1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass looks for safe point where the prologue and epilogue can be 10 // inserted. 11 // The safe point for the prologue (resp. epilogue) is called Save 12 // (resp. Restore). 13 // A point is safe for prologue (resp. epilogue) if and only if 14 // it 1) dominates (resp. post-dominates) all the frame related operations and 15 // between 2) two executions of the Save (resp. Restore) point there is an 16 // execution of the Restore (resp. Save) point. 17 // 18 // For instance, the following points are safe: 19 // for (int i = 0; i < 10; ++i) { 20 // Save 21 // ... 22 // Restore 23 // } 24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... 25 // And the following points are not: 26 // for (int i = 0; i < 10; ++i) { 27 // Save 28 // ... 29 // } 30 // for (int i = 0; i < 10; ++i) { 31 // ... 32 // Restore 33 // } 34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. 35 // 36 // This pass also ensures that the safe points are 3) cheaper than the regular 37 // entry and exits blocks. 38 // 39 // Property #1 is ensured via the use of MachineDominatorTree and 40 // MachinePostDominatorTree. 41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both 42 // points must be in the same loop. 43 // Property #3 is ensured via the MachineBlockFrequencyInfo. 44 // 45 // If this pass found points matching all these properties, then 46 // MachineFrameInfo is updated with this information. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/ADT/BitVector.h" 51 #include "llvm/ADT/PostOrderIterator.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/CFG.h" 56 #include "llvm/Analysis/ValueTracking.h" 57 #include "llvm/CodeGen/MachineBasicBlock.h" 58 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 59 #include "llvm/CodeGen/MachineDominators.h" 60 #include "llvm/CodeGen/MachineFrameInfo.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineFunctionPass.h" 63 #include "llvm/CodeGen/MachineInstr.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineOperand.h" 66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 67 #include "llvm/CodeGen/MachinePostDominators.h" 68 #include "llvm/CodeGen/RegisterClassInfo.h" 69 #include "llvm/CodeGen/RegisterScavenging.h" 70 #include "llvm/CodeGen/TargetFrameLowering.h" 71 #include "llvm/CodeGen/TargetInstrInfo.h" 72 #include "llvm/CodeGen/TargetLowering.h" 73 #include "llvm/CodeGen/TargetRegisterInfo.h" 74 #include "llvm/CodeGen/TargetSubtargetInfo.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/MC/MCAsmInfo.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include <cassert> 86 #include <cstdint> 87 #include <memory> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "shrink-wrap" 92 93 STATISTIC(NumFunc, "Number of functions"); 94 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); 95 STATISTIC(NumCandidatesDropped, 96 "Number of shrink-wrapping candidates dropped because of frequency"); 97 98 static cl::opt<cl::boolOrDefault> 99 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, 100 cl::desc("enable the shrink-wrapping pass")); 101 static cl::opt<bool> EnablePostShrinkWrapOpt( 102 "enable-shrink-wrap-region-split", cl::init(true), cl::Hidden, 103 cl::desc("enable splitting of the restore block if possible")); 104 105 namespace { 106 107 /// Class to determine where the safe point to insert the 108 /// prologue and epilogue are. 109 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the 110 /// shrink-wrapping term for prologue/epilogue placement, this pass 111 /// does not rely on expensive data-flow analysis. Instead we use the 112 /// dominance properties and loop information to decide which point 113 /// are safe for such insertion. 114 class ShrinkWrap : public MachineFunctionPass { 115 /// Hold callee-saved information. 116 RegisterClassInfo RCI; 117 MachineDominatorTree *MDT = nullptr; 118 MachinePostDominatorTree *MPDT = nullptr; 119 120 /// Current safe point found for the prologue. 121 /// The prologue will be inserted before the first instruction 122 /// in this basic block. 123 MachineBasicBlock *Save = nullptr; 124 125 /// Current safe point found for the epilogue. 126 /// The epilogue will be inserted before the first terminator instruction 127 /// in this basic block. 128 MachineBasicBlock *Restore = nullptr; 129 130 /// Hold the information of the basic block frequency. 131 /// Use to check the profitability of the new points. 132 MachineBlockFrequencyInfo *MBFI = nullptr; 133 134 /// Hold the loop information. Used to determine if Save and Restore 135 /// are in the same loop. 136 MachineLoopInfo *MLI = nullptr; 137 138 // Emit remarks. 139 MachineOptimizationRemarkEmitter *ORE = nullptr; 140 141 /// Frequency of the Entry block. 142 BlockFrequency EntryFreq; 143 144 /// Current opcode for frame setup. 145 unsigned FrameSetupOpcode = ~0u; 146 147 /// Current opcode for frame destroy. 148 unsigned FrameDestroyOpcode = ~0u; 149 150 /// Stack pointer register, used by llvm.{savestack,restorestack} 151 Register SP; 152 153 /// Entry block. 154 const MachineBasicBlock *Entry = nullptr; 155 156 using SetOfRegs = SmallSetVector<unsigned, 16>; 157 158 /// Registers that need to be saved for the current function. 159 mutable SetOfRegs CurrentCSRs; 160 161 /// Current MachineFunction. 162 MachineFunction *MachineFunc = nullptr; 163 164 /// Is `true` for the block numbers where we assume possible stack accesses 165 /// or computation of stack-relative addresses on any CFG path including the 166 /// block itself. Is `false` for basic blocks where we can guarantee the 167 /// opposite. False positives won't lead to incorrect analysis results, 168 /// therefore this approach is fair. 169 BitVector StackAddressUsedBlockInfo; 170 171 /// Check if \p MI uses or defines a callee-saved register or 172 /// a frame index. If this is the case, this means \p MI must happen 173 /// after Save and before Restore. 174 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS, 175 bool StackAddressUsed) const; 176 177 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { 178 if (CurrentCSRs.empty()) { 179 BitVector SavedRegs; 180 const TargetFrameLowering *TFI = 181 MachineFunc->getSubtarget().getFrameLowering(); 182 183 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); 184 185 for (int Reg = SavedRegs.find_first(); Reg != -1; 186 Reg = SavedRegs.find_next(Reg)) 187 CurrentCSRs.insert((unsigned)Reg); 188 } 189 return CurrentCSRs; 190 } 191 192 /// Update the Save and Restore points such that \p MBB is in 193 /// the region that is dominated by Save and post-dominated by Restore 194 /// and Save and Restore still match the safe point definition. 195 /// Such point may not exist and Save and/or Restore may be null after 196 /// this call. 197 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); 198 199 // Try to find safe point based on dominance and block frequency without 200 // any change in IR. 201 bool performShrinkWrapping( 202 const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT, 203 RegScavenger *RS); 204 205 /// This function tries to split the restore point if doing so can shrink the 206 /// save point further. \return True if restore point is split. 207 bool postShrinkWrapping(bool HasCandidate, MachineFunction &MF, 208 RegScavenger *RS); 209 210 /// This function analyzes if the restore point can split to create a new 211 /// restore point. This function collects 212 /// 1. Any preds of current restore that are reachable by callee save/FI 213 /// blocks 214 /// - indicated by DirtyPreds 215 /// 2. Any preds of current restore that are not DirtyPreds - indicated by 216 /// CleanPreds 217 /// Both sets should be non-empty for considering restore point split. 218 bool checkIfRestoreSplittable( 219 const MachineBasicBlock *CurRestore, 220 const DenseSet<const MachineBasicBlock *> &ReachableByDirty, 221 SmallVectorImpl<MachineBasicBlock *> &DirtyPreds, 222 SmallVectorImpl<MachineBasicBlock *> &CleanPreds, 223 const TargetInstrInfo *TII, RegScavenger *RS); 224 225 /// Initialize the pass for \p MF. 226 void init(MachineFunction &MF) { 227 RCI.runOnMachineFunction(MF); 228 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 229 MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 230 Save = nullptr; 231 Restore = nullptr; 232 MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); 233 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 234 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 235 EntryFreq = MBFI->getEntryFreq(); 236 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 237 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 238 FrameSetupOpcode = TII.getCallFrameSetupOpcode(); 239 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); 240 SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); 241 Entry = &MF.front(); 242 CurrentCSRs.clear(); 243 MachineFunc = &MF; 244 245 ++NumFunc; 246 } 247 248 /// Check whether or not Save and Restore points are still interesting for 249 /// shrink-wrapping. 250 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } 251 252 /// Check if shrink wrapping is enabled for this target and function. 253 static bool isShrinkWrapEnabled(const MachineFunction &MF); 254 255 public: 256 static char ID; 257 258 ShrinkWrap() : MachineFunctionPass(ID) { 259 initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); 260 } 261 262 void getAnalysisUsage(AnalysisUsage &AU) const override { 263 AU.setPreservesAll(); 264 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 265 AU.addRequired<MachineDominatorTreeWrapperPass>(); 266 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 267 AU.addRequired<MachineLoopInfoWrapperPass>(); 268 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 269 MachineFunctionPass::getAnalysisUsage(AU); 270 } 271 272 MachineFunctionProperties getRequiredProperties() const override { 273 return MachineFunctionProperties().set( 274 MachineFunctionProperties::Property::NoVRegs); 275 } 276 277 StringRef getPassName() const override { return "Shrink Wrapping analysis"; } 278 279 /// Perform the shrink-wrapping analysis and update 280 /// the MachineFrameInfo attached to \p MF with the results. 281 bool runOnMachineFunction(MachineFunction &MF) override; 282 }; 283 284 } // end anonymous namespace 285 286 char ShrinkWrap::ID = 0; 287 288 char &llvm::ShrinkWrapID = ShrinkWrap::ID; 289 290 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 291 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 292 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 293 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) 294 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 295 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 296 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 297 298 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS, 299 bool StackAddressUsed) const { 300 /// Check if \p Op is known to access an address not on the function's stack . 301 /// At the moment, accesses where the underlying object is a global, function 302 /// argument, or jump table are considered non-stack accesses. Note that the 303 /// caller's stack may get accessed when passing an argument via the stack, 304 /// but not the stack of the current function. 305 /// 306 auto IsKnownNonStackPtr = [](MachineMemOperand *Op) { 307 if (Op->getValue()) { 308 const Value *UO = getUnderlyingObject(Op->getValue()); 309 if (!UO) 310 return false; 311 if (auto *Arg = dyn_cast<Argument>(UO)) 312 return !Arg->hasPassPointeeByValueCopyAttr(); 313 return isa<GlobalValue>(UO); 314 } 315 if (const PseudoSourceValue *PSV = Op->getPseudoValue()) 316 return PSV->isJumpTable(); 317 return false; 318 }; 319 // Load/store operations may access the stack indirectly when we previously 320 // computed an address to a stack location. 321 if (StackAddressUsed && MI.mayLoadOrStore() && 322 (MI.isCall() || MI.hasUnmodeledSideEffects() || MI.memoperands_empty() || 323 !all_of(MI.memoperands(), IsKnownNonStackPtr))) 324 return true; 325 326 if (MI.getOpcode() == FrameSetupOpcode || 327 MI.getOpcode() == FrameDestroyOpcode) { 328 LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); 329 return true; 330 } 331 const MachineFunction *MF = MI.getParent()->getParent(); 332 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 333 for (const MachineOperand &MO : MI.operands()) { 334 bool UseOrDefCSR = false; 335 if (MO.isReg()) { 336 // Ignore instructions like DBG_VALUE which don't read/def the register. 337 if (!MO.isDef() && !MO.readsReg()) 338 continue; 339 Register PhysReg = MO.getReg(); 340 if (!PhysReg) 341 continue; 342 assert(PhysReg.isPhysical() && "Unallocated register?!"); 343 // The stack pointer is not normally described as a callee-saved register 344 // in calling convention definitions, so we need to watch for it 345 // separately. An SP mentioned by a call instruction, we can ignore, 346 // though, as it's harmless and we do not want to effectively disable tail 347 // calls by forcing the restore point to post-dominate them. 348 // PPC's LR is also not normally described as a callee-saved register in 349 // calling convention definitions, so we need to watch for it, too. An LR 350 // mentioned implicitly by a return (or "branch to link register") 351 // instruction we can ignore, otherwise we may pessimize shrinkwrapping. 352 UseOrDefCSR = 353 (!MI.isCall() && PhysReg == SP) || 354 RCI.getLastCalleeSavedAlias(PhysReg) || 355 (!MI.isReturn() && TRI->isNonallocatableRegisterCalleeSave(PhysReg)); 356 } else if (MO.isRegMask()) { 357 // Check if this regmask clobbers any of the CSRs. 358 for (unsigned Reg : getCurrentCSRs(RS)) { 359 if (MO.clobbersPhysReg(Reg)) { 360 UseOrDefCSR = true; 361 break; 362 } 363 } 364 } 365 // Skip FrameIndex operands in DBG_VALUE instructions. 366 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { 367 LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" 368 << MO.isFI() << "): " << MI << '\n'); 369 return true; 370 } 371 } 372 return false; 373 } 374 375 /// Helper function to find the immediate (post) dominator. 376 template <typename ListOfBBs, typename DominanceAnalysis> 377 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, 378 DominanceAnalysis &Dom, bool Strict = true) { 379 MachineBasicBlock *IDom = &Block; 380 for (MachineBasicBlock *BB : BBs) { 381 IDom = Dom.findNearestCommonDominator(IDom, BB); 382 if (!IDom) 383 break; 384 } 385 if (Strict && IDom == &Block) 386 return nullptr; 387 return IDom; 388 } 389 390 static bool isAnalyzableBB(const TargetInstrInfo &TII, 391 MachineBasicBlock &Entry) { 392 // Check if the block is analyzable. 393 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 394 SmallVector<MachineOperand, 4> Cond; 395 return !TII.analyzeBranch(Entry, TBB, FBB, Cond); 396 } 397 398 /// Determines if any predecessor of MBB is on the path from block that has use 399 /// or def of CSRs/FI to MBB. 400 /// ReachableByDirty: All blocks reachable from block that has use or def of 401 /// CSR/FI. 402 static bool 403 hasDirtyPred(const DenseSet<const MachineBasicBlock *> &ReachableByDirty, 404 const MachineBasicBlock &MBB) { 405 for (const MachineBasicBlock *PredBB : MBB.predecessors()) 406 if (ReachableByDirty.count(PredBB)) 407 return true; 408 return false; 409 } 410 411 /// Derives the list of all the basic blocks reachable from MBB. 412 static void markAllReachable(DenseSet<const MachineBasicBlock *> &Visited, 413 const MachineBasicBlock &MBB) { 414 SmallVector<MachineBasicBlock *, 4> Worklist(MBB.succ_begin(), 415 MBB.succ_end()); 416 Visited.insert(&MBB); 417 while (!Worklist.empty()) { 418 MachineBasicBlock *SuccMBB = Worklist.pop_back_val(); 419 if (!Visited.insert(SuccMBB).second) 420 continue; 421 Worklist.append(SuccMBB->succ_begin(), SuccMBB->succ_end()); 422 } 423 } 424 425 /// Collect blocks reachable by use or def of CSRs/FI. 426 static void collectBlocksReachableByDirty( 427 const DenseSet<const MachineBasicBlock *> &DirtyBBs, 428 DenseSet<const MachineBasicBlock *> &ReachableByDirty) { 429 for (const MachineBasicBlock *MBB : DirtyBBs) { 430 if (ReachableByDirty.count(MBB)) 431 continue; 432 // Mark all offsprings as reachable. 433 markAllReachable(ReachableByDirty, *MBB); 434 } 435 } 436 437 /// \return true if there is a clean path from SavePoint to the original 438 /// Restore. 439 static bool 440 isSaveReachableThroughClean(const MachineBasicBlock *SavePoint, 441 ArrayRef<MachineBasicBlock *> CleanPreds) { 442 DenseSet<const MachineBasicBlock *> Visited; 443 SmallVector<MachineBasicBlock *, 4> Worklist(CleanPreds.begin(), 444 CleanPreds.end()); 445 while (!Worklist.empty()) { 446 MachineBasicBlock *CleanBB = Worklist.pop_back_val(); 447 if (CleanBB == SavePoint) 448 return true; 449 if (!Visited.insert(CleanBB).second || !CleanBB->pred_size()) 450 continue; 451 Worklist.append(CleanBB->pred_begin(), CleanBB->pred_end()); 452 } 453 return false; 454 } 455 456 /// This function updates the branches post restore point split. 457 /// 458 /// Restore point has been split. 459 /// Old restore point: MBB 460 /// New restore point: NMBB 461 /// Any basic block(say BBToUpdate) which had a fallthrough to MBB 462 /// previously should 463 /// 1. Fallthrough to NMBB iff NMBB is inserted immediately above MBB in the 464 /// block layout OR 465 /// 2. Branch unconditionally to NMBB iff NMBB is inserted at any other place. 466 static void updateTerminator(MachineBasicBlock *BBToUpdate, 467 MachineBasicBlock *NMBB, 468 const TargetInstrInfo *TII) { 469 DebugLoc DL = BBToUpdate->findBranchDebugLoc(); 470 // if NMBB isn't the new layout successor for BBToUpdate, insert unconditional 471 // branch to it 472 if (!BBToUpdate->isLayoutSuccessor(NMBB)) 473 TII->insertUnconditionalBranch(*BBToUpdate, NMBB, DL); 474 } 475 476 /// This function splits the restore point and returns new restore point/BB. 477 /// 478 /// DirtyPreds: Predessors of \p MBB that are ReachableByDirty 479 /// 480 /// Decision has been made to split the restore point. 481 /// old restore point: \p MBB 482 /// new restore point: \p NMBB 483 /// This function makes the necessary block layout changes so that 484 /// 1. \p NMBB points to \p MBB unconditionally 485 /// 2. All dirtyPreds that previously pointed to \p MBB point to \p NMBB 486 static MachineBasicBlock * 487 tryToSplitRestore(MachineBasicBlock *MBB, 488 ArrayRef<MachineBasicBlock *> DirtyPreds, 489 const TargetInstrInfo *TII) { 490 MachineFunction *MF = MBB->getParent(); 491 492 // get the list of DirtyPreds who have a fallthrough to MBB 493 // before the block layout change. This is just to ensure that if the NMBB is 494 // inserted after MBB, then we create unconditional branch from 495 // DirtyPred/CleanPred to NMBB 496 SmallPtrSet<MachineBasicBlock *, 8> MBBFallthrough; 497 for (MachineBasicBlock *BB : DirtyPreds) 498 if (BB->getFallThrough(false) == MBB) 499 MBBFallthrough.insert(BB); 500 501 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 502 // Insert this block at the end of the function. Inserting in between may 503 // interfere with control flow optimizer decisions. 504 MF->insert(MF->end(), NMBB); 505 506 for (const MachineBasicBlock::RegisterMaskPair &LI : MBB->liveins()) 507 NMBB->addLiveIn(LI.PhysReg); 508 509 TII->insertUnconditionalBranch(*NMBB, MBB, DebugLoc()); 510 511 // After splitting, all predecessors of the restore point should be dirty 512 // blocks. 513 for (MachineBasicBlock *SuccBB : DirtyPreds) 514 SuccBB->ReplaceUsesOfBlockWith(MBB, NMBB); 515 516 NMBB->addSuccessor(MBB); 517 518 for (MachineBasicBlock *BBToUpdate : MBBFallthrough) 519 updateTerminator(BBToUpdate, NMBB, TII); 520 521 return NMBB; 522 } 523 524 /// This function undoes the restore point split done earlier. 525 /// 526 /// DirtyPreds: All predecessors of \p NMBB that are ReachableByDirty. 527 /// 528 /// Restore point was split and the change needs to be unrolled. Make necessary 529 /// changes to reset restore point from \p NMBB to \p MBB. 530 static void rollbackRestoreSplit(MachineFunction &MF, MachineBasicBlock *NMBB, 531 MachineBasicBlock *MBB, 532 ArrayRef<MachineBasicBlock *> DirtyPreds, 533 const TargetInstrInfo *TII) { 534 // For a BB, if NMBB is fallthrough in the current layout, then in the new 535 // layout a. BB should fallthrough to MBB OR b. BB should undconditionally 536 // branch to MBB 537 SmallPtrSet<MachineBasicBlock *, 8> NMBBFallthrough; 538 for (MachineBasicBlock *BB : DirtyPreds) 539 if (BB->getFallThrough(false) == NMBB) 540 NMBBFallthrough.insert(BB); 541 542 NMBB->removeSuccessor(MBB); 543 for (MachineBasicBlock *SuccBB : DirtyPreds) 544 SuccBB->ReplaceUsesOfBlockWith(NMBB, MBB); 545 546 NMBB->erase(NMBB->begin(), NMBB->end()); 547 NMBB->eraseFromParent(); 548 549 for (MachineBasicBlock *BBToUpdate : NMBBFallthrough) 550 updateTerminator(BBToUpdate, MBB, TII); 551 } 552 553 // A block is deemed fit for restore point split iff there exist 554 // 1. DirtyPreds - preds of CurRestore reachable from use or def of CSR/FI 555 // 2. CleanPreds - preds of CurRestore that arent DirtyPreds 556 bool ShrinkWrap::checkIfRestoreSplittable( 557 const MachineBasicBlock *CurRestore, 558 const DenseSet<const MachineBasicBlock *> &ReachableByDirty, 559 SmallVectorImpl<MachineBasicBlock *> &DirtyPreds, 560 SmallVectorImpl<MachineBasicBlock *> &CleanPreds, 561 const TargetInstrInfo *TII, RegScavenger *RS) { 562 for (const MachineInstr &MI : *CurRestore) 563 if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) 564 return false; 565 566 for (MachineBasicBlock *PredBB : CurRestore->predecessors()) { 567 if (!isAnalyzableBB(*TII, *PredBB)) 568 return false; 569 570 if (ReachableByDirty.count(PredBB)) 571 DirtyPreds.push_back(PredBB); 572 else 573 CleanPreds.push_back(PredBB); 574 } 575 576 return !(CleanPreds.empty() || DirtyPreds.empty()); 577 } 578 579 bool ShrinkWrap::postShrinkWrapping(bool HasCandidate, MachineFunction &MF, 580 RegScavenger *RS) { 581 if (!EnablePostShrinkWrapOpt) 582 return false; 583 584 MachineBasicBlock *InitSave = nullptr; 585 MachineBasicBlock *InitRestore = nullptr; 586 587 if (HasCandidate) { 588 InitSave = Save; 589 InitRestore = Restore; 590 } else { 591 InitRestore = nullptr; 592 InitSave = &MF.front(); 593 for (MachineBasicBlock &MBB : MF) { 594 if (MBB.isEHFuncletEntry()) 595 return false; 596 if (MBB.isReturnBlock()) { 597 // Do not support multiple restore points. 598 if (InitRestore) 599 return false; 600 InitRestore = &MBB; 601 } 602 } 603 } 604 605 if (!InitSave || !InitRestore || InitRestore == InitSave || 606 !MDT->dominates(InitSave, InitRestore) || 607 !MPDT->dominates(InitRestore, InitSave)) 608 return false; 609 610 // Bail out of the optimization if any of the basic block is target of 611 // INLINEASM_BR instruction 612 for (MachineBasicBlock &MBB : MF) 613 if (MBB.isInlineAsmBrIndirectTarget()) 614 return false; 615 616 DenseSet<const MachineBasicBlock *> DirtyBBs; 617 for (MachineBasicBlock &MBB : MF) { 618 if (MBB.isEHPad()) { 619 DirtyBBs.insert(&MBB); 620 continue; 621 } 622 for (const MachineInstr &MI : MBB) 623 if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) { 624 DirtyBBs.insert(&MBB); 625 break; 626 } 627 } 628 629 // Find blocks reachable from the use or def of CSRs/FI. 630 DenseSet<const MachineBasicBlock *> ReachableByDirty; 631 collectBlocksReachableByDirty(DirtyBBs, ReachableByDirty); 632 633 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 634 SmallVector<MachineBasicBlock *, 2> DirtyPreds; 635 SmallVector<MachineBasicBlock *, 2> CleanPreds; 636 if (!checkIfRestoreSplittable(InitRestore, ReachableByDirty, DirtyPreds, 637 CleanPreds, TII, RS)) 638 return false; 639 640 // Trying to reach out to the new save point which dominates all dirty blocks. 641 MachineBasicBlock *NewSave = 642 FindIDom<>(**DirtyPreds.begin(), DirtyPreds, *MDT, false); 643 644 while (NewSave && (hasDirtyPred(ReachableByDirty, *NewSave) || 645 EntryFreq < MBFI->getBlockFreq(NewSave) || 646 /*Entry freq has been observed more than a loop block in 647 some cases*/ 648 MLI->getLoopFor(NewSave))) 649 NewSave = FindIDom<>(**NewSave->pred_begin(), NewSave->predecessors(), *MDT, 650 false); 651 652 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 653 if (!NewSave || NewSave == InitSave || 654 isSaveReachableThroughClean(NewSave, CleanPreds) || 655 !TFI->canUseAsPrologue(*NewSave)) 656 return false; 657 658 // Now we know that splitting a restore point can isolate the restore point 659 // from clean blocks and doing so can shrink the save point. 660 MachineBasicBlock *NewRestore = 661 tryToSplitRestore(InitRestore, DirtyPreds, TII); 662 663 // Make sure if the new restore point is valid as an epilogue, depending on 664 // targets. 665 if (!TFI->canUseAsEpilogue(*NewRestore)) { 666 rollbackRestoreSplit(MF, NewRestore, InitRestore, DirtyPreds, TII); 667 return false; 668 } 669 670 Save = NewSave; 671 Restore = NewRestore; 672 673 MDT->recalculate(MF); 674 MPDT->recalculate(MF); 675 676 assert((MDT->dominates(Save, Restore) && MPDT->dominates(Restore, Save)) && 677 "Incorrect save or restore point due to dominance relations"); 678 assert((!MLI->getLoopFor(Save) && !MLI->getLoopFor(Restore)) && 679 "Unexpected save or restore point in a loop"); 680 assert((EntryFreq >= MBFI->getBlockFreq(Save) && 681 EntryFreq >= MBFI->getBlockFreq(Restore)) && 682 "Incorrect save or restore point based on block frequency"); 683 return true; 684 } 685 686 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, 687 RegScavenger *RS) { 688 // Get rid of the easy cases first. 689 if (!Save) 690 Save = &MBB; 691 else 692 Save = MDT->findNearestCommonDominator(Save, &MBB); 693 assert(Save); 694 695 if (!Restore) 696 Restore = &MBB; 697 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it 698 // means the block never returns. If that's the 699 // case, we don't want to call 700 // `findNearestCommonDominator`, which will 701 // return `Restore`. 702 Restore = MPDT->findNearestCommonDominator(Restore, &MBB); 703 else 704 Restore = nullptr; // Abort, we can't find a restore point in this case. 705 706 // Make sure we would be able to insert the restore code before the 707 // terminator. 708 if (Restore == &MBB) { 709 for (const MachineInstr &Terminator : MBB.terminators()) { 710 if (!useOrDefCSROrFI(Terminator, RS, /*StackAddressUsed=*/true)) 711 continue; 712 // One of the terminator needs to happen before the restore point. 713 if (MBB.succ_empty()) { 714 Restore = nullptr; // Abort, we can't find a restore point in this case. 715 break; 716 } 717 // Look for a restore point that post-dominates all the successors. 718 // The immediate post-dominator is what we are looking for. 719 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 720 break; 721 } 722 } 723 724 if (!Restore) { 725 LLVM_DEBUG( 726 dbgs() << "Restore point needs to be spanned on several blocks\n"); 727 return; 728 } 729 730 // Make sure Save and Restore are suitable for shrink-wrapping: 731 // 1. all path from Save needs to lead to Restore before exiting. 732 // 2. all path to Restore needs to go through Save from Entry. 733 // We achieve that by making sure that: 734 // A. Save dominates Restore. 735 // B. Restore post-dominates Save. 736 // C. Save and Restore are in the same loop. 737 bool SaveDominatesRestore = false; 738 bool RestorePostDominatesSave = false; 739 while (Restore && 740 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || 741 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || 742 // Post-dominance is not enough in loops to ensure that all uses/defs 743 // are after the prologue and before the epilogue at runtime. 744 // E.g., 745 // while(1) { 746 // Save 747 // Restore 748 // if (...) 749 // break; 750 // use/def CSRs 751 // } 752 // All the uses/defs of CSRs are dominated by Save and post-dominated 753 // by Restore. However, the CSRs uses are still reachable after 754 // Restore and before Save are executed. 755 // 756 // For now, just push the restore/save points outside of loops. 757 // FIXME: Refine the criteria to still find interesting cases 758 // for loops. 759 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 760 // Fix (A). 761 if (!SaveDominatesRestore) { 762 Save = MDT->findNearestCommonDominator(Save, Restore); 763 continue; 764 } 765 // Fix (B). 766 if (!RestorePostDominatesSave) 767 Restore = MPDT->findNearestCommonDominator(Restore, Save); 768 769 // Fix (C). 770 if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 771 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { 772 // Push Save outside of this loop if immediate dominator is different 773 // from save block. If immediate dominator is not different, bail out. 774 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 775 if (!Save) 776 break; 777 } else { 778 // If the loop does not exit, there is no point in looking 779 // for a post-dominator outside the loop. 780 SmallVector<MachineBasicBlock*, 4> ExitBlocks; 781 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); 782 // Push Restore outside of this loop. 783 // Look for the immediate post-dominator of the loop exits. 784 MachineBasicBlock *IPdom = Restore; 785 for (MachineBasicBlock *LoopExitBB: ExitBlocks) { 786 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); 787 if (!IPdom) 788 break; 789 } 790 // If the immediate post-dominator is not in a less nested loop, 791 // then we are stuck in a program with an infinite loop. 792 // In that case, we will not find a safe point, hence, bail out. 793 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) 794 Restore = IPdom; 795 else { 796 Restore = nullptr; 797 break; 798 } 799 } 800 } 801 } 802 } 803 804 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, 805 StringRef RemarkName, StringRef RemarkMessage, 806 const DiagnosticLocation &Loc, 807 const MachineBasicBlock *MBB) { 808 ORE->emit([&]() { 809 return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) 810 << RemarkMessage; 811 }); 812 813 LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); 814 return false; 815 } 816 817 bool ShrinkWrap::performShrinkWrapping( 818 const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT, 819 RegScavenger *RS) { 820 for (MachineBasicBlock *MBB : RPOT) { 821 LLVM_DEBUG(dbgs() << "Look into: " << printMBBReference(*MBB) << '\n'); 822 823 if (MBB->isEHFuncletEntry()) 824 return giveUpWithRemarks(ORE, "UnsupportedEHFunclets", 825 "EH Funclets are not supported yet.", 826 MBB->front().getDebugLoc(), MBB); 827 828 if (MBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget()) { 829 // Push the prologue and epilogue outside of the region that may throw (or 830 // jump out via inlineasm_br), by making sure that all the landing pads 831 // are at least at the boundary of the save and restore points. The 832 // problem is that a basic block can jump out from the middle in these 833 // cases, which we do not handle. 834 updateSaveRestorePoints(*MBB, RS); 835 if (!ArePointsInteresting()) { 836 LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n"); 837 return false; 838 } 839 continue; 840 } 841 842 bool StackAddressUsed = false; 843 // Check if we found any stack accesses in the predecessors. We are not 844 // doing a full dataflow analysis here to keep things simple but just 845 // rely on a reverse portorder traversal (RPOT) to guarantee predecessors 846 // are already processed except for loops (and accept the conservative 847 // result for loops). 848 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 849 if (StackAddressUsedBlockInfo.test(Pred->getNumber())) { 850 StackAddressUsed = true; 851 break; 852 } 853 } 854 855 for (const MachineInstr &MI : *MBB) { 856 if (useOrDefCSROrFI(MI, RS, StackAddressUsed)) { 857 // Save (resp. restore) point must dominate (resp. post dominate) 858 // MI. Look for the proper basic block for those. 859 updateSaveRestorePoints(*MBB, RS); 860 // If we are at a point where we cannot improve the placement of 861 // save/restore instructions, just give up. 862 if (!ArePointsInteresting()) { 863 LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); 864 return false; 865 } 866 // No need to look for other instructions, this basic block 867 // will already be part of the handled region. 868 StackAddressUsed = true; 869 break; 870 } 871 } 872 StackAddressUsedBlockInfo[MBB->getNumber()] = StackAddressUsed; 873 } 874 if (!ArePointsInteresting()) { 875 // If the points are not interesting at this point, then they must be null 876 // because it means we did not encounter any frame/CSR related code. 877 // Otherwise, we would have returned from the previous loop. 878 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); 879 LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); 880 return false; 881 } 882 883 LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " 884 << EntryFreq.getFrequency() << '\n'); 885 886 const TargetFrameLowering *TFI = 887 MachineFunc->getSubtarget().getFrameLowering(); 888 do { 889 LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " 890 << printMBBReference(*Save) << ' ' 891 << printBlockFreq(*MBFI, *Save) 892 << "\nRestore: " << printMBBReference(*Restore) << ' ' 893 << printBlockFreq(*MBFI, *Restore) << '\n'); 894 895 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; 896 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save)) && 897 EntryFreq >= MBFI->getBlockFreq(Restore)) && 898 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && 899 TFI->canUseAsEpilogue(*Restore))) 900 break; 901 LLVM_DEBUG( 902 dbgs() << "New points are too expensive or invalid for the target\n"); 903 MachineBasicBlock *NewBB; 904 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { 905 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 906 if (!Save) 907 break; 908 NewBB = Save; 909 } else { 910 // Restore is expensive. 911 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 912 if (!Restore) 913 break; 914 NewBB = Restore; 915 } 916 updateSaveRestorePoints(*NewBB, RS); 917 } while (Save && Restore); 918 919 if (!ArePointsInteresting()) { 920 ++NumCandidatesDropped; 921 return false; 922 } 923 return true; 924 } 925 926 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { 927 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) 928 return false; 929 930 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); 931 932 init(MF); 933 934 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); 935 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) { 936 // If MF is irreducible, a block may be in a loop without 937 // MachineLoopInfo reporting it. I.e., we may use the 938 // post-dominance property in loops, which lead to incorrect 939 // results. Moreover, we may miss that the prologue and 940 // epilogue are not in the same loop, leading to unbalanced 941 // construction/deconstruction of the stack frame. 942 return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG", 943 "Irreducible CFGs are not supported yet.", 944 MF.getFunction().getSubprogram(), &MF.front()); 945 } 946 947 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 948 std::unique_ptr<RegScavenger> RS( 949 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); 950 951 bool Changed = false; 952 953 // Initially, conservatively assume that stack addresses can be used in each 954 // basic block and change the state only for those basic blocks for which we 955 // were able to prove the opposite. 956 StackAddressUsedBlockInfo.resize(MF.getNumBlockIDs(), true); 957 bool HasCandidate = performShrinkWrapping(RPOT, RS.get()); 958 StackAddressUsedBlockInfo.clear(); 959 Changed = postShrinkWrapping(HasCandidate, MF, RS.get()); 960 if (!HasCandidate && !Changed) 961 return false; 962 if (!ArePointsInteresting()) 963 return Changed; 964 965 LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " 966 << printMBBReference(*Save) << ' ' 967 << "\nRestore: " << printMBBReference(*Restore) << '\n'); 968 969 MachineFrameInfo &MFI = MF.getFrameInfo(); 970 MFI.setSavePoint(Save); 971 MFI.setRestorePoint(Restore); 972 ++NumCandidates; 973 return Changed; 974 } 975 976 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { 977 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 978 979 switch (EnableShrinkWrapOpt) { 980 case cl::BOU_UNSET: 981 return TFI->enableShrinkWrapping(MF) && 982 // Windows with CFI has some limitations that make it impossible 983 // to use shrink-wrapping. 984 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 985 // Sanitizers look at the value of the stack at the location 986 // of the crash. Since a crash can happen anywhere, the 987 // frame must be lowered before anything else happen for the 988 // sanitizers to be able to get a correct stack frame. 989 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || 990 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || 991 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || 992 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); 993 // If EnableShrinkWrap is set, it takes precedence on whatever the 994 // target sets. The rational is that we assume we want to test 995 // something related to shrink-wrapping. 996 case cl::BOU_TRUE: 997 return true; 998 case cl::BOU_FALSE: 999 return false; 1000 } 1001 llvm_unreachable("Invalid shrink-wrapping state"); 1002 } 1003