.clear(); 162 UseBlocks.clear(); 163 ThroughBlocks.clear(); 164 CurLI = nullptr; 165 } 166 167 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 168 void SplitAnalysis::analyzeUses() { 169 assert(UseSlots.empty() && "Call clear first"); 170 171 // First get all the defs from the interval values. This provides the correct 172 // slots for early clobbers. 173 for (const VNInfo *VNI : CurLI->valnos) 174 if (!VNI->isPHIDef() && !VNI->isUnused()) 175 UseSlots.push_back(VNI->def); 176 177 // Get use slots form the use-def chain. 178 const MachineRegisterInfo &MRI = MF.getRegInfo(); 179 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg())) 180 if (!MO.isUndef()) 181 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 182 183 array_pod_sort(UseSlots.begin(), UseSlots.end()); 184 185 // Remove duplicates, keeping the smaller slot for each instruction. 186 // That is what we want for early clobbers. 187 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 188 SlotIndex::isSameInstr), 189 UseSlots.end()); 190 191 // Compute per-live block info. 192 calcLiveBlockInfo(); 193 194 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 195 << UseBlocks.size() << " blocks, through " 196 << NumThroughBlocks << " blocks.\n"); 197 } 198 199 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 200 /// where CurLI is live. 201 void SplitAnalysis::calcLiveBlockInfo() { 202 ThroughBlocks.resize(MF.getNumBlockIDs()); 203 NumThroughBlocks = NumGapBlocks = 0; 204 if (CurLI->empty()) 205 return; 206 207 LiveInterval::const_iterator LVI = CurLI->begin(); 208 LiveInterval::const_iterator LVE = CurLI->end(); 209 210 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 211 UseI = UseSlots.begin(); 212 UseE = UseSlots.end(); 213 214 // Loop over basic blocks where CurLI is live. 215 MachineFunction::iterator MFI = 216 LIS.getMBBFromIndex(LVI->start)->getIterator(); 217 while (true) { 218 BlockInfo BI; 219 BI.MBB = &*MFI; 220 SlotIndex Start, Stop; 221 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 222 223 // If the block contains no uses, the range must be live through. At one 224 // point, RegisterCoalescer could create dangling ranges that ended 225 // mid-block. 226 if (UseI == UseE || *UseI >= Stop) { 227 ++NumThroughBlocks; 228 ThroughBlocks.set(BI.MBB->getNumber()); 229 // The range shouldn't end mid-block if there are no uses. This shouldn't 230 // happen. 231 assert(LVI->end >= Stop && "range ends mid block with no uses"); 232 } else { 233 // This block has uses. Find the first and last uses in the block. 234 BI.FirstInstr = *UseI; 235 assert(BI.FirstInstr >= Start); 236 do ++UseI; 237 while (UseI != UseE && *UseI < Stop); 238 BI.LastInstr = UseI[-1]; 239 assert(BI.LastInstr < Stop); 240 241 // LVI is the first live segment overlapping MBB. 242 BI.LiveIn = LVI->start <= Start; 243 244 // When not live in, the first use should be a def. 245 if (!BI.LiveIn) { 246 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 247 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 248 BI.FirstDef = BI.FirstInstr; 249 } 250 251 // Look for gaps in the live range. 252 BI.LiveOut = true; 253 while (LVI->end < Stop) { 254 SlotIndex LastStop = LVI->end; 255 if (++LVI == LVE || LVI->start >= Stop) { 256 BI.LiveOut = false; 257 BI.LastInstr = LastStop; 258 break; 259 } 260 261 if (LastStop < LVI->start) { 262 // There is a gap in the live range. Create duplicate entries for the 263 // live-in snippet and the live-out snippet. 264 ++NumGapBlocks; 265 266 // Push the Live-in part. 267 BI.LiveOut = false; 268 UseBlocks.push_back(BI); 269 UseBlocks.back().LastInstr = LastStop; 270 271 // Set up BI for the live-out part. 272 BI.LiveIn = false; 273 BI.LiveOut = true; 274 BI.FirstInstr = BI.FirstDef = LVI->start; 275 } 276 277 // A Segment that starts in the middle of the block must be a def. 278 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 279 if (!BI.FirstDef) 280 BI.FirstDef = LVI->start; 281 } 282 283 UseBlocks.push_back(BI); 284 285 // LVI is now at LVE or LVI->end >= Stop. 286 if (LVI == LVE) 287 break; 288 } 289 290 // Live segment ends exactly at Stop. Move to the next segment. 291 if (LVI->end == Stop && ++LVI == LVE) 292 break; 293 294 // Pick the next basic block. 295 if (LVI->start < Stop) 296 ++MFI; 297 else 298 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 299 } 300 301 LooksLikeLoopIV = EnableLoopIVHeuristic && UseBlocks.size() == 2 && 302 any_of(UseBlocks, [this](BlockInfo &BI) { 303 MachineLoop *L = Loops.getLoopFor(BI.MBB); 304 return BI.LiveIn && BI.LiveOut && BI.FirstDef && L && 305 L->isLoopLatch(BI.MBB); 306 }); 307 308 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 309 } 310 311 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 312 if (cli->empty()) 313 return 0; 314 LiveInterval *li = const_cast<LiveInterval*>(cli); 315 LiveInterval::iterator LVI = li->begin(); 316 LiveInterval::iterator LVE = li->end(); 317 unsigned Count = 0; 318 319 // Loop over basic blocks where li is live. 320 MachineFunction::const_iterator MFI = 321 LIS.getMBBFromIndex(LVI->start)->getIterator(); 322 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 323 while (true) { 324 ++Count; 325 LVI = li->advanceTo(LVI, Stop); 326 if (LVI == LVE) 327 return Count; 328 do { 329 ++MFI; 330 Stop = LIS.getMBBEndIdx(&*MFI); 331 } while (Stop <= LVI->start); 332 } 333 } 334 335 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 336 Register OrigReg = VRM.getOriginal(CurLI->reg()); 337 const LiveInterval &Orig = LIS.getInterval(OrigReg); 338 assert(!Orig.empty() && "Splitting empty interval?"); 339 LiveInterval::const_iterator I = Orig.find(Idx); 340 341 // Range containing Idx should begin at Idx. 342 if (I != Orig.end() && I->start <= Idx) 343 return I->start == Idx; 344 345 // Range does not contain Idx, previous must end at Idx. 346 return I != Orig.begin() && (--I)->end == Idx; 347 } 348 349 void SplitAnalysis::analyze(const LiveInterval *li) { 350 clear(); 351 CurLI = li; 352 analyzeUses(); 353 } 354 355 //===----------------------------------------------------------------------===// 356 // Split Editor 357 //===----------------------------------------------------------------------===// 358 359 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 360 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM, 361 MachineDominatorTree &MDT, 362 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) 363 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()), 364 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), 365 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), 366 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} 367 368 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 369 Edit = &LRE; 370 SpillMode = SM; 371 OpenIdx = 0; 372 RegAssign.clear(); 373 Values.clear(); 374 375 // Reset the LiveIntervalCalc instances needed for this spill mode. 376 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 377 &LIS.getVNInfoAllocator()); 378 if (SpillMode) 379 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 380 &LIS.getVNInfoAllocator()); 381 382 Edit->anyRematerializable(); 383 } 384 385 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 386 LLVM_DUMP_METHOD void SplitEditor::dump() const { 387 if (RegAssign.empty()) { 388 dbgs() << " empty\n"; 389 return; 390 } 391 392 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 393 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 394 dbgs() << '\n'; 395 } 396 #endif 397 398 /// Find a subrange corresponding to the exact lane mask @p LM in the live 399 /// interval @p LI. The interval @p LI is assumed to contain such a subrange. 400 /// This function is used to find corresponding subranges between the 401 /// original interval and the new intervals. 402 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) { 403 for (auto &S : LI.subranges()) 404 if (S.LaneMask == LM) 405 return S; 406 llvm_unreachable("SubRange for this mask not found"); 407 } 408 409 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, 410 LiveInterval &LI) { 411 return getSubrangeImpl(LM, LI); 412 } 413 414 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, 415 const LiveInterval &LI) { 416 return getSubrangeImpl(LM, LI); 417 } 418 419 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it, 420 /// in the live interval @p LI. The interval @p LI is assumed to contain such 421 /// a subrange. This function is used to find corresponding subranges between 422 /// the original interval and the new intervals. 423 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM, 424 const LiveInterval &LI) { 425 for (const LiveInterval::SubRange &S : LI.subranges()) 426 if ((S.LaneMask & LM) == LM) 427 return S; 428 llvm_unreachable("SubRange for this mask not found"); 429 } 430 431 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 432 if (!LI.hasSubRanges()) { 433 LI.createDeadDef(VNI); 434 return; 435 } 436 437 SlotIndex Def = VNI->def; 438 if (Original) { 439 // If we are transferring a def from the original interval, make sure 440 // to only update the subranges for which the original subranges had 441 // a def at this location. 442 for (LiveInterval::SubRange &S : LI.subranges()) { 443 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 444 VNInfo *PV = PS.getVNInfoAt(Def); 445 if (PV != nullptr && PV->def == Def) 446 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 447 } 448 } else { 449 // This is a new def: either from rematerialization, or from an inserted 450 // copy. Since rematerialization can regenerate a definition of a sub- 451 // register, we need to check which subranges need to be updated. 452 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 453 assert(DefMI != nullptr); 454 LaneBitmask LM; 455 for (const MachineOperand &DefOp : DefMI->defs()) { 456 Register R = DefOp.getReg(); 457 if (R != LI.reg()) 458 continue; 459 if (unsigned SR = DefOp.getSubReg()) 460 LM |= TRI.getSubRegIndexLaneMask(SR); 461 else { 462 LM = MRI.getMaxLaneMaskForVReg(R); 463 break; 464 } 465 } 466 for (LiveInterval::SubRange &S : LI.subranges()) 467 if ((S.LaneMask & LM).any()) 468 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 469 } 470 } 471 472 VNInfo *SplitEditor::defValue(unsigned RegIdx, 473 const VNInfo *ParentVNI, 474 SlotIndex Idx, 475 bool Original) { 476 assert(ParentVNI && "Mapping NULL value"); 477 assert(Idx.isValid() && "Invalid SlotIndex"); 478 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 479 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 480 481 // Create a new value. 482 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 483 484 bool Force = LI->hasSubRanges(); 485 ValueForcePair FP(Force ? nullptr : VNI, Force); 486 // Use insert for lookup, so we can add missing values with a second lookup. 487 std::pair<ValueMap::iterator, bool> InsP = 488 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 489 490 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 491 // forced. Keep it as a simple def without any liveness. 492 if (!Force && InsP.second) 493 return VNI; 494 495 // If the previous value was a simple mapping, add liveness for it now. 496 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 497 addDeadDef(*LI, OldVNI, Original); 498 499 // No longer a simple mapping. Switch to a complex mapping. If the 500 // interval has subranges, make it a forced mapping. 501 InsP.first->second = ValueForcePair(nullptr, Force); 502 } 503 504 // This is a complex mapping, add liveness for VNI 505 addDeadDef(*LI, VNI, Original); 506 return VNI; 507 } 508 509 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 510 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 511 VNInfo *VNI = VFP.getPointer(); 512 513 // ParentVNI was either unmapped or already complex mapped. Either way, just 514 // set the force bit. 515 if (!VNI) { 516 VFP.setInt(true); 517 return; 518 } 519 520 // This was previously a single mapping. Make sure the old def is represented 521 // by a trivial live range. 522 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 523 524 // Mark as complex mapped, forced. 525 VFP = ValueForcePair(nullptr, true); 526 } 527 528 SlotIndex SplitEditor::buildSingleSubRegCopy( 529 Register FromReg, Register ToReg, MachineBasicBlock &MBB, 530 MachineBasicBlock::iterator InsertBefore, unsigned SubIdx, 531 LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) { 532 bool FirstCopy = !Def.isValid(); 533 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 534 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 535 | getInternalReadRegState(!FirstCopy), SubIdx) 536 .addReg(FromReg, 0, SubIdx); 537 538 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 539 if (FirstCopy) { 540 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 541 } else { 542 CopyMI->bundleWithPred(); 543 } 544 return Def; 545 } 546 547 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, 548 LaneBitmask LaneMask, MachineBasicBlock &MBB, 549 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 550 const MCInstrDesc &Desc = 551 TII.get(TII.getLiveRangeSplitOpcode(FromReg, *MBB.getParent())); 552 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 553 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 554 // The full vreg is copied. 555 MachineInstr *CopyMI = 556 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 557 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 558 } 559 560 // Only a subset of lanes needs to be copied. The following is a simple 561 // heuristic to construct a sequence of COPYs. We could add a target 562 // specific callback if this turns out to be suboptimal. 563 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 564 565 // First pass: Try to find a perfectly matching subregister index. If none 566 // exists find the one covering the most lanemask bits. 567 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 568 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 569 570 SmallVector<unsigned, 8> SubIndexes; 571 572 // Abort if we cannot possibly implement the COPY with the given indexes. 573 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes)) 574 report_fatal_error("Impossible to implement partial COPY"); 575 576 SlotIndex Def; 577 for (unsigned BestIdx : SubIndexes) { 578 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 579 DestLI, Late, Def, Desc); 580 } 581 582 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 583 DestLI.refineSubRanges( 584 Allocator, LaneMask, 585 [Def, &Allocator](LiveInterval::SubRange &SR) { 586 SR.createDeadDef(Def, Allocator); 587 }, 588 Indexes, TRI); 589 590 return Def; 591 } 592 593 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI, 594 SlotIndex UseIdx, MachineBasicBlock &MBB, 595 MachineBasicBlock::iterator I) { 596 SlotIndex Def; 597 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 598 599 // We may be trying to avoid interference that ends at a deleted instruction, 600 // so always begin RegIdx 0 early and all others late. 601 bool Late = RegIdx != 0; 602 603 // Attempt cheap-as-a-copy rematerialization. 604 Register Original = VRM.getOriginal(Edit->get(RegIdx)); 605 LiveInterval &OrigLI = LIS.getInterval(Original); 606 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 607 608 Register Reg = LI->reg(); 609 bool DidRemat = false; 610 if (OrigVNI) { 611 LiveRangeEdit::Remat RM(ParentVNI); 612 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 613 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 614 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 615 ++NumRemats; 616 DidRemat = true; 617 } 618 } 619 if (!DidRemat) { 620 LaneBitmask LaneMask; 621 if (OrigLI.hasSubRanges()) { 622 LaneMask = LaneBitmask::getNone(); 623 for (LiveInterval::SubRange &S : OrigLI.subranges()) { 624 if (S.liveAt(UseIdx)) 625 LaneMask |= S.LaneMask; 626 } 627 } else { 628 LaneMask = LaneBitmask::getAll(); 629 } 630 631 if (LaneMask.none()) { 632 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF); 633 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg); 634 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 635 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot(); 636 } else { 637 ++NumCopies; 638 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 639 } 640 } 641 642 // Define the value in Reg. 643 return defValue(RegIdx, ParentVNI, Def, false); 644 } 645 646 /// Create a new virtual register and live interval. 647 unsigned SplitEditor::openIntv() { 648 // Create the complement as index 0. 649 if (Edit->empty()) 650 Edit->createEmptyInterval(); 651 652 // Create the open interval. 653 OpenIdx = Edit->size(); 654 Edit->createEmptyInterval(); 655 return OpenIdx; 656 } 657 658 void SplitEditor::selectIntv(unsigned Idx) { 659 assert(Idx != 0 && "Cannot select the complement interval"); 660 assert(Idx < Edit->size() && "Can only select previously opened interval"); 661 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 662 OpenIdx = Idx; 663 } 664 665 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 666 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 667 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 668 Idx = Idx.getBaseIndex(); 669 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 670 if (!ParentVNI) { 671 LLVM_DEBUG(dbgs() << ": not live\n"); 672 return Idx; 673 } 674 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 675 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 676 assert(MI && "enterIntvBefore called with invalid index"); 677 678 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 679 return VNI->def; 680 } 681 682 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 683 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 684 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 685 Idx = Idx.getBoundaryIndex(); 686 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 687 if (!ParentVNI) { 688 LLVM_DEBUG(dbgs() << ": not live\n"); 689 return Idx; 690 } 691 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 692 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 693 assert(MI && "enterIntvAfter called with invalid index"); 694 695 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 696 std::next(MachineBasicBlock::iterator(MI))); 697 return VNI->def; 698 } 699 700 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 701 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 702 SlotIndex End = LIS.getMBBEndIdx(&MBB); 703 SlotIndex Last = End.getPrevSlot(); 704 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 705 << Last); 706 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 707 if (!ParentVNI) { 708 LLVM_DEBUG(dbgs() << ": not live\n"); 709 return End; 710 } 711 SlotIndex LSP = SA.getLastSplitPoint(&MBB); 712 if (LSP < Last) { 713 // It could be that the use after LSP is a def, and thus the ParentVNI 714 // just selected starts at that def. For this case to exist, the def 715 // must be part of a tied def/use pair (as otherwise we'd have split 716 // distinct live ranges into individual live intervals), and thus we 717 // can insert the def into the VNI of the use and the tied def/use 718 // pair can live in the resulting interval. 719 Last = LSP; 720 ParentVNI = Edit->getParent().getVNInfoAt(Last); 721 if (!ParentVNI) { 722 // undef use --> undef tied def 723 LLVM_DEBUG(dbgs() << ": tied use not live\n"); 724 return End; 725 } 726 } 727 728 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 729 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 730 SA.getLastSplitPointIter(&MBB)); 731 RegAssign.insert(VNI->def, End, OpenIdx); 732 LLVM_DEBUG(dump()); 733 return VNI->def; 734 } 735 736 /// useIntv - indicate that all instructions in MBB should use OpenLI. 737 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 738 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 739 } 740 741 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 742 assert(OpenIdx && "openIntv not called before useIntv"); 743 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 744 RegAssign.insert(Start, End, OpenIdx); 745 LLVM_DEBUG(dump()); 746 } 747 748 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 749 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 750 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 751 752 // The interval must be live beyond the instruction at Idx. 753 SlotIndex Boundary = Idx.getBoundaryIndex(); 754 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 755 if (!ParentVNI) { 756 LLVM_DEBUG(dbgs() << ": not live\n"); 757 return Boundary.getNextSlot(); 758 } 759 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 760 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 761 assert(MI && "No instruction at index"); 762 763 // In spill mode, make live ranges as short as possible by inserting the copy 764 // before MI. This is only possible if that instruction doesn't redefine the 765 // value. The inserted COPY is not a kill, and we don't need to recompute 766 // the source live range. The spiller also won't try to hoist this copy. 767 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 768 MI->readsVirtualRegister(Edit->getReg())) { 769 forceRecompute(0, *ParentVNI); 770 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 771 return Idx; 772 } 773 774 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 775 std::next(MachineBasicBlock::iterator(MI))); 776 return VNI->def; 777 } 778 779 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 780 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 781 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 782 783 // The interval must be live into the instruction at Idx. 784 Idx = Idx.getBaseIndex(); 785 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 786 if (!ParentVNI) { 787 LLVM_DEBUG(dbgs() << ": not live\n"); 788 return Idx.getNextSlot(); 789 } 790 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 791 792 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 793 assert(MI && "No instruction at index"); 794 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 795 return VNI->def; 796 } 797 798 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 799 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 800 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 801 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 802 << Start); 803 804 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 805 if (!ParentVNI) { 806 LLVM_DEBUG(dbgs() << ": not live\n"); 807 return Start; 808 } 809 810 unsigned RegIdx = 0; 811 Register Reg = LIS.getInterval(Edit->get(RegIdx)).reg(); 812 VNInfo *VNI = defFromParent(RegIdx, ParentVNI, Start, MBB, 813 MBB.SkipPHIsLabelsAndDebug(MBB.begin(), Reg)); 814 RegAssign.insert(Start, VNI->def, OpenIdx); 815 LLVM_DEBUG(dump()); 816 return VNI->def; 817 } 818 819 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) { 820 return any_of(MI.defs(), [Reg](const MachineOperand &MO) { 821 return MO.isReg() && MO.isTied() && MO.getReg() == Reg; 822 }); 823 } 824 825 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 826 assert(OpenIdx && "openIntv not called before overlapIntv"); 827 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 828 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 829 "Parent changes value in extended range"); 830 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 831 "Range cannot span basic blocks"); 832 833 // The complement interval will be extended as needed by LICalc.extend(). 834 if (ParentVNI) 835 forceRecompute(0, *ParentVNI); 836 837 // If the last use is tied to a def, we can't mark it as live for the 838 // interval which includes only the use. That would cause the tied pair 839 // to end up in two different intervals. 840 if (auto *MI = LIS.getInstructionFromIndex(End)) 841 if (hasTiedUseOf(*MI, Edit->getReg())) { 842 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n"); 843 return; 844 } 845 846 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 847 RegAssign.insert(Start, End, OpenIdx); 848 LLVM_DEBUG(dump()); 849 } 850 851 //===----------------------------------------------------------------------===// 852 // Spill modes 853 //===----------------------------------------------------------------------===// 854 855 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 856 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 857 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 858 RegAssignMap::iterator AssignI; 859 AssignI.setMap(RegAssign); 860 861 for (const VNInfo *C : Copies) { 862 SlotIndex Def = C->def; 863 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 864 assert(MI && "No instruction for back-copy"); 865 866 MachineBasicBlock *MBB = MI->getParent(); 867 MachineBasicBlock::iterator MBBI(MI); 868 bool AtBegin; 869 do AtBegin = MBBI == MBB->begin(); 870 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); 871 872 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 873 LIS.removeVRegDefAt(*LI, Def); 874 LIS.RemoveMachineInstrFromMaps(*MI); 875 MI->eraseFromParent(); 876 877 // Adjust RegAssign if a register assignment is killed at Def. We want to 878 // avoid calculating the live range of the source register if possible. 879 AssignI.find(Def.getPrevSlot()); 880 if (!AssignI.valid() || AssignI.start() >= Def) 881 continue; 882 // If MI doesn't kill the assigned register, just leave it. 883 if (AssignI.stop() != Def) 884 continue; 885 unsigned RegIdx = AssignI.value(); 886 // We could hoist back-copy right after another back-copy. As a result 887 // MMBI points to copy instruction which is actually dead now. 888 // We cannot set its stop to MBBI which will be the same as start and 889 // interval does not support that. 890 SlotIndex Kill = 891 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot(); 892 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) || 893 Kill <= AssignI.start()) { 894 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 895 << '\n'); 896 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 897 } else { 898 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 899 AssignI.setStop(Kill); 900 } 901 } 902 } 903 904 MachineBasicBlock* 905 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 906 MachineBasicBlock *DefMBB) { 907 if (MBB == DefMBB) 908 return MBB; 909 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 910 911 const MachineLoopInfo &Loops = SA.Loops; 912 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 913 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 914 915 // Best candidate so far. 916 MachineBasicBlock *BestMBB = MBB; 917 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 918 919 while (true) { 920 const MachineLoop *Loop = Loops.getLoopFor(MBB); 921 922 // MBB isn't in a loop, it doesn't get any better. All dominators have a 923 // higher frequency by definition. 924 if (!Loop) { 925 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 926 << " dominates " << printMBBReference(*MBB) 927 << " at depth 0\n"); 928 return MBB; 929 } 930 931 // We'll never be able to exit the DefLoop. 932 if (Loop == DefLoop) { 933 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 934 << " dominates " << printMBBReference(*MBB) 935 << " in the same loop\n"); 936 return MBB; 937 } 938 939 // Least busy dominator seen so far. 940 unsigned Depth = Loop->getLoopDepth(); 941 if (Depth < BestDepth) { 942 BestMBB = MBB; 943 BestDepth = Depth; 944 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 945 << " dominates " << printMBBReference(*MBB) 946 << " at depth " << Depth << '\n'); 947 } 948 949 // Leave loop by going to the immediate dominator of the loop header. 950 // This is a bigger stride than simply walking up the dominator tree. 951 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 952 953 // Too far up the dominator tree? 954 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 955 return BestMBB; 956 957 MBB = IDom->getBlock(); 958 } 959 } 960 961 void SplitEditor::computeRedundantBackCopies( 962 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 963 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 964 const LiveInterval *Parent = &Edit->getParent(); 965 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 966 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 967 968 // Aggregate VNIs having the same value as ParentVNI. 969 for (VNInfo *VNI : LI->valnos) { 970 if (VNI->isUnused()) 971 continue; 972 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 973 EqualVNs[ParentVNI->id].insert(VNI); 974 } 975 976 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 977 // redundant VNIs to BackCopies. 978 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 979 const VNInfo *ParentVNI = Parent->getValNumInfo(i); 980 if (!NotToHoistSet.count(ParentVNI->id)) 981 continue; 982 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 983 SmallPtrSetIterator<VNInfo *> It2 = It1; 984 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 985 It2 = It1; 986 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 987 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 988 continue; 989 990 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 991 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 992 if (MBB1 == MBB2) { 993 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 994 } else if (MDT.dominates(MBB1, MBB2)) { 995 DominatedVNIs.insert(*It2); 996 } else if (MDT.dominates(MBB2, MBB1)) { 997 DominatedVNIs.insert(*It1); 998 } 999 } 1000 } 1001 if (!DominatedVNIs.empty()) { 1002 forceRecompute(0, *ParentVNI); 1003 append_range(BackCopies, DominatedVNIs); 1004 DominatedVNIs.clear(); 1005 } 1006 } 1007 } 1008 1009 /// For SM_Size mode, find a common dominator for all the back-copies for 1010 /// the same ParentVNI and hoist the backcopies to the dominator BB. 1011 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 1012 /// to do the hoisting, simply remove the dominated backcopies for the same 1013 /// ParentVNI. 1014 void SplitEditor::hoistCopies() { 1015 // Get the complement interval, always RegIdx 0. 1016 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1017 const LiveInterval *Parent = &Edit->getParent(); 1018 1019 // Track the nearest common dominator for all back-copies for each ParentVNI, 1020 // indexed by ParentVNI->id. 1021 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1022 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1023 // The total cost of all the back-copies for each ParentVNI. 1024 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1025 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1026 // for Speed. 1027 DenseSet<unsigned> NotToHoistSet; 1028 1029 // Find the nearest common dominator for parent values with multiple 1030 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1031 for (VNInfo *VNI : LI->valnos) { 1032 if (VNI->isUnused()) 1033 continue; 1034 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1035 assert(ParentVNI && "Parent not live at complement def"); 1036 1037 // Don't hoist remats. The complement is probably going to disappear 1038 // completely anyway. 1039 if (Edit->didRematerialize(ParentVNI)) 1040 continue; 1041 1042 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1043 1044 DomPair &Dom = NearestDom[ParentVNI->id]; 1045 1046 // Keep directly defined parent values. This is either a PHI or an 1047 // instruction in the complement range. All other copies of ParentVNI 1048 // should be eliminated. 1049 if (VNI->def == ParentVNI->def) { 1050 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1051 Dom = DomPair(ValMBB, VNI->def); 1052 continue; 1053 } 1054 // Skip the singly mapped values. There is nothing to gain from hoisting a 1055 // single back-copy. 1056 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1057 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1058 continue; 1059 } 1060 1061 if (!Dom.first) { 1062 // First time we see ParentVNI. VNI dominates itself. 1063 Dom = DomPair(ValMBB, VNI->def); 1064 } else if (Dom.first == ValMBB) { 1065 // Two defs in the same block. Pick the earlier def. 1066 if (!Dom.second.isValid() || VNI->def < Dom.second) 1067 Dom.second = VNI->def; 1068 } else { 1069 // Different basic blocks. Check if one dominates. 1070 MachineBasicBlock *Near = 1071 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1072 if (Near == ValMBB) 1073 // Def ValMBB dominates. 1074 Dom = DomPair(ValMBB, VNI->def); 1075 else if (Near != Dom.first) 1076 // None dominate. Hoist to common dominator, need new def. 1077 Dom = DomPair(Near, SlotIndex()); 1078 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1079 } 1080 1081 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1082 << VNI->def << " for parent " << ParentVNI->id << '@' 1083 << ParentVNI->def << " hoist to " 1084 << printMBBReference(*Dom.first) << ' ' << Dom.second 1085 << '\n'); 1086 } 1087 1088 // Insert the hoisted copies. 1089 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1090 DomPair &Dom = NearestDom[i]; 1091 if (!Dom.first || Dom.second.isValid()) 1092 continue; 1093 // This value needs a hoisted copy inserted at the end of Dom.first. 1094 const VNInfo *ParentVNI = Parent->getValNumInfo(i); 1095 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1096 // Get a less loopy dominator than Dom.first. 1097 Dom.first = findShallowDominator(Dom.first, DefMBB); 1098 if (SpillMode == SM_Speed && 1099 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1100 NotToHoistSet.insert(ParentVNI->id); 1101 continue; 1102 } 1103 SlotIndex LSP = SA.getLastSplitPoint(Dom.first); 1104 if (LSP <= ParentVNI->def) { 1105 NotToHoistSet.insert(ParentVNI->id); 1106 continue; 1107 } 1108 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first, 1109 SA.getLastSplitPointIter(Dom.first))->def; 1110 } 1111 1112 // Remove redundant back-copies that are now known to be dominated by another 1113 // def with the same value. 1114 SmallVector<VNInfo*, 8> BackCopies; 1115 for (VNInfo *VNI : LI->valnos) { 1116 if (VNI->isUnused()) 1117 continue; 1118 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1119 const DomPair &Dom = NearestDom[ParentVNI->id]; 1120 if (!Dom.first || Dom.second == VNI->def || 1121 NotToHoistSet.count(ParentVNI->id)) 1122 continue; 1123 BackCopies.push_back(VNI); 1124 forceRecompute(0, *ParentVNI); 1125 } 1126 1127 // If it is not beneficial to hoist all the BackCopies, simply remove 1128 // redundant BackCopies in speed mode. 1129 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1130 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1131 1132 removeBackCopies(BackCopies); 1133 } 1134 1135 /// transferValues - Transfer all possible values to the new live ranges. 1136 /// Values that were rematerialized are left alone, they need LICalc.extend(). 1137 bool SplitEditor::transferValues() { 1138 bool Skipped = false; 1139 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1140 for (const LiveRange::Segment &S : Edit->getParent()) { 1141 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1142 VNInfo *ParentVNI = S.valno; 1143 // RegAssign has holes where RegIdx 0 should be used. 1144 SlotIndex Start = S.start; 1145 AssignI.advanceTo(Start); 1146 do { 1147 unsigned RegIdx; 1148 SlotIndex End = S.end; 1149 if (!AssignI.valid()) { 1150 RegIdx = 0; 1151 } else if (AssignI.start() <= Start) { 1152 RegIdx = AssignI.value(); 1153 if (AssignI.stop() < End) { 1154 End = AssignI.stop(); 1155 ++AssignI; 1156 } 1157 } else { 1158 RegIdx = 0; 1159 End = std::min(End, AssignI.start()); 1160 } 1161 1162 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1163 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1164 << printReg(Edit->get(RegIdx)) << ')'); 1165 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1166 1167 // Check for a simply defined value that can be blitted directly. 1168 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1169 if (VNInfo *VNI = VFP.getPointer()) { 1170 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1171 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1172 Start = End; 1173 continue; 1174 } 1175 1176 // Skip values with forced recomputation. 1177 if (VFP.getInt()) { 1178 LLVM_DEBUG(dbgs() << "(recalc)"); 1179 Skipped = true; 1180 Start = End; 1181 continue; 1182 } 1183 1184 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1185 1186 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1187 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1188 // LiveInBlocks. 1189 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1190 SlotIndex BlockStart, BlockEnd; 1191 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1192 1193 // The first block may be live-in, or it may have its own def. 1194 if (Start != BlockStart) { 1195 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1196 assert(VNI && "Missing def for complex mapped value"); 1197 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1198 // MBB has its own def. Is it also live-out? 1199 if (BlockEnd <= End) 1200 LIC.setLiveOutValue(&*MBB, VNI); 1201 1202 // Skip to the next block for live-in. 1203 ++MBB; 1204 BlockStart = BlockEnd; 1205 } 1206 1207 // Handle the live-in blocks covered by [Start;End). 1208 assert(Start <= BlockStart && "Expected live-in block"); 1209 while (BlockStart < End) { 1210 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1211 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1212 if (BlockStart == ParentVNI->def) { 1213 // This block has the def of a parent PHI, so it isn't live-in. 1214 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1215 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1216 assert(VNI && "Missing def for complex mapped parent PHI"); 1217 if (End >= BlockEnd) 1218 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1219 } else { 1220 // This block needs a live-in value. The last block covered may not 1221 // be live-out. 1222 if (End < BlockEnd) 1223 LIC.addLiveInBlock(LI, MDT[&*MBB], End); 1224 else { 1225 // Live-through, and we don't know the value. 1226 LIC.addLiveInBlock(LI, MDT[&*MBB]); 1227 LIC.setLiveOutValue(&*MBB, nullptr); 1228 } 1229 } 1230 BlockStart = BlockEnd; 1231 ++MBB; 1232 } 1233 Start = End; 1234 } while (Start != S.end); 1235 LLVM_DEBUG(dbgs() << '\n'); 1236 } 1237 1238 LICalc[0].calculateValues(); 1239 if (SpillMode) 1240 LICalc[1].calculateValues(); 1241 1242 return Skipped; 1243 } 1244 1245 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1246 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1247 if (Seg == nullptr) 1248 return true; 1249 if (Seg->end != Def.getDeadSlot()) 1250 return false; 1251 // This is a dead PHI. Remove it. 1252 LR.removeSegment(*Seg, true); 1253 return true; 1254 } 1255 1256 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, 1257 LiveRange &LR, LaneBitmask LM, 1258 ArrayRef<SlotIndex> Undefs) { 1259 for (MachineBasicBlock *P : B.predecessors()) { 1260 SlotIndex End = LIS.getMBBEndIdx(P); 1261 SlotIndex LastUse = End.getPrevSlot(); 1262 // The predecessor may not have a live-out value. That is OK, like an 1263 // undef PHI operand. 1264 const LiveInterval &PLI = Edit->getParent(); 1265 // Need the cast because the inputs to ?: would otherwise be deemed 1266 // "incompatible": SubRange vs LiveInterval. 1267 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI) 1268 : static_cast<const LiveRange &>(PLI); 1269 if (PSR.liveAt(LastUse)) 1270 LIC.extend(LR, End, /*PhysReg=*/0, Undefs); 1271 } 1272 } 1273 1274 void SplitEditor::extendPHIKillRanges() { 1275 // Extend live ranges to be live-out for successor PHI values. 1276 1277 // Visit each PHI def slot in the parent live interval. If the def is dead, 1278 // remove it. Otherwise, extend the live interval to reach the end indexes 1279 // of all predecessor blocks. 1280 1281 const LiveInterval &ParentLI = Edit->getParent(); 1282 for (const VNInfo *V : ParentLI.valnos) { 1283 if (V->isUnused() || !V->isPHIDef()) 1284 continue; 1285 1286 unsigned RegIdx = RegAssign.lookup(V->def); 1287 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1288 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1289 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1290 if (!removeDeadSegment(V->def, LI)) 1291 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1292 } 1293 1294 SmallVector<SlotIndex, 4> Undefs; 1295 LiveIntervalCalc SubLIC; 1296 1297 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) { 1298 for (const VNInfo *V : PS.valnos) { 1299 if (V->isUnused() || !V->isPHIDef()) 1300 continue; 1301 unsigned RegIdx = RegAssign.lookup(V->def); 1302 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1303 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI); 1304 if (removeDeadSegment(V->def, S)) 1305 continue; 1306 1307 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1308 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1309 &LIS.getVNInfoAllocator()); 1310 Undefs.clear(); 1311 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1312 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); 1313 } 1314 } 1315 } 1316 1317 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1318 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1319 struct ExtPoint { 1320 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1321 : MO(O), RegIdx(R), Next(N) {} 1322 1323 MachineOperand MO; 1324 unsigned RegIdx; 1325 SlotIndex Next; 1326 }; 1327 1328 SmallVector<ExtPoint,4> ExtPoints; 1329 1330 for (MachineOperand &MO : 1331 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) { 1332 MachineInstr *MI = MO.getParent(); 1333 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1334 if (MI->isDebugValue()) { 1335 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1336 MO.setReg(0); 1337 continue; 1338 } 1339 1340 // <undef> operands don't really read the register, so it doesn't matter 1341 // which register we choose. When the use operand is tied to a def, we must 1342 // use the same register as the def, so just do that always. 1343 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1344 if (MO.isDef() || MO.isUndef()) 1345 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1346 1347 // Rewrite to the mapped register at Idx. 1348 unsigned RegIdx = RegAssign.lookup(Idx); 1349 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1350 MO.setReg(LI.reg()); 1351 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1352 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1353 1354 // Extend liveness to Idx if the instruction reads reg. 1355 if (!ExtendRanges || MO.isUndef()) 1356 continue; 1357 1358 // Skip instructions that don't read Reg. 1359 if (MO.isDef()) { 1360 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1361 continue; 1362 // We may want to extend a live range for a partial redef, or for a use 1363 // tied to an early clobber. 1364 if (!Edit->getParent().liveAt(Idx.getPrevSlot())) 1365 continue; 1366 } else { 1367 assert(MO.isUse()); 1368 bool IsEarlyClobber = false; 1369 if (MO.isTied()) { 1370 // We want to extend a live range into `e` slot rather than `r` slot if 1371 // tied-def is early clobber, because the `e` slot already contained 1372 // in the live range of early-clobber tied-def operand, give an example 1373 // here: 1374 // 0 %0 = ... 1375 // 16 early-clobber %0 = Op %0 (tied-def 0), ... 1376 // 32 ... = Op %0 1377 // Before extend: 1378 // %0 = [0r, 0d) [16e, 32d) 1379 // The point we want to extend is 0d to 16e not 16r in this case, but if 1380 // we use 16r here we will extend nothing because that already contained 1381 // in [16e, 32d). 1382 unsigned OpIdx = MO.getOperandNo(); 1383 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx); 1384 const MachineOperand &DefOp = MI->getOperand(DefOpIdx); 1385 IsEarlyClobber = DefOp.isEarlyClobber(); 1386 } 1387 1388 Idx = Idx.getRegSlot(IsEarlyClobber); 1389 } 1390 1391 SlotIndex Next = Idx; 1392 if (LI.hasSubRanges()) { 1393 // We have to delay extending subranges until we have seen all operands 1394 // defining the register. This is because a <def,read-undef> operand 1395 // will create an "undef" point, and we cannot extend any subranges 1396 // until all of them have been accounted for. 1397 if (MO.isUse()) 1398 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1399 } else { 1400 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1401 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1402 } 1403 } 1404 1405 for (ExtPoint &EP : ExtPoints) { 1406 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1407 assert(LI.hasSubRanges()); 1408 1409 LiveIntervalCalc SubLIC; 1410 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1411 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1412 : MRI.getMaxLaneMaskForVReg(Reg); 1413 for (LiveInterval::SubRange &S : LI.subranges()) { 1414 if ((S.LaneMask & LM).none()) 1415 continue; 1416 // The problem here can be that the new register may have been created 1417 // for a partially defined original register. For example: 1418 // %0:subreg_hireg<def,read-undef> = ... 1419 // ... 1420 // %1 = COPY %0 1421 if (S.empty()) 1422 continue; 1423 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1424 &LIS.getVNInfoAllocator()); 1425 SmallVector<SlotIndex, 4> Undefs; 1426 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1427 SubLIC.extend(S, EP.Next, 0, Undefs); 1428 } 1429 } 1430 1431 for (Register R : *Edit) { 1432 LiveInterval &LI = LIS.getInterval(R); 1433 if (!LI.hasSubRanges()) 1434 continue; 1435 LI.clear(); 1436 LI.removeEmptySubRanges(); 1437 LIS.constructMainRangeFromSubranges(LI); 1438 } 1439 } 1440 1441 void SplitEditor::deleteRematVictims() { 1442 SmallVector<MachineInstr*, 8> Dead; 1443 for (const Register &R : *Edit) { 1444 LiveInterval *LI = &LIS.getInterval(R); 1445 for (const LiveRange::Segment &S : LI->segments) { 1446 // Dead defs end at the dead slot. 1447 if (S.end != S.valno->def.getDeadSlot()) 1448 continue; 1449 if (S.valno->isPHIDef()) 1450 continue; 1451 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1452 assert(MI && "Missing instruction for dead def"); 1453 MI->addRegisterDead(LI->reg(), &TRI); 1454 1455 if (!MI->allDefsAreDead()) 1456 continue; 1457 1458 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1459 Dead.push_back(MI); 1460 } 1461 } 1462 1463 if (Dead.empty()) 1464 return; 1465 1466 Edit->eliminateDeadDefs(Dead, std::nullopt); 1467 } 1468 1469 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1470 // Fast-path for common case. 1471 if (!ParentVNI.isPHIDef()) { 1472 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1473 forceRecompute(I, ParentVNI); 1474 return; 1475 } 1476 1477 // Trace value through phis. 1478 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1479 SmallVector<const VNInfo *, 4> WorkList; 1480 Visited.insert(&ParentVNI); 1481 WorkList.push_back(&ParentVNI); 1482 1483 const LiveInterval &ParentLI = Edit->getParent(); 1484 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1485 do { 1486 const VNInfo &VNI = *WorkList.back(); 1487 WorkList.pop_back(); 1488 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1489 forceRecompute(I, VNI); 1490 if (!VNI.isPHIDef()) 1491 continue; 1492 1493 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1494 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1495 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1496 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1497 assert(PredVNI && "Value available in PhiVNI predecessor"); 1498 if (Visited.insert(PredVNI).second) 1499 WorkList.push_back(PredVNI); 1500 } 1501 } while(!WorkList.empty()); 1502 } 1503 1504 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1505 ++NumFinished; 1506 1507 // At this point, the live intervals in Edit contain VNInfos corresponding to 1508 // the inserted copies. 1509 1510 // Add the original defs from the parent interval. 1511 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1512 if (ParentVNI->isUnused()) 1513 continue; 1514 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1515 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1516 1517 // Force rematted values to be recomputed everywhere. 1518 // The new live ranges may be truncated. 1519 if (Edit->didRematerialize(ParentVNI)) 1520 forceRecomputeVNI(*ParentVNI); 1521 } 1522 1523 // Hoist back-copies to the complement interval when in spill mode. 1524 switch (SpillMode) { 1525 case SM_Partition: 1526 // Leave all back-copies as is. 1527 break; 1528 case SM_Size: 1529 case SM_Speed: 1530 // hoistCopies will behave differently between size and speed. 1531 hoistCopies(); 1532 } 1533 1534 // Transfer the simply mapped values, check if any are skipped. 1535 bool Skipped = transferValues(); 1536 1537 // Rewrite virtual registers, possibly extending ranges. 1538 rewriteAssigned(Skipped); 1539 1540 if (Skipped) 1541 extendPHIKillRanges(); 1542 else 1543 ++NumSimple; 1544 1545 // Delete defs that were rematted everywhere. 1546 if (Skipped) 1547 deleteRematVictims(); 1548 1549 // Get rid of unused values and set phi-kill flags. 1550 for (Register Reg : *Edit) { 1551 LiveInterval &LI = LIS.getInterval(Reg); 1552 LI.removeEmptySubRanges(); 1553 LI.RenumberValues(); 1554 } 1555 1556 // Provide a reverse mapping from original indices to Edit ranges. 1557 if (LRMap) { 1558 auto Seq = llvm::seq<unsigned>(0, Edit->size()); 1559 LRMap->assign(Seq.begin(), Seq.end()); 1560 } 1561 1562 // Now check if any registers were separated into multiple components. 1563 ConnectedVNInfoEqClasses ConEQ(LIS); 1564 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1565 // Don't use iterators, they are invalidated by create() below. 1566 Register VReg = Edit->get(i); 1567 LiveInterval &LI = LIS.getInterval(VReg); 1568 SmallVector<LiveInterval*, 8> SplitLIs; 1569 LIS.splitSeparateComponents(LI, SplitLIs); 1570 Register Original = VRM.getOriginal(VReg); 1571 for (LiveInterval *SplitLI : SplitLIs) 1572 VRM.setIsSplitFromReg(SplitLI->reg(), Original); 1573 1574 // The new intervals all map back to i. 1575 if (LRMap) 1576 LRMap->resize(Edit->size(), i); 1577 } 1578 1579 // Calculate spill weight and allocation hints for new intervals. 1580 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); 1581 1582 assert(!LRMap || LRMap->size() == Edit->size()); 1583 } 1584 1585 //===----------------------------------------------------------------------===// 1586 // Single Block Splitting 1587 //===----------------------------------------------------------------------===// 1588 1589 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1590 bool SingleInstrs) const { 1591 // Always split for multiple instructions. 1592 if (!BI.isOneInstr()) 1593 return true; 1594 // Don't split for single instructions unless explicitly requested. 1595 if (!SingleInstrs) 1596 return false; 1597 // Splitting a live-through range always makes progress. 1598 if (BI.LiveIn && BI.LiveOut) 1599 return true; 1600 // No point in isolating a copy. It has no register class constraints. 1601 MachineInstr *MI = LIS.getInstructionFromIndex(BI.FirstInstr); 1602 bool copyLike = TII.isCopyInstr(*MI) || MI->isSubregToReg(); 1603 if (copyLike) 1604 return false; 1605 // Finally, don't isolate an end point that was created by earlier splits. 1606 return isOriginalEndpoint(BI.FirstInstr); 1607 } 1608 1609 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1610 openIntv(); 1611 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB); 1612 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1613 LastSplitPoint)); 1614 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1615 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1616 } else { 1617 // The last use is after the last valid split point. 1618 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1619 useIntv(SegStart, SegStop); 1620 overlapIntv(SegStop, BI.LastInstr); 1621 } 1622 } 1623 1624 //===----------------------------------------------------------------------===// 1625 // Global Live Range Splitting Support 1626 //===----------------------------------------------------------------------===// 1627 1628 // These methods support a method of global live range splitting that uses a 1629 // global algorithm to decide intervals for CFG edges. They will insert split 1630 // points and color intervals in basic blocks while avoiding interference. 1631 // 1632 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1633 // are on the stack. 1634 1635 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1636 unsigned IntvIn, SlotIndex LeaveBefore, 1637 unsigned IntvOut, SlotIndex EnterAfter){ 1638 SlotIndex Start, Stop; 1639 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1640 1641 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1642 << ") intf " << LeaveBefore << '-' << EnterAfter 1643 << ", live-through " << IntvIn << " -> " << IntvOut); 1644 1645 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1646 1647 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1648 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1649 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1650 1651 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1652 1653 if (!IntvOut) { 1654 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1655 // 1656 // <<<<<<<<< Possible LeaveBefore interference. 1657 // |-----------| Live through. 1658 // -____________ Spill on entry. 1659 // 1660 selectIntv(IntvIn); 1661 SlotIndex Idx = leaveIntvAtTop(*MBB); 1662 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1663 (void)Idx; 1664 return; 1665 } 1666 1667 if (!IntvIn) { 1668 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1669 // 1670 // >>>>>>> Possible EnterAfter interference. 1671 // |-----------| Live through. 1672 // ___________-- Reload on exit. 1673 // 1674 selectIntv(IntvOut); 1675 SlotIndex Idx = enterIntvAtEnd(*MBB); 1676 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1677 (void)Idx; 1678 return; 1679 } 1680 1681 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1682 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1683 // 1684 // |-----------| Live through. 1685 // ------------- Straight through, same intv, no interference. 1686 // 1687 selectIntv(IntvOut); 1688 useIntv(Start, Stop); 1689 return; 1690 } 1691 1692 // We cannot legally insert splits after LSP. 1693 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1694 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1695 1696 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1697 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1698 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1699 // 1700 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1701 // |-----------| Live through. 1702 // ------======= Switch intervals between interference. 1703 // 1704 selectIntv(IntvOut); 1705 SlotIndex Idx; 1706 if (LeaveBefore && LeaveBefore < LSP) { 1707 Idx = enterIntvBefore(LeaveBefore); 1708 useIntv(Idx, Stop); 1709 } else { 1710 Idx = enterIntvAtEnd(*MBB); 1711 } 1712 selectIntv(IntvIn); 1713 useIntv(Start, Idx); 1714 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1715 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1716 return; 1717 } 1718 1719 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1720 // 1721 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1722 // |-----------| Live through. 1723 // ==---------== Switch intervals before/after interference. 1724 // 1725 assert(LeaveBefore <= EnterAfter && "Missed case"); 1726 1727 selectIntv(IntvOut); 1728 SlotIndex Idx = enterIntvAfter(EnterAfter); 1729 useIntv(Idx, Stop); 1730 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1731 1732 selectIntv(IntvIn); 1733 Idx = leaveIntvBefore(LeaveBefore); 1734 useIntv(Start, Idx); 1735 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1736 } 1737 1738 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1739 unsigned IntvIn, SlotIndex LeaveBefore) { 1740 SlotIndex Start, Stop; 1741 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1742 1743 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1744 << Stop << "), uses " << BI.FirstInstr << '-' 1745 << BI.LastInstr << ", reg-in " << IntvIn 1746 << ", leave before " << LeaveBefore 1747 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1748 1749 assert(IntvIn && "Must have register in"); 1750 assert(BI.LiveIn && "Must be live-in"); 1751 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1752 1753 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1754 LLVM_DEBUG(dbgs() << " before interference.\n"); 1755 // 1756 // <<< Interference after kill. 1757 // |---o---x | Killed in block. 1758 // ========= Use IntvIn everywhere. 1759 // 1760 selectIntv(IntvIn); 1761 useIntv(Start, BI.LastInstr); 1762 return; 1763 } 1764 1765 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1766 1767 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1768 // 1769 // <<< Possible interference after last use. 1770 // |---o---o---| Live-out on stack. 1771 // =========____ Leave IntvIn after last use. 1772 // 1773 // < Interference after last use. 1774 // |---o---o--o| Live-out on stack, late last use. 1775 // ============ Copy to stack after LSP, overlap IntvIn. 1776 // \_____ Stack interval is live-out. 1777 // 1778 if (BI.LastInstr < LSP) { 1779 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1780 selectIntv(IntvIn); 1781 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1782 useIntv(Start, Idx); 1783 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1784 } else { 1785 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1786 selectIntv(IntvIn); 1787 SlotIndex Idx = leaveIntvBefore(LSP); 1788 overlapIntv(Idx, BI.LastInstr); 1789 useIntv(Start, Idx); 1790 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1791 } 1792 return; 1793 } 1794 1795 // The interference is overlapping somewhere we wanted to use IntvIn. That 1796 // means we need to create a local interval that can be allocated a 1797 // different register. 1798 unsigned LocalIntv = openIntv(); 1799 (void)LocalIntv; 1800 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1801 1802 if (!BI.LiveOut || BI.LastInstr < LSP) { 1803 // 1804 // <<<<<<< Interference overlapping uses. 1805 // |---o---o---| Live-out on stack. 1806 // =====----____ Leave IntvIn before interference, then spill. 1807 // 1808 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1809 SlotIndex From = enterIntvBefore(LeaveBefore); 1810 useIntv(From, To); 1811 selectIntv(IntvIn); 1812 useIntv(Start, From); 1813 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1814 return; 1815 } 1816 1817 // <<<<<<< Interference overlapping uses. 1818 // |---o---o--o| Live-out on stack, late last use. 1819 // =====------- Copy to stack before LSP, overlap LocalIntv. 1820 // \_____ Stack interval is live-out. 1821 // 1822 SlotIndex To = leaveIntvBefore(LSP); 1823 overlapIntv(To, BI.LastInstr); 1824 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1825 useIntv(From, To); 1826 selectIntv(IntvIn); 1827 useIntv(Start, From); 1828 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1829 } 1830 1831 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1832 unsigned IntvOut, SlotIndex EnterAfter) { 1833 SlotIndex Start, Stop; 1834 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1835 1836 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1837 << Stop << "), uses " << BI.FirstInstr << '-' 1838 << BI.LastInstr << ", reg-out " << IntvOut 1839 << ", enter after " << EnterAfter 1840 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1841 1842 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1843 1844 assert(IntvOut && "Must have register out"); 1845 assert(BI.LiveOut && "Must be live-out"); 1846 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1847 1848 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1849 LLVM_DEBUG(dbgs() << " after interference.\n"); 1850 // 1851 // >>>> Interference before def. 1852 // | o---o---| Defined in block. 1853 // ========= Use IntvOut everywhere. 1854 // 1855 selectIntv(IntvOut); 1856 useIntv(BI.FirstInstr, Stop); 1857 return; 1858 } 1859 1860 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1861 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1862 // 1863 // >>>> Interference before def. 1864 // |---o---o---| Live-through, stack-in. 1865 // ____========= Enter IntvOut before first use. 1866 // 1867 selectIntv(IntvOut); 1868 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1869 useIntv(Idx, Stop); 1870 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1871 return; 1872 } 1873 1874 // The interference is overlapping somewhere we wanted to use IntvOut. That 1875 // means we need to create a local interval that can be allocated a 1876 // different register. 1877 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1878 // 1879 // >>>>>>> Interference overlapping uses. 1880 // |---o---o---| Live-through, stack-in. 1881 // ____---====== Create local interval for interference range. 1882 // 1883 selectIntv(IntvOut); 1884 SlotIndex Idx = enterIntvAfter(EnterAfter); 1885 useIntv(Idx, Stop); 1886 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1887 1888 openIntv(); 1889 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1890 useIntv(From, Idx); 1891 } 1892 1893 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { 1894 OS << "{" << printMBBReference(*MBB) << ", " 1895 << "uses " << FirstInstr << " to " << LastInstr << ", " 1896 << "1st def " << FirstDef << ", " 1897 << (LiveIn ? "live in" : "dead in") << ", " 1898 << (LiveOut ? "live out" : "dead out") << "}"; 1899 } 1900 1901 void SplitAnalysis::BlockInfo::dump() const { 1902 print(dbgs()); 1903 dbgs() << "\n"; 1904 } 1905