xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass looks for safe point where the prologue and epilogue can be
10 // inserted.
11 // The safe point for the prologue (resp. epilogue) is called Save
12 // (resp. Restore).
13 // A point is safe for prologue (resp. epilogue) if and only if
14 // it 1) dominates (resp. post-dominates) all the frame related operations and
15 // between 2) two executions of the Save (resp. Restore) point there is an
16 // execution of the Restore (resp. Save) point.
17 //
18 // For instance, the following points are safe:
19 // for (int i = 0; i < 10; ++i) {
20 //   Save
21 //   ...
22 //   Restore
23 // }
24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
25 // And the following points are not:
26 // for (int i = 0; i < 10; ++i) {
27 //   Save
28 //   ...
29 // }
30 // for (int i = 0; i < 10; ++i) {
31 //   ...
32 //   Restore
33 // }
34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
35 //
36 // This pass also ensures that the safe points are 3) cheaper than the regular
37 // entry and exits blocks.
38 //
39 // Property #1 is ensured via the use of MachineDominatorTree and
40 // MachinePostDominatorTree.
41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
42 // points must be in the same loop.
43 // Property #3 is ensured via the MachineBlockFrequencyInfo.
44 //
45 // If this pass found points matching all these properties, then
46 // MachineFrameInfo is updated with this information.
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/ADT/BitVector.h"
51 #include "llvm/ADT/PostOrderIterator.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/Analysis/ValueTracking.h"
57 #include "llvm/CodeGen/MachineBasicBlock.h"
58 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
59 #include "llvm/CodeGen/MachineDominators.h"
60 #include "llvm/CodeGen/MachineFrameInfo.h"
61 #include "llvm/CodeGen/MachineFunction.h"
62 #include "llvm/CodeGen/MachineFunctionPass.h"
63 #include "llvm/CodeGen/MachineInstr.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineOperand.h"
66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
67 #include "llvm/CodeGen/MachinePostDominators.h"
68 #include "llvm/CodeGen/RegisterClassInfo.h"
69 #include "llvm/CodeGen/RegisterScavenging.h"
70 #include "llvm/CodeGen/TargetFrameLowering.h"
71 #include "llvm/CodeGen/TargetInstrInfo.h"
72 #include "llvm/CodeGen/TargetLowering.h"
73 #include "llvm/CodeGen/TargetRegisterInfo.h"
74 #include "llvm/CodeGen/TargetSubtargetInfo.h"
75 #include "llvm/IR/Attributes.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/MC/MCAsmInfo.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include <cassert>
86 #include <cstdint>
87 #include <memory>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "shrink-wrap"
92 
93 STATISTIC(NumFunc, "Number of functions");
94 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
95 STATISTIC(NumCandidatesDropped,
96           "Number of shrink-wrapping candidates dropped because of frequency");
97 
98 static cl::opt<cl::boolOrDefault>
99 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
100                     cl::desc("enable the shrink-wrapping pass"));
101 static cl::opt<bool> EnablePostShrinkWrapOpt(
102     "enable-shrink-wrap-region-split", cl::init(true), cl::Hidden,
103     cl::desc("enable splitting of the restore block if possible"));
104 
105 namespace {
106 
107 /// Class to determine where the safe point to insert the
108 /// prologue and epilogue are.
109 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
110 /// shrink-wrapping term for prologue/epilogue placement, this pass
111 /// does not rely on expensive data-flow analysis. Instead we use the
112 /// dominance properties and loop information to decide which point
113 /// are safe for such insertion.
114 class ShrinkWrap : public MachineFunctionPass {
115   /// Hold callee-saved information.
116   RegisterClassInfo RCI;
117   MachineDominatorTree *MDT = nullptr;
118   MachinePostDominatorTree *MPDT = nullptr;
119 
120   /// Current safe point found for the prologue.
121   /// The prologue will be inserted before the first instruction
122   /// in this basic block.
123   MachineBasicBlock *Save = nullptr;
124 
125   /// Current safe point found for the epilogue.
126   /// The epilogue will be inserted before the first terminator instruction
127   /// in this basic block.
128   MachineBasicBlock *Restore = nullptr;
129 
130   /// Hold the information of the basic block frequency.
131   /// Use to check the profitability of the new points.
132   MachineBlockFrequencyInfo *MBFI = nullptr;
133 
134   /// Hold the loop information. Used to determine if Save and Restore
135   /// are in the same loop.
136   MachineLoopInfo *MLI = nullptr;
137 
138   // Emit remarks.
139   MachineOptimizationRemarkEmitter *ORE = nullptr;
140 
141   /// Frequency of the Entry block.
142   BlockFrequency EntryFreq;
143 
144   /// Current opcode for frame setup.
145   unsigned FrameSetupOpcode = ~0u;
146 
147   /// Current opcode for frame destroy.
148   unsigned FrameDestroyOpcode = ~0u;
149 
150   /// Stack pointer register, used by llvm.{savestack,restorestack}
151   Register SP;
152 
153   /// Entry block.
154   const MachineBasicBlock *Entry = nullptr;
155 
156   using SetOfRegs = SmallSetVector<unsigned, 16>;
157 
158   /// Registers that need to be saved for the current function.
159   mutable SetOfRegs CurrentCSRs;
160 
161   /// Current MachineFunction.
162   MachineFunction *MachineFunc = nullptr;
163 
164   /// Is `true` for block numbers where we can guarantee no stack access
165   /// or computation of stack-relative addresses on any CFG path including
166   /// the block itself.
167   BitVector StackAddressUsedBlockInfo;
168 
169   /// Check if \p MI uses or defines a callee-saved register or
170   /// a frame index. If this is the case, this means \p MI must happen
171   /// after Save and before Restore.
172   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS,
173                        bool StackAddressUsed) const;
174 
175   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
176     if (CurrentCSRs.empty()) {
177       BitVector SavedRegs;
178       const TargetFrameLowering *TFI =
179           MachineFunc->getSubtarget().getFrameLowering();
180 
181       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
182 
183       for (int Reg = SavedRegs.find_first(); Reg != -1;
184            Reg = SavedRegs.find_next(Reg))
185         CurrentCSRs.insert((unsigned)Reg);
186     }
187     return CurrentCSRs;
188   }
189 
190   /// Update the Save and Restore points such that \p MBB is in
191   /// the region that is dominated by Save and post-dominated by Restore
192   /// and Save and Restore still match the safe point definition.
193   /// Such point may not exist and Save and/or Restore may be null after
194   /// this call.
195   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
196 
197   // Try to find safe point based on dominance and block frequency without
198   // any change in IR.
199   bool performShrinkWrapping(
200       const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT,
201       RegScavenger *RS);
202 
203   /// This function tries to split the restore point if doing so can shrink the
204   /// save point further. \return True if restore point is split.
205   bool postShrinkWrapping(bool HasCandidate, MachineFunction &MF,
206                           RegScavenger *RS);
207 
208   /// This function analyzes if the restore point can split to create a new
209   /// restore point. This function collects
210   /// 1. Any preds of current restore that are reachable by callee save/FI
211   /// blocks
212   /// - indicated by DirtyPreds
213   /// 2. Any preds of current restore that are not DirtyPreds - indicated by
214   /// CleanPreds
215   /// Both sets should be non-empty for considering restore point split.
216   bool checkIfRestoreSplittable(
217       const MachineBasicBlock *CurRestore,
218       const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
219       SmallVectorImpl<MachineBasicBlock *> &DirtyPreds,
220       SmallVectorImpl<MachineBasicBlock *> &CleanPreds,
221       const TargetInstrInfo *TII, RegScavenger *RS);
222 
223   /// Initialize the pass for \p MF.
224   void init(MachineFunction &MF) {
225     RCI.runOnMachineFunction(MF);
226     MDT = &getAnalysis<MachineDominatorTree>();
227     MPDT = &getAnalysis<MachinePostDominatorTree>();
228     Save = nullptr;
229     Restore = nullptr;
230     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
231     MLI = &getAnalysis<MachineLoopInfo>();
232     ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
233     EntryFreq = MBFI->getEntryFreq();
234     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
235     const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
236     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
237     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
238     SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
239     Entry = &MF.front();
240     CurrentCSRs.clear();
241     MachineFunc = &MF;
242 
243     ++NumFunc;
244   }
245 
246   /// Check whether or not Save and Restore points are still interesting for
247   /// shrink-wrapping.
248   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
249 
250   /// Check if shrink wrapping is enabled for this target and function.
251   static bool isShrinkWrapEnabled(const MachineFunction &MF);
252 
253 public:
254   static char ID;
255 
256   ShrinkWrap() : MachineFunctionPass(ID) {
257     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
258   }
259 
260   void getAnalysisUsage(AnalysisUsage &AU) const override {
261     AU.setPreservesAll();
262     AU.addRequired<MachineBlockFrequencyInfo>();
263     AU.addRequired<MachineDominatorTree>();
264     AU.addRequired<MachinePostDominatorTree>();
265     AU.addRequired<MachineLoopInfo>();
266     AU.addRequired<MachineOptimizationRemarkEmitterPass>();
267     MachineFunctionPass::getAnalysisUsage(AU);
268   }
269 
270   MachineFunctionProperties getRequiredProperties() const override {
271     return MachineFunctionProperties().set(
272       MachineFunctionProperties::Property::NoVRegs);
273   }
274 
275   StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
276 
277   /// Perform the shrink-wrapping analysis and update
278   /// the MachineFrameInfo attached to \p MF with the results.
279   bool runOnMachineFunction(MachineFunction &MF) override;
280 };
281 
282 } // end anonymous namespace
283 
284 char ShrinkWrap::ID = 0;
285 
286 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
287 
288 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
289 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
290 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
291 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
292 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
293 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
294 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
295 
296 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS,
297                                  bool StackAddressUsed) const {
298   /// Check if \p Op is known to access an address not on the function's stack .
299   /// At the moment, accesses where the underlying object is a global, function
300   /// argument, or jump table are considered non-stack accesses. Note that the
301   /// caller's stack may get accessed when passing an argument via the stack,
302   /// but not the stack of the current function.
303   ///
304   auto IsKnownNonStackPtr = [](MachineMemOperand *Op) {
305     if (Op->getValue()) {
306       const Value *UO = getUnderlyingObject(Op->getValue());
307       if (!UO)
308         return false;
309       if (auto *Arg = dyn_cast<Argument>(UO))
310         return !Arg->hasPassPointeeByValueCopyAttr();
311       return isa<GlobalValue>(UO);
312     }
313     if (const PseudoSourceValue *PSV = Op->getPseudoValue())
314       return PSV->isJumpTable();
315     return false;
316   };
317   // Load/store operations may access the stack indirectly when we previously
318   // computed an address to a stack location.
319   if (StackAddressUsed && MI.mayLoadOrStore() &&
320       (MI.isCall() || MI.hasUnmodeledSideEffects() || MI.memoperands_empty() ||
321        !all_of(MI.memoperands(), IsKnownNonStackPtr)))
322     return true;
323 
324   if (MI.getOpcode() == FrameSetupOpcode ||
325       MI.getOpcode() == FrameDestroyOpcode) {
326     LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
327     return true;
328   }
329   const MachineFunction *MF = MI.getParent()->getParent();
330   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
331   for (const MachineOperand &MO : MI.operands()) {
332     bool UseOrDefCSR = false;
333     if (MO.isReg()) {
334       // Ignore instructions like DBG_VALUE which don't read/def the register.
335       if (!MO.isDef() && !MO.readsReg())
336         continue;
337       Register PhysReg = MO.getReg();
338       if (!PhysReg)
339         continue;
340       assert(PhysReg.isPhysical() && "Unallocated register?!");
341       // The stack pointer is not normally described as a callee-saved register
342       // in calling convention definitions, so we need to watch for it
343       // separately. An SP mentioned by a call instruction, we can ignore,
344       // though, as it's harmless and we do not want to effectively disable tail
345       // calls by forcing the restore point to post-dominate them.
346       // PPC's LR is also not normally described as a callee-saved register in
347       // calling convention definitions, so we need to watch for it, too. An LR
348       // mentioned implicitly by a return (or "branch to link register")
349       // instruction we can ignore, otherwise we may pessimize shrinkwrapping.
350       UseOrDefCSR =
351           (!MI.isCall() && PhysReg == SP) ||
352           RCI.getLastCalleeSavedAlias(PhysReg) ||
353           (!MI.isReturn() && TRI->isNonallocatableRegisterCalleeSave(PhysReg));
354     } else if (MO.isRegMask()) {
355       // Check if this regmask clobbers any of the CSRs.
356       for (unsigned Reg : getCurrentCSRs(RS)) {
357         if (MO.clobbersPhysReg(Reg)) {
358           UseOrDefCSR = true;
359           break;
360         }
361       }
362     }
363     // Skip FrameIndex operands in DBG_VALUE instructions.
364     if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
365       LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
366                         << MO.isFI() << "): " << MI << '\n');
367       return true;
368     }
369   }
370   return false;
371 }
372 
373 /// Helper function to find the immediate (post) dominator.
374 template <typename ListOfBBs, typename DominanceAnalysis>
375 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
376                                    DominanceAnalysis &Dom, bool Strict = true) {
377   MachineBasicBlock *IDom = &Block;
378   for (MachineBasicBlock *BB : BBs) {
379     IDom = Dom.findNearestCommonDominator(IDom, BB);
380     if (!IDom)
381       break;
382   }
383   if (Strict && IDom == &Block)
384     return nullptr;
385   return IDom;
386 }
387 
388 static bool isAnalyzableBB(const TargetInstrInfo &TII,
389                            MachineBasicBlock &Entry) {
390   // Check if the block is analyzable.
391   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
392   SmallVector<MachineOperand, 4> Cond;
393   return !TII.analyzeBranch(Entry, TBB, FBB, Cond);
394 }
395 
396 /// Determines if any predecessor of MBB is on the path from block that has use
397 /// or def of CSRs/FI to MBB.
398 /// ReachableByDirty: All blocks reachable from block that has use or def of
399 /// CSR/FI.
400 static bool
401 hasDirtyPred(const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
402              const MachineBasicBlock &MBB) {
403   for (const MachineBasicBlock *PredBB : MBB.predecessors())
404     if (ReachableByDirty.count(PredBB))
405       return true;
406   return false;
407 }
408 
409 /// Derives the list of all the basic blocks reachable from MBB.
410 static void markAllReachable(DenseSet<const MachineBasicBlock *> &Visited,
411                              const MachineBasicBlock &MBB) {
412   SmallVector<MachineBasicBlock *, 4> Worklist(MBB.succ_begin(),
413                                                MBB.succ_end());
414   Visited.insert(&MBB);
415   while (!Worklist.empty()) {
416     MachineBasicBlock *SuccMBB = Worklist.pop_back_val();
417     if (!Visited.insert(SuccMBB).second)
418       continue;
419     Worklist.append(SuccMBB->succ_begin(), SuccMBB->succ_end());
420   }
421 }
422 
423 /// Collect blocks reachable by use or def of CSRs/FI.
424 static void collectBlocksReachableByDirty(
425     const DenseSet<const MachineBasicBlock *> &DirtyBBs,
426     DenseSet<const MachineBasicBlock *> &ReachableByDirty) {
427   for (const MachineBasicBlock *MBB : DirtyBBs) {
428     if (ReachableByDirty.count(MBB))
429       continue;
430     // Mark all offsprings as reachable.
431     markAllReachable(ReachableByDirty, *MBB);
432   }
433 }
434 
435 /// \return true if there is a clean path from SavePoint to the original
436 /// Restore.
437 static bool
438 isSaveReachableThroughClean(const MachineBasicBlock *SavePoint,
439                             ArrayRef<MachineBasicBlock *> CleanPreds) {
440   DenseSet<const MachineBasicBlock *> Visited;
441   SmallVector<MachineBasicBlock *, 4> Worklist(CleanPreds.begin(),
442                                                CleanPreds.end());
443   while (!Worklist.empty()) {
444     MachineBasicBlock *CleanBB = Worklist.pop_back_val();
445     if (CleanBB == SavePoint)
446       return true;
447     if (!Visited.insert(CleanBB).second || !CleanBB->pred_size())
448       continue;
449     Worklist.append(CleanBB->pred_begin(), CleanBB->pred_end());
450   }
451   return false;
452 }
453 
454 /// This function updates the branches post restore point split.
455 ///
456 /// Restore point has been split.
457 /// Old restore point: MBB
458 /// New restore point: NMBB
459 /// Any basic block(say BBToUpdate) which had a fallthrough to MBB
460 /// previously should
461 /// 1. Fallthrough to NMBB iff NMBB is inserted immediately above MBB in the
462 /// block layout OR
463 /// 2. Branch unconditionally to NMBB iff NMBB is inserted at any other place.
464 static void updateTerminator(MachineBasicBlock *BBToUpdate,
465                              MachineBasicBlock *NMBB,
466                              const TargetInstrInfo *TII) {
467   DebugLoc DL = BBToUpdate->findBranchDebugLoc();
468   // if NMBB isn't the new layout successor for BBToUpdate, insert unconditional
469   // branch to it
470   if (!BBToUpdate->isLayoutSuccessor(NMBB))
471     TII->insertUnconditionalBranch(*BBToUpdate, NMBB, DL);
472 }
473 
474 /// This function splits the restore point and returns new restore point/BB.
475 ///
476 /// DirtyPreds: Predessors of \p MBB that are ReachableByDirty
477 ///
478 /// Decision has been made to split the restore point.
479 /// old restore point: \p MBB
480 /// new restore point: \p NMBB
481 /// This function makes the necessary block layout changes so that
482 /// 1. \p NMBB points to \p MBB unconditionally
483 /// 2. All dirtyPreds that previously pointed to \p MBB point to \p NMBB
484 static MachineBasicBlock *
485 tryToSplitRestore(MachineBasicBlock *MBB,
486                   ArrayRef<MachineBasicBlock *> DirtyPreds,
487                   const TargetInstrInfo *TII) {
488   MachineFunction *MF = MBB->getParent();
489 
490   // get the list of DirtyPreds who have a fallthrough to MBB
491   // before the block layout change. This is just to ensure that if the NMBB is
492   // inserted after MBB, then we create unconditional branch from
493   // DirtyPred/CleanPred to NMBB
494   SmallPtrSet<MachineBasicBlock *, 8> MBBFallthrough;
495   for (MachineBasicBlock *BB : DirtyPreds)
496     if (BB->getFallThrough(false) == MBB)
497       MBBFallthrough.insert(BB);
498 
499   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
500   // Insert this block at the end of the function. Inserting in between may
501   // interfere with control flow optimizer decisions.
502   MF->insert(MF->end(), NMBB);
503 
504   for (const MachineBasicBlock::RegisterMaskPair &LI : MBB->liveins())
505     NMBB->addLiveIn(LI.PhysReg);
506 
507   TII->insertUnconditionalBranch(*NMBB, MBB, DebugLoc());
508 
509   // After splitting, all predecessors of the restore point should be dirty
510   // blocks.
511   for (MachineBasicBlock *SuccBB : DirtyPreds)
512     SuccBB->ReplaceUsesOfBlockWith(MBB, NMBB);
513 
514   NMBB->addSuccessor(MBB);
515 
516   for (MachineBasicBlock *BBToUpdate : MBBFallthrough)
517     updateTerminator(BBToUpdate, NMBB, TII);
518 
519   return NMBB;
520 }
521 
522 /// This function undoes the restore point split done earlier.
523 ///
524 /// DirtyPreds: All predecessors of \p NMBB that are ReachableByDirty.
525 ///
526 /// Restore point was split and the change needs to be unrolled. Make necessary
527 /// changes to reset restore point from \p NMBB to \p MBB.
528 static void rollbackRestoreSplit(MachineFunction &MF, MachineBasicBlock *NMBB,
529                                  MachineBasicBlock *MBB,
530                                  ArrayRef<MachineBasicBlock *> DirtyPreds,
531                                  const TargetInstrInfo *TII) {
532   // For a BB, if NMBB is fallthrough in the current layout, then in the new
533   // layout a. BB should fallthrough to MBB OR b. BB should undconditionally
534   // branch to MBB
535   SmallPtrSet<MachineBasicBlock *, 8> NMBBFallthrough;
536   for (MachineBasicBlock *BB : DirtyPreds)
537     if (BB->getFallThrough(false) == NMBB)
538       NMBBFallthrough.insert(BB);
539 
540   NMBB->removeSuccessor(MBB);
541   for (MachineBasicBlock *SuccBB : DirtyPreds)
542     SuccBB->ReplaceUsesOfBlockWith(NMBB, MBB);
543 
544   NMBB->erase(NMBB->begin(), NMBB->end());
545   NMBB->eraseFromParent();
546 
547   for (MachineBasicBlock *BBToUpdate : NMBBFallthrough)
548     updateTerminator(BBToUpdate, MBB, TII);
549 }
550 
551 // A block is deemed fit for restore point split iff there exist
552 // 1. DirtyPreds - preds of CurRestore reachable from use or def of CSR/FI
553 // 2. CleanPreds - preds of CurRestore that arent DirtyPreds
554 bool ShrinkWrap::checkIfRestoreSplittable(
555     const MachineBasicBlock *CurRestore,
556     const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
557     SmallVectorImpl<MachineBasicBlock *> &DirtyPreds,
558     SmallVectorImpl<MachineBasicBlock *> &CleanPreds,
559     const TargetInstrInfo *TII, RegScavenger *RS) {
560   for (const MachineInstr &MI : *CurRestore)
561     if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true))
562       return false;
563 
564   for (MachineBasicBlock *PredBB : CurRestore->predecessors()) {
565     if (!isAnalyzableBB(*TII, *PredBB))
566       return false;
567 
568     if (ReachableByDirty.count(PredBB))
569       DirtyPreds.push_back(PredBB);
570     else
571       CleanPreds.push_back(PredBB);
572   }
573 
574   return !(CleanPreds.empty() || DirtyPreds.empty());
575 }
576 
577 bool ShrinkWrap::postShrinkWrapping(bool HasCandidate, MachineFunction &MF,
578                                     RegScavenger *RS) {
579   if (!EnablePostShrinkWrapOpt)
580     return false;
581 
582   MachineBasicBlock *InitSave = nullptr;
583   MachineBasicBlock *InitRestore = nullptr;
584 
585   if (HasCandidate) {
586     InitSave = Save;
587     InitRestore = Restore;
588   } else {
589     InitRestore = nullptr;
590     InitSave = &MF.front();
591     for (MachineBasicBlock &MBB : MF) {
592       if (MBB.isEHFuncletEntry())
593         return false;
594       if (MBB.isReturnBlock()) {
595         // Do not support multiple restore points.
596         if (InitRestore)
597           return false;
598         InitRestore = &MBB;
599       }
600     }
601   }
602 
603   if (!InitSave || !InitRestore || InitRestore == InitSave ||
604       !MDT->dominates(InitSave, InitRestore) ||
605       !MPDT->dominates(InitRestore, InitSave))
606     return false;
607 
608   // Bail out of the optimization if any of the basic block is target of
609   // INLINEASM_BR instruction
610   for (MachineBasicBlock &MBB : MF)
611     if (MBB.isInlineAsmBrIndirectTarget())
612       return false;
613 
614   DenseSet<const MachineBasicBlock *> DirtyBBs;
615   for (MachineBasicBlock &MBB : MF) {
616     if (MBB.isEHPad()) {
617       DirtyBBs.insert(&MBB);
618       continue;
619     }
620     for (const MachineInstr &MI : MBB)
621       if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) {
622         DirtyBBs.insert(&MBB);
623         break;
624       }
625   }
626 
627   // Find blocks reachable from the use or def of CSRs/FI.
628   DenseSet<const MachineBasicBlock *> ReachableByDirty;
629   collectBlocksReachableByDirty(DirtyBBs, ReachableByDirty);
630 
631   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
632   SmallVector<MachineBasicBlock *, 2> DirtyPreds;
633   SmallVector<MachineBasicBlock *, 2> CleanPreds;
634   if (!checkIfRestoreSplittable(InitRestore, ReachableByDirty, DirtyPreds,
635                                 CleanPreds, TII, RS))
636     return false;
637 
638   // Trying to reach out to the new save point which dominates all dirty blocks.
639   MachineBasicBlock *NewSave =
640       FindIDom<>(**DirtyPreds.begin(), DirtyPreds, *MDT, false);
641 
642   while (NewSave && (hasDirtyPred(ReachableByDirty, *NewSave) ||
643                      EntryFreq < MBFI->getBlockFreq(NewSave) ||
644                      /*Entry freq has been observed more than a loop block in
645                         some cases*/
646                      MLI->getLoopFor(NewSave)))
647     NewSave = FindIDom<>(**NewSave->pred_begin(), NewSave->predecessors(), *MDT,
648                          false);
649 
650   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
651   if (!NewSave || NewSave == InitSave ||
652       isSaveReachableThroughClean(NewSave, CleanPreds) ||
653       !TFI->canUseAsPrologue(*NewSave))
654     return false;
655 
656   // Now we know that splitting a restore point can isolate the restore point
657   // from clean blocks and doing so can shrink the save point.
658   MachineBasicBlock *NewRestore =
659       tryToSplitRestore(InitRestore, DirtyPreds, TII);
660 
661   // Make sure if the new restore point is valid as an epilogue, depending on
662   // targets.
663   if (!TFI->canUseAsEpilogue(*NewRestore)) {
664     rollbackRestoreSplit(MF, NewRestore, InitRestore, DirtyPreds, TII);
665     return false;
666   }
667 
668   Save = NewSave;
669   Restore = NewRestore;
670 
671   MDT->runOnMachineFunction(MF);
672   MPDT->runOnMachineFunction(MF);
673 
674   assert((MDT->dominates(Save, Restore) && MPDT->dominates(Restore, Save)) &&
675          "Incorrect save or restore point due to dominance relations");
676   assert((!MLI->getLoopFor(Save) && !MLI->getLoopFor(Restore)) &&
677          "Unexpected save or restore point in a loop");
678   assert((EntryFreq >= MBFI->getBlockFreq(Save) &&
679           EntryFreq >= MBFI->getBlockFreq(Restore)) &&
680          "Incorrect save or restore point based on block frequency");
681   return true;
682 }
683 
684 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
685                                          RegScavenger *RS) {
686   // Get rid of the easy cases first.
687   if (!Save)
688     Save = &MBB;
689   else
690     Save = MDT->findNearestCommonDominator(Save, &MBB);
691   assert(Save);
692 
693   if (!Restore)
694     Restore = &MBB;
695   else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
696                                 // means the block never returns. If that's the
697                                 // case, we don't want to call
698                                 // `findNearestCommonDominator`, which will
699                                 // return `Restore`.
700     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
701   else
702     Restore = nullptr; // Abort, we can't find a restore point in this case.
703 
704   // Make sure we would be able to insert the restore code before the
705   // terminator.
706   if (Restore == &MBB) {
707     for (const MachineInstr &Terminator : MBB.terminators()) {
708       if (!useOrDefCSROrFI(Terminator, RS, /*StackAddressUsed=*/true))
709         continue;
710       // One of the terminator needs to happen before the restore point.
711       if (MBB.succ_empty()) {
712         Restore = nullptr; // Abort, we can't find a restore point in this case.
713         break;
714       }
715       // Look for a restore point that post-dominates all the successors.
716       // The immediate post-dominator is what we are looking for.
717       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
718       break;
719     }
720   }
721 
722   if (!Restore) {
723     LLVM_DEBUG(
724         dbgs() << "Restore point needs to be spanned on several blocks\n");
725     return;
726   }
727 
728   // Make sure Save and Restore are suitable for shrink-wrapping:
729   // 1. all path from Save needs to lead to Restore before exiting.
730   // 2. all path to Restore needs to go through Save from Entry.
731   // We achieve that by making sure that:
732   // A. Save dominates Restore.
733   // B. Restore post-dominates Save.
734   // C. Save and Restore are in the same loop.
735   bool SaveDominatesRestore = false;
736   bool RestorePostDominatesSave = false;
737   while (Restore &&
738          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
739           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
740           // Post-dominance is not enough in loops to ensure that all uses/defs
741           // are after the prologue and before the epilogue at runtime.
742           // E.g.,
743           // while(1) {
744           //  Save
745           //  Restore
746           //   if (...)
747           //     break;
748           //  use/def CSRs
749           // }
750           // All the uses/defs of CSRs are dominated by Save and post-dominated
751           // by Restore. However, the CSRs uses are still reachable after
752           // Restore and before Save are executed.
753           //
754           // For now, just push the restore/save points outside of loops.
755           // FIXME: Refine the criteria to still find interesting cases
756           // for loops.
757           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
758     // Fix (A).
759     if (!SaveDominatesRestore) {
760       Save = MDT->findNearestCommonDominator(Save, Restore);
761       continue;
762     }
763     // Fix (B).
764     if (!RestorePostDominatesSave)
765       Restore = MPDT->findNearestCommonDominator(Restore, Save);
766 
767     // Fix (C).
768     if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
769       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
770         // Push Save outside of this loop if immediate dominator is different
771         // from save block. If immediate dominator is not different, bail out.
772         Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
773         if (!Save)
774           break;
775       } else {
776         // If the loop does not exit, there is no point in looking
777         // for a post-dominator outside the loop.
778         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
779         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
780         // Push Restore outside of this loop.
781         // Look for the immediate post-dominator of the loop exits.
782         MachineBasicBlock *IPdom = Restore;
783         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
784           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
785           if (!IPdom)
786             break;
787         }
788         // If the immediate post-dominator is not in a less nested loop,
789         // then we are stuck in a program with an infinite loop.
790         // In that case, we will not find a safe point, hence, bail out.
791         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
792           Restore = IPdom;
793         else {
794           Restore = nullptr;
795           break;
796         }
797       }
798     }
799   }
800 }
801 
802 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
803                               StringRef RemarkName, StringRef RemarkMessage,
804                               const DiagnosticLocation &Loc,
805                               const MachineBasicBlock *MBB) {
806   ORE->emit([&]() {
807     return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
808            << RemarkMessage;
809   });
810 
811   LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
812   return false;
813 }
814 
815 bool ShrinkWrap::performShrinkWrapping(
816     const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT,
817     RegScavenger *RS) {
818   for (MachineBasicBlock *MBB : RPOT) {
819     LLVM_DEBUG(dbgs() << "Look into: " << printMBBReference(*MBB) << '\n');
820 
821     if (MBB->isEHFuncletEntry())
822       return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
823                                "EH Funclets are not supported yet.",
824                                MBB->front().getDebugLoc(), MBB);
825 
826     if (MBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget()) {
827       // Push the prologue and epilogue outside of the region that may throw (or
828       // jump out via inlineasm_br), by making sure that all the landing pads
829       // are at least at the boundary of the save and restore points.  The
830       // problem is that a basic block can jump out from the middle in these
831       // cases, which we do not handle.
832       updateSaveRestorePoints(*MBB, RS);
833       if (!ArePointsInteresting()) {
834         LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n");
835         return false;
836       }
837       continue;
838     }
839 
840     bool StackAddressUsed = false;
841     // Check if we found any stack accesses in the predecessors. We are not
842     // doing a full dataflow analysis here to keep things simple but just
843     // rely on a reverse portorder traversal (RPOT) to guarantee predecessors
844     // are already processed except for loops (and accept the conservative
845     // result for loops).
846     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
847       if (StackAddressUsedBlockInfo.test(Pred->getNumber())) {
848         StackAddressUsed = true;
849         break;
850       }
851     }
852 
853     for (const MachineInstr &MI : *MBB) {
854       if (useOrDefCSROrFI(MI, RS, StackAddressUsed)) {
855         // Save (resp. restore) point must dominate (resp. post dominate)
856         // MI. Look for the proper basic block for those.
857         updateSaveRestorePoints(*MBB, RS);
858         // If we are at a point where we cannot improve the placement of
859         // save/restore instructions, just give up.
860         if (!ArePointsInteresting()) {
861           LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
862           return false;
863         }
864         // No need to look for other instructions, this basic block
865         // will already be part of the handled region.
866         StackAddressUsed = true;
867         break;
868       }
869     }
870     StackAddressUsedBlockInfo[MBB->getNumber()] = StackAddressUsed;
871   }
872   if (!ArePointsInteresting()) {
873     // If the points are not interesting at this point, then they must be null
874     // because it means we did not encounter any frame/CSR related code.
875     // Otherwise, we would have returned from the previous loop.
876     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
877     LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
878     return false;
879   }
880 
881   LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: "
882                     << EntryFreq.getFrequency() << '\n');
883 
884   const TargetFrameLowering *TFI =
885       MachineFunc->getSubtarget().getFrameLowering();
886   do {
887     LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
888                       << printMBBReference(*Save) << ' '
889                       << printBlockFreq(*MBFI, *Save)
890                       << "\nRestore: " << printMBBReference(*Restore) << ' '
891                       << printBlockFreq(*MBFI, *Restore) << '\n');
892 
893     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
894     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save)) &&
895          EntryFreq >= MBFI->getBlockFreq(Restore)) &&
896         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
897          TFI->canUseAsEpilogue(*Restore)))
898       break;
899     LLVM_DEBUG(
900         dbgs() << "New points are too expensive or invalid for the target\n");
901     MachineBasicBlock *NewBB;
902     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
903       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
904       if (!Save)
905         break;
906       NewBB = Save;
907     } else {
908       // Restore is expensive.
909       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
910       if (!Restore)
911         break;
912       NewBB = Restore;
913     }
914     updateSaveRestorePoints(*NewBB, RS);
915   } while (Save && Restore);
916 
917   if (!ArePointsInteresting()) {
918     ++NumCandidatesDropped;
919     return false;
920   }
921   return true;
922 }
923 
924 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
925   if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
926     return false;
927 
928   LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
929 
930   init(MF);
931 
932   ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
933   if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
934     // If MF is irreducible, a block may be in a loop without
935     // MachineLoopInfo reporting it. I.e., we may use the
936     // post-dominance property in loops, which lead to incorrect
937     // results. Moreover, we may miss that the prologue and
938     // epilogue are not in the same loop, leading to unbalanced
939     // construction/deconstruction of the stack frame.
940     return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
941                              "Irreducible CFGs are not supported yet.",
942                              MF.getFunction().getSubprogram(), &MF.front());
943   }
944 
945   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
946   std::unique_ptr<RegScavenger> RS(
947       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
948 
949   bool Changed = false;
950 
951   StackAddressUsedBlockInfo.resize(MF.getNumBlockIDs(), true);
952   bool HasCandidate = performShrinkWrapping(RPOT, RS.get());
953   StackAddressUsedBlockInfo.clear();
954   Changed = postShrinkWrapping(HasCandidate, MF, RS.get());
955   if (!HasCandidate && !Changed)
956     return false;
957   if (!ArePointsInteresting())
958     return Changed;
959 
960   LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
961                     << printMBBReference(*Save) << ' '
962                     << "\nRestore: " << printMBBReference(*Restore) << '\n');
963 
964   MachineFrameInfo &MFI = MF.getFrameInfo();
965   MFI.setSavePoint(Save);
966   MFI.setRestorePoint(Restore);
967   ++NumCandidates;
968   return Changed;
969 }
970 
971 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
972   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
973 
974   switch (EnableShrinkWrapOpt) {
975   case cl::BOU_UNSET:
976     return TFI->enableShrinkWrapping(MF) &&
977            // Windows with CFI has some limitations that make it impossible
978            // to use shrink-wrapping.
979            !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
980            // Sanitizers look at the value of the stack at the location
981            // of the crash. Since a crash can happen anywhere, the
982            // frame must be lowered before anything else happen for the
983            // sanitizers to be able to get a correct stack frame.
984            !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
985              MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
986              MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
987              MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
988   // If EnableShrinkWrap is set, it takes precedence on whatever the
989   // target sets. The rational is that we assume we want to test
990   // something related to shrink-wrapping.
991   case cl::BOU_TRUE:
992     return true;
993   case cl::BOU_FALSE:
994     return false;
995   }
996   llvm_unreachable("Invalid shrink-wrapping state");
997 }
998