1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/CodeGen/LiveRangeEdit.h" 20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/VirtRegMap.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/DebugLoc.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/BlockFrequency.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <iterator> 42 #include <limits> 43 #include <tuple> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc" 48 49 STATISTIC(NumFinished, "Number of splits finished"); 50 STATISTIC(NumSimple, "Number of splits that were simple"); 51 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 53 54 //===----------------------------------------------------------------------===// 55 // Last Insert Point Analysis 56 //===----------------------------------------------------------------------===// 57 58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 59 unsigned BBNum) 60 : LIS(lis), LastInsertPoint(BBNum) {} 61 62 SlotIndex 63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 64 const MachineBasicBlock &MBB) { 65 unsigned Num = MBB.getNumber(); 66 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 67 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 68 69 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors; 70 bool EHPadSuccessor = false; 71 for (const MachineBasicBlock *SMBB : MBB.successors()) { 72 if (SMBB->isEHPad()) { 73 ExceptionalSuccessors.push_back(SMBB); 74 EHPadSuccessor = true; 75 } else if (SMBB->isInlineAsmBrIndirectTarget()) 76 ExceptionalSuccessors.push_back(SMBB); 77 } 78 79 // Compute insert points on the first call. The pair is independent of the 80 // current live interval. 81 if (!LIP.first.isValid()) { 82 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 83 if (FirstTerm == MBB.end()) 84 LIP.first = MBBEnd; 85 else 86 LIP.first = LIS.getInstructionIndex(*FirstTerm); 87 88 // If there is a landing pad or inlineasm_br successor, also find the 89 // instruction. If there is no such instruction, we don't need to do 90 // anything special. We assume there cannot be multiple instructions that 91 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we 92 // assume that if there are any, they will be after any other call 93 // instructions in the block. 94 if (ExceptionalSuccessors.empty()) 95 return LIP.first; 96 for (const MachineInstr &MI : llvm::reverse(MBB)) { 97 if ((EHPadSuccessor && MI.isCall()) || 98 MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 99 LIP.second = LIS.getInstructionIndex(MI); 100 break; 101 } 102 } 103 } 104 105 // If CurLI is live into a landing pad successor, move the last insert point 106 // back to the call that may throw. 107 if (!LIP.second) 108 return LIP.first; 109 110 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) { 111 return LIS.isLiveInToMBB(CurLI, EHPad); 112 })) 113 return LIP.first; 114 115 // Find the value leaving MBB. 116 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 117 if (!VNI) 118 return LIP.first; 119 120 // The def of statepoint instruction is a gc relocation and it should be alive 121 // in landing pad. So we cannot split interval after statepoint instruction. 122 if (SlotIndex::isSameInstr(VNI->def, LIP.second)) 123 if (auto *I = LIS.getInstructionFromIndex(LIP.second)) 124 if (I->getOpcode() == TargetOpcode::STATEPOINT) 125 return LIP.second; 126 127 // If the value leaving MBB was defined after the call in MBB, it can't 128 // really be live-in to the landing pad. This can happen if the landing pad 129 // has a PHI, and this register is undef on the exceptional edge. 130 // <rdar://problem/10664933> 131 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 132 return LIP.first; 133 134 // Value is properly live-in to the landing pad. 135 // Only allow inserts before the call. 136 return LIP.second; 137 } 138 139 MachineBasicBlock::iterator 140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 141 MachineBasicBlock &MBB) { 142 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 143 if (LIP == LIS.getMBBEndIdx(&MBB)) 144 return MBB.end(); 145 return LIS.getInstructionFromIndex(LIP); 146 } 147 148 //===----------------------------------------------------------------------===// 149 // Split Analysis 150 //===----------------------------------------------------------------------===// 151 152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 153 const MachineLoopInfo &mli) 154 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 155 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 156 157 void SplitAnalysis::clear() { 158 UseSlots.clear(); 159 UseBlocks.clear(); 160 ThroughBlocks.clear(); 161 CurLI = nullptr; 162 } 163 164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 165 void SplitAnalysis::analyzeUses() { 166 assert(UseSlots.empty() && "Call clear first"); 167 168 // First get all the defs from the interval values. This provides the correct 169 // slots for early clobbers. 170 for (const VNInfo *VNI : CurLI->valnos) 171 if (!VNI->isPHIDef() && !VNI->isUnused()) 172 UseSlots.push_back(VNI->def); 173 174 // Get use slots form the use-def chain. 175 const MachineRegisterInfo &MRI = MF.getRegInfo(); 176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg())) 177 if (!MO.isUndef()) 178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 179 180 array_pod_sort(UseSlots.begin(), UseSlots.end()); 181 182 // Remove duplicates, keeping the smaller slot for each instruction. 183 // That is what we want for early clobbers. 184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 185 SlotIndex::isSameInstr), 186 UseSlots.end()); 187 188 // Compute per-live block info. 189 calcLiveBlockInfo(); 190 191 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 192 << UseBlocks.size() << " blocks, through " 193 << NumThroughBlocks << " blocks.\n"); 194 } 195 196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 197 /// where CurLI is live. 198 void SplitAnalysis::calcLiveBlockInfo() { 199 ThroughBlocks.resize(MF.getNumBlockIDs()); 200 NumThroughBlocks = NumGapBlocks = 0; 201 if (CurLI->empty()) 202 return; 203 204 LiveInterval::const_iterator LVI = CurLI->begin(); 205 LiveInterval::const_iterator LVE = CurLI->end(); 206 207 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 208 UseI = UseSlots.begin(); 209 UseE = UseSlots.end(); 210 211 // Loop over basic blocks where CurLI is live. 212 MachineFunction::iterator MFI = 213 LIS.getMBBFromIndex(LVI->start)->getIterator(); 214 while (true) { 215 BlockInfo BI; 216 BI.MBB = &*MFI; 217 SlotIndex Start, Stop; 218 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 219 220 // If the block contains no uses, the range must be live through. At one 221 // point, RegisterCoalescer could create dangling ranges that ended 222 // mid-block. 223 if (UseI == UseE || *UseI >= Stop) { 224 ++NumThroughBlocks; 225 ThroughBlocks.set(BI.MBB->getNumber()); 226 // The range shouldn't end mid-block if there are no uses. This shouldn't 227 // happen. 228 assert(LVI->end >= Stop && "range ends mid block with no uses"); 229 } else { 230 // This block has uses. Find the first and last uses in the block. 231 BI.FirstInstr = *UseI; 232 assert(BI.FirstInstr >= Start); 233 do ++UseI; 234 while (UseI != UseE && *UseI < Stop); 235 BI.LastInstr = UseI[-1]; 236 assert(BI.LastInstr < Stop); 237 238 // LVI is the first live segment overlapping MBB. 239 BI.LiveIn = LVI->start <= Start; 240 241 // When not live in, the first use should be a def. 242 if (!BI.LiveIn) { 243 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 244 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 245 BI.FirstDef = BI.FirstInstr; 246 } 247 248 // Look for gaps in the live range. 249 BI.LiveOut = true; 250 while (LVI->end < Stop) { 251 SlotIndex LastStop = LVI->end; 252 if (++LVI == LVE || LVI->start >= Stop) { 253 BI.LiveOut = false; 254 BI.LastInstr = LastStop; 255 break; 256 } 257 258 if (LastStop < LVI->start) { 259 // There is a gap in the live range. Create duplicate entries for the 260 // live-in snippet and the live-out snippet. 261 ++NumGapBlocks; 262 263 // Push the Live-in part. 264 BI.LiveOut = false; 265 UseBlocks.push_back(BI); 266 UseBlocks.back().LastInstr = LastStop; 267 268 // Set up BI for the live-out part. 269 BI.LiveIn = false; 270 BI.LiveOut = true; 271 BI.FirstInstr = BI.FirstDef = LVI->start; 272 } 273 274 // A Segment that starts in the middle of the block must be a def. 275 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 276 if (!BI.FirstDef) 277 BI.FirstDef = LVI->start; 278 } 279 280 UseBlocks.push_back(BI); 281 282 // LVI is now at LVE or LVI->end >= Stop. 283 if (LVI == LVE) 284 break; 285 } 286 287 // Live segment ends exactly at Stop. Move to the next segment. 288 if (LVI->end == Stop && ++LVI == LVE) 289 break; 290 291 // Pick the next basic block. 292 if (LVI->start < Stop) 293 ++MFI; 294 else 295 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 296 } 297 298 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 299 } 300 301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 302 if (cli->empty()) 303 return 0; 304 LiveInterval *li = const_cast<LiveInterval*>(cli); 305 LiveInterval::iterator LVI = li->begin(); 306 LiveInterval::iterator LVE = li->end(); 307 unsigned Count = 0; 308 309 // Loop over basic blocks where li is live. 310 MachineFunction::const_iterator MFI = 311 LIS.getMBBFromIndex(LVI->start)->getIterator(); 312 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 313 while (true) { 314 ++Count; 315 LVI = li->advanceTo(LVI, Stop); 316 if (LVI == LVE) 317 return Count; 318 do { 319 ++MFI; 320 Stop = LIS.getMBBEndIdx(&*MFI); 321 } while (Stop <= LVI->start); 322 } 323 } 324 325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 326 unsigned OrigReg = VRM.getOriginal(CurLI->reg()); 327 const LiveInterval &Orig = LIS.getInterval(OrigReg); 328 assert(!Orig.empty() && "Splitting empty interval?"); 329 LiveInterval::const_iterator I = Orig.find(Idx); 330 331 // Range containing Idx should begin at Idx. 332 if (I != Orig.end() && I->start <= Idx) 333 return I->start == Idx; 334 335 // Range does not contain Idx, previous must end at Idx. 336 return I != Orig.begin() && (--I)->end == Idx; 337 } 338 339 void SplitAnalysis::analyze(const LiveInterval *li) { 340 clear(); 341 CurLI = li; 342 analyzeUses(); 343 } 344 345 //===----------------------------------------------------------------------===// 346 // Split Editor 347 //===----------------------------------------------------------------------===// 348 349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 350 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA, 351 LiveIntervals &LIS, VirtRegMap &VRM, 352 MachineDominatorTree &MDT, 353 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) 354 : SA(SA), AA(AA), LIS(LIS), VRM(VRM), 355 MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT), 356 TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), 357 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), 358 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} 359 360 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 361 Edit = &LRE; 362 SpillMode = SM; 363 OpenIdx = 0; 364 RegAssign.clear(); 365 Values.clear(); 366 367 // Reset the LiveIntervalCalc instances needed for this spill mode. 368 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 369 &LIS.getVNInfoAllocator()); 370 if (SpillMode) 371 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 372 &LIS.getVNInfoAllocator()); 373 374 // We don't need an AliasAnalysis since we will only be performing 375 // cheap-as-a-copy remats anyway. 376 Edit->anyRematerializable(nullptr); 377 } 378 379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 380 LLVM_DUMP_METHOD void SplitEditor::dump() const { 381 if (RegAssign.empty()) { 382 dbgs() << " empty\n"; 383 return; 384 } 385 386 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 387 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 388 dbgs() << '\n'; 389 } 390 #endif 391 392 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM, 393 LiveInterval &LI) { 394 for (LiveInterval::SubRange &S : LI.subranges()) 395 if (S.LaneMask == LM) 396 return S; 397 llvm_unreachable("SubRange for this mask not found"); 398 } 399 400 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 401 LiveInterval &LI) { 402 for (LiveInterval::SubRange &S : LI.subranges()) 403 if ((S.LaneMask & LM) == LM) 404 return S; 405 llvm_unreachable("SubRange for this mask not found"); 406 } 407 408 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 409 if (!LI.hasSubRanges()) { 410 LI.createDeadDef(VNI); 411 return; 412 } 413 414 SlotIndex Def = VNI->def; 415 if (Original) { 416 // If we are transferring a def from the original interval, make sure 417 // to only update the subranges for which the original subranges had 418 // a def at this location. 419 for (LiveInterval::SubRange &S : LI.subranges()) { 420 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 421 VNInfo *PV = PS.getVNInfoAt(Def); 422 if (PV != nullptr && PV->def == Def) 423 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 424 } 425 } else { 426 // This is a new def: either from rematerialization, or from an inserted 427 // copy. Since rematerialization can regenerate a definition of a sub- 428 // register, we need to check which subranges need to be updated. 429 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 430 assert(DefMI != nullptr); 431 LaneBitmask LM; 432 for (const MachineOperand &DefOp : DefMI->defs()) { 433 Register R = DefOp.getReg(); 434 if (R != LI.reg()) 435 continue; 436 if (unsigned SR = DefOp.getSubReg()) 437 LM |= TRI.getSubRegIndexLaneMask(SR); 438 else { 439 LM = MRI.getMaxLaneMaskForVReg(R); 440 break; 441 } 442 } 443 for (LiveInterval::SubRange &S : LI.subranges()) 444 if ((S.LaneMask & LM).any()) 445 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 446 } 447 } 448 449 VNInfo *SplitEditor::defValue(unsigned RegIdx, 450 const VNInfo *ParentVNI, 451 SlotIndex Idx, 452 bool Original) { 453 assert(ParentVNI && "Mapping NULL value"); 454 assert(Idx.isValid() && "Invalid SlotIndex"); 455 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 456 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 457 458 // Create a new value. 459 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 460 461 bool Force = LI->hasSubRanges(); 462 ValueForcePair FP(Force ? nullptr : VNI, Force); 463 // Use insert for lookup, so we can add missing values with a second lookup. 464 std::pair<ValueMap::iterator, bool> InsP = 465 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 466 467 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 468 // forced. Keep it as a simple def without any liveness. 469 if (!Force && InsP.second) 470 return VNI; 471 472 // If the previous value was a simple mapping, add liveness for it now. 473 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 474 addDeadDef(*LI, OldVNI, Original); 475 476 // No longer a simple mapping. Switch to a complex mapping. If the 477 // interval has subranges, make it a forced mapping. 478 InsP.first->second = ValueForcePair(nullptr, Force); 479 } 480 481 // This is a complex mapping, add liveness for VNI 482 addDeadDef(*LI, VNI, Original); 483 return VNI; 484 } 485 486 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 487 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 488 VNInfo *VNI = VFP.getPointer(); 489 490 // ParentVNI was either unmapped or already complex mapped. Either way, just 491 // set the force bit. 492 if (!VNI) { 493 VFP.setInt(true); 494 return; 495 } 496 497 // This was previously a single mapping. Make sure the old def is represented 498 // by a trivial live range. 499 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 500 501 // Mark as complex mapped, forced. 502 VFP = ValueForcePair(nullptr, true); 503 } 504 505 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg, 506 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 507 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 508 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 509 bool FirstCopy = !Def.isValid(); 510 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 511 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 512 | getInternalReadRegState(!FirstCopy), SubIdx) 513 .addReg(FromReg, 0, SubIdx); 514 515 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 516 if (FirstCopy) { 517 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 518 } else { 519 CopyMI->bundleWithPred(); 520 } 521 return Def; 522 } 523 524 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, 525 LaneBitmask LaneMask, MachineBasicBlock &MBB, 526 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 527 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 528 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 529 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 530 // The full vreg is copied. 531 MachineInstr *CopyMI = 532 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 533 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 534 } 535 536 // Only a subset of lanes needs to be copied. The following is a simple 537 // heuristic to construct a sequence of COPYs. We could add a target 538 // specific callback if this turns out to be suboptimal. 539 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 540 541 // First pass: Try to find a perfectly matching subregister index. If none 542 // exists find the one covering the most lanemask bits. 543 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 544 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 545 546 SmallVector<unsigned, 8> SubIndexes; 547 548 // Abort if we cannot possibly implement the COPY with the given indexes. 549 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes)) 550 report_fatal_error("Impossible to implement partial COPY"); 551 552 SlotIndex Def; 553 for (unsigned BestIdx : SubIndexes) { 554 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 555 DestLI, Late, Def); 556 } 557 558 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 559 DestLI.refineSubRanges( 560 Allocator, LaneMask, 561 [Def, &Allocator](LiveInterval::SubRange &SR) { 562 SR.createDeadDef(Def, Allocator); 563 }, 564 Indexes, TRI); 565 566 return Def; 567 } 568 569 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 570 VNInfo *ParentVNI, 571 SlotIndex UseIdx, 572 MachineBasicBlock &MBB, 573 MachineBasicBlock::iterator I) { 574 SlotIndex Def; 575 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 576 577 // We may be trying to avoid interference that ends at a deleted instruction, 578 // so always begin RegIdx 0 early and all others late. 579 bool Late = RegIdx != 0; 580 581 // Attempt cheap-as-a-copy rematerialization. 582 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 583 LiveInterval &OrigLI = LIS.getInterval(Original); 584 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 585 586 Register Reg = LI->reg(); 587 bool DidRemat = false; 588 if (OrigVNI) { 589 LiveRangeEdit::Remat RM(ParentVNI); 590 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 591 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 592 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 593 ++NumRemats; 594 DidRemat = true; 595 } 596 } 597 if (!DidRemat) { 598 LaneBitmask LaneMask; 599 if (OrigLI.hasSubRanges()) { 600 LaneMask = LaneBitmask::getNone(); 601 for (LiveInterval::SubRange &S : OrigLI.subranges()) { 602 if (S.liveAt(UseIdx)) 603 LaneMask |= S.LaneMask; 604 } 605 } else { 606 LaneMask = LaneBitmask::getAll(); 607 } 608 609 if (LaneMask.none()) { 610 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF); 611 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg); 612 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 613 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot(); 614 } else { 615 ++NumCopies; 616 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 617 } 618 } 619 620 // Define the value in Reg. 621 return defValue(RegIdx, ParentVNI, Def, false); 622 } 623 624 /// Create a new virtual register and live interval. 625 unsigned SplitEditor::openIntv() { 626 // Create the complement as index 0. 627 if (Edit->empty()) 628 Edit->createEmptyInterval(); 629 630 // Create the open interval. 631 OpenIdx = Edit->size(); 632 Edit->createEmptyInterval(); 633 return OpenIdx; 634 } 635 636 void SplitEditor::selectIntv(unsigned Idx) { 637 assert(Idx != 0 && "Cannot select the complement interval"); 638 assert(Idx < Edit->size() && "Can only select previously opened interval"); 639 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 640 OpenIdx = Idx; 641 } 642 643 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 644 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 645 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 646 Idx = Idx.getBaseIndex(); 647 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 648 if (!ParentVNI) { 649 LLVM_DEBUG(dbgs() << ": not live\n"); 650 return Idx; 651 } 652 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 653 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 654 assert(MI && "enterIntvBefore called with invalid index"); 655 656 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 657 return VNI->def; 658 } 659 660 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 661 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 662 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 663 Idx = Idx.getBoundaryIndex(); 664 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 665 if (!ParentVNI) { 666 LLVM_DEBUG(dbgs() << ": not live\n"); 667 return Idx; 668 } 669 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 670 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 671 assert(MI && "enterIntvAfter called with invalid index"); 672 673 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 674 std::next(MachineBasicBlock::iterator(MI))); 675 return VNI->def; 676 } 677 678 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 679 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 680 SlotIndex End = LIS.getMBBEndIdx(&MBB); 681 SlotIndex Last = End.getPrevSlot(); 682 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 683 << Last); 684 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 685 if (!ParentVNI) { 686 LLVM_DEBUG(dbgs() << ": not live\n"); 687 return End; 688 } 689 SlotIndex LSP = SA.getLastSplitPoint(&MBB); 690 if (LSP < Last) { 691 // It could be that the use after LSP is a def, and thus the ParentVNI 692 // just selected starts at that def. For this case to exist, the def 693 // must be part of a tied def/use pair (as otherwise we'd have split 694 // distinct live ranges into individual live intervals), and thus we 695 // can insert the def into the VNI of the use and the tied def/use 696 // pair can live in the resulting interval. 697 Last = LSP; 698 ParentVNI = Edit->getParent().getVNInfoAt(Last); 699 if (!ParentVNI) { 700 // undef use --> undef tied def 701 LLVM_DEBUG(dbgs() << ": tied use not live\n"); 702 return End; 703 } 704 } 705 706 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 707 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 708 SA.getLastSplitPointIter(&MBB)); 709 RegAssign.insert(VNI->def, End, OpenIdx); 710 LLVM_DEBUG(dump()); 711 return VNI->def; 712 } 713 714 /// useIntv - indicate that all instructions in MBB should use OpenLI. 715 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 716 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 717 } 718 719 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 720 assert(OpenIdx && "openIntv not called before useIntv"); 721 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 722 RegAssign.insert(Start, End, OpenIdx); 723 LLVM_DEBUG(dump()); 724 } 725 726 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 727 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 728 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 729 730 // The interval must be live beyond the instruction at Idx. 731 SlotIndex Boundary = Idx.getBoundaryIndex(); 732 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 733 if (!ParentVNI) { 734 LLVM_DEBUG(dbgs() << ": not live\n"); 735 return Boundary.getNextSlot(); 736 } 737 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 738 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 739 assert(MI && "No instruction at index"); 740 741 // In spill mode, make live ranges as short as possible by inserting the copy 742 // before MI. This is only possible if that instruction doesn't redefine the 743 // value. The inserted COPY is not a kill, and we don't need to recompute 744 // the source live range. The spiller also won't try to hoist this copy. 745 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 746 MI->readsVirtualRegister(Edit->getReg())) { 747 forceRecompute(0, *ParentVNI); 748 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 749 return Idx; 750 } 751 752 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 753 std::next(MachineBasicBlock::iterator(MI))); 754 return VNI->def; 755 } 756 757 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 758 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 759 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 760 761 // The interval must be live into the instruction at Idx. 762 Idx = Idx.getBaseIndex(); 763 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 764 if (!ParentVNI) { 765 LLVM_DEBUG(dbgs() << ": not live\n"); 766 return Idx.getNextSlot(); 767 } 768 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 769 770 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 771 assert(MI && "No instruction at index"); 772 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 773 return VNI->def; 774 } 775 776 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 777 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 778 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 779 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 780 << Start); 781 782 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 783 if (!ParentVNI) { 784 LLVM_DEBUG(dbgs() << ": not live\n"); 785 return Start; 786 } 787 788 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 789 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 790 RegAssign.insert(Start, VNI->def, OpenIdx); 791 LLVM_DEBUG(dump()); 792 return VNI->def; 793 } 794 795 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) { 796 return any_of(MI.defs(), [Reg](const MachineOperand &MO) { 797 return MO.isReg() && MO.isTied() && MO.getReg() == Reg; 798 }); 799 } 800 801 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 802 assert(OpenIdx && "openIntv not called before overlapIntv"); 803 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 804 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 805 "Parent changes value in extended range"); 806 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 807 "Range cannot span basic blocks"); 808 809 // The complement interval will be extended as needed by LICalc.extend(). 810 if (ParentVNI) 811 forceRecompute(0, *ParentVNI); 812 813 // If the last use is tied to a def, we can't mark it as live for the 814 // interval which includes only the use. That would cause the tied pair 815 // to end up in two different intervals. 816 if (auto *MI = LIS.getInstructionFromIndex(End)) 817 if (hasTiedUseOf(*MI, Edit->getReg())) { 818 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n"); 819 return; 820 } 821 822 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 823 RegAssign.insert(Start, End, OpenIdx); 824 LLVM_DEBUG(dump()); 825 } 826 827 //===----------------------------------------------------------------------===// 828 // Spill modes 829 //===----------------------------------------------------------------------===// 830 831 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 832 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 833 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 834 RegAssignMap::iterator AssignI; 835 AssignI.setMap(RegAssign); 836 837 for (const VNInfo *C : Copies) { 838 SlotIndex Def = C->def; 839 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 840 assert(MI && "No instruction for back-copy"); 841 842 MachineBasicBlock *MBB = MI->getParent(); 843 MachineBasicBlock::iterator MBBI(MI); 844 bool AtBegin; 845 do AtBegin = MBBI == MBB->begin(); 846 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); 847 848 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 849 LIS.removeVRegDefAt(*LI, Def); 850 LIS.RemoveMachineInstrFromMaps(*MI); 851 MI->eraseFromParent(); 852 853 // Adjust RegAssign if a register assignment is killed at Def. We want to 854 // avoid calculating the live range of the source register if possible. 855 AssignI.find(Def.getPrevSlot()); 856 if (!AssignI.valid() || AssignI.start() >= Def) 857 continue; 858 // If MI doesn't kill the assigned register, just leave it. 859 if (AssignI.stop() != Def) 860 continue; 861 unsigned RegIdx = AssignI.value(); 862 // We could hoist back-copy right after another back-copy. As a result 863 // MMBI points to copy instruction which is actually dead now. 864 // We cannot set its stop to MBBI which will be the same as start and 865 // interval does not support that. 866 SlotIndex Kill = 867 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot(); 868 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) || 869 Kill <= AssignI.start()) { 870 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 871 << '\n'); 872 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 873 } else { 874 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 875 AssignI.setStop(Kill); 876 } 877 } 878 } 879 880 MachineBasicBlock* 881 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 882 MachineBasicBlock *DefMBB) { 883 if (MBB == DefMBB) 884 return MBB; 885 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 886 887 const MachineLoopInfo &Loops = SA.Loops; 888 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 889 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 890 891 // Best candidate so far. 892 MachineBasicBlock *BestMBB = MBB; 893 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 894 895 while (true) { 896 const MachineLoop *Loop = Loops.getLoopFor(MBB); 897 898 // MBB isn't in a loop, it doesn't get any better. All dominators have a 899 // higher frequency by definition. 900 if (!Loop) { 901 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 902 << " dominates " << printMBBReference(*MBB) 903 << " at depth 0\n"); 904 return MBB; 905 } 906 907 // We'll never be able to exit the DefLoop. 908 if (Loop == DefLoop) { 909 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 910 << " dominates " << printMBBReference(*MBB) 911 << " in the same loop\n"); 912 return MBB; 913 } 914 915 // Least busy dominator seen so far. 916 unsigned Depth = Loop->getLoopDepth(); 917 if (Depth < BestDepth) { 918 BestMBB = MBB; 919 BestDepth = Depth; 920 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 921 << " dominates " << printMBBReference(*MBB) 922 << " at depth " << Depth << '\n'); 923 } 924 925 // Leave loop by going to the immediate dominator of the loop header. 926 // This is a bigger stride than simply walking up the dominator tree. 927 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 928 929 // Too far up the dominator tree? 930 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 931 return BestMBB; 932 933 MBB = IDom->getBlock(); 934 } 935 } 936 937 void SplitEditor::computeRedundantBackCopies( 938 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 939 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 940 LiveInterval *Parent = &Edit->getParent(); 941 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 942 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 943 944 // Aggregate VNIs having the same value as ParentVNI. 945 for (VNInfo *VNI : LI->valnos) { 946 if (VNI->isUnused()) 947 continue; 948 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 949 EqualVNs[ParentVNI->id].insert(VNI); 950 } 951 952 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 953 // redundant VNIs to BackCopies. 954 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 955 VNInfo *ParentVNI = Parent->getValNumInfo(i); 956 if (!NotToHoistSet.count(ParentVNI->id)) 957 continue; 958 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 959 SmallPtrSetIterator<VNInfo *> It2 = It1; 960 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 961 It2 = It1; 962 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 963 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 964 continue; 965 966 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 967 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 968 if (MBB1 == MBB2) { 969 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 970 } else if (MDT.dominates(MBB1, MBB2)) { 971 DominatedVNIs.insert(*It2); 972 } else if (MDT.dominates(MBB2, MBB1)) { 973 DominatedVNIs.insert(*It1); 974 } 975 } 976 } 977 if (!DominatedVNIs.empty()) { 978 forceRecompute(0, *ParentVNI); 979 append_range(BackCopies, DominatedVNIs); 980 DominatedVNIs.clear(); 981 } 982 } 983 } 984 985 /// For SM_Size mode, find a common dominator for all the back-copies for 986 /// the same ParentVNI and hoist the backcopies to the dominator BB. 987 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 988 /// to do the hoisting, simply remove the dominated backcopies for the same 989 /// ParentVNI. 990 void SplitEditor::hoistCopies() { 991 // Get the complement interval, always RegIdx 0. 992 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 993 LiveInterval *Parent = &Edit->getParent(); 994 995 // Track the nearest common dominator for all back-copies for each ParentVNI, 996 // indexed by ParentVNI->id. 997 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 998 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 999 // The total cost of all the back-copies for each ParentVNI. 1000 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1001 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1002 // for Speed. 1003 DenseSet<unsigned> NotToHoistSet; 1004 1005 // Find the nearest common dominator for parent values with multiple 1006 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1007 for (VNInfo *VNI : LI->valnos) { 1008 if (VNI->isUnused()) 1009 continue; 1010 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1011 assert(ParentVNI && "Parent not live at complement def"); 1012 1013 // Don't hoist remats. The complement is probably going to disappear 1014 // completely anyway. 1015 if (Edit->didRematerialize(ParentVNI)) 1016 continue; 1017 1018 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1019 1020 DomPair &Dom = NearestDom[ParentVNI->id]; 1021 1022 // Keep directly defined parent values. This is either a PHI or an 1023 // instruction in the complement range. All other copies of ParentVNI 1024 // should be eliminated. 1025 if (VNI->def == ParentVNI->def) { 1026 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1027 Dom = DomPair(ValMBB, VNI->def); 1028 continue; 1029 } 1030 // Skip the singly mapped values. There is nothing to gain from hoisting a 1031 // single back-copy. 1032 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1033 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1034 continue; 1035 } 1036 1037 if (!Dom.first) { 1038 // First time we see ParentVNI. VNI dominates itself. 1039 Dom = DomPair(ValMBB, VNI->def); 1040 } else if (Dom.first == ValMBB) { 1041 // Two defs in the same block. Pick the earlier def. 1042 if (!Dom.second.isValid() || VNI->def < Dom.second) 1043 Dom.second = VNI->def; 1044 } else { 1045 // Different basic blocks. Check if one dominates. 1046 MachineBasicBlock *Near = 1047 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1048 if (Near == ValMBB) 1049 // Def ValMBB dominates. 1050 Dom = DomPair(ValMBB, VNI->def); 1051 else if (Near != Dom.first) 1052 // None dominate. Hoist to common dominator, need new def. 1053 Dom = DomPair(Near, SlotIndex()); 1054 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1055 } 1056 1057 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1058 << VNI->def << " for parent " << ParentVNI->id << '@' 1059 << ParentVNI->def << " hoist to " 1060 << printMBBReference(*Dom.first) << ' ' << Dom.second 1061 << '\n'); 1062 } 1063 1064 // Insert the hoisted copies. 1065 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1066 DomPair &Dom = NearestDom[i]; 1067 if (!Dom.first || Dom.second.isValid()) 1068 continue; 1069 // This value needs a hoisted copy inserted at the end of Dom.first. 1070 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1071 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1072 // Get a less loopy dominator than Dom.first. 1073 Dom.first = findShallowDominator(Dom.first, DefMBB); 1074 if (SpillMode == SM_Speed && 1075 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1076 NotToHoistSet.insert(ParentVNI->id); 1077 continue; 1078 } 1079 SlotIndex LSP = SA.getLastSplitPoint(Dom.first); 1080 if (LSP <= ParentVNI->def) { 1081 NotToHoistSet.insert(ParentVNI->id); 1082 continue; 1083 } 1084 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first, 1085 SA.getLastSplitPointIter(Dom.first))->def; 1086 } 1087 1088 // Remove redundant back-copies that are now known to be dominated by another 1089 // def with the same value. 1090 SmallVector<VNInfo*, 8> BackCopies; 1091 for (VNInfo *VNI : LI->valnos) { 1092 if (VNI->isUnused()) 1093 continue; 1094 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1095 const DomPair &Dom = NearestDom[ParentVNI->id]; 1096 if (!Dom.first || Dom.second == VNI->def || 1097 NotToHoistSet.count(ParentVNI->id)) 1098 continue; 1099 BackCopies.push_back(VNI); 1100 forceRecompute(0, *ParentVNI); 1101 } 1102 1103 // If it is not beneficial to hoist all the BackCopies, simply remove 1104 // redundant BackCopies in speed mode. 1105 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1106 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1107 1108 removeBackCopies(BackCopies); 1109 } 1110 1111 /// transferValues - Transfer all possible values to the new live ranges. 1112 /// Values that were rematerialized are left alone, they need LICalc.extend(). 1113 bool SplitEditor::transferValues() { 1114 bool Skipped = false; 1115 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1116 for (const LiveRange::Segment &S : Edit->getParent()) { 1117 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1118 VNInfo *ParentVNI = S.valno; 1119 // RegAssign has holes where RegIdx 0 should be used. 1120 SlotIndex Start = S.start; 1121 AssignI.advanceTo(Start); 1122 do { 1123 unsigned RegIdx; 1124 SlotIndex End = S.end; 1125 if (!AssignI.valid()) { 1126 RegIdx = 0; 1127 } else if (AssignI.start() <= Start) { 1128 RegIdx = AssignI.value(); 1129 if (AssignI.stop() < End) { 1130 End = AssignI.stop(); 1131 ++AssignI; 1132 } 1133 } else { 1134 RegIdx = 0; 1135 End = std::min(End, AssignI.start()); 1136 } 1137 1138 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1139 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1140 << printReg(Edit->get(RegIdx)) << ')'); 1141 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1142 1143 // Check for a simply defined value that can be blitted directly. 1144 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1145 if (VNInfo *VNI = VFP.getPointer()) { 1146 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1147 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1148 Start = End; 1149 continue; 1150 } 1151 1152 // Skip values with forced recomputation. 1153 if (VFP.getInt()) { 1154 LLVM_DEBUG(dbgs() << "(recalc)"); 1155 Skipped = true; 1156 Start = End; 1157 continue; 1158 } 1159 1160 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1161 1162 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1163 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1164 // LiveInBlocks. 1165 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1166 SlotIndex BlockStart, BlockEnd; 1167 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1168 1169 // The first block may be live-in, or it may have its own def. 1170 if (Start != BlockStart) { 1171 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1172 assert(VNI && "Missing def for complex mapped value"); 1173 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1174 // MBB has its own def. Is it also live-out? 1175 if (BlockEnd <= End) 1176 LIC.setLiveOutValue(&*MBB, VNI); 1177 1178 // Skip to the next block for live-in. 1179 ++MBB; 1180 BlockStart = BlockEnd; 1181 } 1182 1183 // Handle the live-in blocks covered by [Start;End). 1184 assert(Start <= BlockStart && "Expected live-in block"); 1185 while (BlockStart < End) { 1186 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1187 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1188 if (BlockStart == ParentVNI->def) { 1189 // This block has the def of a parent PHI, so it isn't live-in. 1190 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1191 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1192 assert(VNI && "Missing def for complex mapped parent PHI"); 1193 if (End >= BlockEnd) 1194 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1195 } else { 1196 // This block needs a live-in value. The last block covered may not 1197 // be live-out. 1198 if (End < BlockEnd) 1199 LIC.addLiveInBlock(LI, MDT[&*MBB], End); 1200 else { 1201 // Live-through, and we don't know the value. 1202 LIC.addLiveInBlock(LI, MDT[&*MBB]); 1203 LIC.setLiveOutValue(&*MBB, nullptr); 1204 } 1205 } 1206 BlockStart = BlockEnd; 1207 ++MBB; 1208 } 1209 Start = End; 1210 } while (Start != S.end); 1211 LLVM_DEBUG(dbgs() << '\n'); 1212 } 1213 1214 LICalc[0].calculateValues(); 1215 if (SpillMode) 1216 LICalc[1].calculateValues(); 1217 1218 return Skipped; 1219 } 1220 1221 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1222 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1223 if (Seg == nullptr) 1224 return true; 1225 if (Seg->end != Def.getDeadSlot()) 1226 return false; 1227 // This is a dead PHI. Remove it. 1228 LR.removeSegment(*Seg, true); 1229 return true; 1230 } 1231 1232 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, 1233 LiveRange &LR, LaneBitmask LM, 1234 ArrayRef<SlotIndex> Undefs) { 1235 for (MachineBasicBlock *P : B.predecessors()) { 1236 SlotIndex End = LIS.getMBBEndIdx(P); 1237 SlotIndex LastUse = End.getPrevSlot(); 1238 // The predecessor may not have a live-out value. That is OK, like an 1239 // undef PHI operand. 1240 LiveInterval &PLI = Edit->getParent(); 1241 // Need the cast because the inputs to ?: would otherwise be deemed 1242 // "incompatible": SubRange vs LiveInterval. 1243 LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI) 1244 : static_cast<LiveRange &>(PLI); 1245 if (PSR.liveAt(LastUse)) 1246 LIC.extend(LR, End, /*PhysReg=*/0, Undefs); 1247 } 1248 } 1249 1250 void SplitEditor::extendPHIKillRanges() { 1251 // Extend live ranges to be live-out for successor PHI values. 1252 1253 // Visit each PHI def slot in the parent live interval. If the def is dead, 1254 // remove it. Otherwise, extend the live interval to reach the end indexes 1255 // of all predecessor blocks. 1256 1257 LiveInterval &ParentLI = Edit->getParent(); 1258 for (const VNInfo *V : ParentLI.valnos) { 1259 if (V->isUnused() || !V->isPHIDef()) 1260 continue; 1261 1262 unsigned RegIdx = RegAssign.lookup(V->def); 1263 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1264 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1265 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1266 if (!removeDeadSegment(V->def, LI)) 1267 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1268 } 1269 1270 SmallVector<SlotIndex, 4> Undefs; 1271 LiveIntervalCalc SubLIC; 1272 1273 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1274 for (const VNInfo *V : PS.valnos) { 1275 if (V->isUnused() || !V->isPHIDef()) 1276 continue; 1277 unsigned RegIdx = RegAssign.lookup(V->def); 1278 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1279 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI); 1280 if (removeDeadSegment(V->def, S)) 1281 continue; 1282 1283 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1284 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1285 &LIS.getVNInfoAllocator()); 1286 Undefs.clear(); 1287 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1288 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); 1289 } 1290 } 1291 } 1292 1293 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1294 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1295 struct ExtPoint { 1296 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1297 : MO(O), RegIdx(R), Next(N) {} 1298 1299 MachineOperand MO; 1300 unsigned RegIdx; 1301 SlotIndex Next; 1302 }; 1303 1304 SmallVector<ExtPoint,4> ExtPoints; 1305 1306 for (MachineOperand &MO : 1307 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) { 1308 MachineInstr *MI = MO.getParent(); 1309 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1310 if (MI->isDebugValue()) { 1311 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1312 MO.setReg(0); 1313 continue; 1314 } 1315 1316 // <undef> operands don't really read the register, so it doesn't matter 1317 // which register we choose. When the use operand is tied to a def, we must 1318 // use the same register as the def, so just do that always. 1319 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1320 if (MO.isDef() || MO.isUndef()) 1321 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1322 1323 // Rewrite to the mapped register at Idx. 1324 unsigned RegIdx = RegAssign.lookup(Idx); 1325 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1326 MO.setReg(LI.reg()); 1327 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1328 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1329 1330 // Extend liveness to Idx if the instruction reads reg. 1331 if (!ExtendRanges || MO.isUndef()) 1332 continue; 1333 1334 // Skip instructions that don't read Reg. 1335 if (MO.isDef()) { 1336 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1337 continue; 1338 // We may want to extend a live range for a partial redef, or for a use 1339 // tied to an early clobber. 1340 Idx = Idx.getPrevSlot(); 1341 if (!Edit->getParent().liveAt(Idx)) 1342 continue; 1343 } else 1344 Idx = Idx.getRegSlot(true); 1345 1346 SlotIndex Next = Idx.getNextSlot(); 1347 if (LI.hasSubRanges()) { 1348 // We have to delay extending subranges until we have seen all operands 1349 // defining the register. This is because a <def,read-undef> operand 1350 // will create an "undef" point, and we cannot extend any subranges 1351 // until all of them have been accounted for. 1352 if (MO.isUse()) 1353 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1354 } else { 1355 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1356 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1357 } 1358 } 1359 1360 for (ExtPoint &EP : ExtPoints) { 1361 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1362 assert(LI.hasSubRanges()); 1363 1364 LiveIntervalCalc SubLIC; 1365 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1366 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1367 : MRI.getMaxLaneMaskForVReg(Reg); 1368 for (LiveInterval::SubRange &S : LI.subranges()) { 1369 if ((S.LaneMask & LM).none()) 1370 continue; 1371 // The problem here can be that the new register may have been created 1372 // for a partially defined original register. For example: 1373 // %0:subreg_hireg<def,read-undef> = ... 1374 // ... 1375 // %1 = COPY %0 1376 if (S.empty()) 1377 continue; 1378 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1379 &LIS.getVNInfoAllocator()); 1380 SmallVector<SlotIndex, 4> Undefs; 1381 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1382 SubLIC.extend(S, EP.Next, 0, Undefs); 1383 } 1384 } 1385 1386 for (Register R : *Edit) { 1387 LiveInterval &LI = LIS.getInterval(R); 1388 if (!LI.hasSubRanges()) 1389 continue; 1390 LI.clear(); 1391 LI.removeEmptySubRanges(); 1392 LIS.constructMainRangeFromSubranges(LI); 1393 } 1394 } 1395 1396 void SplitEditor::deleteRematVictims() { 1397 SmallVector<MachineInstr*, 8> Dead; 1398 for (const Register &R : *Edit) { 1399 LiveInterval *LI = &LIS.getInterval(R); 1400 for (const LiveRange::Segment &S : LI->segments) { 1401 // Dead defs end at the dead slot. 1402 if (S.end != S.valno->def.getDeadSlot()) 1403 continue; 1404 if (S.valno->isPHIDef()) 1405 continue; 1406 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1407 assert(MI && "Missing instruction for dead def"); 1408 MI->addRegisterDead(LI->reg(), &TRI); 1409 1410 if (!MI->allDefsAreDead()) 1411 continue; 1412 1413 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1414 Dead.push_back(MI); 1415 } 1416 } 1417 1418 if (Dead.empty()) 1419 return; 1420 1421 Edit->eliminateDeadDefs(Dead, None, &AA); 1422 } 1423 1424 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1425 // Fast-path for common case. 1426 if (!ParentVNI.isPHIDef()) { 1427 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1428 forceRecompute(I, ParentVNI); 1429 return; 1430 } 1431 1432 // Trace value through phis. 1433 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1434 SmallVector<const VNInfo *, 4> WorkList; 1435 Visited.insert(&ParentVNI); 1436 WorkList.push_back(&ParentVNI); 1437 1438 const LiveInterval &ParentLI = Edit->getParent(); 1439 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1440 do { 1441 const VNInfo &VNI = *WorkList.back(); 1442 WorkList.pop_back(); 1443 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1444 forceRecompute(I, VNI); 1445 if (!VNI.isPHIDef()) 1446 continue; 1447 1448 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1449 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1450 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1451 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1452 assert(PredVNI && "Value available in PhiVNI predecessor"); 1453 if (Visited.insert(PredVNI).second) 1454 WorkList.push_back(PredVNI); 1455 } 1456 } while(!WorkList.empty()); 1457 } 1458 1459 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1460 ++NumFinished; 1461 1462 // At this point, the live intervals in Edit contain VNInfos corresponding to 1463 // the inserted copies. 1464 1465 // Add the original defs from the parent interval. 1466 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1467 if (ParentVNI->isUnused()) 1468 continue; 1469 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1470 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1471 1472 // Force rematted values to be recomputed everywhere. 1473 // The new live ranges may be truncated. 1474 if (Edit->didRematerialize(ParentVNI)) 1475 forceRecomputeVNI(*ParentVNI); 1476 } 1477 1478 // Hoist back-copies to the complement interval when in spill mode. 1479 switch (SpillMode) { 1480 case SM_Partition: 1481 // Leave all back-copies as is. 1482 break; 1483 case SM_Size: 1484 case SM_Speed: 1485 // hoistCopies will behave differently between size and speed. 1486 hoistCopies(); 1487 } 1488 1489 // Transfer the simply mapped values, check if any are skipped. 1490 bool Skipped = transferValues(); 1491 1492 // Rewrite virtual registers, possibly extending ranges. 1493 rewriteAssigned(Skipped); 1494 1495 if (Skipped) 1496 extendPHIKillRanges(); 1497 else 1498 ++NumSimple; 1499 1500 // Delete defs that were rematted everywhere. 1501 if (Skipped) 1502 deleteRematVictims(); 1503 1504 // Get rid of unused values and set phi-kill flags. 1505 for (Register Reg : *Edit) { 1506 LiveInterval &LI = LIS.getInterval(Reg); 1507 LI.removeEmptySubRanges(); 1508 LI.RenumberValues(); 1509 } 1510 1511 // Provide a reverse mapping from original indices to Edit ranges. 1512 if (LRMap) { 1513 LRMap->clear(); 1514 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1515 LRMap->push_back(i); 1516 } 1517 1518 // Now check if any registers were separated into multiple components. 1519 ConnectedVNInfoEqClasses ConEQ(LIS); 1520 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1521 // Don't use iterators, they are invalidated by create() below. 1522 Register VReg = Edit->get(i); 1523 LiveInterval &LI = LIS.getInterval(VReg); 1524 SmallVector<LiveInterval*, 8> SplitLIs; 1525 LIS.splitSeparateComponents(LI, SplitLIs); 1526 Register Original = VRM.getOriginal(VReg); 1527 for (LiveInterval *SplitLI : SplitLIs) 1528 VRM.setIsSplitFromReg(SplitLI->reg(), Original); 1529 1530 // The new intervals all map back to i. 1531 if (LRMap) 1532 LRMap->resize(Edit->size(), i); 1533 } 1534 1535 // Calculate spill weight and allocation hints for new intervals. 1536 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); 1537 1538 assert(!LRMap || LRMap->size() == Edit->size()); 1539 } 1540 1541 //===----------------------------------------------------------------------===// 1542 // Single Block Splitting 1543 //===----------------------------------------------------------------------===// 1544 1545 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1546 bool SingleInstrs) const { 1547 // Always split for multiple instructions. 1548 if (!BI.isOneInstr()) 1549 return true; 1550 // Don't split for single instructions unless explicitly requested. 1551 if (!SingleInstrs) 1552 return false; 1553 // Splitting a live-through range always makes progress. 1554 if (BI.LiveIn && BI.LiveOut) 1555 return true; 1556 // No point in isolating a copy. It has no register class constraints. 1557 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1558 return false; 1559 // Finally, don't isolate an end point that was created by earlier splits. 1560 return isOriginalEndpoint(BI.FirstInstr); 1561 } 1562 1563 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1564 openIntv(); 1565 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB); 1566 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1567 LastSplitPoint)); 1568 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1569 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1570 } else { 1571 // The last use is after the last valid split point. 1572 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1573 useIntv(SegStart, SegStop); 1574 overlapIntv(SegStop, BI.LastInstr); 1575 } 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // Global Live Range Splitting Support 1580 //===----------------------------------------------------------------------===// 1581 1582 // These methods support a method of global live range splitting that uses a 1583 // global algorithm to decide intervals for CFG edges. They will insert split 1584 // points and color intervals in basic blocks while avoiding interference. 1585 // 1586 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1587 // are on the stack. 1588 1589 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1590 unsigned IntvIn, SlotIndex LeaveBefore, 1591 unsigned IntvOut, SlotIndex EnterAfter){ 1592 SlotIndex Start, Stop; 1593 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1594 1595 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1596 << ") intf " << LeaveBefore << '-' << EnterAfter 1597 << ", live-through " << IntvIn << " -> " << IntvOut); 1598 1599 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1600 1601 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1602 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1603 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1604 1605 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1606 1607 if (!IntvOut) { 1608 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1609 // 1610 // <<<<<<<<< Possible LeaveBefore interference. 1611 // |-----------| Live through. 1612 // -____________ Spill on entry. 1613 // 1614 selectIntv(IntvIn); 1615 SlotIndex Idx = leaveIntvAtTop(*MBB); 1616 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1617 (void)Idx; 1618 return; 1619 } 1620 1621 if (!IntvIn) { 1622 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1623 // 1624 // >>>>>>> Possible EnterAfter interference. 1625 // |-----------| Live through. 1626 // ___________-- Reload on exit. 1627 // 1628 selectIntv(IntvOut); 1629 SlotIndex Idx = enterIntvAtEnd(*MBB); 1630 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1631 (void)Idx; 1632 return; 1633 } 1634 1635 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1636 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1637 // 1638 // |-----------| Live through. 1639 // ------------- Straight through, same intv, no interference. 1640 // 1641 selectIntv(IntvOut); 1642 useIntv(Start, Stop); 1643 return; 1644 } 1645 1646 // We cannot legally insert splits after LSP. 1647 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1648 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1649 1650 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1651 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1652 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1653 // 1654 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1655 // |-----------| Live through. 1656 // ------======= Switch intervals between interference. 1657 // 1658 selectIntv(IntvOut); 1659 SlotIndex Idx; 1660 if (LeaveBefore && LeaveBefore < LSP) { 1661 Idx = enterIntvBefore(LeaveBefore); 1662 useIntv(Idx, Stop); 1663 } else { 1664 Idx = enterIntvAtEnd(*MBB); 1665 } 1666 selectIntv(IntvIn); 1667 useIntv(Start, Idx); 1668 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1669 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1670 return; 1671 } 1672 1673 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1674 // 1675 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1676 // |-----------| Live through. 1677 // ==---------== Switch intervals before/after interference. 1678 // 1679 assert(LeaveBefore <= EnterAfter && "Missed case"); 1680 1681 selectIntv(IntvOut); 1682 SlotIndex Idx = enterIntvAfter(EnterAfter); 1683 useIntv(Idx, Stop); 1684 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1685 1686 selectIntv(IntvIn); 1687 Idx = leaveIntvBefore(LeaveBefore); 1688 useIntv(Start, Idx); 1689 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1690 } 1691 1692 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1693 unsigned IntvIn, SlotIndex LeaveBefore) { 1694 SlotIndex Start, Stop; 1695 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1696 1697 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1698 << Stop << "), uses " << BI.FirstInstr << '-' 1699 << BI.LastInstr << ", reg-in " << IntvIn 1700 << ", leave before " << LeaveBefore 1701 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1702 1703 assert(IntvIn && "Must have register in"); 1704 assert(BI.LiveIn && "Must be live-in"); 1705 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1706 1707 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1708 LLVM_DEBUG(dbgs() << " before interference.\n"); 1709 // 1710 // <<< Interference after kill. 1711 // |---o---x | Killed in block. 1712 // ========= Use IntvIn everywhere. 1713 // 1714 selectIntv(IntvIn); 1715 useIntv(Start, BI.LastInstr); 1716 return; 1717 } 1718 1719 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1720 1721 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1722 // 1723 // <<< Possible interference after last use. 1724 // |---o---o---| Live-out on stack. 1725 // =========____ Leave IntvIn after last use. 1726 // 1727 // < Interference after last use. 1728 // |---o---o--o| Live-out on stack, late last use. 1729 // ============ Copy to stack after LSP, overlap IntvIn. 1730 // \_____ Stack interval is live-out. 1731 // 1732 if (BI.LastInstr < LSP) { 1733 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1734 selectIntv(IntvIn); 1735 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1736 useIntv(Start, Idx); 1737 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1738 } else { 1739 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1740 selectIntv(IntvIn); 1741 SlotIndex Idx = leaveIntvBefore(LSP); 1742 overlapIntv(Idx, BI.LastInstr); 1743 useIntv(Start, Idx); 1744 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1745 } 1746 return; 1747 } 1748 1749 // The interference is overlapping somewhere we wanted to use IntvIn. That 1750 // means we need to create a local interval that can be allocated a 1751 // different register. 1752 unsigned LocalIntv = openIntv(); 1753 (void)LocalIntv; 1754 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1755 1756 if (!BI.LiveOut || BI.LastInstr < LSP) { 1757 // 1758 // <<<<<<< Interference overlapping uses. 1759 // |---o---o---| Live-out on stack. 1760 // =====----____ Leave IntvIn before interference, then spill. 1761 // 1762 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1763 SlotIndex From = enterIntvBefore(LeaveBefore); 1764 useIntv(From, To); 1765 selectIntv(IntvIn); 1766 useIntv(Start, From); 1767 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1768 return; 1769 } 1770 1771 // <<<<<<< Interference overlapping uses. 1772 // |---o---o--o| Live-out on stack, late last use. 1773 // =====------- Copy to stack before LSP, overlap LocalIntv. 1774 // \_____ Stack interval is live-out. 1775 // 1776 SlotIndex To = leaveIntvBefore(LSP); 1777 overlapIntv(To, BI.LastInstr); 1778 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1779 useIntv(From, To); 1780 selectIntv(IntvIn); 1781 useIntv(Start, From); 1782 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1783 } 1784 1785 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1786 unsigned IntvOut, SlotIndex EnterAfter) { 1787 SlotIndex Start, Stop; 1788 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1789 1790 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1791 << Stop << "), uses " << BI.FirstInstr << '-' 1792 << BI.LastInstr << ", reg-out " << IntvOut 1793 << ", enter after " << EnterAfter 1794 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1795 1796 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1797 1798 assert(IntvOut && "Must have register out"); 1799 assert(BI.LiveOut && "Must be live-out"); 1800 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1801 1802 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1803 LLVM_DEBUG(dbgs() << " after interference.\n"); 1804 // 1805 // >>>> Interference before def. 1806 // | o---o---| Defined in block. 1807 // ========= Use IntvOut everywhere. 1808 // 1809 selectIntv(IntvOut); 1810 useIntv(BI.FirstInstr, Stop); 1811 return; 1812 } 1813 1814 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1815 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1816 // 1817 // >>>> Interference before def. 1818 // |---o---o---| Live-through, stack-in. 1819 // ____========= Enter IntvOut before first use. 1820 // 1821 selectIntv(IntvOut); 1822 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1823 useIntv(Idx, Stop); 1824 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1825 return; 1826 } 1827 1828 // The interference is overlapping somewhere we wanted to use IntvOut. That 1829 // means we need to create a local interval that can be allocated a 1830 // different register. 1831 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1832 // 1833 // >>>>>>> Interference overlapping uses. 1834 // |---o---o---| Live-through, stack-in. 1835 // ____---====== Create local interval for interference range. 1836 // 1837 selectIntv(IntvOut); 1838 SlotIndex Idx = enterIntvAfter(EnterAfter); 1839 useIntv(Idx, Stop); 1840 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1841 1842 openIntv(); 1843 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1844 useIntv(From, Idx); 1845 } 1846 1847 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { 1848 OS << "{" << printMBBReference(*MBB) << ", " 1849 << "uses " << FirstInstr << " to " << LastInstr << ", " 1850 << "1st def " << FirstDef << ", " 1851 << (LiveIn ? "live in" : "dead in") << ", " 1852 << (LiveOut ? "live out" : "dead out") << "}"; 1853 } 1854 1855 void SplitAnalysis::BlockInfo::dump() const { 1856 print(dbgs()); 1857 dbgs() << "\n"; 1858 } 1859