1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass looks for safe point where the prologue and epilogue can be 10 // inserted. 11 // The safe point for the prologue (resp. epilogue) is called Save 12 // (resp. Restore). 13 // A point is safe for prologue (resp. epilogue) if and only if 14 // it 1) dominates (resp. post-dominates) all the frame related operations and 15 // between 2) two executions of the Save (resp. Restore) point there is an 16 // execution of the Restore (resp. Save) point. 17 // 18 // For instance, the following points are safe: 19 // for (int i = 0; i < 10; ++i) { 20 // Save 21 // ... 22 // Restore 23 // } 24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... 25 // And the following points are not: 26 // for (int i = 0; i < 10; ++i) { 27 // Save 28 // ... 29 // } 30 // for (int i = 0; i < 10; ++i) { 31 // ... 32 // Restore 33 // } 34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. 35 // 36 // This pass also ensures that the safe points are 3) cheaper than the regular 37 // entry and exits blocks. 38 // 39 // Property #1 is ensured via the use of MachineDominatorTree and 40 // MachinePostDominatorTree. 41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both 42 // points must be in the same loop. 43 // Property #3 is ensured via the MachineBlockFrequencyInfo. 44 // 45 // If this pass found points matching all these properties, then 46 // MachineFrameInfo is updated with this information. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/ADT/BitVector.h" 51 #include "llvm/ADT/PostOrderIterator.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/CFG.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 58 #include "llvm/CodeGen/MachineDominators.h" 59 #include "llvm/CodeGen/MachineFrameInfo.h" 60 #include "llvm/CodeGen/MachineFunction.h" 61 #include "llvm/CodeGen/MachineFunctionPass.h" 62 #include "llvm/CodeGen/MachineInstr.h" 63 #include "llvm/CodeGen/MachineLoopInfo.h" 64 #include "llvm/CodeGen/MachineOperand.h" 65 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 66 #include "llvm/CodeGen/MachinePostDominators.h" 67 #include "llvm/CodeGen/RegisterClassInfo.h" 68 #include "llvm/CodeGen/RegisterScavenging.h" 69 #include "llvm/CodeGen/TargetFrameLowering.h" 70 #include "llvm/CodeGen/TargetInstrInfo.h" 71 #include "llvm/CodeGen/TargetLowering.h" 72 #include "llvm/CodeGen/TargetRegisterInfo.h" 73 #include "llvm/CodeGen/TargetSubtargetInfo.h" 74 #include "llvm/IR/Attributes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/MC/MCAsmInfo.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include <cassert> 85 #include <cstdint> 86 #include <memory> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "shrink-wrap" 91 92 STATISTIC(NumFunc, "Number of functions"); 93 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); 94 STATISTIC(NumCandidatesDropped, 95 "Number of shrink-wrapping candidates dropped because of frequency"); 96 97 static cl::opt<cl::boolOrDefault> 98 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, 99 cl::desc("enable the shrink-wrapping pass")); 100 101 namespace { 102 103 /// Class to determine where the safe point to insert the 104 /// prologue and epilogue are. 105 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the 106 /// shrink-wrapping term for prologue/epilogue placement, this pass 107 /// does not rely on expensive data-flow analysis. Instead we use the 108 /// dominance properties and loop information to decide which point 109 /// are safe for such insertion. 110 class ShrinkWrap : public MachineFunctionPass { 111 /// Hold callee-saved information. 112 RegisterClassInfo RCI; 113 MachineDominatorTree *MDT; 114 MachinePostDominatorTree *MPDT; 115 116 /// Current safe point found for the prologue. 117 /// The prologue will be inserted before the first instruction 118 /// in this basic block. 119 MachineBasicBlock *Save; 120 121 /// Current safe point found for the epilogue. 122 /// The epilogue will be inserted before the first terminator instruction 123 /// in this basic block. 124 MachineBasicBlock *Restore; 125 126 /// Hold the information of the basic block frequency. 127 /// Use to check the profitability of the new points. 128 MachineBlockFrequencyInfo *MBFI; 129 130 /// Hold the loop information. Used to determine if Save and Restore 131 /// are in the same loop. 132 MachineLoopInfo *MLI; 133 134 // Emit remarks. 135 MachineOptimizationRemarkEmitter *ORE = nullptr; 136 137 /// Frequency of the Entry block. 138 uint64_t EntryFreq; 139 140 /// Current opcode for frame setup. 141 unsigned FrameSetupOpcode; 142 143 /// Current opcode for frame destroy. 144 unsigned FrameDestroyOpcode; 145 146 /// Stack pointer register, used by llvm.{savestack,restorestack} 147 Register SP; 148 149 /// Entry block. 150 const MachineBasicBlock *Entry; 151 152 using SetOfRegs = SmallSetVector<unsigned, 16>; 153 154 /// Registers that need to be saved for the current function. 155 mutable SetOfRegs CurrentCSRs; 156 157 /// Current MachineFunction. 158 MachineFunction *MachineFunc; 159 160 /// Check if \p MI uses or defines a callee-saved register or 161 /// a frame index. If this is the case, this means \p MI must happen 162 /// after Save and before Restore. 163 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; 164 165 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { 166 if (CurrentCSRs.empty()) { 167 BitVector SavedRegs; 168 const TargetFrameLowering *TFI = 169 MachineFunc->getSubtarget().getFrameLowering(); 170 171 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); 172 173 for (int Reg = SavedRegs.find_first(); Reg != -1; 174 Reg = SavedRegs.find_next(Reg)) 175 CurrentCSRs.insert((unsigned)Reg); 176 } 177 return CurrentCSRs; 178 } 179 180 /// Update the Save and Restore points such that \p MBB is in 181 /// the region that is dominated by Save and post-dominated by Restore 182 /// and Save and Restore still match the safe point definition. 183 /// Such point may not exist and Save and/or Restore may be null after 184 /// this call. 185 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); 186 187 /// Initialize the pass for \p MF. 188 void init(MachineFunction &MF) { 189 RCI.runOnMachineFunction(MF); 190 MDT = &getAnalysis<MachineDominatorTree>(); 191 MPDT = &getAnalysis<MachinePostDominatorTree>(); 192 Save = nullptr; 193 Restore = nullptr; 194 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 195 MLI = &getAnalysis<MachineLoopInfo>(); 196 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 197 EntryFreq = MBFI->getEntryFreq(); 198 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 199 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 200 FrameSetupOpcode = TII.getCallFrameSetupOpcode(); 201 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); 202 SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); 203 Entry = &MF.front(); 204 CurrentCSRs.clear(); 205 MachineFunc = &MF; 206 207 ++NumFunc; 208 } 209 210 /// Check whether or not Save and Restore points are still interesting for 211 /// shrink-wrapping. 212 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } 213 214 /// Check if shrink wrapping is enabled for this target and function. 215 static bool isShrinkWrapEnabled(const MachineFunction &MF); 216 217 public: 218 static char ID; 219 220 ShrinkWrap() : MachineFunctionPass(ID) { 221 initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); 222 } 223 224 void getAnalysisUsage(AnalysisUsage &AU) const override { 225 AU.setPreservesAll(); 226 AU.addRequired<MachineBlockFrequencyInfo>(); 227 AU.addRequired<MachineDominatorTree>(); 228 AU.addRequired<MachinePostDominatorTree>(); 229 AU.addRequired<MachineLoopInfo>(); 230 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 231 MachineFunctionPass::getAnalysisUsage(AU); 232 } 233 234 MachineFunctionProperties getRequiredProperties() const override { 235 return MachineFunctionProperties().set( 236 MachineFunctionProperties::Property::NoVRegs); 237 } 238 239 StringRef getPassName() const override { return "Shrink Wrapping analysis"; } 240 241 /// Perform the shrink-wrapping analysis and update 242 /// the MachineFrameInfo attached to \p MF with the results. 243 bool runOnMachineFunction(MachineFunction &MF) override; 244 }; 245 246 } // end anonymous namespace 247 248 char ShrinkWrap::ID = 0; 249 250 char &llvm::ShrinkWrapID = ShrinkWrap::ID; 251 252 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 253 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 254 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 255 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 256 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 257 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 258 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 259 260 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, 261 RegScavenger *RS) const { 262 // This prevents premature stack popping when occurs a indirect stack 263 // access. It is overly aggressive for the moment. 264 // TODO: - Obvious non-stack loads and store, such as global values, 265 // are known to not access the stack. 266 // - Further, data dependency and alias analysis can validate 267 // that load and stores never derive from the stack pointer. 268 if (MI.mayLoadOrStore()) 269 return true; 270 271 if (MI.getOpcode() == FrameSetupOpcode || 272 MI.getOpcode() == FrameDestroyOpcode) { 273 LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); 274 return true; 275 } 276 const MachineFunction *MF = MI.getParent()->getParent(); 277 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 278 for (const MachineOperand &MO : MI.operands()) { 279 bool UseOrDefCSR = false; 280 if (MO.isReg()) { 281 // Ignore instructions like DBG_VALUE which don't read/def the register. 282 if (!MO.isDef() && !MO.readsReg()) 283 continue; 284 Register PhysReg = MO.getReg(); 285 if (!PhysReg) 286 continue; 287 assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!"); 288 // The stack pointer is not normally described as a callee-saved register 289 // in calling convention definitions, so we need to watch for it 290 // separately. An SP mentioned by a call instruction, we can ignore, 291 // though, as it's harmless and we do not want to effectively disable tail 292 // calls by forcing the restore point to post-dominate them. 293 // PPC's LR is also not normally described as a callee-saved register in 294 // calling convention definitions, so we need to watch for it, too. An LR 295 // mentioned implicitly by a return (or "branch to link register") 296 // instruction we can ignore, otherwise we may pessimize shrinkwrapping. 297 UseOrDefCSR = 298 (!MI.isCall() && PhysReg == SP) || 299 RCI.getLastCalleeSavedAlias(PhysReg) || 300 (!MI.isReturn() && TRI->isNonallocatableRegisterCalleeSave(PhysReg)); 301 } else if (MO.isRegMask()) { 302 // Check if this regmask clobbers any of the CSRs. 303 for (unsigned Reg : getCurrentCSRs(RS)) { 304 if (MO.clobbersPhysReg(Reg)) { 305 UseOrDefCSR = true; 306 break; 307 } 308 } 309 } 310 // Skip FrameIndex operands in DBG_VALUE instructions. 311 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { 312 LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" 313 << MO.isFI() << "): " << MI << '\n'); 314 return true; 315 } 316 } 317 return false; 318 } 319 320 /// Helper function to find the immediate (post) dominator. 321 template <typename ListOfBBs, typename DominanceAnalysis> 322 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, 323 DominanceAnalysis &Dom) { 324 MachineBasicBlock *IDom = &Block; 325 for (MachineBasicBlock *BB : BBs) { 326 IDom = Dom.findNearestCommonDominator(IDom, BB); 327 if (!IDom) 328 break; 329 } 330 if (IDom == &Block) 331 return nullptr; 332 return IDom; 333 } 334 335 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, 336 RegScavenger *RS) { 337 // Get rid of the easy cases first. 338 if (!Save) 339 Save = &MBB; 340 else 341 Save = MDT->findNearestCommonDominator(Save, &MBB); 342 assert(Save); 343 344 if (!Restore) 345 Restore = &MBB; 346 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it 347 // means the block never returns. If that's the 348 // case, we don't want to call 349 // `findNearestCommonDominator`, which will 350 // return `Restore`. 351 Restore = MPDT->findNearestCommonDominator(Restore, &MBB); 352 else 353 Restore = nullptr; // Abort, we can't find a restore point in this case. 354 355 // Make sure we would be able to insert the restore code before the 356 // terminator. 357 if (Restore == &MBB) { 358 for (const MachineInstr &Terminator : MBB.terminators()) { 359 if (!useOrDefCSROrFI(Terminator, RS)) 360 continue; 361 // One of the terminator needs to happen before the restore point. 362 if (MBB.succ_empty()) { 363 Restore = nullptr; // Abort, we can't find a restore point in this case. 364 break; 365 } 366 // Look for a restore point that post-dominates all the successors. 367 // The immediate post-dominator is what we are looking for. 368 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 369 break; 370 } 371 } 372 373 if (!Restore) { 374 LLVM_DEBUG( 375 dbgs() << "Restore point needs to be spanned on several blocks\n"); 376 return; 377 } 378 379 // Make sure Save and Restore are suitable for shrink-wrapping: 380 // 1. all path from Save needs to lead to Restore before exiting. 381 // 2. all path to Restore needs to go through Save from Entry. 382 // We achieve that by making sure that: 383 // A. Save dominates Restore. 384 // B. Restore post-dominates Save. 385 // C. Save and Restore are in the same loop. 386 bool SaveDominatesRestore = false; 387 bool RestorePostDominatesSave = false; 388 while (Restore && 389 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || 390 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || 391 // Post-dominance is not enough in loops to ensure that all uses/defs 392 // are after the prologue and before the epilogue at runtime. 393 // E.g., 394 // while(1) { 395 // Save 396 // Restore 397 // if (...) 398 // break; 399 // use/def CSRs 400 // } 401 // All the uses/defs of CSRs are dominated by Save and post-dominated 402 // by Restore. However, the CSRs uses are still reachable after 403 // Restore and before Save are executed. 404 // 405 // For now, just push the restore/save points outside of loops. 406 // FIXME: Refine the criteria to still find interesting cases 407 // for loops. 408 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 409 // Fix (A). 410 if (!SaveDominatesRestore) { 411 Save = MDT->findNearestCommonDominator(Save, Restore); 412 continue; 413 } 414 // Fix (B). 415 if (!RestorePostDominatesSave) 416 Restore = MPDT->findNearestCommonDominator(Restore, Save); 417 418 // Fix (C). 419 if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 420 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { 421 // Push Save outside of this loop if immediate dominator is different 422 // from save block. If immediate dominator is not different, bail out. 423 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 424 if (!Save) 425 break; 426 } else { 427 // If the loop does not exit, there is no point in looking 428 // for a post-dominator outside the loop. 429 SmallVector<MachineBasicBlock*, 4> ExitBlocks; 430 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); 431 // Push Restore outside of this loop. 432 // Look for the immediate post-dominator of the loop exits. 433 MachineBasicBlock *IPdom = Restore; 434 for (MachineBasicBlock *LoopExitBB: ExitBlocks) { 435 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); 436 if (!IPdom) 437 break; 438 } 439 // If the immediate post-dominator is not in a less nested loop, 440 // then we are stuck in a program with an infinite loop. 441 // In that case, we will not find a safe point, hence, bail out. 442 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) 443 Restore = IPdom; 444 else { 445 Restore = nullptr; 446 break; 447 } 448 } 449 } 450 } 451 } 452 453 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, 454 StringRef RemarkName, StringRef RemarkMessage, 455 const DiagnosticLocation &Loc, 456 const MachineBasicBlock *MBB) { 457 ORE->emit([&]() { 458 return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) 459 << RemarkMessage; 460 }); 461 462 LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); 463 return false; 464 } 465 466 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { 467 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) 468 return false; 469 470 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); 471 472 init(MF); 473 474 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); 475 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) { 476 // If MF is irreducible, a block may be in a loop without 477 // MachineLoopInfo reporting it. I.e., we may use the 478 // post-dominance property in loops, which lead to incorrect 479 // results. Moreover, we may miss that the prologue and 480 // epilogue are not in the same loop, leading to unbalanced 481 // construction/deconstruction of the stack frame. 482 return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG", 483 "Irreducible CFGs are not supported yet.", 484 MF.getFunction().getSubprogram(), &MF.front()); 485 } 486 487 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 488 std::unique_ptr<RegScavenger> RS( 489 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); 490 491 for (MachineBasicBlock &MBB : MF) { 492 LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' 493 << MBB.getName() << '\n'); 494 495 if (MBB.isEHFuncletEntry()) 496 return giveUpWithRemarks(ORE, "UnsupportedEHFunclets", 497 "EH Funclets are not supported yet.", 498 MBB.front().getDebugLoc(), &MBB); 499 500 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) { 501 // Push the prologue and epilogue outside of the region that may throw (or 502 // jump out via inlineasm_br), by making sure that all the landing pads 503 // are at least at the boundary of the save and restore points. The 504 // problem is that a basic block can jump out from the middle in these 505 // cases, which we do not handle. 506 updateSaveRestorePoints(MBB, RS.get()); 507 if (!ArePointsInteresting()) { 508 LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n"); 509 return false; 510 } 511 continue; 512 } 513 514 for (const MachineInstr &MI : MBB) { 515 if (!useOrDefCSROrFI(MI, RS.get())) 516 continue; 517 // Save (resp. restore) point must dominate (resp. post dominate) 518 // MI. Look for the proper basic block for those. 519 updateSaveRestorePoints(MBB, RS.get()); 520 // If we are at a point where we cannot improve the placement of 521 // save/restore instructions, just give up. 522 if (!ArePointsInteresting()) { 523 LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); 524 return false; 525 } 526 // No need to look for other instructions, this basic block 527 // will already be part of the handled region. 528 break; 529 } 530 } 531 if (!ArePointsInteresting()) { 532 // If the points are not interesting at this point, then they must be null 533 // because it means we did not encounter any frame/CSR related code. 534 // Otherwise, we would have returned from the previous loop. 535 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); 536 LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); 537 return false; 538 } 539 540 LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq 541 << '\n'); 542 543 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 544 do { 545 LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " 546 << Save->getNumber() << ' ' << Save->getName() << ' ' 547 << MBFI->getBlockFreq(Save).getFrequency() 548 << "\nRestore: " << Restore->getNumber() << ' ' 549 << Restore->getName() << ' ' 550 << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); 551 552 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; 553 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && 554 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && 555 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && 556 TFI->canUseAsEpilogue(*Restore))) 557 break; 558 LLVM_DEBUG( 559 dbgs() << "New points are too expensive or invalid for the target\n"); 560 MachineBasicBlock *NewBB; 561 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { 562 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 563 if (!Save) 564 break; 565 NewBB = Save; 566 } else { 567 // Restore is expensive. 568 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 569 if (!Restore) 570 break; 571 NewBB = Restore; 572 } 573 updateSaveRestorePoints(*NewBB, RS.get()); 574 } while (Save && Restore); 575 576 if (!ArePointsInteresting()) { 577 ++NumCandidatesDropped; 578 return false; 579 } 580 581 LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " 582 << Save->getNumber() << ' ' << Save->getName() 583 << "\nRestore: " << Restore->getNumber() << ' ' 584 << Restore->getName() << '\n'); 585 586 MachineFrameInfo &MFI = MF.getFrameInfo(); 587 MFI.setSavePoint(Save); 588 MFI.setRestorePoint(Restore); 589 ++NumCandidates; 590 return false; 591 } 592 593 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { 594 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 595 596 switch (EnableShrinkWrapOpt) { 597 case cl::BOU_UNSET: 598 return TFI->enableShrinkWrapping(MF) && 599 // Windows with CFI has some limitations that make it impossible 600 // to use shrink-wrapping. 601 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 602 // Sanitizers look at the value of the stack at the location 603 // of the crash. Since a crash can happen anywhere, the 604 // frame must be lowered before anything else happen for the 605 // sanitizers to be able to get a correct stack frame. 606 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || 607 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || 608 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || 609 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); 610 // If EnableShrinkWrap is set, it takes precedence on whatever the 611 // target sets. The rational is that we assume we want to test 612 // something related to shrink-wrapping. 613 case cl::BOU_TRUE: 614 return true; 615 case cl::BOU_FALSE: 616 return false; 617 } 618 llvm_unreachable("Invalid shrink-wrapping state"); 619 } 620