xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SpillPlacement.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- SpillPlacement.cpp - Optimal Spill Code Placement ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the spill code placement analysis.
10 //
11 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
12 // basic blocks are weighted by the block frequency and added to become the node
13 // bias.
14 //
15 // Transparent basic blocks have the variable live through, but don't care if it
16 // is spilled or in a register. These blocks become connections in the Hopfield
17 // network, again weighted by block frequency.
18 //
19 // The Hopfield network minimizes (possibly locally) its energy function:
20 //
21 //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
22 //
23 // The energy function represents the expected spill code execution frequency,
24 // or the cost of spilling. This is a Lyapunov function which never increases
25 // when a node is updated. It is guaranteed to converge to a local minimum.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "SpillPlacement.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/SparseSet.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BlockFrequency.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "spill-code-placement"
51 
52 char SpillPlacement::ID = 0;
53 
54 char &llvm::SpillPlacementID = SpillPlacement::ID;
55 
56 INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE,
57                       "Spill Code Placement Analysis", true, true)
58 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
59 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
60 INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE,
61                     "Spill Code Placement Analysis", true, true)
62 
63 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
64   AU.setPreservesAll();
65   AU.addRequired<MachineBlockFrequencyInfo>();
66   AU.addRequiredTransitive<EdgeBundles>();
67   AU.addRequiredTransitive<MachineLoopInfo>();
68   MachineFunctionPass::getAnalysisUsage(AU);
69 }
70 
71 /// Node - Each edge bundle corresponds to a Hopfield node.
72 ///
73 /// The node contains precomputed frequency data that only depends on the CFG,
74 /// but Bias and Links are computed each time placeSpills is called.
75 ///
76 /// The node Value is positive when the variable should be in a register. The
77 /// value can change when linked nodes change, but convergence is very fast
78 /// because all weights are positive.
79 struct SpillPlacement::Node {
80   /// BiasN - Sum of blocks that prefer a spill.
81   BlockFrequency BiasN;
82 
83   /// BiasP - Sum of blocks that prefer a register.
84   BlockFrequency BiasP;
85 
86   /// Value - Output value of this node computed from the Bias and links.
87   /// This is always on of the values {-1, 0, 1}. A positive number means the
88   /// variable should go in a register through this bundle.
89   int Value;
90 
91   using LinkVector = SmallVector<std::pair<BlockFrequency, unsigned>, 4>;
92 
93   /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
94   /// bundles. The weights are all positive block frequencies.
95   LinkVector Links;
96 
97   /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
98   BlockFrequency SumLinkWeights;
99 
100   /// preferReg - Return true when this node prefers to be in a register.
101   bool preferReg() const {
102     // Undecided nodes (Value==0) go on the stack.
103     return Value > 0;
104   }
105 
106   /// mustSpill - Return True if this node is so biased that it must spill.
107   bool mustSpill() const {
108     // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
109     // BiasN is saturated when MustSpill is set, make sure this still returns
110     // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
111     return BiasN >= BiasP + SumLinkWeights;
112   }
113 
114   /// clear - Reset per-query data, but preserve frequencies that only depend on
115   /// the CFG.
116   void clear(const BlockFrequency &Threshold) {
117     BiasN = BiasP = Value = 0;
118     SumLinkWeights = Threshold;
119     Links.clear();
120   }
121 
122   /// addLink - Add a link to bundle b with weight w.
123   void addLink(unsigned b, BlockFrequency w) {
124     // Update cached sum.
125     SumLinkWeights += w;
126 
127     // There can be multiple links to the same bundle, add them up.
128     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
129       if (I->second == b) {
130         I->first += w;
131         return;
132       }
133     // This must be the first link to b.
134     Links.push_back(std::make_pair(w, b));
135   }
136 
137   /// addBias - Bias this node.
138   void addBias(BlockFrequency freq, BorderConstraint direction) {
139     switch (direction) {
140     default:
141       break;
142     case PrefReg:
143       BiasP += freq;
144       break;
145     case PrefSpill:
146       BiasN += freq;
147       break;
148     case MustSpill:
149       BiasN = BlockFrequency::getMaxFrequency();
150       break;
151     }
152   }
153 
154   /// update - Recompute Value from Bias and Links. Return true when node
155   /// preference changes.
156   bool update(const Node nodes[], const BlockFrequency &Threshold) {
157     // Compute the weighted sum of inputs.
158     BlockFrequency SumN = BiasN;
159     BlockFrequency SumP = BiasP;
160     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
161       if (nodes[I->second].Value == -1)
162         SumN += I->first;
163       else if (nodes[I->second].Value == 1)
164         SumP += I->first;
165     }
166 
167     // Each weighted sum is going to be less than the total frequency of the
168     // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
169     // will add a dead zone around 0 for two reasons:
170     //
171     //  1. It avoids arbitrary bias when all links are 0 as is possible during
172     //     initial iterations.
173     //  2. It helps tame rounding errors when the links nominally sum to 0.
174     //
175     bool Before = preferReg();
176     if (SumN >= SumP + Threshold)
177       Value = -1;
178     else if (SumP >= SumN + Threshold)
179       Value = 1;
180     else
181       Value = 0;
182     return Before != preferReg();
183   }
184 
185   void getDissentingNeighbors(SparseSet<unsigned> &List,
186                               const Node nodes[]) const {
187     for (const auto &Elt : Links) {
188       unsigned n = Elt.second;
189       // Neighbors that already have the same value are not going to
190       // change because of this node changing.
191       if (Value != nodes[n].Value)
192         List.insert(n);
193     }
194   }
195 };
196 
197 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
198   MF = &mf;
199   bundles = &getAnalysis<EdgeBundles>();
200   loops = &getAnalysis<MachineLoopInfo>();
201 
202   assert(!nodes && "Leaking node array");
203   nodes = new Node[bundles->getNumBundles()];
204   TodoList.clear();
205   TodoList.setUniverse(bundles->getNumBundles());
206 
207   // Compute total ingoing and outgoing block frequencies for all bundles.
208   BlockFrequencies.resize(mf.getNumBlockIDs());
209   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
210   setThreshold(MBFI->getEntryFreq());
211   for (auto &I : mf) {
212     unsigned Num = I.getNumber();
213     BlockFrequencies[Num] = MBFI->getBlockFreq(&I);
214   }
215 
216   // We never change the function.
217   return false;
218 }
219 
220 void SpillPlacement::releaseMemory() {
221   delete[] nodes;
222   nodes = nullptr;
223   TodoList.clear();
224 }
225 
226 /// activate - mark node n as active if it wasn't already.
227 void SpillPlacement::activate(unsigned n) {
228   TodoList.insert(n);
229   if (ActiveNodes->test(n))
230     return;
231   ActiveNodes->set(n);
232   nodes[n].clear(Threshold);
233 
234   // Very large bundles usually come from big switches, indirect branches,
235   // landing pads, or loops with many 'continue' statements. It is difficult to
236   // allocate registers when so many different blocks are involved.
237   //
238   // Give a small negative bias to large bundles such that a substantial
239   // fraction of the connected blocks need to be interested before we consider
240   // expanding the region through the bundle. This helps compile time by
241   // limiting the number of blocks visited and the number of links in the
242   // Hopfield network.
243   if (bundles->getBlocks(n).size() > 100) {
244     nodes[n].BiasP = 0;
245     nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
246   }
247 }
248 
249 /// Set the threshold for a given entry frequency.
250 ///
251 /// Set the threshold relative to \c Entry.  Since the threshold is used as a
252 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
253 /// threshold.
254 void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
255   // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
256   // it.  Divide by 2^13, rounding as appropriate.
257   uint64_t Freq = Entry.getFrequency();
258   uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
259   Threshold = std::max(UINT64_C(1), Scaled);
260 }
261 
262 /// addConstraints - Compute node biases and weights from a set of constraints.
263 /// Set a bit in NodeMask for each active node.
264 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
265   for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
266        E = LiveBlocks.end(); I != E; ++I) {
267     BlockFrequency Freq = BlockFrequencies[I->Number];
268 
269     // Live-in to block?
270     if (I->Entry != DontCare) {
271       unsigned ib = bundles->getBundle(I->Number, false);
272       activate(ib);
273       nodes[ib].addBias(Freq, I->Entry);
274     }
275 
276     // Live-out from block?
277     if (I->Exit != DontCare) {
278       unsigned ob = bundles->getBundle(I->Number, true);
279       activate(ob);
280       nodes[ob].addBias(Freq, I->Exit);
281     }
282   }
283 }
284 
285 /// addPrefSpill - Same as addConstraints(PrefSpill)
286 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
287   for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
288        I != E; ++I) {
289     BlockFrequency Freq = BlockFrequencies[*I];
290     if (Strong)
291       Freq += Freq;
292     unsigned ib = bundles->getBundle(*I, false);
293     unsigned ob = bundles->getBundle(*I, true);
294     activate(ib);
295     activate(ob);
296     nodes[ib].addBias(Freq, PrefSpill);
297     nodes[ob].addBias(Freq, PrefSpill);
298   }
299 }
300 
301 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
302   for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
303        ++I) {
304     unsigned Number = *I;
305     unsigned ib = bundles->getBundle(Number, false);
306     unsigned ob = bundles->getBundle(Number, true);
307 
308     // Ignore self-loops.
309     if (ib == ob)
310       continue;
311     activate(ib);
312     activate(ob);
313     BlockFrequency Freq = BlockFrequencies[Number];
314     nodes[ib].addLink(ob, Freq);
315     nodes[ob].addLink(ib, Freq);
316   }
317 }
318 
319 bool SpillPlacement::scanActiveBundles() {
320   RecentPositive.clear();
321   for (unsigned n : ActiveNodes->set_bits()) {
322     update(n);
323     // A node that must spill, or a node without any links is not going to
324     // change its value ever again, so exclude it from iterations.
325     if (nodes[n].mustSpill())
326       continue;
327     if (nodes[n].preferReg())
328       RecentPositive.push_back(n);
329   }
330   return !RecentPositive.empty();
331 }
332 
333 bool SpillPlacement::update(unsigned n) {
334   if (!nodes[n].update(nodes, Threshold))
335     return false;
336   nodes[n].getDissentingNeighbors(TodoList, nodes);
337   return true;
338 }
339 
340 /// iterate - Repeatedly update the Hopfield nodes until stability or the
341 /// maximum number of iterations is reached.
342 void SpillPlacement::iterate() {
343   // We do not need to push those node in the todolist.
344   // They are already been proceeded as part of the previous iteration.
345   RecentPositive.clear();
346 
347   // Since the last iteration, the todolist have been augmented by calls
348   // to addConstraints, addLinks, and co.
349   // Update the network energy starting at this new frontier.
350   // The call to ::update will add the nodes that changed into the todolist.
351   unsigned Limit = bundles->getNumBundles() * 10;
352   while(Limit-- > 0 && !TodoList.empty()) {
353     unsigned n = TodoList.pop_back_val();
354     if (!update(n))
355       continue;
356     if (nodes[n].preferReg())
357       RecentPositive.push_back(n);
358   }
359 }
360 
361 void SpillPlacement::prepare(BitVector &RegBundles) {
362   RecentPositive.clear();
363   TodoList.clear();
364   // Reuse RegBundles as our ActiveNodes vector.
365   ActiveNodes = &RegBundles;
366   ActiveNodes->clear();
367   ActiveNodes->resize(bundles->getNumBundles());
368 }
369 
370 bool
371 SpillPlacement::finish() {
372   assert(ActiveNodes && "Call prepare() first");
373 
374   // Write preferences back to ActiveNodes.
375   bool Perfect = true;
376   for (unsigned n : ActiveNodes->set_bits())
377     if (!nodes[n].preferReg()) {
378       ActiveNodes->reset(n);
379       Perfect = false;
380     }
381   ActiveNodes = nullptr;
382   return Perfect;
383 }
384