xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SplitKit.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc"
48 
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple,   "Number of splits that were simple");
51 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
52 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
53 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
54 
55 //===----------------------------------------------------------------------===//
56 //                     Last Insert Point Analysis
57 //===----------------------------------------------------------------------===//
58 
59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
60                                          unsigned BBNum)
61     : LIS(lis), LastInsertPoint(BBNum) {}
62 
63 SlotIndex
64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
65                                             const MachineBasicBlock &MBB) {
66   unsigned Num = MBB.getNumber();
67   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
68   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69 
70   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
71   bool EHPadSuccessor = false;
72   for (const MachineBasicBlock *SMBB : MBB.successors()) {
73     if (SMBB->isEHPad()) {
74       ExceptionalSuccessors.push_back(SMBB);
75       EHPadSuccessor = true;
76     } else if (SMBB->isInlineAsmBrIndirectTarget())
77       ExceptionalSuccessors.push_back(SMBB);
78   }
79 
80   // Compute insert points on the first call. The pair is independent of the
81   // current live interval.
82   if (!LIP.first.isValid()) {
83     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
84     if (FirstTerm == MBB.end())
85       LIP.first = MBBEnd;
86     else
87       LIP.first = LIS.getInstructionIndex(*FirstTerm);
88 
89     // If there is a landing pad or inlineasm_br successor, also find the
90     // instruction. If there is no such instruction, we don't need to do
91     // anything special.  We assume there cannot be multiple instructions that
92     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
93     // assume that if there are any, they will be after any other call
94     // instructions in the block.
95     if (ExceptionalSuccessors.empty())
96       return LIP.first;
97     for (const MachineInstr &MI : llvm::reverse(MBB)) {
98       if ((EHPadSuccessor && MI.isCall()) ||
99           MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
100         LIP.second = LIS.getInstructionIndex(MI);
101         break;
102       }
103     }
104   }
105 
106   // If CurLI is live into a landing pad successor, move the last insert point
107   // back to the call that may throw.
108   if (!LIP.second)
109     return LIP.first;
110 
111   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
112         return LIS.isLiveInToMBB(CurLI, EHPad);
113       }))
114     return LIP.first;
115 
116   // Find the value leaving MBB.
117   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
118   if (!VNI)
119     return LIP.first;
120 
121   // The def of statepoint instruction is a gc relocation and it should be alive
122   // in landing pad. So we cannot split interval after statepoint instruction.
123   if (SlotIndex::isSameInstr(VNI->def, LIP.second))
124     if (auto *I = LIS.getInstructionFromIndex(LIP.second))
125       if (I->getOpcode() == TargetOpcode::STATEPOINT)
126         return LIP.second;
127 
128   // If the value leaving MBB was defined after the call in MBB, it can't
129   // really be live-in to the landing pad.  This can happen if the landing pad
130   // has a PHI, and this register is undef on the exceptional edge.
131   // <rdar://problem/10664933>
132   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
133     return LIP.first;
134 
135   // Value is properly live-in to the landing pad.
136   // Only allow inserts before the call.
137   return LIP.second;
138 }
139 
140 MachineBasicBlock::iterator
141 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
142                                             MachineBasicBlock &MBB) {
143   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
144   if (LIP == LIS.getMBBEndIdx(&MBB))
145     return MBB.end();
146   return LIS.getInstructionFromIndex(LIP);
147 }
148 
149 //===----------------------------------------------------------------------===//
150 //                                 Split Analysis
151 //===----------------------------------------------------------------------===//
152 
153 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
154                              const MachineLoopInfo &mli)
155     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
156       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
157 
158 void SplitAnalysis::clear() {
159   UseSlots.clear();
160   UseBlocks.clear();
161   ThroughBlocks.clear();
162   CurLI = nullptr;
163   DidRepairRange = false;
164 }
165 
166 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
167 void SplitAnalysis::analyzeUses() {
168   assert(UseSlots.empty() && "Call clear first");
169 
170   // First get all the defs from the interval values. This provides the correct
171   // slots for early clobbers.
172   for (const VNInfo *VNI : CurLI->valnos)
173     if (!VNI->isPHIDef() && !VNI->isUnused())
174       UseSlots.push_back(VNI->def);
175 
176   // Get use slots form the use-def chain.
177   const MachineRegisterInfo &MRI = MF.getRegInfo();
178   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
179     if (!MO.isUndef())
180       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
181 
182   array_pod_sort(UseSlots.begin(), UseSlots.end());
183 
184   // Remove duplicates, keeping the smaller slot for each instruction.
185   // That is what we want for early clobbers.
186   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
187                              SlotIndex::isSameInstr),
188                  UseSlots.end());
189 
190   // Compute per-live block info.
191   if (!calcLiveBlockInfo()) {
192     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
193     // I am looking at you, RegisterCoalescer!
194     DidRepairRange = true;
195     ++NumRepairs;
196     LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
197     const_cast<LiveIntervals&>(LIS)
198       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
199     UseBlocks.clear();
200     ThroughBlocks.clear();
201     bool fixed = calcLiveBlockInfo();
202     (void)fixed;
203     assert(fixed && "Couldn't fix broken live interval");
204   }
205 
206   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
207                     << UseBlocks.size() << " blocks, through "
208                     << NumThroughBlocks << " blocks.\n");
209 }
210 
211 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
212 /// where CurLI is live.
213 bool SplitAnalysis::calcLiveBlockInfo() {
214   ThroughBlocks.resize(MF.getNumBlockIDs());
215   NumThroughBlocks = NumGapBlocks = 0;
216   if (CurLI->empty())
217     return true;
218 
219   LiveInterval::const_iterator LVI = CurLI->begin();
220   LiveInterval::const_iterator LVE = CurLI->end();
221 
222   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
223   UseI = UseSlots.begin();
224   UseE = UseSlots.end();
225 
226   // Loop over basic blocks where CurLI is live.
227   MachineFunction::iterator MFI =
228       LIS.getMBBFromIndex(LVI->start)->getIterator();
229   while (true) {
230     BlockInfo BI;
231     BI.MBB = &*MFI;
232     SlotIndex Start, Stop;
233     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
234 
235     // If the block contains no uses, the range must be live through. At one
236     // point, RegisterCoalescer could create dangling ranges that ended
237     // mid-block.
238     if (UseI == UseE || *UseI >= Stop) {
239       ++NumThroughBlocks;
240       ThroughBlocks.set(BI.MBB->getNumber());
241       // The range shouldn't end mid-block if there are no uses. This shouldn't
242       // happen.
243       if (LVI->end < Stop)
244         return false;
245     } else {
246       // This block has uses. Find the first and last uses in the block.
247       BI.FirstInstr = *UseI;
248       assert(BI.FirstInstr >= Start);
249       do ++UseI;
250       while (UseI != UseE && *UseI < Stop);
251       BI.LastInstr = UseI[-1];
252       assert(BI.LastInstr < Stop);
253 
254       // LVI is the first live segment overlapping MBB.
255       BI.LiveIn = LVI->start <= Start;
256 
257       // When not live in, the first use should be a def.
258       if (!BI.LiveIn) {
259         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
260         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
261         BI.FirstDef = BI.FirstInstr;
262       }
263 
264       // Look for gaps in the live range.
265       BI.LiveOut = true;
266       while (LVI->end < Stop) {
267         SlotIndex LastStop = LVI->end;
268         if (++LVI == LVE || LVI->start >= Stop) {
269           BI.LiveOut = false;
270           BI.LastInstr = LastStop;
271           break;
272         }
273 
274         if (LastStop < LVI->start) {
275           // There is a gap in the live range. Create duplicate entries for the
276           // live-in snippet and the live-out snippet.
277           ++NumGapBlocks;
278 
279           // Push the Live-in part.
280           BI.LiveOut = false;
281           UseBlocks.push_back(BI);
282           UseBlocks.back().LastInstr = LastStop;
283 
284           // Set up BI for the live-out part.
285           BI.LiveIn = false;
286           BI.LiveOut = true;
287           BI.FirstInstr = BI.FirstDef = LVI->start;
288         }
289 
290         // A Segment that starts in the middle of the block must be a def.
291         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
292         if (!BI.FirstDef)
293           BI.FirstDef = LVI->start;
294       }
295 
296       UseBlocks.push_back(BI);
297 
298       // LVI is now at LVE or LVI->end >= Stop.
299       if (LVI == LVE)
300         break;
301     }
302 
303     // Live segment ends exactly at Stop. Move to the next segment.
304     if (LVI->end == Stop && ++LVI == LVE)
305       break;
306 
307     // Pick the next basic block.
308     if (LVI->start < Stop)
309       ++MFI;
310     else
311       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
312   }
313 
314   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
315   return true;
316 }
317 
318 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
319   if (cli->empty())
320     return 0;
321   LiveInterval *li = const_cast<LiveInterval*>(cli);
322   LiveInterval::iterator LVI = li->begin();
323   LiveInterval::iterator LVE = li->end();
324   unsigned Count = 0;
325 
326   // Loop over basic blocks where li is live.
327   MachineFunction::const_iterator MFI =
328       LIS.getMBBFromIndex(LVI->start)->getIterator();
329   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
330   while (true) {
331     ++Count;
332     LVI = li->advanceTo(LVI, Stop);
333     if (LVI == LVE)
334       return Count;
335     do {
336       ++MFI;
337       Stop = LIS.getMBBEndIdx(&*MFI);
338     } while (Stop <= LVI->start);
339   }
340 }
341 
342 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
343   unsigned OrigReg = VRM.getOriginal(CurLI->reg());
344   const LiveInterval &Orig = LIS.getInterval(OrigReg);
345   assert(!Orig.empty() && "Splitting empty interval?");
346   LiveInterval::const_iterator I = Orig.find(Idx);
347 
348   // Range containing Idx should begin at Idx.
349   if (I != Orig.end() && I->start <= Idx)
350     return I->start == Idx;
351 
352   // Range does not contain Idx, previous must end at Idx.
353   return I != Orig.begin() && (--I)->end == Idx;
354 }
355 
356 void SplitAnalysis::analyze(const LiveInterval *li) {
357   clear();
358   CurLI = li;
359   analyzeUses();
360 }
361 
362 //===----------------------------------------------------------------------===//
363 //                               Split Editor
364 //===----------------------------------------------------------------------===//
365 
366 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
367 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA,
368                          LiveIntervals &LIS, VirtRegMap &VRM,
369                          MachineDominatorTree &MDT,
370                          MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
371     : SA(SA), AA(AA), LIS(LIS), VRM(VRM),
372       MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT),
373       TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
374       TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
375       MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
376 
377 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
378   Edit = &LRE;
379   SpillMode = SM;
380   OpenIdx = 0;
381   RegAssign.clear();
382   Values.clear();
383 
384   // Reset the LiveIntervalCalc instances needed for this spill mode.
385   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
386                   &LIS.getVNInfoAllocator());
387   if (SpillMode)
388     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
389                     &LIS.getVNInfoAllocator());
390 
391   // We don't need an AliasAnalysis since we will only be performing
392   // cheap-as-a-copy remats anyway.
393   Edit->anyRematerializable(nullptr);
394 }
395 
396 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
397 LLVM_DUMP_METHOD void SplitEditor::dump() const {
398   if (RegAssign.empty()) {
399     dbgs() << " empty\n";
400     return;
401   }
402 
403   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
404     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
405   dbgs() << '\n';
406 }
407 #endif
408 
409 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM,
410                                                              LiveInterval &LI) {
411   for (LiveInterval::SubRange &S : LI.subranges())
412     if (S.LaneMask == LM)
413       return S;
414   llvm_unreachable("SubRange for this mask not found");
415 }
416 
417 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
418                                                         LiveInterval &LI) {
419   for (LiveInterval::SubRange &S : LI.subranges())
420     if ((S.LaneMask & LM) == LM)
421       return S;
422   llvm_unreachable("SubRange for this mask not found");
423 }
424 
425 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
426   if (!LI.hasSubRanges()) {
427     LI.createDeadDef(VNI);
428     return;
429   }
430 
431   SlotIndex Def = VNI->def;
432   if (Original) {
433     // If we are transferring a def from the original interval, make sure
434     // to only update the subranges for which the original subranges had
435     // a def at this location.
436     for (LiveInterval::SubRange &S : LI.subranges()) {
437       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
438       VNInfo *PV = PS.getVNInfoAt(Def);
439       if (PV != nullptr && PV->def == Def)
440         S.createDeadDef(Def, LIS.getVNInfoAllocator());
441     }
442   } else {
443     // This is a new def: either from rematerialization, or from an inserted
444     // copy. Since rematerialization can regenerate a definition of a sub-
445     // register, we need to check which subranges need to be updated.
446     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
447     assert(DefMI != nullptr);
448     LaneBitmask LM;
449     for (const MachineOperand &DefOp : DefMI->defs()) {
450       Register R = DefOp.getReg();
451       if (R != LI.reg())
452         continue;
453       if (unsigned SR = DefOp.getSubReg())
454         LM |= TRI.getSubRegIndexLaneMask(SR);
455       else {
456         LM = MRI.getMaxLaneMaskForVReg(R);
457         break;
458       }
459     }
460     for (LiveInterval::SubRange &S : LI.subranges())
461       if ((S.LaneMask & LM).any())
462         S.createDeadDef(Def, LIS.getVNInfoAllocator());
463   }
464 }
465 
466 VNInfo *SplitEditor::defValue(unsigned RegIdx,
467                               const VNInfo *ParentVNI,
468                               SlotIndex Idx,
469                               bool Original) {
470   assert(ParentVNI && "Mapping  NULL value");
471   assert(Idx.isValid() && "Invalid SlotIndex");
472   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
473   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
474 
475   // Create a new value.
476   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
477 
478   bool Force = LI->hasSubRanges();
479   ValueForcePair FP(Force ? nullptr : VNI, Force);
480   // Use insert for lookup, so we can add missing values with a second lookup.
481   std::pair<ValueMap::iterator, bool> InsP =
482     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
483 
484   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
485   // forced. Keep it as a simple def without any liveness.
486   if (!Force && InsP.second)
487     return VNI;
488 
489   // If the previous value was a simple mapping, add liveness for it now.
490   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
491     addDeadDef(*LI, OldVNI, Original);
492 
493     // No longer a simple mapping.  Switch to a complex mapping. If the
494     // interval has subranges, make it a forced mapping.
495     InsP.first->second = ValueForcePair(nullptr, Force);
496   }
497 
498   // This is a complex mapping, add liveness for VNI
499   addDeadDef(*LI, VNI, Original);
500   return VNI;
501 }
502 
503 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
504   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
505   VNInfo *VNI = VFP.getPointer();
506 
507   // ParentVNI was either unmapped or already complex mapped. Either way, just
508   // set the force bit.
509   if (!VNI) {
510     VFP.setInt(true);
511     return;
512   }
513 
514   // This was previously a single mapping. Make sure the old def is represented
515   // by a trivial live range.
516   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
517 
518   // Mark as complex mapped, forced.
519   VFP = ValueForcePair(nullptr, true);
520 }
521 
522 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
523     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
524     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
525   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
526   bool FirstCopy = !Def.isValid();
527   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
528       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
529               | getInternalReadRegState(!FirstCopy), SubIdx)
530       .addReg(FromReg, 0, SubIdx);
531 
532   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
533   SlotIndexes &Indexes = *LIS.getSlotIndexes();
534   if (FirstCopy) {
535     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
536   } else {
537     CopyMI->bundleWithPred();
538   }
539   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
540   DestLI.refineSubRanges(Allocator, LaneMask,
541                          [Def, &Allocator](LiveInterval::SubRange &SR) {
542                            SR.createDeadDef(Def, Allocator);
543                          },
544                          Indexes, TRI);
545   return Def;
546 }
547 
548 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
549     LaneBitmask LaneMask, MachineBasicBlock &MBB,
550     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
551   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
552   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
553     // The full vreg is copied.
554     MachineInstr *CopyMI =
555         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
556     SlotIndexes &Indexes = *LIS.getSlotIndexes();
557     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
558   }
559 
560   // Only a subset of lanes needs to be copied. The following is a simple
561   // heuristic to construct a sequence of COPYs. We could add a target
562   // specific callback if this turns out to be suboptimal.
563   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
564 
565   // First pass: Try to find a perfectly matching subregister index. If none
566   // exists find the one covering the most lanemask bits.
567   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
568   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
569 
570   SmallVector<unsigned, 8> Indexes;
571 
572   // Abort if we cannot possibly implement the COPY with the given indexes.
573   if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, Indexes))
574     report_fatal_error("Impossible to implement partial COPY");
575 
576   SlotIndex Def;
577   for (unsigned BestIdx : Indexes) {
578     Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
579                                 DestLI, Late, Def);
580   }
581 
582   return Def;
583 }
584 
585 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
586                                    VNInfo *ParentVNI,
587                                    SlotIndex UseIdx,
588                                    MachineBasicBlock &MBB,
589                                    MachineBasicBlock::iterator I) {
590   SlotIndex Def;
591   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
592 
593   // We may be trying to avoid interference that ends at a deleted instruction,
594   // so always begin RegIdx 0 early and all others late.
595   bool Late = RegIdx != 0;
596 
597   // Attempt cheap-as-a-copy rematerialization.
598   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
599   LiveInterval &OrigLI = LIS.getInterval(Original);
600   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
601 
602   Register Reg = LI->reg();
603   bool DidRemat = false;
604   if (OrigVNI) {
605     LiveRangeEdit::Remat RM(ParentVNI);
606     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
607     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
608       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
609       ++NumRemats;
610       DidRemat = true;
611     }
612   }
613   if (!DidRemat) {
614     LaneBitmask LaneMask;
615     if (OrigLI.hasSubRanges()) {
616       LaneMask = LaneBitmask::getNone();
617       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
618         if (S.liveAt(UseIdx))
619           LaneMask |= S.LaneMask;
620       }
621     } else {
622       LaneMask = LaneBitmask::getAll();
623     }
624 
625     if (LaneMask.none()) {
626       const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
627       MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
628       SlotIndexes &Indexes = *LIS.getSlotIndexes();
629       Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
630     } else {
631       ++NumCopies;
632       Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
633     }
634   }
635 
636   // Define the value in Reg.
637   return defValue(RegIdx, ParentVNI, Def, false);
638 }
639 
640 /// Create a new virtual register and live interval.
641 unsigned SplitEditor::openIntv() {
642   // Create the complement as index 0.
643   if (Edit->empty())
644     Edit->createEmptyInterval();
645 
646   // Create the open interval.
647   OpenIdx = Edit->size();
648   Edit->createEmptyInterval();
649   return OpenIdx;
650 }
651 
652 void SplitEditor::selectIntv(unsigned Idx) {
653   assert(Idx != 0 && "Cannot select the complement interval");
654   assert(Idx < Edit->size() && "Can only select previously opened interval");
655   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
656   OpenIdx = Idx;
657 }
658 
659 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
660   assert(OpenIdx && "openIntv not called before enterIntvBefore");
661   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
662   Idx = Idx.getBaseIndex();
663   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
664   if (!ParentVNI) {
665     LLVM_DEBUG(dbgs() << ": not live\n");
666     return Idx;
667   }
668   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
669   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
670   assert(MI && "enterIntvBefore called with invalid index");
671 
672   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
673   return VNI->def;
674 }
675 
676 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
677   assert(OpenIdx && "openIntv not called before enterIntvAfter");
678   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
679   Idx = Idx.getBoundaryIndex();
680   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
681   if (!ParentVNI) {
682     LLVM_DEBUG(dbgs() << ": not live\n");
683     return Idx;
684   }
685   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
686   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
687   assert(MI && "enterIntvAfter called with invalid index");
688 
689   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
690                               std::next(MachineBasicBlock::iterator(MI)));
691   return VNI->def;
692 }
693 
694 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
695   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
696   SlotIndex End = LIS.getMBBEndIdx(&MBB);
697   SlotIndex Last = End.getPrevSlot();
698   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
699                     << Last);
700   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
701   if (!ParentVNI) {
702     LLVM_DEBUG(dbgs() << ": not live\n");
703     return End;
704   }
705   SlotIndex LSP = SA.getLastSplitPoint(&MBB);
706   if (LSP < Last) {
707     // It could be that the use after LSP is a def, and thus the ParentVNI
708     // just selected starts at that def.  For this case to exist, the def
709     // must be part of a tied def/use pair (as otherwise we'd have split
710     // distinct live ranges into individual live intervals), and thus we
711     // can insert the def into the VNI of the use and the tied def/use
712     // pair can live in the resulting interval.
713     Last = LSP;
714     ParentVNI = Edit->getParent().getVNInfoAt(Last);
715     if (!ParentVNI) {
716       // undef use --> undef tied def
717       LLVM_DEBUG(dbgs() << ": tied use not live\n");
718       return End;
719     }
720   }
721 
722   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
723   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
724                               SA.getLastSplitPointIter(&MBB));
725   RegAssign.insert(VNI->def, End, OpenIdx);
726   LLVM_DEBUG(dump());
727   return VNI->def;
728 }
729 
730 /// useIntv - indicate that all instructions in MBB should use OpenLI.
731 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
732   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
733 }
734 
735 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
736   assert(OpenIdx && "openIntv not called before useIntv");
737   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
738   RegAssign.insert(Start, End, OpenIdx);
739   LLVM_DEBUG(dump());
740 }
741 
742 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
743   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
744   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
745 
746   // The interval must be live beyond the instruction at Idx.
747   SlotIndex Boundary = Idx.getBoundaryIndex();
748   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
749   if (!ParentVNI) {
750     LLVM_DEBUG(dbgs() << ": not live\n");
751     return Boundary.getNextSlot();
752   }
753   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
754   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
755   assert(MI && "No instruction at index");
756 
757   // In spill mode, make live ranges as short as possible by inserting the copy
758   // before MI.  This is only possible if that instruction doesn't redefine the
759   // value.  The inserted COPY is not a kill, and we don't need to recompute
760   // the source live range.  The spiller also won't try to hoist this copy.
761   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
762       MI->readsVirtualRegister(Edit->getReg())) {
763     forceRecompute(0, *ParentVNI);
764     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
765     return Idx;
766   }
767 
768   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
769                               std::next(MachineBasicBlock::iterator(MI)));
770   return VNI->def;
771 }
772 
773 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
774   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
775   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
776 
777   // The interval must be live into the instruction at Idx.
778   Idx = Idx.getBaseIndex();
779   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
780   if (!ParentVNI) {
781     LLVM_DEBUG(dbgs() << ": not live\n");
782     return Idx.getNextSlot();
783   }
784   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
785 
786   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
787   assert(MI && "No instruction at index");
788   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
789   return VNI->def;
790 }
791 
792 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
793   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
794   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
795   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
796                     << Start);
797 
798   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
799   if (!ParentVNI) {
800     LLVM_DEBUG(dbgs() << ": not live\n");
801     return Start;
802   }
803 
804   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
805                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
806   RegAssign.insert(Start, VNI->def, OpenIdx);
807   LLVM_DEBUG(dump());
808   return VNI->def;
809 }
810 
811 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
812   return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
813     return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
814   });
815 }
816 
817 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
818   assert(OpenIdx && "openIntv not called before overlapIntv");
819   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
820   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
821          "Parent changes value in extended range");
822   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
823          "Range cannot span basic blocks");
824 
825   // The complement interval will be extended as needed by LICalc.extend().
826   if (ParentVNI)
827     forceRecompute(0, *ParentVNI);
828 
829   // If the last use is tied to a def, we can't mark it as live for the
830   // interval which includes only the use.  That would cause the tied pair
831   // to end up in two different intervals.
832   if (auto *MI = LIS.getInstructionFromIndex(End))
833     if (hasTiedUseOf(*MI, Edit->getReg())) {
834       LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
835       return;
836     }
837 
838   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
839   RegAssign.insert(Start, End, OpenIdx);
840   LLVM_DEBUG(dump());
841 }
842 
843 //===----------------------------------------------------------------------===//
844 //                                  Spill modes
845 //===----------------------------------------------------------------------===//
846 
847 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
848   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
849   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
850   RegAssignMap::iterator AssignI;
851   AssignI.setMap(RegAssign);
852 
853   for (const VNInfo *C : Copies) {
854     SlotIndex Def = C->def;
855     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
856     assert(MI && "No instruction for back-copy");
857 
858     MachineBasicBlock *MBB = MI->getParent();
859     MachineBasicBlock::iterator MBBI(MI);
860     bool AtBegin;
861     do AtBegin = MBBI == MBB->begin();
862     while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
863 
864     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
865     LIS.removeVRegDefAt(*LI, Def);
866     LIS.RemoveMachineInstrFromMaps(*MI);
867     MI->eraseFromParent();
868 
869     // Adjust RegAssign if a register assignment is killed at Def. We want to
870     // avoid calculating the live range of the source register if possible.
871     AssignI.find(Def.getPrevSlot());
872     if (!AssignI.valid() || AssignI.start() >= Def)
873       continue;
874     // If MI doesn't kill the assigned register, just leave it.
875     if (AssignI.stop() != Def)
876       continue;
877     unsigned RegIdx = AssignI.value();
878     // We could hoist back-copy right after another back-copy. As a result
879     // MMBI points to copy instruction which is actually dead now.
880     // We cannot set its stop to MBBI which will be the same as start and
881     // interval does not support that.
882     SlotIndex Kill =
883         AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
884     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
885         Kill <= AssignI.start()) {
886       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
887                         << '\n');
888       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
889     } else {
890       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
891       AssignI.setStop(Kill);
892     }
893   }
894 }
895 
896 MachineBasicBlock*
897 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
898                                   MachineBasicBlock *DefMBB) {
899   if (MBB == DefMBB)
900     return MBB;
901   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
902 
903   const MachineLoopInfo &Loops = SA.Loops;
904   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
905   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
906 
907   // Best candidate so far.
908   MachineBasicBlock *BestMBB = MBB;
909   unsigned BestDepth = std::numeric_limits<unsigned>::max();
910 
911   while (true) {
912     const MachineLoop *Loop = Loops.getLoopFor(MBB);
913 
914     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
915     // higher frequency by definition.
916     if (!Loop) {
917       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
918                         << " dominates " << printMBBReference(*MBB)
919                         << " at depth 0\n");
920       return MBB;
921     }
922 
923     // We'll never be able to exit the DefLoop.
924     if (Loop == DefLoop) {
925       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
926                         << " dominates " << printMBBReference(*MBB)
927                         << " in the same loop\n");
928       return MBB;
929     }
930 
931     // Least busy dominator seen so far.
932     unsigned Depth = Loop->getLoopDepth();
933     if (Depth < BestDepth) {
934       BestMBB = MBB;
935       BestDepth = Depth;
936       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
937                         << " dominates " << printMBBReference(*MBB)
938                         << " at depth " << Depth << '\n');
939     }
940 
941     // Leave loop by going to the immediate dominator of the loop header.
942     // This is a bigger stride than simply walking up the dominator tree.
943     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
944 
945     // Too far up the dominator tree?
946     if (!IDom || !MDT.dominates(DefDomNode, IDom))
947       return BestMBB;
948 
949     MBB = IDom->getBlock();
950   }
951 }
952 
953 void SplitEditor::computeRedundantBackCopies(
954     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
955   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
956   LiveInterval *Parent = &Edit->getParent();
957   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
958   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
959 
960   // Aggregate VNIs having the same value as ParentVNI.
961   for (VNInfo *VNI : LI->valnos) {
962     if (VNI->isUnused())
963       continue;
964     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
965     EqualVNs[ParentVNI->id].insert(VNI);
966   }
967 
968   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
969   // redundant VNIs to BackCopies.
970   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
971     VNInfo *ParentVNI = Parent->getValNumInfo(i);
972     if (!NotToHoistSet.count(ParentVNI->id))
973       continue;
974     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
975     SmallPtrSetIterator<VNInfo *> It2 = It1;
976     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
977       It2 = It1;
978       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
979         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
980           continue;
981 
982         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
983         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
984         if (MBB1 == MBB2) {
985           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
986         } else if (MDT.dominates(MBB1, MBB2)) {
987           DominatedVNIs.insert(*It2);
988         } else if (MDT.dominates(MBB2, MBB1)) {
989           DominatedVNIs.insert(*It1);
990         }
991       }
992     }
993     if (!DominatedVNIs.empty()) {
994       forceRecompute(0, *ParentVNI);
995       append_range(BackCopies, DominatedVNIs);
996       DominatedVNIs.clear();
997     }
998   }
999 }
1000 
1001 /// For SM_Size mode, find a common dominator for all the back-copies for
1002 /// the same ParentVNI and hoist the backcopies to the dominator BB.
1003 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1004 /// to do the hoisting, simply remove the dominated backcopies for the same
1005 /// ParentVNI.
1006 void SplitEditor::hoistCopies() {
1007   // Get the complement interval, always RegIdx 0.
1008   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1009   LiveInterval *Parent = &Edit->getParent();
1010 
1011   // Track the nearest common dominator for all back-copies for each ParentVNI,
1012   // indexed by ParentVNI->id.
1013   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1014   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1015   // The total cost of all the back-copies for each ParentVNI.
1016   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1017   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1018   // for Speed.
1019   DenseSet<unsigned> NotToHoistSet;
1020 
1021   // Find the nearest common dominator for parent values with multiple
1022   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1023   for (VNInfo *VNI : LI->valnos) {
1024     if (VNI->isUnused())
1025       continue;
1026     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1027     assert(ParentVNI && "Parent not live at complement def");
1028 
1029     // Don't hoist remats.  The complement is probably going to disappear
1030     // completely anyway.
1031     if (Edit->didRematerialize(ParentVNI))
1032       continue;
1033 
1034     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1035 
1036     DomPair &Dom = NearestDom[ParentVNI->id];
1037 
1038     // Keep directly defined parent values.  This is either a PHI or an
1039     // instruction in the complement range.  All other copies of ParentVNI
1040     // should be eliminated.
1041     if (VNI->def == ParentVNI->def) {
1042       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1043       Dom = DomPair(ValMBB, VNI->def);
1044       continue;
1045     }
1046     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1047     // single back-copy.
1048     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1049       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1050       continue;
1051     }
1052 
1053     if (!Dom.first) {
1054       // First time we see ParentVNI.  VNI dominates itself.
1055       Dom = DomPair(ValMBB, VNI->def);
1056     } else if (Dom.first == ValMBB) {
1057       // Two defs in the same block.  Pick the earlier def.
1058       if (!Dom.second.isValid() || VNI->def < Dom.second)
1059         Dom.second = VNI->def;
1060     } else {
1061       // Different basic blocks. Check if one dominates.
1062       MachineBasicBlock *Near =
1063         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1064       if (Near == ValMBB)
1065         // Def ValMBB dominates.
1066         Dom = DomPair(ValMBB, VNI->def);
1067       else if (Near != Dom.first)
1068         // None dominate. Hoist to common dominator, need new def.
1069         Dom = DomPair(Near, SlotIndex());
1070       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1071     }
1072 
1073     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1074                       << VNI->def << " for parent " << ParentVNI->id << '@'
1075                       << ParentVNI->def << " hoist to "
1076                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1077                       << '\n');
1078   }
1079 
1080   // Insert the hoisted copies.
1081   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1082     DomPair &Dom = NearestDom[i];
1083     if (!Dom.first || Dom.second.isValid())
1084       continue;
1085     // This value needs a hoisted copy inserted at the end of Dom.first.
1086     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1087     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1088     // Get a less loopy dominator than Dom.first.
1089     Dom.first = findShallowDominator(Dom.first, DefMBB);
1090     if (SpillMode == SM_Speed &&
1091         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1092       NotToHoistSet.insert(ParentVNI->id);
1093       continue;
1094     }
1095     SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1096     if (LSP <= ParentVNI->def) {
1097       NotToHoistSet.insert(ParentVNI->id);
1098       continue;
1099     }
1100     Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1101                                SA.getLastSplitPointIter(Dom.first))->def;
1102   }
1103 
1104   // Remove redundant back-copies that are now known to be dominated by another
1105   // def with the same value.
1106   SmallVector<VNInfo*, 8> BackCopies;
1107   for (VNInfo *VNI : LI->valnos) {
1108     if (VNI->isUnused())
1109       continue;
1110     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1111     const DomPair &Dom = NearestDom[ParentVNI->id];
1112     if (!Dom.first || Dom.second == VNI->def ||
1113         NotToHoistSet.count(ParentVNI->id))
1114       continue;
1115     BackCopies.push_back(VNI);
1116     forceRecompute(0, *ParentVNI);
1117   }
1118 
1119   // If it is not beneficial to hoist all the BackCopies, simply remove
1120   // redundant BackCopies in speed mode.
1121   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1122     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1123 
1124   removeBackCopies(BackCopies);
1125 }
1126 
1127 /// transferValues - Transfer all possible values to the new live ranges.
1128 /// Values that were rematerialized are left alone, they need LICalc.extend().
1129 bool SplitEditor::transferValues() {
1130   bool Skipped = false;
1131   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1132   for (const LiveRange::Segment &S : Edit->getParent()) {
1133     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1134     VNInfo *ParentVNI = S.valno;
1135     // RegAssign has holes where RegIdx 0 should be used.
1136     SlotIndex Start = S.start;
1137     AssignI.advanceTo(Start);
1138     do {
1139       unsigned RegIdx;
1140       SlotIndex End = S.end;
1141       if (!AssignI.valid()) {
1142         RegIdx = 0;
1143       } else if (AssignI.start() <= Start) {
1144         RegIdx = AssignI.value();
1145         if (AssignI.stop() < End) {
1146           End = AssignI.stop();
1147           ++AssignI;
1148         }
1149       } else {
1150         RegIdx = 0;
1151         End = std::min(End, AssignI.start());
1152       }
1153 
1154       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1155       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1156                         << printReg(Edit->get(RegIdx)) << ')');
1157       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1158 
1159       // Check for a simply defined value that can be blitted directly.
1160       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1161       if (VNInfo *VNI = VFP.getPointer()) {
1162         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1163         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1164         Start = End;
1165         continue;
1166       }
1167 
1168       // Skip values with forced recomputation.
1169       if (VFP.getInt()) {
1170         LLVM_DEBUG(dbgs() << "(recalc)");
1171         Skipped = true;
1172         Start = End;
1173         continue;
1174       }
1175 
1176       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1177 
1178       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1179       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1180       // LiveInBlocks.
1181       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1182       SlotIndex BlockStart, BlockEnd;
1183       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1184 
1185       // The first block may be live-in, or it may have its own def.
1186       if (Start != BlockStart) {
1187         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1188         assert(VNI && "Missing def for complex mapped value");
1189         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1190         // MBB has its own def. Is it also live-out?
1191         if (BlockEnd <= End)
1192           LIC.setLiveOutValue(&*MBB, VNI);
1193 
1194         // Skip to the next block for live-in.
1195         ++MBB;
1196         BlockStart = BlockEnd;
1197       }
1198 
1199       // Handle the live-in blocks covered by [Start;End).
1200       assert(Start <= BlockStart && "Expected live-in block");
1201       while (BlockStart < End) {
1202         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1203         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1204         if (BlockStart == ParentVNI->def) {
1205           // This block has the def of a parent PHI, so it isn't live-in.
1206           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1207           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1208           assert(VNI && "Missing def for complex mapped parent PHI");
1209           if (End >= BlockEnd)
1210             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1211         } else {
1212           // This block needs a live-in value.  The last block covered may not
1213           // be live-out.
1214           if (End < BlockEnd)
1215             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1216           else {
1217             // Live-through, and we don't know the value.
1218             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1219             LIC.setLiveOutValue(&*MBB, nullptr);
1220           }
1221         }
1222         BlockStart = BlockEnd;
1223         ++MBB;
1224       }
1225       Start = End;
1226     } while (Start != S.end);
1227     LLVM_DEBUG(dbgs() << '\n');
1228   }
1229 
1230   LICalc[0].calculateValues();
1231   if (SpillMode)
1232     LICalc[1].calculateValues();
1233 
1234   return Skipped;
1235 }
1236 
1237 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1238   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1239   if (Seg == nullptr)
1240     return true;
1241   if (Seg->end != Def.getDeadSlot())
1242     return false;
1243   // This is a dead PHI. Remove it.
1244   LR.removeSegment(*Seg, true);
1245   return true;
1246 }
1247 
1248 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1249                                  LiveRange &LR, LaneBitmask LM,
1250                                  ArrayRef<SlotIndex> Undefs) {
1251   for (MachineBasicBlock *P : B.predecessors()) {
1252     SlotIndex End = LIS.getMBBEndIdx(P);
1253     SlotIndex LastUse = End.getPrevSlot();
1254     // The predecessor may not have a live-out value. That is OK, like an
1255     // undef PHI operand.
1256     LiveInterval &PLI = Edit->getParent();
1257     // Need the cast because the inputs to ?: would otherwise be deemed
1258     // "incompatible": SubRange vs LiveInterval.
1259     LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1260                                : static_cast<LiveRange &>(PLI);
1261     if (PSR.liveAt(LastUse))
1262       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1263   }
1264 }
1265 
1266 void SplitEditor::extendPHIKillRanges() {
1267   // Extend live ranges to be live-out for successor PHI values.
1268 
1269   // Visit each PHI def slot in the parent live interval. If the def is dead,
1270   // remove it. Otherwise, extend the live interval to reach the end indexes
1271   // of all predecessor blocks.
1272 
1273   LiveInterval &ParentLI = Edit->getParent();
1274   for (const VNInfo *V : ParentLI.valnos) {
1275     if (V->isUnused() || !V->isPHIDef())
1276       continue;
1277 
1278     unsigned RegIdx = RegAssign.lookup(V->def);
1279     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1280     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1281     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1282     if (!removeDeadSegment(V->def, LI))
1283       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1284   }
1285 
1286   SmallVector<SlotIndex, 4> Undefs;
1287   LiveIntervalCalc SubLIC;
1288 
1289   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1290     for (const VNInfo *V : PS.valnos) {
1291       if (V->isUnused() || !V->isPHIDef())
1292         continue;
1293       unsigned RegIdx = RegAssign.lookup(V->def);
1294       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1295       LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1296       if (removeDeadSegment(V->def, S))
1297         continue;
1298 
1299       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1300       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1301                    &LIS.getVNInfoAllocator());
1302       Undefs.clear();
1303       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1304       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1305     }
1306   }
1307 }
1308 
1309 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1310 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1311   struct ExtPoint {
1312     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1313       : MO(O), RegIdx(R), Next(N) {}
1314 
1315     MachineOperand MO;
1316     unsigned RegIdx;
1317     SlotIndex Next;
1318   };
1319 
1320   SmallVector<ExtPoint,4> ExtPoints;
1321 
1322   for (MachineOperand &MO :
1323        llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1324     MachineInstr *MI = MO.getParent();
1325     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1326     if (MI->isDebugValue()) {
1327       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1328       MO.setReg(0);
1329       continue;
1330     }
1331 
1332     // <undef> operands don't really read the register, so it doesn't matter
1333     // which register we choose.  When the use operand is tied to a def, we must
1334     // use the same register as the def, so just do that always.
1335     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1336     if (MO.isDef() || MO.isUndef())
1337       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1338 
1339     // Rewrite to the mapped register at Idx.
1340     unsigned RegIdx = RegAssign.lookup(Idx);
1341     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1342     MO.setReg(LI.reg());
1343     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1344                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1345 
1346     // Extend liveness to Idx if the instruction reads reg.
1347     if (!ExtendRanges || MO.isUndef())
1348       continue;
1349 
1350     // Skip instructions that don't read Reg.
1351     if (MO.isDef()) {
1352       if (!MO.getSubReg() && !MO.isEarlyClobber())
1353         continue;
1354       // We may want to extend a live range for a partial redef, or for a use
1355       // tied to an early clobber.
1356       Idx = Idx.getPrevSlot();
1357       if (!Edit->getParent().liveAt(Idx))
1358         continue;
1359     } else
1360       Idx = Idx.getRegSlot(true);
1361 
1362     SlotIndex Next = Idx.getNextSlot();
1363     if (LI.hasSubRanges()) {
1364       // We have to delay extending subranges until we have seen all operands
1365       // defining the register. This is because a <def,read-undef> operand
1366       // will create an "undef" point, and we cannot extend any subranges
1367       // until all of them have been accounted for.
1368       if (MO.isUse())
1369         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1370     } else {
1371       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1372       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1373     }
1374   }
1375 
1376   for (ExtPoint &EP : ExtPoints) {
1377     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1378     assert(LI.hasSubRanges());
1379 
1380     LiveIntervalCalc SubLIC;
1381     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1382     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1383                               : MRI.getMaxLaneMaskForVReg(Reg);
1384     for (LiveInterval::SubRange &S : LI.subranges()) {
1385       if ((S.LaneMask & LM).none())
1386         continue;
1387       // The problem here can be that the new register may have been created
1388       // for a partially defined original register. For example:
1389       //   %0:subreg_hireg<def,read-undef> = ...
1390       //   ...
1391       //   %1 = COPY %0
1392       if (S.empty())
1393         continue;
1394       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1395                    &LIS.getVNInfoAllocator());
1396       SmallVector<SlotIndex, 4> Undefs;
1397       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1398       SubLIC.extend(S, EP.Next, 0, Undefs);
1399     }
1400   }
1401 
1402   for (Register R : *Edit) {
1403     LiveInterval &LI = LIS.getInterval(R);
1404     if (!LI.hasSubRanges())
1405       continue;
1406     LI.clear();
1407     LI.removeEmptySubRanges();
1408     LIS.constructMainRangeFromSubranges(LI);
1409   }
1410 }
1411 
1412 void SplitEditor::deleteRematVictims() {
1413   SmallVector<MachineInstr*, 8> Dead;
1414   for (const Register &R : *Edit) {
1415     LiveInterval *LI = &LIS.getInterval(R);
1416     for (const LiveRange::Segment &S : LI->segments) {
1417       // Dead defs end at the dead slot.
1418       if (S.end != S.valno->def.getDeadSlot())
1419         continue;
1420       if (S.valno->isPHIDef())
1421         continue;
1422       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1423       assert(MI && "Missing instruction for dead def");
1424       MI->addRegisterDead(LI->reg(), &TRI);
1425 
1426       if (!MI->allDefsAreDead())
1427         continue;
1428 
1429       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1430       Dead.push_back(MI);
1431     }
1432   }
1433 
1434   if (Dead.empty())
1435     return;
1436 
1437   Edit->eliminateDeadDefs(Dead, None, &AA);
1438 }
1439 
1440 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1441   // Fast-path for common case.
1442   if (!ParentVNI.isPHIDef()) {
1443     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1444       forceRecompute(I, ParentVNI);
1445     return;
1446   }
1447 
1448   // Trace value through phis.
1449   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1450   SmallVector<const VNInfo *, 4> WorkList;
1451   Visited.insert(&ParentVNI);
1452   WorkList.push_back(&ParentVNI);
1453 
1454   const LiveInterval &ParentLI = Edit->getParent();
1455   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1456   do {
1457     const VNInfo &VNI = *WorkList.back();
1458     WorkList.pop_back();
1459     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1460       forceRecompute(I, VNI);
1461     if (!VNI.isPHIDef())
1462       continue;
1463 
1464     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1465     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1466       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1467       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1468       assert(PredVNI && "Value available in PhiVNI predecessor");
1469       if (Visited.insert(PredVNI).second)
1470         WorkList.push_back(PredVNI);
1471     }
1472   } while(!WorkList.empty());
1473 }
1474 
1475 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1476   ++NumFinished;
1477 
1478   // At this point, the live intervals in Edit contain VNInfos corresponding to
1479   // the inserted copies.
1480 
1481   // Add the original defs from the parent interval.
1482   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1483     if (ParentVNI->isUnused())
1484       continue;
1485     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1486     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1487 
1488     // Force rematted values to be recomputed everywhere.
1489     // The new live ranges may be truncated.
1490     if (Edit->didRematerialize(ParentVNI))
1491       forceRecomputeVNI(*ParentVNI);
1492   }
1493 
1494   // Hoist back-copies to the complement interval when in spill mode.
1495   switch (SpillMode) {
1496   case SM_Partition:
1497     // Leave all back-copies as is.
1498     break;
1499   case SM_Size:
1500   case SM_Speed:
1501     // hoistCopies will behave differently between size and speed.
1502     hoistCopies();
1503   }
1504 
1505   // Transfer the simply mapped values, check if any are skipped.
1506   bool Skipped = transferValues();
1507 
1508   // Rewrite virtual registers, possibly extending ranges.
1509   rewriteAssigned(Skipped);
1510 
1511   if (Skipped)
1512     extendPHIKillRanges();
1513   else
1514     ++NumSimple;
1515 
1516   // Delete defs that were rematted everywhere.
1517   if (Skipped)
1518     deleteRematVictims();
1519 
1520   // Get rid of unused values and set phi-kill flags.
1521   for (Register Reg : *Edit) {
1522     LiveInterval &LI = LIS.getInterval(Reg);
1523     LI.removeEmptySubRanges();
1524     LI.RenumberValues();
1525   }
1526 
1527   // Provide a reverse mapping from original indices to Edit ranges.
1528   if (LRMap) {
1529     LRMap->clear();
1530     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1531       LRMap->push_back(i);
1532   }
1533 
1534   // Now check if any registers were separated into multiple components.
1535   ConnectedVNInfoEqClasses ConEQ(LIS);
1536   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1537     // Don't use iterators, they are invalidated by create() below.
1538     Register VReg = Edit->get(i);
1539     LiveInterval &LI = LIS.getInterval(VReg);
1540     SmallVector<LiveInterval*, 8> SplitLIs;
1541     LIS.splitSeparateComponents(LI, SplitLIs);
1542     Register Original = VRM.getOriginal(VReg);
1543     for (LiveInterval *SplitLI : SplitLIs)
1544       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1545 
1546     // The new intervals all map back to i.
1547     if (LRMap)
1548       LRMap->resize(Edit->size(), i);
1549   }
1550 
1551   // Calculate spill weight and allocation hints for new intervals.
1552   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1553 
1554   assert(!LRMap || LRMap->size() == Edit->size());
1555 }
1556 
1557 //===----------------------------------------------------------------------===//
1558 //                            Single Block Splitting
1559 //===----------------------------------------------------------------------===//
1560 
1561 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1562                                            bool SingleInstrs) const {
1563   // Always split for multiple instructions.
1564   if (!BI.isOneInstr())
1565     return true;
1566   // Don't split for single instructions unless explicitly requested.
1567   if (!SingleInstrs)
1568     return false;
1569   // Splitting a live-through range always makes progress.
1570   if (BI.LiveIn && BI.LiveOut)
1571     return true;
1572   // No point in isolating a copy. It has no register class constraints.
1573   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1574     return false;
1575   // Finally, don't isolate an end point that was created by earlier splits.
1576   return isOriginalEndpoint(BI.FirstInstr);
1577 }
1578 
1579 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1580   openIntv();
1581   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1582   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1583     LastSplitPoint));
1584   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1585     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1586   } else {
1587       // The last use is after the last valid split point.
1588     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1589     useIntv(SegStart, SegStop);
1590     overlapIntv(SegStop, BI.LastInstr);
1591   }
1592 }
1593 
1594 //===----------------------------------------------------------------------===//
1595 //                    Global Live Range Splitting Support
1596 //===----------------------------------------------------------------------===//
1597 
1598 // These methods support a method of global live range splitting that uses a
1599 // global algorithm to decide intervals for CFG edges. They will insert split
1600 // points and color intervals in basic blocks while avoiding interference.
1601 //
1602 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1603 // are on the stack.
1604 
1605 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1606                                         unsigned IntvIn, SlotIndex LeaveBefore,
1607                                         unsigned IntvOut, SlotIndex EnterAfter){
1608   SlotIndex Start, Stop;
1609   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1610 
1611   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1612                     << ") intf " << LeaveBefore << '-' << EnterAfter
1613                     << ", live-through " << IntvIn << " -> " << IntvOut);
1614 
1615   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1616 
1617   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1618   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1619   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1620 
1621   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1622 
1623   if (!IntvOut) {
1624     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1625     //
1626     //        <<<<<<<<<    Possible LeaveBefore interference.
1627     //    |-----------|    Live through.
1628     //    -____________    Spill on entry.
1629     //
1630     selectIntv(IntvIn);
1631     SlotIndex Idx = leaveIntvAtTop(*MBB);
1632     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1633     (void)Idx;
1634     return;
1635   }
1636 
1637   if (!IntvIn) {
1638     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1639     //
1640     //    >>>>>>>          Possible EnterAfter interference.
1641     //    |-----------|    Live through.
1642     //    ___________--    Reload on exit.
1643     //
1644     selectIntv(IntvOut);
1645     SlotIndex Idx = enterIntvAtEnd(*MBB);
1646     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1647     (void)Idx;
1648     return;
1649   }
1650 
1651   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1652     LLVM_DEBUG(dbgs() << ", straight through.\n");
1653     //
1654     //    |-----------|    Live through.
1655     //    -------------    Straight through, same intv, no interference.
1656     //
1657     selectIntv(IntvOut);
1658     useIntv(Start, Stop);
1659     return;
1660   }
1661 
1662   // We cannot legally insert splits after LSP.
1663   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1664   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1665 
1666   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1667                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1668     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1669     //
1670     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1671     //    |-----------|    Live through.
1672     //    ------=======    Switch intervals between interference.
1673     //
1674     selectIntv(IntvOut);
1675     SlotIndex Idx;
1676     if (LeaveBefore && LeaveBefore < LSP) {
1677       Idx = enterIntvBefore(LeaveBefore);
1678       useIntv(Idx, Stop);
1679     } else {
1680       Idx = enterIntvAtEnd(*MBB);
1681     }
1682     selectIntv(IntvIn);
1683     useIntv(Start, Idx);
1684     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1685     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1686     return;
1687   }
1688 
1689   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1690   //
1691   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1692   //    |-----------|    Live through.
1693   //    ==---------==    Switch intervals before/after interference.
1694   //
1695   assert(LeaveBefore <= EnterAfter && "Missed case");
1696 
1697   selectIntv(IntvOut);
1698   SlotIndex Idx = enterIntvAfter(EnterAfter);
1699   useIntv(Idx, Stop);
1700   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1701 
1702   selectIntv(IntvIn);
1703   Idx = leaveIntvBefore(LeaveBefore);
1704   useIntv(Start, Idx);
1705   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1706 }
1707 
1708 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1709                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1710   SlotIndex Start, Stop;
1711   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1712 
1713   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1714                     << Stop << "), uses " << BI.FirstInstr << '-'
1715                     << BI.LastInstr << ", reg-in " << IntvIn
1716                     << ", leave before " << LeaveBefore
1717                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1718 
1719   assert(IntvIn && "Must have register in");
1720   assert(BI.LiveIn && "Must be live-in");
1721   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1722 
1723   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1724     LLVM_DEBUG(dbgs() << " before interference.\n");
1725     //
1726     //               <<<    Interference after kill.
1727     //     |---o---x   |    Killed in block.
1728     //     =========        Use IntvIn everywhere.
1729     //
1730     selectIntv(IntvIn);
1731     useIntv(Start, BI.LastInstr);
1732     return;
1733   }
1734 
1735   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1736 
1737   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1738     //
1739     //               <<<    Possible interference after last use.
1740     //     |---o---o---|    Live-out on stack.
1741     //     =========____    Leave IntvIn after last use.
1742     //
1743     //                 <    Interference after last use.
1744     //     |---o---o--o|    Live-out on stack, late last use.
1745     //     ============     Copy to stack after LSP, overlap IntvIn.
1746     //            \_____    Stack interval is live-out.
1747     //
1748     if (BI.LastInstr < LSP) {
1749       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1750       selectIntv(IntvIn);
1751       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1752       useIntv(Start, Idx);
1753       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1754     } else {
1755       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1756       selectIntv(IntvIn);
1757       SlotIndex Idx = leaveIntvBefore(LSP);
1758       overlapIntv(Idx, BI.LastInstr);
1759       useIntv(Start, Idx);
1760       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1761     }
1762     return;
1763   }
1764 
1765   // The interference is overlapping somewhere we wanted to use IntvIn. That
1766   // means we need to create a local interval that can be allocated a
1767   // different register.
1768   unsigned LocalIntv = openIntv();
1769   (void)LocalIntv;
1770   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1771 
1772   if (!BI.LiveOut || BI.LastInstr < LSP) {
1773     //
1774     //           <<<<<<<    Interference overlapping uses.
1775     //     |---o---o---|    Live-out on stack.
1776     //     =====----____    Leave IntvIn before interference, then spill.
1777     //
1778     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1779     SlotIndex From = enterIntvBefore(LeaveBefore);
1780     useIntv(From, To);
1781     selectIntv(IntvIn);
1782     useIntv(Start, From);
1783     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1784     return;
1785   }
1786 
1787   //           <<<<<<<    Interference overlapping uses.
1788   //     |---o---o--o|    Live-out on stack, late last use.
1789   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1790   //            \_____    Stack interval is live-out.
1791   //
1792   SlotIndex To = leaveIntvBefore(LSP);
1793   overlapIntv(To, BI.LastInstr);
1794   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1795   useIntv(From, To);
1796   selectIntv(IntvIn);
1797   useIntv(Start, From);
1798   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1799 }
1800 
1801 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1802                                    unsigned IntvOut, SlotIndex EnterAfter) {
1803   SlotIndex Start, Stop;
1804   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1805 
1806   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1807                     << Stop << "), uses " << BI.FirstInstr << '-'
1808                     << BI.LastInstr << ", reg-out " << IntvOut
1809                     << ", enter after " << EnterAfter
1810                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1811 
1812   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1813 
1814   assert(IntvOut && "Must have register out");
1815   assert(BI.LiveOut && "Must be live-out");
1816   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1817 
1818   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1819     LLVM_DEBUG(dbgs() << " after interference.\n");
1820     //
1821     //    >>>>             Interference before def.
1822     //    |   o---o---|    Defined in block.
1823     //        =========    Use IntvOut everywhere.
1824     //
1825     selectIntv(IntvOut);
1826     useIntv(BI.FirstInstr, Stop);
1827     return;
1828   }
1829 
1830   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1831     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1832     //
1833     //    >>>>             Interference before def.
1834     //    |---o---o---|    Live-through, stack-in.
1835     //    ____=========    Enter IntvOut before first use.
1836     //
1837     selectIntv(IntvOut);
1838     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1839     useIntv(Idx, Stop);
1840     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1841     return;
1842   }
1843 
1844   // The interference is overlapping somewhere we wanted to use IntvOut. That
1845   // means we need to create a local interval that can be allocated a
1846   // different register.
1847   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1848   //
1849   //    >>>>>>>          Interference overlapping uses.
1850   //    |---o---o---|    Live-through, stack-in.
1851   //    ____---======    Create local interval for interference range.
1852   //
1853   selectIntv(IntvOut);
1854   SlotIndex Idx = enterIntvAfter(EnterAfter);
1855   useIntv(Idx, Stop);
1856   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1857 
1858   openIntv();
1859   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1860   useIntv(From, Idx);
1861 }
1862 
1863 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1864   OS << "{" << printMBBReference(*MBB) << ", "
1865      << "uses " << FirstInstr << " to " << LastInstr << ", "
1866      << "1st def " << FirstDef << ", "
1867      << (LiveIn ? "live in" : "dead in") << ", "
1868      << (LiveOut ? "live out" : "dead out") << "}";
1869 }
1870 
1871 void SplitAnalysis::BlockInfo::dump() const {
1872   print(dbgs());
1873   dbgs() << "\n";
1874 }
1875