1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/DivisionByConstantInfo.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // First, check if tail calls have been disabled in this function. 58 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 59 return false; 60 61 // Conservatively require the attributes of the call to match those of 62 // the return. Ignore following attributes because they don't affect the 63 // call sequence. 64 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 65 for (const auto &Attr : 66 {Attribute::Alignment, Attribute::Dereferenceable, 67 Attribute::DereferenceableOrNull, Attribute::NoAlias, 68 Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) 69 CallerAttrs.removeAttribute(Attr); 70 71 if (CallerAttrs.hasAttributes()) 72 return false; 73 74 // It's not safe to eliminate the sign / zero extension of the return value. 75 if (CallerAttrs.contains(Attribute::ZExt) || 76 CallerAttrs.contains(Attribute::SExt)) 77 return false; 78 79 // Check if the only use is a function return node. 80 return isUsedByReturnOnly(Node, Chain); 81 } 82 83 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 84 const uint32_t *CallerPreservedMask, 85 const SmallVectorImpl<CCValAssign> &ArgLocs, 86 const SmallVectorImpl<SDValue> &OutVals) const { 87 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 88 const CCValAssign &ArgLoc = ArgLocs[I]; 89 if (!ArgLoc.isRegLoc()) 90 continue; 91 MCRegister Reg = ArgLoc.getLocReg(); 92 // Only look at callee saved registers. 93 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 94 continue; 95 // Check that we pass the value used for the caller. 96 // (We look for a CopyFromReg reading a virtual register that is used 97 // for the function live-in value of register Reg) 98 SDValue Value = OutVals[I]; 99 if (Value->getOpcode() == ISD::AssertZext) 100 Value = Value.getOperand(0); 101 if (Value->getOpcode() != ISD::CopyFromReg) 102 return false; 103 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 104 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 105 return false; 106 } 107 return true; 108 } 109 110 /// Set CallLoweringInfo attribute flags based on a call instruction 111 /// and called function attributes. 112 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 113 unsigned ArgIdx) { 114 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 115 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 116 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 117 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 118 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 119 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 120 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 121 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 122 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 123 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 124 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 125 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 126 Alignment = Call->getParamStackAlign(ArgIdx); 127 IndirectType = nullptr; 128 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 129 "multiple ABI attributes?"); 130 if (IsByVal) { 131 IndirectType = Call->getParamByValType(ArgIdx); 132 if (!Alignment) 133 Alignment = Call->getParamAlign(ArgIdx); 134 } 135 if (IsPreallocated) 136 IndirectType = Call->getParamPreallocatedType(ArgIdx); 137 if (IsInAlloca) 138 IndirectType = Call->getParamInAllocaType(ArgIdx); 139 if (IsSRet) 140 IndirectType = Call->getParamStructRetType(ArgIdx); 141 } 142 143 /// Generate a libcall taking the given operands as arguments and returning a 144 /// result of type RetVT. 145 std::pair<SDValue, SDValue> 146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 147 ArrayRef<SDValue> Ops, 148 MakeLibCallOptions CallOptions, 149 const SDLoc &dl, 150 SDValue InChain) const { 151 if (!InChain) 152 InChain = DAG.getEntryNode(); 153 154 TargetLowering::ArgListTy Args; 155 Args.reserve(Ops.size()); 156 157 TargetLowering::ArgListEntry Entry; 158 for (unsigned i = 0; i < Ops.size(); ++i) { 159 SDValue NewOp = Ops[i]; 160 Entry.Node = NewOp; 161 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 162 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 163 CallOptions.IsSExt); 164 Entry.IsZExt = !Entry.IsSExt; 165 166 if (CallOptions.IsSoften && 167 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 168 Entry.IsSExt = Entry.IsZExt = false; 169 } 170 Args.push_back(Entry); 171 } 172 173 if (LC == RTLIB::UNKNOWN_LIBCALL) 174 report_fatal_error("Unsupported library call operation!"); 175 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 176 getPointerTy(DAG.getDataLayout())); 177 178 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 179 TargetLowering::CallLoweringInfo CLI(DAG); 180 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 181 bool zeroExtend = !signExtend; 182 183 if (CallOptions.IsSoften && 184 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 185 signExtend = zeroExtend = false; 186 } 187 188 CLI.setDebugLoc(dl) 189 .setChain(InChain) 190 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 191 .setNoReturn(CallOptions.DoesNotReturn) 192 .setDiscardResult(!CallOptions.IsReturnValueUsed) 193 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 194 .setSExtResult(signExtend) 195 .setZExtResult(zeroExtend); 196 return LowerCallTo(CLI); 197 } 198 199 bool TargetLowering::findOptimalMemOpLowering( 200 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 201 unsigned SrcAS, const AttributeList &FuncAttributes) const { 202 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 203 Op.getSrcAlign() < Op.getDstAlign()) 204 return false; 205 206 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 207 208 if (VT == MVT::Other) { 209 // Use the largest integer type whose alignment constraints are satisfied. 210 // We only need to check DstAlign here as SrcAlign is always greater or 211 // equal to DstAlign (or zero). 212 VT = MVT::LAST_INTEGER_VALUETYPE; 213 if (Op.isFixedDstAlign()) 214 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 215 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 216 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 217 assert(VT.isInteger()); 218 219 // Find the largest legal integer type. 220 MVT LVT = MVT::LAST_INTEGER_VALUETYPE; 221 while (!isTypeLegal(LVT)) 222 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 223 assert(LVT.isInteger()); 224 225 // If the type we've chosen is larger than the largest legal integer type 226 // then use that instead. 227 if (VT.bitsGT(LVT)) 228 VT = LVT; 229 } 230 231 unsigned NumMemOps = 0; 232 uint64_t Size = Op.size(); 233 while (Size) { 234 unsigned VTSize = VT.getSizeInBits() / 8; 235 while (VTSize > Size) { 236 // For now, only use non-vector load / store's for the left-over pieces. 237 EVT NewVT = VT; 238 unsigned NewVTSize; 239 240 bool Found = false; 241 if (VT.isVector() || VT.isFloatingPoint()) { 242 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 243 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 244 isSafeMemOpType(NewVT.getSimpleVT())) 245 Found = true; 246 else if (NewVT == MVT::i64 && 247 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 248 isSafeMemOpType(MVT::f64)) { 249 // i64 is usually not legal on 32-bit targets, but f64 may be. 250 NewVT = MVT::f64; 251 Found = true; 252 } 253 } 254 255 if (!Found) { 256 do { 257 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 258 if (NewVT == MVT::i8) 259 break; 260 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 261 } 262 NewVTSize = NewVT.getSizeInBits() / 8; 263 264 // If the new VT cannot cover all of the remaining bits, then consider 265 // issuing a (or a pair of) unaligned and overlapping load / store. 266 unsigned Fast; 267 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 268 allowsMisalignedMemoryAccesses( 269 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 270 MachineMemOperand::MONone, &Fast) && 271 Fast) 272 VTSize = Size; 273 else { 274 VT = NewVT; 275 VTSize = NewVTSize; 276 } 277 } 278 279 if (++NumMemOps > Limit) 280 return false; 281 282 MemOps.push_back(VT); 283 Size -= VTSize; 284 } 285 286 return true; 287 } 288 289 /// Soften the operands of a comparison. This code is shared among BR_CC, 290 /// SELECT_CC, and SETCC handlers. 291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 292 SDValue &NewLHS, SDValue &NewRHS, 293 ISD::CondCode &CCCode, 294 const SDLoc &dl, const SDValue OldLHS, 295 const SDValue OldRHS) const { 296 SDValue Chain; 297 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 298 OldRHS, Chain); 299 } 300 301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 302 SDValue &NewLHS, SDValue &NewRHS, 303 ISD::CondCode &CCCode, 304 const SDLoc &dl, const SDValue OldLHS, 305 const SDValue OldRHS, 306 SDValue &Chain, 307 bool IsSignaling) const { 308 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 309 // not supporting it. We can update this code when libgcc provides such 310 // functions. 311 312 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 313 && "Unsupported setcc type!"); 314 315 // Expand into one or more soft-fp libcall(s). 316 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 317 bool ShouldInvertCC = false; 318 switch (CCCode) { 319 case ISD::SETEQ: 320 case ISD::SETOEQ: 321 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 322 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 323 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 324 break; 325 case ISD::SETNE: 326 case ISD::SETUNE: 327 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 328 (VT == MVT::f64) ? RTLIB::UNE_F64 : 329 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 330 break; 331 case ISD::SETGE: 332 case ISD::SETOGE: 333 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 334 (VT == MVT::f64) ? RTLIB::OGE_F64 : 335 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 336 break; 337 case ISD::SETLT: 338 case ISD::SETOLT: 339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 340 (VT == MVT::f64) ? RTLIB::OLT_F64 : 341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 342 break; 343 case ISD::SETLE: 344 case ISD::SETOLE: 345 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 346 (VT == MVT::f64) ? RTLIB::OLE_F64 : 347 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 348 break; 349 case ISD::SETGT: 350 case ISD::SETOGT: 351 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 352 (VT == MVT::f64) ? RTLIB::OGT_F64 : 353 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 354 break; 355 case ISD::SETO: 356 ShouldInvertCC = true; 357 [[fallthrough]]; 358 case ISD::SETUO: 359 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 360 (VT == MVT::f64) ? RTLIB::UO_F64 : 361 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 362 break; 363 case ISD::SETONE: 364 // SETONE = O && UNE 365 ShouldInvertCC = true; 366 [[fallthrough]]; 367 case ISD::SETUEQ: 368 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 369 (VT == MVT::f64) ? RTLIB::UO_F64 : 370 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 371 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 372 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 373 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 374 break; 375 default: 376 // Invert CC for unordered comparisons 377 ShouldInvertCC = true; 378 switch (CCCode) { 379 case ISD::SETULT: 380 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 381 (VT == MVT::f64) ? RTLIB::OGE_F64 : 382 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 383 break; 384 case ISD::SETULE: 385 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 386 (VT == MVT::f64) ? RTLIB::OGT_F64 : 387 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 388 break; 389 case ISD::SETUGT: 390 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 391 (VT == MVT::f64) ? RTLIB::OLE_F64 : 392 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 393 break; 394 case ISD::SETUGE: 395 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 396 (VT == MVT::f64) ? RTLIB::OLT_F64 : 397 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 398 break; 399 default: llvm_unreachable("Do not know how to soften this setcc!"); 400 } 401 } 402 403 // Use the target specific return value for comparison lib calls. 404 EVT RetVT = getCmpLibcallReturnType(); 405 SDValue Ops[2] = {NewLHS, NewRHS}; 406 TargetLowering::MakeLibCallOptions CallOptions; 407 EVT OpsVT[2] = { OldLHS.getValueType(), 408 OldRHS.getValueType() }; 409 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 410 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 411 NewLHS = Call.first; 412 NewRHS = DAG.getConstant(0, dl, RetVT); 413 414 CCCode = getCmpLibcallCC(LC1); 415 if (ShouldInvertCC) { 416 assert(RetVT.isInteger()); 417 CCCode = getSetCCInverse(CCCode, RetVT); 418 } 419 420 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 421 // Update Chain. 422 Chain = Call.second; 423 } else { 424 EVT SetCCVT = 425 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 426 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 428 CCCode = getCmpLibcallCC(LC2); 429 if (ShouldInvertCC) 430 CCCode = getSetCCInverse(CCCode, RetVT); 431 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 432 if (Chain) 433 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 434 Call2.second); 435 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 436 Tmp.getValueType(), Tmp, NewLHS); 437 NewRHS = SDValue(); 438 } 439 } 440 441 /// Return the entry encoding for a jump table in the current function. The 442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 443 unsigned TargetLowering::getJumpTableEncoding() const { 444 // In non-pic modes, just use the address of a block. 445 if (!isPositionIndependent()) 446 return MachineJumpTableInfo::EK_BlockAddress; 447 448 // In PIC mode, if the target supports a GPRel32 directive, use it. 449 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 450 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 451 452 // Otherwise, use a label difference. 453 return MachineJumpTableInfo::EK_LabelDifference32; 454 } 455 456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 457 SelectionDAG &DAG) const { 458 // If our PIC model is GP relative, use the global offset table as the base. 459 unsigned JTEncoding = getJumpTableEncoding(); 460 461 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 462 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 463 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 464 465 return Table; 466 } 467 468 /// This returns the relocation base for the given PIC jumptable, the same as 469 /// getPICJumpTableRelocBase, but as an MCExpr. 470 const MCExpr * 471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 472 unsigned JTI,MCContext &Ctx) const{ 473 // The normal PIC reloc base is the label at the start of the jump table. 474 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 475 } 476 477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, 478 SDValue Addr, int JTI, 479 SelectionDAG &DAG) const { 480 SDValue Chain = Value; 481 // Jump table debug info is only needed if CodeView is enabled. 482 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { 483 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); 484 } 485 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); 486 } 487 488 bool 489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 490 const TargetMachine &TM = getTargetMachine(); 491 const GlobalValue *GV = GA->getGlobal(); 492 493 // If the address is not even local to this DSO we will have to load it from 494 // a got and then add the offset. 495 if (!TM.shouldAssumeDSOLocal(GV)) 496 return false; 497 498 // If the code is position independent we will have to add a base register. 499 if (isPositionIndependent()) 500 return false; 501 502 // Otherwise we can do it. 503 return true; 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Optimization Methods 508 //===----------------------------------------------------------------------===// 509 510 /// If the specified instruction has a constant integer operand and there are 511 /// bits set in that constant that are not demanded, then clear those bits and 512 /// return true. 513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 514 const APInt &DemandedBits, 515 const APInt &DemandedElts, 516 TargetLoweringOpt &TLO) const { 517 SDLoc DL(Op); 518 unsigned Opcode = Op.getOpcode(); 519 520 // Early-out if we've ended up calling an undemanded node, leave this to 521 // constant folding. 522 if (DemandedBits.isZero() || DemandedElts.isZero()) 523 return false; 524 525 // Do target-specific constant optimization. 526 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 527 return TLO.New.getNode(); 528 529 // FIXME: ISD::SELECT, ISD::SELECT_CC 530 switch (Opcode) { 531 default: 532 break; 533 case ISD::XOR: 534 case ISD::AND: 535 case ISD::OR: { 536 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 537 if (!Op1C || Op1C->isOpaque()) 538 return false; 539 540 // If this is a 'not' op, don't touch it because that's a canonical form. 541 const APInt &C = Op1C->getAPIntValue(); 542 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 543 return false; 544 545 if (!C.isSubsetOf(DemandedBits)) { 546 EVT VT = Op.getValueType(); 547 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 548 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC, 549 Op->getFlags()); 550 return TLO.CombineTo(Op, NewOp); 551 } 552 553 break; 554 } 555 } 556 557 return false; 558 } 559 560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 561 const APInt &DemandedBits, 562 TargetLoweringOpt &TLO) const { 563 EVT VT = Op.getValueType(); 564 APInt DemandedElts = VT.isVector() 565 ? APInt::getAllOnes(VT.getVectorNumElements()) 566 : APInt(1, 1); 567 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 568 } 569 570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, 572 /// but it could be generalized for targets with other types of implicit 573 /// widening casts. 574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 575 const APInt &DemandedBits, 576 TargetLoweringOpt &TLO) const { 577 assert(Op.getNumOperands() == 2 && 578 "ShrinkDemandedOp only supports binary operators!"); 579 assert(Op.getNode()->getNumValues() == 1 && 580 "ShrinkDemandedOp only supports nodes with one result!"); 581 582 EVT VT = Op.getValueType(); 583 SelectionDAG &DAG = TLO.DAG; 584 SDLoc dl(Op); 585 586 // Early return, as this function cannot handle vector types. 587 if (VT.isVector()) 588 return false; 589 590 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && 591 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && 592 "ShrinkDemandedOp only supports operands that have the same size!"); 593 594 // Don't do this if the node has another user, which may require the 595 // full value. 596 if (!Op.getNode()->hasOneUse()) 597 return false; 598 599 // Search for the smallest integer type with free casts to and from 600 // Op's type. For expedience, just check power-of-2 integer types. 601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 602 unsigned DemandedSize = DemandedBits.getActiveBits(); 603 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 604 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 605 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 606 if (TLI.isTruncateFree(VT, SmallVT) && TLI.isZExtFree(SmallVT, VT)) { 607 // We found a type with free casts. 608 SDValue X = DAG.getNode( 609 Op.getOpcode(), dl, SmallVT, 610 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 611 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 612 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 613 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); 614 return TLO.CombineTo(Op, Z); 615 } 616 } 617 return false; 618 } 619 620 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 621 DAGCombinerInfo &DCI) const { 622 SelectionDAG &DAG = DCI.DAG; 623 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 624 !DCI.isBeforeLegalizeOps()); 625 KnownBits Known; 626 627 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 628 if (Simplified) { 629 DCI.AddToWorklist(Op.getNode()); 630 DCI.CommitTargetLoweringOpt(TLO); 631 } 632 return Simplified; 633 } 634 635 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 636 const APInt &DemandedElts, 637 DAGCombinerInfo &DCI) const { 638 SelectionDAG &DAG = DCI.DAG; 639 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 640 !DCI.isBeforeLegalizeOps()); 641 KnownBits Known; 642 643 bool Simplified = 644 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 645 if (Simplified) { 646 DCI.AddToWorklist(Op.getNode()); 647 DCI.CommitTargetLoweringOpt(TLO); 648 } 649 return Simplified; 650 } 651 652 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 653 KnownBits &Known, 654 TargetLoweringOpt &TLO, 655 unsigned Depth, 656 bool AssumeSingleUse) const { 657 EVT VT = Op.getValueType(); 658 659 // Since the number of lanes in a scalable vector is unknown at compile time, 660 // we track one bit which is implicitly broadcast to all lanes. This means 661 // that all lanes in a scalable vector are considered demanded. 662 APInt DemandedElts = VT.isFixedLengthVector() 663 ? APInt::getAllOnes(VT.getVectorNumElements()) 664 : APInt(1, 1); 665 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 666 AssumeSingleUse); 667 } 668 669 // TODO: Under what circumstances can we create nodes? Constant folding? 670 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 671 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 672 SelectionDAG &DAG, unsigned Depth) const { 673 EVT VT = Op.getValueType(); 674 675 // Limit search depth. 676 if (Depth >= SelectionDAG::MaxRecursionDepth) 677 return SDValue(); 678 679 // Ignore UNDEFs. 680 if (Op.isUndef()) 681 return SDValue(); 682 683 // Not demanding any bits/elts from Op. 684 if (DemandedBits == 0 || DemandedElts == 0) 685 return DAG.getUNDEF(VT); 686 687 bool IsLE = DAG.getDataLayout().isLittleEndian(); 688 unsigned NumElts = DemandedElts.getBitWidth(); 689 unsigned BitWidth = DemandedBits.getBitWidth(); 690 KnownBits LHSKnown, RHSKnown; 691 switch (Op.getOpcode()) { 692 case ISD::BITCAST: { 693 if (VT.isScalableVector()) 694 return SDValue(); 695 696 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 697 EVT SrcVT = Src.getValueType(); 698 EVT DstVT = Op.getValueType(); 699 if (SrcVT == DstVT) 700 return Src; 701 702 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 703 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 704 if (NumSrcEltBits == NumDstEltBits) 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 709 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 710 unsigned Scale = NumDstEltBits / NumSrcEltBits; 711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 712 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 713 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 714 for (unsigned i = 0; i != Scale; ++i) { 715 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 716 unsigned BitOffset = EltOffset * NumSrcEltBits; 717 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 718 if (!Sub.isZero()) { 719 DemandedSrcBits |= Sub; 720 for (unsigned j = 0; j != NumElts; ++j) 721 if (DemandedElts[j]) 722 DemandedSrcElts.setBit((j * Scale) + i); 723 } 724 } 725 726 if (SDValue V = SimplifyMultipleUseDemandedBits( 727 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 728 return DAG.getBitcast(DstVT, V); 729 } 730 731 // TODO - bigendian once we have test coverage. 732 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 733 unsigned Scale = NumSrcEltBits / NumDstEltBits; 734 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 735 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 736 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 737 for (unsigned i = 0; i != NumElts; ++i) 738 if (DemandedElts[i]) { 739 unsigned Offset = (i % Scale) * NumDstEltBits; 740 DemandedSrcBits.insertBits(DemandedBits, Offset); 741 DemandedSrcElts.setBit(i / Scale); 742 } 743 744 if (SDValue V = SimplifyMultipleUseDemandedBits( 745 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 746 return DAG.getBitcast(DstVT, V); 747 } 748 749 break; 750 } 751 case ISD::FREEZE: { 752 SDValue N0 = Op.getOperand(0); 753 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 754 /*PoisonOnly=*/false)) 755 return N0; 756 break; 757 } 758 case ISD::AND: { 759 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 760 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 761 762 // If all of the demanded bits are known 1 on one side, return the other. 763 // These bits cannot contribute to the result of the 'and' in this 764 // context. 765 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 766 return Op.getOperand(0); 767 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 768 return Op.getOperand(1); 769 break; 770 } 771 case ISD::OR: { 772 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 773 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 774 775 // If all of the demanded bits are known zero on one side, return the 776 // other. These bits cannot contribute to the result of the 'or' in this 777 // context. 778 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 779 return Op.getOperand(0); 780 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 781 return Op.getOperand(1); 782 break; 783 } 784 case ISD::XOR: { 785 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 786 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 787 788 // If all of the demanded bits are known zero on one side, return the 789 // other. 790 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 791 return Op.getOperand(0); 792 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 793 return Op.getOperand(1); 794 break; 795 } 796 case ISD::SHL: { 797 // If we are only demanding sign bits then we can use the shift source 798 // directly. 799 if (std::optional<uint64_t> MaxSA = 800 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 801 SDValue Op0 = Op.getOperand(0); 802 unsigned ShAmt = *MaxSA; 803 unsigned NumSignBits = 804 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 805 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 806 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 807 return Op0; 808 } 809 break; 810 } 811 case ISD::SETCC: { 812 SDValue Op0 = Op.getOperand(0); 813 SDValue Op1 = Op.getOperand(1); 814 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 815 // If (1) we only need the sign-bit, (2) the setcc operands are the same 816 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 817 // -1, we may be able to bypass the setcc. 818 if (DemandedBits.isSignMask() && 819 Op0.getScalarValueSizeInBits() == BitWidth && 820 getBooleanContents(Op0.getValueType()) == 821 BooleanContent::ZeroOrNegativeOneBooleanContent) { 822 // If we're testing X < 0, then this compare isn't needed - just use X! 823 // FIXME: We're limiting to integer types here, but this should also work 824 // if we don't care about FP signed-zero. The use of SETLT with FP means 825 // that we don't care about NaNs. 826 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 827 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 828 return Op0; 829 } 830 break; 831 } 832 case ISD::SIGN_EXTEND_INREG: { 833 // If none of the extended bits are demanded, eliminate the sextinreg. 834 SDValue Op0 = Op.getOperand(0); 835 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 836 unsigned ExBits = ExVT.getScalarSizeInBits(); 837 if (DemandedBits.getActiveBits() <= ExBits && 838 shouldRemoveRedundantExtend(Op)) 839 return Op0; 840 // If the input is already sign extended, just drop the extension. 841 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 842 if (NumSignBits >= (BitWidth - ExBits + 1)) 843 return Op0; 844 break; 845 } 846 case ISD::ANY_EXTEND_VECTOR_INREG: 847 case ISD::SIGN_EXTEND_VECTOR_INREG: 848 case ISD::ZERO_EXTEND_VECTOR_INREG: { 849 if (VT.isScalableVector()) 850 return SDValue(); 851 852 // If we only want the lowest element and none of extended bits, then we can 853 // return the bitcasted source vector. 854 SDValue Src = Op.getOperand(0); 855 EVT SrcVT = Src.getValueType(); 856 EVT DstVT = Op.getValueType(); 857 if (IsLE && DemandedElts == 1 && 858 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 859 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 860 return DAG.getBitcast(DstVT, Src); 861 } 862 break; 863 } 864 case ISD::INSERT_VECTOR_ELT: { 865 if (VT.isScalableVector()) 866 return SDValue(); 867 868 // If we don't demand the inserted element, return the base vector. 869 SDValue Vec = Op.getOperand(0); 870 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 871 EVT VecVT = Vec.getValueType(); 872 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 873 !DemandedElts[CIdx->getZExtValue()]) 874 return Vec; 875 break; 876 } 877 case ISD::INSERT_SUBVECTOR: { 878 if (VT.isScalableVector()) 879 return SDValue(); 880 881 SDValue Vec = Op.getOperand(0); 882 SDValue Sub = Op.getOperand(1); 883 uint64_t Idx = Op.getConstantOperandVal(2); 884 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 885 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 886 // If we don't demand the inserted subvector, return the base vector. 887 if (DemandedSubElts == 0) 888 return Vec; 889 break; 890 } 891 case ISD::VECTOR_SHUFFLE: { 892 assert(!VT.isScalableVector()); 893 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 894 895 // If all the demanded elts are from one operand and are inline, 896 // then we can use the operand directly. 897 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 898 for (unsigned i = 0; i != NumElts; ++i) { 899 int M = ShuffleMask[i]; 900 if (M < 0 || !DemandedElts[i]) 901 continue; 902 AllUndef = false; 903 IdentityLHS &= (M == (int)i); 904 IdentityRHS &= ((M - NumElts) == i); 905 } 906 907 if (AllUndef) 908 return DAG.getUNDEF(Op.getValueType()); 909 if (IdentityLHS) 910 return Op.getOperand(0); 911 if (IdentityRHS) 912 return Op.getOperand(1); 913 break; 914 } 915 default: 916 // TODO: Probably okay to remove after audit; here to reduce change size 917 // in initial enablement patch for scalable vectors 918 if (VT.isScalableVector()) 919 return SDValue(); 920 921 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 922 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 923 Op, DemandedBits, DemandedElts, DAG, Depth)) 924 return V; 925 break; 926 } 927 return SDValue(); 928 } 929 930 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 931 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 932 unsigned Depth) const { 933 EVT VT = Op.getValueType(); 934 // Since the number of lanes in a scalable vector is unknown at compile time, 935 // we track one bit which is implicitly broadcast to all lanes. This means 936 // that all lanes in a scalable vector are considered demanded. 937 APInt DemandedElts = VT.isFixedLengthVector() 938 ? APInt::getAllOnes(VT.getVectorNumElements()) 939 : APInt(1, 1); 940 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 941 Depth); 942 } 943 944 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 945 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 946 unsigned Depth) const { 947 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 948 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 949 Depth); 950 } 951 952 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 953 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 954 static SDValue combineShiftToAVG(SDValue Op, 955 TargetLowering::TargetLoweringOpt &TLO, 956 const TargetLowering &TLI, 957 const APInt &DemandedBits, 958 const APInt &DemandedElts, unsigned Depth) { 959 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 960 "SRL or SRA node is required here!"); 961 // Is the right shift using an immediate value of 1? 962 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 963 if (!N1C || !N1C->isOne()) 964 return SDValue(); 965 966 // We are looking for an avgfloor 967 // add(ext, ext) 968 // or one of these as a avgceil 969 // add(add(ext, ext), 1) 970 // add(add(ext, 1), ext) 971 // add(ext, add(ext, 1)) 972 SDValue Add = Op.getOperand(0); 973 if (Add.getOpcode() != ISD::ADD) 974 return SDValue(); 975 976 SDValue ExtOpA = Add.getOperand(0); 977 SDValue ExtOpB = Add.getOperand(1); 978 SDValue Add2; 979 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { 980 ConstantSDNode *ConstOp; 981 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 982 ConstOp->isOne()) { 983 ExtOpA = Op1; 984 ExtOpB = Op3; 985 Add2 = A; 986 return true; 987 } 988 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 989 ConstOp->isOne()) { 990 ExtOpA = Op1; 991 ExtOpB = Op2; 992 Add2 = A; 993 return true; 994 } 995 return false; 996 }; 997 bool IsCeil = 998 (ExtOpA.getOpcode() == ISD::ADD && 999 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || 1000 (ExtOpB.getOpcode() == ISD::ADD && 1001 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); 1002 1003 // If the shift is signed (sra): 1004 // - Needs >= 2 sign bit for both operands. 1005 // - Needs >= 2 zero bits. 1006 // If the shift is unsigned (srl): 1007 // - Needs >= 1 zero bit for both operands. 1008 // - Needs 1 demanded bit zero and >= 2 sign bits. 1009 SelectionDAG &DAG = TLO.DAG; 1010 unsigned ShiftOpc = Op.getOpcode(); 1011 bool IsSigned = false; 1012 unsigned KnownBits; 1013 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 1014 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 1015 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 1016 unsigned NumZeroA = 1017 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 1018 unsigned NumZeroB = 1019 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1020 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1021 1022 switch (ShiftOpc) { 1023 default: 1024 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1025 case ISD::SRA: { 1026 if (NumZero >= 2 && NumSigned < NumZero) { 1027 IsSigned = false; 1028 KnownBits = NumZero; 1029 break; 1030 } 1031 if (NumSigned >= 1) { 1032 IsSigned = true; 1033 KnownBits = NumSigned; 1034 break; 1035 } 1036 return SDValue(); 1037 } 1038 case ISD::SRL: { 1039 if (NumZero >= 1 && NumSigned < NumZero) { 1040 IsSigned = false; 1041 KnownBits = NumZero; 1042 break; 1043 } 1044 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1045 IsSigned = true; 1046 KnownBits = NumSigned; 1047 break; 1048 } 1049 return SDValue(); 1050 } 1051 } 1052 1053 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1054 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1055 1056 // Find the smallest power-2 type that is legal for this vector size and 1057 // operation, given the original type size and the number of known sign/zero 1058 // bits. 1059 EVT VT = Op.getValueType(); 1060 unsigned MinWidth = 1061 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1062 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); 1063 if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) 1064 return SDValue(); 1065 if (VT.isVector()) 1066 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1067 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) { 1068 // If we could not transform, and (both) adds are nuw/nsw, we can use the 1069 // larger type size to do the transform. 1070 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT)) 1071 return SDValue(); 1072 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), 1073 Add.getOperand(1)) && 1074 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), 1075 Add2.getOperand(1)))) 1076 NVT = VT; 1077 else 1078 return SDValue(); 1079 } 1080 1081 // Don't create a AVGFLOOR node with a scalar constant unless its legal as 1082 // this is likely to stop other folds (reassociation, value tracking etc.) 1083 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) && 1084 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB))) 1085 return SDValue(); 1086 1087 SDLoc DL(Op); 1088 SDValue ResultAVG = 1089 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT), 1090 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT)); 1091 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT); 1092 } 1093 1094 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1095 /// result of Op are ever used downstream. If we can use this information to 1096 /// simplify Op, create a new simplified DAG node and return true, returning the 1097 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1098 /// return a mask of Known bits for the expression (used to simplify the 1099 /// caller). The Known bits may only be accurate for those bits in the 1100 /// OriginalDemandedBits and OriginalDemandedElts. 1101 bool TargetLowering::SimplifyDemandedBits( 1102 SDValue Op, const APInt &OriginalDemandedBits, 1103 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1104 unsigned Depth, bool AssumeSingleUse) const { 1105 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1106 assert(Op.getScalarValueSizeInBits() == BitWidth && 1107 "Mask size mismatches value type size!"); 1108 1109 // Don't know anything. 1110 Known = KnownBits(BitWidth); 1111 1112 EVT VT = Op.getValueType(); 1113 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1114 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1115 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1116 "Unexpected vector size"); 1117 1118 APInt DemandedBits = OriginalDemandedBits; 1119 APInt DemandedElts = OriginalDemandedElts; 1120 SDLoc dl(Op); 1121 1122 // Undef operand. 1123 if (Op.isUndef()) 1124 return false; 1125 1126 // We can't simplify target constants. 1127 if (Op.getOpcode() == ISD::TargetConstant) 1128 return false; 1129 1130 if (Op.getOpcode() == ISD::Constant) { 1131 // We know all of the bits for a constant! 1132 Known = KnownBits::makeConstant(Op->getAsAPIntVal()); 1133 return false; 1134 } 1135 1136 if (Op.getOpcode() == ISD::ConstantFP) { 1137 // We know all of the bits for a floating point constant! 1138 Known = KnownBits::makeConstant( 1139 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1140 return false; 1141 } 1142 1143 // Other users may use these bits. 1144 bool HasMultiUse = false; 1145 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1146 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1147 // Limit search depth. 1148 return false; 1149 } 1150 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1151 DemandedBits = APInt::getAllOnes(BitWidth); 1152 DemandedElts = APInt::getAllOnes(NumElts); 1153 HasMultiUse = true; 1154 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1155 // Not demanding any bits/elts from Op. 1156 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1157 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1158 // Limit search depth. 1159 return false; 1160 } 1161 1162 KnownBits Known2; 1163 switch (Op.getOpcode()) { 1164 case ISD::SCALAR_TO_VECTOR: { 1165 if (VT.isScalableVector()) 1166 return false; 1167 if (!DemandedElts[0]) 1168 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1169 1170 KnownBits SrcKnown; 1171 SDValue Src = Op.getOperand(0); 1172 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1173 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1174 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1175 return true; 1176 1177 // Upper elements are undef, so only get the knownbits if we just demand 1178 // the bottom element. 1179 if (DemandedElts == 1) 1180 Known = SrcKnown.anyextOrTrunc(BitWidth); 1181 break; 1182 } 1183 case ISD::BUILD_VECTOR: 1184 // Collect the known bits that are shared by every demanded element. 1185 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1186 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1187 return false; // Don't fall through, will infinitely loop. 1188 case ISD::SPLAT_VECTOR: { 1189 SDValue Scl = Op.getOperand(0); 1190 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); 1191 KnownBits KnownScl; 1192 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1193 return true; 1194 1195 // Implicitly truncate the bits to match the official semantics of 1196 // SPLAT_VECTOR. 1197 Known = KnownScl.trunc(BitWidth); 1198 break; 1199 } 1200 case ISD::LOAD: { 1201 auto *LD = cast<LoadSDNode>(Op); 1202 if (getTargetConstantFromLoad(LD)) { 1203 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1204 return false; // Don't fall through, will infinitely loop. 1205 } 1206 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1207 // If this is a ZEXTLoad and we are looking at the loaded value. 1208 EVT MemVT = LD->getMemoryVT(); 1209 unsigned MemBits = MemVT.getScalarSizeInBits(); 1210 Known.Zero.setBitsFrom(MemBits); 1211 return false; // Don't fall through, will infinitely loop. 1212 } 1213 break; 1214 } 1215 case ISD::INSERT_VECTOR_ELT: { 1216 if (VT.isScalableVector()) 1217 return false; 1218 SDValue Vec = Op.getOperand(0); 1219 SDValue Scl = Op.getOperand(1); 1220 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1221 EVT VecVT = Vec.getValueType(); 1222 1223 // If index isn't constant, assume we need all vector elements AND the 1224 // inserted element. 1225 APInt DemandedVecElts(DemandedElts); 1226 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1227 unsigned Idx = CIdx->getZExtValue(); 1228 DemandedVecElts.clearBit(Idx); 1229 1230 // Inserted element is not required. 1231 if (!DemandedElts[Idx]) 1232 return TLO.CombineTo(Op, Vec); 1233 } 1234 1235 KnownBits KnownScl; 1236 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1237 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1238 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1239 return true; 1240 1241 Known = KnownScl.anyextOrTrunc(BitWidth); 1242 1243 KnownBits KnownVec; 1244 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1245 Depth + 1)) 1246 return true; 1247 1248 if (!!DemandedVecElts) 1249 Known = Known.intersectWith(KnownVec); 1250 1251 return false; 1252 } 1253 case ISD::INSERT_SUBVECTOR: { 1254 if (VT.isScalableVector()) 1255 return false; 1256 // Demand any elements from the subvector and the remainder from the src its 1257 // inserted into. 1258 SDValue Src = Op.getOperand(0); 1259 SDValue Sub = Op.getOperand(1); 1260 uint64_t Idx = Op.getConstantOperandVal(2); 1261 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1262 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1263 APInt DemandedSrcElts = DemandedElts; 1264 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1265 1266 KnownBits KnownSub, KnownSrc; 1267 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1268 Depth + 1)) 1269 return true; 1270 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1271 Depth + 1)) 1272 return true; 1273 1274 Known.Zero.setAllBits(); 1275 Known.One.setAllBits(); 1276 if (!!DemandedSubElts) 1277 Known = Known.intersectWith(KnownSub); 1278 if (!!DemandedSrcElts) 1279 Known = Known.intersectWith(KnownSrc); 1280 1281 // Attempt to avoid multi-use src if we don't need anything from it. 1282 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1283 !DemandedSrcElts.isAllOnes()) { 1284 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1285 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1286 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1287 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1288 if (NewSub || NewSrc) { 1289 NewSub = NewSub ? NewSub : Sub; 1290 NewSrc = NewSrc ? NewSrc : Src; 1291 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1292 Op.getOperand(2)); 1293 return TLO.CombineTo(Op, NewOp); 1294 } 1295 } 1296 break; 1297 } 1298 case ISD::EXTRACT_SUBVECTOR: { 1299 if (VT.isScalableVector()) 1300 return false; 1301 // Offset the demanded elts by the subvector index. 1302 SDValue Src = Op.getOperand(0); 1303 if (Src.getValueType().isScalableVector()) 1304 break; 1305 uint64_t Idx = Op.getConstantOperandVal(1); 1306 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1307 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1308 1309 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1310 Depth + 1)) 1311 return true; 1312 1313 // Attempt to avoid multi-use src if we don't need anything from it. 1314 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1315 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1316 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1317 if (DemandedSrc) { 1318 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1319 Op.getOperand(1)); 1320 return TLO.CombineTo(Op, NewOp); 1321 } 1322 } 1323 break; 1324 } 1325 case ISD::CONCAT_VECTORS: { 1326 if (VT.isScalableVector()) 1327 return false; 1328 Known.Zero.setAllBits(); 1329 Known.One.setAllBits(); 1330 EVT SubVT = Op.getOperand(0).getValueType(); 1331 unsigned NumSubVecs = Op.getNumOperands(); 1332 unsigned NumSubElts = SubVT.getVectorNumElements(); 1333 for (unsigned i = 0; i != NumSubVecs; ++i) { 1334 APInt DemandedSubElts = 1335 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1336 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1337 Known2, TLO, Depth + 1)) 1338 return true; 1339 // Known bits are shared by every demanded subvector element. 1340 if (!!DemandedSubElts) 1341 Known = Known.intersectWith(Known2); 1342 } 1343 break; 1344 } 1345 case ISD::VECTOR_SHUFFLE: { 1346 assert(!VT.isScalableVector()); 1347 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1348 1349 // Collect demanded elements from shuffle operands.. 1350 APInt DemandedLHS, DemandedRHS; 1351 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1352 DemandedRHS)) 1353 break; 1354 1355 if (!!DemandedLHS || !!DemandedRHS) { 1356 SDValue Op0 = Op.getOperand(0); 1357 SDValue Op1 = Op.getOperand(1); 1358 1359 Known.Zero.setAllBits(); 1360 Known.One.setAllBits(); 1361 if (!!DemandedLHS) { 1362 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1363 Depth + 1)) 1364 return true; 1365 Known = Known.intersectWith(Known2); 1366 } 1367 if (!!DemandedRHS) { 1368 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1369 Depth + 1)) 1370 return true; 1371 Known = Known.intersectWith(Known2); 1372 } 1373 1374 // Attempt to avoid multi-use ops if we don't need anything from them. 1375 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1376 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1377 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1378 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1379 if (DemandedOp0 || DemandedOp1) { 1380 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1381 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1382 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1383 return TLO.CombineTo(Op, NewOp); 1384 } 1385 } 1386 break; 1387 } 1388 case ISD::AND: { 1389 SDValue Op0 = Op.getOperand(0); 1390 SDValue Op1 = Op.getOperand(1); 1391 1392 // If the RHS is a constant, check to see if the LHS would be zero without 1393 // using the bits from the RHS. Below, we use knowledge about the RHS to 1394 // simplify the LHS, here we're using information from the LHS to simplify 1395 // the RHS. 1396 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) { 1397 // Do not increment Depth here; that can cause an infinite loop. 1398 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1399 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1400 if ((LHSKnown.Zero & DemandedBits) == 1401 (~RHSC->getAPIntValue() & DemandedBits)) 1402 return TLO.CombineTo(Op, Op0); 1403 1404 // If any of the set bits in the RHS are known zero on the LHS, shrink 1405 // the constant. 1406 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1407 DemandedElts, TLO)) 1408 return true; 1409 1410 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1411 // constant, but if this 'and' is only clearing bits that were just set by 1412 // the xor, then this 'and' can be eliminated by shrinking the mask of 1413 // the xor. For example, for a 32-bit X: 1414 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1415 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1416 LHSKnown.One == ~RHSC->getAPIntValue()) { 1417 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1418 return TLO.CombineTo(Op, Xor); 1419 } 1420 } 1421 1422 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1423 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1424 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1425 (Op0.getOperand(0).isUndef() || 1426 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1427 Op0->hasOneUse()) { 1428 unsigned NumSubElts = 1429 Op0.getOperand(1).getValueType().getVectorNumElements(); 1430 unsigned SubIdx = Op0.getConstantOperandVal(2); 1431 APInt DemandedSub = 1432 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1433 KnownBits KnownSubMask = 1434 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1435 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1436 SDValue NewAnd = 1437 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1438 SDValue NewInsert = 1439 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1440 Op0.getOperand(1), Op0.getOperand(2)); 1441 return TLO.CombineTo(Op, NewInsert); 1442 } 1443 } 1444 1445 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1446 Depth + 1)) 1447 return true; 1448 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1449 Known2, TLO, Depth + 1)) 1450 return true; 1451 1452 // If all of the demanded bits are known one on one side, return the other. 1453 // These bits cannot contribute to the result of the 'and'. 1454 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1455 return TLO.CombineTo(Op, Op0); 1456 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1457 return TLO.CombineTo(Op, Op1); 1458 // If all of the demanded bits in the inputs are known zeros, return zero. 1459 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1460 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1461 // If the RHS is a constant, see if we can simplify it. 1462 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1463 TLO)) 1464 return true; 1465 // If the operation can be done in a smaller type, do so. 1466 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1467 return true; 1468 1469 // Attempt to avoid multi-use ops if we don't need anything from them. 1470 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1471 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1472 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1473 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1474 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1475 if (DemandedOp0 || DemandedOp1) { 1476 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1477 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1478 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1479 return TLO.CombineTo(Op, NewOp); 1480 } 1481 } 1482 1483 Known &= Known2; 1484 break; 1485 } 1486 case ISD::OR: { 1487 SDValue Op0 = Op.getOperand(0); 1488 SDValue Op1 = Op.getOperand(1); 1489 SDNodeFlags Flags = Op.getNode()->getFlags(); 1490 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1491 Depth + 1)) { 1492 if (Flags.hasDisjoint()) { 1493 Flags.setDisjoint(false); 1494 Op->setFlags(Flags); 1495 } 1496 return true; 1497 } 1498 1499 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1500 Known2, TLO, Depth + 1)) { 1501 if (Flags.hasDisjoint()) { 1502 Flags.setDisjoint(false); 1503 Op->setFlags(Flags); 1504 } 1505 return true; 1506 } 1507 1508 // If all of the demanded bits are known zero on one side, return the other. 1509 // These bits cannot contribute to the result of the 'or'. 1510 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1511 return TLO.CombineTo(Op, Op0); 1512 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1513 return TLO.CombineTo(Op, Op1); 1514 // If the RHS is a constant, see if we can simplify it. 1515 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1516 return true; 1517 // If the operation can be done in a smaller type, do so. 1518 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1519 return true; 1520 1521 // Attempt to avoid multi-use ops if we don't need anything from them. 1522 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1523 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1524 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1525 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1526 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1527 if (DemandedOp0 || DemandedOp1) { 1528 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1529 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1530 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1531 return TLO.CombineTo(Op, NewOp); 1532 } 1533 } 1534 1535 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1536 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1537 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1538 Op0->hasOneUse() && Op1->hasOneUse()) { 1539 // Attempt to match all commutations - m_c_Or would've been useful! 1540 for (int I = 0; I != 2; ++I) { 1541 SDValue X = Op.getOperand(I).getOperand(0); 1542 SDValue C1 = Op.getOperand(I).getOperand(1); 1543 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1544 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1545 if (Alt.getOpcode() == ISD::OR) { 1546 for (int J = 0; J != 2; ++J) { 1547 if (X == Alt.getOperand(J)) { 1548 SDValue Y = Alt.getOperand(1 - J); 1549 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1550 {C1, C2})) { 1551 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1552 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1553 return TLO.CombineTo( 1554 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1555 } 1556 } 1557 } 1558 } 1559 } 1560 } 1561 1562 Known |= Known2; 1563 break; 1564 } 1565 case ISD::XOR: { 1566 SDValue Op0 = Op.getOperand(0); 1567 SDValue Op1 = Op.getOperand(1); 1568 1569 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1570 Depth + 1)) 1571 return true; 1572 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1573 Depth + 1)) 1574 return true; 1575 1576 // If all of the demanded bits are known zero on one side, return the other. 1577 // These bits cannot contribute to the result of the 'xor'. 1578 if (DemandedBits.isSubsetOf(Known.Zero)) 1579 return TLO.CombineTo(Op, Op0); 1580 if (DemandedBits.isSubsetOf(Known2.Zero)) 1581 return TLO.CombineTo(Op, Op1); 1582 // If the operation can be done in a smaller type, do so. 1583 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1584 return true; 1585 1586 // If all of the unknown bits are known to be zero on one side or the other 1587 // turn this into an *inclusive* or. 1588 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1589 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1590 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1591 1592 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1593 if (C) { 1594 // If one side is a constant, and all of the set bits in the constant are 1595 // also known set on the other side, turn this into an AND, as we know 1596 // the bits will be cleared. 1597 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1598 // NB: it is okay if more bits are known than are requested 1599 if (C->getAPIntValue() == Known2.One) { 1600 SDValue ANDC = 1601 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1602 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1603 } 1604 1605 // If the RHS is a constant, see if we can change it. Don't alter a -1 1606 // constant because that's a 'not' op, and that is better for combining 1607 // and codegen. 1608 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1609 // We're flipping all demanded bits. Flip the undemanded bits too. 1610 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1611 return TLO.CombineTo(Op, New); 1612 } 1613 1614 unsigned Op0Opcode = Op0.getOpcode(); 1615 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1616 if (ConstantSDNode *ShiftC = 1617 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1618 // Don't crash on an oversized shift. We can not guarantee that a 1619 // bogus shift has been simplified to undef. 1620 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1621 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1622 APInt Ones = APInt::getAllOnes(BitWidth); 1623 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1624 : Ones.lshr(ShiftAmt); 1625 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 1626 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1627 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) { 1628 // If the xor constant is a demanded mask, do a 'not' before the 1629 // shift: 1630 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1631 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1632 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1633 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1634 Op0.getOperand(1))); 1635 } 1636 } 1637 } 1638 } 1639 } 1640 1641 // If we can't turn this into a 'not', try to shrink the constant. 1642 if (!C || !C->isAllOnes()) 1643 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1644 return true; 1645 1646 // Attempt to avoid multi-use ops if we don't need anything from them. 1647 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1648 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1649 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1650 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1651 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1652 if (DemandedOp0 || DemandedOp1) { 1653 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1654 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1655 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1656 return TLO.CombineTo(Op, NewOp); 1657 } 1658 } 1659 1660 Known ^= Known2; 1661 break; 1662 } 1663 case ISD::SELECT: 1664 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1665 Known, TLO, Depth + 1)) 1666 return true; 1667 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1668 Known2, TLO, Depth + 1)) 1669 return true; 1670 1671 // If the operands are constants, see if we can simplify them. 1672 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1673 return true; 1674 1675 // Only known if known in both the LHS and RHS. 1676 Known = Known.intersectWith(Known2); 1677 break; 1678 case ISD::VSELECT: 1679 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1680 Known, TLO, Depth + 1)) 1681 return true; 1682 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1683 Known2, TLO, Depth + 1)) 1684 return true; 1685 1686 // Only known if known in both the LHS and RHS. 1687 Known = Known.intersectWith(Known2); 1688 break; 1689 case ISD::SELECT_CC: 1690 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1694 Known2, TLO, Depth + 1)) 1695 return true; 1696 1697 // If the operands are constants, see if we can simplify them. 1698 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1699 return true; 1700 1701 // Only known if known in both the LHS and RHS. 1702 Known = Known.intersectWith(Known2); 1703 break; 1704 case ISD::SETCC: { 1705 SDValue Op0 = Op.getOperand(0); 1706 SDValue Op1 = Op.getOperand(1); 1707 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1708 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1709 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1710 // -1, we may be able to bypass the setcc. 1711 if (DemandedBits.isSignMask() && 1712 Op0.getScalarValueSizeInBits() == BitWidth && 1713 getBooleanContents(Op0.getValueType()) == 1714 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1715 // If we're testing X < 0, then this compare isn't needed - just use X! 1716 // FIXME: We're limiting to integer types here, but this should also work 1717 // if we don't care about FP signed-zero. The use of SETLT with FP means 1718 // that we don't care about NaNs. 1719 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1720 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1721 return TLO.CombineTo(Op, Op0); 1722 1723 // TODO: Should we check for other forms of sign-bit comparisons? 1724 // Examples: X <= -1, X >= 0 1725 } 1726 if (getBooleanContents(Op0.getValueType()) == 1727 TargetLowering::ZeroOrOneBooleanContent && 1728 BitWidth > 1) 1729 Known.Zero.setBitsFrom(1); 1730 break; 1731 } 1732 case ISD::SHL: { 1733 SDValue Op0 = Op.getOperand(0); 1734 SDValue Op1 = Op.getOperand(1); 1735 EVT ShiftVT = Op1.getValueType(); 1736 1737 if (std::optional<uint64_t> KnownSA = 1738 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1739 unsigned ShAmt = *KnownSA; 1740 if (ShAmt == 0) 1741 return TLO.CombineTo(Op, Op0); 1742 1743 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1744 // single shift. We can do this if the bottom bits (which are shifted 1745 // out) are never demanded. 1746 // TODO - support non-uniform vector amounts. 1747 if (Op0.getOpcode() == ISD::SRL) { 1748 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1749 if (std::optional<uint64_t> InnerSA = 1750 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1751 unsigned C1 = *InnerSA; 1752 unsigned Opc = ISD::SHL; 1753 int Diff = ShAmt - C1; 1754 if (Diff < 0) { 1755 Diff = -Diff; 1756 Opc = ISD::SRL; 1757 } 1758 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1759 return TLO.CombineTo( 1760 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1761 } 1762 } 1763 } 1764 1765 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1766 // are not demanded. This will likely allow the anyext to be folded away. 1767 // TODO - support non-uniform vector amounts. 1768 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1769 SDValue InnerOp = Op0.getOperand(0); 1770 EVT InnerVT = InnerOp.getValueType(); 1771 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1772 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1773 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1774 SDValue NarrowShl = TLO.DAG.getNode( 1775 ISD::SHL, dl, InnerVT, InnerOp, 1776 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1777 return TLO.CombineTo( 1778 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1779 } 1780 1781 // Repeat the SHL optimization above in cases where an extension 1782 // intervenes: (shl (anyext (shr x, c1)), c2) to 1783 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1784 // aren't demanded (as above) and that the shifted upper c1 bits of 1785 // x aren't demanded. 1786 // TODO - support non-uniform vector amounts. 1787 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1788 InnerOp.hasOneUse()) { 1789 if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( 1790 InnerOp, DemandedElts, Depth + 2)) { 1791 unsigned InnerShAmt = *SA2; 1792 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1793 DemandedBits.getActiveBits() <= 1794 (InnerBits - InnerShAmt + ShAmt) && 1795 DemandedBits.countr_zero() >= ShAmt) { 1796 SDValue NewSA = 1797 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1798 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1799 InnerOp.getOperand(0)); 1800 return TLO.CombineTo( 1801 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1802 } 1803 } 1804 } 1805 } 1806 1807 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1808 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1809 Depth + 1)) { 1810 SDNodeFlags Flags = Op.getNode()->getFlags(); 1811 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1812 // Disable the nsw and nuw flags. We can no longer guarantee that we 1813 // won't wrap after simplification. 1814 Flags.setNoSignedWrap(false); 1815 Flags.setNoUnsignedWrap(false); 1816 Op->setFlags(Flags); 1817 } 1818 return true; 1819 } 1820 Known.Zero <<= ShAmt; 1821 Known.One <<= ShAmt; 1822 // low bits known zero. 1823 Known.Zero.setLowBits(ShAmt); 1824 1825 // Attempt to avoid multi-use ops if we don't need anything from them. 1826 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1827 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1828 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1829 if (DemandedOp0) { 1830 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1831 return TLO.CombineTo(Op, NewOp); 1832 } 1833 } 1834 1835 // TODO: Can we merge this fold with the one below? 1836 // Try shrinking the operation as long as the shift amount will still be 1837 // in range. 1838 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && 1839 Op.getNode()->hasOneUse()) { 1840 // Search for the smallest integer type with free casts to and from 1841 // Op's type. For expedience, just check power-of-2 integer types. 1842 unsigned DemandedSize = DemandedBits.getActiveBits(); 1843 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 1844 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1845 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits); 1846 if (isNarrowingProfitable(VT, SmallVT) && 1847 isTypeDesirableForOp(ISD::SHL, SmallVT) && 1848 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) && 1849 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) { 1850 assert(DemandedSize <= SmallVTBits && 1851 "Narrowed below demanded bits?"); 1852 // We found a type with free casts. 1853 SDValue NarrowShl = TLO.DAG.getNode( 1854 ISD::SHL, dl, SmallVT, 1855 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 1856 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl)); 1857 return TLO.CombineTo( 1858 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1859 } 1860 } 1861 } 1862 1863 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1864 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) 1865 // Only do this if we demand the upper half so the knownbits are correct. 1866 unsigned HalfWidth = BitWidth / 2; 1867 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && 1868 DemandedBits.countLeadingOnes() >= HalfWidth) { 1869 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); 1870 if (isNarrowingProfitable(VT, HalfVT) && 1871 isTypeDesirableForOp(ISD::SHL, HalfVT) && 1872 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1873 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { 1874 // If we're demanding the upper bits at all, we must ensure 1875 // that the upper bits of the shift result are known to be zero, 1876 // which is equivalent to the narrow shift being NUW. 1877 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { 1878 bool IsNSW = Known.countMinSignBits() > HalfWidth; 1879 SDNodeFlags Flags; 1880 Flags.setNoSignedWrap(IsNSW); 1881 Flags.setNoUnsignedWrap(IsNUW); 1882 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1883 SDValue NewShiftAmt = 1884 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1885 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, 1886 NewShiftAmt, Flags); 1887 SDValue NewExt = 1888 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); 1889 return TLO.CombineTo(Op, NewExt); 1890 } 1891 } 1892 } 1893 } else { 1894 // This is a variable shift, so we can't shift the demand mask by a known 1895 // amount. But if we are not demanding high bits, then we are not 1896 // demanding those bits from the pre-shifted operand either. 1897 if (unsigned CTLZ = DemandedBits.countl_zero()) { 1898 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1899 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1900 Depth + 1)) { 1901 SDNodeFlags Flags = Op.getNode()->getFlags(); 1902 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1903 // Disable the nsw and nuw flags. We can no longer guarantee that we 1904 // won't wrap after simplification. 1905 Flags.setNoSignedWrap(false); 1906 Flags.setNoUnsignedWrap(false); 1907 Op->setFlags(Flags); 1908 } 1909 return true; 1910 } 1911 Known.resetAll(); 1912 } 1913 } 1914 1915 // If we are only demanding sign bits then we can use the shift source 1916 // directly. 1917 if (std::optional<uint64_t> MaxSA = 1918 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 1919 unsigned ShAmt = *MaxSA; 1920 unsigned NumSignBits = 1921 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1922 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 1923 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1924 return TLO.CombineTo(Op, Op0); 1925 } 1926 break; 1927 } 1928 case ISD::SRL: { 1929 SDValue Op0 = Op.getOperand(0); 1930 SDValue Op1 = Op.getOperand(1); 1931 EVT ShiftVT = Op1.getValueType(); 1932 1933 if (std::optional<uint64_t> KnownSA = 1934 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1935 unsigned ShAmt = *KnownSA; 1936 if (ShAmt == 0) 1937 return TLO.CombineTo(Op, Op0); 1938 1939 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1940 // single shift. We can do this if the top bits (which are shifted out) 1941 // are never demanded. 1942 // TODO - support non-uniform vector amounts. 1943 if (Op0.getOpcode() == ISD::SHL) { 1944 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1945 if (std::optional<uint64_t> InnerSA = 1946 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1947 unsigned C1 = *InnerSA; 1948 unsigned Opc = ISD::SRL; 1949 int Diff = ShAmt - C1; 1950 if (Diff < 0) { 1951 Diff = -Diff; 1952 Opc = ISD::SHL; 1953 } 1954 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1955 return TLO.CombineTo( 1956 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1957 } 1958 } 1959 } 1960 1961 APInt InDemandedMask = (DemandedBits << ShAmt); 1962 1963 // If the shift is exact, then it does demand the low bits (and knows that 1964 // they are zero). 1965 if (Op->getFlags().hasExact()) 1966 InDemandedMask.setLowBits(ShAmt); 1967 1968 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1969 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) 1970 if ((BitWidth % 2) == 0 && !VT.isVector()) { 1971 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); 1972 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); 1973 if (isNarrowingProfitable(VT, HalfVT) && 1974 isTypeDesirableForOp(ISD::SRL, HalfVT) && 1975 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1976 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && 1977 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || 1978 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { 1979 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1980 SDValue NewShiftAmt = 1981 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1982 SDValue NewShift = 1983 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); 1984 return TLO.CombineTo( 1985 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); 1986 } 1987 } 1988 1989 // Compute the new bits that are at the top now. 1990 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1991 Depth + 1)) 1992 return true; 1993 Known.Zero.lshrInPlace(ShAmt); 1994 Known.One.lshrInPlace(ShAmt); 1995 // High bits known zero. 1996 Known.Zero.setHighBits(ShAmt); 1997 1998 // Attempt to avoid multi-use ops if we don't need anything from them. 1999 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2000 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2001 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2002 if (DemandedOp0) { 2003 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 2004 return TLO.CombineTo(Op, NewOp); 2005 } 2006 } 2007 } else { 2008 // Use generic knownbits computation as it has support for non-uniform 2009 // shift amounts. 2010 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2011 } 2012 2013 // Try to match AVG patterns (after shift simplification). 2014 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2015 DemandedElts, Depth + 1)) 2016 return TLO.CombineTo(Op, AVG); 2017 2018 break; 2019 } 2020 case ISD::SRA: { 2021 SDValue Op0 = Op.getOperand(0); 2022 SDValue Op1 = Op.getOperand(1); 2023 EVT ShiftVT = Op1.getValueType(); 2024 2025 // If we only want bits that already match the signbit then we don't need 2026 // to shift. 2027 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); 2028 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 2029 NumHiDemandedBits) 2030 return TLO.CombineTo(Op, Op0); 2031 2032 // If this is an arithmetic shift right and only the low-bit is set, we can 2033 // always convert this into a logical shr, even if the shift amount is 2034 // variable. The low bit of the shift cannot be an input sign bit unless 2035 // the shift amount is >= the size of the datatype, which is undefined. 2036 if (DemandedBits.isOne()) 2037 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2038 2039 if (std::optional<uint64_t> KnownSA = 2040 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 2041 unsigned ShAmt = *KnownSA; 2042 if (ShAmt == 0) 2043 return TLO.CombineTo(Op, Op0); 2044 2045 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target 2046 // supports sext_inreg. 2047 if (Op0.getOpcode() == ISD::SHL) { 2048 if (std::optional<uint64_t> InnerSA = 2049 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 2050 unsigned LowBits = BitWidth - ShAmt; 2051 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); 2052 if (VT.isVector()) 2053 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, 2054 VT.getVectorElementCount()); 2055 2056 if (*InnerSA == ShAmt) { 2057 if (!TLO.LegalOperations() || 2058 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) 2059 return TLO.CombineTo( 2060 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 2061 Op0.getOperand(0), 2062 TLO.DAG.getValueType(ExtVT))); 2063 2064 // Even if we can't convert to sext_inreg, we might be able to 2065 // remove this shift pair if the input is already sign extended. 2066 unsigned NumSignBits = 2067 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); 2068 if (NumSignBits > ShAmt) 2069 return TLO.CombineTo(Op, Op0.getOperand(0)); 2070 } 2071 } 2072 } 2073 2074 APInt InDemandedMask = (DemandedBits << ShAmt); 2075 2076 // If the shift is exact, then it does demand the low bits (and knows that 2077 // they are zero). 2078 if (Op->getFlags().hasExact()) 2079 InDemandedMask.setLowBits(ShAmt); 2080 2081 // If any of the demanded bits are produced by the sign extension, we also 2082 // demand the input sign bit. 2083 if (DemandedBits.countl_zero() < ShAmt) 2084 InDemandedMask.setSignBit(); 2085 2086 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2087 Depth + 1)) 2088 return true; 2089 Known.Zero.lshrInPlace(ShAmt); 2090 Known.One.lshrInPlace(ShAmt); 2091 2092 // If the input sign bit is known to be zero, or if none of the top bits 2093 // are demanded, turn this into an unsigned shift right. 2094 if (Known.Zero[BitWidth - ShAmt - 1] || 2095 DemandedBits.countl_zero() >= ShAmt) { 2096 SDNodeFlags Flags; 2097 Flags.setExact(Op->getFlags().hasExact()); 2098 return TLO.CombineTo( 2099 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 2100 } 2101 2102 int Log2 = DemandedBits.exactLogBase2(); 2103 if (Log2 >= 0) { 2104 // The bit must come from the sign. 2105 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 2106 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 2107 } 2108 2109 if (Known.One[BitWidth - ShAmt - 1]) 2110 // New bits are known one. 2111 Known.One.setHighBits(ShAmt); 2112 2113 // Attempt to avoid multi-use ops if we don't need anything from them. 2114 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2115 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2116 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2117 if (DemandedOp0) { 2118 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 2119 return TLO.CombineTo(Op, NewOp); 2120 } 2121 } 2122 } 2123 2124 // Try to match AVG patterns (after shift simplification). 2125 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2126 DemandedElts, Depth + 1)) 2127 return TLO.CombineTo(Op, AVG); 2128 2129 break; 2130 } 2131 case ISD::FSHL: 2132 case ISD::FSHR: { 2133 SDValue Op0 = Op.getOperand(0); 2134 SDValue Op1 = Op.getOperand(1); 2135 SDValue Op2 = Op.getOperand(2); 2136 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 2137 2138 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 2139 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2140 2141 // For fshl, 0-shift returns the 1st arg. 2142 // For fshr, 0-shift returns the 2nd arg. 2143 if (Amt == 0) { 2144 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 2145 Known, TLO, Depth + 1)) 2146 return true; 2147 break; 2148 } 2149 2150 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 2151 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 2152 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 2153 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 2154 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2155 Depth + 1)) 2156 return true; 2157 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 2158 Depth + 1)) 2159 return true; 2160 2161 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2162 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2163 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2164 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2165 Known = Known.unionWith(Known2); 2166 2167 // Attempt to avoid multi-use ops if we don't need anything from them. 2168 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2169 !DemandedElts.isAllOnes()) { 2170 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2171 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2172 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2173 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2174 if (DemandedOp0 || DemandedOp1) { 2175 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2176 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2177 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2178 DemandedOp1, Op2); 2179 return TLO.CombineTo(Op, NewOp); 2180 } 2181 } 2182 } 2183 2184 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2185 if (isPowerOf2_32(BitWidth)) { 2186 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2187 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2188 Known2, TLO, Depth + 1)) 2189 return true; 2190 } 2191 break; 2192 } 2193 case ISD::ROTL: 2194 case ISD::ROTR: { 2195 SDValue Op0 = Op.getOperand(0); 2196 SDValue Op1 = Op.getOperand(1); 2197 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2198 2199 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2200 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2201 return TLO.CombineTo(Op, Op0); 2202 2203 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2204 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2205 unsigned RevAmt = BitWidth - Amt; 2206 2207 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2208 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2209 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2210 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2211 Depth + 1)) 2212 return true; 2213 2214 // rot*(x, 0) --> x 2215 if (Amt == 0) 2216 return TLO.CombineTo(Op, Op0); 2217 2218 // See if we don't demand either half of the rotated bits. 2219 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2220 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { 2221 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2222 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2223 } 2224 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2225 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { 2226 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2227 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2228 } 2229 } 2230 2231 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2232 if (isPowerOf2_32(BitWidth)) { 2233 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2234 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2235 Depth + 1)) 2236 return true; 2237 } 2238 break; 2239 } 2240 case ISD::SMIN: 2241 case ISD::SMAX: 2242 case ISD::UMIN: 2243 case ISD::UMAX: { 2244 unsigned Opc = Op.getOpcode(); 2245 SDValue Op0 = Op.getOperand(0); 2246 SDValue Op1 = Op.getOperand(1); 2247 2248 // If we're only demanding signbits, then we can simplify to OR/AND node. 2249 unsigned BitOp = 2250 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; 2251 unsigned NumSignBits = 2252 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), 2253 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); 2254 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); 2255 if (NumSignBits >= NumDemandedUpperBits) 2256 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); 2257 2258 // Check if one arg is always less/greater than (or equal) to the other arg. 2259 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2260 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2261 switch (Opc) { 2262 case ISD::SMIN: 2263 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) 2264 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); 2265 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) 2266 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); 2267 Known = KnownBits::smin(Known0, Known1); 2268 break; 2269 case ISD::SMAX: 2270 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) 2271 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); 2272 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) 2273 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); 2274 Known = KnownBits::smax(Known0, Known1); 2275 break; 2276 case ISD::UMIN: 2277 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2278 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2279 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2280 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2281 Known = KnownBits::umin(Known0, Known1); 2282 break; 2283 case ISD::UMAX: 2284 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2285 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2286 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2287 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2288 Known = KnownBits::umax(Known0, Known1); 2289 break; 2290 } 2291 break; 2292 } 2293 case ISD::BITREVERSE: { 2294 SDValue Src = Op.getOperand(0); 2295 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2296 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2297 Depth + 1)) 2298 return true; 2299 Known.One = Known2.One.reverseBits(); 2300 Known.Zero = Known2.Zero.reverseBits(); 2301 break; 2302 } 2303 case ISD::BSWAP: { 2304 SDValue Src = Op.getOperand(0); 2305 2306 // If the only bits demanded come from one byte of the bswap result, 2307 // just shift the input byte into position to eliminate the bswap. 2308 unsigned NLZ = DemandedBits.countl_zero(); 2309 unsigned NTZ = DemandedBits.countr_zero(); 2310 2311 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2312 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2313 // have 14 leading zeros, round to 8. 2314 NLZ = alignDown(NLZ, 8); 2315 NTZ = alignDown(NTZ, 8); 2316 // If we need exactly one byte, we can do this transformation. 2317 if (BitWidth - NLZ - NTZ == 8) { 2318 // Replace this with either a left or right shift to get the byte into 2319 // the right place. 2320 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2321 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2322 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2323 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 2324 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2325 return TLO.CombineTo(Op, NewOp); 2326 } 2327 } 2328 2329 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2330 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2331 Depth + 1)) 2332 return true; 2333 Known.One = Known2.One.byteSwap(); 2334 Known.Zero = Known2.Zero.byteSwap(); 2335 break; 2336 } 2337 case ISD::CTPOP: { 2338 // If only 1 bit is demanded, replace with PARITY as long as we're before 2339 // op legalization. 2340 // FIXME: Limit to scalars for now. 2341 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2342 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2343 Op.getOperand(0))); 2344 2345 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2346 break; 2347 } 2348 case ISD::SIGN_EXTEND_INREG: { 2349 SDValue Op0 = Op.getOperand(0); 2350 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2351 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2352 2353 // If we only care about the highest bit, don't bother shifting right. 2354 if (DemandedBits.isSignMask()) { 2355 unsigned MinSignedBits = 2356 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2357 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2358 // However if the input is already sign extended we expect the sign 2359 // extension to be dropped altogether later and do not simplify. 2360 if (!AlreadySignExtended) { 2361 // Compute the correct shift amount type, which must be getShiftAmountTy 2362 // for scalar types after legalization. 2363 SDValue ShiftAmt = 2364 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl); 2365 return TLO.CombineTo(Op, 2366 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2367 } 2368 } 2369 2370 // If none of the extended bits are demanded, eliminate the sextinreg. 2371 if (DemandedBits.getActiveBits() <= ExVTBits) 2372 return TLO.CombineTo(Op, Op0); 2373 2374 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2375 2376 // Since the sign extended bits are demanded, we know that the sign 2377 // bit is demanded. 2378 InputDemandedBits.setBit(ExVTBits - 1); 2379 2380 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2381 Depth + 1)) 2382 return true; 2383 2384 // If the sign bit of the input is known set or clear, then we know the 2385 // top bits of the result. 2386 2387 // If the input sign bit is known zero, convert this into a zero extension. 2388 if (Known.Zero[ExVTBits - 1]) 2389 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2390 2391 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2392 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2393 Known.One.setBitsFrom(ExVTBits); 2394 Known.Zero &= Mask; 2395 } else { // Input sign bit unknown 2396 Known.Zero &= Mask; 2397 Known.One &= Mask; 2398 } 2399 break; 2400 } 2401 case ISD::BUILD_PAIR: { 2402 EVT HalfVT = Op.getOperand(0).getValueType(); 2403 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2404 2405 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2406 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2407 2408 KnownBits KnownLo, KnownHi; 2409 2410 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2411 return true; 2412 2413 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2414 return true; 2415 2416 Known = KnownHi.concat(KnownLo); 2417 break; 2418 } 2419 case ISD::ZERO_EXTEND_VECTOR_INREG: 2420 if (VT.isScalableVector()) 2421 return false; 2422 [[fallthrough]]; 2423 case ISD::ZERO_EXTEND: { 2424 SDValue Src = Op.getOperand(0); 2425 EVT SrcVT = Src.getValueType(); 2426 unsigned InBits = SrcVT.getScalarSizeInBits(); 2427 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2428 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2429 2430 // If none of the top bits are demanded, convert this into an any_extend. 2431 if (DemandedBits.getActiveBits() <= InBits) { 2432 // If we only need the non-extended bits of the bottom element 2433 // then we can just bitcast to the result. 2434 if (IsLE && IsVecInReg && DemandedElts == 1 && 2435 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2436 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2437 2438 unsigned Opc = 2439 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2440 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2441 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2442 } 2443 2444 SDNodeFlags Flags = Op->getFlags(); 2445 APInt InDemandedBits = DemandedBits.trunc(InBits); 2446 APInt InDemandedElts = DemandedElts.zext(InElts); 2447 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2448 Depth + 1)) { 2449 if (Flags.hasNonNeg()) { 2450 Flags.setNonNeg(false); 2451 Op->setFlags(Flags); 2452 } 2453 return true; 2454 } 2455 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2456 Known = Known.zext(BitWidth); 2457 2458 // Attempt to avoid multi-use ops if we don't need anything from them. 2459 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2460 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2461 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2462 break; 2463 } 2464 case ISD::SIGN_EXTEND_VECTOR_INREG: 2465 if (VT.isScalableVector()) 2466 return false; 2467 [[fallthrough]]; 2468 case ISD::SIGN_EXTEND: { 2469 SDValue Src = Op.getOperand(0); 2470 EVT SrcVT = Src.getValueType(); 2471 unsigned InBits = SrcVT.getScalarSizeInBits(); 2472 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2473 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2474 2475 APInt InDemandedElts = DemandedElts.zext(InElts); 2476 APInt InDemandedBits = DemandedBits.trunc(InBits); 2477 2478 // Since some of the sign extended bits are demanded, we know that the sign 2479 // bit is demanded. 2480 InDemandedBits.setBit(InBits - 1); 2481 2482 // If none of the top bits are demanded, convert this into an any_extend. 2483 if (DemandedBits.getActiveBits() <= InBits) { 2484 // If we only need the non-extended bits of the bottom element 2485 // then we can just bitcast to the result. 2486 if (IsLE && IsVecInReg && DemandedElts == 1 && 2487 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2488 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2489 2490 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. 2491 if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent || 2492 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) != 2493 InBits) { 2494 unsigned Opc = 2495 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2496 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2497 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2498 } 2499 } 2500 2501 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2502 Depth + 1)) 2503 return true; 2504 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2505 2506 // If the sign bit is known one, the top bits match. 2507 Known = Known.sext(BitWidth); 2508 2509 // If the sign bit is known zero, convert this to a zero extend. 2510 if (Known.isNonNegative()) { 2511 unsigned Opc = 2512 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2513 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) { 2514 SDNodeFlags Flags; 2515 if (!IsVecInReg) 2516 Flags.setNonNeg(true); 2517 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags)); 2518 } 2519 } 2520 2521 // Attempt to avoid multi-use ops if we don't need anything from them. 2522 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2523 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2524 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2525 break; 2526 } 2527 case ISD::ANY_EXTEND_VECTOR_INREG: 2528 if (VT.isScalableVector()) 2529 return false; 2530 [[fallthrough]]; 2531 case ISD::ANY_EXTEND: { 2532 SDValue Src = Op.getOperand(0); 2533 EVT SrcVT = Src.getValueType(); 2534 unsigned InBits = SrcVT.getScalarSizeInBits(); 2535 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2536 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2537 2538 // If we only need the bottom element then we can just bitcast. 2539 // TODO: Handle ANY_EXTEND? 2540 if (IsLE && IsVecInReg && DemandedElts == 1 && 2541 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2542 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2543 2544 APInt InDemandedBits = DemandedBits.trunc(InBits); 2545 APInt InDemandedElts = DemandedElts.zext(InElts); 2546 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2547 Depth + 1)) 2548 return true; 2549 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2550 Known = Known.anyext(BitWidth); 2551 2552 // Attempt to avoid multi-use ops if we don't need anything from them. 2553 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2554 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2555 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2556 break; 2557 } 2558 case ISD::TRUNCATE: { 2559 SDValue Src = Op.getOperand(0); 2560 2561 // Simplify the input, using demanded bit information, and compute the known 2562 // zero/one bits live out. 2563 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2564 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2565 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2566 Depth + 1)) 2567 return true; 2568 Known = Known.trunc(BitWidth); 2569 2570 // Attempt to avoid multi-use ops if we don't need anything from them. 2571 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2572 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2573 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2574 2575 // If the input is only used by this truncate, see if we can shrink it based 2576 // on the known demanded bits. 2577 switch (Src.getOpcode()) { 2578 default: 2579 break; 2580 case ISD::SRL: 2581 // Shrink SRL by a constant if none of the high bits shifted in are 2582 // demanded. 2583 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2584 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2585 // undesirable. 2586 break; 2587 2588 if (Src.getNode()->hasOneUse()) { 2589 if (isTruncateFree(Src, VT) && 2590 !isTruncateFree(Src.getValueType(), VT)) { 2591 // If truncate is only free at trunc(srl), do not turn it into 2592 // srl(trunc). The check is done by first check the truncate is free 2593 // at Src's opcode(srl), then check the truncate is not done by 2594 // referencing sub-register. In test, if both trunc(srl) and 2595 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only 2596 // trunc(srl)'s trunc is free, trunc(srl) is better. 2597 break; 2598 } 2599 2600 std::optional<uint64_t> ShAmtC = 2601 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2); 2602 if (!ShAmtC || *ShAmtC >= BitWidth) 2603 break; 2604 uint64_t ShVal = *ShAmtC; 2605 2606 APInt HighBits = 2607 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2608 HighBits.lshrInPlace(ShVal); 2609 HighBits = HighBits.trunc(BitWidth); 2610 if (!(HighBits & DemandedBits)) { 2611 // None of the shifted in bits are needed. Add a truncate of the 2612 // shift input, then shift it. 2613 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl); 2614 SDValue NewTrunc = 2615 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2616 return TLO.CombineTo( 2617 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2618 } 2619 } 2620 break; 2621 } 2622 2623 break; 2624 } 2625 case ISD::AssertZext: { 2626 // AssertZext demands all of the high bits, plus any of the low bits 2627 // demanded by its users. 2628 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2629 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2630 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2631 TLO, Depth + 1)) 2632 return true; 2633 2634 Known.Zero |= ~InMask; 2635 Known.One &= (~Known.Zero); 2636 break; 2637 } 2638 case ISD::EXTRACT_VECTOR_ELT: { 2639 SDValue Src = Op.getOperand(0); 2640 SDValue Idx = Op.getOperand(1); 2641 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2642 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2643 2644 if (SrcEltCnt.isScalable()) 2645 return false; 2646 2647 // Demand the bits from every vector element without a constant index. 2648 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2649 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2650 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2651 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2652 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2653 2654 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2655 // anything about the extended bits. 2656 APInt DemandedSrcBits = DemandedBits; 2657 if (BitWidth > EltBitWidth) 2658 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2659 2660 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2661 Depth + 1)) 2662 return true; 2663 2664 // Attempt to avoid multi-use ops if we don't need anything from them. 2665 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2666 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2667 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2668 SDValue NewOp = 2669 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2670 return TLO.CombineTo(Op, NewOp); 2671 } 2672 } 2673 2674 Known = Known2; 2675 if (BitWidth > EltBitWidth) 2676 Known = Known.anyext(BitWidth); 2677 break; 2678 } 2679 case ISD::BITCAST: { 2680 if (VT.isScalableVector()) 2681 return false; 2682 SDValue Src = Op.getOperand(0); 2683 EVT SrcVT = Src.getValueType(); 2684 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2685 2686 // If this is an FP->Int bitcast and if the sign bit is the only 2687 // thing demanded, turn this into a FGETSIGN. 2688 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2689 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2690 SrcVT.isFloatingPoint()) { 2691 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2692 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2693 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2694 SrcVT != MVT::f128) { 2695 // Cannot eliminate/lower SHL for f128 yet. 2696 EVT Ty = OpVTLegal ? VT : MVT::i32; 2697 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2698 // place. We expect the SHL to be eliminated by other optimizations. 2699 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2700 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2701 if (!OpVTLegal && OpVTSizeInBits > 32) 2702 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2703 unsigned ShVal = Op.getValueSizeInBits() - 1; 2704 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2705 return TLO.CombineTo(Op, 2706 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2707 } 2708 } 2709 2710 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2711 // Demand the elt/bit if any of the original elts/bits are demanded. 2712 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2713 unsigned Scale = BitWidth / NumSrcEltBits; 2714 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2715 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2716 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2717 for (unsigned i = 0; i != Scale; ++i) { 2718 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2719 unsigned BitOffset = EltOffset * NumSrcEltBits; 2720 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2721 if (!Sub.isZero()) { 2722 DemandedSrcBits |= Sub; 2723 for (unsigned j = 0; j != NumElts; ++j) 2724 if (DemandedElts[j]) 2725 DemandedSrcElts.setBit((j * Scale) + i); 2726 } 2727 } 2728 2729 APInt KnownSrcUndef, KnownSrcZero; 2730 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2731 KnownSrcZero, TLO, Depth + 1)) 2732 return true; 2733 2734 KnownBits KnownSrcBits; 2735 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2736 KnownSrcBits, TLO, Depth + 1)) 2737 return true; 2738 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2739 // TODO - bigendian once we have test coverage. 2740 unsigned Scale = NumSrcEltBits / BitWidth; 2741 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2742 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2743 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2744 for (unsigned i = 0; i != NumElts; ++i) 2745 if (DemandedElts[i]) { 2746 unsigned Offset = (i % Scale) * BitWidth; 2747 DemandedSrcBits.insertBits(DemandedBits, Offset); 2748 DemandedSrcElts.setBit(i / Scale); 2749 } 2750 2751 if (SrcVT.isVector()) { 2752 APInt KnownSrcUndef, KnownSrcZero; 2753 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2754 KnownSrcZero, TLO, Depth + 1)) 2755 return true; 2756 } 2757 2758 KnownBits KnownSrcBits; 2759 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2760 KnownSrcBits, TLO, Depth + 1)) 2761 return true; 2762 2763 // Attempt to avoid multi-use ops if we don't need anything from them. 2764 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2765 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2766 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2767 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); 2768 return TLO.CombineTo(Op, NewOp); 2769 } 2770 } 2771 } 2772 2773 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2774 // recursive call where Known may be useful to the caller. 2775 if (Depth > 0) { 2776 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2777 return false; 2778 } 2779 break; 2780 } 2781 case ISD::MUL: 2782 if (DemandedBits.isPowerOf2()) { 2783 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2784 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2785 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2786 unsigned CTZ = DemandedBits.countr_zero(); 2787 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2788 if (C && C->getAPIntValue().countr_zero() == CTZ) { 2789 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl); 2790 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2791 return TLO.CombineTo(Op, Shl); 2792 } 2793 } 2794 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2795 // X * X is odd iff X is odd. 2796 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2797 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2798 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2799 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2800 return TLO.CombineTo(Op, And1); 2801 } 2802 [[fallthrough]]; 2803 case ISD::ADD: 2804 case ISD::SUB: { 2805 // Add, Sub, and Mul don't demand any bits in positions beyond that 2806 // of the highest bit demanded of them. 2807 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2808 SDNodeFlags Flags = Op.getNode()->getFlags(); 2809 unsigned DemandedBitsLZ = DemandedBits.countl_zero(); 2810 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2811 KnownBits KnownOp0, KnownOp1; 2812 auto GetDemandedBitsLHSMask = [&](APInt Demanded, 2813 const KnownBits &KnownRHS) { 2814 if (Op.getOpcode() == ISD::MUL) 2815 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros()); 2816 return Demanded; 2817 }; 2818 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, 2819 Depth + 1) || 2820 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1), 2821 DemandedElts, KnownOp0, TLO, Depth + 1) || 2822 // See if the operation should be performed at a smaller bit width. 2823 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2824 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2825 // Disable the nsw and nuw flags. We can no longer guarantee that we 2826 // won't wrap after simplification. 2827 Flags.setNoSignedWrap(false); 2828 Flags.setNoUnsignedWrap(false); 2829 Op->setFlags(Flags); 2830 } 2831 return true; 2832 } 2833 2834 // neg x with only low bit demanded is simply x. 2835 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2836 isNullConstant(Op0)) 2837 return TLO.CombineTo(Op, Op1); 2838 2839 // Attempt to avoid multi-use ops if we don't need anything from them. 2840 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2841 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2842 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2843 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2844 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2845 if (DemandedOp0 || DemandedOp1) { 2846 Flags.setNoSignedWrap(false); 2847 Flags.setNoUnsignedWrap(false); 2848 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2849 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2850 SDValue NewOp = 2851 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2852 return TLO.CombineTo(Op, NewOp); 2853 } 2854 } 2855 2856 // If we have a constant operand, we may be able to turn it into -1 if we 2857 // do not demand the high bits. This can make the constant smaller to 2858 // encode, allow more general folding, or match specialized instruction 2859 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2860 // is probably not useful (and could be detrimental). 2861 ConstantSDNode *C = isConstOrConstSplat(Op1); 2862 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2863 if (C && !C->isAllOnes() && !C->isOne() && 2864 (C->getAPIntValue() | HighMask).isAllOnes()) { 2865 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2866 // Disable the nsw and nuw flags. We can no longer guarantee that we 2867 // won't wrap after simplification. 2868 Flags.setNoSignedWrap(false); 2869 Flags.setNoUnsignedWrap(false); 2870 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2871 return TLO.CombineTo(Op, NewOp); 2872 } 2873 2874 // Match a multiply with a disguised negated-power-of-2 and convert to a 2875 // an equivalent shift-left amount. 2876 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2877 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2878 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2879 return 0; 2880 2881 // Don't touch opaque constants. Also, ignore zero and power-of-2 2882 // multiplies. Those will get folded later. 2883 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2884 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2885 !MulC->getAPIntValue().isPowerOf2()) { 2886 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2887 if (UnmaskedC.isNegatedPowerOf2()) 2888 return (-UnmaskedC).logBase2(); 2889 } 2890 return 0; 2891 }; 2892 2893 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, 2894 unsigned ShlAmt) { 2895 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl); 2896 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2897 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2898 return TLO.CombineTo(Op, Res); 2899 }; 2900 2901 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2902 if (Op.getOpcode() == ISD::ADD) { 2903 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2904 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2905 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2906 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2907 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2908 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2909 } 2910 if (Op.getOpcode() == ISD::SUB) { 2911 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2912 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2913 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2914 } 2915 } 2916 2917 if (Op.getOpcode() == ISD::MUL) { 2918 Known = KnownBits::mul(KnownOp0, KnownOp1); 2919 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. 2920 Known = KnownBits::computeForAddSub( 2921 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(), 2922 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1); 2923 } 2924 break; 2925 } 2926 default: 2927 // We also ask the target about intrinsics (which could be specific to it). 2928 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2929 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2930 // TODO: Probably okay to remove after audit; here to reduce change size 2931 // in initial enablement patch for scalable vectors 2932 if (Op.getValueType().isScalableVector()) 2933 break; 2934 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2935 Known, TLO, Depth)) 2936 return true; 2937 break; 2938 } 2939 2940 // Just use computeKnownBits to compute output bits. 2941 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2942 break; 2943 } 2944 2945 // If we know the value of all of the demanded bits, return this as a 2946 // constant. 2947 if (!isTargetCanonicalConstantNode(Op) && 2948 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2949 // Avoid folding to a constant if any OpaqueConstant is involved. 2950 const SDNode *N = Op.getNode(); 2951 for (SDNode *Op : 2952 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2953 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2954 if (C->isOpaque()) 2955 return false; 2956 } 2957 if (VT.isInteger()) 2958 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2959 if (VT.isFloatingPoint()) 2960 return TLO.CombineTo( 2961 Op, 2962 TLO.DAG.getConstantFP( 2963 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2964 } 2965 2966 // A multi use 'all demanded elts' simplify failed to find any knownbits. 2967 // Try again just for the original demanded elts. 2968 // Ensure we do this AFTER constant folding above. 2969 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 2970 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 2971 2972 return false; 2973 } 2974 2975 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2976 const APInt &DemandedElts, 2977 DAGCombinerInfo &DCI) const { 2978 SelectionDAG &DAG = DCI.DAG; 2979 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2980 !DCI.isBeforeLegalizeOps()); 2981 2982 APInt KnownUndef, KnownZero; 2983 bool Simplified = 2984 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2985 if (Simplified) { 2986 DCI.AddToWorklist(Op.getNode()); 2987 DCI.CommitTargetLoweringOpt(TLO); 2988 } 2989 2990 return Simplified; 2991 } 2992 2993 /// Given a vector binary operation and known undefined elements for each input 2994 /// operand, compute whether each element of the output is undefined. 2995 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2996 const APInt &UndefOp0, 2997 const APInt &UndefOp1) { 2998 EVT VT = BO.getValueType(); 2999 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 3000 "Vector binop only"); 3001 3002 EVT EltVT = VT.getVectorElementType(); 3003 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 3004 assert(UndefOp0.getBitWidth() == NumElts && 3005 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 3006 3007 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 3008 const APInt &UndefVals) { 3009 if (UndefVals[Index]) 3010 return DAG.getUNDEF(EltVT); 3011 3012 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 3013 // Try hard to make sure that the getNode() call is not creating temporary 3014 // nodes. Ignore opaque integers because they do not constant fold. 3015 SDValue Elt = BV->getOperand(Index); 3016 auto *C = dyn_cast<ConstantSDNode>(Elt); 3017 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 3018 return Elt; 3019 } 3020 3021 return SDValue(); 3022 }; 3023 3024 APInt KnownUndef = APInt::getZero(NumElts); 3025 for (unsigned i = 0; i != NumElts; ++i) { 3026 // If both inputs for this element are either constant or undef and match 3027 // the element type, compute the constant/undef result for this element of 3028 // the vector. 3029 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 3030 // not handle FP constants. The code within getNode() should be refactored 3031 // to avoid the danger of creating a bogus temporary node here. 3032 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 3033 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 3034 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 3035 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 3036 KnownUndef.setBit(i); 3037 } 3038 return KnownUndef; 3039 } 3040 3041 bool TargetLowering::SimplifyDemandedVectorElts( 3042 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 3043 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 3044 bool AssumeSingleUse) const { 3045 EVT VT = Op.getValueType(); 3046 unsigned Opcode = Op.getOpcode(); 3047 APInt DemandedElts = OriginalDemandedElts; 3048 unsigned NumElts = DemandedElts.getBitWidth(); 3049 assert(VT.isVector() && "Expected vector op"); 3050 3051 KnownUndef = KnownZero = APInt::getZero(NumElts); 3052 3053 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 3054 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 3055 return false; 3056 3057 // TODO: For now we assume we know nothing about scalable vectors. 3058 if (VT.isScalableVector()) 3059 return false; 3060 3061 assert(VT.getVectorNumElements() == NumElts && 3062 "Mask size mismatches value type element count!"); 3063 3064 // Undef operand. 3065 if (Op.isUndef()) { 3066 KnownUndef.setAllBits(); 3067 return false; 3068 } 3069 3070 // If Op has other users, assume that all elements are needed. 3071 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 3072 DemandedElts.setAllBits(); 3073 3074 // Not demanding any elements from Op. 3075 if (DemandedElts == 0) { 3076 KnownUndef.setAllBits(); 3077 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3078 } 3079 3080 // Limit search depth. 3081 if (Depth >= SelectionDAG::MaxRecursionDepth) 3082 return false; 3083 3084 SDLoc DL(Op); 3085 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 3086 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 3087 3088 // Helper for demanding the specified elements and all the bits of both binary 3089 // operands. 3090 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 3091 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 3092 TLO.DAG, Depth + 1); 3093 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 3094 TLO.DAG, Depth + 1); 3095 if (NewOp0 || NewOp1) { 3096 SDValue NewOp = 3097 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, 3098 NewOp1 ? NewOp1 : Op1, Op->getFlags()); 3099 return TLO.CombineTo(Op, NewOp); 3100 } 3101 return false; 3102 }; 3103 3104 switch (Opcode) { 3105 case ISD::SCALAR_TO_VECTOR: { 3106 if (!DemandedElts[0]) { 3107 KnownUndef.setAllBits(); 3108 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3109 } 3110 SDValue ScalarSrc = Op.getOperand(0); 3111 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 3112 SDValue Src = ScalarSrc.getOperand(0); 3113 SDValue Idx = ScalarSrc.getOperand(1); 3114 EVT SrcVT = Src.getValueType(); 3115 3116 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 3117 3118 if (SrcEltCnt.isScalable()) 3119 return false; 3120 3121 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 3122 if (isNullConstant(Idx)) { 3123 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 3124 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 3125 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 3126 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3127 TLO, Depth + 1)) 3128 return true; 3129 } 3130 } 3131 KnownUndef.setHighBits(NumElts - 1); 3132 break; 3133 } 3134 case ISD::BITCAST: { 3135 SDValue Src = Op.getOperand(0); 3136 EVT SrcVT = Src.getValueType(); 3137 3138 // We only handle vectors here. 3139 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 3140 if (!SrcVT.isVector()) 3141 break; 3142 3143 // Fast handling of 'identity' bitcasts. 3144 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 3145 if (NumSrcElts == NumElts) 3146 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 3147 KnownZero, TLO, Depth + 1); 3148 3149 APInt SrcDemandedElts, SrcZero, SrcUndef; 3150 3151 // Bitcast from 'large element' src vector to 'small element' vector, we 3152 // must demand a source element if any DemandedElt maps to it. 3153 if ((NumElts % NumSrcElts) == 0) { 3154 unsigned Scale = NumElts / NumSrcElts; 3155 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3156 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3157 TLO, Depth + 1)) 3158 return true; 3159 3160 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 3161 // of the large element. 3162 // TODO - bigendian once we have test coverage. 3163 if (IsLE) { 3164 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 3165 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 3166 for (unsigned i = 0; i != NumElts; ++i) 3167 if (DemandedElts[i]) { 3168 unsigned Ofs = (i % Scale) * EltSizeInBits; 3169 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 3170 } 3171 3172 KnownBits Known; 3173 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 3174 TLO, Depth + 1)) 3175 return true; 3176 3177 // The bitcast has split each wide element into a number of 3178 // narrow subelements. We have just computed the Known bits 3179 // for wide elements. See if element splitting results in 3180 // some subelements being zero. Only for demanded elements! 3181 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 3182 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 3183 .isAllOnes()) 3184 continue; 3185 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 3186 unsigned Elt = Scale * SrcElt + SubElt; 3187 if (DemandedElts[Elt]) 3188 KnownZero.setBit(Elt); 3189 } 3190 } 3191 } 3192 3193 // If the src element is zero/undef then all the output elements will be - 3194 // only demanded elements are guaranteed to be correct. 3195 for (unsigned i = 0; i != NumSrcElts; ++i) { 3196 if (SrcDemandedElts[i]) { 3197 if (SrcZero[i]) 3198 KnownZero.setBits(i * Scale, (i + 1) * Scale); 3199 if (SrcUndef[i]) 3200 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 3201 } 3202 } 3203 } 3204 3205 // Bitcast from 'small element' src vector to 'large element' vector, we 3206 // demand all smaller source elements covered by the larger demanded element 3207 // of this vector. 3208 if ((NumSrcElts % NumElts) == 0) { 3209 unsigned Scale = NumSrcElts / NumElts; 3210 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3211 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3212 TLO, Depth + 1)) 3213 return true; 3214 3215 // If all the src elements covering an output element are zero/undef, then 3216 // the output element will be as well, assuming it was demanded. 3217 for (unsigned i = 0; i != NumElts; ++i) { 3218 if (DemandedElts[i]) { 3219 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 3220 KnownZero.setBit(i); 3221 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 3222 KnownUndef.setBit(i); 3223 } 3224 } 3225 } 3226 break; 3227 } 3228 case ISD::FREEZE: { 3229 SDValue N0 = Op.getOperand(0); 3230 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 3231 /*PoisonOnly=*/false)) 3232 return TLO.CombineTo(Op, N0); 3233 3234 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE 3235 // freeze(op(x, ...)) -> op(freeze(x), ...). 3236 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) 3237 return TLO.CombineTo( 3238 Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, 3239 TLO.DAG.getFreeze(N0.getOperand(0)))); 3240 break; 3241 } 3242 case ISD::BUILD_VECTOR: { 3243 // Check all elements and simplify any unused elements with UNDEF. 3244 if (!DemandedElts.isAllOnes()) { 3245 // Don't simplify BROADCASTS. 3246 if (llvm::any_of(Op->op_values(), 3247 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3248 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 3249 bool Updated = false; 3250 for (unsigned i = 0; i != NumElts; ++i) { 3251 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3252 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3253 KnownUndef.setBit(i); 3254 Updated = true; 3255 } 3256 } 3257 if (Updated) 3258 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3259 } 3260 } 3261 for (unsigned i = 0; i != NumElts; ++i) { 3262 SDValue SrcOp = Op.getOperand(i); 3263 if (SrcOp.isUndef()) { 3264 KnownUndef.setBit(i); 3265 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3266 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3267 KnownZero.setBit(i); 3268 } 3269 } 3270 break; 3271 } 3272 case ISD::CONCAT_VECTORS: { 3273 EVT SubVT = Op.getOperand(0).getValueType(); 3274 unsigned NumSubVecs = Op.getNumOperands(); 3275 unsigned NumSubElts = SubVT.getVectorNumElements(); 3276 for (unsigned i = 0; i != NumSubVecs; ++i) { 3277 SDValue SubOp = Op.getOperand(i); 3278 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3279 APInt SubUndef, SubZero; 3280 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3281 Depth + 1)) 3282 return true; 3283 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3284 KnownZero.insertBits(SubZero, i * NumSubElts); 3285 } 3286 3287 // Attempt to avoid multi-use ops if we don't need anything from them. 3288 if (!DemandedElts.isAllOnes()) { 3289 bool FoundNewSub = false; 3290 SmallVector<SDValue, 2> DemandedSubOps; 3291 for (unsigned i = 0; i != NumSubVecs; ++i) { 3292 SDValue SubOp = Op.getOperand(i); 3293 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3294 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3295 SubOp, SubElts, TLO.DAG, Depth + 1); 3296 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3297 FoundNewSub = NewSubOp ? true : FoundNewSub; 3298 } 3299 if (FoundNewSub) { 3300 SDValue NewOp = 3301 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3302 return TLO.CombineTo(Op, NewOp); 3303 } 3304 } 3305 break; 3306 } 3307 case ISD::INSERT_SUBVECTOR: { 3308 // Demand any elements from the subvector and the remainder from the src its 3309 // inserted into. 3310 SDValue Src = Op.getOperand(0); 3311 SDValue Sub = Op.getOperand(1); 3312 uint64_t Idx = Op.getConstantOperandVal(2); 3313 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3314 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3315 APInt DemandedSrcElts = DemandedElts; 3316 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3317 3318 APInt SubUndef, SubZero; 3319 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3320 Depth + 1)) 3321 return true; 3322 3323 // If none of the src operand elements are demanded, replace it with undef. 3324 if (!DemandedSrcElts && !Src.isUndef()) 3325 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3326 TLO.DAG.getUNDEF(VT), Sub, 3327 Op.getOperand(2))); 3328 3329 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3330 TLO, Depth + 1)) 3331 return true; 3332 KnownUndef.insertBits(SubUndef, Idx); 3333 KnownZero.insertBits(SubZero, Idx); 3334 3335 // Attempt to avoid multi-use ops if we don't need anything from them. 3336 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3337 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3338 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3339 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3340 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3341 if (NewSrc || NewSub) { 3342 NewSrc = NewSrc ? NewSrc : Src; 3343 NewSub = NewSub ? NewSub : Sub; 3344 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3345 NewSub, Op.getOperand(2)); 3346 return TLO.CombineTo(Op, NewOp); 3347 } 3348 } 3349 break; 3350 } 3351 case ISD::EXTRACT_SUBVECTOR: { 3352 // Offset the demanded elts by the subvector index. 3353 SDValue Src = Op.getOperand(0); 3354 if (Src.getValueType().isScalableVector()) 3355 break; 3356 uint64_t Idx = Op.getConstantOperandVal(1); 3357 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3358 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3359 3360 APInt SrcUndef, SrcZero; 3361 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3362 Depth + 1)) 3363 return true; 3364 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3365 KnownZero = SrcZero.extractBits(NumElts, Idx); 3366 3367 // Attempt to avoid multi-use ops if we don't need anything from them. 3368 if (!DemandedElts.isAllOnes()) { 3369 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3370 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3371 if (NewSrc) { 3372 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3373 Op.getOperand(1)); 3374 return TLO.CombineTo(Op, NewOp); 3375 } 3376 } 3377 break; 3378 } 3379 case ISD::INSERT_VECTOR_ELT: { 3380 SDValue Vec = Op.getOperand(0); 3381 SDValue Scl = Op.getOperand(1); 3382 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3383 3384 // For a legal, constant insertion index, if we don't need this insertion 3385 // then strip it, else remove it from the demanded elts. 3386 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3387 unsigned Idx = CIdx->getZExtValue(); 3388 if (!DemandedElts[Idx]) 3389 return TLO.CombineTo(Op, Vec); 3390 3391 APInt DemandedVecElts(DemandedElts); 3392 DemandedVecElts.clearBit(Idx); 3393 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3394 KnownZero, TLO, Depth + 1)) 3395 return true; 3396 3397 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3398 3399 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3400 break; 3401 } 3402 3403 APInt VecUndef, VecZero; 3404 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3405 Depth + 1)) 3406 return true; 3407 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3408 break; 3409 } 3410 case ISD::VSELECT: { 3411 SDValue Sel = Op.getOperand(0); 3412 SDValue LHS = Op.getOperand(1); 3413 SDValue RHS = Op.getOperand(2); 3414 3415 // Try to transform the select condition based on the current demanded 3416 // elements. 3417 APInt UndefSel, ZeroSel; 3418 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO, 3419 Depth + 1)) 3420 return true; 3421 3422 // See if we can simplify either vselect operand. 3423 APInt DemandedLHS(DemandedElts); 3424 APInt DemandedRHS(DemandedElts); 3425 APInt UndefLHS, ZeroLHS; 3426 APInt UndefRHS, ZeroRHS; 3427 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3428 Depth + 1)) 3429 return true; 3430 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3431 Depth + 1)) 3432 return true; 3433 3434 KnownUndef = UndefLHS & UndefRHS; 3435 KnownZero = ZeroLHS & ZeroRHS; 3436 3437 // If we know that the selected element is always zero, we don't need the 3438 // select value element. 3439 APInt DemandedSel = DemandedElts & ~KnownZero; 3440 if (DemandedSel != DemandedElts) 3441 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO, 3442 Depth + 1)) 3443 return true; 3444 3445 break; 3446 } 3447 case ISD::VECTOR_SHUFFLE: { 3448 SDValue LHS = Op.getOperand(0); 3449 SDValue RHS = Op.getOperand(1); 3450 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3451 3452 // Collect demanded elements from shuffle operands.. 3453 APInt DemandedLHS(NumElts, 0); 3454 APInt DemandedRHS(NumElts, 0); 3455 for (unsigned i = 0; i != NumElts; ++i) { 3456 int M = ShuffleMask[i]; 3457 if (M < 0 || !DemandedElts[i]) 3458 continue; 3459 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3460 if (M < (int)NumElts) 3461 DemandedLHS.setBit(M); 3462 else 3463 DemandedRHS.setBit(M - NumElts); 3464 } 3465 3466 // See if we can simplify either shuffle operand. 3467 APInt UndefLHS, ZeroLHS; 3468 APInt UndefRHS, ZeroRHS; 3469 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3470 Depth + 1)) 3471 return true; 3472 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3473 Depth + 1)) 3474 return true; 3475 3476 // Simplify mask using undef elements from LHS/RHS. 3477 bool Updated = false; 3478 bool IdentityLHS = true, IdentityRHS = true; 3479 SmallVector<int, 32> NewMask(ShuffleMask); 3480 for (unsigned i = 0; i != NumElts; ++i) { 3481 int &M = NewMask[i]; 3482 if (M < 0) 3483 continue; 3484 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3485 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3486 Updated = true; 3487 M = -1; 3488 } 3489 IdentityLHS &= (M < 0) || (M == (int)i); 3490 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3491 } 3492 3493 // Update legal shuffle masks based on demanded elements if it won't reduce 3494 // to Identity which can cause premature removal of the shuffle mask. 3495 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3496 SDValue LegalShuffle = 3497 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3498 if (LegalShuffle) 3499 return TLO.CombineTo(Op, LegalShuffle); 3500 } 3501 3502 // Propagate undef/zero elements from LHS/RHS. 3503 for (unsigned i = 0; i != NumElts; ++i) { 3504 int M = ShuffleMask[i]; 3505 if (M < 0) { 3506 KnownUndef.setBit(i); 3507 } else if (M < (int)NumElts) { 3508 if (UndefLHS[M]) 3509 KnownUndef.setBit(i); 3510 if (ZeroLHS[M]) 3511 KnownZero.setBit(i); 3512 } else { 3513 if (UndefRHS[M - NumElts]) 3514 KnownUndef.setBit(i); 3515 if (ZeroRHS[M - NumElts]) 3516 KnownZero.setBit(i); 3517 } 3518 } 3519 break; 3520 } 3521 case ISD::ANY_EXTEND_VECTOR_INREG: 3522 case ISD::SIGN_EXTEND_VECTOR_INREG: 3523 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3524 APInt SrcUndef, SrcZero; 3525 SDValue Src = Op.getOperand(0); 3526 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3527 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3528 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3529 Depth + 1)) 3530 return true; 3531 KnownZero = SrcZero.zextOrTrunc(NumElts); 3532 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3533 3534 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3535 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3536 DemandedSrcElts == 1) { 3537 // aext - if we just need the bottom element then we can bitcast. 3538 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3539 } 3540 3541 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3542 // zext(undef) upper bits are guaranteed to be zero. 3543 if (DemandedElts.isSubsetOf(KnownUndef)) 3544 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3545 KnownUndef.clearAllBits(); 3546 3547 // zext - if we just need the bottom element then we can mask: 3548 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3549 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3550 Op->isOnlyUserOf(Src.getNode()) && 3551 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3552 SDLoc DL(Op); 3553 EVT SrcVT = Src.getValueType(); 3554 EVT SrcSVT = SrcVT.getScalarType(); 3555 SmallVector<SDValue> MaskElts; 3556 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3557 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3558 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3559 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3560 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3561 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3562 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3563 } 3564 } 3565 } 3566 break; 3567 } 3568 3569 // TODO: There are more binop opcodes that could be handled here - MIN, 3570 // MAX, saturated math, etc. 3571 case ISD::ADD: { 3572 SDValue Op0 = Op.getOperand(0); 3573 SDValue Op1 = Op.getOperand(1); 3574 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3575 APInt UndefLHS, ZeroLHS; 3576 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3577 Depth + 1, /*AssumeSingleUse*/ true)) 3578 return true; 3579 } 3580 [[fallthrough]]; 3581 } 3582 case ISD::AVGCEILS: 3583 case ISD::AVGCEILU: 3584 case ISD::AVGFLOORS: 3585 case ISD::AVGFLOORU: 3586 case ISD::OR: 3587 case ISD::XOR: 3588 case ISD::SUB: 3589 case ISD::FADD: 3590 case ISD::FSUB: 3591 case ISD::FMUL: 3592 case ISD::FDIV: 3593 case ISD::FREM: { 3594 SDValue Op0 = Op.getOperand(0); 3595 SDValue Op1 = Op.getOperand(1); 3596 3597 APInt UndefRHS, ZeroRHS; 3598 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3599 Depth + 1)) 3600 return true; 3601 APInt UndefLHS, ZeroLHS; 3602 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3603 Depth + 1)) 3604 return true; 3605 3606 KnownZero = ZeroLHS & ZeroRHS; 3607 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3608 3609 // Attempt to avoid multi-use ops if we don't need anything from them. 3610 // TODO - use KnownUndef to relax the demandedelts? 3611 if (!DemandedElts.isAllOnes()) 3612 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3613 return true; 3614 break; 3615 } 3616 case ISD::SHL: 3617 case ISD::SRL: 3618 case ISD::SRA: 3619 case ISD::ROTL: 3620 case ISD::ROTR: { 3621 SDValue Op0 = Op.getOperand(0); 3622 SDValue Op1 = Op.getOperand(1); 3623 3624 APInt UndefRHS, ZeroRHS; 3625 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3626 Depth + 1)) 3627 return true; 3628 APInt UndefLHS, ZeroLHS; 3629 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3630 Depth + 1)) 3631 return true; 3632 3633 KnownZero = ZeroLHS; 3634 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3635 3636 // Attempt to avoid multi-use ops if we don't need anything from them. 3637 // TODO - use KnownUndef to relax the demandedelts? 3638 if (!DemandedElts.isAllOnes()) 3639 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3640 return true; 3641 break; 3642 } 3643 case ISD::MUL: 3644 case ISD::MULHU: 3645 case ISD::MULHS: 3646 case ISD::AND: { 3647 SDValue Op0 = Op.getOperand(0); 3648 SDValue Op1 = Op.getOperand(1); 3649 3650 APInt SrcUndef, SrcZero; 3651 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3652 Depth + 1)) 3653 return true; 3654 // If we know that a demanded element was zero in Op1 we don't need to 3655 // demand it in Op0 - its guaranteed to be zero. 3656 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3657 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3658 TLO, Depth + 1)) 3659 return true; 3660 3661 KnownUndef &= DemandedElts0; 3662 KnownZero &= DemandedElts0; 3663 3664 // If every element pair has a zero/undef then just fold to zero. 3665 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3666 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3667 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3668 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3669 3670 // If either side has a zero element, then the result element is zero, even 3671 // if the other is an UNDEF. 3672 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3673 // and then handle 'and' nodes with the rest of the binop opcodes. 3674 KnownZero |= SrcZero; 3675 KnownUndef &= SrcUndef; 3676 KnownUndef &= ~KnownZero; 3677 3678 // Attempt to avoid multi-use ops if we don't need anything from them. 3679 if (!DemandedElts.isAllOnes()) 3680 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3681 return true; 3682 break; 3683 } 3684 case ISD::TRUNCATE: 3685 case ISD::SIGN_EXTEND: 3686 case ISD::ZERO_EXTEND: 3687 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3688 KnownZero, TLO, Depth + 1)) 3689 return true; 3690 3691 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3692 // zext(undef) upper bits are guaranteed to be zero. 3693 if (DemandedElts.isSubsetOf(KnownUndef)) 3694 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3695 KnownUndef.clearAllBits(); 3696 } 3697 break; 3698 default: { 3699 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3700 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3701 KnownZero, TLO, Depth)) 3702 return true; 3703 } else { 3704 KnownBits Known; 3705 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3706 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3707 TLO, Depth, AssumeSingleUse)) 3708 return true; 3709 } 3710 break; 3711 } 3712 } 3713 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3714 3715 // Constant fold all undef cases. 3716 // TODO: Handle zero cases as well. 3717 if (DemandedElts.isSubsetOf(KnownUndef)) 3718 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3719 3720 return false; 3721 } 3722 3723 /// Determine which of the bits specified in Mask are known to be either zero or 3724 /// one and return them in the Known. 3725 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3726 KnownBits &Known, 3727 const APInt &DemandedElts, 3728 const SelectionDAG &DAG, 3729 unsigned Depth) const { 3730 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3731 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3732 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3733 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3734 "Should use MaskedValueIsZero if you don't know whether Op" 3735 " is a target node!"); 3736 Known.resetAll(); 3737 } 3738 3739 void TargetLowering::computeKnownBitsForTargetInstr( 3740 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3741 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3742 unsigned Depth) const { 3743 Known.resetAll(); 3744 } 3745 3746 void TargetLowering::computeKnownBitsForFrameIndex( 3747 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3748 // The low bits are known zero if the pointer is aligned. 3749 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3750 } 3751 3752 Align TargetLowering::computeKnownAlignForTargetInstr( 3753 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3754 unsigned Depth) const { 3755 return Align(1); 3756 } 3757 3758 /// This method can be implemented by targets that want to expose additional 3759 /// information about sign bits to the DAG Combiner. 3760 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3761 const APInt &, 3762 const SelectionDAG &, 3763 unsigned Depth) const { 3764 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3765 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3766 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3767 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3768 "Should use ComputeNumSignBits if you don't know whether Op" 3769 " is a target node!"); 3770 return 1; 3771 } 3772 3773 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3774 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3775 const MachineRegisterInfo &MRI, unsigned Depth) const { 3776 return 1; 3777 } 3778 3779 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3780 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3781 TargetLoweringOpt &TLO, unsigned Depth) const { 3782 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3783 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3784 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3785 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3786 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3787 " is a target node!"); 3788 return false; 3789 } 3790 3791 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3792 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3793 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3794 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3795 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3796 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3797 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3798 "Should use SimplifyDemandedBits if you don't know whether Op" 3799 " is a target node!"); 3800 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3801 return false; 3802 } 3803 3804 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3805 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3806 SelectionDAG &DAG, unsigned Depth) const { 3807 assert( 3808 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3809 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3810 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3811 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3812 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3813 " is a target node!"); 3814 return SDValue(); 3815 } 3816 3817 SDValue 3818 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3819 SDValue N1, MutableArrayRef<int> Mask, 3820 SelectionDAG &DAG) const { 3821 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3822 if (!LegalMask) { 3823 std::swap(N0, N1); 3824 ShuffleVectorSDNode::commuteMask(Mask); 3825 LegalMask = isShuffleMaskLegal(Mask, VT); 3826 } 3827 3828 if (!LegalMask) 3829 return SDValue(); 3830 3831 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3832 } 3833 3834 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3835 return nullptr; 3836 } 3837 3838 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3839 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3840 bool PoisonOnly, unsigned Depth) const { 3841 assert( 3842 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3843 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3844 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3845 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3846 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3847 " is a target node!"); 3848 3849 // If Op can't create undef/poison and none of its operands are undef/poison 3850 // then Op is never undef/poison. 3851 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, 3852 /*ConsiderFlags*/ true, Depth) && 3853 all_of(Op->ops(), [&](SDValue V) { 3854 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, 3855 Depth + 1); 3856 }); 3857 } 3858 3859 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3860 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3861 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3862 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3863 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3864 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3865 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3866 "Should use canCreateUndefOrPoison if you don't know whether Op" 3867 " is a target node!"); 3868 // Be conservative and return true. 3869 return true; 3870 } 3871 3872 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3873 const SelectionDAG &DAG, 3874 bool SNaN, 3875 unsigned Depth) const { 3876 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3877 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3878 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3879 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3880 "Should use isKnownNeverNaN if you don't know whether Op" 3881 " is a target node!"); 3882 return false; 3883 } 3884 3885 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3886 const APInt &DemandedElts, 3887 APInt &UndefElts, 3888 const SelectionDAG &DAG, 3889 unsigned Depth) const { 3890 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3891 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3892 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3893 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3894 "Should use isSplatValue if you don't know whether Op" 3895 " is a target node!"); 3896 return false; 3897 } 3898 3899 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3900 // work with truncating build vectors and vectors with elements of less than 3901 // 8 bits. 3902 bool TargetLowering::isConstTrueVal(SDValue N) const { 3903 if (!N) 3904 return false; 3905 3906 unsigned EltWidth; 3907 APInt CVal; 3908 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3909 /*AllowTruncation=*/true)) { 3910 CVal = CN->getAPIntValue(); 3911 EltWidth = N.getValueType().getScalarSizeInBits(); 3912 } else 3913 return false; 3914 3915 // If this is a truncating splat, truncate the splat value. 3916 // Otherwise, we may fail to match the expected values below. 3917 if (EltWidth < CVal.getBitWidth()) 3918 CVal = CVal.trunc(EltWidth); 3919 3920 switch (getBooleanContents(N.getValueType())) { 3921 case UndefinedBooleanContent: 3922 return CVal[0]; 3923 case ZeroOrOneBooleanContent: 3924 return CVal.isOne(); 3925 case ZeroOrNegativeOneBooleanContent: 3926 return CVal.isAllOnes(); 3927 } 3928 3929 llvm_unreachable("Invalid boolean contents"); 3930 } 3931 3932 bool TargetLowering::isConstFalseVal(SDValue N) const { 3933 if (!N) 3934 return false; 3935 3936 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3937 if (!CN) { 3938 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3939 if (!BV) 3940 return false; 3941 3942 // Only interested in constant splats, we don't care about undef 3943 // elements in identifying boolean constants and getConstantSplatNode 3944 // returns NULL if all ops are undef; 3945 CN = BV->getConstantSplatNode(); 3946 if (!CN) 3947 return false; 3948 } 3949 3950 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3951 return !CN->getAPIntValue()[0]; 3952 3953 return CN->isZero(); 3954 } 3955 3956 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3957 bool SExt) const { 3958 if (VT == MVT::i1) 3959 return N->isOne(); 3960 3961 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3962 switch (Cnt) { 3963 case TargetLowering::ZeroOrOneBooleanContent: 3964 // An extended value of 1 is always true, unless its original type is i1, 3965 // in which case it will be sign extended to -1. 3966 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3967 case TargetLowering::UndefinedBooleanContent: 3968 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3969 return N->isAllOnes() && SExt; 3970 } 3971 llvm_unreachable("Unexpected enumeration."); 3972 } 3973 3974 /// This helper function of SimplifySetCC tries to optimize the comparison when 3975 /// either operand of the SetCC node is a bitwise-and instruction. 3976 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3977 ISD::CondCode Cond, const SDLoc &DL, 3978 DAGCombinerInfo &DCI) const { 3979 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3980 std::swap(N0, N1); 3981 3982 SelectionDAG &DAG = DCI.DAG; 3983 EVT OpVT = N0.getValueType(); 3984 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3985 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3986 return SDValue(); 3987 3988 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3989 // iff everything but LSB is known zero: 3990 if (Cond == ISD::SETNE && isNullConstant(N1) && 3991 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3992 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3993 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3994 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3995 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3996 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3997 } 3998 3999 // Try to eliminate a power-of-2 mask constant by converting to a signbit 4000 // test in a narrow type that we can truncate to with no cost. Examples: 4001 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 4002 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 4003 // TODO: This conservatively checks for type legality on the source and 4004 // destination types. That may inhibit optimizations, but it also 4005 // allows setcc->shift transforms that may be more beneficial. 4006 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4007 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 4008 isTypeLegal(OpVT) && N0.hasOneUse()) { 4009 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 4010 AndC->getAPIntValue().getActiveBits()); 4011 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 4012 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 4013 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 4014 return DAG.getSetCC(DL, VT, Trunc, Zero, 4015 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 4016 } 4017 } 4018 4019 // Match these patterns in any of their permutations: 4020 // (X & Y) == Y 4021 // (X & Y) != Y 4022 SDValue X, Y; 4023 if (N0.getOperand(0) == N1) { 4024 X = N0.getOperand(1); 4025 Y = N0.getOperand(0); 4026 } else if (N0.getOperand(1) == N1) { 4027 X = N0.getOperand(0); 4028 Y = N0.getOperand(1); 4029 } else { 4030 return SDValue(); 4031 } 4032 4033 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if 4034 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as 4035 // its liable to create and infinite loop. 4036 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4037 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && 4038 DAG.isKnownToBeAPowerOfTwo(Y)) { 4039 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 4040 // Note that where Y is variable and is known to have at most one bit set 4041 // (for example, if it is Z & 1) we cannot do this; the expressions are not 4042 // equivalent when Y == 0. 4043 assert(OpVT.isInteger()); 4044 Cond = ISD::getSetCCInverse(Cond, OpVT); 4045 if (DCI.isBeforeLegalizeOps() || 4046 isCondCodeLegal(Cond, N0.getSimpleValueType())) 4047 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 4048 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 4049 // If the target supports an 'and-not' or 'and-complement' logic operation, 4050 // try to use that to make a comparison operation more efficient. 4051 // But don't do this transform if the mask is a single bit because there are 4052 // more efficient ways to deal with that case (for example, 'bt' on x86 or 4053 // 'rlwinm' on PPC). 4054 4055 // Bail out if the compare operand that we want to turn into a zero is 4056 // already a zero (otherwise, infinite loop). 4057 if (isNullConstant(Y)) 4058 return SDValue(); 4059 4060 // Transform this into: ~X & Y == 0. 4061 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 4062 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 4063 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 4064 } 4065 4066 return SDValue(); 4067 } 4068 4069 /// There are multiple IR patterns that could be checking whether certain 4070 /// truncation of a signed number would be lossy or not. The pattern which is 4071 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 4072 /// We are looking for the following pattern: (KeptBits is a constant) 4073 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 4074 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 4075 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 4076 /// We will unfold it into the natural trunc+sext pattern: 4077 /// ((%x << C) a>> C) dstcond %x 4078 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 4079 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 4080 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 4081 const SDLoc &DL) const { 4082 // We must be comparing with a constant. 4083 ConstantSDNode *C1; 4084 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 4085 return SDValue(); 4086 4087 // N0 should be: add %x, (1 << (KeptBits-1)) 4088 if (N0->getOpcode() != ISD::ADD) 4089 return SDValue(); 4090 4091 // And we must be 'add'ing a constant. 4092 ConstantSDNode *C01; 4093 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 4094 return SDValue(); 4095 4096 SDValue X = N0->getOperand(0); 4097 EVT XVT = X.getValueType(); 4098 4099 // Validate constants ... 4100 4101 APInt I1 = C1->getAPIntValue(); 4102 4103 ISD::CondCode NewCond; 4104 if (Cond == ISD::CondCode::SETULT) { 4105 NewCond = ISD::CondCode::SETEQ; 4106 } else if (Cond == ISD::CondCode::SETULE) { 4107 NewCond = ISD::CondCode::SETEQ; 4108 // But need to 'canonicalize' the constant. 4109 I1 += 1; 4110 } else if (Cond == ISD::CondCode::SETUGT) { 4111 NewCond = ISD::CondCode::SETNE; 4112 // But need to 'canonicalize' the constant. 4113 I1 += 1; 4114 } else if (Cond == ISD::CondCode::SETUGE) { 4115 NewCond = ISD::CondCode::SETNE; 4116 } else 4117 return SDValue(); 4118 4119 APInt I01 = C01->getAPIntValue(); 4120 4121 auto checkConstants = [&I1, &I01]() -> bool { 4122 // Both of them must be power-of-two, and the constant from setcc is bigger. 4123 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 4124 }; 4125 4126 if (checkConstants()) { 4127 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 4128 } else { 4129 // What if we invert constants? (and the target predicate) 4130 I1.negate(); 4131 I01.negate(); 4132 assert(XVT.isInteger()); 4133 NewCond = getSetCCInverse(NewCond, XVT); 4134 if (!checkConstants()) 4135 return SDValue(); 4136 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 4137 } 4138 4139 // They are power-of-two, so which bit is set? 4140 const unsigned KeptBits = I1.logBase2(); 4141 const unsigned KeptBitsMinusOne = I01.logBase2(); 4142 4143 // Magic! 4144 if (KeptBits != (KeptBitsMinusOne + 1)) 4145 return SDValue(); 4146 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 4147 4148 // We don't want to do this in every single case. 4149 SelectionDAG &DAG = DCI.DAG; 4150 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 4151 XVT, KeptBits)) 4152 return SDValue(); 4153 4154 // Unfold into: sext_inreg(%x) cond %x 4155 // Where 'cond' will be either 'eq' or 'ne'. 4156 SDValue SExtInReg = DAG.getNode( 4157 ISD::SIGN_EXTEND_INREG, DL, XVT, X, 4158 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits))); 4159 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond); 4160 } 4161 4162 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4163 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 4164 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 4165 DAGCombinerInfo &DCI, const SDLoc &DL) const { 4166 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && 4167 "Should be a comparison with 0."); 4168 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4169 "Valid only for [in]equality comparisons."); 4170 4171 unsigned NewShiftOpcode; 4172 SDValue X, C, Y; 4173 4174 SelectionDAG &DAG = DCI.DAG; 4175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4176 4177 // Look for '(C l>>/<< Y)'. 4178 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 4179 // The shift should be one-use. 4180 if (!V.hasOneUse()) 4181 return false; 4182 unsigned OldShiftOpcode = V.getOpcode(); 4183 switch (OldShiftOpcode) { 4184 case ISD::SHL: 4185 NewShiftOpcode = ISD::SRL; 4186 break; 4187 case ISD::SRL: 4188 NewShiftOpcode = ISD::SHL; 4189 break; 4190 default: 4191 return false; // must be a logical shift. 4192 } 4193 // We should be shifting a constant. 4194 // FIXME: best to use isConstantOrConstantVector(). 4195 C = V.getOperand(0); 4196 ConstantSDNode *CC = 4197 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4198 if (!CC) 4199 return false; 4200 Y = V.getOperand(1); 4201 4202 ConstantSDNode *XC = 4203 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4204 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 4205 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 4206 }; 4207 4208 // LHS of comparison should be an one-use 'and'. 4209 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 4210 return SDValue(); 4211 4212 X = N0.getOperand(0); 4213 SDValue Mask = N0.getOperand(1); 4214 4215 // 'and' is commutative! 4216 if (!Match(Mask)) { 4217 std::swap(X, Mask); 4218 if (!Match(Mask)) 4219 return SDValue(); 4220 } 4221 4222 EVT VT = X.getValueType(); 4223 4224 // Produce: 4225 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 4226 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 4227 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 4228 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 4229 return T2; 4230 } 4231 4232 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 4233 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 4234 /// handle the commuted versions of these patterns. 4235 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 4236 ISD::CondCode Cond, const SDLoc &DL, 4237 DAGCombinerInfo &DCI) const { 4238 unsigned BOpcode = N0.getOpcode(); 4239 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 4240 "Unexpected binop"); 4241 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 4242 4243 // (X + Y) == X --> Y == 0 4244 // (X - Y) == X --> Y == 0 4245 // (X ^ Y) == X --> Y == 0 4246 SelectionDAG &DAG = DCI.DAG; 4247 EVT OpVT = N0.getValueType(); 4248 SDValue X = N0.getOperand(0); 4249 SDValue Y = N0.getOperand(1); 4250 if (X == N1) 4251 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4252 4253 if (Y != N1) 4254 return SDValue(); 4255 4256 // (X + Y) == Y --> X == 0 4257 // (X ^ Y) == Y --> X == 0 4258 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4259 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4260 4261 // The shift would not be valid if the operands are boolean (i1). 4262 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4263 return SDValue(); 4264 4265 // (X - Y) == Y --> X == Y << 1 4266 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL); 4267 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4268 if (!DCI.isCalledByLegalizer()) 4269 DCI.AddToWorklist(YShl1.getNode()); 4270 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4271 } 4272 4273 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4274 SDValue N0, const APInt &C1, 4275 ISD::CondCode Cond, const SDLoc &dl, 4276 SelectionDAG &DAG) { 4277 // Look through truncs that don't change the value of a ctpop. 4278 // FIXME: Add vector support? Need to be careful with setcc result type below. 4279 SDValue CTPOP = N0; 4280 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4281 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4282 CTPOP = N0.getOperand(0); 4283 4284 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4285 return SDValue(); 4286 4287 EVT CTVT = CTPOP.getValueType(); 4288 SDValue CTOp = CTPOP.getOperand(0); 4289 4290 // Expand a power-of-2-or-zero comparison based on ctpop: 4291 // (ctpop x) u< 2 -> (x & x-1) == 0 4292 // (ctpop x) u> 1 -> (x & x-1) != 0 4293 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4294 // Keep the CTPOP if it is a cheap vector op. 4295 if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) 4296 return SDValue(); 4297 4298 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4299 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4300 return SDValue(); 4301 if (C1 == 0 && (Cond == ISD::SETULT)) 4302 return SDValue(); // This is handled elsewhere. 4303 4304 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4305 4306 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4307 SDValue Result = CTOp; 4308 for (unsigned i = 0; i < Passes; i++) { 4309 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4310 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4311 } 4312 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4313 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4314 } 4315 4316 // Expand a power-of-2 comparison based on ctpop 4317 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4318 // Keep the CTPOP if it is cheap. 4319 if (TLI.isCtpopFast(CTVT)) 4320 return SDValue(); 4321 4322 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4323 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4324 assert(CTVT.isInteger()); 4325 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4326 4327 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so 4328 // check before emitting a potentially unnecessary op. 4329 if (DAG.isKnownNeverZero(CTOp)) { 4330 // (ctpop x) == 1 --> (x & x-1) == 0 4331 // (ctpop x) != 1 --> (x & x-1) != 0 4332 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4333 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4334 return RHS; 4335 } 4336 4337 // (ctpop x) == 1 --> (x ^ x-1) > x-1 4338 // (ctpop x) != 1 --> (x ^ x-1) <= x-1 4339 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); 4340 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; 4341 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); 4342 } 4343 4344 return SDValue(); 4345 } 4346 4347 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4348 ISD::CondCode Cond, const SDLoc &dl, 4349 SelectionDAG &DAG) { 4350 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4351 return SDValue(); 4352 4353 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4354 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4355 return SDValue(); 4356 4357 auto getRotateSource = [](SDValue X) { 4358 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4359 return X.getOperand(0); 4360 return SDValue(); 4361 }; 4362 4363 // Peek through a rotated value compared against 0 or -1: 4364 // (rot X, Y) == 0/-1 --> X == 0/-1 4365 // (rot X, Y) != 0/-1 --> X != 0/-1 4366 if (SDValue R = getRotateSource(N0)) 4367 return DAG.getSetCC(dl, VT, R, N1, Cond); 4368 4369 // Peek through an 'or' of a rotated value compared against 0: 4370 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4371 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4372 // 4373 // TODO: Add the 'and' with -1 sibling. 4374 // TODO: Recurse through a series of 'or' ops to find the rotate. 4375 EVT OpVT = N0.getValueType(); 4376 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4377 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4378 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4379 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4380 } 4381 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4382 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4383 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4384 } 4385 } 4386 4387 return SDValue(); 4388 } 4389 4390 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4391 ISD::CondCode Cond, const SDLoc &dl, 4392 SelectionDAG &DAG) { 4393 // If we are testing for all-bits-clear, we might be able to do that with 4394 // less shifting since bit-order does not matter. 4395 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4396 return SDValue(); 4397 4398 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4399 if (!C1 || !C1->isZero()) 4400 return SDValue(); 4401 4402 if (!N0.hasOneUse() || 4403 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4404 return SDValue(); 4405 4406 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4407 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4408 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4409 return SDValue(); 4410 4411 // Canonicalize fshr as fshl to reduce pattern-matching. 4412 unsigned ShAmt = ShAmtC->getZExtValue(); 4413 if (N0.getOpcode() == ISD::FSHR) 4414 ShAmt = BitWidth - ShAmt; 4415 4416 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4417 SDValue X, Y; 4418 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4419 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4420 return false; 4421 if (Or.getOperand(0) == Other) { 4422 X = Or.getOperand(0); 4423 Y = Or.getOperand(1); 4424 return true; 4425 } 4426 if (Or.getOperand(1) == Other) { 4427 X = Or.getOperand(1); 4428 Y = Or.getOperand(0); 4429 return true; 4430 } 4431 return false; 4432 }; 4433 4434 EVT OpVT = N0.getValueType(); 4435 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4436 SDValue F0 = N0.getOperand(0); 4437 SDValue F1 = N0.getOperand(1); 4438 if (matchOr(F0, F1)) { 4439 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4440 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4441 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4442 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4443 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4444 } 4445 if (matchOr(F1, F0)) { 4446 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4447 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4448 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4449 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4450 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4451 } 4452 4453 return SDValue(); 4454 } 4455 4456 /// Try to simplify a setcc built with the specified operands and cc. If it is 4457 /// unable to simplify it, return a null SDValue. 4458 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4459 ISD::CondCode Cond, bool foldBooleans, 4460 DAGCombinerInfo &DCI, 4461 const SDLoc &dl) const { 4462 SelectionDAG &DAG = DCI.DAG; 4463 const DataLayout &Layout = DAG.getDataLayout(); 4464 EVT OpVT = N0.getValueType(); 4465 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4466 4467 // Constant fold or commute setcc. 4468 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4469 return Fold; 4470 4471 bool N0ConstOrSplat = 4472 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4473 bool N1ConstOrSplat = 4474 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4475 4476 // Canonicalize toward having the constant on the RHS. 4477 // TODO: Handle non-splat vector constants. All undef causes trouble. 4478 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4479 // infinite loop here when we encounter one. 4480 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4481 if (N0ConstOrSplat && !N1ConstOrSplat && 4482 (DCI.isBeforeLegalizeOps() || 4483 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4484 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4485 4486 // If we have a subtract with the same 2 non-constant operands as this setcc 4487 // -- but in reverse order -- then try to commute the operands of this setcc 4488 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4489 // instruction on some targets. 4490 if (!N0ConstOrSplat && !N1ConstOrSplat && 4491 (DCI.isBeforeLegalizeOps() || 4492 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4493 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4494 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4495 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4496 4497 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4498 return V; 4499 4500 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4501 return V; 4502 4503 if (auto *N1C = isConstOrConstSplat(N1)) { 4504 const APInt &C1 = N1C->getAPIntValue(); 4505 4506 // Optimize some CTPOP cases. 4507 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4508 return V; 4509 4510 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4511 // X * Y == 0 --> (X == 0) || (Y == 0) 4512 // X * Y != 0 --> (X != 0) && (Y != 0) 4513 // TODO: This bails out if minsize is set, but if the target doesn't have a 4514 // single instruction multiply for this type, it would likely be 4515 // smaller to decompose. 4516 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4517 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4518 (N0->getFlags().hasNoUnsignedWrap() || 4519 N0->getFlags().hasNoSignedWrap()) && 4520 !Attr.hasFnAttr(Attribute::MinSize)) { 4521 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4522 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4523 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4524 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4525 } 4526 4527 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4528 // equality comparison, then we're just comparing whether X itself is 4529 // zero. 4530 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4531 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4532 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { 4533 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4534 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4535 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4536 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4537 // (srl (ctlz x), 5) == 0 -> X != 0 4538 // (srl (ctlz x), 5) != 1 -> X != 0 4539 Cond = ISD::SETNE; 4540 } else { 4541 // (srl (ctlz x), 5) != 0 -> X == 0 4542 // (srl (ctlz x), 5) == 1 -> X == 0 4543 Cond = ISD::SETEQ; 4544 } 4545 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4546 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4547 Cond); 4548 } 4549 } 4550 } 4551 } 4552 4553 // FIXME: Support vectors. 4554 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4555 const APInt &C1 = N1C->getAPIntValue(); 4556 4557 // (zext x) == C --> x == (trunc C) 4558 // (sext x) == C --> x == (trunc C) 4559 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4560 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4561 unsigned MinBits = N0.getValueSizeInBits(); 4562 SDValue PreExt; 4563 bool Signed = false; 4564 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4565 // ZExt 4566 MinBits = N0->getOperand(0).getValueSizeInBits(); 4567 PreExt = N0->getOperand(0); 4568 } else if (N0->getOpcode() == ISD::AND) { 4569 // DAGCombine turns costly ZExts into ANDs 4570 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4571 if ((C->getAPIntValue()+1).isPowerOf2()) { 4572 MinBits = C->getAPIntValue().countr_one(); 4573 PreExt = N0->getOperand(0); 4574 } 4575 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4576 // SExt 4577 MinBits = N0->getOperand(0).getValueSizeInBits(); 4578 PreExt = N0->getOperand(0); 4579 Signed = true; 4580 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4581 // ZEXTLOAD / SEXTLOAD 4582 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4583 MinBits = LN0->getMemoryVT().getSizeInBits(); 4584 PreExt = N0; 4585 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4586 Signed = true; 4587 MinBits = LN0->getMemoryVT().getSizeInBits(); 4588 PreExt = N0; 4589 } 4590 } 4591 4592 // Figure out how many bits we need to preserve this constant. 4593 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); 4594 4595 // Make sure we're not losing bits from the constant. 4596 if (MinBits > 0 && 4597 MinBits < C1.getBitWidth() && 4598 MinBits >= ReqdBits) { 4599 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4600 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4601 // Will get folded away. 4602 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4603 if (MinBits == 1 && C1 == 1) 4604 // Invert the condition. 4605 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4606 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4607 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4608 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4609 } 4610 4611 // If truncating the setcc operands is not desirable, we can still 4612 // simplify the expression in some cases: 4613 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4614 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4615 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4616 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4617 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4618 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4619 SDValue TopSetCC = N0->getOperand(0); 4620 unsigned N0Opc = N0->getOpcode(); 4621 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4622 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4623 TopSetCC.getOpcode() == ISD::SETCC && 4624 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4625 (isConstFalseVal(N1) || 4626 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4627 4628 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4629 (!N1C->isZero() && Cond == ISD::SETNE); 4630 4631 if (!Inverse) 4632 return TopSetCC; 4633 4634 ISD::CondCode InvCond = ISD::getSetCCInverse( 4635 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4636 TopSetCC.getOperand(0).getValueType()); 4637 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4638 TopSetCC.getOperand(1), 4639 InvCond); 4640 } 4641 } 4642 } 4643 4644 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4645 // equality or unsigned, and all 1 bits of the const are in the same 4646 // partial word, see if we can shorten the load. 4647 if (DCI.isBeforeLegalize() && 4648 !ISD::isSignedIntSetCC(Cond) && 4649 N0.getOpcode() == ISD::AND && C1 == 0 && 4650 N0.getNode()->hasOneUse() && 4651 isa<LoadSDNode>(N0.getOperand(0)) && 4652 N0.getOperand(0).getNode()->hasOneUse() && 4653 isa<ConstantSDNode>(N0.getOperand(1))) { 4654 auto *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4655 APInt bestMask; 4656 unsigned bestWidth = 0, bestOffset = 0; 4657 if (Lod->isSimple() && Lod->isUnindexed() && 4658 (Lod->getMemoryVT().isByteSized() || 4659 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) { 4660 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); 4661 unsigned origWidth = N0.getValueSizeInBits(); 4662 unsigned maskWidth = origWidth; 4663 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4664 // 8 bits, but have to be careful... 4665 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4666 origWidth = Lod->getMemoryVT().getSizeInBits(); 4667 const APInt &Mask = N0.getConstantOperandAPInt(1); 4668 // Only consider power-of-2 widths (and at least one byte) as candiates 4669 // for the narrowed load. 4670 for (unsigned width = 8; width < origWidth; width *= 2) { 4671 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width); 4672 if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) 4673 continue; 4674 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4675 // Avoid accessing any padding here for now (we could use memWidth 4676 // instead of origWidth here otherwise). 4677 unsigned maxOffset = origWidth - width; 4678 for (unsigned offset = 0; offset <= maxOffset; offset += 8) { 4679 if (Mask.isSubsetOf(newMask)) { 4680 unsigned ptrOffset = 4681 Layout.isLittleEndian() ? offset : memWidth - width - offset; 4682 unsigned IsFast = 0; 4683 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8); 4684 if (allowsMemoryAccess( 4685 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(), 4686 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) && 4687 IsFast) { 4688 bestOffset = ptrOffset / 8; 4689 bestMask = Mask.lshr(offset); 4690 bestWidth = width; 4691 break; 4692 } 4693 } 4694 newMask <<= 8; 4695 } 4696 if (bestWidth) 4697 break; 4698 } 4699 } 4700 if (bestWidth) { 4701 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4702 SDValue Ptr = Lod->getBasePtr(); 4703 if (bestOffset != 0) 4704 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset)); 4705 SDValue NewLoad = 4706 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4707 Lod->getPointerInfo().getWithOffset(bestOffset), 4708 Lod->getOriginalAlign()); 4709 SDValue And = 4710 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4711 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT)); 4712 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond); 4713 } 4714 } 4715 4716 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4717 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4718 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4719 4720 // If the comparison constant has bits in the upper part, the 4721 // zero-extended value could never match. 4722 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4723 C1.getBitWidth() - InSize))) { 4724 switch (Cond) { 4725 case ISD::SETUGT: 4726 case ISD::SETUGE: 4727 case ISD::SETEQ: 4728 return DAG.getConstant(0, dl, VT); 4729 case ISD::SETULT: 4730 case ISD::SETULE: 4731 case ISD::SETNE: 4732 return DAG.getConstant(1, dl, VT); 4733 case ISD::SETGT: 4734 case ISD::SETGE: 4735 // True if the sign bit of C1 is set. 4736 return DAG.getConstant(C1.isNegative(), dl, VT); 4737 case ISD::SETLT: 4738 case ISD::SETLE: 4739 // True if the sign bit of C1 isn't set. 4740 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4741 default: 4742 break; 4743 } 4744 } 4745 4746 // Otherwise, we can perform the comparison with the low bits. 4747 switch (Cond) { 4748 case ISD::SETEQ: 4749 case ISD::SETNE: 4750 case ISD::SETUGT: 4751 case ISD::SETUGE: 4752 case ISD::SETULT: 4753 case ISD::SETULE: { 4754 EVT newVT = N0.getOperand(0).getValueType(); 4755 if (DCI.isBeforeLegalizeOps() || 4756 (isOperationLegal(ISD::SETCC, newVT) && 4757 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4758 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4759 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4760 4761 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4762 NewConst, Cond); 4763 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4764 } 4765 break; 4766 } 4767 default: 4768 break; // todo, be more careful with signed comparisons 4769 } 4770 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4771 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4772 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4773 OpVT)) { 4774 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4775 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4776 EVT ExtDstTy = N0.getValueType(); 4777 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4778 4779 // If the constant doesn't fit into the number of bits for the source of 4780 // the sign extension, it is impossible for both sides to be equal. 4781 if (C1.getSignificantBits() > ExtSrcTyBits) 4782 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4783 4784 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4785 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4786 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4787 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4788 DAG.getConstant(Imm, dl, ExtDstTy)); 4789 if (!DCI.isCalledByLegalizer()) 4790 DCI.AddToWorklist(ZextOp.getNode()); 4791 // Otherwise, make this a use of a zext. 4792 return DAG.getSetCC(dl, VT, ZextOp, 4793 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4794 } else if ((N1C->isZero() || N1C->isOne()) && 4795 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4796 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are 4797 // excluded as they are handled below whilst checking for foldBooleans. 4798 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && 4799 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4800 (N0.getValueType() == MVT::i1 || 4801 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4802 DAG.MaskedValueIsZero( 4803 N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) { 4804 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4805 if (TrueWhenTrue) 4806 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4807 // Invert the condition. 4808 if (N0.getOpcode() == ISD::SETCC) { 4809 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4810 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4811 if (DCI.isBeforeLegalizeOps() || 4812 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4813 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4814 } 4815 } 4816 4817 if ((N0.getOpcode() == ISD::XOR || 4818 (N0.getOpcode() == ISD::AND && 4819 N0.getOperand(0).getOpcode() == ISD::XOR && 4820 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4821 isOneConstant(N0.getOperand(1))) { 4822 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4823 // can only do this if the top bits are known zero. 4824 unsigned BitWidth = N0.getValueSizeInBits(); 4825 if (DAG.MaskedValueIsZero(N0, 4826 APInt::getHighBitsSet(BitWidth, 4827 BitWidth-1))) { 4828 // Okay, get the un-inverted input value. 4829 SDValue Val; 4830 if (N0.getOpcode() == ISD::XOR) { 4831 Val = N0.getOperand(0); 4832 } else { 4833 assert(N0.getOpcode() == ISD::AND && 4834 N0.getOperand(0).getOpcode() == ISD::XOR); 4835 // ((X^1)&1)^1 -> X & 1 4836 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4837 N0.getOperand(0).getOperand(0), 4838 N0.getOperand(1)); 4839 } 4840 4841 return DAG.getSetCC(dl, VT, Val, N1, 4842 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4843 } 4844 } else if (N1C->isOne()) { 4845 SDValue Op0 = N0; 4846 if (Op0.getOpcode() == ISD::TRUNCATE) 4847 Op0 = Op0.getOperand(0); 4848 4849 if ((Op0.getOpcode() == ISD::XOR) && 4850 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4851 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4852 SDValue XorLHS = Op0.getOperand(0); 4853 SDValue XorRHS = Op0.getOperand(1); 4854 // Ensure that the input setccs return an i1 type or 0/1 value. 4855 if (Op0.getValueType() == MVT::i1 || 4856 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4857 ZeroOrOneBooleanContent && 4858 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4859 ZeroOrOneBooleanContent)) { 4860 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4861 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4862 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4863 } 4864 } 4865 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4866 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4867 if (Op0.getValueType().bitsGT(VT)) 4868 Op0 = DAG.getNode(ISD::AND, dl, VT, 4869 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4870 DAG.getConstant(1, dl, VT)); 4871 else if (Op0.getValueType().bitsLT(VT)) 4872 Op0 = DAG.getNode(ISD::AND, dl, VT, 4873 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4874 DAG.getConstant(1, dl, VT)); 4875 4876 return DAG.getSetCC(dl, VT, Op0, 4877 DAG.getConstant(0, dl, Op0.getValueType()), 4878 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4879 } 4880 if (Op0.getOpcode() == ISD::AssertZext && 4881 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4882 return DAG.getSetCC(dl, VT, Op0, 4883 DAG.getConstant(0, dl, Op0.getValueType()), 4884 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4885 } 4886 } 4887 4888 // Given: 4889 // icmp eq/ne (urem %x, %y), 0 4890 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4891 // icmp eq/ne %x, 0 4892 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4893 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4894 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4895 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4896 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4897 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4898 } 4899 4900 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4901 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4902 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4903 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4904 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4905 N1C && N1C->isAllOnes()) { 4906 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4907 DAG.getConstant(0, dl, OpVT), 4908 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4909 } 4910 4911 if (SDValue V = 4912 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4913 return V; 4914 } 4915 4916 // These simplifications apply to splat vectors as well. 4917 // TODO: Handle more splat vector cases. 4918 if (auto *N1C = isConstOrConstSplat(N1)) { 4919 const APInt &C1 = N1C->getAPIntValue(); 4920 4921 APInt MinVal, MaxVal; 4922 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4923 if (ISD::isSignedIntSetCC(Cond)) { 4924 MinVal = APInt::getSignedMinValue(OperandBitSize); 4925 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4926 } else { 4927 MinVal = APInt::getMinValue(OperandBitSize); 4928 MaxVal = APInt::getMaxValue(OperandBitSize); 4929 } 4930 4931 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4932 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4933 // X >= MIN --> true 4934 if (C1 == MinVal) 4935 return DAG.getBoolConstant(true, dl, VT, OpVT); 4936 4937 if (!VT.isVector()) { // TODO: Support this for vectors. 4938 // X >= C0 --> X > (C0 - 1) 4939 APInt C = C1 - 1; 4940 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4941 if ((DCI.isBeforeLegalizeOps() || 4942 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4943 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4944 isLegalICmpImmediate(C.getSExtValue())))) { 4945 return DAG.getSetCC(dl, VT, N0, 4946 DAG.getConstant(C, dl, N1.getValueType()), 4947 NewCC); 4948 } 4949 } 4950 } 4951 4952 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4953 // X <= MAX --> true 4954 if (C1 == MaxVal) 4955 return DAG.getBoolConstant(true, dl, VT, OpVT); 4956 4957 // X <= C0 --> X < (C0 + 1) 4958 if (!VT.isVector()) { // TODO: Support this for vectors. 4959 APInt C = C1 + 1; 4960 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4961 if ((DCI.isBeforeLegalizeOps() || 4962 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4963 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4964 isLegalICmpImmediate(C.getSExtValue())))) { 4965 return DAG.getSetCC(dl, VT, N0, 4966 DAG.getConstant(C, dl, N1.getValueType()), 4967 NewCC); 4968 } 4969 } 4970 } 4971 4972 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4973 if (C1 == MinVal) 4974 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4975 4976 // TODO: Support this for vectors after legalize ops. 4977 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4978 // Canonicalize setlt X, Max --> setne X, Max 4979 if (C1 == MaxVal) 4980 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4981 4982 // If we have setult X, 1, turn it into seteq X, 0 4983 if (C1 == MinVal+1) 4984 return DAG.getSetCC(dl, VT, N0, 4985 DAG.getConstant(MinVal, dl, N0.getValueType()), 4986 ISD::SETEQ); 4987 } 4988 } 4989 4990 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4991 if (C1 == MaxVal) 4992 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4993 4994 // TODO: Support this for vectors after legalize ops. 4995 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4996 // Canonicalize setgt X, Min --> setne X, Min 4997 if (C1 == MinVal) 4998 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4999 5000 // If we have setugt X, Max-1, turn it into seteq X, Max 5001 if (C1 == MaxVal-1) 5002 return DAG.getSetCC(dl, VT, N0, 5003 DAG.getConstant(MaxVal, dl, N0.getValueType()), 5004 ISD::SETEQ); 5005 } 5006 } 5007 5008 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 5009 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 5010 if (C1.isZero()) 5011 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 5012 VT, N0, N1, Cond, DCI, dl)) 5013 return CC; 5014 5015 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 5016 // For example, when high 32-bits of i64 X are known clear: 5017 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 5018 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 5019 bool CmpZero = N1C->isZero(); 5020 bool CmpNegOne = N1C->isAllOnes(); 5021 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 5022 // Match or(lo,shl(hi,bw/2)) pattern. 5023 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 5024 unsigned EltBits = V.getScalarValueSizeInBits(); 5025 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 5026 return false; 5027 SDValue LHS = V.getOperand(0); 5028 SDValue RHS = V.getOperand(1); 5029 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 5030 // Unshifted element must have zero upperbits. 5031 if (RHS.getOpcode() == ISD::SHL && 5032 isa<ConstantSDNode>(RHS.getOperand(1)) && 5033 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5034 DAG.MaskedValueIsZero(LHS, HiBits)) { 5035 Lo = LHS; 5036 Hi = RHS.getOperand(0); 5037 return true; 5038 } 5039 if (LHS.getOpcode() == ISD::SHL && 5040 isa<ConstantSDNode>(LHS.getOperand(1)) && 5041 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5042 DAG.MaskedValueIsZero(RHS, HiBits)) { 5043 Lo = RHS; 5044 Hi = LHS.getOperand(0); 5045 return true; 5046 } 5047 return false; 5048 }; 5049 5050 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 5051 unsigned EltBits = N0.getScalarValueSizeInBits(); 5052 unsigned HalfBits = EltBits / 2; 5053 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 5054 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 5055 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 5056 SDValue NewN0 = 5057 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 5058 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 5059 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 5060 }; 5061 5062 SDValue Lo, Hi; 5063 if (IsConcat(N0, Lo, Hi)) 5064 return MergeConcat(Lo, Hi); 5065 5066 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 5067 SDValue Lo0, Lo1, Hi0, Hi1; 5068 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 5069 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 5070 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 5071 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 5072 } 5073 } 5074 } 5075 } 5076 5077 // If we have "setcc X, C0", check to see if we can shrink the immediate 5078 // by changing cc. 5079 // TODO: Support this for vectors after legalize ops. 5080 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5081 // SETUGT X, SINTMAX -> SETLT X, 0 5082 // SETUGE X, SINTMIN -> SETLT X, 0 5083 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 5084 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 5085 return DAG.getSetCC(dl, VT, N0, 5086 DAG.getConstant(0, dl, N1.getValueType()), 5087 ISD::SETLT); 5088 5089 // SETULT X, SINTMIN -> SETGT X, -1 5090 // SETULE X, SINTMAX -> SETGT X, -1 5091 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 5092 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 5093 return DAG.getSetCC(dl, VT, N0, 5094 DAG.getAllOnesConstant(dl, N1.getValueType()), 5095 ISD::SETGT); 5096 } 5097 } 5098 5099 // Back to non-vector simplifications. 5100 // TODO: Can we do these for vector splats? 5101 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 5102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5103 const APInt &C1 = N1C->getAPIntValue(); 5104 EVT ShValTy = N0.getValueType(); 5105 5106 // Fold bit comparisons when we can. This will result in an 5107 // incorrect value when boolean false is negative one, unless 5108 // the bitsize is 1 in which case the false value is the same 5109 // in practice regardless of the representation. 5110 if ((VT.getSizeInBits() == 1 || 5111 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 5112 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5113 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 5114 N0.getOpcode() == ISD::AND) { 5115 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5116 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 5117 // Perform the xform if the AND RHS is a single bit. 5118 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 5119 if (AndRHS->getAPIntValue().isPowerOf2() && 5120 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 5121 return DAG.getNode( 5122 ISD::TRUNCATE, dl, VT, 5123 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5124 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5125 } 5126 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 5127 // (X & 8) == 8 --> (X & 8) >> 3 5128 // Perform the xform if C1 is a single bit. 5129 unsigned ShCt = C1.logBase2(); 5130 if (C1.isPowerOf2() && 5131 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 5132 return DAG.getNode( 5133 ISD::TRUNCATE, dl, VT, 5134 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5135 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5136 } 5137 } 5138 } 5139 } 5140 5141 if (C1.getSignificantBits() <= 64 && 5142 !isLegalICmpImmediate(C1.getSExtValue())) { 5143 // (X & -256) == 256 -> (X >> 8) == 1 5144 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5145 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5146 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5147 const APInt &AndRHSC = AndRHS->getAPIntValue(); 5148 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 5149 unsigned ShiftBits = AndRHSC.countr_zero(); 5150 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5151 SDValue Shift = DAG.getNode( 5152 ISD::SRL, dl, ShValTy, N0.getOperand(0), 5153 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5154 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 5155 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 5156 } 5157 } 5158 } 5159 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 5160 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 5161 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 5162 // X < 0x100000000 -> (X >> 32) < 1 5163 // X >= 0x100000000 -> (X >> 32) >= 1 5164 // X <= 0x0ffffffff -> (X >> 32) < 1 5165 // X > 0x0ffffffff -> (X >> 32) >= 1 5166 unsigned ShiftBits; 5167 APInt NewC = C1; 5168 ISD::CondCode NewCond = Cond; 5169 if (AdjOne) { 5170 ShiftBits = C1.countr_one(); 5171 NewC = NewC + 1; 5172 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 5173 } else { 5174 ShiftBits = C1.countr_zero(); 5175 } 5176 NewC.lshrInPlace(ShiftBits); 5177 if (ShiftBits && NewC.getSignificantBits() <= 64 && 5178 isLegalICmpImmediate(NewC.getSExtValue()) && 5179 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5180 SDValue Shift = 5181 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5182 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5183 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 5184 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 5185 } 5186 } 5187 } 5188 } 5189 5190 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 5191 auto *CFP = cast<ConstantFPSDNode>(N1); 5192 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 5193 5194 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 5195 // constant if knowing that the operand is non-nan is enough. We prefer to 5196 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 5197 // materialize 0.0. 5198 if (Cond == ISD::SETO || Cond == ISD::SETUO) 5199 return DAG.getSetCC(dl, VT, N0, N0, Cond); 5200 5201 // setcc (fneg x), C -> setcc swap(pred) x, -C 5202 if (N0.getOpcode() == ISD::FNEG) { 5203 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 5204 if (DCI.isBeforeLegalizeOps() || 5205 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 5206 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 5207 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 5208 } 5209 } 5210 5211 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf 5212 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && 5213 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { 5214 bool IsFabs = N0.getOpcode() == ISD::FABS; 5215 SDValue Op = IsFabs ? N0.getOperand(0) : N0; 5216 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { 5217 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) 5218 : (IsFabs ? fcInf : fcPosInf); 5219 if (Cond == ISD::SETUEQ) 5220 Flag |= fcNan; 5221 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, 5222 DAG.getTargetConstant(Flag, dl, MVT::i32)); 5223 } 5224 } 5225 5226 // If the condition is not legal, see if we can find an equivalent one 5227 // which is legal. 5228 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 5229 // If the comparison was an awkward floating-point == or != and one of 5230 // the comparison operands is infinity or negative infinity, convert the 5231 // condition to a less-awkward <= or >=. 5232 if (CFP->getValueAPF().isInfinity()) { 5233 bool IsNegInf = CFP->getValueAPF().isNegative(); 5234 ISD::CondCode NewCond = ISD::SETCC_INVALID; 5235 switch (Cond) { 5236 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 5237 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 5238 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 5239 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 5240 default: break; 5241 } 5242 if (NewCond != ISD::SETCC_INVALID && 5243 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 5244 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5245 } 5246 } 5247 } 5248 5249 if (N0 == N1) { 5250 // The sext(setcc()) => setcc() optimization relies on the appropriate 5251 // constant being emitted. 5252 assert(!N0.getValueType().isInteger() && 5253 "Integer types should be handled by FoldSetCC"); 5254 5255 bool EqTrue = ISD::isTrueWhenEqual(Cond); 5256 unsigned UOF = ISD::getUnorderedFlavor(Cond); 5257 if (UOF == 2) // FP operators that are undefined on NaNs. 5258 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5259 if (UOF == unsigned(EqTrue)) 5260 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5261 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 5262 // if it is not already. 5263 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 5264 if (NewCond != Cond && 5265 (DCI.isBeforeLegalizeOps() || 5266 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 5267 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5268 } 5269 5270 // ~X > ~Y --> Y > X 5271 // ~X < ~Y --> Y < X 5272 // ~X < C --> X > ~C 5273 // ~X > C --> X < ~C 5274 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && 5275 N0.getValueType().isInteger()) { 5276 if (isBitwiseNot(N0)) { 5277 if (isBitwiseNot(N1)) 5278 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); 5279 5280 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 5281 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { 5282 SDValue Not = DAG.getNOT(dl, N1, OpVT); 5283 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); 5284 } 5285 } 5286 } 5287 5288 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5289 N0.getValueType().isInteger()) { 5290 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 5291 N0.getOpcode() == ISD::XOR) { 5292 // Simplify (X+Y) == (X+Z) --> Y == Z 5293 if (N0.getOpcode() == N1.getOpcode()) { 5294 if (N0.getOperand(0) == N1.getOperand(0)) 5295 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 5296 if (N0.getOperand(1) == N1.getOperand(1)) 5297 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 5298 if (isCommutativeBinOp(N0.getOpcode())) { 5299 // If X op Y == Y op X, try other combinations. 5300 if (N0.getOperand(0) == N1.getOperand(1)) 5301 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 5302 Cond); 5303 if (N0.getOperand(1) == N1.getOperand(0)) 5304 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5305 Cond); 5306 } 5307 } 5308 5309 // If RHS is a legal immediate value for a compare instruction, we need 5310 // to be careful about increasing register pressure needlessly. 5311 bool LegalRHSImm = false; 5312 5313 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5314 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5315 // Turn (X+C1) == C2 --> X == C2-C1 5316 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5317 return DAG.getSetCC( 5318 dl, VT, N0.getOperand(0), 5319 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5320 dl, N0.getValueType()), 5321 Cond); 5322 5323 // Turn (X^C1) == C2 --> X == C1^C2 5324 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5325 return DAG.getSetCC( 5326 dl, VT, N0.getOperand(0), 5327 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5328 dl, N0.getValueType()), 5329 Cond); 5330 } 5331 5332 // Turn (C1-X) == C2 --> X == C1-C2 5333 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5334 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5335 return DAG.getSetCC( 5336 dl, VT, N0.getOperand(1), 5337 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5338 dl, N0.getValueType()), 5339 Cond); 5340 5341 // Could RHSC fold directly into a compare? 5342 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5343 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5344 } 5345 5346 // (X+Y) == X --> Y == 0 and similar folds. 5347 // Don't do this if X is an immediate that can fold into a cmp 5348 // instruction and X+Y has other uses. It could be an induction variable 5349 // chain, and the transform would increase register pressure. 5350 if (!LegalRHSImm || N0.hasOneUse()) 5351 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5352 return V; 5353 } 5354 5355 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5356 N1.getOpcode() == ISD::XOR) 5357 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5358 return V; 5359 5360 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5361 return V; 5362 } 5363 5364 // Fold remainder of division by a constant. 5365 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5366 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5367 // When division is cheap or optimizing for minimum size, 5368 // fall through to DIVREM creation by skipping this fold. 5369 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5370 if (N0.getOpcode() == ISD::UREM) { 5371 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5372 return Folded; 5373 } else if (N0.getOpcode() == ISD::SREM) { 5374 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5375 return Folded; 5376 } 5377 } 5378 } 5379 5380 // Fold away ALL boolean setcc's. 5381 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5382 SDValue Temp; 5383 switch (Cond) { 5384 default: llvm_unreachable("Unknown integer setcc!"); 5385 case ISD::SETEQ: // X == Y -> ~(X^Y) 5386 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5387 N0 = DAG.getNOT(dl, Temp, OpVT); 5388 if (!DCI.isCalledByLegalizer()) 5389 DCI.AddToWorklist(Temp.getNode()); 5390 break; 5391 case ISD::SETNE: // X != Y --> (X^Y) 5392 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5393 break; 5394 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5395 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5396 Temp = DAG.getNOT(dl, N0, OpVT); 5397 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5398 if (!DCI.isCalledByLegalizer()) 5399 DCI.AddToWorklist(Temp.getNode()); 5400 break; 5401 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5402 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5403 Temp = DAG.getNOT(dl, N1, OpVT); 5404 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5405 if (!DCI.isCalledByLegalizer()) 5406 DCI.AddToWorklist(Temp.getNode()); 5407 break; 5408 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5409 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5410 Temp = DAG.getNOT(dl, N0, OpVT); 5411 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5412 if (!DCI.isCalledByLegalizer()) 5413 DCI.AddToWorklist(Temp.getNode()); 5414 break; 5415 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5416 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5417 Temp = DAG.getNOT(dl, N1, OpVT); 5418 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5419 break; 5420 } 5421 if (VT.getScalarType() != MVT::i1) { 5422 if (!DCI.isCalledByLegalizer()) 5423 DCI.AddToWorklist(N0.getNode()); 5424 // FIXME: If running after legalize, we probably can't do this. 5425 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5426 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5427 } 5428 return N0; 5429 } 5430 5431 // Could not fold it. 5432 return SDValue(); 5433 } 5434 5435 /// Returns true (and the GlobalValue and the offset) if the node is a 5436 /// GlobalAddress + offset. 5437 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5438 int64_t &Offset) const { 5439 5440 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5441 5442 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5443 GA = GASD->getGlobal(); 5444 Offset += GASD->getOffset(); 5445 return true; 5446 } 5447 5448 if (N->getOpcode() == ISD::ADD) { 5449 SDValue N1 = N->getOperand(0); 5450 SDValue N2 = N->getOperand(1); 5451 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5452 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5453 Offset += V->getSExtValue(); 5454 return true; 5455 } 5456 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5457 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5458 Offset += V->getSExtValue(); 5459 return true; 5460 } 5461 } 5462 } 5463 5464 return false; 5465 } 5466 5467 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5468 DAGCombinerInfo &DCI) const { 5469 // Default implementation: no optimization. 5470 return SDValue(); 5471 } 5472 5473 //===----------------------------------------------------------------------===// 5474 // Inline Assembler Implementation Methods 5475 //===----------------------------------------------------------------------===// 5476 5477 TargetLowering::ConstraintType 5478 TargetLowering::getConstraintType(StringRef Constraint) const { 5479 unsigned S = Constraint.size(); 5480 5481 if (S == 1) { 5482 switch (Constraint[0]) { 5483 default: break; 5484 case 'r': 5485 return C_RegisterClass; 5486 case 'm': // memory 5487 case 'o': // offsetable 5488 case 'V': // not offsetable 5489 return C_Memory; 5490 case 'p': // Address. 5491 return C_Address; 5492 case 'n': // Simple Integer 5493 case 'E': // Floating Point Constant 5494 case 'F': // Floating Point Constant 5495 return C_Immediate; 5496 case 'i': // Simple Integer or Relocatable Constant 5497 case 's': // Relocatable Constant 5498 case 'X': // Allow ANY value. 5499 case 'I': // Target registers. 5500 case 'J': 5501 case 'K': 5502 case 'L': 5503 case 'M': 5504 case 'N': 5505 case 'O': 5506 case 'P': 5507 case '<': 5508 case '>': 5509 return C_Other; 5510 } 5511 } 5512 5513 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5514 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5515 return C_Memory; 5516 return C_Register; 5517 } 5518 return C_Unknown; 5519 } 5520 5521 /// Try to replace an X constraint, which matches anything, with another that 5522 /// has more specific requirements based on the type of the corresponding 5523 /// operand. 5524 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5525 if (ConstraintVT.isInteger()) 5526 return "r"; 5527 if (ConstraintVT.isFloatingPoint()) 5528 return "f"; // works for many targets 5529 return nullptr; 5530 } 5531 5532 SDValue TargetLowering::LowerAsmOutputForConstraint( 5533 SDValue &Chain, SDValue &Glue, const SDLoc &DL, 5534 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5535 return SDValue(); 5536 } 5537 5538 /// Lower the specified operand into the Ops vector. 5539 /// If it is invalid, don't add anything to Ops. 5540 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5541 StringRef Constraint, 5542 std::vector<SDValue> &Ops, 5543 SelectionDAG &DAG) const { 5544 5545 if (Constraint.size() > 1) 5546 return; 5547 5548 char ConstraintLetter = Constraint[0]; 5549 switch (ConstraintLetter) { 5550 default: break; 5551 case 'X': // Allows any operand 5552 case 'i': // Simple Integer or Relocatable Constant 5553 case 'n': // Simple Integer 5554 case 's': { // Relocatable Constant 5555 5556 ConstantSDNode *C; 5557 uint64_t Offset = 0; 5558 5559 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5560 // etc., since getelementpointer is variadic. We can't use 5561 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5562 // while in this case the GA may be furthest from the root node which is 5563 // likely an ISD::ADD. 5564 while (true) { 5565 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5566 // gcc prints these as sign extended. Sign extend value to 64 bits 5567 // now; without this it would get ZExt'd later in 5568 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5569 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5570 BooleanContent BCont = getBooleanContents(MVT::i64); 5571 ISD::NodeType ExtOpc = 5572 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5573 int64_t ExtVal = 5574 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5575 Ops.push_back( 5576 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5577 return; 5578 } 5579 if (ConstraintLetter != 'n') { 5580 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5581 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5582 GA->getValueType(0), 5583 Offset + GA->getOffset())); 5584 return; 5585 } 5586 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5587 Ops.push_back(DAG.getTargetBlockAddress( 5588 BA->getBlockAddress(), BA->getValueType(0), 5589 Offset + BA->getOffset(), BA->getTargetFlags())); 5590 return; 5591 } 5592 if (isa<BasicBlockSDNode>(Op)) { 5593 Ops.push_back(Op); 5594 return; 5595 } 5596 } 5597 const unsigned OpCode = Op.getOpcode(); 5598 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5599 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5600 Op = Op.getOperand(1); 5601 // Subtraction is not commutative. 5602 else if (OpCode == ISD::ADD && 5603 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5604 Op = Op.getOperand(0); 5605 else 5606 return; 5607 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5608 continue; 5609 } 5610 return; 5611 } 5612 break; 5613 } 5614 } 5615 } 5616 5617 void TargetLowering::CollectTargetIntrinsicOperands( 5618 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { 5619 } 5620 5621 std::pair<unsigned, const TargetRegisterClass *> 5622 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5623 StringRef Constraint, 5624 MVT VT) const { 5625 if (!Constraint.starts_with("{")) 5626 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5627 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5628 5629 // Remove the braces from around the name. 5630 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5631 5632 std::pair<unsigned, const TargetRegisterClass *> R = 5633 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5634 5635 // Figure out which register class contains this reg. 5636 for (const TargetRegisterClass *RC : RI->regclasses()) { 5637 // If none of the value types for this register class are valid, we 5638 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5639 if (!isLegalRC(*RI, *RC)) 5640 continue; 5641 5642 for (const MCPhysReg &PR : *RC) { 5643 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5644 std::pair<unsigned, const TargetRegisterClass *> S = 5645 std::make_pair(PR, RC); 5646 5647 // If this register class has the requested value type, return it, 5648 // otherwise keep searching and return the first class found 5649 // if no other is found which explicitly has the requested type. 5650 if (RI->isTypeLegalForClass(*RC, VT)) 5651 return S; 5652 if (!R.second) 5653 R = S; 5654 } 5655 } 5656 } 5657 5658 return R; 5659 } 5660 5661 //===----------------------------------------------------------------------===// 5662 // Constraint Selection. 5663 5664 /// Return true of this is an input operand that is a matching constraint like 5665 /// "4". 5666 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5667 assert(!ConstraintCode.empty() && "No known constraint!"); 5668 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5669 } 5670 5671 /// If this is an input matching constraint, this method returns the output 5672 /// operand it matches. 5673 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5674 assert(!ConstraintCode.empty() && "No known constraint!"); 5675 return atoi(ConstraintCode.c_str()); 5676 } 5677 5678 /// Split up the constraint string from the inline assembly value into the 5679 /// specific constraints and their prefixes, and also tie in the associated 5680 /// operand values. 5681 /// If this returns an empty vector, and if the constraint string itself 5682 /// isn't empty, there was an error parsing. 5683 TargetLowering::AsmOperandInfoVector 5684 TargetLowering::ParseConstraints(const DataLayout &DL, 5685 const TargetRegisterInfo *TRI, 5686 const CallBase &Call) const { 5687 /// Information about all of the constraints. 5688 AsmOperandInfoVector ConstraintOperands; 5689 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5690 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5691 5692 // Do a prepass over the constraints, canonicalizing them, and building up the 5693 // ConstraintOperands list. 5694 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5695 unsigned ResNo = 0; // ResNo - The result number of the next output. 5696 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5697 5698 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5699 ConstraintOperands.emplace_back(std::move(CI)); 5700 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5701 5702 // Update multiple alternative constraint count. 5703 if (OpInfo.multipleAlternatives.size() > maCount) 5704 maCount = OpInfo.multipleAlternatives.size(); 5705 5706 OpInfo.ConstraintVT = MVT::Other; 5707 5708 // Compute the value type for each operand. 5709 switch (OpInfo.Type) { 5710 case InlineAsm::isOutput: 5711 // Indirect outputs just consume an argument. 5712 if (OpInfo.isIndirect) { 5713 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5714 break; 5715 } 5716 5717 // The return value of the call is this value. As such, there is no 5718 // corresponding argument. 5719 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5720 if (auto *STy = dyn_cast<StructType>(Call.getType())) { 5721 OpInfo.ConstraintVT = 5722 getSimpleValueType(DL, STy->getElementType(ResNo)); 5723 } else { 5724 assert(ResNo == 0 && "Asm only has one result!"); 5725 OpInfo.ConstraintVT = 5726 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5727 } 5728 ++ResNo; 5729 break; 5730 case InlineAsm::isInput: 5731 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5732 break; 5733 case InlineAsm::isLabel: 5734 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5735 ++LabelNo; 5736 continue; 5737 case InlineAsm::isClobber: 5738 // Nothing to do. 5739 break; 5740 } 5741 5742 if (OpInfo.CallOperandVal) { 5743 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5744 if (OpInfo.isIndirect) { 5745 OpTy = Call.getParamElementType(ArgNo); 5746 assert(OpTy && "Indirect operand must have elementtype attribute"); 5747 } 5748 5749 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5750 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5751 if (STy->getNumElements() == 1) 5752 OpTy = STy->getElementType(0); 5753 5754 // If OpTy is not a single value, it may be a struct/union that we 5755 // can tile with integers. 5756 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5757 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5758 switch (BitSize) { 5759 default: break; 5760 case 1: 5761 case 8: 5762 case 16: 5763 case 32: 5764 case 64: 5765 case 128: 5766 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5767 break; 5768 } 5769 } 5770 5771 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5772 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5773 ArgNo++; 5774 } 5775 } 5776 5777 // If we have multiple alternative constraints, select the best alternative. 5778 if (!ConstraintOperands.empty()) { 5779 if (maCount) { 5780 unsigned bestMAIndex = 0; 5781 int bestWeight = -1; 5782 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5783 int weight = -1; 5784 unsigned maIndex; 5785 // Compute the sums of the weights for each alternative, keeping track 5786 // of the best (highest weight) one so far. 5787 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5788 int weightSum = 0; 5789 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5790 cIndex != eIndex; ++cIndex) { 5791 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5792 if (OpInfo.Type == InlineAsm::isClobber) 5793 continue; 5794 5795 // If this is an output operand with a matching input operand, 5796 // look up the matching input. If their types mismatch, e.g. one 5797 // is an integer, the other is floating point, or their sizes are 5798 // different, flag it as an maCantMatch. 5799 if (OpInfo.hasMatchingInput()) { 5800 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5801 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5802 if ((OpInfo.ConstraintVT.isInteger() != 5803 Input.ConstraintVT.isInteger()) || 5804 (OpInfo.ConstraintVT.getSizeInBits() != 5805 Input.ConstraintVT.getSizeInBits())) { 5806 weightSum = -1; // Can't match. 5807 break; 5808 } 5809 } 5810 } 5811 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5812 if (weight == -1) { 5813 weightSum = -1; 5814 break; 5815 } 5816 weightSum += weight; 5817 } 5818 // Update best. 5819 if (weightSum > bestWeight) { 5820 bestWeight = weightSum; 5821 bestMAIndex = maIndex; 5822 } 5823 } 5824 5825 // Now select chosen alternative in each constraint. 5826 for (AsmOperandInfo &cInfo : ConstraintOperands) 5827 if (cInfo.Type != InlineAsm::isClobber) 5828 cInfo.selectAlternative(bestMAIndex); 5829 } 5830 } 5831 5832 // Check and hook up tied operands, choose constraint code to use. 5833 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5834 cIndex != eIndex; ++cIndex) { 5835 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5836 5837 // If this is an output operand with a matching input operand, look up the 5838 // matching input. If their types mismatch, e.g. one is an integer, the 5839 // other is floating point, or their sizes are different, flag it as an 5840 // error. 5841 if (OpInfo.hasMatchingInput()) { 5842 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5843 5844 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5845 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5846 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5847 OpInfo.ConstraintVT); 5848 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5849 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5850 Input.ConstraintVT); 5851 if ((OpInfo.ConstraintVT.isInteger() != 5852 Input.ConstraintVT.isInteger()) || 5853 (MatchRC.second != InputRC.second)) { 5854 report_fatal_error("Unsupported asm: input constraint" 5855 " with a matching output constraint of" 5856 " incompatible type!"); 5857 } 5858 } 5859 } 5860 } 5861 5862 return ConstraintOperands; 5863 } 5864 5865 /// Return a number indicating our preference for chosing a type of constraint 5866 /// over another, for the purpose of sorting them. Immediates are almost always 5867 /// preferrable (when they can be emitted). A higher return value means a 5868 /// stronger preference for one constraint type relative to another. 5869 /// FIXME: We should prefer registers over memory but doing so may lead to 5870 /// unrecoverable register exhaustion later. 5871 /// https://github.com/llvm/llvm-project/issues/20571 5872 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { 5873 switch (CT) { 5874 case TargetLowering::C_Immediate: 5875 case TargetLowering::C_Other: 5876 return 4; 5877 case TargetLowering::C_Memory: 5878 case TargetLowering::C_Address: 5879 return 3; 5880 case TargetLowering::C_RegisterClass: 5881 return 2; 5882 case TargetLowering::C_Register: 5883 return 1; 5884 case TargetLowering::C_Unknown: 5885 return 0; 5886 } 5887 llvm_unreachable("Invalid constraint type"); 5888 } 5889 5890 /// Examine constraint type and operand type and determine a weight value. 5891 /// This object must already have been set up with the operand type 5892 /// and the current alternative constraint selected. 5893 TargetLowering::ConstraintWeight 5894 TargetLowering::getMultipleConstraintMatchWeight( 5895 AsmOperandInfo &info, int maIndex) const { 5896 InlineAsm::ConstraintCodeVector *rCodes; 5897 if (maIndex >= (int)info.multipleAlternatives.size()) 5898 rCodes = &info.Codes; 5899 else 5900 rCodes = &info.multipleAlternatives[maIndex].Codes; 5901 ConstraintWeight BestWeight = CW_Invalid; 5902 5903 // Loop over the options, keeping track of the most general one. 5904 for (const std::string &rCode : *rCodes) { 5905 ConstraintWeight weight = 5906 getSingleConstraintMatchWeight(info, rCode.c_str()); 5907 if (weight > BestWeight) 5908 BestWeight = weight; 5909 } 5910 5911 return BestWeight; 5912 } 5913 5914 /// Examine constraint type and operand type and determine a weight value. 5915 /// This object must already have been set up with the operand type 5916 /// and the current alternative constraint selected. 5917 TargetLowering::ConstraintWeight 5918 TargetLowering::getSingleConstraintMatchWeight( 5919 AsmOperandInfo &info, const char *constraint) const { 5920 ConstraintWeight weight = CW_Invalid; 5921 Value *CallOperandVal = info.CallOperandVal; 5922 // If we don't have a value, we can't do a match, 5923 // but allow it at the lowest weight. 5924 if (!CallOperandVal) 5925 return CW_Default; 5926 // Look at the constraint type. 5927 switch (*constraint) { 5928 case 'i': // immediate integer. 5929 case 'n': // immediate integer with a known value. 5930 if (isa<ConstantInt>(CallOperandVal)) 5931 weight = CW_Constant; 5932 break; 5933 case 's': // non-explicit intregal immediate. 5934 if (isa<GlobalValue>(CallOperandVal)) 5935 weight = CW_Constant; 5936 break; 5937 case 'E': // immediate float if host format. 5938 case 'F': // immediate float. 5939 if (isa<ConstantFP>(CallOperandVal)) 5940 weight = CW_Constant; 5941 break; 5942 case '<': // memory operand with autodecrement. 5943 case '>': // memory operand with autoincrement. 5944 case 'm': // memory operand. 5945 case 'o': // offsettable memory operand 5946 case 'V': // non-offsettable memory operand 5947 weight = CW_Memory; 5948 break; 5949 case 'r': // general register. 5950 case 'g': // general register, memory operand or immediate integer. 5951 // note: Clang converts "g" to "imr". 5952 if (CallOperandVal->getType()->isIntegerTy()) 5953 weight = CW_Register; 5954 break; 5955 case 'X': // any operand. 5956 default: 5957 weight = CW_Default; 5958 break; 5959 } 5960 return weight; 5961 } 5962 5963 /// If there are multiple different constraints that we could pick for this 5964 /// operand (e.g. "imr") try to pick the 'best' one. 5965 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall 5966 /// into seven classes: 5967 /// Register -> one specific register 5968 /// RegisterClass -> a group of regs 5969 /// Memory -> memory 5970 /// Address -> a symbolic memory reference 5971 /// Immediate -> immediate values 5972 /// Other -> magic values (such as "Flag Output Operands") 5973 /// Unknown -> something we don't recognize yet and can't handle 5974 /// Ideally, we would pick the most specific constraint possible: if we have 5975 /// something that fits into a register, we would pick it. The problem here 5976 /// is that if we have something that could either be in a register or in 5977 /// memory that use of the register could cause selection of *other* 5978 /// operands to fail: they might only succeed if we pick memory. Because of 5979 /// this the heuristic we use is: 5980 /// 5981 /// 1) If there is an 'other' constraint, and if the operand is valid for 5982 /// that constraint, use it. This makes us take advantage of 'i' 5983 /// constraints when available. 5984 /// 2) Otherwise, pick the most general constraint present. This prefers 5985 /// 'm' over 'r', for example. 5986 /// 5987 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( 5988 TargetLowering::AsmOperandInfo &OpInfo) const { 5989 ConstraintGroup Ret; 5990 5991 Ret.reserve(OpInfo.Codes.size()); 5992 for (StringRef Code : OpInfo.Codes) { 5993 TargetLowering::ConstraintType CType = getConstraintType(Code); 5994 5995 // Indirect 'other' or 'immediate' constraints are not allowed. 5996 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5997 CType == TargetLowering::C_Register || 5998 CType == TargetLowering::C_RegisterClass)) 5999 continue; 6000 6001 // Things with matching constraints can only be registers, per gcc 6002 // documentation. This mainly affects "g" constraints. 6003 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 6004 continue; 6005 6006 Ret.emplace_back(Code, CType); 6007 } 6008 6009 std::stable_sort( 6010 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { 6011 return getConstraintPiority(a.second) > getConstraintPiority(b.second); 6012 }); 6013 6014 return Ret; 6015 } 6016 6017 /// If we have an immediate, see if we can lower it. Return true if we can, 6018 /// false otherwise. 6019 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, 6020 SDValue Op, SelectionDAG *DAG, 6021 const TargetLowering &TLI) { 6022 6023 assert((P.second == TargetLowering::C_Other || 6024 P.second == TargetLowering::C_Immediate) && 6025 "need immediate or other"); 6026 6027 if (!Op.getNode()) 6028 return false; 6029 6030 std::vector<SDValue> ResultOps; 6031 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); 6032 return !ResultOps.empty(); 6033 } 6034 6035 /// Determines the constraint code and constraint type to use for the specific 6036 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 6037 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 6038 SDValue Op, 6039 SelectionDAG *DAG) const { 6040 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 6041 6042 // Single-letter constraints ('r') are very common. 6043 if (OpInfo.Codes.size() == 1) { 6044 OpInfo.ConstraintCode = OpInfo.Codes[0]; 6045 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6046 } else { 6047 ConstraintGroup G = getConstraintPreferences(OpInfo); 6048 if (G.empty()) 6049 return; 6050 6051 unsigned BestIdx = 0; 6052 for (const unsigned E = G.size(); 6053 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || 6054 G[BestIdx].second == TargetLowering::C_Immediate); 6055 ++BestIdx) { 6056 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) 6057 break; 6058 // If we're out of constraints, just pick the first one. 6059 if (BestIdx + 1 == E) { 6060 BestIdx = 0; 6061 break; 6062 } 6063 } 6064 6065 OpInfo.ConstraintCode = G[BestIdx].first; 6066 OpInfo.ConstraintType = G[BestIdx].second; 6067 } 6068 6069 // 'X' matches anything. 6070 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 6071 // Constants are handled elsewhere. For Functions, the type here is the 6072 // type of the result, which is not what we want to look at; leave them 6073 // alone. 6074 Value *v = OpInfo.CallOperandVal; 6075 if (isa<ConstantInt>(v) || isa<Function>(v)) { 6076 return; 6077 } 6078 6079 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 6080 OpInfo.ConstraintCode = "i"; 6081 return; 6082 } 6083 6084 // Otherwise, try to resolve it to something we know about by looking at 6085 // the actual operand type. 6086 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 6087 OpInfo.ConstraintCode = Repl; 6088 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6089 } 6090 } 6091 } 6092 6093 /// Given an exact SDIV by a constant, create a multiplication 6094 /// with the multiplicative inverse of the constant. 6095 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6096 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 6097 const SDLoc &dl, SelectionDAG &DAG, 6098 SmallVectorImpl<SDNode *> &Created) { 6099 SDValue Op0 = N->getOperand(0); 6100 SDValue Op1 = N->getOperand(1); 6101 EVT VT = N->getValueType(0); 6102 EVT SVT = VT.getScalarType(); 6103 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6104 EVT ShSVT = ShVT.getScalarType(); 6105 6106 bool UseSRA = false; 6107 SmallVector<SDValue, 16> Shifts, Factors; 6108 6109 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6110 if (C->isZero()) 6111 return false; 6112 APInt Divisor = C->getAPIntValue(); 6113 unsigned Shift = Divisor.countr_zero(); 6114 if (Shift) { 6115 Divisor.ashrInPlace(Shift); 6116 UseSRA = true; 6117 } 6118 APInt Factor = Divisor.multiplicativeInverse(); 6119 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6120 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6121 return true; 6122 }; 6123 6124 // Collect all magic values from the build vector. 6125 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 6126 return SDValue(); 6127 6128 SDValue Shift, Factor; 6129 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6130 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6131 Factor = DAG.getBuildVector(VT, dl, Factors); 6132 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6133 assert(Shifts.size() == 1 && Factors.size() == 1 && 6134 "Expected matchUnaryPredicate to return one element for scalable " 6135 "vectors"); 6136 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6137 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6138 } else { 6139 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6140 Shift = Shifts[0]; 6141 Factor = Factors[0]; 6142 } 6143 6144 SDValue Res = Op0; 6145 if (UseSRA) { 6146 SDNodeFlags Flags; 6147 Flags.setExact(true); 6148 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 6149 Created.push_back(Res.getNode()); 6150 } 6151 6152 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6153 } 6154 6155 /// Given an exact UDIV by a constant, create a multiplication 6156 /// with the multiplicative inverse of the constant. 6157 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6158 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, 6159 const SDLoc &dl, SelectionDAG &DAG, 6160 SmallVectorImpl<SDNode *> &Created) { 6161 EVT VT = N->getValueType(0); 6162 EVT SVT = VT.getScalarType(); 6163 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6164 EVT ShSVT = ShVT.getScalarType(); 6165 6166 bool UseSRL = false; 6167 SmallVector<SDValue, 16> Shifts, Factors; 6168 6169 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6170 if (C->isZero()) 6171 return false; 6172 APInt Divisor = C->getAPIntValue(); 6173 unsigned Shift = Divisor.countr_zero(); 6174 if (Shift) { 6175 Divisor.lshrInPlace(Shift); 6176 UseSRL = true; 6177 } 6178 // Calculate the multiplicative inverse modulo BW. 6179 APInt Factor = Divisor.multiplicativeInverse(); 6180 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6181 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6182 return true; 6183 }; 6184 6185 SDValue Op1 = N->getOperand(1); 6186 6187 // Collect all magic values from the build vector. 6188 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern)) 6189 return SDValue(); 6190 6191 SDValue Shift, Factor; 6192 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6193 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6194 Factor = DAG.getBuildVector(VT, dl, Factors); 6195 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6196 assert(Shifts.size() == 1 && Factors.size() == 1 && 6197 "Expected matchUnaryPredicate to return one element for scalable " 6198 "vectors"); 6199 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6200 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6201 } else { 6202 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6203 Shift = Shifts[0]; 6204 Factor = Factors[0]; 6205 } 6206 6207 SDValue Res = N->getOperand(0); 6208 if (UseSRL) { 6209 SDNodeFlags Flags; 6210 Flags.setExact(true); 6211 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, Flags); 6212 Created.push_back(Res.getNode()); 6213 } 6214 6215 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6216 } 6217 6218 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 6219 SelectionDAG &DAG, 6220 SmallVectorImpl<SDNode *> &Created) const { 6221 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6223 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 6224 return SDValue(N, 0); // Lower SDIV as SDIV 6225 return SDValue(); 6226 } 6227 6228 SDValue 6229 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 6230 SelectionDAG &DAG, 6231 SmallVectorImpl<SDNode *> &Created) const { 6232 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6234 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 6235 return SDValue(N, 0); // Lower SREM as SREM 6236 return SDValue(); 6237 } 6238 6239 /// Build sdiv by power-of-2 with conditional move instructions 6240 /// Ref: "Hacker's Delight" by Henry Warren 10-1 6241 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: 6242 /// bgez x, label 6243 /// add x, x, 2**k-1 6244 /// label: 6245 /// sra res, x, k 6246 /// neg res, res (when the divisor is negative) 6247 SDValue TargetLowering::buildSDIVPow2WithCMov( 6248 SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 6249 SmallVectorImpl<SDNode *> &Created) const { 6250 unsigned Lg2 = Divisor.countr_zero(); 6251 EVT VT = N->getValueType(0); 6252 6253 SDLoc DL(N); 6254 SDValue N0 = N->getOperand(0); 6255 SDValue Zero = DAG.getConstant(0, DL, VT); 6256 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); 6257 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); 6258 6259 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. 6260 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6261 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); 6262 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 6263 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 6264 6265 Created.push_back(Cmp.getNode()); 6266 Created.push_back(Add.getNode()); 6267 Created.push_back(CMov.getNode()); 6268 6269 // Divide by pow2. 6270 SDValue SRA = 6271 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); 6272 6273 // If we're dividing by a positive value, we're done. Otherwise, we must 6274 // negate the result. 6275 if (Divisor.isNonNegative()) 6276 return SRA; 6277 6278 Created.push_back(SRA.getNode()); 6279 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); 6280 } 6281 6282 /// Given an ISD::SDIV node expressing a divide by constant, 6283 /// return a DAG expression to select that will generate the same value by 6284 /// multiplying by a magic number. 6285 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6286 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 6287 bool IsAfterLegalization, 6288 SmallVectorImpl<SDNode *> &Created) const { 6289 SDLoc dl(N); 6290 EVT VT = N->getValueType(0); 6291 EVT SVT = VT.getScalarType(); 6292 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6293 EVT ShSVT = ShVT.getScalarType(); 6294 unsigned EltBits = VT.getScalarSizeInBits(); 6295 EVT MulVT; 6296 6297 // Check to see if we can do this. 6298 // FIXME: We should be more aggressive here. 6299 if (!isTypeLegal(VT)) { 6300 // Limit this to simple scalars for now. 6301 if (VT.isVector() || !VT.isSimple()) 6302 return SDValue(); 6303 6304 // If this type will be promoted to a large enough type with a legal 6305 // multiply operation, we can go ahead and do this transform. 6306 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6307 return SDValue(); 6308 6309 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6310 if (MulVT.getSizeInBits() < (2 * EltBits) || 6311 !isOperationLegal(ISD::MUL, MulVT)) 6312 return SDValue(); 6313 } 6314 6315 // If the sdiv has an 'exact' bit we can use a simpler lowering. 6316 if (N->getFlags().hasExact()) 6317 return BuildExactSDIV(*this, N, dl, DAG, Created); 6318 6319 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 6320 6321 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6322 if (C->isZero()) 6323 return false; 6324 6325 const APInt &Divisor = C->getAPIntValue(); 6326 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 6327 int NumeratorFactor = 0; 6328 int ShiftMask = -1; 6329 6330 if (Divisor.isOne() || Divisor.isAllOnes()) { 6331 // If d is +1/-1, we just multiply the numerator by +1/-1. 6332 NumeratorFactor = Divisor.getSExtValue(); 6333 magics.Magic = 0; 6334 magics.ShiftAmount = 0; 6335 ShiftMask = 0; 6336 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 6337 // If d > 0 and m < 0, add the numerator. 6338 NumeratorFactor = 1; 6339 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 6340 // If d < 0 and m > 0, subtract the numerator. 6341 NumeratorFactor = -1; 6342 } 6343 6344 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 6345 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 6346 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 6347 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 6348 return true; 6349 }; 6350 6351 SDValue N0 = N->getOperand(0); 6352 SDValue N1 = N->getOperand(1); 6353 6354 // Collect the shifts / magic values from each element. 6355 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 6356 return SDValue(); 6357 6358 SDValue MagicFactor, Factor, Shift, ShiftMask; 6359 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6360 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6361 Factor = DAG.getBuildVector(VT, dl, Factors); 6362 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6363 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 6364 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6365 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 6366 Shifts.size() == 1 && ShiftMasks.size() == 1 && 6367 "Expected matchUnaryPredicate to return one element for scalable " 6368 "vectors"); 6369 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6370 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6371 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6372 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 6373 } else { 6374 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6375 MagicFactor = MagicFactors[0]; 6376 Factor = Factors[0]; 6377 Shift = Shifts[0]; 6378 ShiftMask = ShiftMasks[0]; 6379 } 6380 6381 // Multiply the numerator (operand 0) by the magic value. 6382 // FIXME: We should support doing a MUL in a wider type. 6383 auto GetMULHS = [&](SDValue X, SDValue Y) { 6384 // If the type isn't legal, use a wider mul of the type calculated 6385 // earlier. 6386 if (!isTypeLegal(VT)) { 6387 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 6388 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 6389 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6390 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6391 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6392 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6393 } 6394 6395 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 6396 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 6397 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 6398 SDValue LoHi = 6399 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6400 return SDValue(LoHi.getNode(), 1); 6401 } 6402 // If type twice as wide legal, widen and use a mul plus a shift. 6403 unsigned Size = VT.getScalarSizeInBits(); 6404 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6405 if (VT.isVector()) 6406 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6407 VT.getVectorElementCount()); 6408 if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6409 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); 6410 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); 6411 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6412 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6413 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6414 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6415 } 6416 return SDValue(); 6417 }; 6418 6419 SDValue Q = GetMULHS(N0, MagicFactor); 6420 if (!Q) 6421 return SDValue(); 6422 6423 Created.push_back(Q.getNode()); 6424 6425 // (Optionally) Add/subtract the numerator using Factor. 6426 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 6427 Created.push_back(Factor.getNode()); 6428 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 6429 Created.push_back(Q.getNode()); 6430 6431 // Shift right algebraic by shift value. 6432 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 6433 Created.push_back(Q.getNode()); 6434 6435 // Extract the sign bit, mask it and add it to the quotient. 6436 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 6437 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 6438 Created.push_back(T.getNode()); 6439 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 6440 Created.push_back(T.getNode()); 6441 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6442 } 6443 6444 /// Given an ISD::UDIV node expressing a divide by constant, 6445 /// return a DAG expression to select that will generate the same value by 6446 /// multiplying by a magic number. 6447 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6448 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6449 bool IsAfterLegalization, 6450 SmallVectorImpl<SDNode *> &Created) const { 6451 SDLoc dl(N); 6452 EVT VT = N->getValueType(0); 6453 EVT SVT = VT.getScalarType(); 6454 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6455 EVT ShSVT = ShVT.getScalarType(); 6456 unsigned EltBits = VT.getScalarSizeInBits(); 6457 EVT MulVT; 6458 6459 // Check to see if we can do this. 6460 // FIXME: We should be more aggressive here. 6461 if (!isTypeLegal(VT)) { 6462 // Limit this to simple scalars for now. 6463 if (VT.isVector() || !VT.isSimple()) 6464 return SDValue(); 6465 6466 // If this type will be promoted to a large enough type with a legal 6467 // multiply operation, we can go ahead and do this transform. 6468 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6469 return SDValue(); 6470 6471 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6472 if (MulVT.getSizeInBits() < (2 * EltBits) || 6473 !isOperationLegal(ISD::MUL, MulVT)) 6474 return SDValue(); 6475 } 6476 6477 // If the udiv has an 'exact' bit we can use a simpler lowering. 6478 if (N->getFlags().hasExact()) 6479 return BuildExactUDIV(*this, N, dl, DAG, Created); 6480 6481 SDValue N0 = N->getOperand(0); 6482 SDValue N1 = N->getOperand(1); 6483 6484 // Try to use leading zeros of the dividend to reduce the multiplier and 6485 // avoid expensive fixups. 6486 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6487 6488 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6489 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6490 6491 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6492 if (C->isZero()) 6493 return false; 6494 const APInt& Divisor = C->getAPIntValue(); 6495 6496 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6497 6498 // Magic algorithm doesn't work for division by 1. We need to emit a select 6499 // at the end. 6500 if (Divisor.isOne()) { 6501 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6502 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6503 } else { 6504 UnsignedDivisionByConstantInfo magics = 6505 UnsignedDivisionByConstantInfo::get( 6506 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero())); 6507 6508 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6509 6510 assert(magics.PreShift < Divisor.getBitWidth() && 6511 "We shouldn't generate an undefined shift!"); 6512 assert(magics.PostShift < Divisor.getBitWidth() && 6513 "We shouldn't generate an undefined shift!"); 6514 assert((!magics.IsAdd || magics.PreShift == 0) && 6515 "Unexpected pre-shift"); 6516 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6517 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6518 NPQFactor = DAG.getConstant( 6519 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6520 : APInt::getZero(EltBits), 6521 dl, SVT); 6522 UseNPQ |= magics.IsAdd; 6523 UsePreShift |= magics.PreShift != 0; 6524 UsePostShift |= magics.PostShift != 0; 6525 } 6526 6527 PreShifts.push_back(PreShift); 6528 MagicFactors.push_back(MagicFactor); 6529 NPQFactors.push_back(NPQFactor); 6530 PostShifts.push_back(PostShift); 6531 return true; 6532 }; 6533 6534 // Collect the shifts/magic values from each element. 6535 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6536 return SDValue(); 6537 6538 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6539 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6540 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6541 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6542 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6543 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6544 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6545 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6546 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6547 "Expected matchUnaryPredicate to return one for scalable vectors"); 6548 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6549 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6550 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6551 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6552 } else { 6553 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6554 PreShift = PreShifts[0]; 6555 MagicFactor = MagicFactors[0]; 6556 PostShift = PostShifts[0]; 6557 } 6558 6559 SDValue Q = N0; 6560 if (UsePreShift) { 6561 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6562 Created.push_back(Q.getNode()); 6563 } 6564 6565 // FIXME: We should support doing a MUL in a wider type. 6566 auto GetMULHU = [&](SDValue X, SDValue Y) { 6567 // If the type isn't legal, use a wider mul of the type calculated 6568 // earlier. 6569 if (!isTypeLegal(VT)) { 6570 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6571 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6572 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6573 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6574 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6575 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6576 } 6577 6578 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6579 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6580 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6581 SDValue LoHi = 6582 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6583 return SDValue(LoHi.getNode(), 1); 6584 } 6585 // If type twice as wide legal, widen and use a mul plus a shift. 6586 unsigned Size = VT.getScalarSizeInBits(); 6587 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6588 if (VT.isVector()) 6589 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6590 VT.getVectorElementCount()); 6591 if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6592 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); 6593 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); 6594 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6595 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6596 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6597 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6598 } 6599 return SDValue(); // No mulhu or equivalent 6600 }; 6601 6602 // Multiply the numerator (operand 0) by the magic value. 6603 Q = GetMULHU(Q, MagicFactor); 6604 if (!Q) 6605 return SDValue(); 6606 6607 Created.push_back(Q.getNode()); 6608 6609 if (UseNPQ) { 6610 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6611 Created.push_back(NPQ.getNode()); 6612 6613 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6614 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6615 if (VT.isVector()) 6616 NPQ = GetMULHU(NPQ, NPQFactor); 6617 else 6618 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6619 6620 Created.push_back(NPQ.getNode()); 6621 6622 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6623 Created.push_back(Q.getNode()); 6624 } 6625 6626 if (UsePostShift) { 6627 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6628 Created.push_back(Q.getNode()); 6629 } 6630 6631 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6632 6633 SDValue One = DAG.getConstant(1, dl, VT); 6634 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6635 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6636 } 6637 6638 /// If all values in Values that *don't* match the predicate are same 'splat' 6639 /// value, then replace all values with that splat value. 6640 /// Else, if AlternativeReplacement was provided, then replace all values that 6641 /// do match predicate with AlternativeReplacement value. 6642 static void 6643 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6644 std::function<bool(SDValue)> Predicate, 6645 SDValue AlternativeReplacement = SDValue()) { 6646 SDValue Replacement; 6647 // Is there a value for which the Predicate does *NOT* match? What is it? 6648 auto SplatValue = llvm::find_if_not(Values, Predicate); 6649 if (SplatValue != Values.end()) { 6650 // Does Values consist only of SplatValue's and values matching Predicate? 6651 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6652 return Value == *SplatValue || Predicate(Value); 6653 })) // Then we shall replace values matching predicate with SplatValue. 6654 Replacement = *SplatValue; 6655 } 6656 if (!Replacement) { 6657 // Oops, we did not find the "baseline" splat value. 6658 if (!AlternativeReplacement) 6659 return; // Nothing to do. 6660 // Let's replace with provided value then. 6661 Replacement = AlternativeReplacement; 6662 } 6663 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6664 } 6665 6666 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6667 /// where the divisor is constant and the comparison target is zero, 6668 /// return a DAG expression that will generate the same comparison result 6669 /// using only multiplications, additions and shifts/rotations. 6670 /// Ref: "Hacker's Delight" 10-17. 6671 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6672 SDValue CompTargetNode, 6673 ISD::CondCode Cond, 6674 DAGCombinerInfo &DCI, 6675 const SDLoc &DL) const { 6676 SmallVector<SDNode *, 5> Built; 6677 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6678 DCI, DL, Built)) { 6679 for (SDNode *N : Built) 6680 DCI.AddToWorklist(N); 6681 return Folded; 6682 } 6683 6684 return SDValue(); 6685 } 6686 6687 SDValue 6688 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6689 SDValue CompTargetNode, ISD::CondCode Cond, 6690 DAGCombinerInfo &DCI, const SDLoc &DL, 6691 SmallVectorImpl<SDNode *> &Created) const { 6692 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6693 // - D must be constant, with D = D0 * 2^K where D0 is odd 6694 // - P is the multiplicative inverse of D0 modulo 2^W 6695 // - Q = floor(((2^W) - 1) / D) 6696 // where W is the width of the common type of N and D. 6697 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6698 "Only applicable for (in)equality comparisons."); 6699 6700 SelectionDAG &DAG = DCI.DAG; 6701 6702 EVT VT = REMNode.getValueType(); 6703 EVT SVT = VT.getScalarType(); 6704 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6705 EVT ShSVT = ShVT.getScalarType(); 6706 6707 // If MUL is unavailable, we cannot proceed in any case. 6708 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6709 return SDValue(); 6710 6711 bool ComparingWithAllZeros = true; 6712 bool AllComparisonsWithNonZerosAreTautological = true; 6713 bool HadTautologicalLanes = false; 6714 bool AllLanesAreTautological = true; 6715 bool HadEvenDivisor = false; 6716 bool AllDivisorsArePowerOfTwo = true; 6717 bool HadTautologicalInvertedLanes = false; 6718 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6719 6720 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6721 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6722 if (CDiv->isZero()) 6723 return false; 6724 6725 const APInt &D = CDiv->getAPIntValue(); 6726 const APInt &Cmp = CCmp->getAPIntValue(); 6727 6728 ComparingWithAllZeros &= Cmp.isZero(); 6729 6730 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6731 // if C2 is not less than C1, the comparison is always false. 6732 // But we will only be able to produce the comparison that will give the 6733 // opposive tautological answer. So this lane would need to be fixed up. 6734 bool TautologicalInvertedLane = D.ule(Cmp); 6735 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6736 6737 // If all lanes are tautological (either all divisors are ones, or divisor 6738 // is not greater than the constant we are comparing with), 6739 // we will prefer to avoid the fold. 6740 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6741 HadTautologicalLanes |= TautologicalLane; 6742 AllLanesAreTautological &= TautologicalLane; 6743 6744 // If we are comparing with non-zero, we need'll need to subtract said 6745 // comparison value from the LHS. But there is no point in doing that if 6746 // every lane where we are comparing with non-zero is tautological.. 6747 if (!Cmp.isZero()) 6748 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6749 6750 // Decompose D into D0 * 2^K 6751 unsigned K = D.countr_zero(); 6752 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6753 APInt D0 = D.lshr(K); 6754 6755 // D is even if it has trailing zeros. 6756 HadEvenDivisor |= (K != 0); 6757 // D is a power-of-two if D0 is one. 6758 // If all divisors are power-of-two, we will prefer to avoid the fold. 6759 AllDivisorsArePowerOfTwo &= D0.isOne(); 6760 6761 // P = inv(D0, 2^W) 6762 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6763 unsigned W = D.getBitWidth(); 6764 APInt P = D0.multiplicativeInverse(); 6765 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6766 6767 // Q = floor((2^W - 1) u/ D) 6768 // R = ((2^W - 1) u% D) 6769 APInt Q, R; 6770 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6771 6772 // If we are comparing with zero, then that comparison constant is okay, 6773 // else it may need to be one less than that. 6774 if (Cmp.ugt(R)) 6775 Q -= 1; 6776 6777 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6778 "We are expecting that K is always less than all-ones for ShSVT"); 6779 6780 // If the lane is tautological the result can be constant-folded. 6781 if (TautologicalLane) { 6782 // Set P and K amount to a bogus values so we can try to splat them. 6783 P = 0; 6784 K = -1; 6785 // And ensure that comparison constant is tautological, 6786 // it will always compare true/false. 6787 Q = -1; 6788 } 6789 6790 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6791 KAmts.push_back( 6792 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6793 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6794 return true; 6795 }; 6796 6797 SDValue N = REMNode.getOperand(0); 6798 SDValue D = REMNode.getOperand(1); 6799 6800 // Collect the values from each element. 6801 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6802 return SDValue(); 6803 6804 // If all lanes are tautological, the result can be constant-folded. 6805 if (AllLanesAreTautological) 6806 return SDValue(); 6807 6808 // If this is a urem by a powers-of-two, avoid the fold since it can be 6809 // best implemented as a bit test. 6810 if (AllDivisorsArePowerOfTwo) 6811 return SDValue(); 6812 6813 SDValue PVal, KVal, QVal; 6814 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6815 if (HadTautologicalLanes) { 6816 // Try to turn PAmts into a splat, since we don't care about the values 6817 // that are currently '0'. If we can't, just keep '0'`s. 6818 turnVectorIntoSplatVector(PAmts, isNullConstant); 6819 // Try to turn KAmts into a splat, since we don't care about the values 6820 // that are currently '-1'. If we can't, change them to '0'`s. 6821 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6822 DAG.getConstant(0, DL, ShSVT)); 6823 } 6824 6825 PVal = DAG.getBuildVector(VT, DL, PAmts); 6826 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6827 QVal = DAG.getBuildVector(VT, DL, QAmts); 6828 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6829 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6830 "Expected matchBinaryPredicate to return one element for " 6831 "SPLAT_VECTORs"); 6832 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6833 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6834 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6835 } else { 6836 PVal = PAmts[0]; 6837 KVal = KAmts[0]; 6838 QVal = QAmts[0]; 6839 } 6840 6841 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6842 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6843 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6844 assert(CompTargetNode.getValueType() == N.getValueType() && 6845 "Expecting that the types on LHS and RHS of comparisons match."); 6846 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6847 } 6848 6849 // (mul N, P) 6850 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6851 Created.push_back(Op0.getNode()); 6852 6853 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6854 // divisors as a performance improvement, since rotating by 0 is a no-op. 6855 if (HadEvenDivisor) { 6856 // We need ROTR to do this. 6857 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6858 return SDValue(); 6859 // UREM: (rotr (mul N, P), K) 6860 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6861 Created.push_back(Op0.getNode()); 6862 } 6863 6864 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6865 SDValue NewCC = 6866 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6867 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6868 if (!HadTautologicalInvertedLanes) 6869 return NewCC; 6870 6871 // If any lanes previously compared always-false, the NewCC will give 6872 // always-true result for them, so we need to fixup those lanes. 6873 // Or the other way around for inequality predicate. 6874 assert(VT.isVector() && "Can/should only get here for vectors."); 6875 Created.push_back(NewCC.getNode()); 6876 6877 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6878 // if C2 is not less than C1, the comparison is always false. 6879 // But we have produced the comparison that will give the 6880 // opposive tautological answer. So these lanes would need to be fixed up. 6881 SDValue TautologicalInvertedChannels = 6882 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6883 Created.push_back(TautologicalInvertedChannels.getNode()); 6884 6885 // NOTE: we avoid letting illegal types through even if we're before legalize 6886 // ops – legalization has a hard time producing good code for this. 6887 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6888 // If we have a vector select, let's replace the comparison results in the 6889 // affected lanes with the correct tautological result. 6890 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6891 DL, SETCCVT, SETCCVT); 6892 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6893 Replacement, NewCC); 6894 } 6895 6896 // Else, we can just invert the comparison result in the appropriate lanes. 6897 // 6898 // NOTE: see the note above VSELECT above. 6899 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6900 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6901 TautologicalInvertedChannels); 6902 6903 return SDValue(); // Don't know how to lower. 6904 } 6905 6906 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6907 /// where the divisor is constant and the comparison target is zero, 6908 /// return a DAG expression that will generate the same comparison result 6909 /// using only multiplications, additions and shifts/rotations. 6910 /// Ref: "Hacker's Delight" 10-17. 6911 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6912 SDValue CompTargetNode, 6913 ISD::CondCode Cond, 6914 DAGCombinerInfo &DCI, 6915 const SDLoc &DL) const { 6916 SmallVector<SDNode *, 7> Built; 6917 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6918 DCI, DL, Built)) { 6919 assert(Built.size() <= 7 && "Max size prediction failed."); 6920 for (SDNode *N : Built) 6921 DCI.AddToWorklist(N); 6922 return Folded; 6923 } 6924 6925 return SDValue(); 6926 } 6927 6928 SDValue 6929 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6930 SDValue CompTargetNode, ISD::CondCode Cond, 6931 DAGCombinerInfo &DCI, const SDLoc &DL, 6932 SmallVectorImpl<SDNode *> &Created) const { 6933 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. 6934 // Fold: 6935 // (seteq/ne (srem N, D), 0) 6936 // To: 6937 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6938 // 6939 // - D must be constant, with D = D0 * 2^K where D0 is odd 6940 // - P is the multiplicative inverse of D0 modulo 2^W 6941 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6942 // - Q = floor((2 * A) / (2^K)) 6943 // where W is the width of the common type of N and D. 6944 // 6945 // When D is a power of two (and thus D0 is 1), the normal 6946 // formula for A and Q don't apply, because the derivation 6947 // depends on D not dividing 2^(W-1), and thus theorem ZRS 6948 // does not apply. This specifically fails when N = INT_MIN. 6949 // 6950 // Instead, for power-of-two D, we use: 6951 // - A = 2^(W-1) 6952 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) 6953 // - Q = 2^(W-K) - 1 6954 // |-> Test that the top K bits are zero after rotation 6955 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6956 "Only applicable for (in)equality comparisons."); 6957 6958 SelectionDAG &DAG = DCI.DAG; 6959 6960 EVT VT = REMNode.getValueType(); 6961 EVT SVT = VT.getScalarType(); 6962 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6963 EVT ShSVT = ShVT.getScalarType(); 6964 6965 // If we are after ops legalization, and MUL is unavailable, we can not 6966 // proceed. 6967 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6968 return SDValue(); 6969 6970 // TODO: Could support comparing with non-zero too. 6971 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6972 if (!CompTarget || !CompTarget->isZero()) 6973 return SDValue(); 6974 6975 bool HadIntMinDivisor = false; 6976 bool HadOneDivisor = false; 6977 bool AllDivisorsAreOnes = true; 6978 bool HadEvenDivisor = false; 6979 bool NeedToApplyOffset = false; 6980 bool AllDivisorsArePowerOfTwo = true; 6981 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6982 6983 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6984 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6985 if (C->isZero()) 6986 return false; 6987 6988 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6989 6990 // WARNING: this fold is only valid for positive divisors! 6991 APInt D = C->getAPIntValue(); 6992 if (D.isNegative()) 6993 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6994 6995 HadIntMinDivisor |= D.isMinSignedValue(); 6996 6997 // If all divisors are ones, we will prefer to avoid the fold. 6998 HadOneDivisor |= D.isOne(); 6999 AllDivisorsAreOnes &= D.isOne(); 7000 7001 // Decompose D into D0 * 2^K 7002 unsigned K = D.countr_zero(); 7003 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 7004 APInt D0 = D.lshr(K); 7005 7006 if (!D.isMinSignedValue()) { 7007 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 7008 // we don't care about this lane in this fold, we'll special-handle it. 7009 HadEvenDivisor |= (K != 0); 7010 } 7011 7012 // D is a power-of-two if D0 is one. This includes INT_MIN. 7013 // If all divisors are power-of-two, we will prefer to avoid the fold. 7014 AllDivisorsArePowerOfTwo &= D0.isOne(); 7015 7016 // P = inv(D0, 2^W) 7017 // 2^W requires W + 1 bits, so we have to extend and then truncate. 7018 unsigned W = D.getBitWidth(); 7019 APInt P = D0.multiplicativeInverse(); 7020 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 7021 7022 // A = floor((2^(W - 1) - 1) / D0) & -2^K 7023 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 7024 A.clearLowBits(K); 7025 7026 if (!D.isMinSignedValue()) { 7027 // If divisor INT_MIN, then we don't care about this lane in this fold, 7028 // we'll special-handle it. 7029 NeedToApplyOffset |= A != 0; 7030 } 7031 7032 // Q = floor((2 * A) / (2^K)) 7033 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 7034 7035 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 7036 "We are expecting that A is always less than all-ones for SVT"); 7037 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 7038 "We are expecting that K is always less than all-ones for ShSVT"); 7039 7040 // If D was a power of two, apply the alternate constant derivation. 7041 if (D0.isOne()) { 7042 // A = 2^(W-1) 7043 A = APInt::getSignedMinValue(W); 7044 // - Q = 2^(W-K) - 1 7045 Q = APInt::getAllOnes(W - K).zext(W); 7046 } 7047 7048 // If the divisor is 1 the result can be constant-folded. Likewise, we 7049 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 7050 if (D.isOne()) { 7051 // Set P, A and K to a bogus values so we can try to splat them. 7052 P = 0; 7053 A = -1; 7054 K = -1; 7055 7056 // x ?% 1 == 0 <--> true <--> x u<= -1 7057 Q = -1; 7058 } 7059 7060 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 7061 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 7062 KAmts.push_back( 7063 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 7064 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 7065 return true; 7066 }; 7067 7068 SDValue N = REMNode.getOperand(0); 7069 SDValue D = REMNode.getOperand(1); 7070 7071 // Collect the values from each element. 7072 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 7073 return SDValue(); 7074 7075 // If this is a srem by a one, avoid the fold since it can be constant-folded. 7076 if (AllDivisorsAreOnes) 7077 return SDValue(); 7078 7079 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 7080 // since it can be best implemented as a bit test. 7081 if (AllDivisorsArePowerOfTwo) 7082 return SDValue(); 7083 7084 SDValue PVal, AVal, KVal, QVal; 7085 if (D.getOpcode() == ISD::BUILD_VECTOR) { 7086 if (HadOneDivisor) { 7087 // Try to turn PAmts into a splat, since we don't care about the values 7088 // that are currently '0'. If we can't, just keep '0'`s. 7089 turnVectorIntoSplatVector(PAmts, isNullConstant); 7090 // Try to turn AAmts into a splat, since we don't care about the 7091 // values that are currently '-1'. If we can't, change them to '0'`s. 7092 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 7093 DAG.getConstant(0, DL, SVT)); 7094 // Try to turn KAmts into a splat, since we don't care about the values 7095 // that are currently '-1'. If we can't, change them to '0'`s. 7096 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 7097 DAG.getConstant(0, DL, ShSVT)); 7098 } 7099 7100 PVal = DAG.getBuildVector(VT, DL, PAmts); 7101 AVal = DAG.getBuildVector(VT, DL, AAmts); 7102 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 7103 QVal = DAG.getBuildVector(VT, DL, QAmts); 7104 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 7105 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 7106 QAmts.size() == 1 && 7107 "Expected matchUnaryPredicate to return one element for scalable " 7108 "vectors"); 7109 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 7110 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 7111 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 7112 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 7113 } else { 7114 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 7115 PVal = PAmts[0]; 7116 AVal = AAmts[0]; 7117 KVal = KAmts[0]; 7118 QVal = QAmts[0]; 7119 } 7120 7121 // (mul N, P) 7122 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 7123 Created.push_back(Op0.getNode()); 7124 7125 if (NeedToApplyOffset) { 7126 // We need ADD to do this. 7127 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 7128 return SDValue(); 7129 7130 // (add (mul N, P), A) 7131 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 7132 Created.push_back(Op0.getNode()); 7133 } 7134 7135 // Rotate right only if any divisor was even. We avoid rotates for all-odd 7136 // divisors as a performance improvement, since rotating by 0 is a no-op. 7137 if (HadEvenDivisor) { 7138 // We need ROTR to do this. 7139 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 7140 return SDValue(); 7141 // SREM: (rotr (add (mul N, P), A), K) 7142 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 7143 Created.push_back(Op0.getNode()); 7144 } 7145 7146 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 7147 SDValue Fold = 7148 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 7149 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 7150 7151 // If we didn't have lanes with INT_MIN divisor, then we're done. 7152 if (!HadIntMinDivisor) 7153 return Fold; 7154 7155 // That fold is only valid for positive divisors. Which effectively means, 7156 // it is invalid for INT_MIN divisors. So if we have such a lane, 7157 // we must fix-up results for said lanes. 7158 assert(VT.isVector() && "Can/should only get here for vectors."); 7159 7160 // NOTE: we avoid letting illegal types through even if we're before legalize 7161 // ops – legalization has a hard time producing good code for the code that 7162 // follows. 7163 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || 7164 !isOperationLegalOrCustom(ISD::AND, VT) || 7165 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || 7166 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 7167 return SDValue(); 7168 7169 Created.push_back(Fold.getNode()); 7170 7171 SDValue IntMin = DAG.getConstant( 7172 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 7173 SDValue IntMax = DAG.getConstant( 7174 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 7175 SDValue Zero = 7176 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 7177 7178 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 7179 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 7180 Created.push_back(DivisorIsIntMin.getNode()); 7181 7182 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 7183 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 7184 Created.push_back(Masked.getNode()); 7185 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 7186 Created.push_back(MaskedIsZero.getNode()); 7187 7188 // To produce final result we need to blend 2 vectors: 'SetCC' and 7189 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 7190 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 7191 // constant-folded, select can get lowered to a shuffle with constant mask. 7192 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 7193 MaskedIsZero, Fold); 7194 7195 return Blended; 7196 } 7197 7198 bool TargetLowering:: 7199 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 7200 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 7201 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 7202 "be a constant integer"); 7203 return true; 7204 } 7205 7206 return false; 7207 } 7208 7209 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 7210 const DenormalMode &Mode) const { 7211 SDLoc DL(Op); 7212 EVT VT = Op.getValueType(); 7213 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7214 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 7215 7216 // This is specifically a check for the handling of denormal inputs, not the 7217 // result. 7218 if (Mode.Input == DenormalMode::PreserveSign || 7219 Mode.Input == DenormalMode::PositiveZero) { 7220 // Test = X == 0.0 7221 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 7222 } 7223 7224 // Testing it with denormal inputs to avoid wrong estimate. 7225 // 7226 // Test = fabs(X) < SmallestNormal 7227 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 7228 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 7229 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 7230 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 7231 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 7232 } 7233 7234 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 7235 bool LegalOps, bool OptForSize, 7236 NegatibleCost &Cost, 7237 unsigned Depth) const { 7238 // fneg is removable even if it has multiple uses. 7239 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { 7240 Cost = NegatibleCost::Cheaper; 7241 return Op.getOperand(0); 7242 } 7243 7244 // Don't recurse exponentially. 7245 if (Depth > SelectionDAG::MaxRecursionDepth) 7246 return SDValue(); 7247 7248 // Pre-increment recursion depth for use in recursive calls. 7249 ++Depth; 7250 const SDNodeFlags Flags = Op->getFlags(); 7251 const TargetOptions &Options = DAG.getTarget().Options; 7252 EVT VT = Op.getValueType(); 7253 unsigned Opcode = Op.getOpcode(); 7254 7255 // Don't allow anything with multiple uses unless we know it is free. 7256 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 7257 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 7258 isFPExtFree(VT, Op.getOperand(0).getValueType()); 7259 if (!IsFreeExtend) 7260 return SDValue(); 7261 } 7262 7263 auto RemoveDeadNode = [&](SDValue N) { 7264 if (N && N.getNode()->use_empty()) 7265 DAG.RemoveDeadNode(N.getNode()); 7266 }; 7267 7268 SDLoc DL(Op); 7269 7270 // Because getNegatedExpression can delete nodes we need a handle to keep 7271 // temporary nodes alive in case the recursion manages to create an identical 7272 // node. 7273 std::list<HandleSDNode> Handles; 7274 7275 switch (Opcode) { 7276 case ISD::ConstantFP: { 7277 // Don't invert constant FP values after legalization unless the target says 7278 // the negated constant is legal. 7279 bool IsOpLegal = 7280 isOperationLegal(ISD::ConstantFP, VT) || 7281 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 7282 OptForSize); 7283 7284 if (LegalOps && !IsOpLegal) 7285 break; 7286 7287 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 7288 V.changeSign(); 7289 SDValue CFP = DAG.getConstantFP(V, DL, VT); 7290 7291 // If we already have the use of the negated floating constant, it is free 7292 // to negate it even it has multiple uses. 7293 if (!Op.hasOneUse() && CFP.use_empty()) 7294 break; 7295 Cost = NegatibleCost::Neutral; 7296 return CFP; 7297 } 7298 case ISD::BUILD_VECTOR: { 7299 // Only permit BUILD_VECTOR of constants. 7300 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 7301 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 7302 })) 7303 break; 7304 7305 bool IsOpLegal = 7306 (isOperationLegal(ISD::ConstantFP, VT) && 7307 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 7308 llvm::all_of(Op->op_values(), [&](SDValue N) { 7309 return N.isUndef() || 7310 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 7311 OptForSize); 7312 }); 7313 7314 if (LegalOps && !IsOpLegal) 7315 break; 7316 7317 SmallVector<SDValue, 4> Ops; 7318 for (SDValue C : Op->op_values()) { 7319 if (C.isUndef()) { 7320 Ops.push_back(C); 7321 continue; 7322 } 7323 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 7324 V.changeSign(); 7325 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 7326 } 7327 Cost = NegatibleCost::Neutral; 7328 return DAG.getBuildVector(VT, DL, Ops); 7329 } 7330 case ISD::FADD: { 7331 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7332 break; 7333 7334 // After operation legalization, it might not be legal to create new FSUBs. 7335 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 7336 break; 7337 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7338 7339 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 7340 NegatibleCost CostX = NegatibleCost::Expensive; 7341 SDValue NegX = 7342 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7343 // Prevent this node from being deleted by the next call. 7344 if (NegX) 7345 Handles.emplace_back(NegX); 7346 7347 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 7348 NegatibleCost CostY = NegatibleCost::Expensive; 7349 SDValue NegY = 7350 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7351 7352 // We're done with the handles. 7353 Handles.clear(); 7354 7355 // Negate the X if its cost is less or equal than Y. 7356 if (NegX && (CostX <= CostY)) { 7357 Cost = CostX; 7358 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 7359 if (NegY != N) 7360 RemoveDeadNode(NegY); 7361 return N; 7362 } 7363 7364 // Negate the Y if it is not expensive. 7365 if (NegY) { 7366 Cost = CostY; 7367 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 7368 if (NegX != N) 7369 RemoveDeadNode(NegX); 7370 return N; 7371 } 7372 break; 7373 } 7374 case ISD::FSUB: { 7375 // We can't turn -(A-B) into B-A when we honor signed zeros. 7376 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7377 break; 7378 7379 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7380 // fold (fneg (fsub 0, Y)) -> Y 7381 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 7382 if (C->isZero()) { 7383 Cost = NegatibleCost::Cheaper; 7384 return Y; 7385 } 7386 7387 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 7388 Cost = NegatibleCost::Neutral; 7389 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 7390 } 7391 case ISD::FMUL: 7392 case ISD::FDIV: { 7393 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7394 7395 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 7396 NegatibleCost CostX = NegatibleCost::Expensive; 7397 SDValue NegX = 7398 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7399 // Prevent this node from being deleted by the next call. 7400 if (NegX) 7401 Handles.emplace_back(NegX); 7402 7403 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 7404 NegatibleCost CostY = NegatibleCost::Expensive; 7405 SDValue NegY = 7406 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7407 7408 // We're done with the handles. 7409 Handles.clear(); 7410 7411 // Negate the X if its cost is less or equal than Y. 7412 if (NegX && (CostX <= CostY)) { 7413 Cost = CostX; 7414 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 7415 if (NegY != N) 7416 RemoveDeadNode(NegY); 7417 return N; 7418 } 7419 7420 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 7421 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 7422 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 7423 break; 7424 7425 // Negate the Y if it is not expensive. 7426 if (NegY) { 7427 Cost = CostY; 7428 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 7429 if (NegX != N) 7430 RemoveDeadNode(NegX); 7431 return N; 7432 } 7433 break; 7434 } 7435 case ISD::FMA: 7436 case ISD::FMAD: { 7437 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7438 break; 7439 7440 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 7441 NegatibleCost CostZ = NegatibleCost::Expensive; 7442 SDValue NegZ = 7443 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 7444 // Give up if fail to negate the Z. 7445 if (!NegZ) 7446 break; 7447 7448 // Prevent this node from being deleted by the next two calls. 7449 Handles.emplace_back(NegZ); 7450 7451 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 7452 NegatibleCost CostX = NegatibleCost::Expensive; 7453 SDValue NegX = 7454 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7455 // Prevent this node from being deleted by the next call. 7456 if (NegX) 7457 Handles.emplace_back(NegX); 7458 7459 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 7460 NegatibleCost CostY = NegatibleCost::Expensive; 7461 SDValue NegY = 7462 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7463 7464 // We're done with the handles. 7465 Handles.clear(); 7466 7467 // Negate the X if its cost is less or equal than Y. 7468 if (NegX && (CostX <= CostY)) { 7469 Cost = std::min(CostX, CostZ); 7470 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7471 if (NegY != N) 7472 RemoveDeadNode(NegY); 7473 return N; 7474 } 7475 7476 // Negate the Y if it is not expensive. 7477 if (NegY) { 7478 Cost = std::min(CostY, CostZ); 7479 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7480 if (NegX != N) 7481 RemoveDeadNode(NegX); 7482 return N; 7483 } 7484 break; 7485 } 7486 7487 case ISD::FP_EXTEND: 7488 case ISD::FSIN: 7489 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7490 OptForSize, Cost, Depth)) 7491 return DAG.getNode(Opcode, DL, VT, NegV); 7492 break; 7493 case ISD::FP_ROUND: 7494 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7495 OptForSize, Cost, Depth)) 7496 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7497 break; 7498 case ISD::SELECT: 7499 case ISD::VSELECT: { 7500 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7501 // iff at least one cost is cheaper and the other is neutral/cheaper 7502 SDValue LHS = Op.getOperand(1); 7503 NegatibleCost CostLHS = NegatibleCost::Expensive; 7504 SDValue NegLHS = 7505 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7506 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7507 RemoveDeadNode(NegLHS); 7508 break; 7509 } 7510 7511 // Prevent this node from being deleted by the next call. 7512 Handles.emplace_back(NegLHS); 7513 7514 SDValue RHS = Op.getOperand(2); 7515 NegatibleCost CostRHS = NegatibleCost::Expensive; 7516 SDValue NegRHS = 7517 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7518 7519 // We're done with the handles. 7520 Handles.clear(); 7521 7522 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7523 (CostLHS != NegatibleCost::Cheaper && 7524 CostRHS != NegatibleCost::Cheaper)) { 7525 RemoveDeadNode(NegLHS); 7526 RemoveDeadNode(NegRHS); 7527 break; 7528 } 7529 7530 Cost = std::min(CostLHS, CostRHS); 7531 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7532 } 7533 } 7534 7535 return SDValue(); 7536 } 7537 7538 //===----------------------------------------------------------------------===// 7539 // Legalization Utilities 7540 //===----------------------------------------------------------------------===// 7541 7542 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7543 SDValue LHS, SDValue RHS, 7544 SmallVectorImpl<SDValue> &Result, 7545 EVT HiLoVT, SelectionDAG &DAG, 7546 MulExpansionKind Kind, SDValue LL, 7547 SDValue LH, SDValue RL, SDValue RH) const { 7548 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7549 Opcode == ISD::SMUL_LOHI); 7550 7551 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7552 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7553 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7554 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7555 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7556 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7557 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7558 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7559 7560 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7561 return false; 7562 7563 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7564 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7565 7566 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7567 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7568 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7569 7570 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7571 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7572 bool Signed) -> bool { 7573 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7574 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7575 Hi = SDValue(Lo.getNode(), 1); 7576 return true; 7577 } 7578 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7579 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7580 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7581 return true; 7582 } 7583 return false; 7584 }; 7585 7586 SDValue Lo, Hi; 7587 7588 if (!LL.getNode() && !RL.getNode() && 7589 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7590 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7591 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7592 } 7593 7594 if (!LL.getNode()) 7595 return false; 7596 7597 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7598 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7599 DAG.MaskedValueIsZero(RHS, HighMask)) { 7600 // The inputs are both zero-extended. 7601 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7602 Result.push_back(Lo); 7603 Result.push_back(Hi); 7604 if (Opcode != ISD::MUL) { 7605 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7606 Result.push_back(Zero); 7607 Result.push_back(Zero); 7608 } 7609 return true; 7610 } 7611 } 7612 7613 if (!VT.isVector() && Opcode == ISD::MUL && 7614 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7615 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7616 // The input values are both sign-extended. 7617 // TODO non-MUL case? 7618 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7619 Result.push_back(Lo); 7620 Result.push_back(Hi); 7621 return true; 7622 } 7623 } 7624 7625 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7626 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7627 7628 if (!LH.getNode() && !RH.getNode() && 7629 isOperationLegalOrCustom(ISD::SRL, VT) && 7630 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7631 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7632 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7633 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7634 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7635 } 7636 7637 if (!LH.getNode()) 7638 return false; 7639 7640 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7641 return false; 7642 7643 Result.push_back(Lo); 7644 7645 if (Opcode == ISD::MUL) { 7646 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7647 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7648 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7649 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7650 Result.push_back(Hi); 7651 return true; 7652 } 7653 7654 // Compute the full width result. 7655 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7656 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7657 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7658 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7659 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7660 }; 7661 7662 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7663 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7664 return false; 7665 7666 // This is effectively the add part of a multiply-add of half-sized operands, 7667 // so it cannot overflow. 7668 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7669 7670 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7671 return false; 7672 7673 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7674 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7675 7676 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7677 isOperationLegalOrCustom(ISD::ADDE, VT)); 7678 if (UseGlue) 7679 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7680 Merge(Lo, Hi)); 7681 else 7682 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, 7683 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7684 7685 SDValue Carry = Next.getValue(1); 7686 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7687 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7688 7689 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7690 return false; 7691 7692 if (UseGlue) 7693 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7694 Carry); 7695 else 7696 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7697 Zero, Carry); 7698 7699 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7700 7701 if (Opcode == ISD::SMUL_LOHI) { 7702 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7703 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7704 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7705 7706 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7707 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7708 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7709 } 7710 7711 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7712 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7713 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7714 return true; 7715 } 7716 7717 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7718 SelectionDAG &DAG, MulExpansionKind Kind, 7719 SDValue LL, SDValue LH, SDValue RL, 7720 SDValue RH) const { 7721 SmallVector<SDValue, 2> Result; 7722 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7723 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7724 DAG, Kind, LL, LH, RL, RH); 7725 if (Ok) { 7726 assert(Result.size() == 2); 7727 Lo = Result[0]; 7728 Hi = Result[1]; 7729 } 7730 return Ok; 7731 } 7732 7733 // Optimize unsigned division or remainder by constants for types twice as large 7734 // as a legal VT. 7735 // 7736 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7737 // can be computed 7738 // as: 7739 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7740 // Remainder = Sum % Constant 7741 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7742 // 7743 // For division, we can compute the remainder using the algorithm described 7744 // above, subtract it from the dividend to get an exact multiple of Constant. 7745 // Then multiply that exact multiply by the multiplicative inverse modulo 7746 // (1 << (BitWidth / 2)) to get the quotient. 7747 7748 // If Constant is even, we can shift right the dividend and the divisor by the 7749 // number of trailing zeros in Constant before applying the remainder algorithm. 7750 // If we're after the quotient, we can subtract this value from the shifted 7751 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7752 // If we want the remainder, we shift the value left by the number of trailing 7753 // zeros and add the bits that were shifted out of the dividend. 7754 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7755 SmallVectorImpl<SDValue> &Result, 7756 EVT HiLoVT, SelectionDAG &DAG, 7757 SDValue LL, SDValue LH) const { 7758 unsigned Opcode = N->getOpcode(); 7759 EVT VT = N->getValueType(0); 7760 7761 // TODO: Support signed division/remainder. 7762 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7763 return false; 7764 assert( 7765 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7766 "Unexpected opcode"); 7767 7768 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7769 if (!CN) 7770 return false; 7771 7772 APInt Divisor = CN->getAPIntValue(); 7773 unsigned BitWidth = Divisor.getBitWidth(); 7774 unsigned HBitWidth = BitWidth / 2; 7775 assert(VT.getScalarSizeInBits() == BitWidth && 7776 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7777 7778 // Divisor needs to less than (1 << HBitWidth). 7779 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7780 if (Divisor.uge(HalfMaxPlus1)) 7781 return false; 7782 7783 // We depend on the UREM by constant optimization in DAGCombiner that requires 7784 // high multiply. 7785 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7786 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7787 return false; 7788 7789 // Don't expand if optimizing for size. 7790 if (DAG.shouldOptForSize()) 7791 return false; 7792 7793 // Early out for 0 or 1 divisors. 7794 if (Divisor.ule(1)) 7795 return false; 7796 7797 // If the divisor is even, shift it until it becomes odd. 7798 unsigned TrailingZeros = 0; 7799 if (!Divisor[0]) { 7800 TrailingZeros = Divisor.countr_zero(); 7801 Divisor.lshrInPlace(TrailingZeros); 7802 } 7803 7804 SDLoc dl(N); 7805 SDValue Sum; 7806 SDValue PartialRem; 7807 7808 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7809 // then add in the carry. 7810 // TODO: If we can't split it in half, we might be able to split into 3 or 7811 // more pieces using a smaller bit width. 7812 if (HalfMaxPlus1.urem(Divisor).isOne()) { 7813 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7814 if (!LL) 7815 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); 7816 7817 // Shift the input by the number of TrailingZeros in the divisor. The 7818 // shifted out bits will be added to the remainder later. 7819 if (TrailingZeros) { 7820 // Save the shifted off bits if we need the remainder. 7821 if (Opcode != ISD::UDIV) { 7822 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7823 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7824 DAG.getConstant(Mask, dl, HiLoVT)); 7825 } 7826 7827 LL = DAG.getNode( 7828 ISD::OR, dl, HiLoVT, 7829 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7830 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7831 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7832 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7833 HiLoVT, dl))); 7834 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7835 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7836 } 7837 7838 // Use uaddo_carry if we can, otherwise use a compare to detect overflow. 7839 EVT SetCCType = 7840 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7841 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { 7842 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7843 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7844 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, 7845 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7846 } else { 7847 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7848 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7849 // If the boolean for the target is 0 or 1, we can add the setcc result 7850 // directly. 7851 if (getBooleanContents(HiLoVT) == 7852 TargetLoweringBase::ZeroOrOneBooleanContent) 7853 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7854 else 7855 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7856 DAG.getConstant(0, dl, HiLoVT)); 7857 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7858 } 7859 } 7860 7861 // If we didn't find a sum, we can't do the expansion. 7862 if (!Sum) 7863 return false; 7864 7865 // Perform a HiLoVT urem on the Sum using truncated divisor. 7866 SDValue RemL = 7867 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7868 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7869 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7870 7871 if (Opcode != ISD::UREM) { 7872 // Subtract the remainder from the shifted dividend. 7873 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7874 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7875 7876 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7877 7878 // Multiply by the multiplicative inverse of the divisor modulo 7879 // (1 << BitWidth). 7880 APInt MulFactor = Divisor.multiplicativeInverse(); 7881 7882 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7883 DAG.getConstant(MulFactor, dl, VT)); 7884 7885 // Split the quotient into low and high parts. 7886 SDValue QuotL, QuotH; 7887 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); 7888 Result.push_back(QuotL); 7889 Result.push_back(QuotH); 7890 } 7891 7892 if (Opcode != ISD::UDIV) { 7893 // If we shifted the input, shift the remainder left and add the bits we 7894 // shifted off the input. 7895 if (TrailingZeros) { 7896 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7897 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7898 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7899 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7900 } 7901 Result.push_back(RemL); 7902 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7903 } 7904 7905 return true; 7906 } 7907 7908 // Check that (every element of) Z is undef or not an exact multiple of BW. 7909 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7910 return ISD::matchUnaryPredicate( 7911 Z, 7912 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7913 true); 7914 } 7915 7916 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7917 EVT VT = Node->getValueType(0); 7918 SDValue ShX, ShY; 7919 SDValue ShAmt, InvShAmt; 7920 SDValue X = Node->getOperand(0); 7921 SDValue Y = Node->getOperand(1); 7922 SDValue Z = Node->getOperand(2); 7923 SDValue Mask = Node->getOperand(3); 7924 SDValue VL = Node->getOperand(4); 7925 7926 unsigned BW = VT.getScalarSizeInBits(); 7927 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7928 SDLoc DL(SDValue(Node, 0)); 7929 7930 EVT ShVT = Z.getValueType(); 7931 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7932 // fshl: X << C | Y >> (BW - C) 7933 // fshr: X << (BW - C) | Y >> C 7934 // where C = Z % BW is not zero 7935 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7936 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7937 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7938 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7939 VL); 7940 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7941 VL); 7942 } else { 7943 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7944 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7945 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7946 if (isPowerOf2_32(BW)) { 7947 // Z % BW -> Z & (BW - 1) 7948 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 7949 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7950 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 7951 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 7952 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 7953 } else { 7954 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7955 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7956 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 7957 } 7958 7959 SDValue One = DAG.getConstant(1, DL, ShVT); 7960 if (IsFSHL) { 7961 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 7962 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL); 7963 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL); 7964 } else { 7965 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 7966 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 7967 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL); 7968 } 7969 } 7970 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 7971 } 7972 7973 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7974 SelectionDAG &DAG) const { 7975 if (Node->isVPOpcode()) 7976 return expandVPFunnelShift(Node, DAG); 7977 7978 EVT VT = Node->getValueType(0); 7979 7980 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7981 !isOperationLegalOrCustom(ISD::SRL, VT) || 7982 !isOperationLegalOrCustom(ISD::SUB, VT) || 7983 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7984 return SDValue(); 7985 7986 SDValue X = Node->getOperand(0); 7987 SDValue Y = Node->getOperand(1); 7988 SDValue Z = Node->getOperand(2); 7989 7990 unsigned BW = VT.getScalarSizeInBits(); 7991 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7992 SDLoc DL(SDValue(Node, 0)); 7993 7994 EVT ShVT = Z.getValueType(); 7995 7996 // If a funnel shift in the other direction is more supported, use it. 7997 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7998 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7999 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 8000 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8001 // fshl X, Y, Z -> fshr X, Y, -Z 8002 // fshr X, Y, Z -> fshl X, Y, -Z 8003 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8004 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 8005 } else { 8006 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 8007 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 8008 SDValue One = DAG.getConstant(1, DL, ShVT); 8009 if (IsFSHL) { 8010 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8011 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 8012 } else { 8013 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8014 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 8015 } 8016 Z = DAG.getNOT(DL, Z, ShVT); 8017 } 8018 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 8019 } 8020 8021 SDValue ShX, ShY; 8022 SDValue ShAmt, InvShAmt; 8023 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8024 // fshl: X << C | Y >> (BW - C) 8025 // fshr: X << (BW - C) | Y >> C 8026 // where C = Z % BW is not zero 8027 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8028 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8029 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 8030 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 8031 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 8032 } else { 8033 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 8034 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 8035 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 8036 if (isPowerOf2_32(BW)) { 8037 // Z % BW -> Z & (BW - 1) 8038 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 8039 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 8040 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 8041 } else { 8042 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8043 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8044 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 8045 } 8046 8047 SDValue One = DAG.getConstant(1, DL, ShVT); 8048 if (IsFSHL) { 8049 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 8050 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 8051 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 8052 } else { 8053 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 8054 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 8055 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 8056 } 8057 } 8058 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 8059 } 8060 8061 // TODO: Merge with expandFunnelShift. 8062 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 8063 SelectionDAG &DAG) const { 8064 EVT VT = Node->getValueType(0); 8065 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 8066 bool IsLeft = Node->getOpcode() == ISD::ROTL; 8067 SDValue Op0 = Node->getOperand(0); 8068 SDValue Op1 = Node->getOperand(1); 8069 SDLoc DL(SDValue(Node, 0)); 8070 8071 EVT ShVT = Op1.getValueType(); 8072 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8073 8074 // If a rotate in the other direction is more supported, use it. 8075 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 8076 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8077 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 8078 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8079 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 8080 } 8081 8082 if (!AllowVectorOps && VT.isVector() && 8083 (!isOperationLegalOrCustom(ISD::SHL, VT) || 8084 !isOperationLegalOrCustom(ISD::SRL, VT) || 8085 !isOperationLegalOrCustom(ISD::SUB, VT) || 8086 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 8087 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 8088 return SDValue(); 8089 8090 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 8091 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 8092 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 8093 SDValue ShVal; 8094 SDValue HsVal; 8095 if (isPowerOf2_32(EltSizeInBits)) { 8096 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 8097 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 8098 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8099 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 8100 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8101 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 8102 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 8103 } else { 8104 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 8105 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 8106 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 8107 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 8108 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8109 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 8110 SDValue One = DAG.getConstant(1, DL, ShVT); 8111 HsVal = 8112 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 8113 } 8114 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 8115 } 8116 8117 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 8118 SelectionDAG &DAG) const { 8119 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 8120 EVT VT = Node->getValueType(0); 8121 unsigned VTBits = VT.getScalarSizeInBits(); 8122 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 8123 8124 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 8125 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 8126 SDValue ShOpLo = Node->getOperand(0); 8127 SDValue ShOpHi = Node->getOperand(1); 8128 SDValue ShAmt = Node->getOperand(2); 8129 EVT ShAmtVT = ShAmt.getValueType(); 8130 EVT ShAmtCCVT = 8131 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 8132 SDLoc dl(Node); 8133 8134 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 8135 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 8136 // away during isel. 8137 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8138 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 8139 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 8140 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 8141 : DAG.getConstant(0, dl, VT); 8142 8143 SDValue Tmp2, Tmp3; 8144 if (IsSHL) { 8145 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 8146 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 8147 } else { 8148 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 8149 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 8150 } 8151 8152 // If the shift amount is larger or equal than the width of a part we don't 8153 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 8154 // values for large shift amounts. 8155 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8156 DAG.getConstant(VTBits, dl, ShAmtVT)); 8157 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 8158 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 8159 8160 if (IsSHL) { 8161 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8162 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8163 } else { 8164 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8165 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8166 } 8167 } 8168 8169 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 8170 SelectionDAG &DAG) const { 8171 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8172 SDValue Src = Node->getOperand(OpNo); 8173 EVT SrcVT = Src.getValueType(); 8174 EVT DstVT = Node->getValueType(0); 8175 SDLoc dl(SDValue(Node, 0)); 8176 8177 // FIXME: Only f32 to i64 conversions are supported. 8178 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 8179 return false; 8180 8181 if (Node->isStrictFPOpcode()) 8182 // When a NaN is converted to an integer a trap is allowed. We can't 8183 // use this expansion here because it would eliminate that trap. Other 8184 // traps are also allowed and cannot be eliminated. See 8185 // IEEE 754-2008 sec 5.8. 8186 return false; 8187 8188 // Expand f32 -> i64 conversion 8189 // This algorithm comes from compiler-rt's implementation of fixsfdi: 8190 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 8191 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 8192 EVT IntVT = SrcVT.changeTypeToInteger(); 8193 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 8194 8195 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 8196 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 8197 SDValue Bias = DAG.getConstant(127, dl, IntVT); 8198 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 8199 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 8200 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 8201 8202 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 8203 8204 SDValue ExponentBits = DAG.getNode( 8205 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 8206 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 8207 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 8208 8209 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 8210 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 8211 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 8212 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 8213 8214 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 8215 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 8216 DAG.getConstant(0x00800000, dl, IntVT)); 8217 8218 R = DAG.getZExtOrTrunc(R, dl, DstVT); 8219 8220 R = DAG.getSelectCC( 8221 dl, Exponent, ExponentLoBit, 8222 DAG.getNode(ISD::SHL, dl, DstVT, R, 8223 DAG.getZExtOrTrunc( 8224 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 8225 dl, IntShVT)), 8226 DAG.getNode(ISD::SRL, dl, DstVT, R, 8227 DAG.getZExtOrTrunc( 8228 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 8229 dl, IntShVT)), 8230 ISD::SETGT); 8231 8232 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 8233 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 8234 8235 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 8236 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 8237 return true; 8238 } 8239 8240 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 8241 SDValue &Chain, 8242 SelectionDAG &DAG) const { 8243 SDLoc dl(SDValue(Node, 0)); 8244 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8245 SDValue Src = Node->getOperand(OpNo); 8246 8247 EVT SrcVT = Src.getValueType(); 8248 EVT DstVT = Node->getValueType(0); 8249 EVT SetCCVT = 8250 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8251 EVT DstSetCCVT = 8252 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8253 8254 // Only expand vector types if we have the appropriate vector bit operations. 8255 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 8256 ISD::FP_TO_SINT; 8257 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 8258 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 8259 return false; 8260 8261 // If the maximum float value is smaller then the signed integer range, 8262 // the destination signmask can't be represented by the float, so we can 8263 // just use FP_TO_SINT directly. 8264 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 8265 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 8266 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 8267 if (APFloat::opOverflow & 8268 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 8269 if (Node->isStrictFPOpcode()) { 8270 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8271 { Node->getOperand(0), Src }); 8272 Chain = Result.getValue(1); 8273 } else 8274 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8275 return true; 8276 } 8277 8278 // Don't expand it if there isn't cheap fsub instruction. 8279 if (!isOperationLegalOrCustom( 8280 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 8281 return false; 8282 8283 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8284 SDValue Sel; 8285 8286 if (Node->isStrictFPOpcode()) { 8287 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8288 Node->getOperand(0), /*IsSignaling*/ true); 8289 Chain = Sel.getValue(1); 8290 } else { 8291 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 8292 } 8293 8294 bool Strict = Node->isStrictFPOpcode() || 8295 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 8296 8297 if (Strict) { 8298 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 8299 // signmask then offset (the result of which should be fully representable). 8300 // Sel = Src < 0x8000000000000000 8301 // FltOfs = select Sel, 0, 0x8000000000000000 8302 // IntOfs = select Sel, 0, 0x8000000000000000 8303 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8304 8305 // TODO: Should any fast-math-flags be set for the FSUB? 8306 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 8307 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8308 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8309 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 8310 DAG.getConstant(0, dl, DstVT), 8311 DAG.getConstant(SignMask, dl, DstVT)); 8312 SDValue SInt; 8313 if (Node->isStrictFPOpcode()) { 8314 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 8315 { Chain, Src, FltOfs }); 8316 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8317 { Val.getValue(1), Val }); 8318 Chain = SInt.getValue(1); 8319 } else { 8320 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 8321 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 8322 } 8323 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8324 } else { 8325 // Expand based on maximum range of FP_TO_SINT: 8326 // True = fp_to_sint(Src) 8327 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 8328 // Result = select (Src < 0x8000000000000000), True, False 8329 8330 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8331 // TODO: Should any fast-math-flags be set for the FSUB? 8332 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 8333 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 8334 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 8335 DAG.getConstant(SignMask, dl, DstVT)); 8336 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8337 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 8338 } 8339 return true; 8340 } 8341 8342 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 8343 SDValue &Chain, 8344 SelectionDAG &DAG) const { 8345 // This transform is not correct for converting 0 when rounding mode is set 8346 // to round toward negative infinity which will produce -0.0. So disable under 8347 // strictfp. 8348 if (Node->isStrictFPOpcode()) 8349 return false; 8350 8351 SDValue Src = Node->getOperand(0); 8352 EVT SrcVT = Src.getValueType(); 8353 EVT DstVT = Node->getValueType(0); 8354 8355 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 8356 return false; 8357 8358 // Only expand vector types if we have the appropriate vector bit operations. 8359 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 8360 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 8361 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 8362 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 8363 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 8364 return false; 8365 8366 SDLoc dl(SDValue(Node, 0)); 8367 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 8368 8369 // Implementation of unsigned i64 to f64 following the algorithm in 8370 // __floatundidf in compiler_rt. This implementation performs rounding 8371 // correctly in all rounding modes with the exception of converting 0 8372 // when rounding toward negative infinity. In that case the fsub will produce 8373 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 8374 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 8375 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 8376 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); 8377 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 8378 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 8379 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 8380 8381 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 8382 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 8383 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 8384 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 8385 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 8386 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 8387 SDValue HiSub = 8388 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 8389 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 8390 return true; 8391 } 8392 8393 SDValue 8394 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 8395 SelectionDAG &DAG) const { 8396 unsigned Opcode = Node->getOpcode(); 8397 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 8398 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 8399 "Wrong opcode"); 8400 8401 if (Node->getFlags().hasNoNaNs()) { 8402 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 8403 SDValue Op1 = Node->getOperand(0); 8404 SDValue Op2 = Node->getOperand(1); 8405 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 8406 // Copy FMF flags, but always set the no-signed-zeros flag 8407 // as this is implied by the FMINNUM/FMAXNUM semantics. 8408 SDNodeFlags Flags = Node->getFlags(); 8409 Flags.setNoSignedZeros(true); 8410 SelCC->setFlags(Flags); 8411 return SelCC; 8412 } 8413 8414 return SDValue(); 8415 } 8416 8417 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 8418 SelectionDAG &DAG) const { 8419 SDLoc dl(Node); 8420 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 8421 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8422 EVT VT = Node->getValueType(0); 8423 8424 if (VT.isScalableVector()) 8425 report_fatal_error( 8426 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 8427 8428 if (isOperationLegalOrCustom(NewOp, VT)) { 8429 SDValue Quiet0 = Node->getOperand(0); 8430 SDValue Quiet1 = Node->getOperand(1); 8431 8432 if (!Node->getFlags().hasNoNaNs()) { 8433 // Insert canonicalizes if it's possible we need to quiet to get correct 8434 // sNaN behavior. 8435 if (!DAG.isKnownNeverSNaN(Quiet0)) { 8436 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 8437 Node->getFlags()); 8438 } 8439 if (!DAG.isKnownNeverSNaN(Quiet1)) { 8440 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 8441 Node->getFlags()); 8442 } 8443 } 8444 8445 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 8446 } 8447 8448 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 8449 // instead if there are no NaNs and there can't be an incompatible zero 8450 // compare: at least one operand isn't +/-0, or there are no signed-zeros. 8451 if ((Node->getFlags().hasNoNaNs() || 8452 (DAG.isKnownNeverNaN(Node->getOperand(0)) && 8453 DAG.isKnownNeverNaN(Node->getOperand(1)))) && 8454 (Node->getFlags().hasNoSignedZeros() || 8455 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || 8456 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { 8457 unsigned IEEE2018Op = 8458 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8459 if (isOperationLegalOrCustom(IEEE2018Op, VT)) 8460 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 8461 Node->getOperand(1), Node->getFlags()); 8462 } 8463 8464 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8465 return SelCC; 8466 8467 return SDValue(); 8468 } 8469 8470 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, 8471 SelectionDAG &DAG) const { 8472 SDLoc DL(N); 8473 SDValue LHS = N->getOperand(0); 8474 SDValue RHS = N->getOperand(1); 8475 unsigned Opc = N->getOpcode(); 8476 EVT VT = N->getValueType(0); 8477 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8478 bool IsMax = Opc == ISD::FMAXIMUM; 8479 SDNodeFlags Flags = N->getFlags(); 8480 8481 // First, implement comparison not propagating NaN. If no native fmin or fmax 8482 // available, use plain select with setcc instead. 8483 SDValue MinMax; 8484 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 8485 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; 8486 8487 // FIXME: We should probably define fminnum/fmaxnum variants with correct 8488 // signed zero behavior. 8489 bool MinMaxMustRespectOrderedZero = false; 8490 8491 if (isOperationLegalOrCustom(CompOpcIeee, VT)) { 8492 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags); 8493 MinMaxMustRespectOrderedZero = true; 8494 } else if (isOperationLegalOrCustom(CompOpc, VT)) { 8495 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags); 8496 } else { 8497 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8498 return DAG.UnrollVectorOp(N); 8499 8500 // NaN (if exists) will be propagated later, so orderness doesn't matter. 8501 SDValue Compare = 8502 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT); 8503 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags); 8504 } 8505 8506 // Propagate any NaN of both operands 8507 if (!N->getFlags().hasNoNaNs() && 8508 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) { 8509 ConstantFP *FPNaN = ConstantFP::get( 8510 *DAG.getContext(), APFloat::getNaN(DAG.EVTToAPFloatSemantics(VT))); 8511 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO), 8512 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags); 8513 } 8514 8515 // fminimum/fmaximum requires -0.0 less than +0.0 8516 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && 8517 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) { 8518 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8519 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ); 8520 SDValue TestZero = 8521 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8522 SDValue LCmp = DAG.getSelect( 8523 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8524 MinMax, Flags); 8525 SDValue RCmp = DAG.getSelect( 8526 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, 8527 LCmp, Flags); 8528 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8529 } 8530 8531 return MinMax; 8532 } 8533 8534 /// Returns a true value if if this FPClassTest can be performed with an ordered 8535 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns 8536 /// std::nullopt if it cannot be performed as a compare with 0. 8537 static std::optional<bool> isFCmpEqualZero(FPClassTest Test, 8538 const fltSemantics &Semantics, 8539 const MachineFunction &MF) { 8540 FPClassTest OrderedMask = Test & ~fcNan; 8541 FPClassTest NanTest = Test & fcNan; 8542 bool IsOrdered = NanTest == fcNone; 8543 bool IsUnordered = NanTest == fcNan; 8544 8545 // Skip cases that are testing for only a qnan or snan. 8546 if (!IsOrdered && !IsUnordered) 8547 return std::nullopt; 8548 8549 if (OrderedMask == fcZero && 8550 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) 8551 return IsOrdered; 8552 if (OrderedMask == (fcZero | fcSubnormal) && 8553 MF.getDenormalMode(Semantics).inputsAreZero()) 8554 return IsOrdered; 8555 return std::nullopt; 8556 } 8557 8558 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8559 FPClassTest Test, SDNodeFlags Flags, 8560 const SDLoc &DL, 8561 SelectionDAG &DAG) const { 8562 EVT OperandVT = Op.getValueType(); 8563 assert(OperandVT.isFloatingPoint()); 8564 8565 // Degenerated cases. 8566 if (Test == fcNone) 8567 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8568 if ((Test & fcAllFlags) == fcAllFlags) 8569 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8570 8571 // PPC double double is a pair of doubles, of which the higher part determines 8572 // the value class. 8573 if (OperandVT == MVT::ppcf128) { 8574 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8575 DAG.getConstant(1, DL, MVT::i32)); 8576 OperandVT = MVT::f64; 8577 } 8578 8579 // Some checks may be represented as inversion of simpler check, for example 8580 // "inf|normal|subnormal|zero" => !"nan". 8581 bool IsInverted = false; 8582 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) { 8583 IsInverted = true; 8584 Test = InvertedCheck; 8585 } 8586 8587 // Floating-point type properties. 8588 EVT ScalarFloatVT = OperandVT.getScalarType(); 8589 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8590 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8591 bool IsF80 = (ScalarFloatVT == MVT::f80); 8592 8593 // Some checks can be implemented using float comparisons, if floating point 8594 // exceptions are ignored. 8595 if (Flags.hasNoFPExcept() && 8596 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8597 ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ; 8598 ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ; 8599 8600 if (std::optional<bool> IsCmp0 = 8601 isFCmpEqualZero(Test, Semantics, DAG.getMachineFunction()); 8602 IsCmp0 && (isCondCodeLegalOrCustom( 8603 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, 8604 OperandVT.getScalarType().getSimpleVT()))) { 8605 8606 // If denormals could be implicitly treated as 0, this is not equivalent 8607 // to a compare with 0 since it will also be true for denormals. 8608 return DAG.getSetCC(DL, ResultVT, Op, 8609 DAG.getConstantFP(0.0, DL, OperandVT), 8610 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); 8611 } 8612 8613 if (Test == fcNan && 8614 isCondCodeLegalOrCustom(IsInverted ? ISD::SETO : ISD::SETUO, 8615 OperandVT.getScalarType().getSimpleVT())) { 8616 return DAG.getSetCC(DL, ResultVT, Op, Op, 8617 IsInverted ? ISD::SETO : ISD::SETUO); 8618 } 8619 8620 if (Test == fcInf && 8621 isCondCodeLegalOrCustom(IsInverted ? ISD::SETUNE : ISD::SETOEQ, 8622 OperandVT.getScalarType().getSimpleVT()) && 8623 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType())) { 8624 // isinf(x) --> fabs(x) == inf 8625 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8626 SDValue Inf = 8627 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8628 return DAG.getSetCC(DL, ResultVT, Abs, Inf, 8629 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 8630 } 8631 } 8632 8633 // In the general case use integer operations. 8634 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8635 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8636 if (OperandVT.isVector()) 8637 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8638 OperandVT.getVectorElementCount()); 8639 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8640 8641 // Various masks. 8642 APInt SignBit = APInt::getSignMask(BitSize); 8643 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8644 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8645 const unsigned ExplicitIntBitInF80 = 63; 8646 APInt ExpMask = Inf; 8647 if (IsF80) 8648 ExpMask.clearBit(ExplicitIntBitInF80); 8649 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8650 APInt QNaNBitMask = 8651 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8652 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); 8653 8654 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8655 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8656 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8657 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8658 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8659 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8660 8661 SDValue Res; 8662 const auto appendResult = [&](SDValue PartialRes) { 8663 if (PartialRes) { 8664 if (Res) 8665 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8666 else 8667 Res = PartialRes; 8668 } 8669 }; 8670 8671 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8672 const auto getIntBitIsSet = [&]() -> SDValue { 8673 if (!IntBitIsSetV) { 8674 APInt IntBitMask(BitSize, 0); 8675 IntBitMask.setBit(ExplicitIntBitInF80); 8676 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8677 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8678 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8679 } 8680 return IntBitIsSetV; 8681 }; 8682 8683 // Split the value into sign bit and absolute value. 8684 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8685 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8686 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 8687 8688 // Tests that involve more than one class should be processed first. 8689 SDValue PartialRes; 8690 8691 if (IsF80) 8692 ; // Detect finite numbers of f80 by checking individual classes because 8693 // they have different settings of the explicit integer bit. 8694 else if ((Test & fcFinite) == fcFinite) { 8695 // finite(V) ==> abs(V) < exp_mask 8696 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8697 Test &= ~fcFinite; 8698 } else if ((Test & fcFinite) == fcPosFinite) { 8699 // finite(V) && V > 0 ==> V < exp_mask 8700 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8701 Test &= ~fcPosFinite; 8702 } else if ((Test & fcFinite) == fcNegFinite) { 8703 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8704 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8705 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8706 Test &= ~fcNegFinite; 8707 } 8708 appendResult(PartialRes); 8709 8710 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { 8711 // fcZero | fcSubnormal => test all exponent bits are 0 8712 // TODO: Handle sign bit specific cases 8713 if (PartialCheck == (fcZero | fcSubnormal)) { 8714 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); 8715 SDValue ExpIsZero = 8716 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8717 appendResult(ExpIsZero); 8718 Test &= ~PartialCheck & fcAllFlags; 8719 } 8720 } 8721 8722 // Check for individual classes. 8723 8724 if (unsigned PartialCheck = Test & fcZero) { 8725 if (PartialCheck == fcPosZero) 8726 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8727 else if (PartialCheck == fcZero) 8728 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8729 else // ISD::fcNegZero 8730 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8731 appendResult(PartialRes); 8732 } 8733 8734 if (unsigned PartialCheck = Test & fcSubnormal) { 8735 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8736 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8737 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8738 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8739 SDValue VMinusOneV = 8740 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8741 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8742 if (PartialCheck == fcNegSubnormal) 8743 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8744 appendResult(PartialRes); 8745 } 8746 8747 if (unsigned PartialCheck = Test & fcInf) { 8748 if (PartialCheck == fcPosInf) 8749 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8750 else if (PartialCheck == fcInf) 8751 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8752 else { // ISD::fcNegInf 8753 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8754 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 8755 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 8756 } 8757 appendResult(PartialRes); 8758 } 8759 8760 if (unsigned PartialCheck = Test & fcNan) { 8761 APInt InfWithQnanBit = Inf | QNaNBitMask; 8762 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 8763 if (PartialCheck == fcNan) { 8764 // isnan(V) ==> abs(V) > int(inf) 8765 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8766 if (IsF80) { 8767 // Recognize unsupported values as NaNs for compatibility with glibc. 8768 // In them (exp(V)==0) == int_bit. 8769 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 8770 SDValue ExpIsZero = 8771 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8772 SDValue IsPseudo = 8773 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 8774 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 8775 } 8776 } else if (PartialCheck == fcQNan) { 8777 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 8778 PartialRes = 8779 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 8780 } else { // ISD::fcSNan 8781 // issignaling(V) ==> abs(V) > unsigned(Inf) && 8782 // abs(V) < (unsigned(Inf) | quiet_bit) 8783 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8784 SDValue IsNotQnan = 8785 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 8786 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 8787 } 8788 appendResult(PartialRes); 8789 } 8790 8791 if (unsigned PartialCheck = Test & fcNormal) { 8792 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 8793 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 8794 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 8795 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 8796 APInt ExpLimit = ExpMask - ExpLSB; 8797 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 8798 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 8799 if (PartialCheck == fcNegNormal) 8800 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8801 else if (PartialCheck == fcPosNormal) { 8802 SDValue PosSignV = 8803 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 8804 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 8805 } 8806 if (IsF80) 8807 PartialRes = 8808 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 8809 appendResult(PartialRes); 8810 } 8811 8812 if (!Res) 8813 return DAG.getConstant(IsInverted, DL, ResultVT); 8814 if (IsInverted) 8815 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 8816 return Res; 8817 } 8818 8819 // Only expand vector types if we have the appropriate vector bit operations. 8820 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 8821 assert(VT.isVector() && "Expected vector type"); 8822 unsigned Len = VT.getScalarSizeInBits(); 8823 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 8824 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 8825 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 8826 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 8827 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 8828 } 8829 8830 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8831 SDLoc dl(Node); 8832 EVT VT = Node->getValueType(0); 8833 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8834 SDValue Op = Node->getOperand(0); 8835 unsigned Len = VT.getScalarSizeInBits(); 8836 assert(VT.isInteger() && "CTPOP not implemented for this type."); 8837 8838 // TODO: Add support for irregular type lengths. 8839 if (!(Len <= 128 && Len % 8 == 0)) 8840 return SDValue(); 8841 8842 // Only expand vector types if we have the appropriate vector bit operations. 8843 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 8844 return SDValue(); 8845 8846 // This is the "best" algorithm from 8847 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8848 SDValue Mask55 = 8849 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8850 SDValue Mask33 = 8851 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8852 SDValue Mask0F = 8853 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8854 8855 // v = v - ((v >> 1) & 0x55555555...) 8856 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 8857 DAG.getNode(ISD::AND, dl, VT, 8858 DAG.getNode(ISD::SRL, dl, VT, Op, 8859 DAG.getConstant(1, dl, ShVT)), 8860 Mask55)); 8861 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8862 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 8863 DAG.getNode(ISD::AND, dl, VT, 8864 DAG.getNode(ISD::SRL, dl, VT, Op, 8865 DAG.getConstant(2, dl, ShVT)), 8866 Mask33)); 8867 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8868 Op = DAG.getNode(ISD::AND, dl, VT, 8869 DAG.getNode(ISD::ADD, dl, VT, Op, 8870 DAG.getNode(ISD::SRL, dl, VT, Op, 8871 DAG.getConstant(4, dl, ShVT))), 8872 Mask0F); 8873 8874 if (Len <= 8) 8875 return Op; 8876 8877 // Avoid the multiply if we only have 2 bytes to add. 8878 // TODO: Only doing this for scalars because vectors weren't as obviously 8879 // improved. 8880 if (Len == 16 && !VT.isVector()) { 8881 // v = (v + (v >> 8)) & 0x00FF; 8882 return DAG.getNode(ISD::AND, dl, VT, 8883 DAG.getNode(ISD::ADD, dl, VT, Op, 8884 DAG.getNode(ISD::SRL, dl, VT, Op, 8885 DAG.getConstant(8, dl, ShVT))), 8886 DAG.getConstant(0xFF, dl, VT)); 8887 } 8888 8889 // v = (v * 0x01010101...) >> (Len - 8) 8890 SDValue V; 8891 if (isOperationLegalOrCustomOrPromote( 8892 ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 8893 SDValue Mask01 = 8894 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8895 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01); 8896 } else { 8897 V = Op; 8898 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 8899 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 8900 V = DAG.getNode(ISD::ADD, dl, VT, V, 8901 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC)); 8902 } 8903 } 8904 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT)); 8905 } 8906 8907 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8908 SDLoc dl(Node); 8909 EVT VT = Node->getValueType(0); 8910 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8911 SDValue Op = Node->getOperand(0); 8912 SDValue Mask = Node->getOperand(1); 8913 SDValue VL = Node->getOperand(2); 8914 unsigned Len = VT.getScalarSizeInBits(); 8915 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 8916 8917 // TODO: Add support for irregular type lengths. 8918 if (!(Len <= 128 && Len % 8 == 0)) 8919 return SDValue(); 8920 8921 // This is same algorithm of expandCTPOP from 8922 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8923 SDValue Mask55 = 8924 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8925 SDValue Mask33 = 8926 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8927 SDValue Mask0F = 8928 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8929 8930 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 8931 8932 // v = v - ((v >> 1) & 0x55555555...) 8933 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 8934 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 8935 DAG.getConstant(1, dl, ShVT), Mask, VL), 8936 Mask55, Mask, VL); 8937 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 8938 8939 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8940 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 8941 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 8942 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 8943 DAG.getConstant(2, dl, ShVT), Mask, VL), 8944 Mask33, Mask, VL); 8945 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 8946 8947 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8948 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 8949 Mask, VL), 8950 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 8951 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 8952 8953 if (Len <= 8) 8954 return Op; 8955 8956 // v = (v * 0x01010101...) >> (Len - 8) 8957 SDValue V; 8958 if (isOperationLegalOrCustomOrPromote( 8959 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 8960 SDValue Mask01 = 8961 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8962 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL); 8963 } else { 8964 V = Op; 8965 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 8966 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 8967 V = DAG.getNode(ISD::VP_ADD, dl, VT, V, 8968 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL), 8969 Mask, VL); 8970 } 8971 } 8972 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT), 8973 Mask, VL); 8974 } 8975 8976 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8977 SDLoc dl(Node); 8978 EVT VT = Node->getValueType(0); 8979 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8980 SDValue Op = Node->getOperand(0); 8981 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8982 8983 // If the non-ZERO_UNDEF version is supported we can use that instead. 8984 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 8985 isOperationLegalOrCustom(ISD::CTLZ, VT)) 8986 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 8987 8988 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8989 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 8990 EVT SetCCVT = 8991 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8992 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 8993 SDValue Zero = DAG.getConstant(0, dl, VT); 8994 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8995 return DAG.getSelect(dl, VT, SrcIsZero, 8996 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 8997 } 8998 8999 // Only expand vector types if we have the appropriate vector bit operations. 9000 // This includes the operations needed to expand CTPOP if it isn't supported. 9001 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9002 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9003 !canExpandVectorCTPOP(*this, VT)) || 9004 !isOperationLegalOrCustom(ISD::SRL, VT) || 9005 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 9006 return SDValue(); 9007 9008 // for now, we do this: 9009 // x = x | (x >> 1); 9010 // x = x | (x >> 2); 9011 // ... 9012 // x = x | (x >>16); 9013 // x = x | (x >>32); // for 64-bit input 9014 // return popcount(~x); 9015 // 9016 // Ref: "Hacker's Delight" by Henry Warren 9017 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9018 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9019 Op = DAG.getNode(ISD::OR, dl, VT, Op, 9020 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 9021 } 9022 Op = DAG.getNOT(dl, Op, VT); 9023 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 9024 } 9025 9026 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9027 SDLoc dl(Node); 9028 EVT VT = Node->getValueType(0); 9029 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9030 SDValue Op = Node->getOperand(0); 9031 SDValue Mask = Node->getOperand(1); 9032 SDValue VL = Node->getOperand(2); 9033 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9034 9035 // do this: 9036 // x = x | (x >> 1); 9037 // x = x | (x >> 2); 9038 // ... 9039 // x = x | (x >>16); 9040 // x = x | (x >>32); // for 64-bit input 9041 // return popcount(~x); 9042 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9043 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9044 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 9045 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask, 9046 VL); 9047 } 9048 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask, 9049 VL); 9050 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 9051 } 9052 9053 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 9054 const SDLoc &DL, EVT VT, SDValue Op, 9055 unsigned BitWidth) const { 9056 if (BitWidth != 32 && BitWidth != 64) 9057 return SDValue(); 9058 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 9059 : APInt(64, 0x0218A392CD3D5DBFULL); 9060 const DataLayout &TD = DAG.getDataLayout(); 9061 MachinePointerInfo PtrInfo = 9062 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 9063 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 9064 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 9065 SDValue Lookup = DAG.getNode( 9066 ISD::SRL, DL, VT, 9067 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 9068 DAG.getConstant(DeBruijn, DL, VT)), 9069 DAG.getConstant(ShiftAmt, DL, VT)); 9070 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 9071 9072 SmallVector<uint8_t> Table(BitWidth, 0); 9073 for (unsigned i = 0; i < BitWidth; i++) { 9074 APInt Shl = DeBruijn.shl(i); 9075 APInt Lshr = Shl.lshr(ShiftAmt); 9076 Table[Lshr.getZExtValue()] = i; 9077 } 9078 9079 // Create a ConstantArray in Constant Pool 9080 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 9081 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 9082 TD.getPrefTypeAlign(CA->getType())); 9083 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 9084 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 9085 PtrInfo, MVT::i8); 9086 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 9087 return ExtLoad; 9088 9089 EVT SetCCVT = 9090 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9091 SDValue Zero = DAG.getConstant(0, DL, VT); 9092 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 9093 return DAG.getSelect(DL, VT, SrcIsZero, 9094 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 9095 } 9096 9097 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9098 SDLoc dl(Node); 9099 EVT VT = Node->getValueType(0); 9100 SDValue Op = Node->getOperand(0); 9101 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9102 9103 // If the non-ZERO_UNDEF version is supported we can use that instead. 9104 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 9105 isOperationLegalOrCustom(ISD::CTTZ, VT)) 9106 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 9107 9108 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9109 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 9110 EVT SetCCVT = 9111 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9112 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 9113 SDValue Zero = DAG.getConstant(0, dl, VT); 9114 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9115 return DAG.getSelect(dl, VT, SrcIsZero, 9116 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 9117 } 9118 9119 // Only expand vector types if we have the appropriate vector bit operations. 9120 // This includes the operations needed to expand CTPOP if it isn't supported. 9121 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9122 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9123 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 9124 !canExpandVectorCTPOP(*this, VT)) || 9125 !isOperationLegalOrCustom(ISD::SUB, VT) || 9126 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 9127 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9128 return SDValue(); 9129 9130 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 9131 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 9132 !isOperationLegal(ISD::CTLZ, VT)) 9133 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 9134 return V; 9135 9136 // for now, we use: { return popcount(~x & (x - 1)); } 9137 // unless the target has ctlz but not ctpop, in which case we use: 9138 // { return 32 - nlz(~x & (x-1)); } 9139 // Ref: "Hacker's Delight" by Henry Warren 9140 SDValue Tmp = DAG.getNode( 9141 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 9142 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 9143 9144 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 9145 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 9146 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 9147 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 9148 } 9149 9150 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 9151 } 9152 9153 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9154 SDValue Op = Node->getOperand(0); 9155 SDValue Mask = Node->getOperand(1); 9156 SDValue VL = Node->getOperand(2); 9157 SDLoc dl(Node); 9158 EVT VT = Node->getValueType(0); 9159 9160 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 9161 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 9162 DAG.getConstant(-1, dl, VT), Mask, VL); 9163 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 9164 DAG.getConstant(1, dl, VT), Mask, VL); 9165 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 9166 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 9167 } 9168 9169 SDValue TargetLowering::expandVPCTTZElements(SDNode *N, 9170 SelectionDAG &DAG) const { 9171 // %cond = to_bool_vec %source 9172 // %splat = splat /*val=*/VL 9173 // %tz = step_vector 9174 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat 9175 // %r = vp.reduce.umin %v 9176 SDLoc DL(N); 9177 SDValue Source = N->getOperand(0); 9178 SDValue Mask = N->getOperand(1); 9179 SDValue EVL = N->getOperand(2); 9180 EVT SrcVT = Source.getValueType(); 9181 EVT ResVT = N->getValueType(0); 9182 EVT ResVecVT = 9183 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount()); 9184 9185 // Convert to boolean vector. 9186 if (SrcVT.getScalarType() != MVT::i1) { 9187 SDValue AllZero = DAG.getConstant(0, DL, SrcVT); 9188 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 9189 SrcVT.getVectorElementCount()); 9190 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero, 9191 DAG.getCondCode(ISD::SETNE), Mask, EVL); 9192 } 9193 9194 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT); 9195 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL); 9196 SDValue StepVec = DAG.getStepVector(DL, ResVecVT); 9197 SDValue Select = 9198 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL); 9199 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL); 9200 } 9201 9202 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 9203 bool IsNegative) const { 9204 SDLoc dl(N); 9205 EVT VT = N->getValueType(0); 9206 SDValue Op = N->getOperand(0); 9207 9208 // abs(x) -> smax(x,sub(0,x)) 9209 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9210 isOperationLegal(ISD::SMAX, VT)) { 9211 SDValue Zero = DAG.getConstant(0, dl, VT); 9212 Op = DAG.getFreeze(Op); 9213 return DAG.getNode(ISD::SMAX, dl, VT, Op, 9214 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9215 } 9216 9217 // abs(x) -> umin(x,sub(0,x)) 9218 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9219 isOperationLegal(ISD::UMIN, VT)) { 9220 SDValue Zero = DAG.getConstant(0, dl, VT); 9221 Op = DAG.getFreeze(Op); 9222 return DAG.getNode(ISD::UMIN, dl, VT, Op, 9223 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9224 } 9225 9226 // 0 - abs(x) -> smin(x, sub(0,x)) 9227 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 9228 isOperationLegal(ISD::SMIN, VT)) { 9229 SDValue Zero = DAG.getConstant(0, dl, VT); 9230 Op = DAG.getFreeze(Op); 9231 return DAG.getNode(ISD::SMIN, dl, VT, Op, 9232 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9233 } 9234 9235 // Only expand vector types if we have the appropriate vector operations. 9236 if (VT.isVector() && 9237 (!isOperationLegalOrCustom(ISD::SRA, VT) || 9238 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 9239 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 9240 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9241 return SDValue(); 9242 9243 Op = DAG.getFreeze(Op); 9244 SDValue Shift = DAG.getNode( 9245 ISD::SRA, dl, VT, Op, 9246 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9247 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 9248 9249 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 9250 if (!IsNegative) 9251 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 9252 9253 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 9254 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 9255 } 9256 9257 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { 9258 SDLoc dl(N); 9259 EVT VT = N->getValueType(0); 9260 SDValue LHS = DAG.getFreeze(N->getOperand(0)); 9261 SDValue RHS = DAG.getFreeze(N->getOperand(1)); 9262 bool IsSigned = N->getOpcode() == ISD::ABDS; 9263 9264 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 9265 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 9266 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 9267 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 9268 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { 9269 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 9270 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 9271 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 9272 } 9273 9274 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) 9275 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) 9276 return DAG.getNode(ISD::OR, dl, VT, 9277 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), 9278 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); 9279 9280 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9281 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; 9282 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); 9283 9284 // Branchless expansion iff cmp result is allbits: 9285 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) 9286 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) 9287 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9288 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); 9289 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp); 9290 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor); 9291 } 9292 9293 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9294 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9295 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), 9296 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9297 } 9298 9299 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { 9300 SDLoc dl(N); 9301 EVT VT = N->getValueType(0); 9302 SDValue LHS = N->getOperand(0); 9303 SDValue RHS = N->getOperand(1); 9304 9305 unsigned Opc = N->getOpcode(); 9306 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; 9307 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; 9308 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; 9309 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; 9310 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; 9311 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9312 assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || 9313 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && 9314 "Unknown AVG node"); 9315 9316 // If the operands are already extended, we can add+shift. 9317 bool IsExt = 9318 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 && 9319 DAG.ComputeNumSignBits(RHS) >= 2) || 9320 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 && 9321 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1); 9322 if (IsExt) { 9323 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS); 9324 if (!IsFloor) 9325 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT)); 9326 return DAG.getNode(ShiftOpc, dl, VT, Sum, 9327 DAG.getShiftAmountConstant(1, VT, dl)); 9328 } 9329 9330 // For scalars, see if we can efficiently extend/truncate to use add+shift. 9331 if (VT.isScalarInteger()) { 9332 unsigned BW = VT.getScalarSizeInBits(); 9333 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW); 9334 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) { 9335 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS); 9336 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS); 9337 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS); 9338 if (!IsFloor) 9339 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg, 9340 DAG.getConstant(1, dl, ExtVT)); 9341 // Just use SRL as we will be truncating away the extended sign bits. 9342 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg, 9343 DAG.getShiftAmountConstant(1, ExtVT, dl)); 9344 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg); 9345 } 9346 } 9347 9348 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) 9349 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) 9350 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) 9351 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) 9352 LHS = DAG.getFreeze(LHS); 9353 RHS = DAG.getFreeze(RHS); 9354 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS); 9355 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9356 SDValue Shift = 9357 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl)); 9358 return DAG.getNode(SumOpc, dl, VT, Sign, Shift); 9359 } 9360 9361 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 9362 SDLoc dl(N); 9363 EVT VT = N->getValueType(0); 9364 SDValue Op = N->getOperand(0); 9365 9366 if (!VT.isSimple()) 9367 return SDValue(); 9368 9369 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9370 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9371 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9372 default: 9373 return SDValue(); 9374 case MVT::i16: 9375 // Use a rotate by 8. This can be further expanded if necessary. 9376 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9377 case MVT::i32: 9378 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9379 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 9380 DAG.getConstant(0xFF00, dl, VT)); 9381 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 9382 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9383 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 9384 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9385 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9386 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9387 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9388 case MVT::i64: 9389 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9390 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 9391 DAG.getConstant(255ULL<<8, dl, VT)); 9392 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 9393 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 9394 DAG.getConstant(255ULL<<16, dl, VT)); 9395 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 9396 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 9397 DAG.getConstant(255ULL<<24, dl, VT)); 9398 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 9399 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9400 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 9401 DAG.getConstant(255ULL<<24, dl, VT)); 9402 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9403 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 9404 DAG.getConstant(255ULL<<16, dl, VT)); 9405 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 9406 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 9407 DAG.getConstant(255ULL<<8, dl, VT)); 9408 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9409 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 9410 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 9411 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9412 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9413 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 9414 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9415 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 9416 } 9417 } 9418 9419 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 9420 SDLoc dl(N); 9421 EVT VT = N->getValueType(0); 9422 SDValue Op = N->getOperand(0); 9423 SDValue Mask = N->getOperand(1); 9424 SDValue EVL = N->getOperand(2); 9425 9426 if (!VT.isSimple()) 9427 return SDValue(); 9428 9429 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9430 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9431 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9432 default: 9433 return SDValue(); 9434 case MVT::i16: 9435 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9436 Mask, EVL); 9437 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9438 Mask, EVL); 9439 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 9440 case MVT::i32: 9441 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9442 Mask, EVL); 9443 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 9444 Mask, EVL); 9445 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 9446 Mask, EVL); 9447 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9448 Mask, EVL); 9449 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9450 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 9451 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9452 Mask, EVL); 9453 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9454 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9455 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9456 case MVT::i64: 9457 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9458 Mask, EVL); 9459 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9460 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9461 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 9462 Mask, EVL); 9463 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9464 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9465 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 9466 Mask, EVL); 9467 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9468 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9469 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 9470 Mask, EVL); 9471 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9472 Mask, EVL); 9473 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 9474 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9475 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9476 Mask, EVL); 9477 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 9478 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9479 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 9480 Mask, EVL); 9481 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9482 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9483 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9484 Mask, EVL); 9485 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 9486 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 9487 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9488 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9489 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 9490 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9491 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 9492 } 9493 } 9494 9495 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9496 SDLoc dl(N); 9497 EVT VT = N->getValueType(0); 9498 SDValue Op = N->getOperand(0); 9499 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9500 unsigned Sz = VT.getScalarSizeInBits(); 9501 9502 SDValue Tmp, Tmp2, Tmp3; 9503 9504 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9505 // and finally the i1 pairs. 9506 // TODO: We can easily support i4/i2 legal types if any target ever does. 9507 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9508 // Create the masks - repeating the pattern every byte. 9509 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9510 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9511 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9512 9513 // BSWAP if the type is wider than a single byte. 9514 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 9515 9516 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9517 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 9518 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 9519 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 9520 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 9521 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9522 9523 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9524 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 9525 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 9526 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 9527 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 9528 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9529 9530 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9531 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 9532 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 9533 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 9534 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 9535 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9536 return Tmp; 9537 } 9538 9539 Tmp = DAG.getConstant(0, dl, VT); 9540 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 9541 if (I < J) 9542 Tmp2 = 9543 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 9544 else 9545 Tmp2 = 9546 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 9547 9548 APInt Shift = APInt::getOneBitSet(Sz, J); 9549 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 9550 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 9551 } 9552 9553 return Tmp; 9554 } 9555 9556 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9557 assert(N->getOpcode() == ISD::VP_BITREVERSE); 9558 9559 SDLoc dl(N); 9560 EVT VT = N->getValueType(0); 9561 SDValue Op = N->getOperand(0); 9562 SDValue Mask = N->getOperand(1); 9563 SDValue EVL = N->getOperand(2); 9564 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9565 unsigned Sz = VT.getScalarSizeInBits(); 9566 9567 SDValue Tmp, Tmp2, Tmp3; 9568 9569 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9570 // and finally the i1 pairs. 9571 // TODO: We can easily support i4/i2 legal types if any target ever does. 9572 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9573 // Create the masks - repeating the pattern every byte. 9574 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9575 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9576 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9577 9578 // BSWAP if the type is wider than a single byte. 9579 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 9580 9581 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9582 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 9583 Mask, EVL); 9584 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9585 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 9586 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 9587 Mask, EVL); 9588 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 9589 Mask, EVL); 9590 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9591 9592 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9593 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 9594 Mask, EVL); 9595 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9596 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 9597 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 9598 Mask, EVL); 9599 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 9600 Mask, EVL); 9601 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9602 9603 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9604 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 9605 Mask, EVL); 9606 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9607 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 9608 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 9609 Mask, EVL); 9610 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 9611 Mask, EVL); 9612 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9613 return Tmp; 9614 } 9615 return SDValue(); 9616 } 9617 9618 std::pair<SDValue, SDValue> 9619 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 9620 SelectionDAG &DAG) const { 9621 SDLoc SL(LD); 9622 SDValue Chain = LD->getChain(); 9623 SDValue BasePTR = LD->getBasePtr(); 9624 EVT SrcVT = LD->getMemoryVT(); 9625 EVT DstVT = LD->getValueType(0); 9626 ISD::LoadExtType ExtType = LD->getExtensionType(); 9627 9628 if (SrcVT.isScalableVector()) 9629 report_fatal_error("Cannot scalarize scalable vector loads"); 9630 9631 unsigned NumElem = SrcVT.getVectorNumElements(); 9632 9633 EVT SrcEltVT = SrcVT.getScalarType(); 9634 EVT DstEltVT = DstVT.getScalarType(); 9635 9636 // A vector must always be stored in memory as-is, i.e. without any padding 9637 // between the elements, since various code depend on it, e.g. in the 9638 // handling of a bitcast of a vector type to int, which may be done with a 9639 // vector store followed by an integer load. A vector that does not have 9640 // elements that are byte-sized must therefore be stored as an integer 9641 // built out of the extracted vector elements. 9642 if (!SrcEltVT.isByteSized()) { 9643 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 9644 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 9645 9646 unsigned NumSrcBits = SrcVT.getSizeInBits(); 9647 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 9648 9649 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 9650 SDValue SrcEltBitMask = DAG.getConstant( 9651 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 9652 9653 // Load the whole vector and avoid masking off the top bits as it makes 9654 // the codegen worse. 9655 SDValue Load = 9656 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 9657 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 9658 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9659 9660 SmallVector<SDValue, 8> Vals; 9661 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9662 unsigned ShiftIntoIdx = 9663 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9664 SDValue ShiftAmount = DAG.getShiftAmountConstant( 9665 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL); 9666 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 9667 SDValue Elt = 9668 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 9669 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 9670 9671 if (ExtType != ISD::NON_EXTLOAD) { 9672 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 9673 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 9674 } 9675 9676 Vals.push_back(Scalar); 9677 } 9678 9679 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9680 return std::make_pair(Value, Load.getValue(1)); 9681 } 9682 9683 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 9684 assert(SrcEltVT.isByteSized()); 9685 9686 SmallVector<SDValue, 8> Vals; 9687 SmallVector<SDValue, 8> LoadChains; 9688 9689 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9690 SDValue ScalarLoad = 9691 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 9692 LD->getPointerInfo().getWithOffset(Idx * Stride), 9693 SrcEltVT, LD->getOriginalAlign(), 9694 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9695 9696 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); 9697 9698 Vals.push_back(ScalarLoad.getValue(0)); 9699 LoadChains.push_back(ScalarLoad.getValue(1)); 9700 } 9701 9702 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 9703 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9704 9705 return std::make_pair(Value, NewChain); 9706 } 9707 9708 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 9709 SelectionDAG &DAG) const { 9710 SDLoc SL(ST); 9711 9712 SDValue Chain = ST->getChain(); 9713 SDValue BasePtr = ST->getBasePtr(); 9714 SDValue Value = ST->getValue(); 9715 EVT StVT = ST->getMemoryVT(); 9716 9717 if (StVT.isScalableVector()) 9718 report_fatal_error("Cannot scalarize scalable vector stores"); 9719 9720 // The type of the data we want to save 9721 EVT RegVT = Value.getValueType(); 9722 EVT RegSclVT = RegVT.getScalarType(); 9723 9724 // The type of data as saved in memory. 9725 EVT MemSclVT = StVT.getScalarType(); 9726 9727 unsigned NumElem = StVT.getVectorNumElements(); 9728 9729 // A vector must always be stored in memory as-is, i.e. without any padding 9730 // between the elements, since various code depend on it, e.g. in the 9731 // handling of a bitcast of a vector type to int, which may be done with a 9732 // vector store followed by an integer load. A vector that does not have 9733 // elements that are byte-sized must therefore be stored as an integer 9734 // built out of the extracted vector elements. 9735 if (!MemSclVT.isByteSized()) { 9736 unsigned NumBits = StVT.getSizeInBits(); 9737 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 9738 9739 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 9740 9741 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9742 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9743 DAG.getVectorIdxConstant(Idx, SL)); 9744 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 9745 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 9746 unsigned ShiftIntoIdx = 9747 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9748 SDValue ShiftAmount = 9749 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 9750 SDValue ShiftedElt = 9751 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 9752 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 9753 } 9754 9755 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 9756 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9757 ST->getAAInfo()); 9758 } 9759 9760 // Store Stride in bytes 9761 unsigned Stride = MemSclVT.getSizeInBits() / 8; 9762 assert(Stride && "Zero stride!"); 9763 // Extract each of the elements from the original vector and save them into 9764 // memory individually. 9765 SmallVector<SDValue, 8> Stores; 9766 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9767 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9768 DAG.getVectorIdxConstant(Idx, SL)); 9769 9770 SDValue Ptr = 9771 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); 9772 9773 // This scalar TruncStore may be illegal, but we legalize it later. 9774 SDValue Store = DAG.getTruncStore( 9775 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 9776 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9777 ST->getAAInfo()); 9778 9779 Stores.push_back(Store); 9780 } 9781 9782 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 9783 } 9784 9785 std::pair<SDValue, SDValue> 9786 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 9787 assert(LD->getAddressingMode() == ISD::UNINDEXED && 9788 "unaligned indexed loads not implemented!"); 9789 SDValue Chain = LD->getChain(); 9790 SDValue Ptr = LD->getBasePtr(); 9791 EVT VT = LD->getValueType(0); 9792 EVT LoadedVT = LD->getMemoryVT(); 9793 SDLoc dl(LD); 9794 auto &MF = DAG.getMachineFunction(); 9795 9796 if (VT.isFloatingPoint() || VT.isVector()) { 9797 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 9798 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 9799 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 9800 LoadedVT.isVector()) { 9801 // Scalarize the load and let the individual components be handled. 9802 return scalarizeVectorLoad(LD, DAG); 9803 } 9804 9805 // Expand to a (misaligned) integer load of the same size, 9806 // then bitconvert to floating point or vector. 9807 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 9808 LD->getMemOperand()); 9809 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 9810 if (LoadedVT != VT) 9811 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 9812 ISD::ANY_EXTEND, dl, VT, Result); 9813 9814 return std::make_pair(Result, newLoad.getValue(1)); 9815 } 9816 9817 // Copy the value to a (aligned) stack slot using (unaligned) integer 9818 // loads and stores, then do a (aligned) load from the stack slot. 9819 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 9820 unsigned LoadedBytes = LoadedVT.getStoreSize(); 9821 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9822 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 9823 9824 // Make sure the stack slot is also aligned for the register type. 9825 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 9826 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 9827 SmallVector<SDValue, 8> Stores; 9828 SDValue StackPtr = StackBase; 9829 unsigned Offset = 0; 9830 9831 EVT PtrVT = Ptr.getValueType(); 9832 EVT StackPtrVT = StackPtr.getValueType(); 9833 9834 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9835 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9836 9837 // Do all but one copies using the full register width. 9838 for (unsigned i = 1; i < NumRegs; i++) { 9839 // Load one integer register's worth from the original location. 9840 SDValue Load = DAG.getLoad( 9841 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 9842 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9843 LD->getAAInfo()); 9844 // Follow the load with a store to the stack slot. Remember the store. 9845 Stores.push_back(DAG.getStore( 9846 Load.getValue(1), dl, Load, StackPtr, 9847 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 9848 // Increment the pointers. 9849 Offset += RegBytes; 9850 9851 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9852 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9853 } 9854 9855 // The last copy may be partial. Do an extending load. 9856 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 9857 8 * (LoadedBytes - Offset)); 9858 SDValue Load = 9859 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 9860 LD->getPointerInfo().getWithOffset(Offset), MemVT, 9861 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9862 LD->getAAInfo()); 9863 // Follow the load with a store to the stack slot. Remember the store. 9864 // On big-endian machines this requires a truncating store to ensure 9865 // that the bits end up in the right place. 9866 Stores.push_back(DAG.getTruncStore( 9867 Load.getValue(1), dl, Load, StackPtr, 9868 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 9869 9870 // The order of the stores doesn't matter - say it with a TokenFactor. 9871 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9872 9873 // Finally, perform the original load only redirected to the stack slot. 9874 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 9875 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 9876 LoadedVT); 9877 9878 // Callers expect a MERGE_VALUES node. 9879 return std::make_pair(Load, TF); 9880 } 9881 9882 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 9883 "Unaligned load of unsupported type."); 9884 9885 // Compute the new VT that is half the size of the old one. This is an 9886 // integer MVT. 9887 unsigned NumBits = LoadedVT.getSizeInBits(); 9888 EVT NewLoadedVT; 9889 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 9890 NumBits >>= 1; 9891 9892 Align Alignment = LD->getOriginalAlign(); 9893 unsigned IncrementSize = NumBits / 8; 9894 ISD::LoadExtType HiExtType = LD->getExtensionType(); 9895 9896 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 9897 if (HiExtType == ISD::NON_EXTLOAD) 9898 HiExtType = ISD::ZEXTLOAD; 9899 9900 // Load the value in two parts 9901 SDValue Lo, Hi; 9902 if (DAG.getDataLayout().isLittleEndian()) { 9903 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9904 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9905 LD->getAAInfo()); 9906 9907 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 9908 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 9909 LD->getPointerInfo().getWithOffset(IncrementSize), 9910 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9911 LD->getAAInfo()); 9912 } else { 9913 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9914 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9915 LD->getAAInfo()); 9916 9917 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 9918 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 9919 LD->getPointerInfo().getWithOffset(IncrementSize), 9920 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9921 LD->getAAInfo()); 9922 } 9923 9924 // aggregate the two parts 9925 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl); 9926 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 9927 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 9928 9929 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 9930 Hi.getValue(1)); 9931 9932 return std::make_pair(Result, TF); 9933 } 9934 9935 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 9936 SelectionDAG &DAG) const { 9937 assert(ST->getAddressingMode() == ISD::UNINDEXED && 9938 "unaligned indexed stores not implemented!"); 9939 SDValue Chain = ST->getChain(); 9940 SDValue Ptr = ST->getBasePtr(); 9941 SDValue Val = ST->getValue(); 9942 EVT VT = Val.getValueType(); 9943 Align Alignment = ST->getOriginalAlign(); 9944 auto &MF = DAG.getMachineFunction(); 9945 EVT StoreMemVT = ST->getMemoryVT(); 9946 9947 SDLoc dl(ST); 9948 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 9949 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 9950 if (isTypeLegal(intVT)) { 9951 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 9952 StoreMemVT.isVector()) { 9953 // Scalarize the store and let the individual components be handled. 9954 SDValue Result = scalarizeVectorStore(ST, DAG); 9955 return Result; 9956 } 9957 // Expand to a bitconvert of the value to the integer type of the 9958 // same size, then a (misaligned) int store. 9959 // FIXME: Does not handle truncating floating point stores! 9960 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 9961 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 9962 Alignment, ST->getMemOperand()->getFlags()); 9963 return Result; 9964 } 9965 // Do a (aligned) store to a stack slot, then copy from the stack slot 9966 // to the final destination using (unaligned) integer loads and stores. 9967 MVT RegVT = getRegisterType( 9968 *DAG.getContext(), 9969 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 9970 EVT PtrVT = Ptr.getValueType(); 9971 unsigned StoredBytes = StoreMemVT.getStoreSize(); 9972 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9973 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 9974 9975 // Make sure the stack slot is also aligned for the register type. 9976 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 9977 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9978 9979 // Perform the original store, only redirected to the stack slot. 9980 SDValue Store = DAG.getTruncStore( 9981 Chain, dl, Val, StackPtr, 9982 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 9983 9984 EVT StackPtrVT = StackPtr.getValueType(); 9985 9986 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9987 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9988 SmallVector<SDValue, 8> Stores; 9989 unsigned Offset = 0; 9990 9991 // Do all but one copies using the full register width. 9992 for (unsigned i = 1; i < NumRegs; i++) { 9993 // Load one integer register's worth from the stack slot. 9994 SDValue Load = DAG.getLoad( 9995 RegVT, dl, Store, StackPtr, 9996 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 9997 // Store it to the final location. Remember the store. 9998 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 9999 ST->getPointerInfo().getWithOffset(Offset), 10000 ST->getOriginalAlign(), 10001 ST->getMemOperand()->getFlags())); 10002 // Increment the pointers. 10003 Offset += RegBytes; 10004 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10005 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10006 } 10007 10008 // The last store may be partial. Do a truncating store. On big-endian 10009 // machines this requires an extending load from the stack slot to ensure 10010 // that the bits are in the right place. 10011 EVT LoadMemVT = 10012 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 10013 10014 // Load from the stack slot. 10015 SDValue Load = DAG.getExtLoad( 10016 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 10017 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 10018 10019 Stores.push_back( 10020 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 10021 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 10022 ST->getOriginalAlign(), 10023 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 10024 // The order of the stores doesn't matter - say it with a TokenFactor. 10025 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10026 return Result; 10027 } 10028 10029 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 10030 "Unaligned store of unknown type."); 10031 // Get the half-size VT 10032 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 10033 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 10034 unsigned IncrementSize = NumBits / 8; 10035 10036 // Divide the stored value in two parts. 10037 SDValue ShiftAmount = 10038 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl); 10039 SDValue Lo = Val; 10040 // If Val is a constant, replace the upper bits with 0. The SRL will constant 10041 // fold and not use the upper bits. A smaller constant may be easier to 10042 // materialize. 10043 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) 10044 Lo = DAG.getNode( 10045 ISD::AND, dl, VT, Lo, 10046 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, 10047 VT)); 10048 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 10049 10050 // Store the two parts 10051 SDValue Store1, Store2; 10052 Store1 = DAG.getTruncStore(Chain, dl, 10053 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 10054 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 10055 ST->getMemOperand()->getFlags()); 10056 10057 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10058 Store2 = DAG.getTruncStore( 10059 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 10060 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 10061 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 10062 10063 SDValue Result = 10064 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 10065 return Result; 10066 } 10067 10068 SDValue 10069 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 10070 const SDLoc &DL, EVT DataVT, 10071 SelectionDAG &DAG, 10072 bool IsCompressedMemory) const { 10073 SDValue Increment; 10074 EVT AddrVT = Addr.getValueType(); 10075 EVT MaskVT = Mask.getValueType(); 10076 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 10077 "Incompatible types of Data and Mask"); 10078 if (IsCompressedMemory) { 10079 if (DataVT.isScalableVector()) 10080 report_fatal_error( 10081 "Cannot currently handle compressed memory with scalable vectors"); 10082 // Incrementing the pointer according to number of '1's in the mask. 10083 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 10084 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 10085 if (MaskIntVT.getSizeInBits() < 32) { 10086 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 10087 MaskIntVT = MVT::i32; 10088 } 10089 10090 // Count '1's with POPCNT. 10091 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 10092 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 10093 // Scale is an element size in bytes. 10094 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 10095 AddrVT); 10096 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 10097 } else if (DataVT.isScalableVector()) { 10098 Increment = DAG.getVScale(DL, AddrVT, 10099 APInt(AddrVT.getFixedSizeInBits(), 10100 DataVT.getStoreSize().getKnownMinValue())); 10101 } else 10102 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 10103 10104 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 10105 } 10106 10107 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 10108 EVT VecVT, const SDLoc &dl, 10109 ElementCount SubEC) { 10110 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 10111 "Cannot index a scalable vector within a fixed-width vector"); 10112 10113 unsigned NElts = VecVT.getVectorMinNumElements(); 10114 unsigned NumSubElts = SubEC.getKnownMinValue(); 10115 EVT IdxVT = Idx.getValueType(); 10116 10117 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 10118 // If this is a constant index and we know the value plus the number of the 10119 // elements in the subvector minus one is less than the minimum number of 10120 // elements then it's safe to return Idx. 10121 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 10122 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 10123 return Idx; 10124 SDValue VS = 10125 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 10126 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 10127 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 10128 DAG.getConstant(NumSubElts, dl, IdxVT)); 10129 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 10130 } 10131 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 10132 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 10133 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 10134 DAG.getConstant(Imm, dl, IdxVT)); 10135 } 10136 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 10137 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 10138 DAG.getConstant(MaxIndex, dl, IdxVT)); 10139 } 10140 10141 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 10142 SDValue VecPtr, EVT VecVT, 10143 SDValue Index) const { 10144 return getVectorSubVecPointer( 10145 DAG, VecPtr, VecVT, 10146 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 10147 Index); 10148 } 10149 10150 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 10151 SDValue VecPtr, EVT VecVT, 10152 EVT SubVecVT, 10153 SDValue Index) const { 10154 SDLoc dl(Index); 10155 // Make sure the index type is big enough to compute in. 10156 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 10157 10158 EVT EltVT = VecVT.getVectorElementType(); 10159 10160 // Calculate the element offset and add it to the pointer. 10161 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 10162 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 10163 "Converting bits to bytes lost precision"); 10164 assert(SubVecVT.getVectorElementType() == EltVT && 10165 "Sub-vector must be a vector with matching element type"); 10166 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 10167 SubVecVT.getVectorElementCount()); 10168 10169 EVT IdxVT = Index.getValueType(); 10170 if (SubVecVT.isScalableVector()) 10171 Index = 10172 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10173 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 10174 10175 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10176 DAG.getConstant(EltSize, dl, IdxVT)); 10177 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 10178 } 10179 10180 //===----------------------------------------------------------------------===// 10181 // Implementation of Emulated TLS Model 10182 //===----------------------------------------------------------------------===// 10183 10184 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 10185 SelectionDAG &DAG) const { 10186 // Access to address of TLS varialbe xyz is lowered to a function call: 10187 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 10188 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10189 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); 10190 SDLoc dl(GA); 10191 10192 ArgListTy Args; 10193 ArgListEntry Entry; 10194 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 10195 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 10196 StringRef EmuTlsVarName(NameString); 10197 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 10198 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 10199 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 10200 Entry.Ty = VoidPtrType; 10201 Args.push_back(Entry); 10202 10203 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 10204 10205 TargetLowering::CallLoweringInfo CLI(DAG); 10206 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 10207 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 10208 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 10209 10210 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 10211 // At last for X86 targets, maybe good for other targets too? 10212 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10213 MFI.setAdjustsStack(true); // Is this only for X86 target? 10214 MFI.setHasCalls(true); 10215 10216 assert((GA->getOffset() == 0) && 10217 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 10218 return CallResult.first; 10219 } 10220 10221 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 10222 SelectionDAG &DAG) const { 10223 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 10224 if (!isCtlzFast()) 10225 return SDValue(); 10226 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 10227 SDLoc dl(Op); 10228 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { 10229 EVT VT = Op.getOperand(0).getValueType(); 10230 SDValue Zext = Op.getOperand(0); 10231 if (VT.bitsLT(MVT::i32)) { 10232 VT = MVT::i32; 10233 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 10234 } 10235 unsigned Log2b = Log2_32(VT.getSizeInBits()); 10236 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 10237 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 10238 DAG.getConstant(Log2b, dl, MVT::i32)); 10239 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 10240 } 10241 return SDValue(); 10242 } 10243 10244 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 10245 SDValue Op0 = Node->getOperand(0); 10246 SDValue Op1 = Node->getOperand(1); 10247 EVT VT = Op0.getValueType(); 10248 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10249 unsigned Opcode = Node->getOpcode(); 10250 SDLoc DL(Node); 10251 10252 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits 10253 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && 10254 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10255 Op0 = DAG.getFreeze(Op0); 10256 SDValue Zero = DAG.getConstant(0, DL, VT); 10257 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10258 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); 10259 } 10260 10261 // umin(x,y) -> sub(x,usubsat(x,y)) 10262 // TODO: Missing freeze(Op0)? 10263 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 10264 isOperationLegal(ISD::USUBSAT, VT)) { 10265 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10266 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 10267 } 10268 10269 // umax(x,y) -> add(x,usubsat(y,x)) 10270 // TODO: Missing freeze(Op0)? 10271 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 10272 isOperationLegal(ISD::USUBSAT, VT)) { 10273 return DAG.getNode(ISD::ADD, DL, VT, Op0, 10274 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 10275 } 10276 10277 // FIXME: Should really try to split the vector in case it's legal on a 10278 // subvector. 10279 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10280 return DAG.UnrollVectorOp(Node); 10281 10282 // Attempt to find an existing SETCC node that we can reuse. 10283 // TODO: Do we need a generic doesSETCCNodeExist? 10284 // TODO: Missing freeze(Op0)/freeze(Op1)? 10285 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, 10286 ISD::CondCode PrefCommuteCC, 10287 ISD::CondCode AltCommuteCC) { 10288 SDVTList BoolVTList = DAG.getVTList(BoolVT); 10289 for (ISD::CondCode CC : {PrefCC, AltCC}) { 10290 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10291 {Op0, Op1, DAG.getCondCode(CC)})) { 10292 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10293 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10294 } 10295 } 10296 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { 10297 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10298 {Op0, Op1, DAG.getCondCode(CC)})) { 10299 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10300 return DAG.getSelect(DL, VT, Cond, Op1, Op0); 10301 } 10302 } 10303 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); 10304 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10305 }; 10306 10307 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 10308 // -> Y = (A < B) ? B : A 10309 // -> Y = (A >= B) ? A : B 10310 // -> Y = (A <= B) ? B : A 10311 switch (Opcode) { 10312 case ISD::SMAX: 10313 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); 10314 case ISD::SMIN: 10315 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); 10316 case ISD::UMAX: 10317 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); 10318 case ISD::UMIN: 10319 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); 10320 } 10321 10322 llvm_unreachable("How did we get here?"); 10323 } 10324 10325 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 10326 unsigned Opcode = Node->getOpcode(); 10327 SDValue LHS = Node->getOperand(0); 10328 SDValue RHS = Node->getOperand(1); 10329 EVT VT = LHS.getValueType(); 10330 SDLoc dl(Node); 10331 10332 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10333 assert(VT.isInteger() && "Expected operands to be integers"); 10334 10335 // usub.sat(a, b) -> umax(a, b) - b 10336 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 10337 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 10338 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 10339 } 10340 10341 // uadd.sat(a, b) -> umin(a, ~b) + b 10342 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 10343 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 10344 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 10345 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 10346 } 10347 10348 unsigned OverflowOp; 10349 switch (Opcode) { 10350 case ISD::SADDSAT: 10351 OverflowOp = ISD::SADDO; 10352 break; 10353 case ISD::UADDSAT: 10354 OverflowOp = ISD::UADDO; 10355 break; 10356 case ISD::SSUBSAT: 10357 OverflowOp = ISD::SSUBO; 10358 break; 10359 case ISD::USUBSAT: 10360 OverflowOp = ISD::USUBO; 10361 break; 10362 default: 10363 llvm_unreachable("Expected method to receive signed or unsigned saturation " 10364 "addition or subtraction node."); 10365 } 10366 10367 // FIXME: Should really try to split the vector in case it's legal on a 10368 // subvector. 10369 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10370 return DAG.UnrollVectorOp(Node); 10371 10372 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 10373 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10374 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10375 SDValue SumDiff = Result.getValue(0); 10376 SDValue Overflow = Result.getValue(1); 10377 SDValue Zero = DAG.getConstant(0, dl, VT); 10378 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 10379 10380 if (Opcode == ISD::UADDSAT) { 10381 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10382 // (LHS + RHS) | OverflowMask 10383 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10384 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 10385 } 10386 // Overflow ? 0xffff.... : (LHS + RHS) 10387 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 10388 } 10389 10390 if (Opcode == ISD::USUBSAT) { 10391 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10392 // (LHS - RHS) & ~OverflowMask 10393 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10394 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 10395 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 10396 } 10397 // Overflow ? 0 : (LHS - RHS) 10398 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 10399 } 10400 10401 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { 10402 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10403 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 10404 10405 KnownBits KnownLHS = DAG.computeKnownBits(LHS); 10406 KnownBits KnownRHS = DAG.computeKnownBits(RHS); 10407 10408 // If either of the operand signs are known, then they are guaranteed to 10409 // only saturate in one direction. If non-negative they will saturate 10410 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. 10411 // 10412 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the 10413 // sign of 'y' has to be flipped. 10414 10415 bool LHSIsNonNegative = KnownLHS.isNonNegative(); 10416 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() 10417 : KnownRHS.isNegative(); 10418 if (LHSIsNonNegative || RHSIsNonNegative) { 10419 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10420 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); 10421 } 10422 10423 bool LHSIsNegative = KnownLHS.isNegative(); 10424 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() 10425 : KnownRHS.isNonNegative(); 10426 if (LHSIsNegative || RHSIsNegative) { 10427 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10428 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); 10429 } 10430 } 10431 10432 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 10433 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10434 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10435 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 10436 DAG.getConstant(BitWidth - 1, dl, VT)); 10437 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 10438 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 10439 } 10440 10441 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { 10442 unsigned Opcode = Node->getOpcode(); 10443 SDValue LHS = Node->getOperand(0); 10444 SDValue RHS = Node->getOperand(1); 10445 EVT VT = LHS.getValueType(); 10446 EVT ResVT = Node->getValueType(0); 10447 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10448 SDLoc dl(Node); 10449 10450 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); 10451 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); 10452 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate); 10453 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate); 10454 10455 // We can't perform arithmetic on i1 values. Extending them would 10456 // probably result in worse codegen, so let's just use two selects instead. 10457 // Some targets are also just better off using selects rather than subtraction 10458 // because one of the conditions can be merged with one of the selects. 10459 // And finally, if we don't know the contents of high bits of a boolean value 10460 // we can't perform any arithmetic either. 10461 if (shouldExpandCmpUsingSelects() || BoolVT.getScalarSizeInBits() == 1 || 10462 getBooleanContents(BoolVT) == UndefinedBooleanContent) { 10463 SDValue SelectZeroOrOne = 10464 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT), 10465 DAG.getConstant(0, dl, ResVT)); 10466 return DAG.getSelect(dl, ResVT, IsLT, DAG.getConstant(-1, dl, ResVT), 10467 SelectZeroOrOne); 10468 } 10469 10470 if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent) 10471 std::swap(IsGT, IsLT); 10472 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl, 10473 ResVT); 10474 } 10475 10476 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 10477 unsigned Opcode = Node->getOpcode(); 10478 bool IsSigned = Opcode == ISD::SSHLSAT; 10479 SDValue LHS = Node->getOperand(0); 10480 SDValue RHS = Node->getOperand(1); 10481 EVT VT = LHS.getValueType(); 10482 SDLoc dl(Node); 10483 10484 assert((Node->getOpcode() == ISD::SSHLSAT || 10485 Node->getOpcode() == ISD::USHLSAT) && 10486 "Expected a SHLSAT opcode"); 10487 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10488 assert(VT.isInteger() && "Expected operands to be integers"); 10489 10490 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10491 return DAG.UnrollVectorOp(Node); 10492 10493 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 10494 10495 unsigned BW = VT.getScalarSizeInBits(); 10496 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10497 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 10498 SDValue Orig = 10499 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 10500 10501 SDValue SatVal; 10502 if (IsSigned) { 10503 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 10504 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 10505 SDValue Cond = 10506 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 10507 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 10508 } else { 10509 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 10510 } 10511 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 10512 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 10513 } 10514 10515 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10516 bool Signed, EVT WideVT, 10517 const SDValue LL, const SDValue LH, 10518 const SDValue RL, const SDValue RH, 10519 SDValue &Lo, SDValue &Hi) const { 10520 // We can fall back to a libcall with an illegal type for the MUL if we 10521 // have a libcall big enough. 10522 // Also, we can fall back to a division in some cases, but that's a big 10523 // performance hit in the general case. 10524 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10525 if (WideVT == MVT::i16) 10526 LC = RTLIB::MUL_I16; 10527 else if (WideVT == MVT::i32) 10528 LC = RTLIB::MUL_I32; 10529 else if (WideVT == MVT::i64) 10530 LC = RTLIB::MUL_I64; 10531 else if (WideVT == MVT::i128) 10532 LC = RTLIB::MUL_I128; 10533 10534 if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) { 10535 // We'll expand the multiplication by brute force because we have no other 10536 // options. This is a trivially-generalized version of the code from 10537 // Hacker's Delight (itself derived from Knuth's Algorithm M from section 10538 // 4.3.1). 10539 EVT VT = LL.getValueType(); 10540 unsigned Bits = VT.getSizeInBits(); 10541 unsigned HalfBits = Bits >> 1; 10542 SDValue Mask = 10543 DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT); 10544 SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask); 10545 SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask); 10546 10547 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL); 10548 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask); 10549 10550 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl); 10551 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift); 10552 SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift); 10553 SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift); 10554 10555 SDValue U = DAG.getNode(ISD::ADD, dl, VT, 10556 DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH); 10557 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask); 10558 SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift); 10559 10560 SDValue V = DAG.getNode(ISD::ADD, dl, VT, 10561 DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL); 10562 SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift); 10563 10564 SDValue W = 10565 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH), 10566 DAG.getNode(ISD::ADD, dl, VT, UH, VH)); 10567 Lo = DAG.getNode(ISD::ADD, dl, VT, TL, 10568 DAG.getNode(ISD::SHL, dl, VT, V, Shift)); 10569 10570 Hi = DAG.getNode(ISD::ADD, dl, VT, W, 10571 DAG.getNode(ISD::ADD, dl, VT, 10572 DAG.getNode(ISD::MUL, dl, VT, RH, LL), 10573 DAG.getNode(ISD::MUL, dl, VT, RL, LH))); 10574 } else { 10575 // Attempt a libcall. 10576 SDValue Ret; 10577 TargetLowering::MakeLibCallOptions CallOptions; 10578 CallOptions.setSExt(Signed); 10579 CallOptions.setIsPostTypeLegalization(true); 10580 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10581 // Halves of WideVT are packed into registers in different order 10582 // depending on platform endianness. This is usually handled by 10583 // the C calling convention, but we can't defer to it in 10584 // the legalizer. 10585 SDValue Args[] = {LL, LH, RL, RH}; 10586 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10587 } else { 10588 SDValue Args[] = {LH, LL, RH, RL}; 10589 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10590 } 10591 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10592 "Ret value is a collection of constituent nodes holding result."); 10593 if (DAG.getDataLayout().isLittleEndian()) { 10594 // Same as above. 10595 Lo = Ret.getOperand(0); 10596 Hi = Ret.getOperand(1); 10597 } else { 10598 Lo = Ret.getOperand(1); 10599 Hi = Ret.getOperand(0); 10600 } 10601 } 10602 } 10603 10604 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10605 bool Signed, const SDValue LHS, 10606 const SDValue RHS, SDValue &Lo, 10607 SDValue &Hi) const { 10608 EVT VT = LHS.getValueType(); 10609 assert(RHS.getValueType() == VT && "Mismatching operand types"); 10610 10611 SDValue HiLHS; 10612 SDValue HiRHS; 10613 if (Signed) { 10614 // The high part is obtained by SRA'ing all but one of the bits of low 10615 // part. 10616 unsigned LoSize = VT.getFixedSizeInBits(); 10617 HiLHS = DAG.getNode( 10618 ISD::SRA, dl, VT, LHS, 10619 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10620 HiRHS = DAG.getNode( 10621 ISD::SRA, dl, VT, RHS, 10622 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10623 } else { 10624 HiLHS = DAG.getConstant(0, dl, VT); 10625 HiRHS = DAG.getConstant(0, dl, VT); 10626 } 10627 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 10628 forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi); 10629 } 10630 10631 SDValue 10632 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 10633 assert((Node->getOpcode() == ISD::SMULFIX || 10634 Node->getOpcode() == ISD::UMULFIX || 10635 Node->getOpcode() == ISD::SMULFIXSAT || 10636 Node->getOpcode() == ISD::UMULFIXSAT) && 10637 "Expected a fixed point multiplication opcode"); 10638 10639 SDLoc dl(Node); 10640 SDValue LHS = Node->getOperand(0); 10641 SDValue RHS = Node->getOperand(1); 10642 EVT VT = LHS.getValueType(); 10643 unsigned Scale = Node->getConstantOperandVal(2); 10644 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 10645 Node->getOpcode() == ISD::UMULFIXSAT); 10646 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 10647 Node->getOpcode() == ISD::SMULFIXSAT); 10648 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10649 unsigned VTSize = VT.getScalarSizeInBits(); 10650 10651 if (!Scale) { 10652 // [us]mul.fix(a, b, 0) -> mul(a, b) 10653 if (!Saturating) { 10654 if (isOperationLegalOrCustom(ISD::MUL, VT)) 10655 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10656 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 10657 SDValue Result = 10658 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10659 SDValue Product = Result.getValue(0); 10660 SDValue Overflow = Result.getValue(1); 10661 SDValue Zero = DAG.getConstant(0, dl, VT); 10662 10663 APInt MinVal = APInt::getSignedMinValue(VTSize); 10664 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 10665 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10666 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10667 // Xor the inputs, if resulting sign bit is 0 the product will be 10668 // positive, else negative. 10669 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 10670 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 10671 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 10672 return DAG.getSelect(dl, VT, Overflow, Result, Product); 10673 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 10674 SDValue Result = 10675 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10676 SDValue Product = Result.getValue(0); 10677 SDValue Overflow = Result.getValue(1); 10678 10679 APInt MaxVal = APInt::getMaxValue(VTSize); 10680 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10681 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 10682 } 10683 } 10684 10685 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 10686 "Expected scale to be less than the number of bits if signed or at " 10687 "most the number of bits if unsigned."); 10688 assert(LHS.getValueType() == RHS.getValueType() && 10689 "Expected both operands to be the same type"); 10690 10691 // Get the upper and lower bits of the result. 10692 SDValue Lo, Hi; 10693 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 10694 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 10695 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2); 10696 if (isOperationLegalOrCustom(LoHiOp, VT)) { 10697 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 10698 Lo = Result.getValue(0); 10699 Hi = Result.getValue(1); 10700 } else if (isOperationLegalOrCustom(HiOp, VT)) { 10701 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10702 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 10703 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 10704 // Try for a multiplication using a wider type. 10705 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10706 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS); 10707 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS); 10708 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt); 10709 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res); 10710 SDValue Shifted = 10711 DAG.getNode(ISD::SRA, dl, WideVT, Res, 10712 DAG.getShiftAmountConstant(VTSize, WideVT, dl)); 10713 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted); 10714 } else if (VT.isVector()) { 10715 return SDValue(); 10716 } else { 10717 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); 10718 } 10719 10720 if (Scale == VTSize) 10721 // Result is just the top half since we'd be shifting by the width of the 10722 // operand. Overflow impossible so this works for both UMULFIX and 10723 // UMULFIXSAT. 10724 return Hi; 10725 10726 // The result will need to be shifted right by the scale since both operands 10727 // are scaled. The result is given to us in 2 halves, so we only want part of 10728 // both in the result. 10729 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 10730 DAG.getShiftAmountConstant(Scale, VT, dl)); 10731 if (!Saturating) 10732 return Result; 10733 10734 if (!Signed) { 10735 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 10736 // widened multiplication) aren't all zeroes. 10737 10738 // Saturate to max if ((Hi >> Scale) != 0), 10739 // which is the same as if (Hi > ((1 << Scale) - 1)) 10740 APInt MaxVal = APInt::getMaxValue(VTSize); 10741 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 10742 dl, VT); 10743 Result = DAG.getSelectCC(dl, Hi, LowMask, 10744 DAG.getConstant(MaxVal, dl, VT), Result, 10745 ISD::SETUGT); 10746 10747 return Result; 10748 } 10749 10750 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 10751 // widened multiplication) aren't all ones or all zeroes. 10752 10753 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 10754 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 10755 10756 if (Scale == 0) { 10757 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 10758 DAG.getShiftAmountConstant(VTSize - 1, VT, dl)); 10759 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 10760 // Saturated to SatMin if wide product is negative, and SatMax if wide 10761 // product is positive ... 10762 SDValue Zero = DAG.getConstant(0, dl, VT); 10763 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 10764 ISD::SETLT); 10765 // ... but only if we overflowed. 10766 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 10767 } 10768 10769 // We handled Scale==0 above so all the bits to examine is in Hi. 10770 10771 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 10772 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 10773 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 10774 dl, VT); 10775 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 10776 // Saturate to min if (Hi >> (Scale - 1)) < -1), 10777 // which is the same as if (HI < (-1 << (Scale - 1)) 10778 SDValue HighMask = 10779 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 10780 dl, VT); 10781 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 10782 return Result; 10783 } 10784 10785 SDValue 10786 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 10787 SDValue LHS, SDValue RHS, 10788 unsigned Scale, SelectionDAG &DAG) const { 10789 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 10790 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 10791 "Expected a fixed point division opcode"); 10792 10793 EVT VT = LHS.getValueType(); 10794 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 10795 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 10796 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10797 10798 // If there is enough room in the type to upscale the LHS or downscale the 10799 // RHS before the division, we can perform it in this type without having to 10800 // resize. For signed operations, the LHS headroom is the number of 10801 // redundant sign bits, and for unsigned ones it is the number of zeroes. 10802 // The headroom for the RHS is the number of trailing zeroes. 10803 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 10804 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 10805 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 10806 10807 // For signed saturating operations, we need to be able to detect true integer 10808 // division overflow; that is, when you have MIN / -EPS. However, this 10809 // is undefined behavior and if we emit divisions that could take such 10810 // values it may cause undesired behavior (arithmetic exceptions on x86, for 10811 // example). 10812 // Avoid this by requiring an extra bit so that we never get this case. 10813 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 10814 // signed saturating division, we need to emit a whopping 32-bit division. 10815 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 10816 return SDValue(); 10817 10818 unsigned LHSShift = std::min(LHSLead, Scale); 10819 unsigned RHSShift = Scale - LHSShift; 10820 10821 // At this point, we know that if we shift the LHS up by LHSShift and the 10822 // RHS down by RHSShift, we can emit a regular division with a final scaling 10823 // factor of Scale. 10824 10825 if (LHSShift) 10826 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 10827 DAG.getShiftAmountConstant(LHSShift, VT, dl)); 10828 if (RHSShift) 10829 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 10830 DAG.getShiftAmountConstant(RHSShift, VT, dl)); 10831 10832 SDValue Quot; 10833 if (Signed) { 10834 // For signed operations, if the resulting quotient is negative and the 10835 // remainder is nonzero, subtract 1 from the quotient to round towards 10836 // negative infinity. 10837 SDValue Rem; 10838 // FIXME: Ideally we would always produce an SDIVREM here, but if the 10839 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 10840 // we couldn't just form a libcall, but the type legalizer doesn't do it. 10841 if (isTypeLegal(VT) && 10842 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 10843 Quot = DAG.getNode(ISD::SDIVREM, dl, 10844 DAG.getVTList(VT, VT), 10845 LHS, RHS); 10846 Rem = Quot.getValue(1); 10847 Quot = Quot.getValue(0); 10848 } else { 10849 Quot = DAG.getNode(ISD::SDIV, dl, VT, 10850 LHS, RHS); 10851 Rem = DAG.getNode(ISD::SREM, dl, VT, 10852 LHS, RHS); 10853 } 10854 SDValue Zero = DAG.getConstant(0, dl, VT); 10855 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 10856 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 10857 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 10858 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 10859 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 10860 DAG.getConstant(1, dl, VT)); 10861 Quot = DAG.getSelect(dl, VT, 10862 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 10863 Sub1, Quot); 10864 } else 10865 Quot = DAG.getNode(ISD::UDIV, dl, VT, 10866 LHS, RHS); 10867 10868 return Quot; 10869 } 10870 10871 void TargetLowering::expandUADDSUBO( 10872 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 10873 SDLoc dl(Node); 10874 SDValue LHS = Node->getOperand(0); 10875 SDValue RHS = Node->getOperand(1); 10876 bool IsAdd = Node->getOpcode() == ISD::UADDO; 10877 10878 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. 10879 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 10880 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 10881 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 10882 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 10883 { LHS, RHS, CarryIn }); 10884 Result = SDValue(NodeCarry.getNode(), 0); 10885 Overflow = SDValue(NodeCarry.getNode(), 1); 10886 return; 10887 } 10888 10889 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 10890 LHS.getValueType(), LHS, RHS); 10891 10892 EVT ResultType = Node->getValueType(1); 10893 EVT SetCCType = getSetCCResultType( 10894 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 10895 SDValue SetCC; 10896 if (IsAdd && isOneConstant(RHS)) { 10897 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 10898 // the live range of X. We assume comparing with 0 is cheap. 10899 // The general case (X + C) < C is not necessarily beneficial. Although we 10900 // reduce the live range of X, we may introduce the materialization of 10901 // constant C. 10902 SetCC = 10903 DAG.getSetCC(dl, SetCCType, Result, 10904 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 10905 } else if (IsAdd && isAllOnesConstant(RHS)) { 10906 // Special case: uaddo X, -1 overflows if X != 0. 10907 SetCC = 10908 DAG.getSetCC(dl, SetCCType, LHS, 10909 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); 10910 } else { 10911 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 10912 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 10913 } 10914 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 10915 } 10916 10917 void TargetLowering::expandSADDSUBO( 10918 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 10919 SDLoc dl(Node); 10920 SDValue LHS = Node->getOperand(0); 10921 SDValue RHS = Node->getOperand(1); 10922 bool IsAdd = Node->getOpcode() == ISD::SADDO; 10923 10924 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 10925 LHS.getValueType(), LHS, RHS); 10926 10927 EVT ResultType = Node->getValueType(1); 10928 EVT OType = getSetCCResultType( 10929 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 10930 10931 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 10932 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 10933 if (isOperationLegal(OpcSat, LHS.getValueType())) { 10934 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 10935 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 10936 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 10937 return; 10938 } 10939 10940 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 10941 10942 // For an addition, the result should be less than one of the operands (LHS) 10943 // if and only if the other operand (RHS) is negative, otherwise there will 10944 // be overflow. 10945 // For a subtraction, the result should be less than one of the operands 10946 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 10947 // otherwise there will be overflow. 10948 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 10949 SDValue ConditionRHS = 10950 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 10951 10952 Overflow = DAG.getBoolExtOrTrunc( 10953 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 10954 ResultType, ResultType); 10955 } 10956 10957 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 10958 SDValue &Overflow, SelectionDAG &DAG) const { 10959 SDLoc dl(Node); 10960 EVT VT = Node->getValueType(0); 10961 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10962 SDValue LHS = Node->getOperand(0); 10963 SDValue RHS = Node->getOperand(1); 10964 bool isSigned = Node->getOpcode() == ISD::SMULO; 10965 10966 // For power-of-two multiplications we can use a simpler shift expansion. 10967 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 10968 const APInt &C = RHSC->getAPIntValue(); 10969 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 10970 if (C.isPowerOf2()) { 10971 // smulo(x, signed_min) is same as umulo(x, signed_min). 10972 bool UseArithShift = isSigned && !C.isMinSignedValue(); 10973 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl); 10974 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 10975 Overflow = DAG.getSetCC(dl, SetCCVT, 10976 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 10977 dl, VT, Result, ShiftAmt), 10978 LHS, ISD::SETNE); 10979 return true; 10980 } 10981 } 10982 10983 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 10984 if (VT.isVector()) 10985 WideVT = 10986 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 10987 10988 SDValue BottomHalf; 10989 SDValue TopHalf; 10990 static const unsigned Ops[2][3] = 10991 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 10992 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 10993 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 10994 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10995 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 10996 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 10997 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 10998 RHS); 10999 TopHalf = BottomHalf.getValue(1); 11000 } else if (isTypeLegal(WideVT)) { 11001 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 11002 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 11003 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 11004 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 11005 SDValue ShiftAmt = 11006 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl); 11007 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 11008 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 11009 } else { 11010 if (VT.isVector()) 11011 return false; 11012 11013 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf); 11014 } 11015 11016 Result = BottomHalf; 11017 if (isSigned) { 11018 SDValue ShiftAmt = DAG.getShiftAmountConstant( 11019 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl); 11020 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 11021 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 11022 } else { 11023 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 11024 DAG.getConstant(0, dl, VT), ISD::SETNE); 11025 } 11026 11027 // Truncate the result if SetCC returns a larger type than needed. 11028 EVT RType = Node->getValueType(1); 11029 if (RType.bitsLT(Overflow.getValueType())) 11030 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 11031 11032 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 11033 "Unexpected result type for S/UMULO legalization"); 11034 return true; 11035 } 11036 11037 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 11038 SDLoc dl(Node); 11039 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11040 SDValue Op = Node->getOperand(0); 11041 EVT VT = Op.getValueType(); 11042 11043 if (VT.isScalableVector()) 11044 report_fatal_error( 11045 "Expanding reductions for scalable vectors is undefined."); 11046 11047 // Try to use a shuffle reduction for power of two vectors. 11048 if (VT.isPow2VectorType()) { 11049 while (VT.getVectorNumElements() > 1) { 11050 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 11051 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 11052 break; 11053 11054 SDValue Lo, Hi; 11055 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 11056 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags()); 11057 VT = HalfVT; 11058 } 11059 } 11060 11061 EVT EltVT = VT.getVectorElementType(); 11062 unsigned NumElts = VT.getVectorNumElements(); 11063 11064 SmallVector<SDValue, 8> Ops; 11065 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 11066 11067 SDValue Res = Ops[0]; 11068 for (unsigned i = 1; i < NumElts; i++) 11069 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 11070 11071 // Result type may be wider than element type. 11072 if (EltVT != Node->getValueType(0)) 11073 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 11074 return Res; 11075 } 11076 11077 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 11078 SDLoc dl(Node); 11079 SDValue AccOp = Node->getOperand(0); 11080 SDValue VecOp = Node->getOperand(1); 11081 SDNodeFlags Flags = Node->getFlags(); 11082 11083 EVT VT = VecOp.getValueType(); 11084 EVT EltVT = VT.getVectorElementType(); 11085 11086 if (VT.isScalableVector()) 11087 report_fatal_error( 11088 "Expanding reductions for scalable vectors is undefined."); 11089 11090 unsigned NumElts = VT.getVectorNumElements(); 11091 11092 SmallVector<SDValue, 8> Ops; 11093 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 11094 11095 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11096 11097 SDValue Res = AccOp; 11098 for (unsigned i = 0; i < NumElts; i++) 11099 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 11100 11101 return Res; 11102 } 11103 11104 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 11105 SelectionDAG &DAG) const { 11106 EVT VT = Node->getValueType(0); 11107 SDLoc dl(Node); 11108 bool isSigned = Node->getOpcode() == ISD::SREM; 11109 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 11110 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 11111 SDValue Dividend = Node->getOperand(0); 11112 SDValue Divisor = Node->getOperand(1); 11113 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 11114 SDVTList VTs = DAG.getVTList(VT, VT); 11115 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 11116 return true; 11117 } 11118 if (isOperationLegalOrCustom(DivOpc, VT)) { 11119 // X % Y -> X-X/Y*Y 11120 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 11121 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 11122 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 11123 return true; 11124 } 11125 return false; 11126 } 11127 11128 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 11129 SelectionDAG &DAG) const { 11130 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 11131 SDLoc dl(SDValue(Node, 0)); 11132 SDValue Src = Node->getOperand(0); 11133 11134 // DstVT is the result type, while SatVT is the size to which we saturate 11135 EVT SrcVT = Src.getValueType(); 11136 EVT DstVT = Node->getValueType(0); 11137 11138 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 11139 unsigned SatWidth = SatVT.getScalarSizeInBits(); 11140 unsigned DstWidth = DstVT.getScalarSizeInBits(); 11141 assert(SatWidth <= DstWidth && 11142 "Expected saturation width smaller than result width"); 11143 11144 // Determine minimum and maximum integer values and their corresponding 11145 // floating-point values. 11146 APInt MinInt, MaxInt; 11147 if (IsSigned) { 11148 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 11149 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 11150 } else { 11151 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 11152 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 11153 } 11154 11155 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as 11156 // libcall emission cannot handle this. Large result types will fail. 11157 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { 11158 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 11159 SrcVT = Src.getValueType(); 11160 } 11161 11162 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 11163 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 11164 11165 APFloat::opStatus MinStatus = 11166 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 11167 APFloat::opStatus MaxStatus = 11168 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 11169 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 11170 !(MaxStatus & APFloat::opStatus::opInexact); 11171 11172 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 11173 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 11174 11175 // If the integer bounds are exactly representable as floats and min/max are 11176 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 11177 // of comparisons and selects. 11178 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 11179 isOperationLegal(ISD::FMAXNUM, SrcVT); 11180 if (AreExactFloatBounds && MinMaxLegal) { 11181 SDValue Clamped = Src; 11182 11183 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 11184 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 11185 // Clamp by MaxFloat from above. NaN cannot occur. 11186 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 11187 // Convert clamped value to integer. 11188 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 11189 dl, DstVT, Clamped); 11190 11191 // In the unsigned case we're done, because we mapped NaN to MinFloat, 11192 // which will cast to zero. 11193 if (!IsSigned) 11194 return FpToInt; 11195 11196 // Otherwise, select 0 if Src is NaN. 11197 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11198 EVT SetCCVT = 11199 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11200 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11201 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); 11202 } 11203 11204 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 11205 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 11206 11207 // Result of direct conversion. The assumption here is that the operation is 11208 // non-trapping and it's fine to apply it to an out-of-range value if we 11209 // select it away later. 11210 SDValue FpToInt = 11211 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 11212 11213 SDValue Select = FpToInt; 11214 11215 EVT SetCCVT = 11216 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11217 11218 // If Src ULT MinFloat, select MinInt. In particular, this also selects 11219 // MinInt if Src is NaN. 11220 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); 11221 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); 11222 // If Src OGT MaxFloat, select MaxInt. 11223 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); 11224 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); 11225 11226 // In the unsigned case we are done, because we mapped NaN to MinInt, which 11227 // is already zero. 11228 if (!IsSigned) 11229 return Select; 11230 11231 // Otherwise, select 0 if Src is NaN. 11232 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11233 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11234 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); 11235 } 11236 11237 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, 11238 const SDLoc &dl, 11239 SelectionDAG &DAG) const { 11240 EVT OperandVT = Op.getValueType(); 11241 if (OperandVT.getScalarType() == ResultVT.getScalarType()) 11242 return Op; 11243 EVT ResultIntVT = ResultVT.changeTypeToInteger(); 11244 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11245 // can induce double-rounding which may alter the results. We can 11246 // correct for this using a trick explained in: Boldo, Sylvie, and 11247 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11248 // World Congress. 2005. 11249 unsigned BitSize = OperandVT.getScalarSizeInBits(); 11250 EVT WideIntVT = OperandVT.changeTypeToInteger(); 11251 SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op); 11252 SDValue SignBit = 11253 DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt, 11254 DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT)); 11255 SDValue AbsWide; 11256 if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) { 11257 AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op); 11258 } else { 11259 SDValue ClearedSign = DAG.getNode( 11260 ISD::AND, dl, WideIntVT, OpAsInt, 11261 DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT)); 11262 AbsWide = DAG.getBitcast(OperandVT, ClearedSign); 11263 } 11264 SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT); 11265 SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT); 11266 11267 // We can keep the narrow value as-is if narrowing was exact (no 11268 // rounding error), the wide value was NaN (the narrow value is also 11269 // NaN and should be preserved) or if we rounded to the odd value. 11270 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow); 11271 SDValue One = DAG.getConstant(1, dl, ResultIntVT); 11272 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT); 11273 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One); 11274 EVT ResultIntVTCCVT = getSetCCResultType( 11275 DAG.getDataLayout(), *DAG.getContext(), And.getValueType()); 11276 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT); 11277 // The result is already odd so we don't need to do anything. 11278 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE); 11279 11280 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11281 AbsWide.getValueType()); 11282 // We keep results which are exact, odd or NaN. 11283 SDValue KeepNarrow = 11284 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ); 11285 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd); 11286 // We morally performed a round-down if AbsNarrow is smaller than 11287 // AbsWide. 11288 SDValue NarrowIsRd = 11289 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT); 11290 // If the narrow value is odd or exact, pick it. 11291 // Otherwise, narrow is even and corresponds to either the rounded-up 11292 // or rounded-down value. If narrow is the rounded-down value, we want 11293 // the rounded-up value as it will be odd. 11294 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne); 11295 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust); 11296 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted); 11297 int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits(); 11298 SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl); 11299 SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst); 11300 SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit); 11301 Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit); 11302 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op); 11303 } 11304 11305 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { 11306 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!"); 11307 SDValue Op = Node->getOperand(0); 11308 EVT VT = Node->getValueType(0); 11309 SDLoc dl(Node); 11310 if (VT.getScalarType() == MVT::bf16) { 11311 if (Node->getConstantOperandVal(1) == 1) { 11312 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0)); 11313 } 11314 EVT OperandVT = Op.getValueType(); 11315 SDValue IsNaN = DAG.getSetCC( 11316 dl, 11317 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT), 11318 Op, Op, ISD::SETUO); 11319 11320 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11321 // can induce double-rounding which may alter the results. We can 11322 // correct for this using a trick explained in: Boldo, Sylvie, and 11323 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11324 // World Congress. 2005. 11325 EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32; 11326 EVT I32 = F32.changeTypeToInteger(); 11327 Op = expandRoundInexactToOdd(F32, Op, dl, DAG); 11328 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11329 11330 // Conversions should set NaN's quiet bit. This also prevents NaNs from 11331 // turning into infinities. 11332 SDValue NaN = 11333 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32)); 11334 11335 // Factor in the contribution of the low 16 bits. 11336 SDValue One = DAG.getConstant(1, dl, I32); 11337 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op, 11338 DAG.getShiftAmountConstant(16, I32, dl)); 11339 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One); 11340 SDValue RoundingBias = 11341 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb); 11342 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias); 11343 11344 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into 11345 // 0x80000000. 11346 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add); 11347 11348 // Now that we have rounded, shift the bits into position. 11349 Op = DAG.getNode(ISD::SRL, dl, I32, Op, 11350 DAG.getShiftAmountConstant(16, I32, dl)); 11351 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11352 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16; 11353 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op); 11354 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 11355 } 11356 return SDValue(); 11357 } 11358 11359 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 11360 SelectionDAG &DAG) const { 11361 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 11362 assert(Node->getValueType(0).isScalableVector() && 11363 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 11364 11365 EVT VT = Node->getValueType(0); 11366 SDValue V1 = Node->getOperand(0); 11367 SDValue V2 = Node->getOperand(1); 11368 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 11369 SDLoc DL(Node); 11370 11371 // Expand through memory thusly: 11372 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 11373 // Store V1, Ptr 11374 // Store V2, Ptr + sizeof(V1) 11375 // If (Imm < 0) 11376 // TrailingElts = -Imm 11377 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 11378 // else 11379 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 11380 // Res = Load Ptr 11381 11382 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 11383 11384 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 11385 VT.getVectorElementCount() * 2); 11386 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 11387 EVT PtrVT = StackPtr.getValueType(); 11388 auto &MF = DAG.getMachineFunction(); 11389 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11390 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 11391 11392 // Store the lo part of CONCAT_VECTORS(V1, V2) 11393 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 11394 // Store the hi part of CONCAT_VECTORS(V1, V2) 11395 SDValue OffsetToV2 = DAG.getVScale( 11396 DL, PtrVT, 11397 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 11398 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 11399 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 11400 11401 if (Imm >= 0) { 11402 // Load back the required element. getVectorElementPointer takes care of 11403 // clamping the index if it's out-of-bounds. 11404 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 11405 // Load the spliced result 11406 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 11407 MachinePointerInfo::getUnknownStack(MF)); 11408 } 11409 11410 uint64_t TrailingElts = -Imm; 11411 11412 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 11413 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 11414 SDValue TrailingBytes = 11415 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 11416 11417 if (TrailingElts > VT.getVectorMinNumElements()) { 11418 SDValue VLBytes = 11419 DAG.getVScale(DL, PtrVT, 11420 APInt(PtrVT.getFixedSizeInBits(), 11421 VT.getStoreSize().getKnownMinValue())); 11422 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 11423 } 11424 11425 // Calculate the start address of the spliced result. 11426 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 11427 11428 // Load the spliced result 11429 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 11430 MachinePointerInfo::getUnknownStack(MF)); 11431 } 11432 11433 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, 11434 SelectionDAG &DAG) const { 11435 SDLoc DL(Node); 11436 SDValue Vec = Node->getOperand(0); 11437 SDValue Mask = Node->getOperand(1); 11438 SDValue Passthru = Node->getOperand(2); 11439 11440 EVT VecVT = Vec.getValueType(); 11441 EVT ScalarVT = VecVT.getScalarType(); 11442 EVT MaskVT = Mask.getValueType(); 11443 EVT MaskScalarVT = MaskVT.getScalarType(); 11444 11445 // Needs to be handled by targets that have scalable vector types. 11446 if (VecVT.isScalableVector()) 11447 report_fatal_error("Cannot expand masked_compress for scalable vectors."); 11448 11449 SDValue StackPtr = DAG.CreateStackTemporary( 11450 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false)); 11451 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11452 MachinePointerInfo PtrInfo = 11453 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 11454 11455 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout()); 11456 SDValue Chain = DAG.getEntryNode(); 11457 SDValue OutPos = DAG.getConstant(0, DL, PositionVT); 11458 11459 bool HasPassthru = !Passthru.isUndef(); 11460 11461 // If we have a passthru vector, store it on the stack, overwrite the matching 11462 // positions and then re-write the last element that was potentially 11463 // overwritten even though mask[i] = false. 11464 if (HasPassthru) 11465 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo); 11466 11467 SDValue LastWriteVal; 11468 APInt PassthruSplatVal; 11469 bool IsSplatPassthru = 11470 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal); 11471 11472 if (IsSplatPassthru) { 11473 // As we do not know which position we wrote to last, we cannot simply 11474 // access that index from the passthru vector. So we first check if passthru 11475 // is a splat vector, to use any element ... 11476 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT); 11477 } else if (HasPassthru) { 11478 // ... if it is not a splat vector, we need to get the passthru value at 11479 // position = popcount(mask) and re-load it from the stack before it is 11480 // overwritten in the loop below. 11481 SDValue Popcount = DAG.getNode( 11482 ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask); 11483 Popcount = DAG.getNode(ISD::ZERO_EXTEND, DL, 11484 MaskVT.changeVectorElementType(ScalarVT), Popcount); 11485 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, ScalarVT, Popcount); 11486 SDValue LastElmtPtr = 11487 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount); 11488 LastWriteVal = DAG.getLoad( 11489 ScalarVT, DL, Chain, LastElmtPtr, 11490 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11491 Chain = LastWriteVal.getValue(1); 11492 } 11493 11494 unsigned NumElms = VecVT.getVectorNumElements(); 11495 for (unsigned I = 0; I < NumElms; I++) { 11496 SDValue Idx = DAG.getVectorIdxConstant(I, DL); 11497 11498 SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx); 11499 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11500 Chain = DAG.getStore( 11501 Chain, DL, ValI, OutPtr, 11502 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11503 11504 // Get the mask value and add it to the current output position. This 11505 // either increments by 1 if MaskI is true or adds 0 otherwise. 11506 // Freeze in case we have poison/undef mask entries. 11507 SDValue MaskI = DAG.getFreeze( 11508 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx)); 11509 MaskI = DAG.getFreeze(MaskI); 11510 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI); 11511 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI); 11512 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI); 11513 11514 if (HasPassthru && I == NumElms - 1) { 11515 SDValue EndOfVector = 11516 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT); 11517 SDValue AllLanesSelected = 11518 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT); 11519 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector); 11520 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11521 11522 // Re-write the last ValI if all lanes were selected. Otherwise, 11523 // overwrite the last write it with the passthru value. 11524 LastWriteVal = 11525 DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, LastWriteVal); 11526 Chain = DAG.getStore( 11527 Chain, DL, LastWriteVal, OutPtr, 11528 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11529 } 11530 } 11531 11532 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo); 11533 } 11534 11535 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 11536 SDValue &LHS, SDValue &RHS, 11537 SDValue &CC, SDValue Mask, 11538 SDValue EVL, bool &NeedInvert, 11539 const SDLoc &dl, SDValue &Chain, 11540 bool IsSignaling) const { 11541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11542 MVT OpVT = LHS.getSimpleValueType(); 11543 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 11544 NeedInvert = false; 11545 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 11546 bool IsNonVP = !EVL; 11547 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 11548 default: 11549 llvm_unreachable("Unknown condition code action!"); 11550 case TargetLowering::Legal: 11551 // Nothing to do. 11552 break; 11553 case TargetLowering::Expand: { 11554 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 11555 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 11556 std::swap(LHS, RHS); 11557 CC = DAG.getCondCode(InvCC); 11558 return true; 11559 } 11560 // Swapping operands didn't work. Try inverting the condition. 11561 bool NeedSwap = false; 11562 InvCC = getSetCCInverse(CCCode, OpVT); 11563 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 11564 // If inverting the condition is not enough, try swapping operands 11565 // on top of it. 11566 InvCC = ISD::getSetCCSwappedOperands(InvCC); 11567 NeedSwap = true; 11568 } 11569 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 11570 CC = DAG.getCondCode(InvCC); 11571 NeedInvert = true; 11572 if (NeedSwap) 11573 std::swap(LHS, RHS); 11574 return true; 11575 } 11576 11577 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 11578 unsigned Opc = 0; 11579 switch (CCCode) { 11580 default: 11581 llvm_unreachable("Don't know how to expand this condition!"); 11582 case ISD::SETUO: 11583 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 11584 CC1 = ISD::SETUNE; 11585 CC2 = ISD::SETUNE; 11586 Opc = ISD::OR; 11587 break; 11588 } 11589 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 11590 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 11591 NeedInvert = true; 11592 [[fallthrough]]; 11593 case ISD::SETO: 11594 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 11595 "If SETO is expanded, SETOEQ must be legal!"); 11596 CC1 = ISD::SETOEQ; 11597 CC2 = ISD::SETOEQ; 11598 Opc = ISD::AND; 11599 break; 11600 case ISD::SETONE: 11601 case ISD::SETUEQ: 11602 // If the SETUO or SETO CC isn't legal, we might be able to use 11603 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 11604 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 11605 // the operands. 11606 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11607 if (!TLI.isCondCodeLegal(CC2, OpVT) && 11608 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 11609 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 11610 CC1 = ISD::SETOGT; 11611 CC2 = ISD::SETOLT; 11612 Opc = ISD::OR; 11613 NeedInvert = ((unsigned)CCCode & 0x8U); 11614 break; 11615 } 11616 [[fallthrough]]; 11617 case ISD::SETOEQ: 11618 case ISD::SETOGT: 11619 case ISD::SETOGE: 11620 case ISD::SETOLT: 11621 case ISD::SETOLE: 11622 case ISD::SETUNE: 11623 case ISD::SETUGT: 11624 case ISD::SETUGE: 11625 case ISD::SETULT: 11626 case ISD::SETULE: 11627 // If we are floating point, assign and break, otherwise fall through. 11628 if (!OpVT.isInteger()) { 11629 // We can use the 4th bit to tell if we are the unordered 11630 // or ordered version of the opcode. 11631 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11632 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 11633 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 11634 break; 11635 } 11636 // Fallthrough if we are unsigned integer. 11637 [[fallthrough]]; 11638 case ISD::SETLE: 11639 case ISD::SETGT: 11640 case ISD::SETGE: 11641 case ISD::SETLT: 11642 case ISD::SETNE: 11643 case ISD::SETEQ: 11644 // If all combinations of inverting the condition and swapping operands 11645 // didn't work then we have no means to expand the condition. 11646 llvm_unreachable("Don't know how to expand this condition!"); 11647 } 11648 11649 SDValue SetCC1, SetCC2; 11650 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 11651 // If we aren't the ordered or unorder operation, 11652 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 11653 if (IsNonVP) { 11654 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 11655 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 11656 } else { 11657 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 11658 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 11659 } 11660 } else { 11661 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 11662 if (IsNonVP) { 11663 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 11664 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 11665 } else { 11666 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 11667 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 11668 } 11669 } 11670 if (Chain) 11671 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 11672 SetCC2.getValue(1)); 11673 if (IsNonVP) 11674 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 11675 else { 11676 // Transform the binary opcode to the VP equivalent. 11677 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 11678 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 11679 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 11680 } 11681 RHS = SDValue(); 11682 CC = SDValue(); 11683 return true; 11684 } 11685 } 11686 return false; 11687 } 11688