xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SplitKit.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc"
48 
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple,   "Number of splits that were simple");
51 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
52 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
53 
54 //===----------------------------------------------------------------------===//
55 //                     Last Insert Point Analysis
56 //===----------------------------------------------------------------------===//
57 
58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
59                                          unsigned BBNum)
60     : LIS(lis), LastInsertPoint(BBNum) {}
61 
62 SlotIndex
63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
64                                             const MachineBasicBlock &MBB) {
65   unsigned Num = MBB.getNumber();
66   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
67   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
68 
69   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
70   bool EHPadSuccessor = false;
71   for (const MachineBasicBlock *SMBB : MBB.successors()) {
72     if (SMBB->isEHPad()) {
73       ExceptionalSuccessors.push_back(SMBB);
74       EHPadSuccessor = true;
75     } else if (SMBB->isInlineAsmBrIndirectTarget())
76       ExceptionalSuccessors.push_back(SMBB);
77   }
78 
79   // Compute insert points on the first call. The pair is independent of the
80   // current live interval.
81   if (!LIP.first.isValid()) {
82     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
83     if (FirstTerm == MBB.end())
84       LIP.first = MBBEnd;
85     else
86       LIP.first = LIS.getInstructionIndex(*FirstTerm);
87 
88     // If there is a landing pad or inlineasm_br successor, also find the
89     // instruction. If there is no such instruction, we don't need to do
90     // anything special.  We assume there cannot be multiple instructions that
91     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
92     // assume that if there are any, they will be after any other call
93     // instructions in the block.
94     if (ExceptionalSuccessors.empty())
95       return LIP.first;
96     for (const MachineInstr &MI : llvm::reverse(MBB)) {
97       if ((EHPadSuccessor && MI.isCall()) ||
98           MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
99         LIP.second = LIS.getInstructionIndex(MI);
100         break;
101       }
102     }
103   }
104 
105   // If CurLI is live into a landing pad successor, move the last insert point
106   // back to the call that may throw.
107   if (!LIP.second)
108     return LIP.first;
109 
110   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
111         return LIS.isLiveInToMBB(CurLI, EHPad);
112       }))
113     return LIP.first;
114 
115   // Find the value leaving MBB.
116   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
117   if (!VNI)
118     return LIP.first;
119 
120   // The def of statepoint instruction is a gc relocation and it should be alive
121   // in landing pad. So we cannot split interval after statepoint instruction.
122   if (SlotIndex::isSameInstr(VNI->def, LIP.second))
123     if (auto *I = LIS.getInstructionFromIndex(LIP.second))
124       if (I->getOpcode() == TargetOpcode::STATEPOINT)
125         return LIP.second;
126 
127   // If the value leaving MBB was defined after the call in MBB, it can't
128   // really be live-in to the landing pad.  This can happen if the landing pad
129   // has a PHI, and this register is undef on the exceptional edge.
130   // <rdar://problem/10664933>
131   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
132     return LIP.first;
133 
134   // Value is properly live-in to the landing pad.
135   // Only allow inserts before the call.
136   return LIP.second;
137 }
138 
139 MachineBasicBlock::iterator
140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
141                                             MachineBasicBlock &MBB) {
142   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
143   if (LIP == LIS.getMBBEndIdx(&MBB))
144     return MBB.end();
145   return LIS.getInstructionFromIndex(LIP);
146 }
147 
148 //===----------------------------------------------------------------------===//
149 //                                 Split Analysis
150 //===----------------------------------------------------------------------===//
151 
152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
153                              const MachineLoopInfo &mli)
154     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
155       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
156 
157 void SplitAnalysis::clear() {
158   UseSlots.clear();
159   UseBlocks.clear();
160   ThroughBlocks.clear();
161   CurLI = nullptr;
162 }
163 
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166   assert(UseSlots.empty() && "Call clear first");
167 
168   // First get all the defs from the interval values. This provides the correct
169   // slots for early clobbers.
170   for (const VNInfo *VNI : CurLI->valnos)
171     if (!VNI->isPHIDef() && !VNI->isUnused())
172       UseSlots.push_back(VNI->def);
173 
174   // Get use slots form the use-def chain.
175   const MachineRegisterInfo &MRI = MF.getRegInfo();
176   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
177     if (!MO.isUndef())
178       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
179 
180   array_pod_sort(UseSlots.begin(), UseSlots.end());
181 
182   // Remove duplicates, keeping the smaller slot for each instruction.
183   // That is what we want for early clobbers.
184   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
185                              SlotIndex::isSameInstr),
186                  UseSlots.end());
187 
188   // Compute per-live block info.
189   calcLiveBlockInfo();
190 
191   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
192                     << UseBlocks.size() << " blocks, through "
193                     << NumThroughBlocks << " blocks.\n");
194 }
195 
196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
197 /// where CurLI is live.
198 void SplitAnalysis::calcLiveBlockInfo() {
199   ThroughBlocks.resize(MF.getNumBlockIDs());
200   NumThroughBlocks = NumGapBlocks = 0;
201   if (CurLI->empty())
202     return;
203 
204   LiveInterval::const_iterator LVI = CurLI->begin();
205   LiveInterval::const_iterator LVE = CurLI->end();
206 
207   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
208   UseI = UseSlots.begin();
209   UseE = UseSlots.end();
210 
211   // Loop over basic blocks where CurLI is live.
212   MachineFunction::iterator MFI =
213       LIS.getMBBFromIndex(LVI->start)->getIterator();
214   while (true) {
215     BlockInfo BI;
216     BI.MBB = &*MFI;
217     SlotIndex Start, Stop;
218     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
219 
220     // If the block contains no uses, the range must be live through. At one
221     // point, RegisterCoalescer could create dangling ranges that ended
222     // mid-block.
223     if (UseI == UseE || *UseI >= Stop) {
224       ++NumThroughBlocks;
225       ThroughBlocks.set(BI.MBB->getNumber());
226       // The range shouldn't end mid-block if there are no uses. This shouldn't
227       // happen.
228       assert(LVI->end >= Stop && "range ends mid block with no uses");
229     } else {
230       // This block has uses. Find the first and last uses in the block.
231       BI.FirstInstr = *UseI;
232       assert(BI.FirstInstr >= Start);
233       do ++UseI;
234       while (UseI != UseE && *UseI < Stop);
235       BI.LastInstr = UseI[-1];
236       assert(BI.LastInstr < Stop);
237 
238       // LVI is the first live segment overlapping MBB.
239       BI.LiveIn = LVI->start <= Start;
240 
241       // When not live in, the first use should be a def.
242       if (!BI.LiveIn) {
243         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
244         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
245         BI.FirstDef = BI.FirstInstr;
246       }
247 
248       // Look for gaps in the live range.
249       BI.LiveOut = true;
250       while (LVI->end < Stop) {
251         SlotIndex LastStop = LVI->end;
252         if (++LVI == LVE || LVI->start >= Stop) {
253           BI.LiveOut = false;
254           BI.LastInstr = LastStop;
255           break;
256         }
257 
258         if (LastStop < LVI->start) {
259           // There is a gap in the live range. Create duplicate entries for the
260           // live-in snippet and the live-out snippet.
261           ++NumGapBlocks;
262 
263           // Push the Live-in part.
264           BI.LiveOut = false;
265           UseBlocks.push_back(BI);
266           UseBlocks.back().LastInstr = LastStop;
267 
268           // Set up BI for the live-out part.
269           BI.LiveIn = false;
270           BI.LiveOut = true;
271           BI.FirstInstr = BI.FirstDef = LVI->start;
272         }
273 
274         // A Segment that starts in the middle of the block must be a def.
275         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
276         if (!BI.FirstDef)
277           BI.FirstDef = LVI->start;
278       }
279 
280       UseBlocks.push_back(BI);
281 
282       // LVI is now at LVE or LVI->end >= Stop.
283       if (LVI == LVE)
284         break;
285     }
286 
287     // Live segment ends exactly at Stop. Move to the next segment.
288     if (LVI->end == Stop && ++LVI == LVE)
289       break;
290 
291     // Pick the next basic block.
292     if (LVI->start < Stop)
293       ++MFI;
294     else
295       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
296   }
297 
298   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
299 }
300 
301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
302   if (cli->empty())
303     return 0;
304   LiveInterval *li = const_cast<LiveInterval*>(cli);
305   LiveInterval::iterator LVI = li->begin();
306   LiveInterval::iterator LVE = li->end();
307   unsigned Count = 0;
308 
309   // Loop over basic blocks where li is live.
310   MachineFunction::const_iterator MFI =
311       LIS.getMBBFromIndex(LVI->start)->getIterator();
312   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
313   while (true) {
314     ++Count;
315     LVI = li->advanceTo(LVI, Stop);
316     if (LVI == LVE)
317       return Count;
318     do {
319       ++MFI;
320       Stop = LIS.getMBBEndIdx(&*MFI);
321     } while (Stop <= LVI->start);
322   }
323 }
324 
325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
326   unsigned OrigReg = VRM.getOriginal(CurLI->reg());
327   const LiveInterval &Orig = LIS.getInterval(OrigReg);
328   assert(!Orig.empty() && "Splitting empty interval?");
329   LiveInterval::const_iterator I = Orig.find(Idx);
330 
331   // Range containing Idx should begin at Idx.
332   if (I != Orig.end() && I->start <= Idx)
333     return I->start == Idx;
334 
335   // Range does not contain Idx, previous must end at Idx.
336   return I != Orig.begin() && (--I)->end == Idx;
337 }
338 
339 void SplitAnalysis::analyze(const LiveInterval *li) {
340   clear();
341   CurLI = li;
342   analyzeUses();
343 }
344 
345 //===----------------------------------------------------------------------===//
346 //                               Split Editor
347 //===----------------------------------------------------------------------===//
348 
349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
350 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA,
351                          LiveIntervals &LIS, VirtRegMap &VRM,
352                          MachineDominatorTree &MDT,
353                          MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
354     : SA(SA), AA(AA), LIS(LIS), VRM(VRM),
355       MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT),
356       TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
357       TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
358       MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
359 
360 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
361   Edit = &LRE;
362   SpillMode = SM;
363   OpenIdx = 0;
364   RegAssign.clear();
365   Values.clear();
366 
367   // Reset the LiveIntervalCalc instances needed for this spill mode.
368   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
369                   &LIS.getVNInfoAllocator());
370   if (SpillMode)
371     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
372                     &LIS.getVNInfoAllocator());
373 
374   // We don't need an AliasAnalysis since we will only be performing
375   // cheap-as-a-copy remats anyway.
376   Edit->anyRematerializable(nullptr);
377 }
378 
379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
380 LLVM_DUMP_METHOD void SplitEditor::dump() const {
381   if (RegAssign.empty()) {
382     dbgs() << " empty\n";
383     return;
384   }
385 
386   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
387     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
388   dbgs() << '\n';
389 }
390 #endif
391 
392 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM,
393                                                              LiveInterval &LI) {
394   for (LiveInterval::SubRange &S : LI.subranges())
395     if (S.LaneMask == LM)
396       return S;
397   llvm_unreachable("SubRange for this mask not found");
398 }
399 
400 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
401                                                         LiveInterval &LI) {
402   for (LiveInterval::SubRange &S : LI.subranges())
403     if ((S.LaneMask & LM) == LM)
404       return S;
405   llvm_unreachable("SubRange for this mask not found");
406 }
407 
408 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
409   if (!LI.hasSubRanges()) {
410     LI.createDeadDef(VNI);
411     return;
412   }
413 
414   SlotIndex Def = VNI->def;
415   if (Original) {
416     // If we are transferring a def from the original interval, make sure
417     // to only update the subranges for which the original subranges had
418     // a def at this location.
419     for (LiveInterval::SubRange &S : LI.subranges()) {
420       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
421       VNInfo *PV = PS.getVNInfoAt(Def);
422       if (PV != nullptr && PV->def == Def)
423         S.createDeadDef(Def, LIS.getVNInfoAllocator());
424     }
425   } else {
426     // This is a new def: either from rematerialization, or from an inserted
427     // copy. Since rematerialization can regenerate a definition of a sub-
428     // register, we need to check which subranges need to be updated.
429     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
430     assert(DefMI != nullptr);
431     LaneBitmask LM;
432     for (const MachineOperand &DefOp : DefMI->defs()) {
433       Register R = DefOp.getReg();
434       if (R != LI.reg())
435         continue;
436       if (unsigned SR = DefOp.getSubReg())
437         LM |= TRI.getSubRegIndexLaneMask(SR);
438       else {
439         LM = MRI.getMaxLaneMaskForVReg(R);
440         break;
441       }
442     }
443     for (LiveInterval::SubRange &S : LI.subranges())
444       if ((S.LaneMask & LM).any())
445         S.createDeadDef(Def, LIS.getVNInfoAllocator());
446   }
447 }
448 
449 VNInfo *SplitEditor::defValue(unsigned RegIdx,
450                               const VNInfo *ParentVNI,
451                               SlotIndex Idx,
452                               bool Original) {
453   assert(ParentVNI && "Mapping  NULL value");
454   assert(Idx.isValid() && "Invalid SlotIndex");
455   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
456   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
457 
458   // Create a new value.
459   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
460 
461   bool Force = LI->hasSubRanges();
462   ValueForcePair FP(Force ? nullptr : VNI, Force);
463   // Use insert for lookup, so we can add missing values with a second lookup.
464   std::pair<ValueMap::iterator, bool> InsP =
465     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
466 
467   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
468   // forced. Keep it as a simple def without any liveness.
469   if (!Force && InsP.second)
470     return VNI;
471 
472   // If the previous value was a simple mapping, add liveness for it now.
473   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
474     addDeadDef(*LI, OldVNI, Original);
475 
476     // No longer a simple mapping.  Switch to a complex mapping. If the
477     // interval has subranges, make it a forced mapping.
478     InsP.first->second = ValueForcePair(nullptr, Force);
479   }
480 
481   // This is a complex mapping, add liveness for VNI
482   addDeadDef(*LI, VNI, Original);
483   return VNI;
484 }
485 
486 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
487   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
488   VNInfo *VNI = VFP.getPointer();
489 
490   // ParentVNI was either unmapped or already complex mapped. Either way, just
491   // set the force bit.
492   if (!VNI) {
493     VFP.setInt(true);
494     return;
495   }
496 
497   // This was previously a single mapping. Make sure the old def is represented
498   // by a trivial live range.
499   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
500 
501   // Mark as complex mapped, forced.
502   VFP = ValueForcePair(nullptr, true);
503 }
504 
505 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
506     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
507     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
508   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
509   bool FirstCopy = !Def.isValid();
510   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
511       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
512               | getInternalReadRegState(!FirstCopy), SubIdx)
513       .addReg(FromReg, 0, SubIdx);
514 
515   SlotIndexes &Indexes = *LIS.getSlotIndexes();
516   if (FirstCopy) {
517     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
518   } else {
519     CopyMI->bundleWithPred();
520   }
521   return Def;
522 }
523 
524 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
525     LaneBitmask LaneMask, MachineBasicBlock &MBB,
526     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
527   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
528   SlotIndexes &Indexes = *LIS.getSlotIndexes();
529   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
530     // The full vreg is copied.
531     MachineInstr *CopyMI =
532         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
533     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
534   }
535 
536   // Only a subset of lanes needs to be copied. The following is a simple
537   // heuristic to construct a sequence of COPYs. We could add a target
538   // specific callback if this turns out to be suboptimal.
539   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
540 
541   // First pass: Try to find a perfectly matching subregister index. If none
542   // exists find the one covering the most lanemask bits.
543   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
544   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
545 
546   SmallVector<unsigned, 8> SubIndexes;
547 
548   // Abort if we cannot possibly implement the COPY with the given indexes.
549   if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
550     report_fatal_error("Impossible to implement partial COPY");
551 
552   SlotIndex Def;
553   for (unsigned BestIdx : SubIndexes) {
554     Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
555                                 DestLI, Late, Def);
556   }
557 
558   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
559   DestLI.refineSubRanges(
560       Allocator, LaneMask,
561       [Def, &Allocator](LiveInterval::SubRange &SR) {
562         SR.createDeadDef(Def, Allocator);
563       },
564       Indexes, TRI);
565 
566   return Def;
567 }
568 
569 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
570                                    VNInfo *ParentVNI,
571                                    SlotIndex UseIdx,
572                                    MachineBasicBlock &MBB,
573                                    MachineBasicBlock::iterator I) {
574   SlotIndex Def;
575   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
576 
577   // We may be trying to avoid interference that ends at a deleted instruction,
578   // so always begin RegIdx 0 early and all others late.
579   bool Late = RegIdx != 0;
580 
581   // Attempt cheap-as-a-copy rematerialization.
582   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
583   LiveInterval &OrigLI = LIS.getInterval(Original);
584   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
585 
586   Register Reg = LI->reg();
587   bool DidRemat = false;
588   if (OrigVNI) {
589     LiveRangeEdit::Remat RM(ParentVNI);
590     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
591     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
592       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
593       ++NumRemats;
594       DidRemat = true;
595     }
596   }
597   if (!DidRemat) {
598     LaneBitmask LaneMask;
599     if (OrigLI.hasSubRanges()) {
600       LaneMask = LaneBitmask::getNone();
601       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
602         if (S.liveAt(UseIdx))
603           LaneMask |= S.LaneMask;
604       }
605     } else {
606       LaneMask = LaneBitmask::getAll();
607     }
608 
609     if (LaneMask.none()) {
610       const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
611       MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
612       SlotIndexes &Indexes = *LIS.getSlotIndexes();
613       Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
614     } else {
615       ++NumCopies;
616       Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
617     }
618   }
619 
620   // Define the value in Reg.
621   return defValue(RegIdx, ParentVNI, Def, false);
622 }
623 
624 /// Create a new virtual register and live interval.
625 unsigned SplitEditor::openIntv() {
626   // Create the complement as index 0.
627   if (Edit->empty())
628     Edit->createEmptyInterval();
629 
630   // Create the open interval.
631   OpenIdx = Edit->size();
632   Edit->createEmptyInterval();
633   return OpenIdx;
634 }
635 
636 void SplitEditor::selectIntv(unsigned Idx) {
637   assert(Idx != 0 && "Cannot select the complement interval");
638   assert(Idx < Edit->size() && "Can only select previously opened interval");
639   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
640   OpenIdx = Idx;
641 }
642 
643 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
644   assert(OpenIdx && "openIntv not called before enterIntvBefore");
645   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
646   Idx = Idx.getBaseIndex();
647   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
648   if (!ParentVNI) {
649     LLVM_DEBUG(dbgs() << ": not live\n");
650     return Idx;
651   }
652   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
653   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
654   assert(MI && "enterIntvBefore called with invalid index");
655 
656   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
657   return VNI->def;
658 }
659 
660 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
661   assert(OpenIdx && "openIntv not called before enterIntvAfter");
662   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
663   Idx = Idx.getBoundaryIndex();
664   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
665   if (!ParentVNI) {
666     LLVM_DEBUG(dbgs() << ": not live\n");
667     return Idx;
668   }
669   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
670   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
671   assert(MI && "enterIntvAfter called with invalid index");
672 
673   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
674                               std::next(MachineBasicBlock::iterator(MI)));
675   return VNI->def;
676 }
677 
678 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
679   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
680   SlotIndex End = LIS.getMBBEndIdx(&MBB);
681   SlotIndex Last = End.getPrevSlot();
682   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
683                     << Last);
684   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
685   if (!ParentVNI) {
686     LLVM_DEBUG(dbgs() << ": not live\n");
687     return End;
688   }
689   SlotIndex LSP = SA.getLastSplitPoint(&MBB);
690   if (LSP < Last) {
691     // It could be that the use after LSP is a def, and thus the ParentVNI
692     // just selected starts at that def.  For this case to exist, the def
693     // must be part of a tied def/use pair (as otherwise we'd have split
694     // distinct live ranges into individual live intervals), and thus we
695     // can insert the def into the VNI of the use and the tied def/use
696     // pair can live in the resulting interval.
697     Last = LSP;
698     ParentVNI = Edit->getParent().getVNInfoAt(Last);
699     if (!ParentVNI) {
700       // undef use --> undef tied def
701       LLVM_DEBUG(dbgs() << ": tied use not live\n");
702       return End;
703     }
704   }
705 
706   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
707   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
708                               SA.getLastSplitPointIter(&MBB));
709   RegAssign.insert(VNI->def, End, OpenIdx);
710   LLVM_DEBUG(dump());
711   return VNI->def;
712 }
713 
714 /// useIntv - indicate that all instructions in MBB should use OpenLI.
715 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
716   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
717 }
718 
719 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
720   assert(OpenIdx && "openIntv not called before useIntv");
721   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
722   RegAssign.insert(Start, End, OpenIdx);
723   LLVM_DEBUG(dump());
724 }
725 
726 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
727   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
728   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
729 
730   // The interval must be live beyond the instruction at Idx.
731   SlotIndex Boundary = Idx.getBoundaryIndex();
732   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
733   if (!ParentVNI) {
734     LLVM_DEBUG(dbgs() << ": not live\n");
735     return Boundary.getNextSlot();
736   }
737   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
738   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
739   assert(MI && "No instruction at index");
740 
741   // In spill mode, make live ranges as short as possible by inserting the copy
742   // before MI.  This is only possible if that instruction doesn't redefine the
743   // value.  The inserted COPY is not a kill, and we don't need to recompute
744   // the source live range.  The spiller also won't try to hoist this copy.
745   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
746       MI->readsVirtualRegister(Edit->getReg())) {
747     forceRecompute(0, *ParentVNI);
748     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
749     return Idx;
750   }
751 
752   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
753                               std::next(MachineBasicBlock::iterator(MI)));
754   return VNI->def;
755 }
756 
757 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
758   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
759   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
760 
761   // The interval must be live into the instruction at Idx.
762   Idx = Idx.getBaseIndex();
763   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
764   if (!ParentVNI) {
765     LLVM_DEBUG(dbgs() << ": not live\n");
766     return Idx.getNextSlot();
767   }
768   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
769 
770   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
771   assert(MI && "No instruction at index");
772   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
773   return VNI->def;
774 }
775 
776 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
777   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
778   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
779   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
780                     << Start);
781 
782   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
783   if (!ParentVNI) {
784     LLVM_DEBUG(dbgs() << ": not live\n");
785     return Start;
786   }
787 
788   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
789                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
790   RegAssign.insert(Start, VNI->def, OpenIdx);
791   LLVM_DEBUG(dump());
792   return VNI->def;
793 }
794 
795 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
796   return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
797     return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
798   });
799 }
800 
801 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
802   assert(OpenIdx && "openIntv not called before overlapIntv");
803   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
804   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
805          "Parent changes value in extended range");
806   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
807          "Range cannot span basic blocks");
808 
809   // The complement interval will be extended as needed by LICalc.extend().
810   if (ParentVNI)
811     forceRecompute(0, *ParentVNI);
812 
813   // If the last use is tied to a def, we can't mark it as live for the
814   // interval which includes only the use.  That would cause the tied pair
815   // to end up in two different intervals.
816   if (auto *MI = LIS.getInstructionFromIndex(End))
817     if (hasTiedUseOf(*MI, Edit->getReg())) {
818       LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
819       return;
820     }
821 
822   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
823   RegAssign.insert(Start, End, OpenIdx);
824   LLVM_DEBUG(dump());
825 }
826 
827 //===----------------------------------------------------------------------===//
828 //                                  Spill modes
829 //===----------------------------------------------------------------------===//
830 
831 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
832   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
833   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
834   RegAssignMap::iterator AssignI;
835   AssignI.setMap(RegAssign);
836 
837   for (const VNInfo *C : Copies) {
838     SlotIndex Def = C->def;
839     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
840     assert(MI && "No instruction for back-copy");
841 
842     MachineBasicBlock *MBB = MI->getParent();
843     MachineBasicBlock::iterator MBBI(MI);
844     bool AtBegin;
845     do AtBegin = MBBI == MBB->begin();
846     while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
847 
848     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
849     LIS.removeVRegDefAt(*LI, Def);
850     LIS.RemoveMachineInstrFromMaps(*MI);
851     MI->eraseFromParent();
852 
853     // Adjust RegAssign if a register assignment is killed at Def. We want to
854     // avoid calculating the live range of the source register if possible.
855     AssignI.find(Def.getPrevSlot());
856     if (!AssignI.valid() || AssignI.start() >= Def)
857       continue;
858     // If MI doesn't kill the assigned register, just leave it.
859     if (AssignI.stop() != Def)
860       continue;
861     unsigned RegIdx = AssignI.value();
862     // We could hoist back-copy right after another back-copy. As a result
863     // MMBI points to copy instruction which is actually dead now.
864     // We cannot set its stop to MBBI which will be the same as start and
865     // interval does not support that.
866     SlotIndex Kill =
867         AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
868     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
869         Kill <= AssignI.start()) {
870       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
871                         << '\n');
872       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
873     } else {
874       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
875       AssignI.setStop(Kill);
876     }
877   }
878 }
879 
880 MachineBasicBlock*
881 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
882                                   MachineBasicBlock *DefMBB) {
883   if (MBB == DefMBB)
884     return MBB;
885   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
886 
887   const MachineLoopInfo &Loops = SA.Loops;
888   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
889   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
890 
891   // Best candidate so far.
892   MachineBasicBlock *BestMBB = MBB;
893   unsigned BestDepth = std::numeric_limits<unsigned>::max();
894 
895   while (true) {
896     const MachineLoop *Loop = Loops.getLoopFor(MBB);
897 
898     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
899     // higher frequency by definition.
900     if (!Loop) {
901       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
902                         << " dominates " << printMBBReference(*MBB)
903                         << " at depth 0\n");
904       return MBB;
905     }
906 
907     // We'll never be able to exit the DefLoop.
908     if (Loop == DefLoop) {
909       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
910                         << " dominates " << printMBBReference(*MBB)
911                         << " in the same loop\n");
912       return MBB;
913     }
914 
915     // Least busy dominator seen so far.
916     unsigned Depth = Loop->getLoopDepth();
917     if (Depth < BestDepth) {
918       BestMBB = MBB;
919       BestDepth = Depth;
920       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
921                         << " dominates " << printMBBReference(*MBB)
922                         << " at depth " << Depth << '\n');
923     }
924 
925     // Leave loop by going to the immediate dominator of the loop header.
926     // This is a bigger stride than simply walking up the dominator tree.
927     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
928 
929     // Too far up the dominator tree?
930     if (!IDom || !MDT.dominates(DefDomNode, IDom))
931       return BestMBB;
932 
933     MBB = IDom->getBlock();
934   }
935 }
936 
937 void SplitEditor::computeRedundantBackCopies(
938     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
939   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
940   LiveInterval *Parent = &Edit->getParent();
941   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
942   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
943 
944   // Aggregate VNIs having the same value as ParentVNI.
945   for (VNInfo *VNI : LI->valnos) {
946     if (VNI->isUnused())
947       continue;
948     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
949     EqualVNs[ParentVNI->id].insert(VNI);
950   }
951 
952   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
953   // redundant VNIs to BackCopies.
954   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
955     VNInfo *ParentVNI = Parent->getValNumInfo(i);
956     if (!NotToHoistSet.count(ParentVNI->id))
957       continue;
958     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
959     SmallPtrSetIterator<VNInfo *> It2 = It1;
960     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
961       It2 = It1;
962       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
963         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
964           continue;
965 
966         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
967         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
968         if (MBB1 == MBB2) {
969           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
970         } else if (MDT.dominates(MBB1, MBB2)) {
971           DominatedVNIs.insert(*It2);
972         } else if (MDT.dominates(MBB2, MBB1)) {
973           DominatedVNIs.insert(*It1);
974         }
975       }
976     }
977     if (!DominatedVNIs.empty()) {
978       forceRecompute(0, *ParentVNI);
979       append_range(BackCopies, DominatedVNIs);
980       DominatedVNIs.clear();
981     }
982   }
983 }
984 
985 /// For SM_Size mode, find a common dominator for all the back-copies for
986 /// the same ParentVNI and hoist the backcopies to the dominator BB.
987 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
988 /// to do the hoisting, simply remove the dominated backcopies for the same
989 /// ParentVNI.
990 void SplitEditor::hoistCopies() {
991   // Get the complement interval, always RegIdx 0.
992   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
993   LiveInterval *Parent = &Edit->getParent();
994 
995   // Track the nearest common dominator for all back-copies for each ParentVNI,
996   // indexed by ParentVNI->id.
997   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
998   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
999   // The total cost of all the back-copies for each ParentVNI.
1000   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1001   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1002   // for Speed.
1003   DenseSet<unsigned> NotToHoistSet;
1004 
1005   // Find the nearest common dominator for parent values with multiple
1006   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1007   for (VNInfo *VNI : LI->valnos) {
1008     if (VNI->isUnused())
1009       continue;
1010     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1011     assert(ParentVNI && "Parent not live at complement def");
1012 
1013     // Don't hoist remats.  The complement is probably going to disappear
1014     // completely anyway.
1015     if (Edit->didRematerialize(ParentVNI))
1016       continue;
1017 
1018     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1019 
1020     DomPair &Dom = NearestDom[ParentVNI->id];
1021 
1022     // Keep directly defined parent values.  This is either a PHI or an
1023     // instruction in the complement range.  All other copies of ParentVNI
1024     // should be eliminated.
1025     if (VNI->def == ParentVNI->def) {
1026       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1027       Dom = DomPair(ValMBB, VNI->def);
1028       continue;
1029     }
1030     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1031     // single back-copy.
1032     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1033       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1034       continue;
1035     }
1036 
1037     if (!Dom.first) {
1038       // First time we see ParentVNI.  VNI dominates itself.
1039       Dom = DomPair(ValMBB, VNI->def);
1040     } else if (Dom.first == ValMBB) {
1041       // Two defs in the same block.  Pick the earlier def.
1042       if (!Dom.second.isValid() || VNI->def < Dom.second)
1043         Dom.second = VNI->def;
1044     } else {
1045       // Different basic blocks. Check if one dominates.
1046       MachineBasicBlock *Near =
1047         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1048       if (Near == ValMBB)
1049         // Def ValMBB dominates.
1050         Dom = DomPair(ValMBB, VNI->def);
1051       else if (Near != Dom.first)
1052         // None dominate. Hoist to common dominator, need new def.
1053         Dom = DomPair(Near, SlotIndex());
1054       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1055     }
1056 
1057     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1058                       << VNI->def << " for parent " << ParentVNI->id << '@'
1059                       << ParentVNI->def << " hoist to "
1060                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1061                       << '\n');
1062   }
1063 
1064   // Insert the hoisted copies.
1065   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1066     DomPair &Dom = NearestDom[i];
1067     if (!Dom.first || Dom.second.isValid())
1068       continue;
1069     // This value needs a hoisted copy inserted at the end of Dom.first.
1070     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1071     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1072     // Get a less loopy dominator than Dom.first.
1073     Dom.first = findShallowDominator(Dom.first, DefMBB);
1074     if (SpillMode == SM_Speed &&
1075         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1076       NotToHoistSet.insert(ParentVNI->id);
1077       continue;
1078     }
1079     SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1080     if (LSP <= ParentVNI->def) {
1081       NotToHoistSet.insert(ParentVNI->id);
1082       continue;
1083     }
1084     Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1085                                SA.getLastSplitPointIter(Dom.first))->def;
1086   }
1087 
1088   // Remove redundant back-copies that are now known to be dominated by another
1089   // def with the same value.
1090   SmallVector<VNInfo*, 8> BackCopies;
1091   for (VNInfo *VNI : LI->valnos) {
1092     if (VNI->isUnused())
1093       continue;
1094     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1095     const DomPair &Dom = NearestDom[ParentVNI->id];
1096     if (!Dom.first || Dom.second == VNI->def ||
1097         NotToHoistSet.count(ParentVNI->id))
1098       continue;
1099     BackCopies.push_back(VNI);
1100     forceRecompute(0, *ParentVNI);
1101   }
1102 
1103   // If it is not beneficial to hoist all the BackCopies, simply remove
1104   // redundant BackCopies in speed mode.
1105   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1106     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1107 
1108   removeBackCopies(BackCopies);
1109 }
1110 
1111 /// transferValues - Transfer all possible values to the new live ranges.
1112 /// Values that were rematerialized are left alone, they need LICalc.extend().
1113 bool SplitEditor::transferValues() {
1114   bool Skipped = false;
1115   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1116   for (const LiveRange::Segment &S : Edit->getParent()) {
1117     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1118     VNInfo *ParentVNI = S.valno;
1119     // RegAssign has holes where RegIdx 0 should be used.
1120     SlotIndex Start = S.start;
1121     AssignI.advanceTo(Start);
1122     do {
1123       unsigned RegIdx;
1124       SlotIndex End = S.end;
1125       if (!AssignI.valid()) {
1126         RegIdx = 0;
1127       } else if (AssignI.start() <= Start) {
1128         RegIdx = AssignI.value();
1129         if (AssignI.stop() < End) {
1130           End = AssignI.stop();
1131           ++AssignI;
1132         }
1133       } else {
1134         RegIdx = 0;
1135         End = std::min(End, AssignI.start());
1136       }
1137 
1138       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1139       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1140                         << printReg(Edit->get(RegIdx)) << ')');
1141       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1142 
1143       // Check for a simply defined value that can be blitted directly.
1144       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1145       if (VNInfo *VNI = VFP.getPointer()) {
1146         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1147         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1148         Start = End;
1149         continue;
1150       }
1151 
1152       // Skip values with forced recomputation.
1153       if (VFP.getInt()) {
1154         LLVM_DEBUG(dbgs() << "(recalc)");
1155         Skipped = true;
1156         Start = End;
1157         continue;
1158       }
1159 
1160       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1161 
1162       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1163       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1164       // LiveInBlocks.
1165       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1166       SlotIndex BlockStart, BlockEnd;
1167       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1168 
1169       // The first block may be live-in, or it may have its own def.
1170       if (Start != BlockStart) {
1171         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1172         assert(VNI && "Missing def for complex mapped value");
1173         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1174         // MBB has its own def. Is it also live-out?
1175         if (BlockEnd <= End)
1176           LIC.setLiveOutValue(&*MBB, VNI);
1177 
1178         // Skip to the next block for live-in.
1179         ++MBB;
1180         BlockStart = BlockEnd;
1181       }
1182 
1183       // Handle the live-in blocks covered by [Start;End).
1184       assert(Start <= BlockStart && "Expected live-in block");
1185       while (BlockStart < End) {
1186         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1187         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1188         if (BlockStart == ParentVNI->def) {
1189           // This block has the def of a parent PHI, so it isn't live-in.
1190           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1191           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1192           assert(VNI && "Missing def for complex mapped parent PHI");
1193           if (End >= BlockEnd)
1194             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1195         } else {
1196           // This block needs a live-in value.  The last block covered may not
1197           // be live-out.
1198           if (End < BlockEnd)
1199             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1200           else {
1201             // Live-through, and we don't know the value.
1202             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1203             LIC.setLiveOutValue(&*MBB, nullptr);
1204           }
1205         }
1206         BlockStart = BlockEnd;
1207         ++MBB;
1208       }
1209       Start = End;
1210     } while (Start != S.end);
1211     LLVM_DEBUG(dbgs() << '\n');
1212   }
1213 
1214   LICalc[0].calculateValues();
1215   if (SpillMode)
1216     LICalc[1].calculateValues();
1217 
1218   return Skipped;
1219 }
1220 
1221 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1222   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1223   if (Seg == nullptr)
1224     return true;
1225   if (Seg->end != Def.getDeadSlot())
1226     return false;
1227   // This is a dead PHI. Remove it.
1228   LR.removeSegment(*Seg, true);
1229   return true;
1230 }
1231 
1232 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1233                                  LiveRange &LR, LaneBitmask LM,
1234                                  ArrayRef<SlotIndex> Undefs) {
1235   for (MachineBasicBlock *P : B.predecessors()) {
1236     SlotIndex End = LIS.getMBBEndIdx(P);
1237     SlotIndex LastUse = End.getPrevSlot();
1238     // The predecessor may not have a live-out value. That is OK, like an
1239     // undef PHI operand.
1240     LiveInterval &PLI = Edit->getParent();
1241     // Need the cast because the inputs to ?: would otherwise be deemed
1242     // "incompatible": SubRange vs LiveInterval.
1243     LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1244                                : static_cast<LiveRange &>(PLI);
1245     if (PSR.liveAt(LastUse))
1246       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1247   }
1248 }
1249 
1250 void SplitEditor::extendPHIKillRanges() {
1251   // Extend live ranges to be live-out for successor PHI values.
1252 
1253   // Visit each PHI def slot in the parent live interval. If the def is dead,
1254   // remove it. Otherwise, extend the live interval to reach the end indexes
1255   // of all predecessor blocks.
1256 
1257   LiveInterval &ParentLI = Edit->getParent();
1258   for (const VNInfo *V : ParentLI.valnos) {
1259     if (V->isUnused() || !V->isPHIDef())
1260       continue;
1261 
1262     unsigned RegIdx = RegAssign.lookup(V->def);
1263     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1264     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1265     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1266     if (!removeDeadSegment(V->def, LI))
1267       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1268   }
1269 
1270   SmallVector<SlotIndex, 4> Undefs;
1271   LiveIntervalCalc SubLIC;
1272 
1273   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1274     for (const VNInfo *V : PS.valnos) {
1275       if (V->isUnused() || !V->isPHIDef())
1276         continue;
1277       unsigned RegIdx = RegAssign.lookup(V->def);
1278       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1279       LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1280       if (removeDeadSegment(V->def, S))
1281         continue;
1282 
1283       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1284       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1285                    &LIS.getVNInfoAllocator());
1286       Undefs.clear();
1287       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1288       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1289     }
1290   }
1291 }
1292 
1293 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1294 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1295   struct ExtPoint {
1296     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1297       : MO(O), RegIdx(R), Next(N) {}
1298 
1299     MachineOperand MO;
1300     unsigned RegIdx;
1301     SlotIndex Next;
1302   };
1303 
1304   SmallVector<ExtPoint,4> ExtPoints;
1305 
1306   for (MachineOperand &MO :
1307        llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1308     MachineInstr *MI = MO.getParent();
1309     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1310     if (MI->isDebugValue()) {
1311       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1312       MO.setReg(0);
1313       continue;
1314     }
1315 
1316     // <undef> operands don't really read the register, so it doesn't matter
1317     // which register we choose.  When the use operand is tied to a def, we must
1318     // use the same register as the def, so just do that always.
1319     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1320     if (MO.isDef() || MO.isUndef())
1321       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1322 
1323     // Rewrite to the mapped register at Idx.
1324     unsigned RegIdx = RegAssign.lookup(Idx);
1325     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1326     MO.setReg(LI.reg());
1327     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1328                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1329 
1330     // Extend liveness to Idx if the instruction reads reg.
1331     if (!ExtendRanges || MO.isUndef())
1332       continue;
1333 
1334     // Skip instructions that don't read Reg.
1335     if (MO.isDef()) {
1336       if (!MO.getSubReg() && !MO.isEarlyClobber())
1337         continue;
1338       // We may want to extend a live range for a partial redef, or for a use
1339       // tied to an early clobber.
1340       Idx = Idx.getPrevSlot();
1341       if (!Edit->getParent().liveAt(Idx))
1342         continue;
1343     } else
1344       Idx = Idx.getRegSlot(true);
1345 
1346     SlotIndex Next = Idx.getNextSlot();
1347     if (LI.hasSubRanges()) {
1348       // We have to delay extending subranges until we have seen all operands
1349       // defining the register. This is because a <def,read-undef> operand
1350       // will create an "undef" point, and we cannot extend any subranges
1351       // until all of them have been accounted for.
1352       if (MO.isUse())
1353         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1354     } else {
1355       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1356       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1357     }
1358   }
1359 
1360   for (ExtPoint &EP : ExtPoints) {
1361     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1362     assert(LI.hasSubRanges());
1363 
1364     LiveIntervalCalc SubLIC;
1365     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1366     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1367                               : MRI.getMaxLaneMaskForVReg(Reg);
1368     for (LiveInterval::SubRange &S : LI.subranges()) {
1369       if ((S.LaneMask & LM).none())
1370         continue;
1371       // The problem here can be that the new register may have been created
1372       // for a partially defined original register. For example:
1373       //   %0:subreg_hireg<def,read-undef> = ...
1374       //   ...
1375       //   %1 = COPY %0
1376       if (S.empty())
1377         continue;
1378       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1379                    &LIS.getVNInfoAllocator());
1380       SmallVector<SlotIndex, 4> Undefs;
1381       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1382       SubLIC.extend(S, EP.Next, 0, Undefs);
1383     }
1384   }
1385 
1386   for (Register R : *Edit) {
1387     LiveInterval &LI = LIS.getInterval(R);
1388     if (!LI.hasSubRanges())
1389       continue;
1390     LI.clear();
1391     LI.removeEmptySubRanges();
1392     LIS.constructMainRangeFromSubranges(LI);
1393   }
1394 }
1395 
1396 void SplitEditor::deleteRematVictims() {
1397   SmallVector<MachineInstr*, 8> Dead;
1398   for (const Register &R : *Edit) {
1399     LiveInterval *LI = &LIS.getInterval(R);
1400     for (const LiveRange::Segment &S : LI->segments) {
1401       // Dead defs end at the dead slot.
1402       if (S.end != S.valno->def.getDeadSlot())
1403         continue;
1404       if (S.valno->isPHIDef())
1405         continue;
1406       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1407       assert(MI && "Missing instruction for dead def");
1408       MI->addRegisterDead(LI->reg(), &TRI);
1409 
1410       if (!MI->allDefsAreDead())
1411         continue;
1412 
1413       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1414       Dead.push_back(MI);
1415     }
1416   }
1417 
1418   if (Dead.empty())
1419     return;
1420 
1421   Edit->eliminateDeadDefs(Dead, None, &AA);
1422 }
1423 
1424 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1425   // Fast-path for common case.
1426   if (!ParentVNI.isPHIDef()) {
1427     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1428       forceRecompute(I, ParentVNI);
1429     return;
1430   }
1431 
1432   // Trace value through phis.
1433   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1434   SmallVector<const VNInfo *, 4> WorkList;
1435   Visited.insert(&ParentVNI);
1436   WorkList.push_back(&ParentVNI);
1437 
1438   const LiveInterval &ParentLI = Edit->getParent();
1439   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1440   do {
1441     const VNInfo &VNI = *WorkList.back();
1442     WorkList.pop_back();
1443     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1444       forceRecompute(I, VNI);
1445     if (!VNI.isPHIDef())
1446       continue;
1447 
1448     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1449     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1450       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1451       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1452       assert(PredVNI && "Value available in PhiVNI predecessor");
1453       if (Visited.insert(PredVNI).second)
1454         WorkList.push_back(PredVNI);
1455     }
1456   } while(!WorkList.empty());
1457 }
1458 
1459 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1460   ++NumFinished;
1461 
1462   // At this point, the live intervals in Edit contain VNInfos corresponding to
1463   // the inserted copies.
1464 
1465   // Add the original defs from the parent interval.
1466   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1467     if (ParentVNI->isUnused())
1468       continue;
1469     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1470     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1471 
1472     // Force rematted values to be recomputed everywhere.
1473     // The new live ranges may be truncated.
1474     if (Edit->didRematerialize(ParentVNI))
1475       forceRecomputeVNI(*ParentVNI);
1476   }
1477 
1478   // Hoist back-copies to the complement interval when in spill mode.
1479   switch (SpillMode) {
1480   case SM_Partition:
1481     // Leave all back-copies as is.
1482     break;
1483   case SM_Size:
1484   case SM_Speed:
1485     // hoistCopies will behave differently between size and speed.
1486     hoistCopies();
1487   }
1488 
1489   // Transfer the simply mapped values, check if any are skipped.
1490   bool Skipped = transferValues();
1491 
1492   // Rewrite virtual registers, possibly extending ranges.
1493   rewriteAssigned(Skipped);
1494 
1495   if (Skipped)
1496     extendPHIKillRanges();
1497   else
1498     ++NumSimple;
1499 
1500   // Delete defs that were rematted everywhere.
1501   if (Skipped)
1502     deleteRematVictims();
1503 
1504   // Get rid of unused values and set phi-kill flags.
1505   for (Register Reg : *Edit) {
1506     LiveInterval &LI = LIS.getInterval(Reg);
1507     LI.removeEmptySubRanges();
1508     LI.RenumberValues();
1509   }
1510 
1511   // Provide a reverse mapping from original indices to Edit ranges.
1512   if (LRMap) {
1513     LRMap->clear();
1514     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1515       LRMap->push_back(i);
1516   }
1517 
1518   // Now check if any registers were separated into multiple components.
1519   ConnectedVNInfoEqClasses ConEQ(LIS);
1520   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1521     // Don't use iterators, they are invalidated by create() below.
1522     Register VReg = Edit->get(i);
1523     LiveInterval &LI = LIS.getInterval(VReg);
1524     SmallVector<LiveInterval*, 8> SplitLIs;
1525     LIS.splitSeparateComponents(LI, SplitLIs);
1526     Register Original = VRM.getOriginal(VReg);
1527     for (LiveInterval *SplitLI : SplitLIs)
1528       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1529 
1530     // The new intervals all map back to i.
1531     if (LRMap)
1532       LRMap->resize(Edit->size(), i);
1533   }
1534 
1535   // Calculate spill weight and allocation hints for new intervals.
1536   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1537 
1538   assert(!LRMap || LRMap->size() == Edit->size());
1539 }
1540 
1541 //===----------------------------------------------------------------------===//
1542 //                            Single Block Splitting
1543 //===----------------------------------------------------------------------===//
1544 
1545 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1546                                            bool SingleInstrs) const {
1547   // Always split for multiple instructions.
1548   if (!BI.isOneInstr())
1549     return true;
1550   // Don't split for single instructions unless explicitly requested.
1551   if (!SingleInstrs)
1552     return false;
1553   // Splitting a live-through range always makes progress.
1554   if (BI.LiveIn && BI.LiveOut)
1555     return true;
1556   // No point in isolating a copy. It has no register class constraints.
1557   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1558     return false;
1559   // Finally, don't isolate an end point that was created by earlier splits.
1560   return isOriginalEndpoint(BI.FirstInstr);
1561 }
1562 
1563 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1564   openIntv();
1565   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1566   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1567     LastSplitPoint));
1568   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1569     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1570   } else {
1571       // The last use is after the last valid split point.
1572     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1573     useIntv(SegStart, SegStop);
1574     overlapIntv(SegStop, BI.LastInstr);
1575   }
1576 }
1577 
1578 //===----------------------------------------------------------------------===//
1579 //                    Global Live Range Splitting Support
1580 //===----------------------------------------------------------------------===//
1581 
1582 // These methods support a method of global live range splitting that uses a
1583 // global algorithm to decide intervals for CFG edges. They will insert split
1584 // points and color intervals in basic blocks while avoiding interference.
1585 //
1586 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1587 // are on the stack.
1588 
1589 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1590                                         unsigned IntvIn, SlotIndex LeaveBefore,
1591                                         unsigned IntvOut, SlotIndex EnterAfter){
1592   SlotIndex Start, Stop;
1593   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1594 
1595   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1596                     << ") intf " << LeaveBefore << '-' << EnterAfter
1597                     << ", live-through " << IntvIn << " -> " << IntvOut);
1598 
1599   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1600 
1601   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1602   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1603   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1604 
1605   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1606 
1607   if (!IntvOut) {
1608     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1609     //
1610     //        <<<<<<<<<    Possible LeaveBefore interference.
1611     //    |-----------|    Live through.
1612     //    -____________    Spill on entry.
1613     //
1614     selectIntv(IntvIn);
1615     SlotIndex Idx = leaveIntvAtTop(*MBB);
1616     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1617     (void)Idx;
1618     return;
1619   }
1620 
1621   if (!IntvIn) {
1622     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1623     //
1624     //    >>>>>>>          Possible EnterAfter interference.
1625     //    |-----------|    Live through.
1626     //    ___________--    Reload on exit.
1627     //
1628     selectIntv(IntvOut);
1629     SlotIndex Idx = enterIntvAtEnd(*MBB);
1630     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1631     (void)Idx;
1632     return;
1633   }
1634 
1635   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1636     LLVM_DEBUG(dbgs() << ", straight through.\n");
1637     //
1638     //    |-----------|    Live through.
1639     //    -------------    Straight through, same intv, no interference.
1640     //
1641     selectIntv(IntvOut);
1642     useIntv(Start, Stop);
1643     return;
1644   }
1645 
1646   // We cannot legally insert splits after LSP.
1647   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1648   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1649 
1650   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1651                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1652     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1653     //
1654     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1655     //    |-----------|    Live through.
1656     //    ------=======    Switch intervals between interference.
1657     //
1658     selectIntv(IntvOut);
1659     SlotIndex Idx;
1660     if (LeaveBefore && LeaveBefore < LSP) {
1661       Idx = enterIntvBefore(LeaveBefore);
1662       useIntv(Idx, Stop);
1663     } else {
1664       Idx = enterIntvAtEnd(*MBB);
1665     }
1666     selectIntv(IntvIn);
1667     useIntv(Start, Idx);
1668     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1669     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1670     return;
1671   }
1672 
1673   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1674   //
1675   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1676   //    |-----------|    Live through.
1677   //    ==---------==    Switch intervals before/after interference.
1678   //
1679   assert(LeaveBefore <= EnterAfter && "Missed case");
1680 
1681   selectIntv(IntvOut);
1682   SlotIndex Idx = enterIntvAfter(EnterAfter);
1683   useIntv(Idx, Stop);
1684   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1685 
1686   selectIntv(IntvIn);
1687   Idx = leaveIntvBefore(LeaveBefore);
1688   useIntv(Start, Idx);
1689   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1690 }
1691 
1692 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1693                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1694   SlotIndex Start, Stop;
1695   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1696 
1697   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1698                     << Stop << "), uses " << BI.FirstInstr << '-'
1699                     << BI.LastInstr << ", reg-in " << IntvIn
1700                     << ", leave before " << LeaveBefore
1701                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1702 
1703   assert(IntvIn && "Must have register in");
1704   assert(BI.LiveIn && "Must be live-in");
1705   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1706 
1707   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1708     LLVM_DEBUG(dbgs() << " before interference.\n");
1709     //
1710     //               <<<    Interference after kill.
1711     //     |---o---x   |    Killed in block.
1712     //     =========        Use IntvIn everywhere.
1713     //
1714     selectIntv(IntvIn);
1715     useIntv(Start, BI.LastInstr);
1716     return;
1717   }
1718 
1719   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1720 
1721   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1722     //
1723     //               <<<    Possible interference after last use.
1724     //     |---o---o---|    Live-out on stack.
1725     //     =========____    Leave IntvIn after last use.
1726     //
1727     //                 <    Interference after last use.
1728     //     |---o---o--o|    Live-out on stack, late last use.
1729     //     ============     Copy to stack after LSP, overlap IntvIn.
1730     //            \_____    Stack interval is live-out.
1731     //
1732     if (BI.LastInstr < LSP) {
1733       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1734       selectIntv(IntvIn);
1735       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1736       useIntv(Start, Idx);
1737       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1738     } else {
1739       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1740       selectIntv(IntvIn);
1741       SlotIndex Idx = leaveIntvBefore(LSP);
1742       overlapIntv(Idx, BI.LastInstr);
1743       useIntv(Start, Idx);
1744       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1745     }
1746     return;
1747   }
1748 
1749   // The interference is overlapping somewhere we wanted to use IntvIn. That
1750   // means we need to create a local interval that can be allocated a
1751   // different register.
1752   unsigned LocalIntv = openIntv();
1753   (void)LocalIntv;
1754   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1755 
1756   if (!BI.LiveOut || BI.LastInstr < LSP) {
1757     //
1758     //           <<<<<<<    Interference overlapping uses.
1759     //     |---o---o---|    Live-out on stack.
1760     //     =====----____    Leave IntvIn before interference, then spill.
1761     //
1762     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1763     SlotIndex From = enterIntvBefore(LeaveBefore);
1764     useIntv(From, To);
1765     selectIntv(IntvIn);
1766     useIntv(Start, From);
1767     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1768     return;
1769   }
1770 
1771   //           <<<<<<<    Interference overlapping uses.
1772   //     |---o---o--o|    Live-out on stack, late last use.
1773   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1774   //            \_____    Stack interval is live-out.
1775   //
1776   SlotIndex To = leaveIntvBefore(LSP);
1777   overlapIntv(To, BI.LastInstr);
1778   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1779   useIntv(From, To);
1780   selectIntv(IntvIn);
1781   useIntv(Start, From);
1782   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1783 }
1784 
1785 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1786                                    unsigned IntvOut, SlotIndex EnterAfter) {
1787   SlotIndex Start, Stop;
1788   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1789 
1790   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1791                     << Stop << "), uses " << BI.FirstInstr << '-'
1792                     << BI.LastInstr << ", reg-out " << IntvOut
1793                     << ", enter after " << EnterAfter
1794                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1795 
1796   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1797 
1798   assert(IntvOut && "Must have register out");
1799   assert(BI.LiveOut && "Must be live-out");
1800   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1801 
1802   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1803     LLVM_DEBUG(dbgs() << " after interference.\n");
1804     //
1805     //    >>>>             Interference before def.
1806     //    |   o---o---|    Defined in block.
1807     //        =========    Use IntvOut everywhere.
1808     //
1809     selectIntv(IntvOut);
1810     useIntv(BI.FirstInstr, Stop);
1811     return;
1812   }
1813 
1814   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1815     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1816     //
1817     //    >>>>             Interference before def.
1818     //    |---o---o---|    Live-through, stack-in.
1819     //    ____=========    Enter IntvOut before first use.
1820     //
1821     selectIntv(IntvOut);
1822     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1823     useIntv(Idx, Stop);
1824     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1825     return;
1826   }
1827 
1828   // The interference is overlapping somewhere we wanted to use IntvOut. That
1829   // means we need to create a local interval that can be allocated a
1830   // different register.
1831   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1832   //
1833   //    >>>>>>>          Interference overlapping uses.
1834   //    |---o---o---|    Live-through, stack-in.
1835   //    ____---======    Create local interval for interference range.
1836   //
1837   selectIntv(IntvOut);
1838   SlotIndex Idx = enterIntvAfter(EnterAfter);
1839   useIntv(Idx, Stop);
1840   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1841 
1842   openIntv();
1843   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1844   useIntv(From, Idx);
1845 }
1846 
1847 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1848   OS << "{" << printMBBReference(*MBB) << ", "
1849      << "uses " << FirstInstr << " to " << LastInstr << ", "
1850      << "1st def " << FirstDef << ", "
1851      << (LiveIn ? "live in" : "dead in") << ", "
1852      << (LiveOut ? "live out" : "dead out") << "}";
1853 }
1854 
1855 void SplitAnalysis::BlockInfo::dump() const {
1856   print(dbgs());
1857   dbgs() << "\n";
1858 }
1859