1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/CodeGen/LiveRangeEdit.h" 20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/VirtRegMap.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/DebugLoc.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/BlockFrequency.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <iterator> 42 #include <limits> 43 #include <tuple> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc" 48 49 STATISTIC(NumFinished, "Number of splits finished"); 50 STATISTIC(NumSimple, "Number of splits that were simple"); 51 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 53 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 54 55 //===----------------------------------------------------------------------===// 56 // Last Insert Point Analysis 57 //===----------------------------------------------------------------------===// 58 59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 60 unsigned BBNum) 61 : LIS(lis), LastInsertPoint(BBNum) {} 62 63 SlotIndex 64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 65 const MachineBasicBlock &MBB) { 66 unsigned Num = MBB.getNumber(); 67 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 68 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 69 70 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors; 71 bool EHPadSuccessor = false; 72 for (const MachineBasicBlock *SMBB : MBB.successors()) { 73 if (SMBB->isEHPad()) { 74 ExceptionalSuccessors.push_back(SMBB); 75 EHPadSuccessor = true; 76 } else if (SMBB->isInlineAsmBrIndirectTarget()) 77 ExceptionalSuccessors.push_back(SMBB); 78 } 79 80 // Compute insert points on the first call. The pair is independent of the 81 // current live interval. 82 if (!LIP.first.isValid()) { 83 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 84 if (FirstTerm == MBB.end()) 85 LIP.first = MBBEnd; 86 else 87 LIP.first = LIS.getInstructionIndex(*FirstTerm); 88 89 // If there is a landing pad or inlineasm_br successor, also find the 90 // instruction. If there is no such instruction, we don't need to do 91 // anything special. We assume there cannot be multiple instructions that 92 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we 93 // assume that if there are any, they will be after any other call 94 // instructions in the block. 95 if (ExceptionalSuccessors.empty()) 96 return LIP.first; 97 for (const MachineInstr &MI : llvm::reverse(MBB)) { 98 if ((EHPadSuccessor && MI.isCall()) || 99 MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 100 LIP.second = LIS.getInstructionIndex(MI); 101 break; 102 } 103 } 104 } 105 106 // If CurLI is live into a landing pad successor, move the last insert point 107 // back to the call that may throw. 108 if (!LIP.second) 109 return LIP.first; 110 111 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) { 112 return LIS.isLiveInToMBB(CurLI, EHPad); 113 })) 114 return LIP.first; 115 116 // Find the value leaving MBB. 117 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 118 if (!VNI) 119 return LIP.first; 120 121 // The def of statepoint instruction is a gc relocation and it should be alive 122 // in landing pad. So we cannot split interval after statepoint instruction. 123 if (SlotIndex::isSameInstr(VNI->def, LIP.second)) 124 if (auto *I = LIS.getInstructionFromIndex(LIP.second)) 125 if (I->getOpcode() == TargetOpcode::STATEPOINT) 126 return LIP.second; 127 128 // If the value leaving MBB was defined after the call in MBB, it can't 129 // really be live-in to the landing pad. This can happen if the landing pad 130 // has a PHI, and this register is undef on the exceptional edge. 131 // <rdar://problem/10664933> 132 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 133 return LIP.first; 134 135 // Value is properly live-in to the landing pad. 136 // Only allow inserts before the call. 137 return LIP.second; 138 } 139 140 MachineBasicBlock::iterator 141 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 142 MachineBasicBlock &MBB) { 143 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 144 if (LIP == LIS.getMBBEndIdx(&MBB)) 145 return MBB.end(); 146 return LIS.getInstructionFromIndex(LIP); 147 } 148 149 //===----------------------------------------------------------------------===// 150 // Split Analysis 151 //===----------------------------------------------------------------------===// 152 153 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 154 const MachineLoopInfo &mli) 155 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 156 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 157 158 void SplitAnalysis::clear() { 159 UseSlots.clear(); 160 UseBlocks.clear(); 161 ThroughBlocks.clear(); 162 CurLI = nullptr; 163 DidRepairRange = false; 164 } 165 166 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 167 void SplitAnalysis::analyzeUses() { 168 assert(UseSlots.empty() && "Call clear first"); 169 170 // First get all the defs from the interval values. This provides the correct 171 // slots for early clobbers. 172 for (const VNInfo *VNI : CurLI->valnos) 173 if (!VNI->isPHIDef() && !VNI->isUnused()) 174 UseSlots.push_back(VNI->def); 175 176 // Get use slots form the use-def chain. 177 const MachineRegisterInfo &MRI = MF.getRegInfo(); 178 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg())) 179 if (!MO.isUndef()) 180 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 181 182 array_pod_sort(UseSlots.begin(), UseSlots.end()); 183 184 // Remove duplicates, keeping the smaller slot for each instruction. 185 // That is what we want for early clobbers. 186 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 187 SlotIndex::isSameInstr), 188 UseSlots.end()); 189 190 // Compute per-live block info. 191 if (!calcLiveBlockInfo()) { 192 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 193 // I am looking at you, RegisterCoalescer! 194 DidRepairRange = true; 195 ++NumRepairs; 196 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 197 const_cast<LiveIntervals&>(LIS) 198 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 199 UseBlocks.clear(); 200 ThroughBlocks.clear(); 201 bool fixed = calcLiveBlockInfo(); 202 (void)fixed; 203 assert(fixed && "Couldn't fix broken live interval"); 204 } 205 206 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 207 << UseBlocks.size() << " blocks, through " 208 << NumThroughBlocks << " blocks.\n"); 209 } 210 211 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 212 /// where CurLI is live. 213 bool SplitAnalysis::calcLiveBlockInfo() { 214 ThroughBlocks.resize(MF.getNumBlockIDs()); 215 NumThroughBlocks = NumGapBlocks = 0; 216 if (CurLI->empty()) 217 return true; 218 219 LiveInterval::const_iterator LVI = CurLI->begin(); 220 LiveInterval::const_iterator LVE = CurLI->end(); 221 222 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 223 UseI = UseSlots.begin(); 224 UseE = UseSlots.end(); 225 226 // Loop over basic blocks where CurLI is live. 227 MachineFunction::iterator MFI = 228 LIS.getMBBFromIndex(LVI->start)->getIterator(); 229 while (true) { 230 BlockInfo BI; 231 BI.MBB = &*MFI; 232 SlotIndex Start, Stop; 233 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 234 235 // If the block contains no uses, the range must be live through. At one 236 // point, RegisterCoalescer could create dangling ranges that ended 237 // mid-block. 238 if (UseI == UseE || *UseI >= Stop) { 239 ++NumThroughBlocks; 240 ThroughBlocks.set(BI.MBB->getNumber()); 241 // The range shouldn't end mid-block if there are no uses. This shouldn't 242 // happen. 243 if (LVI->end < Stop) 244 return false; 245 } else { 246 // This block has uses. Find the first and last uses in the block. 247 BI.FirstInstr = *UseI; 248 assert(BI.FirstInstr >= Start); 249 do ++UseI; 250 while (UseI != UseE && *UseI < Stop); 251 BI.LastInstr = UseI[-1]; 252 assert(BI.LastInstr < Stop); 253 254 // LVI is the first live segment overlapping MBB. 255 BI.LiveIn = LVI->start <= Start; 256 257 // When not live in, the first use should be a def. 258 if (!BI.LiveIn) { 259 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 260 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 261 BI.FirstDef = BI.FirstInstr; 262 } 263 264 // Look for gaps in the live range. 265 BI.LiveOut = true; 266 while (LVI->end < Stop) { 267 SlotIndex LastStop = LVI->end; 268 if (++LVI == LVE || LVI->start >= Stop) { 269 BI.LiveOut = false; 270 BI.LastInstr = LastStop; 271 break; 272 } 273 274 if (LastStop < LVI->start) { 275 // There is a gap in the live range. Create duplicate entries for the 276 // live-in snippet and the live-out snippet. 277 ++NumGapBlocks; 278 279 // Push the Live-in part. 280 BI.LiveOut = false; 281 UseBlocks.push_back(BI); 282 UseBlocks.back().LastInstr = LastStop; 283 284 // Set up BI for the live-out part. 285 BI.LiveIn = false; 286 BI.LiveOut = true; 287 BI.FirstInstr = BI.FirstDef = LVI->start; 288 } 289 290 // A Segment that starts in the middle of the block must be a def. 291 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 292 if (!BI.FirstDef) 293 BI.FirstDef = LVI->start; 294 } 295 296 UseBlocks.push_back(BI); 297 298 // LVI is now at LVE or LVI->end >= Stop. 299 if (LVI == LVE) 300 break; 301 } 302 303 // Live segment ends exactly at Stop. Move to the next segment. 304 if (LVI->end == Stop && ++LVI == LVE) 305 break; 306 307 // Pick the next basic block. 308 if (LVI->start < Stop) 309 ++MFI; 310 else 311 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 312 } 313 314 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 315 return true; 316 } 317 318 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 319 if (cli->empty()) 320 return 0; 321 LiveInterval *li = const_cast<LiveInterval*>(cli); 322 LiveInterval::iterator LVI = li->begin(); 323 LiveInterval::iterator LVE = li->end(); 324 unsigned Count = 0; 325 326 // Loop over basic blocks where li is live. 327 MachineFunction::const_iterator MFI = 328 LIS.getMBBFromIndex(LVI->start)->getIterator(); 329 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 330 while (true) { 331 ++Count; 332 LVI = li->advanceTo(LVI, Stop); 333 if (LVI == LVE) 334 return Count; 335 do { 336 ++MFI; 337 Stop = LIS.getMBBEndIdx(&*MFI); 338 } while (Stop <= LVI->start); 339 } 340 } 341 342 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 343 unsigned OrigReg = VRM.getOriginal(CurLI->reg()); 344 const LiveInterval &Orig = LIS.getInterval(OrigReg); 345 assert(!Orig.empty() && "Splitting empty interval?"); 346 LiveInterval::const_iterator I = Orig.find(Idx); 347 348 // Range containing Idx should begin at Idx. 349 if (I != Orig.end() && I->start <= Idx) 350 return I->start == Idx; 351 352 // Range does not contain Idx, previous must end at Idx. 353 return I != Orig.begin() && (--I)->end == Idx; 354 } 355 356 void SplitAnalysis::analyze(const LiveInterval *li) { 357 clear(); 358 CurLI = li; 359 analyzeUses(); 360 } 361 362 //===----------------------------------------------------------------------===// 363 // Split Editor 364 //===----------------------------------------------------------------------===// 365 366 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 367 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA, 368 LiveIntervals &LIS, VirtRegMap &VRM, 369 MachineDominatorTree &MDT, 370 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) 371 : SA(SA), AA(AA), LIS(LIS), VRM(VRM), 372 MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT), 373 TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), 374 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), 375 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} 376 377 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 378 Edit = &LRE; 379 SpillMode = SM; 380 OpenIdx = 0; 381 RegAssign.clear(); 382 Values.clear(); 383 384 // Reset the LiveIntervalCalc instances needed for this spill mode. 385 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 386 &LIS.getVNInfoAllocator()); 387 if (SpillMode) 388 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 389 &LIS.getVNInfoAllocator()); 390 391 // We don't need an AliasAnalysis since we will only be performing 392 // cheap-as-a-copy remats anyway. 393 Edit->anyRematerializable(nullptr); 394 } 395 396 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 397 LLVM_DUMP_METHOD void SplitEditor::dump() const { 398 if (RegAssign.empty()) { 399 dbgs() << " empty\n"; 400 return; 401 } 402 403 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 404 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 405 dbgs() << '\n'; 406 } 407 #endif 408 409 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM, 410 LiveInterval &LI) { 411 for (LiveInterval::SubRange &S : LI.subranges()) 412 if (S.LaneMask == LM) 413 return S; 414 llvm_unreachable("SubRange for this mask not found"); 415 } 416 417 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 418 LiveInterval &LI) { 419 for (LiveInterval::SubRange &S : LI.subranges()) 420 if ((S.LaneMask & LM) == LM) 421 return S; 422 llvm_unreachable("SubRange for this mask not found"); 423 } 424 425 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 426 if (!LI.hasSubRanges()) { 427 LI.createDeadDef(VNI); 428 return; 429 } 430 431 SlotIndex Def = VNI->def; 432 if (Original) { 433 // If we are transferring a def from the original interval, make sure 434 // to only update the subranges for which the original subranges had 435 // a def at this location. 436 for (LiveInterval::SubRange &S : LI.subranges()) { 437 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 438 VNInfo *PV = PS.getVNInfoAt(Def); 439 if (PV != nullptr && PV->def == Def) 440 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 441 } 442 } else { 443 // This is a new def: either from rematerialization, or from an inserted 444 // copy. Since rematerialization can regenerate a definition of a sub- 445 // register, we need to check which subranges need to be updated. 446 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 447 assert(DefMI != nullptr); 448 LaneBitmask LM; 449 for (const MachineOperand &DefOp : DefMI->defs()) { 450 Register R = DefOp.getReg(); 451 if (R != LI.reg()) 452 continue; 453 if (unsigned SR = DefOp.getSubReg()) 454 LM |= TRI.getSubRegIndexLaneMask(SR); 455 else { 456 LM = MRI.getMaxLaneMaskForVReg(R); 457 break; 458 } 459 } 460 for (LiveInterval::SubRange &S : LI.subranges()) 461 if ((S.LaneMask & LM).any()) 462 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 463 } 464 } 465 466 VNInfo *SplitEditor::defValue(unsigned RegIdx, 467 const VNInfo *ParentVNI, 468 SlotIndex Idx, 469 bool Original) { 470 assert(ParentVNI && "Mapping NULL value"); 471 assert(Idx.isValid() && "Invalid SlotIndex"); 472 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 473 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 474 475 // Create a new value. 476 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 477 478 bool Force = LI->hasSubRanges(); 479 ValueForcePair FP(Force ? nullptr : VNI, Force); 480 // Use insert for lookup, so we can add missing values with a second lookup. 481 std::pair<ValueMap::iterator, bool> InsP = 482 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 483 484 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 485 // forced. Keep it as a simple def without any liveness. 486 if (!Force && InsP.second) 487 return VNI; 488 489 // If the previous value was a simple mapping, add liveness for it now. 490 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 491 addDeadDef(*LI, OldVNI, Original); 492 493 // No longer a simple mapping. Switch to a complex mapping. If the 494 // interval has subranges, make it a forced mapping. 495 InsP.first->second = ValueForcePair(nullptr, Force); 496 } 497 498 // This is a complex mapping, add liveness for VNI 499 addDeadDef(*LI, VNI, Original); 500 return VNI; 501 } 502 503 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 504 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 505 VNInfo *VNI = VFP.getPointer(); 506 507 // ParentVNI was either unmapped or already complex mapped. Either way, just 508 // set the force bit. 509 if (!VNI) { 510 VFP.setInt(true); 511 return; 512 } 513 514 // This was previously a single mapping. Make sure the old def is represented 515 // by a trivial live range. 516 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 517 518 // Mark as complex mapped, forced. 519 VFP = ValueForcePair(nullptr, true); 520 } 521 522 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg, 523 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 524 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 525 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 526 bool FirstCopy = !Def.isValid(); 527 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 528 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 529 | getInternalReadRegState(!FirstCopy), SubIdx) 530 .addReg(FromReg, 0, SubIdx); 531 532 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 533 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 534 if (FirstCopy) { 535 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 536 } else { 537 CopyMI->bundleWithPred(); 538 } 539 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx); 540 DestLI.refineSubRanges(Allocator, LaneMask, 541 [Def, &Allocator](LiveInterval::SubRange &SR) { 542 SR.createDeadDef(Def, Allocator); 543 }, 544 Indexes, TRI); 545 return Def; 546 } 547 548 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, 549 LaneBitmask LaneMask, MachineBasicBlock &MBB, 550 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 551 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 552 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 553 // The full vreg is copied. 554 MachineInstr *CopyMI = 555 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 556 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 557 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 558 } 559 560 // Only a subset of lanes needs to be copied. The following is a simple 561 // heuristic to construct a sequence of COPYs. We could add a target 562 // specific callback if this turns out to be suboptimal. 563 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 564 565 // First pass: Try to find a perfectly matching subregister index. If none 566 // exists find the one covering the most lanemask bits. 567 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 568 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 569 570 SmallVector<unsigned, 8> Indexes; 571 572 // Abort if we cannot possibly implement the COPY with the given indexes. 573 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, Indexes)) 574 report_fatal_error("Impossible to implement partial COPY"); 575 576 SlotIndex Def; 577 for (unsigned BestIdx : Indexes) { 578 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 579 DestLI, Late, Def); 580 } 581 582 return Def; 583 } 584 585 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 586 VNInfo *ParentVNI, 587 SlotIndex UseIdx, 588 MachineBasicBlock &MBB, 589 MachineBasicBlock::iterator I) { 590 SlotIndex Def; 591 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 592 593 // We may be trying to avoid interference that ends at a deleted instruction, 594 // so always begin RegIdx 0 early and all others late. 595 bool Late = RegIdx != 0; 596 597 // Attempt cheap-as-a-copy rematerialization. 598 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 599 LiveInterval &OrigLI = LIS.getInterval(Original); 600 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 601 602 Register Reg = LI->reg(); 603 bool DidRemat = false; 604 if (OrigVNI) { 605 LiveRangeEdit::Remat RM(ParentVNI); 606 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 607 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 608 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 609 ++NumRemats; 610 DidRemat = true; 611 } 612 } 613 if (!DidRemat) { 614 LaneBitmask LaneMask; 615 if (OrigLI.hasSubRanges()) { 616 LaneMask = LaneBitmask::getNone(); 617 for (LiveInterval::SubRange &S : OrigLI.subranges()) { 618 if (S.liveAt(UseIdx)) 619 LaneMask |= S.LaneMask; 620 } 621 } else { 622 LaneMask = LaneBitmask::getAll(); 623 } 624 625 if (LaneMask.none()) { 626 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF); 627 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg); 628 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 629 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot(); 630 } else { 631 ++NumCopies; 632 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 633 } 634 } 635 636 // Define the value in Reg. 637 return defValue(RegIdx, ParentVNI, Def, false); 638 } 639 640 /// Create a new virtual register and live interval. 641 unsigned SplitEditor::openIntv() { 642 // Create the complement as index 0. 643 if (Edit->empty()) 644 Edit->createEmptyInterval(); 645 646 // Create the open interval. 647 OpenIdx = Edit->size(); 648 Edit->createEmptyInterval(); 649 return OpenIdx; 650 } 651 652 void SplitEditor::selectIntv(unsigned Idx) { 653 assert(Idx != 0 && "Cannot select the complement interval"); 654 assert(Idx < Edit->size() && "Can only select previously opened interval"); 655 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 656 OpenIdx = Idx; 657 } 658 659 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 660 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 661 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 662 Idx = Idx.getBaseIndex(); 663 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 664 if (!ParentVNI) { 665 LLVM_DEBUG(dbgs() << ": not live\n"); 666 return Idx; 667 } 668 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 669 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 670 assert(MI && "enterIntvBefore called with invalid index"); 671 672 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 673 return VNI->def; 674 } 675 676 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 677 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 678 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 679 Idx = Idx.getBoundaryIndex(); 680 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 681 if (!ParentVNI) { 682 LLVM_DEBUG(dbgs() << ": not live\n"); 683 return Idx; 684 } 685 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 686 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 687 assert(MI && "enterIntvAfter called with invalid index"); 688 689 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 690 std::next(MachineBasicBlock::iterator(MI))); 691 return VNI->def; 692 } 693 694 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 695 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 696 SlotIndex End = LIS.getMBBEndIdx(&MBB); 697 SlotIndex Last = End.getPrevSlot(); 698 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 699 << Last); 700 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 701 if (!ParentVNI) { 702 LLVM_DEBUG(dbgs() << ": not live\n"); 703 return End; 704 } 705 SlotIndex LSP = SA.getLastSplitPoint(&MBB); 706 if (LSP < Last) { 707 // It could be that the use after LSP is a def, and thus the ParentVNI 708 // just selected starts at that def. For this case to exist, the def 709 // must be part of a tied def/use pair (as otherwise we'd have split 710 // distinct live ranges into individual live intervals), and thus we 711 // can insert the def into the VNI of the use and the tied def/use 712 // pair can live in the resulting interval. 713 Last = LSP; 714 ParentVNI = Edit->getParent().getVNInfoAt(Last); 715 if (!ParentVNI) { 716 // undef use --> undef tied def 717 LLVM_DEBUG(dbgs() << ": tied use not live\n"); 718 return End; 719 } 720 } 721 722 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 723 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 724 SA.getLastSplitPointIter(&MBB)); 725 RegAssign.insert(VNI->def, End, OpenIdx); 726 LLVM_DEBUG(dump()); 727 return VNI->def; 728 } 729 730 /// useIntv - indicate that all instructions in MBB should use OpenLI. 731 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 732 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 733 } 734 735 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 736 assert(OpenIdx && "openIntv not called before useIntv"); 737 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 738 RegAssign.insert(Start, End, OpenIdx); 739 LLVM_DEBUG(dump()); 740 } 741 742 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 743 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 744 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 745 746 // The interval must be live beyond the instruction at Idx. 747 SlotIndex Boundary = Idx.getBoundaryIndex(); 748 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 749 if (!ParentVNI) { 750 LLVM_DEBUG(dbgs() << ": not live\n"); 751 return Boundary.getNextSlot(); 752 } 753 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 754 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 755 assert(MI && "No instruction at index"); 756 757 // In spill mode, make live ranges as short as possible by inserting the copy 758 // before MI. This is only possible if that instruction doesn't redefine the 759 // value. The inserted COPY is not a kill, and we don't need to recompute 760 // the source live range. The spiller also won't try to hoist this copy. 761 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 762 MI->readsVirtualRegister(Edit->getReg())) { 763 forceRecompute(0, *ParentVNI); 764 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 765 return Idx; 766 } 767 768 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 769 std::next(MachineBasicBlock::iterator(MI))); 770 return VNI->def; 771 } 772 773 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 774 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 775 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 776 777 // The interval must be live into the instruction at Idx. 778 Idx = Idx.getBaseIndex(); 779 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 780 if (!ParentVNI) { 781 LLVM_DEBUG(dbgs() << ": not live\n"); 782 return Idx.getNextSlot(); 783 } 784 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 785 786 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 787 assert(MI && "No instruction at index"); 788 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 789 return VNI->def; 790 } 791 792 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 793 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 794 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 795 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 796 << Start); 797 798 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 799 if (!ParentVNI) { 800 LLVM_DEBUG(dbgs() << ": not live\n"); 801 return Start; 802 } 803 804 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 805 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 806 RegAssign.insert(Start, VNI->def, OpenIdx); 807 LLVM_DEBUG(dump()); 808 return VNI->def; 809 } 810 811 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) { 812 return any_of(MI.defs(), [Reg](const MachineOperand &MO) { 813 return MO.isReg() && MO.isTied() && MO.getReg() == Reg; 814 }); 815 } 816 817 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 818 assert(OpenIdx && "openIntv not called before overlapIntv"); 819 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 820 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 821 "Parent changes value in extended range"); 822 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 823 "Range cannot span basic blocks"); 824 825 // The complement interval will be extended as needed by LICalc.extend(). 826 if (ParentVNI) 827 forceRecompute(0, *ParentVNI); 828 829 // If the last use is tied to a def, we can't mark it as live for the 830 // interval which includes only the use. That would cause the tied pair 831 // to end up in two different intervals. 832 if (auto *MI = LIS.getInstructionFromIndex(End)) 833 if (hasTiedUseOf(*MI, Edit->getReg())) { 834 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n"); 835 return; 836 } 837 838 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 839 RegAssign.insert(Start, End, OpenIdx); 840 LLVM_DEBUG(dump()); 841 } 842 843 //===----------------------------------------------------------------------===// 844 // Spill modes 845 //===----------------------------------------------------------------------===// 846 847 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 848 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 849 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 850 RegAssignMap::iterator AssignI; 851 AssignI.setMap(RegAssign); 852 853 for (const VNInfo *C : Copies) { 854 SlotIndex Def = C->def; 855 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 856 assert(MI && "No instruction for back-copy"); 857 858 MachineBasicBlock *MBB = MI->getParent(); 859 MachineBasicBlock::iterator MBBI(MI); 860 bool AtBegin; 861 do AtBegin = MBBI == MBB->begin(); 862 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); 863 864 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 865 LIS.removeVRegDefAt(*LI, Def); 866 LIS.RemoveMachineInstrFromMaps(*MI); 867 MI->eraseFromParent(); 868 869 // Adjust RegAssign if a register assignment is killed at Def. We want to 870 // avoid calculating the live range of the source register if possible. 871 AssignI.find(Def.getPrevSlot()); 872 if (!AssignI.valid() || AssignI.start() >= Def) 873 continue; 874 // If MI doesn't kill the assigned register, just leave it. 875 if (AssignI.stop() != Def) 876 continue; 877 unsigned RegIdx = AssignI.value(); 878 // We could hoist back-copy right after another back-copy. As a result 879 // MMBI points to copy instruction which is actually dead now. 880 // We cannot set its stop to MBBI which will be the same as start and 881 // interval does not support that. 882 SlotIndex Kill = 883 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot(); 884 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) || 885 Kill <= AssignI.start()) { 886 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 887 << '\n'); 888 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 889 } else { 890 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 891 AssignI.setStop(Kill); 892 } 893 } 894 } 895 896 MachineBasicBlock* 897 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 898 MachineBasicBlock *DefMBB) { 899 if (MBB == DefMBB) 900 return MBB; 901 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 902 903 const MachineLoopInfo &Loops = SA.Loops; 904 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 905 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 906 907 // Best candidate so far. 908 MachineBasicBlock *BestMBB = MBB; 909 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 910 911 while (true) { 912 const MachineLoop *Loop = Loops.getLoopFor(MBB); 913 914 // MBB isn't in a loop, it doesn't get any better. All dominators have a 915 // higher frequency by definition. 916 if (!Loop) { 917 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 918 << " dominates " << printMBBReference(*MBB) 919 << " at depth 0\n"); 920 return MBB; 921 } 922 923 // We'll never be able to exit the DefLoop. 924 if (Loop == DefLoop) { 925 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 926 << " dominates " << printMBBReference(*MBB) 927 << " in the same loop\n"); 928 return MBB; 929 } 930 931 // Least busy dominator seen so far. 932 unsigned Depth = Loop->getLoopDepth(); 933 if (Depth < BestDepth) { 934 BestMBB = MBB; 935 BestDepth = Depth; 936 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 937 << " dominates " << printMBBReference(*MBB) 938 << " at depth " << Depth << '\n'); 939 } 940 941 // Leave loop by going to the immediate dominator of the loop header. 942 // This is a bigger stride than simply walking up the dominator tree. 943 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 944 945 // Too far up the dominator tree? 946 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 947 return BestMBB; 948 949 MBB = IDom->getBlock(); 950 } 951 } 952 953 void SplitEditor::computeRedundantBackCopies( 954 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 955 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 956 LiveInterval *Parent = &Edit->getParent(); 957 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 958 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 959 960 // Aggregate VNIs having the same value as ParentVNI. 961 for (VNInfo *VNI : LI->valnos) { 962 if (VNI->isUnused()) 963 continue; 964 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 965 EqualVNs[ParentVNI->id].insert(VNI); 966 } 967 968 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 969 // redundant VNIs to BackCopies. 970 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 971 VNInfo *ParentVNI = Parent->getValNumInfo(i); 972 if (!NotToHoistSet.count(ParentVNI->id)) 973 continue; 974 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 975 SmallPtrSetIterator<VNInfo *> It2 = It1; 976 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 977 It2 = It1; 978 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 979 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 980 continue; 981 982 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 983 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 984 if (MBB1 == MBB2) { 985 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 986 } else if (MDT.dominates(MBB1, MBB2)) { 987 DominatedVNIs.insert(*It2); 988 } else if (MDT.dominates(MBB2, MBB1)) { 989 DominatedVNIs.insert(*It1); 990 } 991 } 992 } 993 if (!DominatedVNIs.empty()) { 994 forceRecompute(0, *ParentVNI); 995 append_range(BackCopies, DominatedVNIs); 996 DominatedVNIs.clear(); 997 } 998 } 999 } 1000 1001 /// For SM_Size mode, find a common dominator for all the back-copies for 1002 /// the same ParentVNI and hoist the backcopies to the dominator BB. 1003 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 1004 /// to do the hoisting, simply remove the dominated backcopies for the same 1005 /// ParentVNI. 1006 void SplitEditor::hoistCopies() { 1007 // Get the complement interval, always RegIdx 0. 1008 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1009 LiveInterval *Parent = &Edit->getParent(); 1010 1011 // Track the nearest common dominator for all back-copies for each ParentVNI, 1012 // indexed by ParentVNI->id. 1013 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1014 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1015 // The total cost of all the back-copies for each ParentVNI. 1016 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1017 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1018 // for Speed. 1019 DenseSet<unsigned> NotToHoistSet; 1020 1021 // Find the nearest common dominator for parent values with multiple 1022 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1023 for (VNInfo *VNI : LI->valnos) { 1024 if (VNI->isUnused()) 1025 continue; 1026 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1027 assert(ParentVNI && "Parent not live at complement def"); 1028 1029 // Don't hoist remats. The complement is probably going to disappear 1030 // completely anyway. 1031 if (Edit->didRematerialize(ParentVNI)) 1032 continue; 1033 1034 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1035 1036 DomPair &Dom = NearestDom[ParentVNI->id]; 1037 1038 // Keep directly defined parent values. This is either a PHI or an 1039 // instruction in the complement range. All other copies of ParentVNI 1040 // should be eliminated. 1041 if (VNI->def == ParentVNI->def) { 1042 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1043 Dom = DomPair(ValMBB, VNI->def); 1044 continue; 1045 } 1046 // Skip the singly mapped values. There is nothing to gain from hoisting a 1047 // single back-copy. 1048 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1049 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1050 continue; 1051 } 1052 1053 if (!Dom.first) { 1054 // First time we see ParentVNI. VNI dominates itself. 1055 Dom = DomPair(ValMBB, VNI->def); 1056 } else if (Dom.first == ValMBB) { 1057 // Two defs in the same block. Pick the earlier def. 1058 if (!Dom.second.isValid() || VNI->def < Dom.second) 1059 Dom.second = VNI->def; 1060 } else { 1061 // Different basic blocks. Check if one dominates. 1062 MachineBasicBlock *Near = 1063 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1064 if (Near == ValMBB) 1065 // Def ValMBB dominates. 1066 Dom = DomPair(ValMBB, VNI->def); 1067 else if (Near != Dom.first) 1068 // None dominate. Hoist to common dominator, need new def. 1069 Dom = DomPair(Near, SlotIndex()); 1070 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1071 } 1072 1073 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1074 << VNI->def << " for parent " << ParentVNI->id << '@' 1075 << ParentVNI->def << " hoist to " 1076 << printMBBReference(*Dom.first) << ' ' << Dom.second 1077 << '\n'); 1078 } 1079 1080 // Insert the hoisted copies. 1081 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1082 DomPair &Dom = NearestDom[i]; 1083 if (!Dom.first || Dom.second.isValid()) 1084 continue; 1085 // This value needs a hoisted copy inserted at the end of Dom.first. 1086 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1087 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1088 // Get a less loopy dominator than Dom.first. 1089 Dom.first = findShallowDominator(Dom.first, DefMBB); 1090 if (SpillMode == SM_Speed && 1091 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1092 NotToHoistSet.insert(ParentVNI->id); 1093 continue; 1094 } 1095 SlotIndex LSP = SA.getLastSplitPoint(Dom.first); 1096 if (LSP <= ParentVNI->def) { 1097 NotToHoistSet.insert(ParentVNI->id); 1098 continue; 1099 } 1100 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first, 1101 SA.getLastSplitPointIter(Dom.first))->def; 1102 } 1103 1104 // Remove redundant back-copies that are now known to be dominated by another 1105 // def with the same value. 1106 SmallVector<VNInfo*, 8> BackCopies; 1107 for (VNInfo *VNI : LI->valnos) { 1108 if (VNI->isUnused()) 1109 continue; 1110 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1111 const DomPair &Dom = NearestDom[ParentVNI->id]; 1112 if (!Dom.first || Dom.second == VNI->def || 1113 NotToHoistSet.count(ParentVNI->id)) 1114 continue; 1115 BackCopies.push_back(VNI); 1116 forceRecompute(0, *ParentVNI); 1117 } 1118 1119 // If it is not beneficial to hoist all the BackCopies, simply remove 1120 // redundant BackCopies in speed mode. 1121 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1122 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1123 1124 removeBackCopies(BackCopies); 1125 } 1126 1127 /// transferValues - Transfer all possible values to the new live ranges. 1128 /// Values that were rematerialized are left alone, they need LICalc.extend(). 1129 bool SplitEditor::transferValues() { 1130 bool Skipped = false; 1131 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1132 for (const LiveRange::Segment &S : Edit->getParent()) { 1133 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1134 VNInfo *ParentVNI = S.valno; 1135 // RegAssign has holes where RegIdx 0 should be used. 1136 SlotIndex Start = S.start; 1137 AssignI.advanceTo(Start); 1138 do { 1139 unsigned RegIdx; 1140 SlotIndex End = S.end; 1141 if (!AssignI.valid()) { 1142 RegIdx = 0; 1143 } else if (AssignI.start() <= Start) { 1144 RegIdx = AssignI.value(); 1145 if (AssignI.stop() < End) { 1146 End = AssignI.stop(); 1147 ++AssignI; 1148 } 1149 } else { 1150 RegIdx = 0; 1151 End = std::min(End, AssignI.start()); 1152 } 1153 1154 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1155 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1156 << printReg(Edit->get(RegIdx)) << ')'); 1157 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1158 1159 // Check for a simply defined value that can be blitted directly. 1160 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1161 if (VNInfo *VNI = VFP.getPointer()) { 1162 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1163 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1164 Start = End; 1165 continue; 1166 } 1167 1168 // Skip values with forced recomputation. 1169 if (VFP.getInt()) { 1170 LLVM_DEBUG(dbgs() << "(recalc)"); 1171 Skipped = true; 1172 Start = End; 1173 continue; 1174 } 1175 1176 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1177 1178 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1179 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1180 // LiveInBlocks. 1181 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1182 SlotIndex BlockStart, BlockEnd; 1183 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1184 1185 // The first block may be live-in, or it may have its own def. 1186 if (Start != BlockStart) { 1187 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1188 assert(VNI && "Missing def for complex mapped value"); 1189 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1190 // MBB has its own def. Is it also live-out? 1191 if (BlockEnd <= End) 1192 LIC.setLiveOutValue(&*MBB, VNI); 1193 1194 // Skip to the next block for live-in. 1195 ++MBB; 1196 BlockStart = BlockEnd; 1197 } 1198 1199 // Handle the live-in blocks covered by [Start;End). 1200 assert(Start <= BlockStart && "Expected live-in block"); 1201 while (BlockStart < End) { 1202 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1203 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1204 if (BlockStart == ParentVNI->def) { 1205 // This block has the def of a parent PHI, so it isn't live-in. 1206 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1207 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1208 assert(VNI && "Missing def for complex mapped parent PHI"); 1209 if (End >= BlockEnd) 1210 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1211 } else { 1212 // This block needs a live-in value. The last block covered may not 1213 // be live-out. 1214 if (End < BlockEnd) 1215 LIC.addLiveInBlock(LI, MDT[&*MBB], End); 1216 else { 1217 // Live-through, and we don't know the value. 1218 LIC.addLiveInBlock(LI, MDT[&*MBB]); 1219 LIC.setLiveOutValue(&*MBB, nullptr); 1220 } 1221 } 1222 BlockStart = BlockEnd; 1223 ++MBB; 1224 } 1225 Start = End; 1226 } while (Start != S.end); 1227 LLVM_DEBUG(dbgs() << '\n'); 1228 } 1229 1230 LICalc[0].calculateValues(); 1231 if (SpillMode) 1232 LICalc[1].calculateValues(); 1233 1234 return Skipped; 1235 } 1236 1237 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1238 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1239 if (Seg == nullptr) 1240 return true; 1241 if (Seg->end != Def.getDeadSlot()) 1242 return false; 1243 // This is a dead PHI. Remove it. 1244 LR.removeSegment(*Seg, true); 1245 return true; 1246 } 1247 1248 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, 1249 LiveRange &LR, LaneBitmask LM, 1250 ArrayRef<SlotIndex> Undefs) { 1251 for (MachineBasicBlock *P : B.predecessors()) { 1252 SlotIndex End = LIS.getMBBEndIdx(P); 1253 SlotIndex LastUse = End.getPrevSlot(); 1254 // The predecessor may not have a live-out value. That is OK, like an 1255 // undef PHI operand. 1256 LiveInterval &PLI = Edit->getParent(); 1257 // Need the cast because the inputs to ?: would otherwise be deemed 1258 // "incompatible": SubRange vs LiveInterval. 1259 LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI) 1260 : static_cast<LiveRange &>(PLI); 1261 if (PSR.liveAt(LastUse)) 1262 LIC.extend(LR, End, /*PhysReg=*/0, Undefs); 1263 } 1264 } 1265 1266 void SplitEditor::extendPHIKillRanges() { 1267 // Extend live ranges to be live-out for successor PHI values. 1268 1269 // Visit each PHI def slot in the parent live interval. If the def is dead, 1270 // remove it. Otherwise, extend the live interval to reach the end indexes 1271 // of all predecessor blocks. 1272 1273 LiveInterval &ParentLI = Edit->getParent(); 1274 for (const VNInfo *V : ParentLI.valnos) { 1275 if (V->isUnused() || !V->isPHIDef()) 1276 continue; 1277 1278 unsigned RegIdx = RegAssign.lookup(V->def); 1279 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1280 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1281 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1282 if (!removeDeadSegment(V->def, LI)) 1283 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1284 } 1285 1286 SmallVector<SlotIndex, 4> Undefs; 1287 LiveIntervalCalc SubLIC; 1288 1289 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1290 for (const VNInfo *V : PS.valnos) { 1291 if (V->isUnused() || !V->isPHIDef()) 1292 continue; 1293 unsigned RegIdx = RegAssign.lookup(V->def); 1294 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1295 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI); 1296 if (removeDeadSegment(V->def, S)) 1297 continue; 1298 1299 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1300 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1301 &LIS.getVNInfoAllocator()); 1302 Undefs.clear(); 1303 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1304 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); 1305 } 1306 } 1307 } 1308 1309 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1310 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1311 struct ExtPoint { 1312 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1313 : MO(O), RegIdx(R), Next(N) {} 1314 1315 MachineOperand MO; 1316 unsigned RegIdx; 1317 SlotIndex Next; 1318 }; 1319 1320 SmallVector<ExtPoint,4> ExtPoints; 1321 1322 for (MachineOperand &MO : 1323 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) { 1324 MachineInstr *MI = MO.getParent(); 1325 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1326 if (MI->isDebugValue()) { 1327 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1328 MO.setReg(0); 1329 continue; 1330 } 1331 1332 // <undef> operands don't really read the register, so it doesn't matter 1333 // which register we choose. When the use operand is tied to a def, we must 1334 // use the same register as the def, so just do that always. 1335 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1336 if (MO.isDef() || MO.isUndef()) 1337 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1338 1339 // Rewrite to the mapped register at Idx. 1340 unsigned RegIdx = RegAssign.lookup(Idx); 1341 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1342 MO.setReg(LI.reg()); 1343 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1344 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1345 1346 // Extend liveness to Idx if the instruction reads reg. 1347 if (!ExtendRanges || MO.isUndef()) 1348 continue; 1349 1350 // Skip instructions that don't read Reg. 1351 if (MO.isDef()) { 1352 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1353 continue; 1354 // We may want to extend a live range for a partial redef, or for a use 1355 // tied to an early clobber. 1356 Idx = Idx.getPrevSlot(); 1357 if (!Edit->getParent().liveAt(Idx)) 1358 continue; 1359 } else 1360 Idx = Idx.getRegSlot(true); 1361 1362 SlotIndex Next = Idx.getNextSlot(); 1363 if (LI.hasSubRanges()) { 1364 // We have to delay extending subranges until we have seen all operands 1365 // defining the register. This is because a <def,read-undef> operand 1366 // will create an "undef" point, and we cannot extend any subranges 1367 // until all of them have been accounted for. 1368 if (MO.isUse()) 1369 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1370 } else { 1371 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1372 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1373 } 1374 } 1375 1376 for (ExtPoint &EP : ExtPoints) { 1377 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1378 assert(LI.hasSubRanges()); 1379 1380 LiveIntervalCalc SubLIC; 1381 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1382 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1383 : MRI.getMaxLaneMaskForVReg(Reg); 1384 for (LiveInterval::SubRange &S : LI.subranges()) { 1385 if ((S.LaneMask & LM).none()) 1386 continue; 1387 // The problem here can be that the new register may have been created 1388 // for a partially defined original register. For example: 1389 // %0:subreg_hireg<def,read-undef> = ... 1390 // ... 1391 // %1 = COPY %0 1392 if (S.empty()) 1393 continue; 1394 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1395 &LIS.getVNInfoAllocator()); 1396 SmallVector<SlotIndex, 4> Undefs; 1397 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1398 SubLIC.extend(S, EP.Next, 0, Undefs); 1399 } 1400 } 1401 1402 for (Register R : *Edit) { 1403 LiveInterval &LI = LIS.getInterval(R); 1404 if (!LI.hasSubRanges()) 1405 continue; 1406 LI.clear(); 1407 LI.removeEmptySubRanges(); 1408 LIS.constructMainRangeFromSubranges(LI); 1409 } 1410 } 1411 1412 void SplitEditor::deleteRematVictims() { 1413 SmallVector<MachineInstr*, 8> Dead; 1414 for (const Register &R : *Edit) { 1415 LiveInterval *LI = &LIS.getInterval(R); 1416 for (const LiveRange::Segment &S : LI->segments) { 1417 // Dead defs end at the dead slot. 1418 if (S.end != S.valno->def.getDeadSlot()) 1419 continue; 1420 if (S.valno->isPHIDef()) 1421 continue; 1422 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1423 assert(MI && "Missing instruction for dead def"); 1424 MI->addRegisterDead(LI->reg(), &TRI); 1425 1426 if (!MI->allDefsAreDead()) 1427 continue; 1428 1429 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1430 Dead.push_back(MI); 1431 } 1432 } 1433 1434 if (Dead.empty()) 1435 return; 1436 1437 Edit->eliminateDeadDefs(Dead, None, &AA); 1438 } 1439 1440 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1441 // Fast-path for common case. 1442 if (!ParentVNI.isPHIDef()) { 1443 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1444 forceRecompute(I, ParentVNI); 1445 return; 1446 } 1447 1448 // Trace value through phis. 1449 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1450 SmallVector<const VNInfo *, 4> WorkList; 1451 Visited.insert(&ParentVNI); 1452 WorkList.push_back(&ParentVNI); 1453 1454 const LiveInterval &ParentLI = Edit->getParent(); 1455 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1456 do { 1457 const VNInfo &VNI = *WorkList.back(); 1458 WorkList.pop_back(); 1459 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1460 forceRecompute(I, VNI); 1461 if (!VNI.isPHIDef()) 1462 continue; 1463 1464 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1465 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1466 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1467 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1468 assert(PredVNI && "Value available in PhiVNI predecessor"); 1469 if (Visited.insert(PredVNI).second) 1470 WorkList.push_back(PredVNI); 1471 } 1472 } while(!WorkList.empty()); 1473 } 1474 1475 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1476 ++NumFinished; 1477 1478 // At this point, the live intervals in Edit contain VNInfos corresponding to 1479 // the inserted copies. 1480 1481 // Add the original defs from the parent interval. 1482 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1483 if (ParentVNI->isUnused()) 1484 continue; 1485 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1486 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1487 1488 // Force rematted values to be recomputed everywhere. 1489 // The new live ranges may be truncated. 1490 if (Edit->didRematerialize(ParentVNI)) 1491 forceRecomputeVNI(*ParentVNI); 1492 } 1493 1494 // Hoist back-copies to the complement interval when in spill mode. 1495 switch (SpillMode) { 1496 case SM_Partition: 1497 // Leave all back-copies as is. 1498 break; 1499 case SM_Size: 1500 case SM_Speed: 1501 // hoistCopies will behave differently between size and speed. 1502 hoistCopies(); 1503 } 1504 1505 // Transfer the simply mapped values, check if any are skipped. 1506 bool Skipped = transferValues(); 1507 1508 // Rewrite virtual registers, possibly extending ranges. 1509 rewriteAssigned(Skipped); 1510 1511 if (Skipped) 1512 extendPHIKillRanges(); 1513 else 1514 ++NumSimple; 1515 1516 // Delete defs that were rematted everywhere. 1517 if (Skipped) 1518 deleteRematVictims(); 1519 1520 // Get rid of unused values and set phi-kill flags. 1521 for (Register Reg : *Edit) { 1522 LiveInterval &LI = LIS.getInterval(Reg); 1523 LI.removeEmptySubRanges(); 1524 LI.RenumberValues(); 1525 } 1526 1527 // Provide a reverse mapping from original indices to Edit ranges. 1528 if (LRMap) { 1529 LRMap->clear(); 1530 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1531 LRMap->push_back(i); 1532 } 1533 1534 // Now check if any registers were separated into multiple components. 1535 ConnectedVNInfoEqClasses ConEQ(LIS); 1536 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1537 // Don't use iterators, they are invalidated by create() below. 1538 Register VReg = Edit->get(i); 1539 LiveInterval &LI = LIS.getInterval(VReg); 1540 SmallVector<LiveInterval*, 8> SplitLIs; 1541 LIS.splitSeparateComponents(LI, SplitLIs); 1542 Register Original = VRM.getOriginal(VReg); 1543 for (LiveInterval *SplitLI : SplitLIs) 1544 VRM.setIsSplitFromReg(SplitLI->reg(), Original); 1545 1546 // The new intervals all map back to i. 1547 if (LRMap) 1548 LRMap->resize(Edit->size(), i); 1549 } 1550 1551 // Calculate spill weight and allocation hints for new intervals. 1552 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); 1553 1554 assert(!LRMap || LRMap->size() == Edit->size()); 1555 } 1556 1557 //===----------------------------------------------------------------------===// 1558 // Single Block Splitting 1559 //===----------------------------------------------------------------------===// 1560 1561 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1562 bool SingleInstrs) const { 1563 // Always split for multiple instructions. 1564 if (!BI.isOneInstr()) 1565 return true; 1566 // Don't split for single instructions unless explicitly requested. 1567 if (!SingleInstrs) 1568 return false; 1569 // Splitting a live-through range always makes progress. 1570 if (BI.LiveIn && BI.LiveOut) 1571 return true; 1572 // No point in isolating a copy. It has no register class constraints. 1573 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1574 return false; 1575 // Finally, don't isolate an end point that was created by earlier splits. 1576 return isOriginalEndpoint(BI.FirstInstr); 1577 } 1578 1579 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1580 openIntv(); 1581 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB); 1582 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1583 LastSplitPoint)); 1584 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1585 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1586 } else { 1587 // The last use is after the last valid split point. 1588 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1589 useIntv(SegStart, SegStop); 1590 overlapIntv(SegStop, BI.LastInstr); 1591 } 1592 } 1593 1594 //===----------------------------------------------------------------------===// 1595 // Global Live Range Splitting Support 1596 //===----------------------------------------------------------------------===// 1597 1598 // These methods support a method of global live range splitting that uses a 1599 // global algorithm to decide intervals for CFG edges. They will insert split 1600 // points and color intervals in basic blocks while avoiding interference. 1601 // 1602 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1603 // are on the stack. 1604 1605 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1606 unsigned IntvIn, SlotIndex LeaveBefore, 1607 unsigned IntvOut, SlotIndex EnterAfter){ 1608 SlotIndex Start, Stop; 1609 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1610 1611 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1612 << ") intf " << LeaveBefore << '-' << EnterAfter 1613 << ", live-through " << IntvIn << " -> " << IntvOut); 1614 1615 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1616 1617 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1618 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1619 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1620 1621 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1622 1623 if (!IntvOut) { 1624 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1625 // 1626 // <<<<<<<<< Possible LeaveBefore interference. 1627 // |-----------| Live through. 1628 // -____________ Spill on entry. 1629 // 1630 selectIntv(IntvIn); 1631 SlotIndex Idx = leaveIntvAtTop(*MBB); 1632 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1633 (void)Idx; 1634 return; 1635 } 1636 1637 if (!IntvIn) { 1638 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1639 // 1640 // >>>>>>> Possible EnterAfter interference. 1641 // |-----------| Live through. 1642 // ___________-- Reload on exit. 1643 // 1644 selectIntv(IntvOut); 1645 SlotIndex Idx = enterIntvAtEnd(*MBB); 1646 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1647 (void)Idx; 1648 return; 1649 } 1650 1651 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1652 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1653 // 1654 // |-----------| Live through. 1655 // ------------- Straight through, same intv, no interference. 1656 // 1657 selectIntv(IntvOut); 1658 useIntv(Start, Stop); 1659 return; 1660 } 1661 1662 // We cannot legally insert splits after LSP. 1663 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1664 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1665 1666 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1667 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1668 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1669 // 1670 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1671 // |-----------| Live through. 1672 // ------======= Switch intervals between interference. 1673 // 1674 selectIntv(IntvOut); 1675 SlotIndex Idx; 1676 if (LeaveBefore && LeaveBefore < LSP) { 1677 Idx = enterIntvBefore(LeaveBefore); 1678 useIntv(Idx, Stop); 1679 } else { 1680 Idx = enterIntvAtEnd(*MBB); 1681 } 1682 selectIntv(IntvIn); 1683 useIntv(Start, Idx); 1684 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1685 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1686 return; 1687 } 1688 1689 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1690 // 1691 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1692 // |-----------| Live through. 1693 // ==---------== Switch intervals before/after interference. 1694 // 1695 assert(LeaveBefore <= EnterAfter && "Missed case"); 1696 1697 selectIntv(IntvOut); 1698 SlotIndex Idx = enterIntvAfter(EnterAfter); 1699 useIntv(Idx, Stop); 1700 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1701 1702 selectIntv(IntvIn); 1703 Idx = leaveIntvBefore(LeaveBefore); 1704 useIntv(Start, Idx); 1705 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1706 } 1707 1708 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1709 unsigned IntvIn, SlotIndex LeaveBefore) { 1710 SlotIndex Start, Stop; 1711 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1712 1713 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1714 << Stop << "), uses " << BI.FirstInstr << '-' 1715 << BI.LastInstr << ", reg-in " << IntvIn 1716 << ", leave before " << LeaveBefore 1717 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1718 1719 assert(IntvIn && "Must have register in"); 1720 assert(BI.LiveIn && "Must be live-in"); 1721 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1722 1723 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1724 LLVM_DEBUG(dbgs() << " before interference.\n"); 1725 // 1726 // <<< Interference after kill. 1727 // |---o---x | Killed in block. 1728 // ========= Use IntvIn everywhere. 1729 // 1730 selectIntv(IntvIn); 1731 useIntv(Start, BI.LastInstr); 1732 return; 1733 } 1734 1735 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1736 1737 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1738 // 1739 // <<< Possible interference after last use. 1740 // |---o---o---| Live-out on stack. 1741 // =========____ Leave IntvIn after last use. 1742 // 1743 // < Interference after last use. 1744 // |---o---o--o| Live-out on stack, late last use. 1745 // ============ Copy to stack after LSP, overlap IntvIn. 1746 // \_____ Stack interval is live-out. 1747 // 1748 if (BI.LastInstr < LSP) { 1749 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1750 selectIntv(IntvIn); 1751 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1752 useIntv(Start, Idx); 1753 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1754 } else { 1755 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1756 selectIntv(IntvIn); 1757 SlotIndex Idx = leaveIntvBefore(LSP); 1758 overlapIntv(Idx, BI.LastInstr); 1759 useIntv(Start, Idx); 1760 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1761 } 1762 return; 1763 } 1764 1765 // The interference is overlapping somewhere we wanted to use IntvIn. That 1766 // means we need to create a local interval that can be allocated a 1767 // different register. 1768 unsigned LocalIntv = openIntv(); 1769 (void)LocalIntv; 1770 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1771 1772 if (!BI.LiveOut || BI.LastInstr < LSP) { 1773 // 1774 // <<<<<<< Interference overlapping uses. 1775 // |---o---o---| Live-out on stack. 1776 // =====----____ Leave IntvIn before interference, then spill. 1777 // 1778 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1779 SlotIndex From = enterIntvBefore(LeaveBefore); 1780 useIntv(From, To); 1781 selectIntv(IntvIn); 1782 useIntv(Start, From); 1783 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1784 return; 1785 } 1786 1787 // <<<<<<< Interference overlapping uses. 1788 // |---o---o--o| Live-out on stack, late last use. 1789 // =====------- Copy to stack before LSP, overlap LocalIntv. 1790 // \_____ Stack interval is live-out. 1791 // 1792 SlotIndex To = leaveIntvBefore(LSP); 1793 overlapIntv(To, BI.LastInstr); 1794 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1795 useIntv(From, To); 1796 selectIntv(IntvIn); 1797 useIntv(Start, From); 1798 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1799 } 1800 1801 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1802 unsigned IntvOut, SlotIndex EnterAfter) { 1803 SlotIndex Start, Stop; 1804 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1805 1806 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1807 << Stop << "), uses " << BI.FirstInstr << '-' 1808 << BI.LastInstr << ", reg-out " << IntvOut 1809 << ", enter after " << EnterAfter 1810 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1811 1812 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1813 1814 assert(IntvOut && "Must have register out"); 1815 assert(BI.LiveOut && "Must be live-out"); 1816 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1817 1818 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1819 LLVM_DEBUG(dbgs() << " after interference.\n"); 1820 // 1821 // >>>> Interference before def. 1822 // | o---o---| Defined in block. 1823 // ========= Use IntvOut everywhere. 1824 // 1825 selectIntv(IntvOut); 1826 useIntv(BI.FirstInstr, Stop); 1827 return; 1828 } 1829 1830 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1831 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1832 // 1833 // >>>> Interference before def. 1834 // |---o---o---| Live-through, stack-in. 1835 // ____========= Enter IntvOut before first use. 1836 // 1837 selectIntv(IntvOut); 1838 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1839 useIntv(Idx, Stop); 1840 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1841 return; 1842 } 1843 1844 // The interference is overlapping somewhere we wanted to use IntvOut. That 1845 // means we need to create a local interval that can be allocated a 1846 // different register. 1847 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1848 // 1849 // >>>>>>> Interference overlapping uses. 1850 // |---o---o---| Live-through, stack-in. 1851 // ____---====== Create local interval for interference range. 1852 // 1853 selectIntv(IntvOut); 1854 SlotIndex Idx = enterIntvAfter(EnterAfter); 1855 useIntv(Idx, Stop); 1856 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1857 1858 openIntv(); 1859 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1860 useIntv(From, Idx); 1861 } 1862 1863 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { 1864 OS << "{" << printMBBReference(*MBB) << ", " 1865 << "uses " << FirstInstr << " to " << LastInstr << ", " 1866 << "1st def " << FirstDef << ", " 1867 << (LiveIn ? "live in" : "dead in") << ", " 1868 << (LiveOut ? "live out" : "dead out") << "}"; 1869 } 1870 1871 void SplitAnalysis::BlockInfo::dump() const { 1872 print(dbgs()); 1873 dbgs() << "\n"; 1874 } 1875