1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveInterval.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LiveRangeCalc.h" 25 #include "llvm/CodeGen/LiveRangeEdit.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SlotIndexes.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetOpcodes.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/VirtRegMap.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/LaneBitmask.h" 44 #include "llvm/Support/Allocator.h" 45 #include "llvm/Support/BlockFrequency.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <limits> 54 #include <tuple> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "regalloc" 60 61 STATISTIC(NumFinished, "Number of splits finished"); 62 STATISTIC(NumSimple, "Number of splits that were simple"); 63 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 64 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 65 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 66 67 //===----------------------------------------------------------------------===// 68 // Last Insert Point Analysis 69 //===----------------------------------------------------------------------===// 70 71 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 72 unsigned BBNum) 73 : LIS(lis), LastInsertPoint(BBNum) {} 74 75 SlotIndex 76 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 77 const MachineBasicBlock &MBB) { 78 unsigned Num = MBB.getNumber(); 79 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 80 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 81 82 SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors; 83 for (const MachineBasicBlock *SMBB : MBB.successors()) 84 if (SMBB->isEHPad()) 85 EHPadSuccessors.push_back(SMBB); 86 87 // Compute insert points on the first call. The pair is independent of the 88 // current live interval. 89 if (!LIP.first.isValid()) { 90 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 91 if (FirstTerm == MBB.end()) 92 LIP.first = MBBEnd; 93 else 94 LIP.first = LIS.getInstructionIndex(*FirstTerm); 95 96 // If there is a landing pad successor, also find the call instruction. 97 if (EHPadSuccessors.empty()) 98 return LIP.first; 99 // There may not be a call instruction (?) in which case we ignore LPad. 100 LIP.second = LIP.first; 101 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin(); 102 I != E;) { 103 --I; 104 if (I->isCall()) { 105 LIP.second = LIS.getInstructionIndex(*I); 106 break; 107 } 108 } 109 } 110 111 // If CurLI is live into a landing pad successor, move the last insert point 112 // back to the call that may throw. 113 if (!LIP.second) 114 return LIP.first; 115 116 if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) { 117 return LIS.isLiveInToMBB(CurLI, EHPad); 118 })) 119 return LIP.first; 120 121 // Find the value leaving MBB. 122 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 123 if (!VNI) 124 return LIP.first; 125 126 // If the value leaving MBB was defined after the call in MBB, it can't 127 // really be live-in to the landing pad. This can happen if the landing pad 128 // has a PHI, and this register is undef on the exceptional edge. 129 // <rdar://problem/10664933> 130 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 131 return LIP.first; 132 133 // Value is properly live-in to the landing pad. 134 // Only allow inserts before the call. 135 return LIP.second; 136 } 137 138 MachineBasicBlock::iterator 139 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 140 MachineBasicBlock &MBB) { 141 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 142 if (LIP == LIS.getMBBEndIdx(&MBB)) 143 return MBB.end(); 144 return LIS.getInstructionFromIndex(LIP); 145 } 146 147 //===----------------------------------------------------------------------===// 148 // Split Analysis 149 //===----------------------------------------------------------------------===// 150 151 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 152 const MachineLoopInfo &mli) 153 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 154 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 155 156 void SplitAnalysis::clear() { 157 UseSlots.clear(); 158 UseBlocks.clear(); 159 ThroughBlocks.clear(); 160 CurLI = nullptr; 161 DidRepairRange = false; 162 } 163 164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 165 void SplitAnalysis::analyzeUses() { 166 assert(UseSlots.empty() && "Call clear first"); 167 168 // First get all the defs from the interval values. This provides the correct 169 // slots for early clobbers. 170 for (const VNInfo *VNI : CurLI->valnos) 171 if (!VNI->isPHIDef() && !VNI->isUnused()) 172 UseSlots.push_back(VNI->def); 173 174 // Get use slots form the use-def chain. 175 const MachineRegisterInfo &MRI = MF.getRegInfo(); 176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 177 if (!MO.isUndef()) 178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 179 180 array_pod_sort(UseSlots.begin(), UseSlots.end()); 181 182 // Remove duplicates, keeping the smaller slot for each instruction. 183 // That is what we want for early clobbers. 184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 185 SlotIndex::isSameInstr), 186 UseSlots.end()); 187 188 // Compute per-live block info. 189 if (!calcLiveBlockInfo()) { 190 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 191 // I am looking at you, RegisterCoalescer! 192 DidRepairRange = true; 193 ++NumRepairs; 194 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 195 const_cast<LiveIntervals&>(LIS) 196 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 197 UseBlocks.clear(); 198 ThroughBlocks.clear(); 199 bool fixed = calcLiveBlockInfo(); 200 (void)fixed; 201 assert(fixed && "Couldn't fix broken live interval"); 202 } 203 204 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 205 << UseBlocks.size() << " blocks, through " 206 << NumThroughBlocks << " blocks.\n"); 207 } 208 209 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 210 /// where CurLI is live. 211 bool SplitAnalysis::calcLiveBlockInfo() { 212 ThroughBlocks.resize(MF.getNumBlockIDs()); 213 NumThroughBlocks = NumGapBlocks = 0; 214 if (CurLI->empty()) 215 return true; 216 217 LiveInterval::const_iterator LVI = CurLI->begin(); 218 LiveInterval::const_iterator LVE = CurLI->end(); 219 220 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 221 UseI = UseSlots.begin(); 222 UseE = UseSlots.end(); 223 224 // Loop over basic blocks where CurLI is live. 225 MachineFunction::iterator MFI = 226 LIS.getMBBFromIndex(LVI->start)->getIterator(); 227 while (true) { 228 BlockInfo BI; 229 BI.MBB = &*MFI; 230 SlotIndex Start, Stop; 231 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 232 233 // If the block contains no uses, the range must be live through. At one 234 // point, RegisterCoalescer could create dangling ranges that ended 235 // mid-block. 236 if (UseI == UseE || *UseI >= Stop) { 237 ++NumThroughBlocks; 238 ThroughBlocks.set(BI.MBB->getNumber()); 239 // The range shouldn't end mid-block if there are no uses. This shouldn't 240 // happen. 241 if (LVI->end < Stop) 242 return false; 243 } else { 244 // This block has uses. Find the first and last uses in the block. 245 BI.FirstInstr = *UseI; 246 assert(BI.FirstInstr >= Start); 247 do ++UseI; 248 while (UseI != UseE && *UseI < Stop); 249 BI.LastInstr = UseI[-1]; 250 assert(BI.LastInstr < Stop); 251 252 // LVI is the first live segment overlapping MBB. 253 BI.LiveIn = LVI->start <= Start; 254 255 // When not live in, the first use should be a def. 256 if (!BI.LiveIn) { 257 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 258 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 259 BI.FirstDef = BI.FirstInstr; 260 } 261 262 // Look for gaps in the live range. 263 BI.LiveOut = true; 264 while (LVI->end < Stop) { 265 SlotIndex LastStop = LVI->end; 266 if (++LVI == LVE || LVI->start >= Stop) { 267 BI.LiveOut = false; 268 BI.LastInstr = LastStop; 269 break; 270 } 271 272 if (LastStop < LVI->start) { 273 // There is a gap in the live range. Create duplicate entries for the 274 // live-in snippet and the live-out snippet. 275 ++NumGapBlocks; 276 277 // Push the Live-in part. 278 BI.LiveOut = false; 279 UseBlocks.push_back(BI); 280 UseBlocks.back().LastInstr = LastStop; 281 282 // Set up BI for the live-out part. 283 BI.LiveIn = false; 284 BI.LiveOut = true; 285 BI.FirstInstr = BI.FirstDef = LVI->start; 286 } 287 288 // A Segment that starts in the middle of the block must be a def. 289 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 290 if (!BI.FirstDef) 291 BI.FirstDef = LVI->start; 292 } 293 294 UseBlocks.push_back(BI); 295 296 // LVI is now at LVE or LVI->end >= Stop. 297 if (LVI == LVE) 298 break; 299 } 300 301 // Live segment ends exactly at Stop. Move to the next segment. 302 if (LVI->end == Stop && ++LVI == LVE) 303 break; 304 305 // Pick the next basic block. 306 if (LVI->start < Stop) 307 ++MFI; 308 else 309 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 310 } 311 312 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 313 return true; 314 } 315 316 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 317 if (cli->empty()) 318 return 0; 319 LiveInterval *li = const_cast<LiveInterval*>(cli); 320 LiveInterval::iterator LVI = li->begin(); 321 LiveInterval::iterator LVE = li->end(); 322 unsigned Count = 0; 323 324 // Loop over basic blocks where li is live. 325 MachineFunction::const_iterator MFI = 326 LIS.getMBBFromIndex(LVI->start)->getIterator(); 327 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 328 while (true) { 329 ++Count; 330 LVI = li->advanceTo(LVI, Stop); 331 if (LVI == LVE) 332 return Count; 333 do { 334 ++MFI; 335 Stop = LIS.getMBBEndIdx(&*MFI); 336 } while (Stop <= LVI->start); 337 } 338 } 339 340 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 341 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 342 const LiveInterval &Orig = LIS.getInterval(OrigReg); 343 assert(!Orig.empty() && "Splitting empty interval?"); 344 LiveInterval::const_iterator I = Orig.find(Idx); 345 346 // Range containing Idx should begin at Idx. 347 if (I != Orig.end() && I->start <= Idx) 348 return I->start == Idx; 349 350 // Range does not contain Idx, previous must end at Idx. 351 return I != Orig.begin() && (--I)->end == Idx; 352 } 353 354 void SplitAnalysis::analyze(const LiveInterval *li) { 355 clear(); 356 CurLI = li; 357 analyzeUses(); 358 } 359 360 //===----------------------------------------------------------------------===// 361 // Split Editor 362 //===----------------------------------------------------------------------===// 363 364 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 365 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, 366 LiveIntervals &lis, VirtRegMap &vrm, 367 MachineDominatorTree &mdt, 368 MachineBlockFrequencyInfo &mbfi) 369 : SA(sa), AA(aa), LIS(lis), VRM(vrm), 370 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt), 371 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 372 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 373 MBFI(mbfi), RegAssign(Allocator) {} 374 375 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 376 Edit = &LRE; 377 SpillMode = SM; 378 OpenIdx = 0; 379 RegAssign.clear(); 380 Values.clear(); 381 382 // Reset the LiveRangeCalc instances needed for this spill mode. 383 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 384 &LIS.getVNInfoAllocator()); 385 if (SpillMode) 386 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 387 &LIS.getVNInfoAllocator()); 388 389 // We don't need an AliasAnalysis since we will only be performing 390 // cheap-as-a-copy remats anyway. 391 Edit->anyRematerializable(nullptr); 392 } 393 394 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 395 LLVM_DUMP_METHOD void SplitEditor::dump() const { 396 if (RegAssign.empty()) { 397 dbgs() << " empty\n"; 398 return; 399 } 400 401 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 402 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 403 dbgs() << '\n'; 404 } 405 #endif 406 407 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 408 LiveInterval &LI) { 409 for (LiveInterval::SubRange &S : LI.subranges()) 410 if (S.LaneMask == LM) 411 return S; 412 llvm_unreachable("SubRange for this mask not found"); 413 } 414 415 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 416 if (!LI.hasSubRanges()) { 417 LI.createDeadDef(VNI); 418 return; 419 } 420 421 SlotIndex Def = VNI->def; 422 if (Original) { 423 // If we are transferring a def from the original interval, make sure 424 // to only update the subranges for which the original subranges had 425 // a def at this location. 426 for (LiveInterval::SubRange &S : LI.subranges()) { 427 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 428 VNInfo *PV = PS.getVNInfoAt(Def); 429 if (PV != nullptr && PV->def == Def) 430 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 431 } 432 } else { 433 // This is a new def: either from rematerialization, or from an inserted 434 // copy. Since rematerialization can regenerate a definition of a sub- 435 // register, we need to check which subranges need to be updated. 436 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 437 assert(DefMI != nullptr); 438 LaneBitmask LM; 439 for (const MachineOperand &DefOp : DefMI->defs()) { 440 Register R = DefOp.getReg(); 441 if (R != LI.reg) 442 continue; 443 if (unsigned SR = DefOp.getSubReg()) 444 LM |= TRI.getSubRegIndexLaneMask(SR); 445 else { 446 LM = MRI.getMaxLaneMaskForVReg(R); 447 break; 448 } 449 } 450 for (LiveInterval::SubRange &S : LI.subranges()) 451 if ((S.LaneMask & LM).any()) 452 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 453 } 454 } 455 456 VNInfo *SplitEditor::defValue(unsigned RegIdx, 457 const VNInfo *ParentVNI, 458 SlotIndex Idx, 459 bool Original) { 460 assert(ParentVNI && "Mapping NULL value"); 461 assert(Idx.isValid() && "Invalid SlotIndex"); 462 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 463 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 464 465 // Create a new value. 466 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 467 468 bool Force = LI->hasSubRanges(); 469 ValueForcePair FP(Force ? nullptr : VNI, Force); 470 // Use insert for lookup, so we can add missing values with a second lookup. 471 std::pair<ValueMap::iterator, bool> InsP = 472 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 473 474 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 475 // forced. Keep it as a simple def without any liveness. 476 if (!Force && InsP.second) 477 return VNI; 478 479 // If the previous value was a simple mapping, add liveness for it now. 480 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 481 addDeadDef(*LI, OldVNI, Original); 482 483 // No longer a simple mapping. Switch to a complex mapping. If the 484 // interval has subranges, make it a forced mapping. 485 InsP.first->second = ValueForcePair(nullptr, Force); 486 } 487 488 // This is a complex mapping, add liveness for VNI 489 addDeadDef(*LI, VNI, Original); 490 return VNI; 491 } 492 493 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 494 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 495 VNInfo *VNI = VFP.getPointer(); 496 497 // ParentVNI was either unmapped or already complex mapped. Either way, just 498 // set the force bit. 499 if (!VNI) { 500 VFP.setInt(true); 501 return; 502 } 503 504 // This was previously a single mapping. Make sure the old def is represented 505 // by a trivial live range. 506 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 507 508 // Mark as complex mapped, forced. 509 VFP = ValueForcePair(nullptr, true); 510 } 511 512 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg, 513 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 514 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 515 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 516 bool FirstCopy = !Def.isValid(); 517 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 518 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 519 | getInternalReadRegState(!FirstCopy), SubIdx) 520 .addReg(FromReg, 0, SubIdx); 521 522 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 523 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 524 if (FirstCopy) { 525 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 526 } else { 527 CopyMI->bundleWithPred(); 528 } 529 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx); 530 DestLI.refineSubRanges(Allocator, LaneMask, 531 [Def, &Allocator](LiveInterval::SubRange &SR) { 532 SR.createDeadDef(Def, Allocator); 533 }, 534 Indexes, TRI); 535 return Def; 536 } 537 538 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg, 539 LaneBitmask LaneMask, MachineBasicBlock &MBB, 540 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 541 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 542 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 543 // The full vreg is copied. 544 MachineInstr *CopyMI = 545 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 546 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 547 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 548 } 549 550 // Only a subset of lanes needs to be copied. The following is a simple 551 // heuristic to construct a sequence of COPYs. We could add a target 552 // specific callback if this turns out to be suboptimal. 553 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 554 555 // First pass: Try to find a perfectly matching subregister index. If none 556 // exists find the one covering the most lanemask bits. 557 SmallVector<unsigned, 8> PossibleIndexes; 558 unsigned BestIdx = 0; 559 unsigned BestCover = 0; 560 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 561 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 562 for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) { 563 // Is this index even compatible with the given class? 564 if (TRI.getSubClassWithSubReg(RC, Idx) != RC) 565 continue; 566 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 567 // Early exit if we found a perfect match. 568 if (SubRegMask == LaneMask) { 569 BestIdx = Idx; 570 break; 571 } 572 573 // The index must not cover any lanes outside \p LaneMask. 574 if ((SubRegMask & ~LaneMask).any()) 575 continue; 576 577 unsigned PopCount = SubRegMask.getNumLanes(); 578 PossibleIndexes.push_back(Idx); 579 if (PopCount > BestCover) { 580 BestCover = PopCount; 581 BestIdx = Idx; 582 } 583 } 584 585 // Abort if we cannot possibly implement the COPY with the given indexes. 586 if (BestIdx == 0) 587 report_fatal_error("Impossible to implement partial COPY"); 588 589 SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, 590 BestIdx, DestLI, Late, SlotIndex()); 591 592 // Greedy heuristic: Keep iterating keeping the best covering subreg index 593 // each time. 594 LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx)); 595 while (LanesLeft.any()) { 596 unsigned BestIdx = 0; 597 int BestCover = std::numeric_limits<int>::min(); 598 for (unsigned Idx : PossibleIndexes) { 599 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 600 // Early exit if we found a perfect match. 601 if (SubRegMask == LanesLeft) { 602 BestIdx = Idx; 603 break; 604 } 605 606 // Try to cover as much of the remaining lanes as possible but 607 // as few of the already covered lanes as possible. 608 int Cover = (SubRegMask & LanesLeft).getNumLanes() 609 - (SubRegMask & ~LanesLeft).getNumLanes(); 610 if (Cover > BestCover) { 611 BestCover = Cover; 612 BestIdx = Idx; 613 } 614 } 615 616 if (BestIdx == 0) 617 report_fatal_error("Impossible to implement partial COPY"); 618 619 buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 620 DestLI, Late, Def); 621 LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx); 622 } 623 624 return Def; 625 } 626 627 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 628 VNInfo *ParentVNI, 629 SlotIndex UseIdx, 630 MachineBasicBlock &MBB, 631 MachineBasicBlock::iterator I) { 632 SlotIndex Def; 633 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 634 635 // We may be trying to avoid interference that ends at a deleted instruction, 636 // so always begin RegIdx 0 early and all others late. 637 bool Late = RegIdx != 0; 638 639 // Attempt cheap-as-a-copy rematerialization. 640 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 641 LiveInterval &OrigLI = LIS.getInterval(Original); 642 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 643 644 unsigned Reg = LI->reg; 645 bool DidRemat = false; 646 if (OrigVNI) { 647 LiveRangeEdit::Remat RM(ParentVNI); 648 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 649 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 650 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 651 ++NumRemats; 652 DidRemat = true; 653 } 654 } 655 if (!DidRemat) { 656 LaneBitmask LaneMask; 657 if (LI->hasSubRanges()) { 658 LaneMask = LaneBitmask::getNone(); 659 for (LiveInterval::SubRange &S : LI->subranges()) 660 LaneMask |= S.LaneMask; 661 } else { 662 LaneMask = LaneBitmask::getAll(); 663 } 664 665 ++NumCopies; 666 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 667 } 668 669 // Define the value in Reg. 670 return defValue(RegIdx, ParentVNI, Def, false); 671 } 672 673 /// Create a new virtual register and live interval. 674 unsigned SplitEditor::openIntv() { 675 // Create the complement as index 0. 676 if (Edit->empty()) 677 Edit->createEmptyInterval(); 678 679 // Create the open interval. 680 OpenIdx = Edit->size(); 681 Edit->createEmptyInterval(); 682 return OpenIdx; 683 } 684 685 void SplitEditor::selectIntv(unsigned Idx) { 686 assert(Idx != 0 && "Cannot select the complement interval"); 687 assert(Idx < Edit->size() && "Can only select previously opened interval"); 688 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 689 OpenIdx = Idx; 690 } 691 692 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 693 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 694 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 695 Idx = Idx.getBaseIndex(); 696 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 697 if (!ParentVNI) { 698 LLVM_DEBUG(dbgs() << ": not live\n"); 699 return Idx; 700 } 701 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 702 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 703 assert(MI && "enterIntvBefore called with invalid index"); 704 705 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 706 return VNI->def; 707 } 708 709 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 710 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 711 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 712 Idx = Idx.getBoundaryIndex(); 713 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 714 if (!ParentVNI) { 715 LLVM_DEBUG(dbgs() << ": not live\n"); 716 return Idx; 717 } 718 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 719 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 720 assert(MI && "enterIntvAfter called with invalid index"); 721 722 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 723 std::next(MachineBasicBlock::iterator(MI))); 724 return VNI->def; 725 } 726 727 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 728 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 729 SlotIndex End = LIS.getMBBEndIdx(&MBB); 730 SlotIndex Last = End.getPrevSlot(); 731 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 732 << Last); 733 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 734 if (!ParentVNI) { 735 LLVM_DEBUG(dbgs() << ": not live\n"); 736 return End; 737 } 738 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 739 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 740 SA.getLastSplitPointIter(&MBB)); 741 RegAssign.insert(VNI->def, End, OpenIdx); 742 LLVM_DEBUG(dump()); 743 return VNI->def; 744 } 745 746 /// useIntv - indicate that all instructions in MBB should use OpenLI. 747 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 748 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 749 } 750 751 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 752 assert(OpenIdx && "openIntv not called before useIntv"); 753 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 754 RegAssign.insert(Start, End, OpenIdx); 755 LLVM_DEBUG(dump()); 756 } 757 758 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 759 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 760 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 761 762 // The interval must be live beyond the instruction at Idx. 763 SlotIndex Boundary = Idx.getBoundaryIndex(); 764 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 765 if (!ParentVNI) { 766 LLVM_DEBUG(dbgs() << ": not live\n"); 767 return Boundary.getNextSlot(); 768 } 769 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 770 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 771 assert(MI && "No instruction at index"); 772 773 // In spill mode, make live ranges as short as possible by inserting the copy 774 // before MI. This is only possible if that instruction doesn't redefine the 775 // value. The inserted COPY is not a kill, and we don't need to recompute 776 // the source live range. The spiller also won't try to hoist this copy. 777 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 778 MI->readsVirtualRegister(Edit->getReg())) { 779 forceRecompute(0, *ParentVNI); 780 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 781 return Idx; 782 } 783 784 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 785 std::next(MachineBasicBlock::iterator(MI))); 786 return VNI->def; 787 } 788 789 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 790 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 791 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 792 793 // The interval must be live into the instruction at Idx. 794 Idx = Idx.getBaseIndex(); 795 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 796 if (!ParentVNI) { 797 LLVM_DEBUG(dbgs() << ": not live\n"); 798 return Idx.getNextSlot(); 799 } 800 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 801 802 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 803 assert(MI && "No instruction at index"); 804 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 805 return VNI->def; 806 } 807 808 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 809 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 810 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 811 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 812 << Start); 813 814 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 815 if (!ParentVNI) { 816 LLVM_DEBUG(dbgs() << ": not live\n"); 817 return Start; 818 } 819 820 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 821 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 822 RegAssign.insert(Start, VNI->def, OpenIdx); 823 LLVM_DEBUG(dump()); 824 return VNI->def; 825 } 826 827 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 828 assert(OpenIdx && "openIntv not called before overlapIntv"); 829 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 830 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 831 "Parent changes value in extended range"); 832 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 833 "Range cannot span basic blocks"); 834 835 // The complement interval will be extended as needed by LRCalc.extend(). 836 if (ParentVNI) 837 forceRecompute(0, *ParentVNI); 838 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 839 RegAssign.insert(Start, End, OpenIdx); 840 LLVM_DEBUG(dump()); 841 } 842 843 //===----------------------------------------------------------------------===// 844 // Spill modes 845 //===----------------------------------------------------------------------===// 846 847 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 848 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 849 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 850 RegAssignMap::iterator AssignI; 851 AssignI.setMap(RegAssign); 852 853 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 854 SlotIndex Def = Copies[i]->def; 855 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 856 assert(MI && "No instruction for back-copy"); 857 858 MachineBasicBlock *MBB = MI->getParent(); 859 MachineBasicBlock::iterator MBBI(MI); 860 bool AtBegin; 861 do AtBegin = MBBI == MBB->begin(); 862 while (!AtBegin && (--MBBI)->isDebugInstr()); 863 864 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 865 LIS.removeVRegDefAt(*LI, Def); 866 LIS.RemoveMachineInstrFromMaps(*MI); 867 MI->eraseFromParent(); 868 869 // Adjust RegAssign if a register assignment is killed at Def. We want to 870 // avoid calculating the live range of the source register if possible. 871 AssignI.find(Def.getPrevSlot()); 872 if (!AssignI.valid() || AssignI.start() >= Def) 873 continue; 874 // If MI doesn't kill the assigned register, just leave it. 875 if (AssignI.stop() != Def) 876 continue; 877 unsigned RegIdx = AssignI.value(); 878 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 879 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 880 << '\n'); 881 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 882 } else { 883 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 884 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 885 AssignI.setStop(Kill); 886 } 887 } 888 } 889 890 MachineBasicBlock* 891 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 892 MachineBasicBlock *DefMBB) { 893 if (MBB == DefMBB) 894 return MBB; 895 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 896 897 const MachineLoopInfo &Loops = SA.Loops; 898 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 899 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 900 901 // Best candidate so far. 902 MachineBasicBlock *BestMBB = MBB; 903 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 904 905 while (true) { 906 const MachineLoop *Loop = Loops.getLoopFor(MBB); 907 908 // MBB isn't in a loop, it doesn't get any better. All dominators have a 909 // higher frequency by definition. 910 if (!Loop) { 911 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 912 << " dominates " << printMBBReference(*MBB) 913 << " at depth 0\n"); 914 return MBB; 915 } 916 917 // We'll never be able to exit the DefLoop. 918 if (Loop == DefLoop) { 919 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 920 << " dominates " << printMBBReference(*MBB) 921 << " in the same loop\n"); 922 return MBB; 923 } 924 925 // Least busy dominator seen so far. 926 unsigned Depth = Loop->getLoopDepth(); 927 if (Depth < BestDepth) { 928 BestMBB = MBB; 929 BestDepth = Depth; 930 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 931 << " dominates " << printMBBReference(*MBB) 932 << " at depth " << Depth << '\n'); 933 } 934 935 // Leave loop by going to the immediate dominator of the loop header. 936 // This is a bigger stride than simply walking up the dominator tree. 937 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 938 939 // Too far up the dominator tree? 940 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 941 return BestMBB; 942 943 MBB = IDom->getBlock(); 944 } 945 } 946 947 void SplitEditor::computeRedundantBackCopies( 948 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 949 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 950 LiveInterval *Parent = &Edit->getParent(); 951 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 952 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 953 954 // Aggregate VNIs having the same value as ParentVNI. 955 for (VNInfo *VNI : LI->valnos) { 956 if (VNI->isUnused()) 957 continue; 958 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 959 EqualVNs[ParentVNI->id].insert(VNI); 960 } 961 962 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 963 // redundant VNIs to BackCopies. 964 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 965 VNInfo *ParentVNI = Parent->getValNumInfo(i); 966 if (!NotToHoistSet.count(ParentVNI->id)) 967 continue; 968 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 969 SmallPtrSetIterator<VNInfo *> It2 = It1; 970 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 971 It2 = It1; 972 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 973 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 974 continue; 975 976 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 977 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 978 if (MBB1 == MBB2) { 979 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 980 } else if (MDT.dominates(MBB1, MBB2)) { 981 DominatedVNIs.insert(*It2); 982 } else if (MDT.dominates(MBB2, MBB1)) { 983 DominatedVNIs.insert(*It1); 984 } 985 } 986 } 987 if (!DominatedVNIs.empty()) { 988 forceRecompute(0, *ParentVNI); 989 for (auto VNI : DominatedVNIs) { 990 BackCopies.push_back(VNI); 991 } 992 DominatedVNIs.clear(); 993 } 994 } 995 } 996 997 /// For SM_Size mode, find a common dominator for all the back-copies for 998 /// the same ParentVNI and hoist the backcopies to the dominator BB. 999 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 1000 /// to do the hoisting, simply remove the dominated backcopies for the same 1001 /// ParentVNI. 1002 void SplitEditor::hoistCopies() { 1003 // Get the complement interval, always RegIdx 0. 1004 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1005 LiveInterval *Parent = &Edit->getParent(); 1006 1007 // Track the nearest common dominator for all back-copies for each ParentVNI, 1008 // indexed by ParentVNI->id. 1009 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1010 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1011 // The total cost of all the back-copies for each ParentVNI. 1012 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1013 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1014 // for Speed. 1015 DenseSet<unsigned> NotToHoistSet; 1016 1017 // Find the nearest common dominator for parent values with multiple 1018 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1019 for (VNInfo *VNI : LI->valnos) { 1020 if (VNI->isUnused()) 1021 continue; 1022 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1023 assert(ParentVNI && "Parent not live at complement def"); 1024 1025 // Don't hoist remats. The complement is probably going to disappear 1026 // completely anyway. 1027 if (Edit->didRematerialize(ParentVNI)) 1028 continue; 1029 1030 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1031 1032 DomPair &Dom = NearestDom[ParentVNI->id]; 1033 1034 // Keep directly defined parent values. This is either a PHI or an 1035 // instruction in the complement range. All other copies of ParentVNI 1036 // should be eliminated. 1037 if (VNI->def == ParentVNI->def) { 1038 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1039 Dom = DomPair(ValMBB, VNI->def); 1040 continue; 1041 } 1042 // Skip the singly mapped values. There is nothing to gain from hoisting a 1043 // single back-copy. 1044 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1045 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1046 continue; 1047 } 1048 1049 if (!Dom.first) { 1050 // First time we see ParentVNI. VNI dominates itself. 1051 Dom = DomPair(ValMBB, VNI->def); 1052 } else if (Dom.first == ValMBB) { 1053 // Two defs in the same block. Pick the earlier def. 1054 if (!Dom.second.isValid() || VNI->def < Dom.second) 1055 Dom.second = VNI->def; 1056 } else { 1057 // Different basic blocks. Check if one dominates. 1058 MachineBasicBlock *Near = 1059 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1060 if (Near == ValMBB) 1061 // Def ValMBB dominates. 1062 Dom = DomPair(ValMBB, VNI->def); 1063 else if (Near != Dom.first) 1064 // None dominate. Hoist to common dominator, need new def. 1065 Dom = DomPair(Near, SlotIndex()); 1066 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1067 } 1068 1069 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1070 << VNI->def << " for parent " << ParentVNI->id << '@' 1071 << ParentVNI->def << " hoist to " 1072 << printMBBReference(*Dom.first) << ' ' << Dom.second 1073 << '\n'); 1074 } 1075 1076 // Insert the hoisted copies. 1077 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1078 DomPair &Dom = NearestDom[i]; 1079 if (!Dom.first || Dom.second.isValid()) 1080 continue; 1081 // This value needs a hoisted copy inserted at the end of Dom.first. 1082 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1083 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1084 // Get a less loopy dominator than Dom.first. 1085 Dom.first = findShallowDominator(Dom.first, DefMBB); 1086 if (SpillMode == SM_Speed && 1087 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1088 NotToHoistSet.insert(ParentVNI->id); 1089 continue; 1090 } 1091 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 1092 Dom.second = 1093 defFromParent(0, ParentVNI, Last, *Dom.first, 1094 SA.getLastSplitPointIter(Dom.first))->def; 1095 } 1096 1097 // Remove redundant back-copies that are now known to be dominated by another 1098 // def with the same value. 1099 SmallVector<VNInfo*, 8> BackCopies; 1100 for (VNInfo *VNI : LI->valnos) { 1101 if (VNI->isUnused()) 1102 continue; 1103 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1104 const DomPair &Dom = NearestDom[ParentVNI->id]; 1105 if (!Dom.first || Dom.second == VNI->def || 1106 NotToHoistSet.count(ParentVNI->id)) 1107 continue; 1108 BackCopies.push_back(VNI); 1109 forceRecompute(0, *ParentVNI); 1110 } 1111 1112 // If it is not beneficial to hoist all the BackCopies, simply remove 1113 // redundant BackCopies in speed mode. 1114 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1115 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1116 1117 removeBackCopies(BackCopies); 1118 } 1119 1120 /// transferValues - Transfer all possible values to the new live ranges. 1121 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 1122 bool SplitEditor::transferValues() { 1123 bool Skipped = false; 1124 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1125 for (const LiveRange::Segment &S : Edit->getParent()) { 1126 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1127 VNInfo *ParentVNI = S.valno; 1128 // RegAssign has holes where RegIdx 0 should be used. 1129 SlotIndex Start = S.start; 1130 AssignI.advanceTo(Start); 1131 do { 1132 unsigned RegIdx; 1133 SlotIndex End = S.end; 1134 if (!AssignI.valid()) { 1135 RegIdx = 0; 1136 } else if (AssignI.start() <= Start) { 1137 RegIdx = AssignI.value(); 1138 if (AssignI.stop() < End) { 1139 End = AssignI.stop(); 1140 ++AssignI; 1141 } 1142 } else { 1143 RegIdx = 0; 1144 End = std::min(End, AssignI.start()); 1145 } 1146 1147 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1148 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1149 << printReg(Edit->get(RegIdx)) << ')'); 1150 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1151 1152 // Check for a simply defined value that can be blitted directly. 1153 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1154 if (VNInfo *VNI = VFP.getPointer()) { 1155 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1156 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1157 Start = End; 1158 continue; 1159 } 1160 1161 // Skip values with forced recomputation. 1162 if (VFP.getInt()) { 1163 LLVM_DEBUG(dbgs() << "(recalc)"); 1164 Skipped = true; 1165 Start = End; 1166 continue; 1167 } 1168 1169 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1170 1171 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1172 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1173 // LiveInBlocks. 1174 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1175 SlotIndex BlockStart, BlockEnd; 1176 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1177 1178 // The first block may be live-in, or it may have its own def. 1179 if (Start != BlockStart) { 1180 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1181 assert(VNI && "Missing def for complex mapped value"); 1182 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1183 // MBB has its own def. Is it also live-out? 1184 if (BlockEnd <= End) 1185 LRC.setLiveOutValue(&*MBB, VNI); 1186 1187 // Skip to the next block for live-in. 1188 ++MBB; 1189 BlockStart = BlockEnd; 1190 } 1191 1192 // Handle the live-in blocks covered by [Start;End). 1193 assert(Start <= BlockStart && "Expected live-in block"); 1194 while (BlockStart < End) { 1195 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1196 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1197 if (BlockStart == ParentVNI->def) { 1198 // This block has the def of a parent PHI, so it isn't live-in. 1199 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1200 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1201 assert(VNI && "Missing def for complex mapped parent PHI"); 1202 if (End >= BlockEnd) 1203 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1204 } else { 1205 // This block needs a live-in value. The last block covered may not 1206 // be live-out. 1207 if (End < BlockEnd) 1208 LRC.addLiveInBlock(LI, MDT[&*MBB], End); 1209 else { 1210 // Live-through, and we don't know the value. 1211 LRC.addLiveInBlock(LI, MDT[&*MBB]); 1212 LRC.setLiveOutValue(&*MBB, nullptr); 1213 } 1214 } 1215 BlockStart = BlockEnd; 1216 ++MBB; 1217 } 1218 Start = End; 1219 } while (Start != S.end); 1220 LLVM_DEBUG(dbgs() << '\n'); 1221 } 1222 1223 LRCalc[0].calculateValues(); 1224 if (SpillMode) 1225 LRCalc[1].calculateValues(); 1226 1227 return Skipped; 1228 } 1229 1230 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1231 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1232 if (Seg == nullptr) 1233 return true; 1234 if (Seg->end != Def.getDeadSlot()) 1235 return false; 1236 // This is a dead PHI. Remove it. 1237 LR.removeSegment(*Seg, true); 1238 return true; 1239 } 1240 1241 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC, 1242 LiveRange &LR, LaneBitmask LM, 1243 ArrayRef<SlotIndex> Undefs) { 1244 for (MachineBasicBlock *P : B.predecessors()) { 1245 SlotIndex End = LIS.getMBBEndIdx(P); 1246 SlotIndex LastUse = End.getPrevSlot(); 1247 // The predecessor may not have a live-out value. That is OK, like an 1248 // undef PHI operand. 1249 LiveInterval &PLI = Edit->getParent(); 1250 // Need the cast because the inputs to ?: would otherwise be deemed 1251 // "incompatible": SubRange vs LiveInterval. 1252 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI) 1253 : static_cast<LiveRange&>(PLI); 1254 if (PSR.liveAt(LastUse)) 1255 LRC.extend(LR, End, /*PhysReg=*/0, Undefs); 1256 } 1257 } 1258 1259 void SplitEditor::extendPHIKillRanges() { 1260 // Extend live ranges to be live-out for successor PHI values. 1261 1262 // Visit each PHI def slot in the parent live interval. If the def is dead, 1263 // remove it. Otherwise, extend the live interval to reach the end indexes 1264 // of all predecessor blocks. 1265 1266 LiveInterval &ParentLI = Edit->getParent(); 1267 for (const VNInfo *V : ParentLI.valnos) { 1268 if (V->isUnused() || !V->isPHIDef()) 1269 continue; 1270 1271 unsigned RegIdx = RegAssign.lookup(V->def); 1272 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1273 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1274 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1275 if (!removeDeadSegment(V->def, LI)) 1276 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1277 } 1278 1279 SmallVector<SlotIndex, 4> Undefs; 1280 LiveRangeCalc SubLRC; 1281 1282 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1283 for (const VNInfo *V : PS.valnos) { 1284 if (V->isUnused() || !V->isPHIDef()) 1285 continue; 1286 unsigned RegIdx = RegAssign.lookup(V->def); 1287 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1288 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI); 1289 if (removeDeadSegment(V->def, S)) 1290 continue; 1291 1292 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1293 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1294 &LIS.getVNInfoAllocator()); 1295 Undefs.clear(); 1296 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1297 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs); 1298 } 1299 } 1300 } 1301 1302 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1303 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1304 struct ExtPoint { 1305 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1306 : MO(O), RegIdx(R), Next(N) {} 1307 1308 MachineOperand MO; 1309 unsigned RegIdx; 1310 SlotIndex Next; 1311 }; 1312 1313 SmallVector<ExtPoint,4> ExtPoints; 1314 1315 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1316 RE = MRI.reg_end(); RI != RE;) { 1317 MachineOperand &MO = *RI; 1318 MachineInstr *MI = MO.getParent(); 1319 ++RI; 1320 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1321 if (MI->isDebugValue()) { 1322 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1323 MO.setReg(0); 1324 continue; 1325 } 1326 1327 // <undef> operands don't really read the register, so it doesn't matter 1328 // which register we choose. When the use operand is tied to a def, we must 1329 // use the same register as the def, so just do that always. 1330 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1331 if (MO.isDef() || MO.isUndef()) 1332 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1333 1334 // Rewrite to the mapped register at Idx. 1335 unsigned RegIdx = RegAssign.lookup(Idx); 1336 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1337 MO.setReg(LI.reg); 1338 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1339 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1340 1341 // Extend liveness to Idx if the instruction reads reg. 1342 if (!ExtendRanges || MO.isUndef()) 1343 continue; 1344 1345 // Skip instructions that don't read Reg. 1346 if (MO.isDef()) { 1347 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1348 continue; 1349 // We may want to extend a live range for a partial redef, or for a use 1350 // tied to an early clobber. 1351 Idx = Idx.getPrevSlot(); 1352 if (!Edit->getParent().liveAt(Idx)) 1353 continue; 1354 } else 1355 Idx = Idx.getRegSlot(true); 1356 1357 SlotIndex Next = Idx.getNextSlot(); 1358 if (LI.hasSubRanges()) { 1359 // We have to delay extending subranges until we have seen all operands 1360 // defining the register. This is because a <def,read-undef> operand 1361 // will create an "undef" point, and we cannot extend any subranges 1362 // until all of them have been accounted for. 1363 if (MO.isUse()) 1364 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1365 } else { 1366 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1367 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1368 } 1369 } 1370 1371 for (ExtPoint &EP : ExtPoints) { 1372 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1373 assert(LI.hasSubRanges()); 1374 1375 LiveRangeCalc SubLRC; 1376 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1377 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1378 : MRI.getMaxLaneMaskForVReg(Reg); 1379 for (LiveInterval::SubRange &S : LI.subranges()) { 1380 if ((S.LaneMask & LM).none()) 1381 continue; 1382 // The problem here can be that the new register may have been created 1383 // for a partially defined original register. For example: 1384 // %0:subreg_hireg<def,read-undef> = ... 1385 // ... 1386 // %1 = COPY %0 1387 if (S.empty()) 1388 continue; 1389 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1390 &LIS.getVNInfoAllocator()); 1391 SmallVector<SlotIndex, 4> Undefs; 1392 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1393 SubLRC.extend(S, EP.Next, 0, Undefs); 1394 } 1395 } 1396 1397 for (unsigned R : *Edit) { 1398 LiveInterval &LI = LIS.getInterval(R); 1399 if (!LI.hasSubRanges()) 1400 continue; 1401 LI.clear(); 1402 LI.removeEmptySubRanges(); 1403 LIS.constructMainRangeFromSubranges(LI); 1404 } 1405 } 1406 1407 void SplitEditor::deleteRematVictims() { 1408 SmallVector<MachineInstr*, 8> Dead; 1409 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1410 LiveInterval *LI = &LIS.getInterval(*I); 1411 for (const LiveRange::Segment &S : LI->segments) { 1412 // Dead defs end at the dead slot. 1413 if (S.end != S.valno->def.getDeadSlot()) 1414 continue; 1415 if (S.valno->isPHIDef()) 1416 continue; 1417 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1418 assert(MI && "Missing instruction for dead def"); 1419 MI->addRegisterDead(LI->reg, &TRI); 1420 1421 if (!MI->allDefsAreDead()) 1422 continue; 1423 1424 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1425 Dead.push_back(MI); 1426 } 1427 } 1428 1429 if (Dead.empty()) 1430 return; 1431 1432 Edit->eliminateDeadDefs(Dead, None, &AA); 1433 } 1434 1435 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1436 // Fast-path for common case. 1437 if (!ParentVNI.isPHIDef()) { 1438 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1439 forceRecompute(I, ParentVNI); 1440 return; 1441 } 1442 1443 // Trace value through phis. 1444 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1445 SmallVector<const VNInfo *, 4> WorkList; 1446 Visited.insert(&ParentVNI); 1447 WorkList.push_back(&ParentVNI); 1448 1449 const LiveInterval &ParentLI = Edit->getParent(); 1450 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1451 do { 1452 const VNInfo &VNI = *WorkList.back(); 1453 WorkList.pop_back(); 1454 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1455 forceRecompute(I, VNI); 1456 if (!VNI.isPHIDef()) 1457 continue; 1458 1459 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1460 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1461 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1462 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1463 assert(PredVNI && "Value available in PhiVNI predecessor"); 1464 if (Visited.insert(PredVNI).second) 1465 WorkList.push_back(PredVNI); 1466 } 1467 } while(!WorkList.empty()); 1468 } 1469 1470 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1471 ++NumFinished; 1472 1473 // At this point, the live intervals in Edit contain VNInfos corresponding to 1474 // the inserted copies. 1475 1476 // Add the original defs from the parent interval. 1477 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1478 if (ParentVNI->isUnused()) 1479 continue; 1480 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1481 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1482 1483 // Force rematted values to be recomputed everywhere. 1484 // The new live ranges may be truncated. 1485 if (Edit->didRematerialize(ParentVNI)) 1486 forceRecomputeVNI(*ParentVNI); 1487 } 1488 1489 // Hoist back-copies to the complement interval when in spill mode. 1490 switch (SpillMode) { 1491 case SM_Partition: 1492 // Leave all back-copies as is. 1493 break; 1494 case SM_Size: 1495 case SM_Speed: 1496 // hoistCopies will behave differently between size and speed. 1497 hoistCopies(); 1498 } 1499 1500 // Transfer the simply mapped values, check if any are skipped. 1501 bool Skipped = transferValues(); 1502 1503 // Rewrite virtual registers, possibly extending ranges. 1504 rewriteAssigned(Skipped); 1505 1506 if (Skipped) 1507 extendPHIKillRanges(); 1508 else 1509 ++NumSimple; 1510 1511 // Delete defs that were rematted everywhere. 1512 if (Skipped) 1513 deleteRematVictims(); 1514 1515 // Get rid of unused values and set phi-kill flags. 1516 for (unsigned Reg : *Edit) { 1517 LiveInterval &LI = LIS.getInterval(Reg); 1518 LI.removeEmptySubRanges(); 1519 LI.RenumberValues(); 1520 } 1521 1522 // Provide a reverse mapping from original indices to Edit ranges. 1523 if (LRMap) { 1524 LRMap->clear(); 1525 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1526 LRMap->push_back(i); 1527 } 1528 1529 // Now check if any registers were separated into multiple components. 1530 ConnectedVNInfoEqClasses ConEQ(LIS); 1531 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1532 // Don't use iterators, they are invalidated by create() below. 1533 unsigned VReg = Edit->get(i); 1534 LiveInterval &LI = LIS.getInterval(VReg); 1535 SmallVector<LiveInterval*, 8> SplitLIs; 1536 LIS.splitSeparateComponents(LI, SplitLIs); 1537 unsigned Original = VRM.getOriginal(VReg); 1538 for (LiveInterval *SplitLI : SplitLIs) 1539 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1540 1541 // The new intervals all map back to i. 1542 if (LRMap) 1543 LRMap->resize(Edit->size(), i); 1544 } 1545 1546 // Calculate spill weight and allocation hints for new intervals. 1547 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1548 1549 assert(!LRMap || LRMap->size() == Edit->size()); 1550 } 1551 1552 //===----------------------------------------------------------------------===// 1553 // Single Block Splitting 1554 //===----------------------------------------------------------------------===// 1555 1556 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1557 bool SingleInstrs) const { 1558 // Always split for multiple instructions. 1559 if (!BI.isOneInstr()) 1560 return true; 1561 // Don't split for single instructions unless explicitly requested. 1562 if (!SingleInstrs) 1563 return false; 1564 // Splitting a live-through range always makes progress. 1565 if (BI.LiveIn && BI.LiveOut) 1566 return true; 1567 // No point in isolating a copy. It has no register class constraints. 1568 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1569 return false; 1570 // Finally, don't isolate an end point that was created by earlier splits. 1571 return isOriginalEndpoint(BI.FirstInstr); 1572 } 1573 1574 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1575 openIntv(); 1576 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1577 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1578 LastSplitPoint)); 1579 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1580 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1581 } else { 1582 // The last use is after the last valid split point. 1583 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1584 useIntv(SegStart, SegStop); 1585 overlapIntv(SegStop, BI.LastInstr); 1586 } 1587 } 1588 1589 //===----------------------------------------------------------------------===// 1590 // Global Live Range Splitting Support 1591 //===----------------------------------------------------------------------===// 1592 1593 // These methods support a method of global live range splitting that uses a 1594 // global algorithm to decide intervals for CFG edges. They will insert split 1595 // points and color intervals in basic blocks while avoiding interference. 1596 // 1597 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1598 // are on the stack. 1599 1600 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1601 unsigned IntvIn, SlotIndex LeaveBefore, 1602 unsigned IntvOut, SlotIndex EnterAfter){ 1603 SlotIndex Start, Stop; 1604 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1605 1606 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1607 << ") intf " << LeaveBefore << '-' << EnterAfter 1608 << ", live-through " << IntvIn << " -> " << IntvOut); 1609 1610 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1611 1612 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1613 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1614 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1615 1616 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1617 1618 if (!IntvOut) { 1619 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1620 // 1621 // <<<<<<<<< Possible LeaveBefore interference. 1622 // |-----------| Live through. 1623 // -____________ Spill on entry. 1624 // 1625 selectIntv(IntvIn); 1626 SlotIndex Idx = leaveIntvAtTop(*MBB); 1627 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1628 (void)Idx; 1629 return; 1630 } 1631 1632 if (!IntvIn) { 1633 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1634 // 1635 // >>>>>>> Possible EnterAfter interference. 1636 // |-----------| Live through. 1637 // ___________-- Reload on exit. 1638 // 1639 selectIntv(IntvOut); 1640 SlotIndex Idx = enterIntvAtEnd(*MBB); 1641 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1642 (void)Idx; 1643 return; 1644 } 1645 1646 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1647 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1648 // 1649 // |-----------| Live through. 1650 // ------------- Straight through, same intv, no interference. 1651 // 1652 selectIntv(IntvOut); 1653 useIntv(Start, Stop); 1654 return; 1655 } 1656 1657 // We cannot legally insert splits after LSP. 1658 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1659 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1660 1661 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1662 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1663 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1664 // 1665 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1666 // |-----------| Live through. 1667 // ------======= Switch intervals between interference. 1668 // 1669 selectIntv(IntvOut); 1670 SlotIndex Idx; 1671 if (LeaveBefore && LeaveBefore < LSP) { 1672 Idx = enterIntvBefore(LeaveBefore); 1673 useIntv(Idx, Stop); 1674 } else { 1675 Idx = enterIntvAtEnd(*MBB); 1676 } 1677 selectIntv(IntvIn); 1678 useIntv(Start, Idx); 1679 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1680 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1681 return; 1682 } 1683 1684 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1685 // 1686 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1687 // |-----------| Live through. 1688 // ==---------== Switch intervals before/after interference. 1689 // 1690 assert(LeaveBefore <= EnterAfter && "Missed case"); 1691 1692 selectIntv(IntvOut); 1693 SlotIndex Idx = enterIntvAfter(EnterAfter); 1694 useIntv(Idx, Stop); 1695 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1696 1697 selectIntv(IntvIn); 1698 Idx = leaveIntvBefore(LeaveBefore); 1699 useIntv(Start, Idx); 1700 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1701 } 1702 1703 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1704 unsigned IntvIn, SlotIndex LeaveBefore) { 1705 SlotIndex Start, Stop; 1706 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1707 1708 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1709 << Stop << "), uses " << BI.FirstInstr << '-' 1710 << BI.LastInstr << ", reg-in " << IntvIn 1711 << ", leave before " << LeaveBefore 1712 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1713 1714 assert(IntvIn && "Must have register in"); 1715 assert(BI.LiveIn && "Must be live-in"); 1716 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1717 1718 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1719 LLVM_DEBUG(dbgs() << " before interference.\n"); 1720 // 1721 // <<< Interference after kill. 1722 // |---o---x | Killed in block. 1723 // ========= Use IntvIn everywhere. 1724 // 1725 selectIntv(IntvIn); 1726 useIntv(Start, BI.LastInstr); 1727 return; 1728 } 1729 1730 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1731 1732 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1733 // 1734 // <<< Possible interference after last use. 1735 // |---o---o---| Live-out on stack. 1736 // =========____ Leave IntvIn after last use. 1737 // 1738 // < Interference after last use. 1739 // |---o---o--o| Live-out on stack, late last use. 1740 // ============ Copy to stack after LSP, overlap IntvIn. 1741 // \_____ Stack interval is live-out. 1742 // 1743 if (BI.LastInstr < LSP) { 1744 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1745 selectIntv(IntvIn); 1746 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1747 useIntv(Start, Idx); 1748 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1749 } else { 1750 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1751 selectIntv(IntvIn); 1752 SlotIndex Idx = leaveIntvBefore(LSP); 1753 overlapIntv(Idx, BI.LastInstr); 1754 useIntv(Start, Idx); 1755 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1756 } 1757 return; 1758 } 1759 1760 // The interference is overlapping somewhere we wanted to use IntvIn. That 1761 // means we need to create a local interval that can be allocated a 1762 // different register. 1763 unsigned LocalIntv = openIntv(); 1764 (void)LocalIntv; 1765 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1766 1767 if (!BI.LiveOut || BI.LastInstr < LSP) { 1768 // 1769 // <<<<<<< Interference overlapping uses. 1770 // |---o---o---| Live-out on stack. 1771 // =====----____ Leave IntvIn before interference, then spill. 1772 // 1773 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1774 SlotIndex From = enterIntvBefore(LeaveBefore); 1775 useIntv(From, To); 1776 selectIntv(IntvIn); 1777 useIntv(Start, From); 1778 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1779 return; 1780 } 1781 1782 // <<<<<<< Interference overlapping uses. 1783 // |---o---o--o| Live-out on stack, late last use. 1784 // =====------- Copy to stack before LSP, overlap LocalIntv. 1785 // \_____ Stack interval is live-out. 1786 // 1787 SlotIndex To = leaveIntvBefore(LSP); 1788 overlapIntv(To, BI.LastInstr); 1789 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1790 useIntv(From, To); 1791 selectIntv(IntvIn); 1792 useIntv(Start, From); 1793 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1794 } 1795 1796 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1797 unsigned IntvOut, SlotIndex EnterAfter) { 1798 SlotIndex Start, Stop; 1799 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1800 1801 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1802 << Stop << "), uses " << BI.FirstInstr << '-' 1803 << BI.LastInstr << ", reg-out " << IntvOut 1804 << ", enter after " << EnterAfter 1805 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1806 1807 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1808 1809 assert(IntvOut && "Must have register out"); 1810 assert(BI.LiveOut && "Must be live-out"); 1811 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1812 1813 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1814 LLVM_DEBUG(dbgs() << " after interference.\n"); 1815 // 1816 // >>>> Interference before def. 1817 // | o---o---| Defined in block. 1818 // ========= Use IntvOut everywhere. 1819 // 1820 selectIntv(IntvOut); 1821 useIntv(BI.FirstInstr, Stop); 1822 return; 1823 } 1824 1825 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1826 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1827 // 1828 // >>>> Interference before def. 1829 // |---o---o---| Live-through, stack-in. 1830 // ____========= Enter IntvOut before first use. 1831 // 1832 selectIntv(IntvOut); 1833 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1834 useIntv(Idx, Stop); 1835 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1836 return; 1837 } 1838 1839 // The interference is overlapping somewhere we wanted to use IntvOut. That 1840 // means we need to create a local interval that can be allocated a 1841 // different register. 1842 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1843 // 1844 // >>>>>>> Interference overlapping uses. 1845 // |---o---o---| Live-through, stack-in. 1846 // ____---====== Create local interval for interference range. 1847 // 1848 selectIntv(IntvOut); 1849 SlotIndex Idx = enterIntvAfter(EnterAfter); 1850 useIntv(Idx, Stop); 1851 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1852 1853 openIntv(); 1854 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1855 useIntv(From, Idx); 1856 } 1857