1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass looks for safe point where the prologue and epilogue can be 10 // inserted. 11 // The safe point for the prologue (resp. epilogue) is called Save 12 // (resp. Restore). 13 // A point is safe for prologue (resp. epilogue) if and only if 14 // it 1) dominates (resp. post-dominates) all the frame related operations and 15 // between 2) two executions of the Save (resp. Restore) point there is an 16 // execution of the Restore (resp. Save) point. 17 // 18 // For instance, the following points are safe: 19 // for (int i = 0; i < 10; ++i) { 20 // Save 21 // ... 22 // Restore 23 // } 24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... 25 // And the following points are not: 26 // for (int i = 0; i < 10; ++i) { 27 // Save 28 // ... 29 // } 30 // for (int i = 0; i < 10; ++i) { 31 // ... 32 // Restore 33 // } 34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. 35 // 36 // This pass also ensures that the safe points are 3) cheaper than the regular 37 // entry and exits blocks. 38 // 39 // Property #1 is ensured via the use of MachineDominatorTree and 40 // MachinePostDominatorTree. 41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both 42 // points must be in the same loop. 43 // Property #3 is ensured via the MachineBlockFrequencyInfo. 44 // 45 // If this pass found points matching all these properties, then 46 // MachineFrameInfo is updated with this information. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/ADT/BitVector.h" 51 #include "llvm/ADT/PostOrderIterator.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/CFG.h" 56 #include "llvm/Analysis/ValueTracking.h" 57 #include "llvm/CodeGen/MachineBasicBlock.h" 58 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 59 #include "llvm/CodeGen/MachineDominators.h" 60 #include "llvm/CodeGen/MachineFrameInfo.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineFunctionPass.h" 63 #include "llvm/CodeGen/MachineInstr.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineOperand.h" 66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 67 #include "llvm/CodeGen/MachinePostDominators.h" 68 #include "llvm/CodeGen/RegisterClassInfo.h" 69 #include "llvm/CodeGen/RegisterScavenging.h" 70 #include "llvm/CodeGen/TargetFrameLowering.h" 71 #include "llvm/CodeGen/TargetInstrInfo.h" 72 #include "llvm/CodeGen/TargetLowering.h" 73 #include "llvm/CodeGen/TargetRegisterInfo.h" 74 #include "llvm/CodeGen/TargetSubtargetInfo.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/MC/MCAsmInfo.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include <cassert> 86 #include <cstdint> 87 #include <memory> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "shrink-wrap" 92 93 STATISTIC(NumFunc, "Number of functions"); 94 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); 95 STATISTIC(NumCandidatesDropped, 96 "Number of shrink-wrapping candidates dropped because of frequency"); 97 98 static cl::opt<cl::boolOrDefault> 99 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, 100 cl::desc("enable the shrink-wrapping pass")); 101 static cl::opt<bool> EnablePostShrinkWrapOpt( 102 "enable-shrink-wrap-region-split", cl::init(true), cl::Hidden, 103 cl::desc("enable splitting of the restore block if possible")); 104 105 namespace { 106 107 /// Class to determine where the safe point to insert the 108 /// prologue and epilogue are. 109 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the 110 /// shrink-wrapping term for prologue/epilogue placement, this pass 111 /// does not rely on expensive data-flow analysis. Instead we use the 112 /// dominance properties and loop information to decide which point 113 /// are safe for such insertion. 114 class ShrinkWrap : public MachineFunctionPass { 115 /// Hold callee-saved information. 116 RegisterClassInfo RCI; 117 MachineDominatorTree *MDT = nullptr; 118 MachinePostDominatorTree *MPDT = nullptr; 119 120 /// Current safe point found for the prologue. 121 /// The prologue will be inserted before the first instruction 122 /// in this basic block. 123 MachineBasicBlock *Save = nullptr; 124 125 /// Current safe point found for the epilogue. 126 /// The epilogue will be inserted before the first terminator instruction 127 /// in this basic block. 128 MachineBasicBlock *Restore = nullptr; 129 130 /// Hold the information of the basic block frequency. 131 /// Use to check the profitability of the new points. 132 MachineBlockFrequencyInfo *MBFI = nullptr; 133 134 /// Hold the loop information. Used to determine if Save and Restore 135 /// are in the same loop. 136 MachineLoopInfo *MLI = nullptr; 137 138 // Emit remarks. 139 MachineOptimizationRemarkEmitter *ORE = nullptr; 140 141 /// Frequency of the Entry block. 142 uint64_t EntryFreq = 0; 143 144 /// Current opcode for frame setup. 145 unsigned FrameSetupOpcode = ~0u; 146 147 /// Current opcode for frame destroy. 148 unsigned FrameDestroyOpcode = ~0u; 149 150 /// Stack pointer register, used by llvm.{savestack,restorestack} 151 Register SP; 152 153 /// Entry block. 154 const MachineBasicBlock *Entry = nullptr; 155 156 using SetOfRegs = SmallSetVector<unsigned, 16>; 157 158 /// Registers that need to be saved for the current function. 159 mutable SetOfRegs CurrentCSRs; 160 161 /// Current MachineFunction. 162 MachineFunction *MachineFunc = nullptr; 163 164 /// Is `true` for block numbers where we can guarantee no stack access 165 /// or computation of stack-relative addresses on any CFG path including 166 /// the block itself. 167 BitVector StackAddressUsedBlockInfo; 168 169 /// Check if \p MI uses or defines a callee-saved register or 170 /// a frame index. If this is the case, this means \p MI must happen 171 /// after Save and before Restore. 172 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS, 173 bool StackAddressUsed) const; 174 175 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { 176 if (CurrentCSRs.empty()) { 177 BitVector SavedRegs; 178 const TargetFrameLowering *TFI = 179 MachineFunc->getSubtarget().getFrameLowering(); 180 181 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); 182 183 for (int Reg = SavedRegs.find_first(); Reg != -1; 184 Reg = SavedRegs.find_next(Reg)) 185 CurrentCSRs.insert((unsigned)Reg); 186 } 187 return CurrentCSRs; 188 } 189 190 /// Update the Save and Restore points such that \p MBB is in 191 /// the region that is dominated by Save and post-dominated by Restore 192 /// and Save and Restore still match the safe point definition. 193 /// Such point may not exist and Save and/or Restore may be null after 194 /// this call. 195 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); 196 197 // Try to find safe point based on dominance and block frequency without 198 // any change in IR. 199 bool performShrinkWrapping( 200 const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT, 201 RegScavenger *RS); 202 203 /// This function tries to split the restore point if doing so can shrink the 204 /// save point further. \return True if restore point is split. 205 bool postShrinkWrapping(bool HasCandidate, MachineFunction &MF, 206 RegScavenger *RS); 207 208 /// This function analyzes if the restore point can split to create a new 209 /// restore point. This function collects 210 /// 1. Any preds of current restore that are reachable by callee save/FI 211 /// blocks 212 /// - indicated by DirtyPreds 213 /// 2. Any preds of current restore that are not DirtyPreds - indicated by 214 /// CleanPreds 215 /// Both sets should be non-empty for considering restore point split. 216 bool checkIfRestoreSplittable( 217 const MachineBasicBlock *CurRestore, 218 const DenseSet<const MachineBasicBlock *> &ReachableByDirty, 219 SmallVectorImpl<MachineBasicBlock *> &DirtyPreds, 220 SmallVectorImpl<MachineBasicBlock *> &CleanPreds, 221 const TargetInstrInfo *TII, RegScavenger *RS); 222 223 /// Initialize the pass for \p MF. 224 void init(MachineFunction &MF) { 225 RCI.runOnMachineFunction(MF); 226 MDT = &getAnalysis<MachineDominatorTree>(); 227 MPDT = &getAnalysis<MachinePostDominatorTree>(); 228 Save = nullptr; 229 Restore = nullptr; 230 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 231 MLI = &getAnalysis<MachineLoopInfo>(); 232 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 233 EntryFreq = MBFI->getEntryFreq(); 234 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 235 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 236 FrameSetupOpcode = TII.getCallFrameSetupOpcode(); 237 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); 238 SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); 239 Entry = &MF.front(); 240 CurrentCSRs.clear(); 241 MachineFunc = &MF; 242 243 ++NumFunc; 244 } 245 246 /// Check whether or not Save and Restore points are still interesting for 247 /// shrink-wrapping. 248 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } 249 250 /// Check if shrink wrapping is enabled for this target and function. 251 static bool isShrinkWrapEnabled(const MachineFunction &MF); 252 253 public: 254 static char ID; 255 256 ShrinkWrap() : MachineFunctionPass(ID) { 257 initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); 258 } 259 260 void getAnalysisUsage(AnalysisUsage &AU) const override { 261 AU.setPreservesAll(); 262 AU.addRequired<MachineBlockFrequencyInfo>(); 263 AU.addRequired<MachineDominatorTree>(); 264 AU.addRequired<MachinePostDominatorTree>(); 265 AU.addRequired<MachineLoopInfo>(); 266 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 267 MachineFunctionPass::getAnalysisUsage(AU); 268 } 269 270 MachineFunctionProperties getRequiredProperties() const override { 271 return MachineFunctionProperties().set( 272 MachineFunctionProperties::Property::NoVRegs); 273 } 274 275 StringRef getPassName() const override { return "Shrink Wrapping analysis"; } 276 277 /// Perform the shrink-wrapping analysis and update 278 /// the MachineFrameInfo attached to \p MF with the results. 279 bool runOnMachineFunction(MachineFunction &MF) override; 280 }; 281 282 } // end anonymous namespace 283 284 char ShrinkWrap::ID = 0; 285 286 char &llvm::ShrinkWrapID = ShrinkWrap::ID; 287 288 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 289 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 290 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 291 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 292 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 293 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 294 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 295 296 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS, 297 bool StackAddressUsed) const { 298 /// Check if \p Op is known to access an address not on the function's stack . 299 /// At the moment, accesses where the underlying object is a global, function 300 /// argument, or jump table are considered non-stack accesses. Note that the 301 /// caller's stack may get accessed when passing an argument via the stack, 302 /// but not the stack of the current function. 303 /// 304 auto IsKnownNonStackPtr = [](MachineMemOperand *Op) { 305 if (Op->getValue()) { 306 const Value *UO = getUnderlyingObject(Op->getValue()); 307 if (!UO) 308 return false; 309 if (auto *Arg = dyn_cast<Argument>(UO)) 310 return !Arg->hasPassPointeeByValueCopyAttr(); 311 return isa<GlobalValue>(UO); 312 } 313 if (const PseudoSourceValue *PSV = Op->getPseudoValue()) 314 return PSV->isJumpTable(); 315 return false; 316 }; 317 // Load/store operations may access the stack indirectly when we previously 318 // computed an address to a stack location. 319 if (StackAddressUsed && MI.mayLoadOrStore() && 320 (MI.isCall() || MI.hasUnmodeledSideEffects() || MI.memoperands_empty() || 321 !all_of(MI.memoperands(), IsKnownNonStackPtr))) 322 return true; 323 324 if (MI.getOpcode() == FrameSetupOpcode || 325 MI.getOpcode() == FrameDestroyOpcode) { 326 LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); 327 return true; 328 } 329 const MachineFunction *MF = MI.getParent()->getParent(); 330 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 331 for (const MachineOperand &MO : MI.operands()) { 332 bool UseOrDefCSR = false; 333 if (MO.isReg()) { 334 // Ignore instructions like DBG_VALUE which don't read/def the register. 335 if (!MO.isDef() && !MO.readsReg()) 336 continue; 337 Register PhysReg = MO.getReg(); 338 if (!PhysReg) 339 continue; 340 assert(PhysReg.isPhysical() && "Unallocated register?!"); 341 // The stack pointer is not normally described as a callee-saved register 342 // in calling convention definitions, so we need to watch for it 343 // separately. An SP mentioned by a call instruction, we can ignore, 344 // though, as it's harmless and we do not want to effectively disable tail 345 // calls by forcing the restore point to post-dominate them. 346 // PPC's LR is also not normally described as a callee-saved register in 347 // calling convention definitions, so we need to watch for it, too. An LR 348 // mentioned implicitly by a return (or "branch to link register") 349 // instruction we can ignore, otherwise we may pessimize shrinkwrapping. 350 UseOrDefCSR = 351 (!MI.isCall() && PhysReg == SP) || 352 RCI.getLastCalleeSavedAlias(PhysReg) || 353 (!MI.isReturn() && TRI->isNonallocatableRegisterCalleeSave(PhysReg)); 354 } else if (MO.isRegMask()) { 355 // Check if this regmask clobbers any of the CSRs. 356 for (unsigned Reg : getCurrentCSRs(RS)) { 357 if (MO.clobbersPhysReg(Reg)) { 358 UseOrDefCSR = true; 359 break; 360 } 361 } 362 } 363 // Skip FrameIndex operands in DBG_VALUE instructions. 364 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { 365 LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" 366 << MO.isFI() << "): " << MI << '\n'); 367 return true; 368 } 369 } 370 return false; 371 } 372 373 /// Helper function to find the immediate (post) dominator. 374 template <typename ListOfBBs, typename DominanceAnalysis> 375 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, 376 DominanceAnalysis &Dom, bool Strict = true) { 377 MachineBasicBlock *IDom = &Block; 378 for (MachineBasicBlock *BB : BBs) { 379 IDom = Dom.findNearestCommonDominator(IDom, BB); 380 if (!IDom) 381 break; 382 } 383 if (Strict && IDom == &Block) 384 return nullptr; 385 return IDom; 386 } 387 388 static bool isAnalyzableBB(const TargetInstrInfo &TII, 389 MachineBasicBlock &Entry) { 390 // Check if the block is analyzable. 391 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 392 SmallVector<MachineOperand, 4> Cond; 393 return !TII.analyzeBranch(Entry, TBB, FBB, Cond); 394 } 395 396 /// Determines if any predecessor of MBB is on the path from block that has use 397 /// or def of CSRs/FI to MBB. 398 /// ReachableByDirty: All blocks reachable from block that has use or def of 399 /// CSR/FI. 400 static bool 401 hasDirtyPred(const DenseSet<const MachineBasicBlock *> &ReachableByDirty, 402 const MachineBasicBlock &MBB) { 403 for (const MachineBasicBlock *PredBB : MBB.predecessors()) 404 if (ReachableByDirty.count(PredBB)) 405 return true; 406 return false; 407 } 408 409 /// Derives the list of all the basic blocks reachable from MBB. 410 static void markAllReachable(DenseSet<const MachineBasicBlock *> &Visited, 411 const MachineBasicBlock &MBB) { 412 SmallVector<MachineBasicBlock *, 4> Worklist(MBB.succ_begin(), 413 MBB.succ_end()); 414 Visited.insert(&MBB); 415 while (!Worklist.empty()) { 416 MachineBasicBlock *SuccMBB = Worklist.pop_back_val(); 417 if (!Visited.insert(SuccMBB).second) 418 continue; 419 Worklist.append(SuccMBB->succ_begin(), SuccMBB->succ_end()); 420 } 421 } 422 423 /// Collect blocks reachable by use or def of CSRs/FI. 424 static void collectBlocksReachableByDirty( 425 const DenseSet<const MachineBasicBlock *> &DirtyBBs, 426 DenseSet<const MachineBasicBlock *> &ReachableByDirty) { 427 for (const MachineBasicBlock *MBB : DirtyBBs) { 428 if (ReachableByDirty.count(MBB)) 429 continue; 430 // Mark all offsprings as reachable. 431 markAllReachable(ReachableByDirty, *MBB); 432 } 433 } 434 435 /// \return true if there is a clean path from SavePoint to the original 436 /// Restore. 437 static bool 438 isSaveReachableThroughClean(const MachineBasicBlock *SavePoint, 439 ArrayRef<MachineBasicBlock *> CleanPreds) { 440 DenseSet<const MachineBasicBlock *> Visited; 441 SmallVector<MachineBasicBlock *, 4> Worklist(CleanPreds.begin(), 442 CleanPreds.end()); 443 while (!Worklist.empty()) { 444 MachineBasicBlock *CleanBB = Worklist.pop_back_val(); 445 if (CleanBB == SavePoint) 446 return true; 447 if (!Visited.insert(CleanBB).second || !CleanBB->pred_size()) 448 continue; 449 Worklist.append(CleanBB->pred_begin(), CleanBB->pred_end()); 450 } 451 return false; 452 } 453 454 /// This function updates the branches post restore point split. 455 /// 456 /// Restore point has been split. 457 /// Old restore point: MBB 458 /// New restore point: NMBB 459 /// Any basic block(say BBToUpdate) which had a fallthrough to MBB 460 /// previously should 461 /// 1. Fallthrough to NMBB iff NMBB is inserted immediately above MBB in the 462 /// block layout OR 463 /// 2. Branch unconditionally to NMBB iff NMBB is inserted at any other place. 464 static void updateTerminator(MachineBasicBlock *BBToUpdate, 465 MachineBasicBlock *NMBB, 466 const TargetInstrInfo *TII) { 467 DebugLoc DL = BBToUpdate->findBranchDebugLoc(); 468 // if NMBB isn't the new layout successor for BBToUpdate, insert unconditional 469 // branch to it 470 if (!BBToUpdate->isLayoutSuccessor(NMBB)) 471 TII->insertUnconditionalBranch(*BBToUpdate, NMBB, DL); 472 } 473 474 /// This function splits the restore point and returns new restore point/BB. 475 /// 476 /// DirtyPreds: Predessors of \p MBB that are ReachableByDirty 477 /// 478 /// Decision has been made to split the restore point. 479 /// old restore point: \p MBB 480 /// new restore point: \p NMBB 481 /// This function makes the necessary block layout changes so that 482 /// 1. \p NMBB points to \p MBB unconditionally 483 /// 2. All dirtyPreds that previously pointed to \p MBB point to \p NMBB 484 static MachineBasicBlock * 485 tryToSplitRestore(MachineBasicBlock *MBB, 486 ArrayRef<MachineBasicBlock *> DirtyPreds, 487 const TargetInstrInfo *TII) { 488 MachineFunction *MF = MBB->getParent(); 489 490 // get the list of DirtyPreds who have a fallthrough to MBB 491 // before the block layout change. This is just to ensure that if the NMBB is 492 // inserted after MBB, then we create unconditional branch from 493 // DirtyPred/CleanPred to NMBB 494 SmallPtrSet<MachineBasicBlock *, 8> MBBFallthrough; 495 for (MachineBasicBlock *BB : DirtyPreds) 496 if (BB->getFallThrough(false) == MBB) 497 MBBFallthrough.insert(BB); 498 499 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 500 // Insert this block at the end of the function. Inserting in between may 501 // interfere with control flow optimizer decisions. 502 MF->insert(MF->end(), NMBB); 503 504 for (const MachineBasicBlock::RegisterMaskPair &LI : MBB->liveins()) 505 NMBB->addLiveIn(LI.PhysReg); 506 507 TII->insertUnconditionalBranch(*NMBB, MBB, DebugLoc()); 508 509 // After splitting, all predecessors of the restore point should be dirty 510 // blocks. 511 for (MachineBasicBlock *SuccBB : DirtyPreds) 512 SuccBB->ReplaceUsesOfBlockWith(MBB, NMBB); 513 514 NMBB->addSuccessor(MBB); 515 516 for (MachineBasicBlock *BBToUpdate : MBBFallthrough) 517 updateTerminator(BBToUpdate, NMBB, TII); 518 519 return NMBB; 520 } 521 522 /// This function undoes the restore point split done earlier. 523 /// 524 /// DirtyPreds: All predecessors of \p NMBB that are ReachableByDirty. 525 /// 526 /// Restore point was split and the change needs to be unrolled. Make necessary 527 /// changes to reset restore point from \p NMBB to \p MBB. 528 static void rollbackRestoreSplit(MachineFunction &MF, MachineBasicBlock *NMBB, 529 MachineBasicBlock *MBB, 530 ArrayRef<MachineBasicBlock *> DirtyPreds, 531 const TargetInstrInfo *TII) { 532 // For a BB, if NMBB is fallthrough in the current layout, then in the new 533 // layout a. BB should fallthrough to MBB OR b. BB should undconditionally 534 // branch to MBB 535 SmallPtrSet<MachineBasicBlock *, 8> NMBBFallthrough; 536 for (MachineBasicBlock *BB : DirtyPreds) 537 if (BB->getFallThrough(false) == NMBB) 538 NMBBFallthrough.insert(BB); 539 540 NMBB->removeSuccessor(MBB); 541 for (MachineBasicBlock *SuccBB : DirtyPreds) 542 SuccBB->ReplaceUsesOfBlockWith(NMBB, MBB); 543 544 NMBB->erase(NMBB->begin(), NMBB->end()); 545 NMBB->eraseFromParent(); 546 547 for (MachineBasicBlock *BBToUpdate : NMBBFallthrough) 548 updateTerminator(BBToUpdate, MBB, TII); 549 } 550 551 // A block is deemed fit for restore point split iff there exist 552 // 1. DirtyPreds - preds of CurRestore reachable from use or def of CSR/FI 553 // 2. CleanPreds - preds of CurRestore that arent DirtyPreds 554 bool ShrinkWrap::checkIfRestoreSplittable( 555 const MachineBasicBlock *CurRestore, 556 const DenseSet<const MachineBasicBlock *> &ReachableByDirty, 557 SmallVectorImpl<MachineBasicBlock *> &DirtyPreds, 558 SmallVectorImpl<MachineBasicBlock *> &CleanPreds, 559 const TargetInstrInfo *TII, RegScavenger *RS) { 560 for (const MachineInstr &MI : *CurRestore) 561 if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) 562 return false; 563 564 for (MachineBasicBlock *PredBB : CurRestore->predecessors()) { 565 if (!isAnalyzableBB(*TII, *PredBB)) 566 return false; 567 568 if (ReachableByDirty.count(PredBB)) 569 DirtyPreds.push_back(PredBB); 570 else 571 CleanPreds.push_back(PredBB); 572 } 573 574 return !(CleanPreds.empty() || DirtyPreds.empty()); 575 } 576 577 bool ShrinkWrap::postShrinkWrapping(bool HasCandidate, MachineFunction &MF, 578 RegScavenger *RS) { 579 if (!EnablePostShrinkWrapOpt) 580 return false; 581 582 MachineBasicBlock *InitSave = nullptr; 583 MachineBasicBlock *InitRestore = nullptr; 584 585 if (HasCandidate) { 586 InitSave = Save; 587 InitRestore = Restore; 588 } else { 589 InitRestore = nullptr; 590 InitSave = &MF.front(); 591 for (MachineBasicBlock &MBB : MF) { 592 if (MBB.isEHFuncletEntry()) 593 return false; 594 if (MBB.isReturnBlock()) { 595 // Do not support multiple restore points. 596 if (InitRestore) 597 return false; 598 InitRestore = &MBB; 599 } 600 } 601 } 602 603 if (!InitSave || !InitRestore || InitRestore == InitSave || 604 !MDT->dominates(InitSave, InitRestore) || 605 !MPDT->dominates(InitRestore, InitSave)) 606 return false; 607 608 // Bail out of the optimization if any of the basic block is target of 609 // INLINEASM_BR instruction 610 for (MachineBasicBlock &MBB : MF) 611 if (MBB.isInlineAsmBrIndirectTarget()) 612 return false; 613 614 DenseSet<const MachineBasicBlock *> DirtyBBs; 615 for (MachineBasicBlock &MBB : MF) { 616 if (MBB.isEHPad()) { 617 DirtyBBs.insert(&MBB); 618 continue; 619 } 620 for (const MachineInstr &MI : MBB) 621 if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) { 622 DirtyBBs.insert(&MBB); 623 break; 624 } 625 } 626 627 // Find blocks reachable from the use or def of CSRs/FI. 628 DenseSet<const MachineBasicBlock *> ReachableByDirty; 629 collectBlocksReachableByDirty(DirtyBBs, ReachableByDirty); 630 631 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 632 SmallVector<MachineBasicBlock *, 2> DirtyPreds; 633 SmallVector<MachineBasicBlock *, 2> CleanPreds; 634 if (!checkIfRestoreSplittable(InitRestore, ReachableByDirty, DirtyPreds, 635 CleanPreds, TII, RS)) 636 return false; 637 638 // Trying to reach out to the new save point which dominates all dirty blocks. 639 MachineBasicBlock *NewSave = 640 FindIDom<>(**DirtyPreds.begin(), DirtyPreds, *MDT, false); 641 642 while (NewSave && (hasDirtyPred(ReachableByDirty, *NewSave) || 643 EntryFreq < MBFI->getBlockFreq(NewSave).getFrequency() || 644 /*Entry freq has been observed more than a loop block in 645 some cases*/ 646 MLI->getLoopFor(NewSave))) 647 NewSave = FindIDom<>(**NewSave->pred_begin(), NewSave->predecessors(), *MDT, 648 false); 649 650 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 651 if (!NewSave || NewSave == InitSave || 652 isSaveReachableThroughClean(NewSave, CleanPreds) || 653 !TFI->canUseAsPrologue(*NewSave)) 654 return false; 655 656 // Now we know that splitting a restore point can isolate the restore point 657 // from clean blocks and doing so can shrink the save point. 658 MachineBasicBlock *NewRestore = 659 tryToSplitRestore(InitRestore, DirtyPreds, TII); 660 661 // Make sure if the new restore point is valid as an epilogue, depending on 662 // targets. 663 if (!TFI->canUseAsEpilogue(*NewRestore)) { 664 rollbackRestoreSplit(MF, NewRestore, InitRestore, DirtyPreds, TII); 665 return false; 666 } 667 668 Save = NewSave; 669 Restore = NewRestore; 670 671 MDT->runOnMachineFunction(MF); 672 MPDT->runOnMachineFunction(MF); 673 674 assert((MDT->dominates(Save, Restore) && MPDT->dominates(Restore, Save)) && 675 "Incorrect save or restore point due to dominance relations"); 676 assert((!MLI->getLoopFor(Save) && !MLI->getLoopFor(Restore)) && 677 "Unexpected save or restore point in a loop"); 678 assert((EntryFreq >= MBFI->getBlockFreq(Save).getFrequency() && 679 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && 680 "Incorrect save or restore point based on block frequency"); 681 return true; 682 } 683 684 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, 685 RegScavenger *RS) { 686 // Get rid of the easy cases first. 687 if (!Save) 688 Save = &MBB; 689 else 690 Save = MDT->findNearestCommonDominator(Save, &MBB); 691 assert(Save); 692 693 if (!Restore) 694 Restore = &MBB; 695 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it 696 // means the block never returns. If that's the 697 // case, we don't want to call 698 // `findNearestCommonDominator`, which will 699 // return `Restore`. 700 Restore = MPDT->findNearestCommonDominator(Restore, &MBB); 701 else 702 Restore = nullptr; // Abort, we can't find a restore point in this case. 703 704 // Make sure we would be able to insert the restore code before the 705 // terminator. 706 if (Restore == &MBB) { 707 for (const MachineInstr &Terminator : MBB.terminators()) { 708 if (!useOrDefCSROrFI(Terminator, RS, /*StackAddressUsed=*/true)) 709 continue; 710 // One of the terminator needs to happen before the restore point. 711 if (MBB.succ_empty()) { 712 Restore = nullptr; // Abort, we can't find a restore point in this case. 713 break; 714 } 715 // Look for a restore point that post-dominates all the successors. 716 // The immediate post-dominator is what we are looking for. 717 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 718 break; 719 } 720 } 721 722 if (!Restore) { 723 LLVM_DEBUG( 724 dbgs() << "Restore point needs to be spanned on several blocks\n"); 725 return; 726 } 727 728 // Make sure Save and Restore are suitable for shrink-wrapping: 729 // 1. all path from Save needs to lead to Restore before exiting. 730 // 2. all path to Restore needs to go through Save from Entry. 731 // We achieve that by making sure that: 732 // A. Save dominates Restore. 733 // B. Restore post-dominates Save. 734 // C. Save and Restore are in the same loop. 735 bool SaveDominatesRestore = false; 736 bool RestorePostDominatesSave = false; 737 while (Restore && 738 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || 739 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || 740 // Post-dominance is not enough in loops to ensure that all uses/defs 741 // are after the prologue and before the epilogue at runtime. 742 // E.g., 743 // while(1) { 744 // Save 745 // Restore 746 // if (...) 747 // break; 748 // use/def CSRs 749 // } 750 // All the uses/defs of CSRs are dominated by Save and post-dominated 751 // by Restore. However, the CSRs uses are still reachable after 752 // Restore and before Save are executed. 753 // 754 // For now, just push the restore/save points outside of loops. 755 // FIXME: Refine the criteria to still find interesting cases 756 // for loops. 757 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 758 // Fix (A). 759 if (!SaveDominatesRestore) { 760 Save = MDT->findNearestCommonDominator(Save, Restore); 761 continue; 762 } 763 // Fix (B). 764 if (!RestorePostDominatesSave) 765 Restore = MPDT->findNearestCommonDominator(Restore, Save); 766 767 // Fix (C). 768 if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 769 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { 770 // Push Save outside of this loop if immediate dominator is different 771 // from save block. If immediate dominator is not different, bail out. 772 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 773 if (!Save) 774 break; 775 } else { 776 // If the loop does not exit, there is no point in looking 777 // for a post-dominator outside the loop. 778 SmallVector<MachineBasicBlock*, 4> ExitBlocks; 779 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); 780 // Push Restore outside of this loop. 781 // Look for the immediate post-dominator of the loop exits. 782 MachineBasicBlock *IPdom = Restore; 783 for (MachineBasicBlock *LoopExitBB: ExitBlocks) { 784 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); 785 if (!IPdom) 786 break; 787 } 788 // If the immediate post-dominator is not in a less nested loop, 789 // then we are stuck in a program with an infinite loop. 790 // In that case, we will not find a safe point, hence, bail out. 791 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) 792 Restore = IPdom; 793 else { 794 Restore = nullptr; 795 break; 796 } 797 } 798 } 799 } 800 } 801 802 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, 803 StringRef RemarkName, StringRef RemarkMessage, 804 const DiagnosticLocation &Loc, 805 const MachineBasicBlock *MBB) { 806 ORE->emit([&]() { 807 return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) 808 << RemarkMessage; 809 }); 810 811 LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); 812 return false; 813 } 814 815 bool ShrinkWrap::performShrinkWrapping( 816 const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT, 817 RegScavenger *RS) { 818 for (MachineBasicBlock *MBB : RPOT) { 819 LLVM_DEBUG(dbgs() << "Look into: " << printMBBReference(*MBB) << '\n'); 820 821 if (MBB->isEHFuncletEntry()) 822 return giveUpWithRemarks(ORE, "UnsupportedEHFunclets", 823 "EH Funclets are not supported yet.", 824 MBB->front().getDebugLoc(), MBB); 825 826 if (MBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget()) { 827 // Push the prologue and epilogue outside of the region that may throw (or 828 // jump out via inlineasm_br), by making sure that all the landing pads 829 // are at least at the boundary of the save and restore points. The 830 // problem is that a basic block can jump out from the middle in these 831 // cases, which we do not handle. 832 updateSaveRestorePoints(*MBB, RS); 833 if (!ArePointsInteresting()) { 834 LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n"); 835 return false; 836 } 837 continue; 838 } 839 840 bool StackAddressUsed = false; 841 // Check if we found any stack accesses in the predecessors. We are not 842 // doing a full dataflow analysis here to keep things simple but just 843 // rely on a reverse portorder traversal (RPOT) to guarantee predecessors 844 // are already processed except for loops (and accept the conservative 845 // result for loops). 846 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 847 if (StackAddressUsedBlockInfo.test(Pred->getNumber())) { 848 StackAddressUsed = true; 849 break; 850 } 851 } 852 853 for (const MachineInstr &MI : *MBB) { 854 if (useOrDefCSROrFI(MI, RS, StackAddressUsed)) { 855 // Save (resp. restore) point must dominate (resp. post dominate) 856 // MI. Look for the proper basic block for those. 857 updateSaveRestorePoints(*MBB, RS); 858 // If we are at a point where we cannot improve the placement of 859 // save/restore instructions, just give up. 860 if (!ArePointsInteresting()) { 861 LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); 862 return false; 863 } 864 // No need to look for other instructions, this basic block 865 // will already be part of the handled region. 866 StackAddressUsed = true; 867 break; 868 } 869 } 870 StackAddressUsedBlockInfo[MBB->getNumber()] = StackAddressUsed; 871 } 872 if (!ArePointsInteresting()) { 873 // If the points are not interesting at this point, then they must be null 874 // because it means we did not encounter any frame/CSR related code. 875 // Otherwise, we would have returned from the previous loop. 876 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); 877 LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); 878 return false; 879 } 880 881 LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq 882 << '\n'); 883 884 const TargetFrameLowering *TFI = 885 MachineFunc->getSubtarget().getFrameLowering(); 886 do { 887 LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " 888 << printMBBReference(*Save) << ' ' 889 << MBFI->getBlockFreq(Save).getFrequency() 890 << "\nRestore: " << printMBBReference(*Restore) << ' ' 891 << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); 892 893 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; 894 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && 895 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && 896 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && 897 TFI->canUseAsEpilogue(*Restore))) 898 break; 899 LLVM_DEBUG( 900 dbgs() << "New points are too expensive or invalid for the target\n"); 901 MachineBasicBlock *NewBB; 902 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { 903 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 904 if (!Save) 905 break; 906 NewBB = Save; 907 } else { 908 // Restore is expensive. 909 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 910 if (!Restore) 911 break; 912 NewBB = Restore; 913 } 914 updateSaveRestorePoints(*NewBB, RS); 915 } while (Save && Restore); 916 917 if (!ArePointsInteresting()) { 918 ++NumCandidatesDropped; 919 return false; 920 } 921 return true; 922 } 923 924 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { 925 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) 926 return false; 927 928 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); 929 930 init(MF); 931 932 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); 933 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) { 934 // If MF is irreducible, a block may be in a loop without 935 // MachineLoopInfo reporting it. I.e., we may use the 936 // post-dominance property in loops, which lead to incorrect 937 // results. Moreover, we may miss that the prologue and 938 // epilogue are not in the same loop, leading to unbalanced 939 // construction/deconstruction of the stack frame. 940 return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG", 941 "Irreducible CFGs are not supported yet.", 942 MF.getFunction().getSubprogram(), &MF.front()); 943 } 944 945 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 946 std::unique_ptr<RegScavenger> RS( 947 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); 948 949 bool Changed = false; 950 951 StackAddressUsedBlockInfo.resize(MF.getNumBlockIDs(), true); 952 bool HasCandidate = performShrinkWrapping(RPOT, RS.get()); 953 StackAddressUsedBlockInfo.clear(); 954 Changed = postShrinkWrapping(HasCandidate, MF, RS.get()); 955 if (!HasCandidate && !Changed) 956 return false; 957 if (!ArePointsInteresting()) 958 return Changed; 959 960 LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " 961 << printMBBReference(*Save) << ' ' 962 << "\nRestore: " << printMBBReference(*Restore) << '\n'); 963 964 MachineFrameInfo &MFI = MF.getFrameInfo(); 965 MFI.setSavePoint(Save); 966 MFI.setRestorePoint(Restore); 967 ++NumCandidates; 968 return Changed; 969 } 970 971 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { 972 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 973 974 switch (EnableShrinkWrapOpt) { 975 case cl::BOU_UNSET: 976 return TFI->enableShrinkWrapping(MF) && 977 // Windows with CFI has some limitations that make it impossible 978 // to use shrink-wrapping. 979 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 980 // Sanitizers look at the value of the stack at the location 981 // of the crash. Since a crash can happen anywhere, the 982 // frame must be lowered before anything else happen for the 983 // sanitizers to be able to get a correct stack frame. 984 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || 985 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || 986 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || 987 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); 988 // If EnableShrinkWrap is set, it takes precedence on whatever the 989 // target sets. The rational is that we assume we want to test 990 // something related to shrink-wrapping. 991 case cl::BOU_TRUE: 992 return true; 993 case cl::BOU_FALSE: 994 return false; 995 } 996 llvm_unreachable("Invalid shrink-wrapping state"); 997 } 998