1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/DivisionByConstantInfo.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // First, check if tail calls have been disabled in this function. 58 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 59 return false; 60 61 // Conservatively require the attributes of the call to match those of 62 // the return. Ignore following attributes because they don't affect the 63 // call sequence. 64 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 65 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 66 Attribute::DereferenceableOrNull, Attribute::NoAlias, 67 Attribute::NonNull, Attribute::NoUndef}) 68 CallerAttrs.removeAttribute(Attr); 69 70 if (CallerAttrs.hasAttributes()) 71 return false; 72 73 // It's not safe to eliminate the sign / zero extension of the return value. 74 if (CallerAttrs.contains(Attribute::ZExt) || 75 CallerAttrs.contains(Attribute::SExt)) 76 return false; 77 78 // Check if the only use is a function return node. 79 return isUsedByReturnOnly(Node, Chain); 80 } 81 82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 83 const uint32_t *CallerPreservedMask, 84 const SmallVectorImpl<CCValAssign> &ArgLocs, 85 const SmallVectorImpl<SDValue> &OutVals) const { 86 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 87 const CCValAssign &ArgLoc = ArgLocs[I]; 88 if (!ArgLoc.isRegLoc()) 89 continue; 90 MCRegister Reg = ArgLoc.getLocReg(); 91 // Only look at callee saved registers. 92 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 93 continue; 94 // Check that we pass the value used for the caller. 95 // (We look for a CopyFromReg reading a virtual register that is used 96 // for the function live-in value of register Reg) 97 SDValue Value = OutVals[I]; 98 if (Value->getOpcode() == ISD::AssertZext) 99 Value = Value.getOperand(0); 100 if (Value->getOpcode() != ISD::CopyFromReg) 101 return false; 102 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 103 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 104 return false; 105 } 106 return true; 107 } 108 109 /// Set CallLoweringInfo attribute flags based on a call instruction 110 /// and called function attributes. 111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 112 unsigned ArgIdx) { 113 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 114 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 115 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 116 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 117 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 118 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 119 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 120 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 121 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 122 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 123 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 124 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 125 Alignment = Call->getParamStackAlign(ArgIdx); 126 IndirectType = nullptr; 127 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 128 "multiple ABI attributes?"); 129 if (IsByVal) { 130 IndirectType = Call->getParamByValType(ArgIdx); 131 if (!Alignment) 132 Alignment = Call->getParamAlign(ArgIdx); 133 } 134 if (IsPreallocated) 135 IndirectType = Call->getParamPreallocatedType(ArgIdx); 136 if (IsInAlloca) 137 IndirectType = Call->getParamInAllocaType(ArgIdx); 138 if (IsSRet) 139 IndirectType = Call->getParamStructRetType(ArgIdx); 140 } 141 142 /// Generate a libcall taking the given operands as arguments and returning a 143 /// result of type RetVT. 144 std::pair<SDValue, SDValue> 145 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 146 ArrayRef<SDValue> Ops, 147 MakeLibCallOptions CallOptions, 148 const SDLoc &dl, 149 SDValue InChain) const { 150 if (!InChain) 151 InChain = DAG.getEntryNode(); 152 153 TargetLowering::ArgListTy Args; 154 Args.reserve(Ops.size()); 155 156 TargetLowering::ArgListEntry Entry; 157 for (unsigned i = 0; i < Ops.size(); ++i) { 158 SDValue NewOp = Ops[i]; 159 Entry.Node = NewOp; 160 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 161 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 162 CallOptions.IsSExt); 163 Entry.IsZExt = !Entry.IsSExt; 164 165 if (CallOptions.IsSoften && 166 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 167 Entry.IsSExt = Entry.IsZExt = false; 168 } 169 Args.push_back(Entry); 170 } 171 172 if (LC == RTLIB::UNKNOWN_LIBCALL) 173 report_fatal_error("Unsupported library call operation!"); 174 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 175 getPointerTy(DAG.getDataLayout())); 176 177 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 178 TargetLowering::CallLoweringInfo CLI(DAG); 179 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 180 bool zeroExtend = !signExtend; 181 182 if (CallOptions.IsSoften && 183 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 184 signExtend = zeroExtend = false; 185 } 186 187 CLI.setDebugLoc(dl) 188 .setChain(InChain) 189 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 190 .setNoReturn(CallOptions.DoesNotReturn) 191 .setDiscardResult(!CallOptions.IsReturnValueUsed) 192 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 193 .setSExtResult(signExtend) 194 .setZExtResult(zeroExtend); 195 return LowerCallTo(CLI); 196 } 197 198 bool TargetLowering::findOptimalMemOpLowering( 199 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 200 unsigned SrcAS, const AttributeList &FuncAttributes) const { 201 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 202 Op.getSrcAlign() < Op.getDstAlign()) 203 return false; 204 205 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 206 207 if (VT == MVT::Other) { 208 // Use the largest integer type whose alignment constraints are satisfied. 209 // We only need to check DstAlign here as SrcAlign is always greater or 210 // equal to DstAlign (or zero). 211 VT = MVT::i64; 212 if (Op.isFixedDstAlign()) 213 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 214 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 215 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 216 assert(VT.isInteger()); 217 218 // Find the largest legal integer type. 219 MVT LVT = MVT::i64; 220 while (!isTypeLegal(LVT)) 221 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 222 assert(LVT.isInteger()); 223 224 // If the type we've chosen is larger than the largest legal integer type 225 // then use that instead. 226 if (VT.bitsGT(LVT)) 227 VT = LVT; 228 } 229 230 unsigned NumMemOps = 0; 231 uint64_t Size = Op.size(); 232 while (Size) { 233 unsigned VTSize = VT.getSizeInBits() / 8; 234 while (VTSize > Size) { 235 // For now, only use non-vector load / store's for the left-over pieces. 236 EVT NewVT = VT; 237 unsigned NewVTSize; 238 239 bool Found = false; 240 if (VT.isVector() || VT.isFloatingPoint()) { 241 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 242 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 243 isSafeMemOpType(NewVT.getSimpleVT())) 244 Found = true; 245 else if (NewVT == MVT::i64 && 246 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 247 isSafeMemOpType(MVT::f64)) { 248 // i64 is usually not legal on 32-bit targets, but f64 may be. 249 NewVT = MVT::f64; 250 Found = true; 251 } 252 } 253 254 if (!Found) { 255 do { 256 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 257 if (NewVT == MVT::i8) 258 break; 259 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 260 } 261 NewVTSize = NewVT.getSizeInBits() / 8; 262 263 // If the new VT cannot cover all of the remaining bits, then consider 264 // issuing a (or a pair of) unaligned and overlapping load / store. 265 unsigned Fast; 266 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 267 allowsMisalignedMemoryAccesses( 268 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 269 MachineMemOperand::MONone, &Fast) && 270 Fast) 271 VTSize = Size; 272 else { 273 VT = NewVT; 274 VTSize = NewVTSize; 275 } 276 } 277 278 if (++NumMemOps > Limit) 279 return false; 280 281 MemOps.push_back(VT); 282 Size -= VTSize; 283 } 284 285 return true; 286 } 287 288 /// Soften the operands of a comparison. This code is shared among BR_CC, 289 /// SELECT_CC, and SETCC handlers. 290 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 291 SDValue &NewLHS, SDValue &NewRHS, 292 ISD::CondCode &CCCode, 293 const SDLoc &dl, const SDValue OldLHS, 294 const SDValue OldRHS) const { 295 SDValue Chain; 296 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 297 OldRHS, Chain); 298 } 299 300 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 301 SDValue &NewLHS, SDValue &NewRHS, 302 ISD::CondCode &CCCode, 303 const SDLoc &dl, const SDValue OldLHS, 304 const SDValue OldRHS, 305 SDValue &Chain, 306 bool IsSignaling) const { 307 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 308 // not supporting it. We can update this code when libgcc provides such 309 // functions. 310 311 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 312 && "Unsupported setcc type!"); 313 314 // Expand into one or more soft-fp libcall(s). 315 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 316 bool ShouldInvertCC = false; 317 switch (CCCode) { 318 case ISD::SETEQ: 319 case ISD::SETOEQ: 320 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 321 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 322 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 323 break; 324 case ISD::SETNE: 325 case ISD::SETUNE: 326 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 327 (VT == MVT::f64) ? RTLIB::UNE_F64 : 328 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 329 break; 330 case ISD::SETGE: 331 case ISD::SETOGE: 332 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 333 (VT == MVT::f64) ? RTLIB::OGE_F64 : 334 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 335 break; 336 case ISD::SETLT: 337 case ISD::SETOLT: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 339 (VT == MVT::f64) ? RTLIB::OLT_F64 : 340 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 341 break; 342 case ISD::SETLE: 343 case ISD::SETOLE: 344 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 345 (VT == MVT::f64) ? RTLIB::OLE_F64 : 346 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 347 break; 348 case ISD::SETGT: 349 case ISD::SETOGT: 350 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 351 (VT == MVT::f64) ? RTLIB::OGT_F64 : 352 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 353 break; 354 case ISD::SETO: 355 ShouldInvertCC = true; 356 [[fallthrough]]; 357 case ISD::SETUO: 358 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 359 (VT == MVT::f64) ? RTLIB::UO_F64 : 360 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 361 break; 362 case ISD::SETONE: 363 // SETONE = O && UNE 364 ShouldInvertCC = true; 365 [[fallthrough]]; 366 case ISD::SETUEQ: 367 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 368 (VT == MVT::f64) ? RTLIB::UO_F64 : 369 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 370 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 371 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 372 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 373 break; 374 default: 375 // Invert CC for unordered comparisons 376 ShouldInvertCC = true; 377 switch (CCCode) { 378 case ISD::SETULT: 379 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 380 (VT == MVT::f64) ? RTLIB::OGE_F64 : 381 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 382 break; 383 case ISD::SETULE: 384 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 385 (VT == MVT::f64) ? RTLIB::OGT_F64 : 386 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 387 break; 388 case ISD::SETUGT: 389 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 390 (VT == MVT::f64) ? RTLIB::OLE_F64 : 391 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 392 break; 393 case ISD::SETUGE: 394 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 395 (VT == MVT::f64) ? RTLIB::OLT_F64 : 396 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 397 break; 398 default: llvm_unreachable("Do not know how to soften this setcc!"); 399 } 400 } 401 402 // Use the target specific return value for comparison lib calls. 403 EVT RetVT = getCmpLibcallReturnType(); 404 SDValue Ops[2] = {NewLHS, NewRHS}; 405 TargetLowering::MakeLibCallOptions CallOptions; 406 EVT OpsVT[2] = { OldLHS.getValueType(), 407 OldRHS.getValueType() }; 408 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 409 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 410 NewLHS = Call.first; 411 NewRHS = DAG.getConstant(0, dl, RetVT); 412 413 CCCode = getCmpLibcallCC(LC1); 414 if (ShouldInvertCC) { 415 assert(RetVT.isInteger()); 416 CCCode = getSetCCInverse(CCCode, RetVT); 417 } 418 419 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 420 // Update Chain. 421 Chain = Call.second; 422 } else { 423 EVT SetCCVT = 424 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 425 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 426 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 427 CCCode = getCmpLibcallCC(LC2); 428 if (ShouldInvertCC) 429 CCCode = getSetCCInverse(CCCode, RetVT); 430 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 431 if (Chain) 432 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 433 Call2.second); 434 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 435 Tmp.getValueType(), Tmp, NewLHS); 436 NewRHS = SDValue(); 437 } 438 } 439 440 /// Return the entry encoding for a jump table in the current function. The 441 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 442 unsigned TargetLowering::getJumpTableEncoding() const { 443 // In non-pic modes, just use the address of a block. 444 if (!isPositionIndependent()) 445 return MachineJumpTableInfo::EK_BlockAddress; 446 447 // In PIC mode, if the target supports a GPRel32 directive, use it. 448 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 449 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 450 451 // Otherwise, use a label difference. 452 return MachineJumpTableInfo::EK_LabelDifference32; 453 } 454 455 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 456 SelectionDAG &DAG) const { 457 // If our PIC model is GP relative, use the global offset table as the base. 458 unsigned JTEncoding = getJumpTableEncoding(); 459 460 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 461 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 462 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 463 464 return Table; 465 } 466 467 /// This returns the relocation base for the given PIC jumptable, the same as 468 /// getPICJumpTableRelocBase, but as an MCExpr. 469 const MCExpr * 470 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 471 unsigned JTI,MCContext &Ctx) const{ 472 // The normal PIC reloc base is the label at the start of the jump table. 473 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 474 } 475 476 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, 477 SDValue Addr, int JTI, 478 SelectionDAG &DAG) const { 479 SDValue Chain = Value; 480 // Jump table debug info is only needed if CodeView is enabled. 481 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { 482 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); 483 } 484 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); 485 } 486 487 bool 488 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 489 const TargetMachine &TM = getTargetMachine(); 490 const GlobalValue *GV = GA->getGlobal(); 491 492 // If the address is not even local to this DSO we will have to load it from 493 // a got and then add the offset. 494 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 495 return false; 496 497 // If the code is position independent we will have to add a base register. 498 if (isPositionIndependent()) 499 return false; 500 501 // Otherwise we can do it. 502 return true; 503 } 504 505 //===----------------------------------------------------------------------===// 506 // Optimization Methods 507 //===----------------------------------------------------------------------===// 508 509 /// If the specified instruction has a constant integer operand and there are 510 /// bits set in that constant that are not demanded, then clear those bits and 511 /// return true. 512 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 513 const APInt &DemandedBits, 514 const APInt &DemandedElts, 515 TargetLoweringOpt &TLO) const { 516 SDLoc DL(Op); 517 unsigned Opcode = Op.getOpcode(); 518 519 // Early-out if we've ended up calling an undemanded node, leave this to 520 // constant folding. 521 if (DemandedBits.isZero() || DemandedElts.isZero()) 522 return false; 523 524 // Do target-specific constant optimization. 525 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 526 return TLO.New.getNode(); 527 528 // FIXME: ISD::SELECT, ISD::SELECT_CC 529 switch (Opcode) { 530 default: 531 break; 532 case ISD::XOR: 533 case ISD::AND: 534 case ISD::OR: { 535 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 536 if (!Op1C || Op1C->isOpaque()) 537 return false; 538 539 // If this is a 'not' op, don't touch it because that's a canonical form. 540 const APInt &C = Op1C->getAPIntValue(); 541 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 542 return false; 543 544 if (!C.isSubsetOf(DemandedBits)) { 545 EVT VT = Op.getValueType(); 546 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 547 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 548 return TLO.CombineTo(Op, NewOp); 549 } 550 551 break; 552 } 553 } 554 555 return false; 556 } 557 558 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 559 const APInt &DemandedBits, 560 TargetLoweringOpt &TLO) const { 561 EVT VT = Op.getValueType(); 562 APInt DemandedElts = VT.isVector() 563 ? APInt::getAllOnes(VT.getVectorNumElements()) 564 : APInt(1, 1); 565 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 566 } 567 568 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 569 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, 570 /// but it could be generalized for targets with other types of implicit 571 /// widening casts. 572 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 573 const APInt &DemandedBits, 574 TargetLoweringOpt &TLO) const { 575 assert(Op.getNumOperands() == 2 && 576 "ShrinkDemandedOp only supports binary operators!"); 577 assert(Op.getNode()->getNumValues() == 1 && 578 "ShrinkDemandedOp only supports nodes with one result!"); 579 580 EVT VT = Op.getValueType(); 581 SelectionDAG &DAG = TLO.DAG; 582 SDLoc dl(Op); 583 584 // Early return, as this function cannot handle vector types. 585 if (VT.isVector()) 586 return false; 587 588 // Don't do this if the node has another user, which may require the 589 // full value. 590 if (!Op.getNode()->hasOneUse()) 591 return false; 592 593 // Search for the smallest integer type with free casts to and from 594 // Op's type. For expedience, just check power-of-2 integer types. 595 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 596 unsigned DemandedSize = DemandedBits.getActiveBits(); 597 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 598 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 599 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 600 if (TLI.isTruncateFree(VT, SmallVT) && TLI.isZExtFree(SmallVT, VT)) { 601 // We found a type with free casts. 602 SDValue X = DAG.getNode( 603 Op.getOpcode(), dl, SmallVT, 604 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 605 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 606 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 607 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); 608 return TLO.CombineTo(Op, Z); 609 } 610 } 611 return false; 612 } 613 614 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 615 DAGCombinerInfo &DCI) const { 616 SelectionDAG &DAG = DCI.DAG; 617 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 618 !DCI.isBeforeLegalizeOps()); 619 KnownBits Known; 620 621 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 const APInt &DemandedElts, 631 DAGCombinerInfo &DCI) const { 632 SelectionDAG &DAG = DCI.DAG; 633 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 634 !DCI.isBeforeLegalizeOps()); 635 KnownBits Known; 636 637 bool Simplified = 638 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 639 if (Simplified) { 640 DCI.AddToWorklist(Op.getNode()); 641 DCI.CommitTargetLoweringOpt(TLO); 642 } 643 return Simplified; 644 } 645 646 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 647 KnownBits &Known, 648 TargetLoweringOpt &TLO, 649 unsigned Depth, 650 bool AssumeSingleUse) const { 651 EVT VT = Op.getValueType(); 652 653 // Since the number of lanes in a scalable vector is unknown at compile time, 654 // we track one bit which is implicitly broadcast to all lanes. This means 655 // that all lanes in a scalable vector are considered demanded. 656 APInt DemandedElts = VT.isFixedLengthVector() 657 ? APInt::getAllOnes(VT.getVectorNumElements()) 658 : APInt(1, 1); 659 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 660 AssumeSingleUse); 661 } 662 663 // TODO: Under what circumstances can we create nodes? Constant folding? 664 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 665 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 666 SelectionDAG &DAG, unsigned Depth) const { 667 EVT VT = Op.getValueType(); 668 669 // Limit search depth. 670 if (Depth >= SelectionDAG::MaxRecursionDepth) 671 return SDValue(); 672 673 // Ignore UNDEFs. 674 if (Op.isUndef()) 675 return SDValue(); 676 677 // Not demanding any bits/elts from Op. 678 if (DemandedBits == 0 || DemandedElts == 0) 679 return DAG.getUNDEF(VT); 680 681 bool IsLE = DAG.getDataLayout().isLittleEndian(); 682 unsigned NumElts = DemandedElts.getBitWidth(); 683 unsigned BitWidth = DemandedBits.getBitWidth(); 684 KnownBits LHSKnown, RHSKnown; 685 switch (Op.getOpcode()) { 686 case ISD::BITCAST: { 687 if (VT.isScalableVector()) 688 return SDValue(); 689 690 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 691 EVT SrcVT = Src.getValueType(); 692 EVT DstVT = Op.getValueType(); 693 if (SrcVT == DstVT) 694 return Src; 695 696 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 697 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 698 if (NumSrcEltBits == NumDstEltBits) 699 if (SDValue V = SimplifyMultipleUseDemandedBits( 700 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 701 return DAG.getBitcast(DstVT, V); 702 703 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 704 unsigned Scale = NumDstEltBits / NumSrcEltBits; 705 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 706 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 707 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 708 for (unsigned i = 0; i != Scale; ++i) { 709 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 710 unsigned BitOffset = EltOffset * NumSrcEltBits; 711 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 712 if (!Sub.isZero()) { 713 DemandedSrcBits |= Sub; 714 for (unsigned j = 0; j != NumElts; ++j) 715 if (DemandedElts[j]) 716 DemandedSrcElts.setBit((j * Scale) + i); 717 } 718 } 719 720 if (SDValue V = SimplifyMultipleUseDemandedBits( 721 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 722 return DAG.getBitcast(DstVT, V); 723 } 724 725 // TODO - bigendian once we have test coverage. 726 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 727 unsigned Scale = NumSrcEltBits / NumDstEltBits; 728 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 729 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 730 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 731 for (unsigned i = 0; i != NumElts; ++i) 732 if (DemandedElts[i]) { 733 unsigned Offset = (i % Scale) * NumDstEltBits; 734 DemandedSrcBits.insertBits(DemandedBits, Offset); 735 DemandedSrcElts.setBit(i / Scale); 736 } 737 738 if (SDValue V = SimplifyMultipleUseDemandedBits( 739 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 740 return DAG.getBitcast(DstVT, V); 741 } 742 743 break; 744 } 745 case ISD::AND: { 746 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 747 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 748 749 // If all of the demanded bits are known 1 on one side, return the other. 750 // These bits cannot contribute to the result of the 'and' in this 751 // context. 752 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 753 return Op.getOperand(0); 754 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 755 return Op.getOperand(1); 756 break; 757 } 758 case ISD::OR: { 759 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 760 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 761 762 // If all of the demanded bits are known zero on one side, return the 763 // other. These bits cannot contribute to the result of the 'or' in this 764 // context. 765 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 766 return Op.getOperand(0); 767 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 768 return Op.getOperand(1); 769 break; 770 } 771 case ISD::XOR: { 772 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 773 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 774 775 // If all of the demanded bits are known zero on one side, return the 776 // other. 777 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 778 return Op.getOperand(0); 779 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 780 return Op.getOperand(1); 781 break; 782 } 783 case ISD::SHL: { 784 // If we are only demanding sign bits then we can use the shift source 785 // directly. 786 if (const APInt *MaxSA = 787 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 788 SDValue Op0 = Op.getOperand(0); 789 unsigned ShAmt = MaxSA->getZExtValue(); 790 unsigned NumSignBits = 791 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 793 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 794 return Op0; 795 } 796 break; 797 } 798 case ISD::SETCC: { 799 SDValue Op0 = Op.getOperand(0); 800 SDValue Op1 = Op.getOperand(1); 801 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 802 // If (1) we only need the sign-bit, (2) the setcc operands are the same 803 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 804 // -1, we may be able to bypass the setcc. 805 if (DemandedBits.isSignMask() && 806 Op0.getScalarValueSizeInBits() == BitWidth && 807 getBooleanContents(Op0.getValueType()) == 808 BooleanContent::ZeroOrNegativeOneBooleanContent) { 809 // If we're testing X < 0, then this compare isn't needed - just use X! 810 // FIXME: We're limiting to integer types here, but this should also work 811 // if we don't care about FP signed-zero. The use of SETLT with FP means 812 // that we don't care about NaNs. 813 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 814 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 815 return Op0; 816 } 817 break; 818 } 819 case ISD::SIGN_EXTEND_INREG: { 820 // If none of the extended bits are demanded, eliminate the sextinreg. 821 SDValue Op0 = Op.getOperand(0); 822 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 823 unsigned ExBits = ExVT.getScalarSizeInBits(); 824 if (DemandedBits.getActiveBits() <= ExBits && 825 shouldRemoveRedundantExtend(Op)) 826 return Op0; 827 // If the input is already sign extended, just drop the extension. 828 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 829 if (NumSignBits >= (BitWidth - ExBits + 1)) 830 return Op0; 831 break; 832 } 833 case ISD::ANY_EXTEND_VECTOR_INREG: 834 case ISD::SIGN_EXTEND_VECTOR_INREG: 835 case ISD::ZERO_EXTEND_VECTOR_INREG: { 836 if (VT.isScalableVector()) 837 return SDValue(); 838 839 // If we only want the lowest element and none of extended bits, then we can 840 // return the bitcasted source vector. 841 SDValue Src = Op.getOperand(0); 842 EVT SrcVT = Src.getValueType(); 843 EVT DstVT = Op.getValueType(); 844 if (IsLE && DemandedElts == 1 && 845 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 846 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 847 return DAG.getBitcast(DstVT, Src); 848 } 849 break; 850 } 851 case ISD::INSERT_VECTOR_ELT: { 852 if (VT.isScalableVector()) 853 return SDValue(); 854 855 // If we don't demand the inserted element, return the base vector. 856 SDValue Vec = Op.getOperand(0); 857 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 858 EVT VecVT = Vec.getValueType(); 859 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 860 !DemandedElts[CIdx->getZExtValue()]) 861 return Vec; 862 break; 863 } 864 case ISD::INSERT_SUBVECTOR: { 865 if (VT.isScalableVector()) 866 return SDValue(); 867 868 SDValue Vec = Op.getOperand(0); 869 SDValue Sub = Op.getOperand(1); 870 uint64_t Idx = Op.getConstantOperandVal(2); 871 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 872 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 873 // If we don't demand the inserted subvector, return the base vector. 874 if (DemandedSubElts == 0) 875 return Vec; 876 break; 877 } 878 case ISD::VECTOR_SHUFFLE: { 879 assert(!VT.isScalableVector()); 880 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 881 882 // If all the demanded elts are from one operand and are inline, 883 // then we can use the operand directly. 884 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 885 for (unsigned i = 0; i != NumElts; ++i) { 886 int M = ShuffleMask[i]; 887 if (M < 0 || !DemandedElts[i]) 888 continue; 889 AllUndef = false; 890 IdentityLHS &= (M == (int)i); 891 IdentityRHS &= ((M - NumElts) == i); 892 } 893 894 if (AllUndef) 895 return DAG.getUNDEF(Op.getValueType()); 896 if (IdentityLHS) 897 return Op.getOperand(0); 898 if (IdentityRHS) 899 return Op.getOperand(1); 900 break; 901 } 902 default: 903 // TODO: Probably okay to remove after audit; here to reduce change size 904 // in initial enablement patch for scalable vectors 905 if (VT.isScalableVector()) 906 return SDValue(); 907 908 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 909 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 910 Op, DemandedBits, DemandedElts, DAG, Depth)) 911 return V; 912 break; 913 } 914 return SDValue(); 915 } 916 917 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 918 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 919 unsigned Depth) const { 920 EVT VT = Op.getValueType(); 921 // Since the number of lanes in a scalable vector is unknown at compile time, 922 // we track one bit which is implicitly broadcast to all lanes. This means 923 // that all lanes in a scalable vector are considered demanded. 924 APInt DemandedElts = VT.isFixedLengthVector() 925 ? APInt::getAllOnes(VT.getVectorNumElements()) 926 : APInt(1, 1); 927 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 928 Depth); 929 } 930 931 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 932 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 933 unsigned Depth) const { 934 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 935 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 936 Depth); 937 } 938 939 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 940 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 941 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 942 const TargetLowering &TLI, 943 const APInt &DemandedBits, 944 const APInt &DemandedElts, 945 unsigned Depth) { 946 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 947 "SRL or SRA node is required here!"); 948 // Is the right shift using an immediate value of 1? 949 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 950 if (!N1C || !N1C->isOne()) 951 return SDValue(); 952 953 // We are looking for an avgfloor 954 // add(ext, ext) 955 // or one of these as a avgceil 956 // add(add(ext, ext), 1) 957 // add(add(ext, 1), ext) 958 // add(ext, add(ext, 1)) 959 SDValue Add = Op.getOperand(0); 960 if (Add.getOpcode() != ISD::ADD) 961 return SDValue(); 962 963 SDValue ExtOpA = Add.getOperand(0); 964 SDValue ExtOpB = Add.getOperand(1); 965 SDValue Add2; 966 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { 967 ConstantSDNode *ConstOp; 968 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 969 ConstOp->isOne()) { 970 ExtOpA = Op1; 971 ExtOpB = Op3; 972 Add2 = A; 973 return true; 974 } 975 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 976 ConstOp->isOne()) { 977 ExtOpA = Op1; 978 ExtOpB = Op2; 979 Add2 = A; 980 return true; 981 } 982 return false; 983 }; 984 bool IsCeil = 985 (ExtOpA.getOpcode() == ISD::ADD && 986 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || 987 (ExtOpB.getOpcode() == ISD::ADD && 988 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); 989 990 // If the shift is signed (sra): 991 // - Needs >= 2 sign bit for both operands. 992 // - Needs >= 2 zero bits. 993 // If the shift is unsigned (srl): 994 // - Needs >= 1 zero bit for both operands. 995 // - Needs 1 demanded bit zero and >= 2 sign bits. 996 unsigned ShiftOpc = Op.getOpcode(); 997 bool IsSigned = false; 998 unsigned KnownBits; 999 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 1000 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 1001 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 1002 unsigned NumZeroA = 1003 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 1004 unsigned NumZeroB = 1005 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1006 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1007 1008 switch (ShiftOpc) { 1009 default: 1010 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1011 case ISD::SRA: { 1012 if (NumZero >= 2 && NumSigned < NumZero) { 1013 IsSigned = false; 1014 KnownBits = NumZero; 1015 break; 1016 } 1017 if (NumSigned >= 1) { 1018 IsSigned = true; 1019 KnownBits = NumSigned; 1020 break; 1021 } 1022 return SDValue(); 1023 } 1024 case ISD::SRL: { 1025 if (NumZero >= 1 && NumSigned < NumZero) { 1026 IsSigned = false; 1027 KnownBits = NumZero; 1028 break; 1029 } 1030 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1031 IsSigned = true; 1032 KnownBits = NumSigned; 1033 break; 1034 } 1035 return SDValue(); 1036 } 1037 } 1038 1039 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1040 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1041 1042 // Find the smallest power-2 type that is legal for this vector size and 1043 // operation, given the original type size and the number of known sign/zero 1044 // bits. 1045 EVT VT = Op.getValueType(); 1046 unsigned MinWidth = 1047 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1048 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); 1049 if (VT.isVector()) 1050 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1051 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) { 1052 // If we could not transform, and (both) adds are nuw/nsw, we can use the 1053 // larger type size to do the transform. 1054 if (!TLI.isOperationLegalOrCustom(AVGOpc, VT)) 1055 return SDValue(); 1056 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), 1057 Add.getOperand(1)) && 1058 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), 1059 Add2.getOperand(1)))) 1060 NVT = VT; 1061 else 1062 return SDValue(); 1063 } 1064 1065 SDLoc DL(Op); 1066 SDValue ResultAVG = 1067 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT), 1068 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT)); 1069 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT); 1070 } 1071 1072 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1073 /// result of Op are ever used downstream. If we can use this information to 1074 /// simplify Op, create a new simplified DAG node and return true, returning the 1075 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1076 /// return a mask of Known bits for the expression (used to simplify the 1077 /// caller). The Known bits may only be accurate for those bits in the 1078 /// OriginalDemandedBits and OriginalDemandedElts. 1079 bool TargetLowering::SimplifyDemandedBits( 1080 SDValue Op, const APInt &OriginalDemandedBits, 1081 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1082 unsigned Depth, bool AssumeSingleUse) const { 1083 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1084 assert(Op.getScalarValueSizeInBits() == BitWidth && 1085 "Mask size mismatches value type size!"); 1086 1087 // Don't know anything. 1088 Known = KnownBits(BitWidth); 1089 1090 EVT VT = Op.getValueType(); 1091 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1092 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1093 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1094 "Unexpected vector size"); 1095 1096 APInt DemandedBits = OriginalDemandedBits; 1097 APInt DemandedElts = OriginalDemandedElts; 1098 SDLoc dl(Op); 1099 auto &DL = TLO.DAG.getDataLayout(); 1100 1101 // Undef operand. 1102 if (Op.isUndef()) 1103 return false; 1104 1105 // We can't simplify target constants. 1106 if (Op.getOpcode() == ISD::TargetConstant) 1107 return false; 1108 1109 if (Op.getOpcode() == ISD::Constant) { 1110 // We know all of the bits for a constant! 1111 Known = KnownBits::makeConstant(Op->getAsAPIntVal()); 1112 return false; 1113 } 1114 1115 if (Op.getOpcode() == ISD::ConstantFP) { 1116 // We know all of the bits for a floating point constant! 1117 Known = KnownBits::makeConstant( 1118 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1119 return false; 1120 } 1121 1122 // Other users may use these bits. 1123 bool HasMultiUse = false; 1124 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1125 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1126 // Limit search depth. 1127 return false; 1128 } 1129 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1130 DemandedBits = APInt::getAllOnes(BitWidth); 1131 DemandedElts = APInt::getAllOnes(NumElts); 1132 HasMultiUse = true; 1133 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1134 // Not demanding any bits/elts from Op. 1135 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1136 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1137 // Limit search depth. 1138 return false; 1139 } 1140 1141 KnownBits Known2; 1142 switch (Op.getOpcode()) { 1143 case ISD::SCALAR_TO_VECTOR: { 1144 if (VT.isScalableVector()) 1145 return false; 1146 if (!DemandedElts[0]) 1147 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1148 1149 KnownBits SrcKnown; 1150 SDValue Src = Op.getOperand(0); 1151 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1152 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1153 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1154 return true; 1155 1156 // Upper elements are undef, so only get the knownbits if we just demand 1157 // the bottom element. 1158 if (DemandedElts == 1) 1159 Known = SrcKnown.anyextOrTrunc(BitWidth); 1160 break; 1161 } 1162 case ISD::BUILD_VECTOR: 1163 // Collect the known bits that are shared by every demanded element. 1164 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1165 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1166 return false; // Don't fall through, will infinitely loop. 1167 case ISD::SPLAT_VECTOR: { 1168 SDValue Scl = Op.getOperand(0); 1169 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); 1170 KnownBits KnownScl; 1171 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1172 return true; 1173 1174 // Implicitly truncate the bits to match the official semantics of 1175 // SPLAT_VECTOR. 1176 Known = KnownScl.trunc(BitWidth); 1177 break; 1178 } 1179 case ISD::LOAD: { 1180 auto *LD = cast<LoadSDNode>(Op); 1181 if (getTargetConstantFromLoad(LD)) { 1182 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1183 return false; // Don't fall through, will infinitely loop. 1184 } 1185 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1186 // If this is a ZEXTLoad and we are looking at the loaded value. 1187 EVT MemVT = LD->getMemoryVT(); 1188 unsigned MemBits = MemVT.getScalarSizeInBits(); 1189 Known.Zero.setBitsFrom(MemBits); 1190 return false; // Don't fall through, will infinitely loop. 1191 } 1192 break; 1193 } 1194 case ISD::INSERT_VECTOR_ELT: { 1195 if (VT.isScalableVector()) 1196 return false; 1197 SDValue Vec = Op.getOperand(0); 1198 SDValue Scl = Op.getOperand(1); 1199 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1200 EVT VecVT = Vec.getValueType(); 1201 1202 // If index isn't constant, assume we need all vector elements AND the 1203 // inserted element. 1204 APInt DemandedVecElts(DemandedElts); 1205 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1206 unsigned Idx = CIdx->getZExtValue(); 1207 DemandedVecElts.clearBit(Idx); 1208 1209 // Inserted element is not required. 1210 if (!DemandedElts[Idx]) 1211 return TLO.CombineTo(Op, Vec); 1212 } 1213 1214 KnownBits KnownScl; 1215 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1216 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1217 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1218 return true; 1219 1220 Known = KnownScl.anyextOrTrunc(BitWidth); 1221 1222 KnownBits KnownVec; 1223 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1224 Depth + 1)) 1225 return true; 1226 1227 if (!!DemandedVecElts) 1228 Known = Known.intersectWith(KnownVec); 1229 1230 return false; 1231 } 1232 case ISD::INSERT_SUBVECTOR: { 1233 if (VT.isScalableVector()) 1234 return false; 1235 // Demand any elements from the subvector and the remainder from the src its 1236 // inserted into. 1237 SDValue Src = Op.getOperand(0); 1238 SDValue Sub = Op.getOperand(1); 1239 uint64_t Idx = Op.getConstantOperandVal(2); 1240 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1241 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1242 APInt DemandedSrcElts = DemandedElts; 1243 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1244 1245 KnownBits KnownSub, KnownSrc; 1246 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1247 Depth + 1)) 1248 return true; 1249 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1250 Depth + 1)) 1251 return true; 1252 1253 Known.Zero.setAllBits(); 1254 Known.One.setAllBits(); 1255 if (!!DemandedSubElts) 1256 Known = Known.intersectWith(KnownSub); 1257 if (!!DemandedSrcElts) 1258 Known = Known.intersectWith(KnownSrc); 1259 1260 // Attempt to avoid multi-use src if we don't need anything from it. 1261 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1262 !DemandedSrcElts.isAllOnes()) { 1263 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1264 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1265 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1266 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1267 if (NewSub || NewSrc) { 1268 NewSub = NewSub ? NewSub : Sub; 1269 NewSrc = NewSrc ? NewSrc : Src; 1270 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1271 Op.getOperand(2)); 1272 return TLO.CombineTo(Op, NewOp); 1273 } 1274 } 1275 break; 1276 } 1277 case ISD::EXTRACT_SUBVECTOR: { 1278 if (VT.isScalableVector()) 1279 return false; 1280 // Offset the demanded elts by the subvector index. 1281 SDValue Src = Op.getOperand(0); 1282 if (Src.getValueType().isScalableVector()) 1283 break; 1284 uint64_t Idx = Op.getConstantOperandVal(1); 1285 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1286 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1287 1288 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1289 Depth + 1)) 1290 return true; 1291 1292 // Attempt to avoid multi-use src if we don't need anything from it. 1293 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1294 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1295 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1296 if (DemandedSrc) { 1297 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1298 Op.getOperand(1)); 1299 return TLO.CombineTo(Op, NewOp); 1300 } 1301 } 1302 break; 1303 } 1304 case ISD::CONCAT_VECTORS: { 1305 if (VT.isScalableVector()) 1306 return false; 1307 Known.Zero.setAllBits(); 1308 Known.One.setAllBits(); 1309 EVT SubVT = Op.getOperand(0).getValueType(); 1310 unsigned NumSubVecs = Op.getNumOperands(); 1311 unsigned NumSubElts = SubVT.getVectorNumElements(); 1312 for (unsigned i = 0; i != NumSubVecs; ++i) { 1313 APInt DemandedSubElts = 1314 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1315 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1316 Known2, TLO, Depth + 1)) 1317 return true; 1318 // Known bits are shared by every demanded subvector element. 1319 if (!!DemandedSubElts) 1320 Known = Known.intersectWith(Known2); 1321 } 1322 break; 1323 } 1324 case ISD::VECTOR_SHUFFLE: { 1325 assert(!VT.isScalableVector()); 1326 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1327 1328 // Collect demanded elements from shuffle operands.. 1329 APInt DemandedLHS, DemandedRHS; 1330 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1331 DemandedRHS)) 1332 break; 1333 1334 if (!!DemandedLHS || !!DemandedRHS) { 1335 SDValue Op0 = Op.getOperand(0); 1336 SDValue Op1 = Op.getOperand(1); 1337 1338 Known.Zero.setAllBits(); 1339 Known.One.setAllBits(); 1340 if (!!DemandedLHS) { 1341 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1342 Depth + 1)) 1343 return true; 1344 Known = Known.intersectWith(Known2); 1345 } 1346 if (!!DemandedRHS) { 1347 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1348 Depth + 1)) 1349 return true; 1350 Known = Known.intersectWith(Known2); 1351 } 1352 1353 // Attempt to avoid multi-use ops if we don't need anything from them. 1354 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1355 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1356 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1357 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1358 if (DemandedOp0 || DemandedOp1) { 1359 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1360 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1361 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1362 return TLO.CombineTo(Op, NewOp); 1363 } 1364 } 1365 break; 1366 } 1367 case ISD::AND: { 1368 SDValue Op0 = Op.getOperand(0); 1369 SDValue Op1 = Op.getOperand(1); 1370 1371 // If the RHS is a constant, check to see if the LHS would be zero without 1372 // using the bits from the RHS. Below, we use knowledge about the RHS to 1373 // simplify the LHS, here we're using information from the LHS to simplify 1374 // the RHS. 1375 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1376 // Do not increment Depth here; that can cause an infinite loop. 1377 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1378 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1379 if ((LHSKnown.Zero & DemandedBits) == 1380 (~RHSC->getAPIntValue() & DemandedBits)) 1381 return TLO.CombineTo(Op, Op0); 1382 1383 // If any of the set bits in the RHS are known zero on the LHS, shrink 1384 // the constant. 1385 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1386 DemandedElts, TLO)) 1387 return true; 1388 1389 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1390 // constant, but if this 'and' is only clearing bits that were just set by 1391 // the xor, then this 'and' can be eliminated by shrinking the mask of 1392 // the xor. For example, for a 32-bit X: 1393 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1394 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1395 LHSKnown.One == ~RHSC->getAPIntValue()) { 1396 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1397 return TLO.CombineTo(Op, Xor); 1398 } 1399 } 1400 1401 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1402 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1403 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1404 (Op0.getOperand(0).isUndef() || 1405 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1406 Op0->hasOneUse()) { 1407 unsigned NumSubElts = 1408 Op0.getOperand(1).getValueType().getVectorNumElements(); 1409 unsigned SubIdx = Op0.getConstantOperandVal(2); 1410 APInt DemandedSub = 1411 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1412 KnownBits KnownSubMask = 1413 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1414 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1415 SDValue NewAnd = 1416 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1417 SDValue NewInsert = 1418 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1419 Op0.getOperand(1), Op0.getOperand(2)); 1420 return TLO.CombineTo(Op, NewInsert); 1421 } 1422 } 1423 1424 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1425 Depth + 1)) 1426 return true; 1427 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1428 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1429 Known2, TLO, Depth + 1)) 1430 return true; 1431 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1432 1433 // If all of the demanded bits are known one on one side, return the other. 1434 // These bits cannot contribute to the result of the 'and'. 1435 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1436 return TLO.CombineTo(Op, Op0); 1437 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1438 return TLO.CombineTo(Op, Op1); 1439 // If all of the demanded bits in the inputs are known zeros, return zero. 1440 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1441 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1442 // If the RHS is a constant, see if we can simplify it. 1443 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1444 TLO)) 1445 return true; 1446 // If the operation can be done in a smaller type, do so. 1447 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1448 return true; 1449 1450 // Attempt to avoid multi-use ops if we don't need anything from them. 1451 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1452 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1453 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1454 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1455 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1456 if (DemandedOp0 || DemandedOp1) { 1457 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1458 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1459 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1460 return TLO.CombineTo(Op, NewOp); 1461 } 1462 } 1463 1464 Known &= Known2; 1465 break; 1466 } 1467 case ISD::OR: { 1468 SDValue Op0 = Op.getOperand(0); 1469 SDValue Op1 = Op.getOperand(1); 1470 SDNodeFlags Flags = Op.getNode()->getFlags(); 1471 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1472 Depth + 1)) { 1473 if (Flags.hasDisjoint()) { 1474 Flags.setDisjoint(false); 1475 Op->setFlags(Flags); 1476 } 1477 return true; 1478 } 1479 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1480 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1481 Known2, TLO, Depth + 1)) { 1482 if (Flags.hasDisjoint()) { 1483 Flags.setDisjoint(false); 1484 Op->setFlags(Flags); 1485 } 1486 return true; 1487 } 1488 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1489 1490 // If all of the demanded bits are known zero on one side, return the other. 1491 // These bits cannot contribute to the result of the 'or'. 1492 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1493 return TLO.CombineTo(Op, Op0); 1494 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1495 return TLO.CombineTo(Op, Op1); 1496 // If the RHS is a constant, see if we can simplify it. 1497 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1498 return true; 1499 // If the operation can be done in a smaller type, do so. 1500 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1501 return true; 1502 1503 // Attempt to avoid multi-use ops if we don't need anything from them. 1504 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1505 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1506 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1507 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1508 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1509 if (DemandedOp0 || DemandedOp1) { 1510 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1511 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1512 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1513 return TLO.CombineTo(Op, NewOp); 1514 } 1515 } 1516 1517 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1518 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1519 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1520 Op0->hasOneUse() && Op1->hasOneUse()) { 1521 // Attempt to match all commutations - m_c_Or would've been useful! 1522 for (int I = 0; I != 2; ++I) { 1523 SDValue X = Op.getOperand(I).getOperand(0); 1524 SDValue C1 = Op.getOperand(I).getOperand(1); 1525 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1526 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1527 if (Alt.getOpcode() == ISD::OR) { 1528 for (int J = 0; J != 2; ++J) { 1529 if (X == Alt.getOperand(J)) { 1530 SDValue Y = Alt.getOperand(1 - J); 1531 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1532 {C1, C2})) { 1533 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1534 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1535 return TLO.CombineTo( 1536 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1537 } 1538 } 1539 } 1540 } 1541 } 1542 } 1543 1544 Known |= Known2; 1545 break; 1546 } 1547 case ISD::XOR: { 1548 SDValue Op0 = Op.getOperand(0); 1549 SDValue Op1 = Op.getOperand(1); 1550 1551 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1552 Depth + 1)) 1553 return true; 1554 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1555 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1556 Depth + 1)) 1557 return true; 1558 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1559 1560 // If all of the demanded bits are known zero on one side, return the other. 1561 // These bits cannot contribute to the result of the 'xor'. 1562 if (DemandedBits.isSubsetOf(Known.Zero)) 1563 return TLO.CombineTo(Op, Op0); 1564 if (DemandedBits.isSubsetOf(Known2.Zero)) 1565 return TLO.CombineTo(Op, Op1); 1566 // If the operation can be done in a smaller type, do so. 1567 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1568 return true; 1569 1570 // If all of the unknown bits are known to be zero on one side or the other 1571 // turn this into an *inclusive* or. 1572 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1573 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1574 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1575 1576 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1577 if (C) { 1578 // If one side is a constant, and all of the set bits in the constant are 1579 // also known set on the other side, turn this into an AND, as we know 1580 // the bits will be cleared. 1581 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1582 // NB: it is okay if more bits are known than are requested 1583 if (C->getAPIntValue() == Known2.One) { 1584 SDValue ANDC = 1585 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1586 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1587 } 1588 1589 // If the RHS is a constant, see if we can change it. Don't alter a -1 1590 // constant because that's a 'not' op, and that is better for combining 1591 // and codegen. 1592 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1593 // We're flipping all demanded bits. Flip the undemanded bits too. 1594 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1595 return TLO.CombineTo(Op, New); 1596 } 1597 1598 unsigned Op0Opcode = Op0.getOpcode(); 1599 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1600 if (ConstantSDNode *ShiftC = 1601 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1602 // Don't crash on an oversized shift. We can not guarantee that a 1603 // bogus shift has been simplified to undef. 1604 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1605 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1606 APInt Ones = APInt::getAllOnes(BitWidth); 1607 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1608 : Ones.lshr(ShiftAmt); 1609 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 1610 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1611 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) { 1612 // If the xor constant is a demanded mask, do a 'not' before the 1613 // shift: 1614 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1615 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1616 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1618 Op0.getOperand(1))); 1619 } 1620 } 1621 } 1622 } 1623 } 1624 1625 // If we can't turn this into a 'not', try to shrink the constant. 1626 if (!C || !C->isAllOnes()) 1627 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1628 return true; 1629 1630 // Attempt to avoid multi-use ops if we don't need anything from them. 1631 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1632 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1633 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1634 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1635 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1636 if (DemandedOp0 || DemandedOp1) { 1637 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1638 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1639 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1640 return TLO.CombineTo(Op, NewOp); 1641 } 1642 } 1643 1644 Known ^= Known2; 1645 break; 1646 } 1647 case ISD::SELECT: 1648 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1649 Known, TLO, Depth + 1)) 1650 return true; 1651 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1652 Known2, TLO, Depth + 1)) 1653 return true; 1654 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1655 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1656 1657 // If the operands are constants, see if we can simplify them. 1658 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1659 return true; 1660 1661 // Only known if known in both the LHS and RHS. 1662 Known = Known.intersectWith(Known2); 1663 break; 1664 case ISD::VSELECT: 1665 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1666 Known, TLO, Depth + 1)) 1667 return true; 1668 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1669 Known2, TLO, Depth + 1)) 1670 return true; 1671 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1672 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1673 1674 // Only known if known in both the LHS and RHS. 1675 Known = Known.intersectWith(Known2); 1676 break; 1677 case ISD::SELECT_CC: 1678 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts, 1679 Known, TLO, Depth + 1)) 1680 return true; 1681 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1682 Known2, TLO, Depth + 1)) 1683 return true; 1684 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1685 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1686 1687 // If the operands are constants, see if we can simplify them. 1688 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1689 return true; 1690 1691 // Only known if known in both the LHS and RHS. 1692 Known = Known.intersectWith(Known2); 1693 break; 1694 case ISD::SETCC: { 1695 SDValue Op0 = Op.getOperand(0); 1696 SDValue Op1 = Op.getOperand(1); 1697 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1698 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1699 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1700 // -1, we may be able to bypass the setcc. 1701 if (DemandedBits.isSignMask() && 1702 Op0.getScalarValueSizeInBits() == BitWidth && 1703 getBooleanContents(Op0.getValueType()) == 1704 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1705 // If we're testing X < 0, then this compare isn't needed - just use X! 1706 // FIXME: We're limiting to integer types here, but this should also work 1707 // if we don't care about FP signed-zero. The use of SETLT with FP means 1708 // that we don't care about NaNs. 1709 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1710 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1711 return TLO.CombineTo(Op, Op0); 1712 1713 // TODO: Should we check for other forms of sign-bit comparisons? 1714 // Examples: X <= -1, X >= 0 1715 } 1716 if (getBooleanContents(Op0.getValueType()) == 1717 TargetLowering::ZeroOrOneBooleanContent && 1718 BitWidth > 1) 1719 Known.Zero.setBitsFrom(1); 1720 break; 1721 } 1722 case ISD::SHL: { 1723 SDValue Op0 = Op.getOperand(0); 1724 SDValue Op1 = Op.getOperand(1); 1725 EVT ShiftVT = Op1.getValueType(); 1726 1727 if (const APInt *SA = 1728 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1729 unsigned ShAmt = SA->getZExtValue(); 1730 if (ShAmt == 0) 1731 return TLO.CombineTo(Op, Op0); 1732 1733 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1734 // single shift. We can do this if the bottom bits (which are shifted 1735 // out) are never demanded. 1736 // TODO - support non-uniform vector amounts. 1737 if (Op0.getOpcode() == ISD::SRL) { 1738 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1739 if (const APInt *SA2 = 1740 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1741 unsigned C1 = SA2->getZExtValue(); 1742 unsigned Opc = ISD::SHL; 1743 int Diff = ShAmt - C1; 1744 if (Diff < 0) { 1745 Diff = -Diff; 1746 Opc = ISD::SRL; 1747 } 1748 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1749 return TLO.CombineTo( 1750 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1751 } 1752 } 1753 } 1754 1755 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1756 // are not demanded. This will likely allow the anyext to be folded away. 1757 // TODO - support non-uniform vector amounts. 1758 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1759 SDValue InnerOp = Op0.getOperand(0); 1760 EVT InnerVT = InnerOp.getValueType(); 1761 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1762 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1763 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1764 SDValue NarrowShl = TLO.DAG.getNode( 1765 ISD::SHL, dl, InnerVT, InnerOp, 1766 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1767 return TLO.CombineTo( 1768 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1769 } 1770 1771 // Repeat the SHL optimization above in cases where an extension 1772 // intervenes: (shl (anyext (shr x, c1)), c2) to 1773 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1774 // aren't demanded (as above) and that the shifted upper c1 bits of 1775 // x aren't demanded. 1776 // TODO - support non-uniform vector amounts. 1777 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1778 InnerOp.hasOneUse()) { 1779 if (const APInt *SA2 = 1780 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1781 unsigned InnerShAmt = SA2->getZExtValue(); 1782 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1783 DemandedBits.getActiveBits() <= 1784 (InnerBits - InnerShAmt + ShAmt) && 1785 DemandedBits.countr_zero() >= ShAmt) { 1786 SDValue NewSA = 1787 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1788 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1789 InnerOp.getOperand(0)); 1790 return TLO.CombineTo( 1791 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1792 } 1793 } 1794 } 1795 } 1796 1797 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1798 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1799 Depth + 1)) { 1800 SDNodeFlags Flags = Op.getNode()->getFlags(); 1801 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1802 // Disable the nsw and nuw flags. We can no longer guarantee that we 1803 // won't wrap after simplification. 1804 Flags.setNoSignedWrap(false); 1805 Flags.setNoUnsignedWrap(false); 1806 Op->setFlags(Flags); 1807 } 1808 return true; 1809 } 1810 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1811 Known.Zero <<= ShAmt; 1812 Known.One <<= ShAmt; 1813 // low bits known zero. 1814 Known.Zero.setLowBits(ShAmt); 1815 1816 // Attempt to avoid multi-use ops if we don't need anything from them. 1817 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1818 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1819 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1820 if (DemandedOp0) { 1821 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1822 return TLO.CombineTo(Op, NewOp); 1823 } 1824 } 1825 1826 // Try shrinking the operation as long as the shift amount will still be 1827 // in range. 1828 if ((ShAmt < DemandedBits.getActiveBits()) && 1829 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1830 return true; 1831 1832 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1833 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) 1834 // Only do this if we demand the upper half so the knownbits are correct. 1835 unsigned HalfWidth = BitWidth / 2; 1836 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && 1837 DemandedBits.countLeadingOnes() >= HalfWidth) { 1838 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); 1839 if (isNarrowingProfitable(VT, HalfVT) && 1840 isTypeDesirableForOp(ISD::SHL, HalfVT) && 1841 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1842 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { 1843 // If we're demanding the upper bits at all, we must ensure 1844 // that the upper bits of the shift result are known to be zero, 1845 // which is equivalent to the narrow shift being NUW. 1846 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { 1847 bool IsNSW = Known.countMinSignBits() > HalfWidth; 1848 SDNodeFlags Flags; 1849 Flags.setNoSignedWrap(IsNSW); 1850 Flags.setNoUnsignedWrap(IsNUW); 1851 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1852 SDValue NewShiftAmt = TLO.DAG.getShiftAmountConstant( 1853 ShAmt, HalfVT, dl, TLO.LegalTypes()); 1854 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, 1855 NewShiftAmt, Flags); 1856 SDValue NewExt = 1857 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); 1858 return TLO.CombineTo(Op, NewExt); 1859 } 1860 } 1861 } 1862 } else { 1863 // This is a variable shift, so we can't shift the demand mask by a known 1864 // amount. But if we are not demanding high bits, then we are not 1865 // demanding those bits from the pre-shifted operand either. 1866 if (unsigned CTLZ = DemandedBits.countl_zero()) { 1867 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1868 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1869 Depth + 1)) { 1870 SDNodeFlags Flags = Op.getNode()->getFlags(); 1871 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1872 // Disable the nsw and nuw flags. We can no longer guarantee that we 1873 // won't wrap after simplification. 1874 Flags.setNoSignedWrap(false); 1875 Flags.setNoUnsignedWrap(false); 1876 Op->setFlags(Flags); 1877 } 1878 return true; 1879 } 1880 Known.resetAll(); 1881 } 1882 } 1883 1884 // If we are only demanding sign bits then we can use the shift source 1885 // directly. 1886 if (const APInt *MaxSA = 1887 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1888 unsigned ShAmt = MaxSA->getZExtValue(); 1889 unsigned NumSignBits = 1890 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1891 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 1892 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1893 return TLO.CombineTo(Op, Op0); 1894 } 1895 break; 1896 } 1897 case ISD::SRL: { 1898 SDValue Op0 = Op.getOperand(0); 1899 SDValue Op1 = Op.getOperand(1); 1900 EVT ShiftVT = Op1.getValueType(); 1901 1902 // Try to match AVG patterns. 1903 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1904 DemandedElts, Depth + 1)) 1905 return TLO.CombineTo(Op, AVG); 1906 1907 if (const APInt *SA = 1908 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1909 unsigned ShAmt = SA->getZExtValue(); 1910 if (ShAmt == 0) 1911 return TLO.CombineTo(Op, Op0); 1912 1913 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1914 // single shift. We can do this if the top bits (which are shifted out) 1915 // are never demanded. 1916 // TODO - support non-uniform vector amounts. 1917 if (Op0.getOpcode() == ISD::SHL) { 1918 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1919 if (const APInt *SA2 = 1920 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1921 unsigned C1 = SA2->getZExtValue(); 1922 unsigned Opc = ISD::SRL; 1923 int Diff = ShAmt - C1; 1924 if (Diff < 0) { 1925 Diff = -Diff; 1926 Opc = ISD::SHL; 1927 } 1928 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1929 return TLO.CombineTo( 1930 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1931 } 1932 } 1933 } 1934 1935 APInt InDemandedMask = (DemandedBits << ShAmt); 1936 1937 // If the shift is exact, then it does demand the low bits (and knows that 1938 // they are zero). 1939 if (Op->getFlags().hasExact()) 1940 InDemandedMask.setLowBits(ShAmt); 1941 1942 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1943 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) 1944 if ((BitWidth % 2) == 0 && !VT.isVector()) { 1945 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); 1946 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); 1947 if (isNarrowingProfitable(VT, HalfVT) && 1948 isTypeDesirableForOp(ISD::SRL, HalfVT) && 1949 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1950 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && 1951 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || 1952 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { 1953 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1954 SDValue NewShiftAmt = TLO.DAG.getShiftAmountConstant( 1955 ShAmt, HalfVT, dl, TLO.LegalTypes()); 1956 SDValue NewShift = 1957 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); 1958 return TLO.CombineTo( 1959 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); 1960 } 1961 } 1962 1963 // Compute the new bits that are at the top now. 1964 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1965 Depth + 1)) 1966 return true; 1967 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1968 Known.Zero.lshrInPlace(ShAmt); 1969 Known.One.lshrInPlace(ShAmt); 1970 // High bits known zero. 1971 Known.Zero.setHighBits(ShAmt); 1972 1973 // Attempt to avoid multi-use ops if we don't need anything from them. 1974 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1975 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1976 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1977 if (DemandedOp0) { 1978 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 1979 return TLO.CombineTo(Op, NewOp); 1980 } 1981 } 1982 } else { 1983 // Use generic knownbits computation as it has support for non-uniform 1984 // shift amounts. 1985 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1986 } 1987 break; 1988 } 1989 case ISD::SRA: { 1990 SDValue Op0 = Op.getOperand(0); 1991 SDValue Op1 = Op.getOperand(1); 1992 EVT ShiftVT = Op1.getValueType(); 1993 1994 // If we only want bits that already match the signbit then we don't need 1995 // to shift. 1996 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); 1997 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1998 NumHiDemandedBits) 1999 return TLO.CombineTo(Op, Op0); 2000 2001 // If this is an arithmetic shift right and only the low-bit is set, we can 2002 // always convert this into a logical shr, even if the shift amount is 2003 // variable. The low bit of the shift cannot be an input sign bit unless 2004 // the shift amount is >= the size of the datatype, which is undefined. 2005 if (DemandedBits.isOne()) 2006 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2007 2008 // Try to match AVG patterns. 2009 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 2010 DemandedElts, Depth + 1)) 2011 return TLO.CombineTo(Op, AVG); 2012 2013 if (const APInt *SA = 2014 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 2015 unsigned ShAmt = SA->getZExtValue(); 2016 if (ShAmt == 0) 2017 return TLO.CombineTo(Op, Op0); 2018 2019 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target 2020 // supports sext_inreg. 2021 if (Op0.getOpcode() == ISD::SHL) { 2022 if (const APInt *InnerSA = 2023 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 2024 unsigned LowBits = BitWidth - ShAmt; 2025 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); 2026 if (VT.isVector()) 2027 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, 2028 VT.getVectorElementCount()); 2029 2030 if (*InnerSA == ShAmt) { 2031 if (!TLO.LegalOperations() || 2032 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) 2033 return TLO.CombineTo( 2034 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 2035 Op0.getOperand(0), 2036 TLO.DAG.getValueType(ExtVT))); 2037 2038 // Even if we can't convert to sext_inreg, we might be able to 2039 // remove this shift pair if the input is already sign extended. 2040 unsigned NumSignBits = 2041 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); 2042 if (NumSignBits > ShAmt) 2043 return TLO.CombineTo(Op, Op0.getOperand(0)); 2044 } 2045 } 2046 } 2047 2048 APInt InDemandedMask = (DemandedBits << ShAmt); 2049 2050 // If the shift is exact, then it does demand the low bits (and knows that 2051 // they are zero). 2052 if (Op->getFlags().hasExact()) 2053 InDemandedMask.setLowBits(ShAmt); 2054 2055 // If any of the demanded bits are produced by the sign extension, we also 2056 // demand the input sign bit. 2057 if (DemandedBits.countl_zero() < ShAmt) 2058 InDemandedMask.setSignBit(); 2059 2060 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2061 Depth + 1)) 2062 return true; 2063 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2064 Known.Zero.lshrInPlace(ShAmt); 2065 Known.One.lshrInPlace(ShAmt); 2066 2067 // If the input sign bit is known to be zero, or if none of the top bits 2068 // are demanded, turn this into an unsigned shift right. 2069 if (Known.Zero[BitWidth - ShAmt - 1] || 2070 DemandedBits.countl_zero() >= ShAmt) { 2071 SDNodeFlags Flags; 2072 Flags.setExact(Op->getFlags().hasExact()); 2073 return TLO.CombineTo( 2074 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 2075 } 2076 2077 int Log2 = DemandedBits.exactLogBase2(); 2078 if (Log2 >= 0) { 2079 // The bit must come from the sign. 2080 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 2081 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 2082 } 2083 2084 if (Known.One[BitWidth - ShAmt - 1]) 2085 // New bits are known one. 2086 Known.One.setHighBits(ShAmt); 2087 2088 // Attempt to avoid multi-use ops if we don't need anything from them. 2089 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2090 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2091 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2092 if (DemandedOp0) { 2093 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 2094 return TLO.CombineTo(Op, NewOp); 2095 } 2096 } 2097 } 2098 break; 2099 } 2100 case ISD::FSHL: 2101 case ISD::FSHR: { 2102 SDValue Op0 = Op.getOperand(0); 2103 SDValue Op1 = Op.getOperand(1); 2104 SDValue Op2 = Op.getOperand(2); 2105 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 2106 2107 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 2108 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2109 2110 // For fshl, 0-shift returns the 1st arg. 2111 // For fshr, 0-shift returns the 2nd arg. 2112 if (Amt == 0) { 2113 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 2114 Known, TLO, Depth + 1)) 2115 return true; 2116 break; 2117 } 2118 2119 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 2120 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 2121 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 2122 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 2123 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2124 Depth + 1)) 2125 return true; 2126 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 2127 Depth + 1)) 2128 return true; 2129 2130 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2131 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2132 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2133 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2134 Known = Known.unionWith(Known2); 2135 2136 // Attempt to avoid multi-use ops if we don't need anything from them. 2137 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2138 !DemandedElts.isAllOnes()) { 2139 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2140 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2141 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2142 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2143 if (DemandedOp0 || DemandedOp1) { 2144 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2145 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2146 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2147 DemandedOp1, Op2); 2148 return TLO.CombineTo(Op, NewOp); 2149 } 2150 } 2151 } 2152 2153 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2154 if (isPowerOf2_32(BitWidth)) { 2155 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2156 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2157 Known2, TLO, Depth + 1)) 2158 return true; 2159 } 2160 break; 2161 } 2162 case ISD::ROTL: 2163 case ISD::ROTR: { 2164 SDValue Op0 = Op.getOperand(0); 2165 SDValue Op1 = Op.getOperand(1); 2166 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2167 2168 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2169 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2170 return TLO.CombineTo(Op, Op0); 2171 2172 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2173 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2174 unsigned RevAmt = BitWidth - Amt; 2175 2176 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2177 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2178 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2179 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2180 Depth + 1)) 2181 return true; 2182 2183 // rot*(x, 0) --> x 2184 if (Amt == 0) 2185 return TLO.CombineTo(Op, Op0); 2186 2187 // See if we don't demand either half of the rotated bits. 2188 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2189 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { 2190 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2191 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2192 } 2193 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2194 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { 2195 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2196 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2197 } 2198 } 2199 2200 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2201 if (isPowerOf2_32(BitWidth)) { 2202 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2203 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2204 Depth + 1)) 2205 return true; 2206 } 2207 break; 2208 } 2209 case ISD::SMIN: 2210 case ISD::SMAX: 2211 case ISD::UMIN: 2212 case ISD::UMAX: { 2213 unsigned Opc = Op.getOpcode(); 2214 SDValue Op0 = Op.getOperand(0); 2215 SDValue Op1 = Op.getOperand(1); 2216 2217 // If we're only demanding signbits, then we can simplify to OR/AND node. 2218 unsigned BitOp = 2219 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; 2220 unsigned NumSignBits = 2221 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), 2222 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); 2223 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); 2224 if (NumSignBits >= NumDemandedUpperBits) 2225 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); 2226 2227 // Check if one arg is always less/greater than (or equal) to the other arg. 2228 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2229 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2230 switch (Opc) { 2231 case ISD::SMIN: 2232 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) 2233 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); 2234 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) 2235 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); 2236 Known = KnownBits::smin(Known0, Known1); 2237 break; 2238 case ISD::SMAX: 2239 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) 2240 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); 2241 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) 2242 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); 2243 Known = KnownBits::smax(Known0, Known1); 2244 break; 2245 case ISD::UMIN: 2246 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2247 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2248 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2249 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2250 Known = KnownBits::umin(Known0, Known1); 2251 break; 2252 case ISD::UMAX: 2253 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2254 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2255 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2256 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2257 Known = KnownBits::umax(Known0, Known1); 2258 break; 2259 } 2260 break; 2261 } 2262 case ISD::BITREVERSE: { 2263 SDValue Src = Op.getOperand(0); 2264 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2265 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2266 Depth + 1)) 2267 return true; 2268 Known.One = Known2.One.reverseBits(); 2269 Known.Zero = Known2.Zero.reverseBits(); 2270 break; 2271 } 2272 case ISD::BSWAP: { 2273 SDValue Src = Op.getOperand(0); 2274 2275 // If the only bits demanded come from one byte of the bswap result, 2276 // just shift the input byte into position to eliminate the bswap. 2277 unsigned NLZ = DemandedBits.countl_zero(); 2278 unsigned NTZ = DemandedBits.countr_zero(); 2279 2280 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2281 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2282 // have 14 leading zeros, round to 8. 2283 NLZ = alignDown(NLZ, 8); 2284 NTZ = alignDown(NTZ, 8); 2285 // If we need exactly one byte, we can do this transformation. 2286 if (BitWidth - NLZ - NTZ == 8) { 2287 // Replace this with either a left or right shift to get the byte into 2288 // the right place. 2289 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2290 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2291 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2292 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2293 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2294 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2295 return TLO.CombineTo(Op, NewOp); 2296 } 2297 } 2298 2299 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2300 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2301 Depth + 1)) 2302 return true; 2303 Known.One = Known2.One.byteSwap(); 2304 Known.Zero = Known2.Zero.byteSwap(); 2305 break; 2306 } 2307 case ISD::CTPOP: { 2308 // If only 1 bit is demanded, replace with PARITY as long as we're before 2309 // op legalization. 2310 // FIXME: Limit to scalars for now. 2311 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2312 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2313 Op.getOperand(0))); 2314 2315 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2316 break; 2317 } 2318 case ISD::SIGN_EXTEND_INREG: { 2319 SDValue Op0 = Op.getOperand(0); 2320 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2321 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2322 2323 // If we only care about the highest bit, don't bother shifting right. 2324 if (DemandedBits.isSignMask()) { 2325 unsigned MinSignedBits = 2326 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2327 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2328 // However if the input is already sign extended we expect the sign 2329 // extension to be dropped altogether later and do not simplify. 2330 if (!AlreadySignExtended) { 2331 // Compute the correct shift amount type, which must be getShiftAmountTy 2332 // for scalar types after legalization. 2333 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2334 getShiftAmountTy(VT, DL)); 2335 return TLO.CombineTo(Op, 2336 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2337 } 2338 } 2339 2340 // If none of the extended bits are demanded, eliminate the sextinreg. 2341 if (DemandedBits.getActiveBits() <= ExVTBits) 2342 return TLO.CombineTo(Op, Op0); 2343 2344 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2345 2346 // Since the sign extended bits are demanded, we know that the sign 2347 // bit is demanded. 2348 InputDemandedBits.setBit(ExVTBits - 1); 2349 2350 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2351 Depth + 1)) 2352 return true; 2353 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2354 2355 // If the sign bit of the input is known set or clear, then we know the 2356 // top bits of the result. 2357 2358 // If the input sign bit is known zero, convert this into a zero extension. 2359 if (Known.Zero[ExVTBits - 1]) 2360 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2361 2362 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2363 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2364 Known.One.setBitsFrom(ExVTBits); 2365 Known.Zero &= Mask; 2366 } else { // Input sign bit unknown 2367 Known.Zero &= Mask; 2368 Known.One &= Mask; 2369 } 2370 break; 2371 } 2372 case ISD::BUILD_PAIR: { 2373 EVT HalfVT = Op.getOperand(0).getValueType(); 2374 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2375 2376 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2377 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2378 2379 KnownBits KnownLo, KnownHi; 2380 2381 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2382 return true; 2383 2384 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2385 return true; 2386 2387 Known = KnownHi.concat(KnownLo); 2388 break; 2389 } 2390 case ISD::ZERO_EXTEND_VECTOR_INREG: 2391 if (VT.isScalableVector()) 2392 return false; 2393 [[fallthrough]]; 2394 case ISD::ZERO_EXTEND: { 2395 SDValue Src = Op.getOperand(0); 2396 EVT SrcVT = Src.getValueType(); 2397 unsigned InBits = SrcVT.getScalarSizeInBits(); 2398 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2399 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2400 2401 // If none of the top bits are demanded, convert this into an any_extend. 2402 if (DemandedBits.getActiveBits() <= InBits) { 2403 // If we only need the non-extended bits of the bottom element 2404 // then we can just bitcast to the result. 2405 if (IsLE && IsVecInReg && DemandedElts == 1 && 2406 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2407 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2408 2409 unsigned Opc = 2410 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2411 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2412 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2413 } 2414 2415 SDNodeFlags Flags = Op->getFlags(); 2416 APInt InDemandedBits = DemandedBits.trunc(InBits); 2417 APInt InDemandedElts = DemandedElts.zext(InElts); 2418 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2419 Depth + 1)) { 2420 if (Flags.hasNonNeg()) { 2421 Flags.setNonNeg(false); 2422 Op->setFlags(Flags); 2423 } 2424 return true; 2425 } 2426 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2427 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2428 Known = Known.zext(BitWidth); 2429 2430 // Attempt to avoid multi-use ops if we don't need anything from them. 2431 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2432 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2433 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2434 break; 2435 } 2436 case ISD::SIGN_EXTEND_VECTOR_INREG: 2437 if (VT.isScalableVector()) 2438 return false; 2439 [[fallthrough]]; 2440 case ISD::SIGN_EXTEND: { 2441 SDValue Src = Op.getOperand(0); 2442 EVT SrcVT = Src.getValueType(); 2443 unsigned InBits = SrcVT.getScalarSizeInBits(); 2444 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2445 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2446 2447 APInt InDemandedElts = DemandedElts.zext(InElts); 2448 APInt InDemandedBits = DemandedBits.trunc(InBits); 2449 2450 // Since some of the sign extended bits are demanded, we know that the sign 2451 // bit is demanded. 2452 InDemandedBits.setBit(InBits - 1); 2453 2454 // If none of the top bits are demanded, convert this into an any_extend. 2455 if (DemandedBits.getActiveBits() <= InBits) { 2456 // If we only need the non-extended bits of the bottom element 2457 // then we can just bitcast to the result. 2458 if (IsLE && IsVecInReg && DemandedElts == 1 && 2459 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2460 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2461 2462 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. 2463 if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent || 2464 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) != 2465 InBits) { 2466 unsigned Opc = 2467 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2468 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2469 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2470 } 2471 } 2472 2473 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2474 Depth + 1)) 2475 return true; 2476 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2477 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2478 2479 // If the sign bit is known one, the top bits match. 2480 Known = Known.sext(BitWidth); 2481 2482 // If the sign bit is known zero, convert this to a zero extend. 2483 if (Known.isNonNegative()) { 2484 unsigned Opc = 2485 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2486 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) { 2487 SDNodeFlags Flags; 2488 if (!IsVecInReg) 2489 Flags.setNonNeg(true); 2490 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags)); 2491 } 2492 } 2493 2494 // Attempt to avoid multi-use ops if we don't need anything from them. 2495 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2496 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2497 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2498 break; 2499 } 2500 case ISD::ANY_EXTEND_VECTOR_INREG: 2501 if (VT.isScalableVector()) 2502 return false; 2503 [[fallthrough]]; 2504 case ISD::ANY_EXTEND: { 2505 SDValue Src = Op.getOperand(0); 2506 EVT SrcVT = Src.getValueType(); 2507 unsigned InBits = SrcVT.getScalarSizeInBits(); 2508 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2509 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2510 2511 // If we only need the bottom element then we can just bitcast. 2512 // TODO: Handle ANY_EXTEND? 2513 if (IsLE && IsVecInReg && DemandedElts == 1 && 2514 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2515 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2516 2517 APInt InDemandedBits = DemandedBits.trunc(InBits); 2518 APInt InDemandedElts = DemandedElts.zext(InElts); 2519 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2520 Depth + 1)) 2521 return true; 2522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2523 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2524 Known = Known.anyext(BitWidth); 2525 2526 // Attempt to avoid multi-use ops if we don't need anything from them. 2527 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2528 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2529 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2530 break; 2531 } 2532 case ISD::TRUNCATE: { 2533 SDValue Src = Op.getOperand(0); 2534 2535 // Simplify the input, using demanded bit information, and compute the known 2536 // zero/one bits live out. 2537 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2538 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2539 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2540 Depth + 1)) 2541 return true; 2542 Known = Known.trunc(BitWidth); 2543 2544 // Attempt to avoid multi-use ops if we don't need anything from them. 2545 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2546 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2547 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2548 2549 // If the input is only used by this truncate, see if we can shrink it based 2550 // on the known demanded bits. 2551 switch (Src.getOpcode()) { 2552 default: 2553 break; 2554 case ISD::SRL: 2555 // Shrink SRL by a constant if none of the high bits shifted in are 2556 // demanded. 2557 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2558 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2559 // undesirable. 2560 break; 2561 2562 if (Src.getNode()->hasOneUse()) { 2563 const APInt *ShAmtC = 2564 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2565 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2566 break; 2567 uint64_t ShVal = ShAmtC->getZExtValue(); 2568 2569 APInt HighBits = 2570 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2571 HighBits.lshrInPlace(ShVal); 2572 HighBits = HighBits.trunc(BitWidth); 2573 2574 if (!(HighBits & DemandedBits)) { 2575 // None of the shifted in bits are needed. Add a truncate of the 2576 // shift input, then shift it. 2577 SDValue NewShAmt = TLO.DAG.getConstant( 2578 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2579 SDValue NewTrunc = 2580 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2581 return TLO.CombineTo( 2582 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2583 } 2584 } 2585 break; 2586 } 2587 2588 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2589 break; 2590 } 2591 case ISD::AssertZext: { 2592 // AssertZext demands all of the high bits, plus any of the low bits 2593 // demanded by its users. 2594 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2595 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2596 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2597 TLO, Depth + 1)) 2598 return true; 2599 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2600 2601 Known.Zero |= ~InMask; 2602 Known.One &= (~Known.Zero); 2603 break; 2604 } 2605 case ISD::EXTRACT_VECTOR_ELT: { 2606 SDValue Src = Op.getOperand(0); 2607 SDValue Idx = Op.getOperand(1); 2608 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2609 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2610 2611 if (SrcEltCnt.isScalable()) 2612 return false; 2613 2614 // Demand the bits from every vector element without a constant index. 2615 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2616 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2617 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2618 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2619 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2620 2621 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2622 // anything about the extended bits. 2623 APInt DemandedSrcBits = DemandedBits; 2624 if (BitWidth > EltBitWidth) 2625 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2626 2627 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2628 Depth + 1)) 2629 return true; 2630 2631 // Attempt to avoid multi-use ops if we don't need anything from them. 2632 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2633 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2634 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2635 SDValue NewOp = 2636 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2637 return TLO.CombineTo(Op, NewOp); 2638 } 2639 } 2640 2641 Known = Known2; 2642 if (BitWidth > EltBitWidth) 2643 Known = Known.anyext(BitWidth); 2644 break; 2645 } 2646 case ISD::BITCAST: { 2647 if (VT.isScalableVector()) 2648 return false; 2649 SDValue Src = Op.getOperand(0); 2650 EVT SrcVT = Src.getValueType(); 2651 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2652 2653 // If this is an FP->Int bitcast and if the sign bit is the only 2654 // thing demanded, turn this into a FGETSIGN. 2655 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2656 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2657 SrcVT.isFloatingPoint()) { 2658 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2659 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2660 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2661 SrcVT != MVT::f128) { 2662 // Cannot eliminate/lower SHL for f128 yet. 2663 EVT Ty = OpVTLegal ? VT : MVT::i32; 2664 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2665 // place. We expect the SHL to be eliminated by other optimizations. 2666 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2667 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2668 if (!OpVTLegal && OpVTSizeInBits > 32) 2669 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2670 unsigned ShVal = Op.getValueSizeInBits() - 1; 2671 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2672 return TLO.CombineTo(Op, 2673 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2674 } 2675 } 2676 2677 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2678 // Demand the elt/bit if any of the original elts/bits are demanded. 2679 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2680 unsigned Scale = BitWidth / NumSrcEltBits; 2681 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2682 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2683 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2684 for (unsigned i = 0; i != Scale; ++i) { 2685 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2686 unsigned BitOffset = EltOffset * NumSrcEltBits; 2687 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2688 if (!Sub.isZero()) { 2689 DemandedSrcBits |= Sub; 2690 for (unsigned j = 0; j != NumElts; ++j) 2691 if (DemandedElts[j]) 2692 DemandedSrcElts.setBit((j * Scale) + i); 2693 } 2694 } 2695 2696 APInt KnownSrcUndef, KnownSrcZero; 2697 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2698 KnownSrcZero, TLO, Depth + 1)) 2699 return true; 2700 2701 KnownBits KnownSrcBits; 2702 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2703 KnownSrcBits, TLO, Depth + 1)) 2704 return true; 2705 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2706 // TODO - bigendian once we have test coverage. 2707 unsigned Scale = NumSrcEltBits / BitWidth; 2708 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2709 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2710 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2711 for (unsigned i = 0; i != NumElts; ++i) 2712 if (DemandedElts[i]) { 2713 unsigned Offset = (i % Scale) * BitWidth; 2714 DemandedSrcBits.insertBits(DemandedBits, Offset); 2715 DemandedSrcElts.setBit(i / Scale); 2716 } 2717 2718 if (SrcVT.isVector()) { 2719 APInt KnownSrcUndef, KnownSrcZero; 2720 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2721 KnownSrcZero, TLO, Depth + 1)) 2722 return true; 2723 } 2724 2725 KnownBits KnownSrcBits; 2726 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2727 KnownSrcBits, TLO, Depth + 1)) 2728 return true; 2729 2730 // Attempt to avoid multi-use ops if we don't need anything from them. 2731 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2732 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2733 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2734 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); 2735 return TLO.CombineTo(Op, NewOp); 2736 } 2737 } 2738 } 2739 2740 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2741 // recursive call where Known may be useful to the caller. 2742 if (Depth > 0) { 2743 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2744 return false; 2745 } 2746 break; 2747 } 2748 case ISD::MUL: 2749 if (DemandedBits.isPowerOf2()) { 2750 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2751 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2752 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2753 unsigned CTZ = DemandedBits.countr_zero(); 2754 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2755 if (C && C->getAPIntValue().countr_zero() == CTZ) { 2756 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2757 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2758 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2759 return TLO.CombineTo(Op, Shl); 2760 } 2761 } 2762 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2763 // X * X is odd iff X is odd. 2764 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2765 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2766 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2767 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2768 return TLO.CombineTo(Op, And1); 2769 } 2770 [[fallthrough]]; 2771 case ISD::ADD: 2772 case ISD::SUB: { 2773 // Add, Sub, and Mul don't demand any bits in positions beyond that 2774 // of the highest bit demanded of them. 2775 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2776 SDNodeFlags Flags = Op.getNode()->getFlags(); 2777 unsigned DemandedBitsLZ = DemandedBits.countl_zero(); 2778 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2779 KnownBits KnownOp0, KnownOp1; 2780 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, KnownOp0, TLO, 2781 Depth + 1) || 2782 SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, 2783 Depth + 1) || 2784 // See if the operation should be performed at a smaller bit width. 2785 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2786 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2787 // Disable the nsw and nuw flags. We can no longer guarantee that we 2788 // won't wrap after simplification. 2789 Flags.setNoSignedWrap(false); 2790 Flags.setNoUnsignedWrap(false); 2791 Op->setFlags(Flags); 2792 } 2793 return true; 2794 } 2795 2796 // neg x with only low bit demanded is simply x. 2797 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2798 isNullConstant(Op0)) 2799 return TLO.CombineTo(Op, Op1); 2800 2801 // Attempt to avoid multi-use ops if we don't need anything from them. 2802 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2803 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2804 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2805 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2806 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2807 if (DemandedOp0 || DemandedOp1) { 2808 Flags.setNoSignedWrap(false); 2809 Flags.setNoUnsignedWrap(false); 2810 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2811 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2812 SDValue NewOp = 2813 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2814 return TLO.CombineTo(Op, NewOp); 2815 } 2816 } 2817 2818 // If we have a constant operand, we may be able to turn it into -1 if we 2819 // do not demand the high bits. This can make the constant smaller to 2820 // encode, allow more general folding, or match specialized instruction 2821 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2822 // is probably not useful (and could be detrimental). 2823 ConstantSDNode *C = isConstOrConstSplat(Op1); 2824 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2825 if (C && !C->isAllOnes() && !C->isOne() && 2826 (C->getAPIntValue() | HighMask).isAllOnes()) { 2827 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2828 // Disable the nsw and nuw flags. We can no longer guarantee that we 2829 // won't wrap after simplification. 2830 Flags.setNoSignedWrap(false); 2831 Flags.setNoUnsignedWrap(false); 2832 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2833 return TLO.CombineTo(Op, NewOp); 2834 } 2835 2836 // Match a multiply with a disguised negated-power-of-2 and convert to a 2837 // an equivalent shift-left amount. 2838 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2839 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2840 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2841 return 0; 2842 2843 // Don't touch opaque constants. Also, ignore zero and power-of-2 2844 // multiplies. Those will get folded later. 2845 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2846 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2847 !MulC->getAPIntValue().isPowerOf2()) { 2848 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2849 if (UnmaskedC.isNegatedPowerOf2()) 2850 return (-UnmaskedC).logBase2(); 2851 } 2852 return 0; 2853 }; 2854 2855 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2856 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2857 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2858 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2859 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2860 return TLO.CombineTo(Op, Res); 2861 }; 2862 2863 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2864 if (Op.getOpcode() == ISD::ADD) { 2865 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2866 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2867 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2868 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2869 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2870 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2871 } 2872 if (Op.getOpcode() == ISD::SUB) { 2873 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2874 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2875 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2876 } 2877 } 2878 2879 if (Op.getOpcode() == ISD::MUL) { 2880 Known = KnownBits::mul(KnownOp0, KnownOp1); 2881 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. 2882 Known = KnownBits::computeForAddSub(Op.getOpcode() == ISD::ADD, 2883 Flags.hasNoSignedWrap(), KnownOp0, 2884 KnownOp1); 2885 } 2886 break; 2887 } 2888 default: 2889 // We also ask the target about intrinsics (which could be specific to it). 2890 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2891 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2892 // TODO: Probably okay to remove after audit; here to reduce change size 2893 // in initial enablement patch for scalable vectors 2894 if (Op.getValueType().isScalableVector()) 2895 break; 2896 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2897 Known, TLO, Depth)) 2898 return true; 2899 break; 2900 } 2901 2902 // Just use computeKnownBits to compute output bits. 2903 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2904 break; 2905 } 2906 2907 // If we know the value of all of the demanded bits, return this as a 2908 // constant. 2909 if (!isTargetCanonicalConstantNode(Op) && 2910 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2911 // Avoid folding to a constant if any OpaqueConstant is involved. 2912 const SDNode *N = Op.getNode(); 2913 for (SDNode *Op : 2914 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2915 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2916 if (C->isOpaque()) 2917 return false; 2918 } 2919 if (VT.isInteger()) 2920 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2921 if (VT.isFloatingPoint()) 2922 return TLO.CombineTo( 2923 Op, 2924 TLO.DAG.getConstantFP( 2925 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2926 } 2927 2928 // A multi use 'all demanded elts' simplify failed to find any knownbits. 2929 // Try again just for the original demanded elts. 2930 // Ensure we do this AFTER constant folding above. 2931 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 2932 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 2933 2934 return false; 2935 } 2936 2937 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2938 const APInt &DemandedElts, 2939 DAGCombinerInfo &DCI) const { 2940 SelectionDAG &DAG = DCI.DAG; 2941 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2942 !DCI.isBeforeLegalizeOps()); 2943 2944 APInt KnownUndef, KnownZero; 2945 bool Simplified = 2946 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2947 if (Simplified) { 2948 DCI.AddToWorklist(Op.getNode()); 2949 DCI.CommitTargetLoweringOpt(TLO); 2950 } 2951 2952 return Simplified; 2953 } 2954 2955 /// Given a vector binary operation and known undefined elements for each input 2956 /// operand, compute whether each element of the output is undefined. 2957 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2958 const APInt &UndefOp0, 2959 const APInt &UndefOp1) { 2960 EVT VT = BO.getValueType(); 2961 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2962 "Vector binop only"); 2963 2964 EVT EltVT = VT.getVectorElementType(); 2965 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 2966 assert(UndefOp0.getBitWidth() == NumElts && 2967 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2968 2969 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2970 const APInt &UndefVals) { 2971 if (UndefVals[Index]) 2972 return DAG.getUNDEF(EltVT); 2973 2974 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2975 // Try hard to make sure that the getNode() call is not creating temporary 2976 // nodes. Ignore opaque integers because they do not constant fold. 2977 SDValue Elt = BV->getOperand(Index); 2978 auto *C = dyn_cast<ConstantSDNode>(Elt); 2979 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2980 return Elt; 2981 } 2982 2983 return SDValue(); 2984 }; 2985 2986 APInt KnownUndef = APInt::getZero(NumElts); 2987 for (unsigned i = 0; i != NumElts; ++i) { 2988 // If both inputs for this element are either constant or undef and match 2989 // the element type, compute the constant/undef result for this element of 2990 // the vector. 2991 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2992 // not handle FP constants. The code within getNode() should be refactored 2993 // to avoid the danger of creating a bogus temporary node here. 2994 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2995 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2996 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2997 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2998 KnownUndef.setBit(i); 2999 } 3000 return KnownUndef; 3001 } 3002 3003 bool TargetLowering::SimplifyDemandedVectorElts( 3004 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 3005 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 3006 bool AssumeSingleUse) const { 3007 EVT VT = Op.getValueType(); 3008 unsigned Opcode = Op.getOpcode(); 3009 APInt DemandedElts = OriginalDemandedElts; 3010 unsigned NumElts = DemandedElts.getBitWidth(); 3011 assert(VT.isVector() && "Expected vector op"); 3012 3013 KnownUndef = KnownZero = APInt::getZero(NumElts); 3014 3015 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 3016 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 3017 return false; 3018 3019 // TODO: For now we assume we know nothing about scalable vectors. 3020 if (VT.isScalableVector()) 3021 return false; 3022 3023 assert(VT.getVectorNumElements() == NumElts && 3024 "Mask size mismatches value type element count!"); 3025 3026 // Undef operand. 3027 if (Op.isUndef()) { 3028 KnownUndef.setAllBits(); 3029 return false; 3030 } 3031 3032 // If Op has other users, assume that all elements are needed. 3033 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 3034 DemandedElts.setAllBits(); 3035 3036 // Not demanding any elements from Op. 3037 if (DemandedElts == 0) { 3038 KnownUndef.setAllBits(); 3039 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3040 } 3041 3042 // Limit search depth. 3043 if (Depth >= SelectionDAG::MaxRecursionDepth) 3044 return false; 3045 3046 SDLoc DL(Op); 3047 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 3048 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 3049 3050 // Helper for demanding the specified elements and all the bits of both binary 3051 // operands. 3052 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 3053 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 3054 TLO.DAG, Depth + 1); 3055 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 3056 TLO.DAG, Depth + 1); 3057 if (NewOp0 || NewOp1) { 3058 SDValue NewOp = 3059 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, 3060 NewOp1 ? NewOp1 : Op1, Op->getFlags()); 3061 return TLO.CombineTo(Op, NewOp); 3062 } 3063 return false; 3064 }; 3065 3066 switch (Opcode) { 3067 case ISD::SCALAR_TO_VECTOR: { 3068 if (!DemandedElts[0]) { 3069 KnownUndef.setAllBits(); 3070 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3071 } 3072 SDValue ScalarSrc = Op.getOperand(0); 3073 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 3074 SDValue Src = ScalarSrc.getOperand(0); 3075 SDValue Idx = ScalarSrc.getOperand(1); 3076 EVT SrcVT = Src.getValueType(); 3077 3078 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 3079 3080 if (SrcEltCnt.isScalable()) 3081 return false; 3082 3083 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 3084 if (isNullConstant(Idx)) { 3085 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 3086 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 3087 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 3088 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3089 TLO, Depth + 1)) 3090 return true; 3091 } 3092 } 3093 KnownUndef.setHighBits(NumElts - 1); 3094 break; 3095 } 3096 case ISD::BITCAST: { 3097 SDValue Src = Op.getOperand(0); 3098 EVT SrcVT = Src.getValueType(); 3099 3100 // We only handle vectors here. 3101 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 3102 if (!SrcVT.isVector()) 3103 break; 3104 3105 // Fast handling of 'identity' bitcasts. 3106 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 3107 if (NumSrcElts == NumElts) 3108 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 3109 KnownZero, TLO, Depth + 1); 3110 3111 APInt SrcDemandedElts, SrcZero, SrcUndef; 3112 3113 // Bitcast from 'large element' src vector to 'small element' vector, we 3114 // must demand a source element if any DemandedElt maps to it. 3115 if ((NumElts % NumSrcElts) == 0) { 3116 unsigned Scale = NumElts / NumSrcElts; 3117 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3118 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3119 TLO, Depth + 1)) 3120 return true; 3121 3122 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 3123 // of the large element. 3124 // TODO - bigendian once we have test coverage. 3125 if (IsLE) { 3126 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 3127 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 3128 for (unsigned i = 0; i != NumElts; ++i) 3129 if (DemandedElts[i]) { 3130 unsigned Ofs = (i % Scale) * EltSizeInBits; 3131 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 3132 } 3133 3134 KnownBits Known; 3135 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 3136 TLO, Depth + 1)) 3137 return true; 3138 3139 // The bitcast has split each wide element into a number of 3140 // narrow subelements. We have just computed the Known bits 3141 // for wide elements. See if element splitting results in 3142 // some subelements being zero. Only for demanded elements! 3143 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 3144 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 3145 .isAllOnes()) 3146 continue; 3147 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 3148 unsigned Elt = Scale * SrcElt + SubElt; 3149 if (DemandedElts[Elt]) 3150 KnownZero.setBit(Elt); 3151 } 3152 } 3153 } 3154 3155 // If the src element is zero/undef then all the output elements will be - 3156 // only demanded elements are guaranteed to be correct. 3157 for (unsigned i = 0; i != NumSrcElts; ++i) { 3158 if (SrcDemandedElts[i]) { 3159 if (SrcZero[i]) 3160 KnownZero.setBits(i * Scale, (i + 1) * Scale); 3161 if (SrcUndef[i]) 3162 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 3163 } 3164 } 3165 } 3166 3167 // Bitcast from 'small element' src vector to 'large element' vector, we 3168 // demand all smaller source elements covered by the larger demanded element 3169 // of this vector. 3170 if ((NumSrcElts % NumElts) == 0) { 3171 unsigned Scale = NumSrcElts / NumElts; 3172 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3173 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3174 TLO, Depth + 1)) 3175 return true; 3176 3177 // If all the src elements covering an output element are zero/undef, then 3178 // the output element will be as well, assuming it was demanded. 3179 for (unsigned i = 0; i != NumElts; ++i) { 3180 if (DemandedElts[i]) { 3181 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 3182 KnownZero.setBit(i); 3183 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 3184 KnownUndef.setBit(i); 3185 } 3186 } 3187 } 3188 break; 3189 } 3190 case ISD::BUILD_VECTOR: { 3191 // Check all elements and simplify any unused elements with UNDEF. 3192 if (!DemandedElts.isAllOnes()) { 3193 // Don't simplify BROADCASTS. 3194 if (llvm::any_of(Op->op_values(), 3195 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3196 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 3197 bool Updated = false; 3198 for (unsigned i = 0; i != NumElts; ++i) { 3199 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3200 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3201 KnownUndef.setBit(i); 3202 Updated = true; 3203 } 3204 } 3205 if (Updated) 3206 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3207 } 3208 } 3209 for (unsigned i = 0; i != NumElts; ++i) { 3210 SDValue SrcOp = Op.getOperand(i); 3211 if (SrcOp.isUndef()) { 3212 KnownUndef.setBit(i); 3213 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3214 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3215 KnownZero.setBit(i); 3216 } 3217 } 3218 break; 3219 } 3220 case ISD::CONCAT_VECTORS: { 3221 EVT SubVT = Op.getOperand(0).getValueType(); 3222 unsigned NumSubVecs = Op.getNumOperands(); 3223 unsigned NumSubElts = SubVT.getVectorNumElements(); 3224 for (unsigned i = 0; i != NumSubVecs; ++i) { 3225 SDValue SubOp = Op.getOperand(i); 3226 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3227 APInt SubUndef, SubZero; 3228 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3229 Depth + 1)) 3230 return true; 3231 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3232 KnownZero.insertBits(SubZero, i * NumSubElts); 3233 } 3234 3235 // Attempt to avoid multi-use ops if we don't need anything from them. 3236 if (!DemandedElts.isAllOnes()) { 3237 bool FoundNewSub = false; 3238 SmallVector<SDValue, 2> DemandedSubOps; 3239 for (unsigned i = 0; i != NumSubVecs; ++i) { 3240 SDValue SubOp = Op.getOperand(i); 3241 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3242 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3243 SubOp, SubElts, TLO.DAG, Depth + 1); 3244 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3245 FoundNewSub = NewSubOp ? true : FoundNewSub; 3246 } 3247 if (FoundNewSub) { 3248 SDValue NewOp = 3249 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3250 return TLO.CombineTo(Op, NewOp); 3251 } 3252 } 3253 break; 3254 } 3255 case ISD::INSERT_SUBVECTOR: { 3256 // Demand any elements from the subvector and the remainder from the src its 3257 // inserted into. 3258 SDValue Src = Op.getOperand(0); 3259 SDValue Sub = Op.getOperand(1); 3260 uint64_t Idx = Op.getConstantOperandVal(2); 3261 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3262 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3263 APInt DemandedSrcElts = DemandedElts; 3264 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3265 3266 APInt SubUndef, SubZero; 3267 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3268 Depth + 1)) 3269 return true; 3270 3271 // If none of the src operand elements are demanded, replace it with undef. 3272 if (!DemandedSrcElts && !Src.isUndef()) 3273 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3274 TLO.DAG.getUNDEF(VT), Sub, 3275 Op.getOperand(2))); 3276 3277 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3278 TLO, Depth + 1)) 3279 return true; 3280 KnownUndef.insertBits(SubUndef, Idx); 3281 KnownZero.insertBits(SubZero, Idx); 3282 3283 // Attempt to avoid multi-use ops if we don't need anything from them. 3284 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3285 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3286 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3287 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3288 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3289 if (NewSrc || NewSub) { 3290 NewSrc = NewSrc ? NewSrc : Src; 3291 NewSub = NewSub ? NewSub : Sub; 3292 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3293 NewSub, Op.getOperand(2)); 3294 return TLO.CombineTo(Op, NewOp); 3295 } 3296 } 3297 break; 3298 } 3299 case ISD::EXTRACT_SUBVECTOR: { 3300 // Offset the demanded elts by the subvector index. 3301 SDValue Src = Op.getOperand(0); 3302 if (Src.getValueType().isScalableVector()) 3303 break; 3304 uint64_t Idx = Op.getConstantOperandVal(1); 3305 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3306 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3307 3308 APInt SrcUndef, SrcZero; 3309 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3310 Depth + 1)) 3311 return true; 3312 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3313 KnownZero = SrcZero.extractBits(NumElts, Idx); 3314 3315 // Attempt to avoid multi-use ops if we don't need anything from them. 3316 if (!DemandedElts.isAllOnes()) { 3317 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3318 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3319 if (NewSrc) { 3320 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3321 Op.getOperand(1)); 3322 return TLO.CombineTo(Op, NewOp); 3323 } 3324 } 3325 break; 3326 } 3327 case ISD::INSERT_VECTOR_ELT: { 3328 SDValue Vec = Op.getOperand(0); 3329 SDValue Scl = Op.getOperand(1); 3330 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3331 3332 // For a legal, constant insertion index, if we don't need this insertion 3333 // then strip it, else remove it from the demanded elts. 3334 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3335 unsigned Idx = CIdx->getZExtValue(); 3336 if (!DemandedElts[Idx]) 3337 return TLO.CombineTo(Op, Vec); 3338 3339 APInt DemandedVecElts(DemandedElts); 3340 DemandedVecElts.clearBit(Idx); 3341 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3342 KnownZero, TLO, Depth + 1)) 3343 return true; 3344 3345 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3346 3347 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3348 break; 3349 } 3350 3351 APInt VecUndef, VecZero; 3352 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3353 Depth + 1)) 3354 return true; 3355 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3356 break; 3357 } 3358 case ISD::VSELECT: { 3359 SDValue Sel = Op.getOperand(0); 3360 SDValue LHS = Op.getOperand(1); 3361 SDValue RHS = Op.getOperand(2); 3362 3363 // Try to transform the select condition based on the current demanded 3364 // elements. 3365 APInt UndefSel, ZeroSel; 3366 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO, 3367 Depth + 1)) 3368 return true; 3369 3370 // See if we can simplify either vselect operand. 3371 APInt DemandedLHS(DemandedElts); 3372 APInt DemandedRHS(DemandedElts); 3373 APInt UndefLHS, ZeroLHS; 3374 APInt UndefRHS, ZeroRHS; 3375 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3376 Depth + 1)) 3377 return true; 3378 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3379 Depth + 1)) 3380 return true; 3381 3382 KnownUndef = UndefLHS & UndefRHS; 3383 KnownZero = ZeroLHS & ZeroRHS; 3384 3385 // If we know that the selected element is always zero, we don't need the 3386 // select value element. 3387 APInt DemandedSel = DemandedElts & ~KnownZero; 3388 if (DemandedSel != DemandedElts) 3389 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO, 3390 Depth + 1)) 3391 return true; 3392 3393 break; 3394 } 3395 case ISD::VECTOR_SHUFFLE: { 3396 SDValue LHS = Op.getOperand(0); 3397 SDValue RHS = Op.getOperand(1); 3398 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3399 3400 // Collect demanded elements from shuffle operands.. 3401 APInt DemandedLHS(NumElts, 0); 3402 APInt DemandedRHS(NumElts, 0); 3403 for (unsigned i = 0; i != NumElts; ++i) { 3404 int M = ShuffleMask[i]; 3405 if (M < 0 || !DemandedElts[i]) 3406 continue; 3407 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3408 if (M < (int)NumElts) 3409 DemandedLHS.setBit(M); 3410 else 3411 DemandedRHS.setBit(M - NumElts); 3412 } 3413 3414 // See if we can simplify either shuffle operand. 3415 APInt UndefLHS, ZeroLHS; 3416 APInt UndefRHS, ZeroRHS; 3417 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3418 Depth + 1)) 3419 return true; 3420 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3421 Depth + 1)) 3422 return true; 3423 3424 // Simplify mask using undef elements from LHS/RHS. 3425 bool Updated = false; 3426 bool IdentityLHS = true, IdentityRHS = true; 3427 SmallVector<int, 32> NewMask(ShuffleMask); 3428 for (unsigned i = 0; i != NumElts; ++i) { 3429 int &M = NewMask[i]; 3430 if (M < 0) 3431 continue; 3432 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3433 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3434 Updated = true; 3435 M = -1; 3436 } 3437 IdentityLHS &= (M < 0) || (M == (int)i); 3438 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3439 } 3440 3441 // Update legal shuffle masks based on demanded elements if it won't reduce 3442 // to Identity which can cause premature removal of the shuffle mask. 3443 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3444 SDValue LegalShuffle = 3445 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3446 if (LegalShuffle) 3447 return TLO.CombineTo(Op, LegalShuffle); 3448 } 3449 3450 // Propagate undef/zero elements from LHS/RHS. 3451 for (unsigned i = 0; i != NumElts; ++i) { 3452 int M = ShuffleMask[i]; 3453 if (M < 0) { 3454 KnownUndef.setBit(i); 3455 } else if (M < (int)NumElts) { 3456 if (UndefLHS[M]) 3457 KnownUndef.setBit(i); 3458 if (ZeroLHS[M]) 3459 KnownZero.setBit(i); 3460 } else { 3461 if (UndefRHS[M - NumElts]) 3462 KnownUndef.setBit(i); 3463 if (ZeroRHS[M - NumElts]) 3464 KnownZero.setBit(i); 3465 } 3466 } 3467 break; 3468 } 3469 case ISD::ANY_EXTEND_VECTOR_INREG: 3470 case ISD::SIGN_EXTEND_VECTOR_INREG: 3471 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3472 APInt SrcUndef, SrcZero; 3473 SDValue Src = Op.getOperand(0); 3474 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3475 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3476 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3477 Depth + 1)) 3478 return true; 3479 KnownZero = SrcZero.zextOrTrunc(NumElts); 3480 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3481 3482 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3483 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3484 DemandedSrcElts == 1) { 3485 // aext - if we just need the bottom element then we can bitcast. 3486 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3487 } 3488 3489 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3490 // zext(undef) upper bits are guaranteed to be zero. 3491 if (DemandedElts.isSubsetOf(KnownUndef)) 3492 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3493 KnownUndef.clearAllBits(); 3494 3495 // zext - if we just need the bottom element then we can mask: 3496 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3497 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3498 Op->isOnlyUserOf(Src.getNode()) && 3499 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3500 SDLoc DL(Op); 3501 EVT SrcVT = Src.getValueType(); 3502 EVT SrcSVT = SrcVT.getScalarType(); 3503 SmallVector<SDValue> MaskElts; 3504 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3505 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3506 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3507 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3508 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3509 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3510 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3511 } 3512 } 3513 } 3514 break; 3515 } 3516 3517 // TODO: There are more binop opcodes that could be handled here - MIN, 3518 // MAX, saturated math, etc. 3519 case ISD::ADD: { 3520 SDValue Op0 = Op.getOperand(0); 3521 SDValue Op1 = Op.getOperand(1); 3522 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3523 APInt UndefLHS, ZeroLHS; 3524 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3525 Depth + 1, /*AssumeSingleUse*/ true)) 3526 return true; 3527 } 3528 [[fallthrough]]; 3529 } 3530 case ISD::OR: 3531 case ISD::XOR: 3532 case ISD::SUB: 3533 case ISD::FADD: 3534 case ISD::FSUB: 3535 case ISD::FMUL: 3536 case ISD::FDIV: 3537 case ISD::FREM: { 3538 SDValue Op0 = Op.getOperand(0); 3539 SDValue Op1 = Op.getOperand(1); 3540 3541 APInt UndefRHS, ZeroRHS; 3542 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3543 Depth + 1)) 3544 return true; 3545 APInt UndefLHS, ZeroLHS; 3546 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3547 Depth + 1)) 3548 return true; 3549 3550 KnownZero = ZeroLHS & ZeroRHS; 3551 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3552 3553 // Attempt to avoid multi-use ops if we don't need anything from them. 3554 // TODO - use KnownUndef to relax the demandedelts? 3555 if (!DemandedElts.isAllOnes()) 3556 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3557 return true; 3558 break; 3559 } 3560 case ISD::SHL: 3561 case ISD::SRL: 3562 case ISD::SRA: 3563 case ISD::ROTL: 3564 case ISD::ROTR: { 3565 SDValue Op0 = Op.getOperand(0); 3566 SDValue Op1 = Op.getOperand(1); 3567 3568 APInt UndefRHS, ZeroRHS; 3569 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3570 Depth + 1)) 3571 return true; 3572 APInt UndefLHS, ZeroLHS; 3573 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3574 Depth + 1)) 3575 return true; 3576 3577 KnownZero = ZeroLHS; 3578 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3579 3580 // Attempt to avoid multi-use ops if we don't need anything from them. 3581 // TODO - use KnownUndef to relax the demandedelts? 3582 if (!DemandedElts.isAllOnes()) 3583 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3584 return true; 3585 break; 3586 } 3587 case ISD::MUL: 3588 case ISD::MULHU: 3589 case ISD::MULHS: 3590 case ISD::AND: { 3591 SDValue Op0 = Op.getOperand(0); 3592 SDValue Op1 = Op.getOperand(1); 3593 3594 APInt SrcUndef, SrcZero; 3595 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3596 Depth + 1)) 3597 return true; 3598 // If we know that a demanded element was zero in Op1 we don't need to 3599 // demand it in Op0 - its guaranteed to be zero. 3600 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3601 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3602 TLO, Depth + 1)) 3603 return true; 3604 3605 KnownUndef &= DemandedElts0; 3606 KnownZero &= DemandedElts0; 3607 3608 // If every element pair has a zero/undef then just fold to zero. 3609 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3610 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3611 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3612 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3613 3614 // If either side has a zero element, then the result element is zero, even 3615 // if the other is an UNDEF. 3616 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3617 // and then handle 'and' nodes with the rest of the binop opcodes. 3618 KnownZero |= SrcZero; 3619 KnownUndef &= SrcUndef; 3620 KnownUndef &= ~KnownZero; 3621 3622 // Attempt to avoid multi-use ops if we don't need anything from them. 3623 if (!DemandedElts.isAllOnes()) 3624 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3625 return true; 3626 break; 3627 } 3628 case ISD::TRUNCATE: 3629 case ISD::SIGN_EXTEND: 3630 case ISD::ZERO_EXTEND: 3631 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3632 KnownZero, TLO, Depth + 1)) 3633 return true; 3634 3635 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3636 // zext(undef) upper bits are guaranteed to be zero. 3637 if (DemandedElts.isSubsetOf(KnownUndef)) 3638 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3639 KnownUndef.clearAllBits(); 3640 } 3641 break; 3642 default: { 3643 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3644 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3645 KnownZero, TLO, Depth)) 3646 return true; 3647 } else { 3648 KnownBits Known; 3649 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3650 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3651 TLO, Depth, AssumeSingleUse)) 3652 return true; 3653 } 3654 break; 3655 } 3656 } 3657 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3658 3659 // Constant fold all undef cases. 3660 // TODO: Handle zero cases as well. 3661 if (DemandedElts.isSubsetOf(KnownUndef)) 3662 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3663 3664 return false; 3665 } 3666 3667 /// Determine which of the bits specified in Mask are known to be either zero or 3668 /// one and return them in the Known. 3669 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3670 KnownBits &Known, 3671 const APInt &DemandedElts, 3672 const SelectionDAG &DAG, 3673 unsigned Depth) const { 3674 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3675 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3676 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3677 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3678 "Should use MaskedValueIsZero if you don't know whether Op" 3679 " is a target node!"); 3680 Known.resetAll(); 3681 } 3682 3683 void TargetLowering::computeKnownBitsForTargetInstr( 3684 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3685 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3686 unsigned Depth) const { 3687 Known.resetAll(); 3688 } 3689 3690 void TargetLowering::computeKnownBitsForFrameIndex( 3691 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3692 // The low bits are known zero if the pointer is aligned. 3693 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3694 } 3695 3696 Align TargetLowering::computeKnownAlignForTargetInstr( 3697 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3698 unsigned Depth) const { 3699 return Align(1); 3700 } 3701 3702 /// This method can be implemented by targets that want to expose additional 3703 /// information about sign bits to the DAG Combiner. 3704 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3705 const APInt &, 3706 const SelectionDAG &, 3707 unsigned Depth) const { 3708 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3709 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3710 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3711 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3712 "Should use ComputeNumSignBits if you don't know whether Op" 3713 " is a target node!"); 3714 return 1; 3715 } 3716 3717 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3718 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3719 const MachineRegisterInfo &MRI, unsigned Depth) const { 3720 return 1; 3721 } 3722 3723 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3724 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3725 TargetLoweringOpt &TLO, unsigned Depth) const { 3726 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3727 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3728 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3729 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3730 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3731 " is a target node!"); 3732 return false; 3733 } 3734 3735 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3736 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3737 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3738 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3739 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3740 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3741 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3742 "Should use SimplifyDemandedBits if you don't know whether Op" 3743 " is a target node!"); 3744 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3745 return false; 3746 } 3747 3748 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3749 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3750 SelectionDAG &DAG, unsigned Depth) const { 3751 assert( 3752 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3753 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3754 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3755 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3756 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3757 " is a target node!"); 3758 return SDValue(); 3759 } 3760 3761 SDValue 3762 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3763 SDValue N1, MutableArrayRef<int> Mask, 3764 SelectionDAG &DAG) const { 3765 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3766 if (!LegalMask) { 3767 std::swap(N0, N1); 3768 ShuffleVectorSDNode::commuteMask(Mask); 3769 LegalMask = isShuffleMaskLegal(Mask, VT); 3770 } 3771 3772 if (!LegalMask) 3773 return SDValue(); 3774 3775 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3776 } 3777 3778 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3779 return nullptr; 3780 } 3781 3782 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3783 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3784 bool PoisonOnly, unsigned Depth) const { 3785 assert( 3786 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3787 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3788 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3789 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3790 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3791 " is a target node!"); 3792 return false; 3793 } 3794 3795 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3796 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3797 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3798 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3799 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3800 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3801 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3802 "Should use canCreateUndefOrPoison if you don't know whether Op" 3803 " is a target node!"); 3804 // Be conservative and return true. 3805 return true; 3806 } 3807 3808 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3809 const SelectionDAG &DAG, 3810 bool SNaN, 3811 unsigned Depth) const { 3812 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3813 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3814 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3815 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3816 "Should use isKnownNeverNaN if you don't know whether Op" 3817 " is a target node!"); 3818 return false; 3819 } 3820 3821 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3822 const APInt &DemandedElts, 3823 APInt &UndefElts, 3824 const SelectionDAG &DAG, 3825 unsigned Depth) const { 3826 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3827 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3828 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3829 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3830 "Should use isSplatValue if you don't know whether Op" 3831 " is a target node!"); 3832 return false; 3833 } 3834 3835 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3836 // work with truncating build vectors and vectors with elements of less than 3837 // 8 bits. 3838 bool TargetLowering::isConstTrueVal(SDValue N) const { 3839 if (!N) 3840 return false; 3841 3842 unsigned EltWidth; 3843 APInt CVal; 3844 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3845 /*AllowTruncation=*/true)) { 3846 CVal = CN->getAPIntValue(); 3847 EltWidth = N.getValueType().getScalarSizeInBits(); 3848 } else 3849 return false; 3850 3851 // If this is a truncating splat, truncate the splat value. 3852 // Otherwise, we may fail to match the expected values below. 3853 if (EltWidth < CVal.getBitWidth()) 3854 CVal = CVal.trunc(EltWidth); 3855 3856 switch (getBooleanContents(N.getValueType())) { 3857 case UndefinedBooleanContent: 3858 return CVal[0]; 3859 case ZeroOrOneBooleanContent: 3860 return CVal.isOne(); 3861 case ZeroOrNegativeOneBooleanContent: 3862 return CVal.isAllOnes(); 3863 } 3864 3865 llvm_unreachable("Invalid boolean contents"); 3866 } 3867 3868 bool TargetLowering::isConstFalseVal(SDValue N) const { 3869 if (!N) 3870 return false; 3871 3872 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3873 if (!CN) { 3874 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3875 if (!BV) 3876 return false; 3877 3878 // Only interested in constant splats, we don't care about undef 3879 // elements in identifying boolean constants and getConstantSplatNode 3880 // returns NULL if all ops are undef; 3881 CN = BV->getConstantSplatNode(); 3882 if (!CN) 3883 return false; 3884 } 3885 3886 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3887 return !CN->getAPIntValue()[0]; 3888 3889 return CN->isZero(); 3890 } 3891 3892 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3893 bool SExt) const { 3894 if (VT == MVT::i1) 3895 return N->isOne(); 3896 3897 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3898 switch (Cnt) { 3899 case TargetLowering::ZeroOrOneBooleanContent: 3900 // An extended value of 1 is always true, unless its original type is i1, 3901 // in which case it will be sign extended to -1. 3902 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3903 case TargetLowering::UndefinedBooleanContent: 3904 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3905 return N->isAllOnes() && SExt; 3906 } 3907 llvm_unreachable("Unexpected enumeration."); 3908 } 3909 3910 /// This helper function of SimplifySetCC tries to optimize the comparison when 3911 /// either operand of the SetCC node is a bitwise-and instruction. 3912 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3913 ISD::CondCode Cond, const SDLoc &DL, 3914 DAGCombinerInfo &DCI) const { 3915 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3916 std::swap(N0, N1); 3917 3918 SelectionDAG &DAG = DCI.DAG; 3919 EVT OpVT = N0.getValueType(); 3920 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3921 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3922 return SDValue(); 3923 3924 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3925 // iff everything but LSB is known zero: 3926 if (Cond == ISD::SETNE && isNullConstant(N1) && 3927 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3928 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3929 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3930 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3931 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3932 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3933 } 3934 3935 // Try to eliminate a power-of-2 mask constant by converting to a signbit 3936 // test in a narrow type that we can truncate to with no cost. Examples: 3937 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 3938 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 3939 // TODO: This conservatively checks for type legality on the source and 3940 // destination types. That may inhibit optimizations, but it also 3941 // allows setcc->shift transforms that may be more beneficial. 3942 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3943 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 3944 isTypeLegal(OpVT) && N0.hasOneUse()) { 3945 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 3946 AndC->getAPIntValue().getActiveBits()); 3947 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 3948 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 3949 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 3950 return DAG.getSetCC(DL, VT, Trunc, Zero, 3951 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 3952 } 3953 } 3954 3955 // Match these patterns in any of their permutations: 3956 // (X & Y) == Y 3957 // (X & Y) != Y 3958 SDValue X, Y; 3959 if (N0.getOperand(0) == N1) { 3960 X = N0.getOperand(1); 3961 Y = N0.getOperand(0); 3962 } else if (N0.getOperand(1) == N1) { 3963 X = N0.getOperand(0); 3964 Y = N0.getOperand(1); 3965 } else { 3966 return SDValue(); 3967 } 3968 3969 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if 3970 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as 3971 // its liable to create and infinite loop. 3972 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3973 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && 3974 DAG.isKnownToBeAPowerOfTwo(Y)) { 3975 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3976 // Note that where Y is variable and is known to have at most one bit set 3977 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3978 // equivalent when Y == 0. 3979 assert(OpVT.isInteger()); 3980 Cond = ISD::getSetCCInverse(Cond, OpVT); 3981 if (DCI.isBeforeLegalizeOps() || 3982 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3983 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3984 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3985 // If the target supports an 'and-not' or 'and-complement' logic operation, 3986 // try to use that to make a comparison operation more efficient. 3987 // But don't do this transform if the mask is a single bit because there are 3988 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3989 // 'rlwinm' on PPC). 3990 3991 // Bail out if the compare operand that we want to turn into a zero is 3992 // already a zero (otherwise, infinite loop). 3993 if (isNullConstant(Y)) 3994 return SDValue(); 3995 3996 // Transform this into: ~X & Y == 0. 3997 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3998 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3999 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 4000 } 4001 4002 return SDValue(); 4003 } 4004 4005 /// There are multiple IR patterns that could be checking whether certain 4006 /// truncation of a signed number would be lossy or not. The pattern which is 4007 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 4008 /// We are looking for the following pattern: (KeptBits is a constant) 4009 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 4010 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 4011 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 4012 /// We will unfold it into the natural trunc+sext pattern: 4013 /// ((%x << C) a>> C) dstcond %x 4014 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 4015 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 4016 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 4017 const SDLoc &DL) const { 4018 // We must be comparing with a constant. 4019 ConstantSDNode *C1; 4020 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 4021 return SDValue(); 4022 4023 // N0 should be: add %x, (1 << (KeptBits-1)) 4024 if (N0->getOpcode() != ISD::ADD) 4025 return SDValue(); 4026 4027 // And we must be 'add'ing a constant. 4028 ConstantSDNode *C01; 4029 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 4030 return SDValue(); 4031 4032 SDValue X = N0->getOperand(0); 4033 EVT XVT = X.getValueType(); 4034 4035 // Validate constants ... 4036 4037 APInt I1 = C1->getAPIntValue(); 4038 4039 ISD::CondCode NewCond; 4040 if (Cond == ISD::CondCode::SETULT) { 4041 NewCond = ISD::CondCode::SETEQ; 4042 } else if (Cond == ISD::CondCode::SETULE) { 4043 NewCond = ISD::CondCode::SETEQ; 4044 // But need to 'canonicalize' the constant. 4045 I1 += 1; 4046 } else if (Cond == ISD::CondCode::SETUGT) { 4047 NewCond = ISD::CondCode::SETNE; 4048 // But need to 'canonicalize' the constant. 4049 I1 += 1; 4050 } else if (Cond == ISD::CondCode::SETUGE) { 4051 NewCond = ISD::CondCode::SETNE; 4052 } else 4053 return SDValue(); 4054 4055 APInt I01 = C01->getAPIntValue(); 4056 4057 auto checkConstants = [&I1, &I01]() -> bool { 4058 // Both of them must be power-of-two, and the constant from setcc is bigger. 4059 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 4060 }; 4061 4062 if (checkConstants()) { 4063 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 4064 } else { 4065 // What if we invert constants? (and the target predicate) 4066 I1.negate(); 4067 I01.negate(); 4068 assert(XVT.isInteger()); 4069 NewCond = getSetCCInverse(NewCond, XVT); 4070 if (!checkConstants()) 4071 return SDValue(); 4072 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 4073 } 4074 4075 // They are power-of-two, so which bit is set? 4076 const unsigned KeptBits = I1.logBase2(); 4077 const unsigned KeptBitsMinusOne = I01.logBase2(); 4078 4079 // Magic! 4080 if (KeptBits != (KeptBitsMinusOne + 1)) 4081 return SDValue(); 4082 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 4083 4084 // We don't want to do this in every single case. 4085 SelectionDAG &DAG = DCI.DAG; 4086 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 4087 XVT, KeptBits)) 4088 return SDValue(); 4089 4090 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 4091 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 4092 4093 // Unfold into: ((%x << C) a>> C) cond %x 4094 // Where 'cond' will be either 'eq' or 'ne'. 4095 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 4096 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 4097 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 4098 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 4099 4100 return T2; 4101 } 4102 4103 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4104 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 4105 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 4106 DAGCombinerInfo &DCI, const SDLoc &DL) const { 4107 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && 4108 "Should be a comparison with 0."); 4109 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4110 "Valid only for [in]equality comparisons."); 4111 4112 unsigned NewShiftOpcode; 4113 SDValue X, C, Y; 4114 4115 SelectionDAG &DAG = DCI.DAG; 4116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4117 4118 // Look for '(C l>>/<< Y)'. 4119 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 4120 // The shift should be one-use. 4121 if (!V.hasOneUse()) 4122 return false; 4123 unsigned OldShiftOpcode = V.getOpcode(); 4124 switch (OldShiftOpcode) { 4125 case ISD::SHL: 4126 NewShiftOpcode = ISD::SRL; 4127 break; 4128 case ISD::SRL: 4129 NewShiftOpcode = ISD::SHL; 4130 break; 4131 default: 4132 return false; // must be a logical shift. 4133 } 4134 // We should be shifting a constant. 4135 // FIXME: best to use isConstantOrConstantVector(). 4136 C = V.getOperand(0); 4137 ConstantSDNode *CC = 4138 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4139 if (!CC) 4140 return false; 4141 Y = V.getOperand(1); 4142 4143 ConstantSDNode *XC = 4144 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4145 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 4146 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 4147 }; 4148 4149 // LHS of comparison should be an one-use 'and'. 4150 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 4151 return SDValue(); 4152 4153 X = N0.getOperand(0); 4154 SDValue Mask = N0.getOperand(1); 4155 4156 // 'and' is commutative! 4157 if (!Match(Mask)) { 4158 std::swap(X, Mask); 4159 if (!Match(Mask)) 4160 return SDValue(); 4161 } 4162 4163 EVT VT = X.getValueType(); 4164 4165 // Produce: 4166 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 4167 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 4168 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 4169 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 4170 return T2; 4171 } 4172 4173 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 4174 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 4175 /// handle the commuted versions of these patterns. 4176 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 4177 ISD::CondCode Cond, const SDLoc &DL, 4178 DAGCombinerInfo &DCI) const { 4179 unsigned BOpcode = N0.getOpcode(); 4180 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 4181 "Unexpected binop"); 4182 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 4183 4184 // (X + Y) == X --> Y == 0 4185 // (X - Y) == X --> Y == 0 4186 // (X ^ Y) == X --> Y == 0 4187 SelectionDAG &DAG = DCI.DAG; 4188 EVT OpVT = N0.getValueType(); 4189 SDValue X = N0.getOperand(0); 4190 SDValue Y = N0.getOperand(1); 4191 if (X == N1) 4192 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4193 4194 if (Y != N1) 4195 return SDValue(); 4196 4197 // (X + Y) == Y --> X == 0 4198 // (X ^ Y) == Y --> X == 0 4199 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4200 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4201 4202 // The shift would not be valid if the operands are boolean (i1). 4203 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4204 return SDValue(); 4205 4206 // (X - Y) == Y --> X == Y << 1 4207 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 4208 !DCI.isBeforeLegalize()); 4209 SDValue One = DAG.getConstant(1, DL, ShiftVT); 4210 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4211 if (!DCI.isCalledByLegalizer()) 4212 DCI.AddToWorklist(YShl1.getNode()); 4213 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4214 } 4215 4216 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4217 SDValue N0, const APInt &C1, 4218 ISD::CondCode Cond, const SDLoc &dl, 4219 SelectionDAG &DAG) { 4220 // Look through truncs that don't change the value of a ctpop. 4221 // FIXME: Add vector support? Need to be careful with setcc result type below. 4222 SDValue CTPOP = N0; 4223 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4224 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4225 CTPOP = N0.getOperand(0); 4226 4227 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4228 return SDValue(); 4229 4230 EVT CTVT = CTPOP.getValueType(); 4231 SDValue CTOp = CTPOP.getOperand(0); 4232 4233 // Expand a power-of-2-or-zero comparison based on ctpop: 4234 // (ctpop x) u< 2 -> (x & x-1) == 0 4235 // (ctpop x) u> 1 -> (x & x-1) != 0 4236 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4237 // Keep the CTPOP if it is a cheap vector op. 4238 if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) 4239 return SDValue(); 4240 4241 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4242 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4243 return SDValue(); 4244 if (C1 == 0 && (Cond == ISD::SETULT)) 4245 return SDValue(); // This is handled elsewhere. 4246 4247 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4248 4249 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4250 SDValue Result = CTOp; 4251 for (unsigned i = 0; i < Passes; i++) { 4252 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4253 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4254 } 4255 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4256 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4257 } 4258 4259 // Expand a power-of-2 comparison based on ctpop 4260 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4261 // Keep the CTPOP if it is cheap. 4262 if (TLI.isCtpopFast(CTVT)) 4263 return SDValue(); 4264 4265 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4266 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4267 assert(CTVT.isInteger()); 4268 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4269 4270 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so 4271 // check before emitting a potentially unnecessary op. 4272 if (DAG.isKnownNeverZero(CTOp)) { 4273 // (ctpop x) == 1 --> (x & x-1) == 0 4274 // (ctpop x) != 1 --> (x & x-1) != 0 4275 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4276 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4277 return RHS; 4278 } 4279 4280 // (ctpop x) == 1 --> (x ^ x-1) > x-1 4281 // (ctpop x) != 1 --> (x ^ x-1) <= x-1 4282 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); 4283 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; 4284 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); 4285 } 4286 4287 return SDValue(); 4288 } 4289 4290 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4291 ISD::CondCode Cond, const SDLoc &dl, 4292 SelectionDAG &DAG) { 4293 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4294 return SDValue(); 4295 4296 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4297 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4298 return SDValue(); 4299 4300 auto getRotateSource = [](SDValue X) { 4301 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4302 return X.getOperand(0); 4303 return SDValue(); 4304 }; 4305 4306 // Peek through a rotated value compared against 0 or -1: 4307 // (rot X, Y) == 0/-1 --> X == 0/-1 4308 // (rot X, Y) != 0/-1 --> X != 0/-1 4309 if (SDValue R = getRotateSource(N0)) 4310 return DAG.getSetCC(dl, VT, R, N1, Cond); 4311 4312 // Peek through an 'or' of a rotated value compared against 0: 4313 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4314 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4315 // 4316 // TODO: Add the 'and' with -1 sibling. 4317 // TODO: Recurse through a series of 'or' ops to find the rotate. 4318 EVT OpVT = N0.getValueType(); 4319 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4320 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4321 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4322 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4323 } 4324 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4325 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4326 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4327 } 4328 } 4329 4330 return SDValue(); 4331 } 4332 4333 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4334 ISD::CondCode Cond, const SDLoc &dl, 4335 SelectionDAG &DAG) { 4336 // If we are testing for all-bits-clear, we might be able to do that with 4337 // less shifting since bit-order does not matter. 4338 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4339 return SDValue(); 4340 4341 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4342 if (!C1 || !C1->isZero()) 4343 return SDValue(); 4344 4345 if (!N0.hasOneUse() || 4346 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4347 return SDValue(); 4348 4349 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4350 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4351 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4352 return SDValue(); 4353 4354 // Canonicalize fshr as fshl to reduce pattern-matching. 4355 unsigned ShAmt = ShAmtC->getZExtValue(); 4356 if (N0.getOpcode() == ISD::FSHR) 4357 ShAmt = BitWidth - ShAmt; 4358 4359 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4360 SDValue X, Y; 4361 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4362 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4363 return false; 4364 if (Or.getOperand(0) == Other) { 4365 X = Or.getOperand(0); 4366 Y = Or.getOperand(1); 4367 return true; 4368 } 4369 if (Or.getOperand(1) == Other) { 4370 X = Or.getOperand(1); 4371 Y = Or.getOperand(0); 4372 return true; 4373 } 4374 return false; 4375 }; 4376 4377 EVT OpVT = N0.getValueType(); 4378 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4379 SDValue F0 = N0.getOperand(0); 4380 SDValue F1 = N0.getOperand(1); 4381 if (matchOr(F0, F1)) { 4382 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4383 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4384 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4385 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4386 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4387 } 4388 if (matchOr(F1, F0)) { 4389 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4390 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4391 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4392 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4393 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4394 } 4395 4396 return SDValue(); 4397 } 4398 4399 /// Try to simplify a setcc built with the specified operands and cc. If it is 4400 /// unable to simplify it, return a null SDValue. 4401 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4402 ISD::CondCode Cond, bool foldBooleans, 4403 DAGCombinerInfo &DCI, 4404 const SDLoc &dl) const { 4405 SelectionDAG &DAG = DCI.DAG; 4406 const DataLayout &Layout = DAG.getDataLayout(); 4407 EVT OpVT = N0.getValueType(); 4408 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4409 4410 // Constant fold or commute setcc. 4411 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4412 return Fold; 4413 4414 bool N0ConstOrSplat = 4415 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4416 bool N1ConstOrSplat = 4417 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4418 4419 // Canonicalize toward having the constant on the RHS. 4420 // TODO: Handle non-splat vector constants. All undef causes trouble. 4421 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4422 // infinite loop here when we encounter one. 4423 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4424 if (N0ConstOrSplat && !N1ConstOrSplat && 4425 (DCI.isBeforeLegalizeOps() || 4426 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4427 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4428 4429 // If we have a subtract with the same 2 non-constant operands as this setcc 4430 // -- but in reverse order -- then try to commute the operands of this setcc 4431 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4432 // instruction on some targets. 4433 if (!N0ConstOrSplat && !N1ConstOrSplat && 4434 (DCI.isBeforeLegalizeOps() || 4435 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4436 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4437 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4438 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4439 4440 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4441 return V; 4442 4443 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4444 return V; 4445 4446 if (auto *N1C = isConstOrConstSplat(N1)) { 4447 const APInt &C1 = N1C->getAPIntValue(); 4448 4449 // Optimize some CTPOP cases. 4450 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4451 return V; 4452 4453 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4454 // X * Y == 0 --> (X == 0) || (Y == 0) 4455 // X * Y != 0 --> (X != 0) && (Y != 0) 4456 // TODO: This bails out if minsize is set, but if the target doesn't have a 4457 // single instruction multiply for this type, it would likely be 4458 // smaller to decompose. 4459 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4460 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4461 (N0->getFlags().hasNoUnsignedWrap() || 4462 N0->getFlags().hasNoSignedWrap()) && 4463 !Attr.hasFnAttr(Attribute::MinSize)) { 4464 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4465 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4466 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4467 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4468 } 4469 4470 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4471 // equality comparison, then we're just comparing whether X itself is 4472 // zero. 4473 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4474 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4475 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { 4476 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4477 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4478 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4479 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4480 // (srl (ctlz x), 5) == 0 -> X != 0 4481 // (srl (ctlz x), 5) != 1 -> X != 0 4482 Cond = ISD::SETNE; 4483 } else { 4484 // (srl (ctlz x), 5) != 0 -> X == 0 4485 // (srl (ctlz x), 5) == 1 -> X == 0 4486 Cond = ISD::SETEQ; 4487 } 4488 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4489 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4490 Cond); 4491 } 4492 } 4493 } 4494 } 4495 4496 // FIXME: Support vectors. 4497 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4498 const APInt &C1 = N1C->getAPIntValue(); 4499 4500 // (zext x) == C --> x == (trunc C) 4501 // (sext x) == C --> x == (trunc C) 4502 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4503 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4504 unsigned MinBits = N0.getValueSizeInBits(); 4505 SDValue PreExt; 4506 bool Signed = false; 4507 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4508 // ZExt 4509 MinBits = N0->getOperand(0).getValueSizeInBits(); 4510 PreExt = N0->getOperand(0); 4511 } else if (N0->getOpcode() == ISD::AND) { 4512 // DAGCombine turns costly ZExts into ANDs 4513 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4514 if ((C->getAPIntValue()+1).isPowerOf2()) { 4515 MinBits = C->getAPIntValue().countr_one(); 4516 PreExt = N0->getOperand(0); 4517 } 4518 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4519 // SExt 4520 MinBits = N0->getOperand(0).getValueSizeInBits(); 4521 PreExt = N0->getOperand(0); 4522 Signed = true; 4523 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4524 // ZEXTLOAD / SEXTLOAD 4525 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4526 MinBits = LN0->getMemoryVT().getSizeInBits(); 4527 PreExt = N0; 4528 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4529 Signed = true; 4530 MinBits = LN0->getMemoryVT().getSizeInBits(); 4531 PreExt = N0; 4532 } 4533 } 4534 4535 // Figure out how many bits we need to preserve this constant. 4536 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); 4537 4538 // Make sure we're not losing bits from the constant. 4539 if (MinBits > 0 && 4540 MinBits < C1.getBitWidth() && 4541 MinBits >= ReqdBits) { 4542 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4543 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4544 // Will get folded away. 4545 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4546 if (MinBits == 1 && C1 == 1) 4547 // Invert the condition. 4548 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4549 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4550 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4551 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4552 } 4553 4554 // If truncating the setcc operands is not desirable, we can still 4555 // simplify the expression in some cases: 4556 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4557 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4558 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4559 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4560 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4561 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4562 SDValue TopSetCC = N0->getOperand(0); 4563 unsigned N0Opc = N0->getOpcode(); 4564 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4565 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4566 TopSetCC.getOpcode() == ISD::SETCC && 4567 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4568 (isConstFalseVal(N1) || 4569 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4570 4571 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4572 (!N1C->isZero() && Cond == ISD::SETNE); 4573 4574 if (!Inverse) 4575 return TopSetCC; 4576 4577 ISD::CondCode InvCond = ISD::getSetCCInverse( 4578 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4579 TopSetCC.getOperand(0).getValueType()); 4580 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4581 TopSetCC.getOperand(1), 4582 InvCond); 4583 } 4584 } 4585 } 4586 4587 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4588 // equality or unsigned, and all 1 bits of the const are in the same 4589 // partial word, see if we can shorten the load. 4590 if (DCI.isBeforeLegalize() && 4591 !ISD::isSignedIntSetCC(Cond) && 4592 N0.getOpcode() == ISD::AND && C1 == 0 && 4593 N0.getNode()->hasOneUse() && 4594 isa<LoadSDNode>(N0.getOperand(0)) && 4595 N0.getOperand(0).getNode()->hasOneUse() && 4596 isa<ConstantSDNode>(N0.getOperand(1))) { 4597 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4598 APInt bestMask; 4599 unsigned bestWidth = 0, bestOffset = 0; 4600 if (Lod->isSimple() && Lod->isUnindexed()) { 4601 unsigned origWidth = N0.getValueSizeInBits(); 4602 unsigned maskWidth = origWidth; 4603 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4604 // 8 bits, but have to be careful... 4605 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4606 origWidth = Lod->getMemoryVT().getSizeInBits(); 4607 const APInt &Mask = N0.getConstantOperandAPInt(1); 4608 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4609 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4610 for (unsigned offset=0; offset<origWidth/width; offset++) { 4611 if (Mask.isSubsetOf(newMask)) { 4612 if (Layout.isLittleEndian()) 4613 bestOffset = (uint64_t)offset * (width/8); 4614 else 4615 bestOffset = (origWidth/width - offset - 1) * (width/8); 4616 bestMask = Mask.lshr(offset * (width/8) * 8); 4617 bestWidth = width; 4618 break; 4619 } 4620 newMask <<= width; 4621 } 4622 } 4623 } 4624 if (bestWidth) { 4625 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4626 if (newVT.isRound() && 4627 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4628 SDValue Ptr = Lod->getBasePtr(); 4629 if (bestOffset != 0) 4630 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(bestOffset), 4631 dl); 4632 SDValue NewLoad = 4633 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4634 Lod->getPointerInfo().getWithOffset(bestOffset), 4635 Lod->getOriginalAlign()); 4636 return DAG.getSetCC(dl, VT, 4637 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4638 DAG.getConstant(bestMask.trunc(bestWidth), 4639 dl, newVT)), 4640 DAG.getConstant(0LL, dl, newVT), Cond); 4641 } 4642 } 4643 } 4644 4645 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4646 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4647 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4648 4649 // If the comparison constant has bits in the upper part, the 4650 // zero-extended value could never match. 4651 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4652 C1.getBitWidth() - InSize))) { 4653 switch (Cond) { 4654 case ISD::SETUGT: 4655 case ISD::SETUGE: 4656 case ISD::SETEQ: 4657 return DAG.getConstant(0, dl, VT); 4658 case ISD::SETULT: 4659 case ISD::SETULE: 4660 case ISD::SETNE: 4661 return DAG.getConstant(1, dl, VT); 4662 case ISD::SETGT: 4663 case ISD::SETGE: 4664 // True if the sign bit of C1 is set. 4665 return DAG.getConstant(C1.isNegative(), dl, VT); 4666 case ISD::SETLT: 4667 case ISD::SETLE: 4668 // True if the sign bit of C1 isn't set. 4669 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4670 default: 4671 break; 4672 } 4673 } 4674 4675 // Otherwise, we can perform the comparison with the low bits. 4676 switch (Cond) { 4677 case ISD::SETEQ: 4678 case ISD::SETNE: 4679 case ISD::SETUGT: 4680 case ISD::SETUGE: 4681 case ISD::SETULT: 4682 case ISD::SETULE: { 4683 EVT newVT = N0.getOperand(0).getValueType(); 4684 if (DCI.isBeforeLegalizeOps() || 4685 (isOperationLegal(ISD::SETCC, newVT) && 4686 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4687 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4688 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4689 4690 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4691 NewConst, Cond); 4692 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4693 } 4694 break; 4695 } 4696 default: 4697 break; // todo, be more careful with signed comparisons 4698 } 4699 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4700 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4701 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4702 OpVT)) { 4703 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4704 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4705 EVT ExtDstTy = N0.getValueType(); 4706 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4707 4708 // If the constant doesn't fit into the number of bits for the source of 4709 // the sign extension, it is impossible for both sides to be equal. 4710 if (C1.getSignificantBits() > ExtSrcTyBits) 4711 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4712 4713 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4714 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4715 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4716 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4717 DAG.getConstant(Imm, dl, ExtDstTy)); 4718 if (!DCI.isCalledByLegalizer()) 4719 DCI.AddToWorklist(ZextOp.getNode()); 4720 // Otherwise, make this a use of a zext. 4721 return DAG.getSetCC(dl, VT, ZextOp, 4722 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4723 } else if ((N1C->isZero() || N1C->isOne()) && 4724 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4725 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4726 if (N0.getOpcode() == ISD::SETCC && 4727 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4728 (N0.getValueType() == MVT::i1 || 4729 getBooleanContents(N0.getOperand(0).getValueType()) == 4730 ZeroOrOneBooleanContent)) { 4731 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4732 if (TrueWhenTrue) 4733 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4734 // Invert the condition. 4735 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4736 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4737 if (DCI.isBeforeLegalizeOps() || 4738 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4739 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4740 } 4741 4742 if ((N0.getOpcode() == ISD::XOR || 4743 (N0.getOpcode() == ISD::AND && 4744 N0.getOperand(0).getOpcode() == ISD::XOR && 4745 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4746 isOneConstant(N0.getOperand(1))) { 4747 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4748 // can only do this if the top bits are known zero. 4749 unsigned BitWidth = N0.getValueSizeInBits(); 4750 if (DAG.MaskedValueIsZero(N0, 4751 APInt::getHighBitsSet(BitWidth, 4752 BitWidth-1))) { 4753 // Okay, get the un-inverted input value. 4754 SDValue Val; 4755 if (N0.getOpcode() == ISD::XOR) { 4756 Val = N0.getOperand(0); 4757 } else { 4758 assert(N0.getOpcode() == ISD::AND && 4759 N0.getOperand(0).getOpcode() == ISD::XOR); 4760 // ((X^1)&1)^1 -> X & 1 4761 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4762 N0.getOperand(0).getOperand(0), 4763 N0.getOperand(1)); 4764 } 4765 4766 return DAG.getSetCC(dl, VT, Val, N1, 4767 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4768 } 4769 } else if (N1C->isOne()) { 4770 SDValue Op0 = N0; 4771 if (Op0.getOpcode() == ISD::TRUNCATE) 4772 Op0 = Op0.getOperand(0); 4773 4774 if ((Op0.getOpcode() == ISD::XOR) && 4775 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4776 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4777 SDValue XorLHS = Op0.getOperand(0); 4778 SDValue XorRHS = Op0.getOperand(1); 4779 // Ensure that the input setccs return an i1 type or 0/1 value. 4780 if (Op0.getValueType() == MVT::i1 || 4781 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4782 ZeroOrOneBooleanContent && 4783 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4784 ZeroOrOneBooleanContent)) { 4785 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4786 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4787 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4788 } 4789 } 4790 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4791 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4792 if (Op0.getValueType().bitsGT(VT)) 4793 Op0 = DAG.getNode(ISD::AND, dl, VT, 4794 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4795 DAG.getConstant(1, dl, VT)); 4796 else if (Op0.getValueType().bitsLT(VT)) 4797 Op0 = DAG.getNode(ISD::AND, dl, VT, 4798 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4799 DAG.getConstant(1, dl, VT)); 4800 4801 return DAG.getSetCC(dl, VT, Op0, 4802 DAG.getConstant(0, dl, Op0.getValueType()), 4803 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4804 } 4805 if (Op0.getOpcode() == ISD::AssertZext && 4806 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4807 return DAG.getSetCC(dl, VT, Op0, 4808 DAG.getConstant(0, dl, Op0.getValueType()), 4809 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4810 } 4811 } 4812 4813 // Given: 4814 // icmp eq/ne (urem %x, %y), 0 4815 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4816 // icmp eq/ne %x, 0 4817 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4818 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4819 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4820 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4821 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4822 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4823 } 4824 4825 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4826 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4827 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4828 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4829 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4830 N1C && N1C->isAllOnes()) { 4831 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4832 DAG.getConstant(0, dl, OpVT), 4833 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4834 } 4835 4836 if (SDValue V = 4837 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4838 return V; 4839 } 4840 4841 // These simplifications apply to splat vectors as well. 4842 // TODO: Handle more splat vector cases. 4843 if (auto *N1C = isConstOrConstSplat(N1)) { 4844 const APInt &C1 = N1C->getAPIntValue(); 4845 4846 APInt MinVal, MaxVal; 4847 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4848 if (ISD::isSignedIntSetCC(Cond)) { 4849 MinVal = APInt::getSignedMinValue(OperandBitSize); 4850 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4851 } else { 4852 MinVal = APInt::getMinValue(OperandBitSize); 4853 MaxVal = APInt::getMaxValue(OperandBitSize); 4854 } 4855 4856 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4857 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4858 // X >= MIN --> true 4859 if (C1 == MinVal) 4860 return DAG.getBoolConstant(true, dl, VT, OpVT); 4861 4862 if (!VT.isVector()) { // TODO: Support this for vectors. 4863 // X >= C0 --> X > (C0 - 1) 4864 APInt C = C1 - 1; 4865 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4866 if ((DCI.isBeforeLegalizeOps() || 4867 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4868 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4869 isLegalICmpImmediate(C.getSExtValue())))) { 4870 return DAG.getSetCC(dl, VT, N0, 4871 DAG.getConstant(C, dl, N1.getValueType()), 4872 NewCC); 4873 } 4874 } 4875 } 4876 4877 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4878 // X <= MAX --> true 4879 if (C1 == MaxVal) 4880 return DAG.getBoolConstant(true, dl, VT, OpVT); 4881 4882 // X <= C0 --> X < (C0 + 1) 4883 if (!VT.isVector()) { // TODO: Support this for vectors. 4884 APInt C = C1 + 1; 4885 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4886 if ((DCI.isBeforeLegalizeOps() || 4887 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4888 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4889 isLegalICmpImmediate(C.getSExtValue())))) { 4890 return DAG.getSetCC(dl, VT, N0, 4891 DAG.getConstant(C, dl, N1.getValueType()), 4892 NewCC); 4893 } 4894 } 4895 } 4896 4897 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4898 if (C1 == MinVal) 4899 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4900 4901 // TODO: Support this for vectors after legalize ops. 4902 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4903 // Canonicalize setlt X, Max --> setne X, Max 4904 if (C1 == MaxVal) 4905 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4906 4907 // If we have setult X, 1, turn it into seteq X, 0 4908 if (C1 == MinVal+1) 4909 return DAG.getSetCC(dl, VT, N0, 4910 DAG.getConstant(MinVal, dl, N0.getValueType()), 4911 ISD::SETEQ); 4912 } 4913 } 4914 4915 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4916 if (C1 == MaxVal) 4917 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4918 4919 // TODO: Support this for vectors after legalize ops. 4920 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4921 // Canonicalize setgt X, Min --> setne X, Min 4922 if (C1 == MinVal) 4923 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4924 4925 // If we have setugt X, Max-1, turn it into seteq X, Max 4926 if (C1 == MaxVal-1) 4927 return DAG.getSetCC(dl, VT, N0, 4928 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4929 ISD::SETEQ); 4930 } 4931 } 4932 4933 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4934 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4935 if (C1.isZero()) 4936 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4937 VT, N0, N1, Cond, DCI, dl)) 4938 return CC; 4939 4940 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4941 // For example, when high 32-bits of i64 X are known clear: 4942 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4943 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4944 bool CmpZero = N1C->isZero(); 4945 bool CmpNegOne = N1C->isAllOnes(); 4946 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4947 // Match or(lo,shl(hi,bw/2)) pattern. 4948 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4949 unsigned EltBits = V.getScalarValueSizeInBits(); 4950 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4951 return false; 4952 SDValue LHS = V.getOperand(0); 4953 SDValue RHS = V.getOperand(1); 4954 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4955 // Unshifted element must have zero upperbits. 4956 if (RHS.getOpcode() == ISD::SHL && 4957 isa<ConstantSDNode>(RHS.getOperand(1)) && 4958 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4959 DAG.MaskedValueIsZero(LHS, HiBits)) { 4960 Lo = LHS; 4961 Hi = RHS.getOperand(0); 4962 return true; 4963 } 4964 if (LHS.getOpcode() == ISD::SHL && 4965 isa<ConstantSDNode>(LHS.getOperand(1)) && 4966 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4967 DAG.MaskedValueIsZero(RHS, HiBits)) { 4968 Lo = RHS; 4969 Hi = LHS.getOperand(0); 4970 return true; 4971 } 4972 return false; 4973 }; 4974 4975 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4976 unsigned EltBits = N0.getScalarValueSizeInBits(); 4977 unsigned HalfBits = EltBits / 2; 4978 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4979 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4980 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4981 SDValue NewN0 = 4982 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4983 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4984 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4985 }; 4986 4987 SDValue Lo, Hi; 4988 if (IsConcat(N0, Lo, Hi)) 4989 return MergeConcat(Lo, Hi); 4990 4991 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4992 SDValue Lo0, Lo1, Hi0, Hi1; 4993 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4994 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4995 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4996 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4997 } 4998 } 4999 } 5000 } 5001 5002 // If we have "setcc X, C0", check to see if we can shrink the immediate 5003 // by changing cc. 5004 // TODO: Support this for vectors after legalize ops. 5005 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5006 // SETUGT X, SINTMAX -> SETLT X, 0 5007 // SETUGE X, SINTMIN -> SETLT X, 0 5008 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 5009 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 5010 return DAG.getSetCC(dl, VT, N0, 5011 DAG.getConstant(0, dl, N1.getValueType()), 5012 ISD::SETLT); 5013 5014 // SETULT X, SINTMIN -> SETGT X, -1 5015 // SETULE X, SINTMAX -> SETGT X, -1 5016 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 5017 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 5018 return DAG.getSetCC(dl, VT, N0, 5019 DAG.getAllOnesConstant(dl, N1.getValueType()), 5020 ISD::SETGT); 5021 } 5022 } 5023 5024 // Back to non-vector simplifications. 5025 // TODO: Can we do these for vector splats? 5026 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 5027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5028 const APInt &C1 = N1C->getAPIntValue(); 5029 EVT ShValTy = N0.getValueType(); 5030 5031 // Fold bit comparisons when we can. This will result in an 5032 // incorrect value when boolean false is negative one, unless 5033 // the bitsize is 1 in which case the false value is the same 5034 // in practice regardless of the representation. 5035 if ((VT.getSizeInBits() == 1 || 5036 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 5037 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5038 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 5039 N0.getOpcode() == ISD::AND) { 5040 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5041 EVT ShiftTy = 5042 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 5043 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 5044 // Perform the xform if the AND RHS is a single bit. 5045 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 5046 if (AndRHS->getAPIntValue().isPowerOf2() && 5047 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 5048 return DAG.getNode(ISD::TRUNCATE, dl, VT, 5049 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5050 DAG.getConstant(ShCt, dl, ShiftTy))); 5051 } 5052 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 5053 // (X & 8) == 8 --> (X & 8) >> 3 5054 // Perform the xform if C1 is a single bit. 5055 unsigned ShCt = C1.logBase2(); 5056 if (C1.isPowerOf2() && 5057 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 5058 return DAG.getNode(ISD::TRUNCATE, dl, VT, 5059 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5060 DAG.getConstant(ShCt, dl, ShiftTy))); 5061 } 5062 } 5063 } 5064 } 5065 5066 if (C1.getSignificantBits() <= 64 && 5067 !isLegalICmpImmediate(C1.getSExtValue())) { 5068 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 5069 // (X & -256) == 256 -> (X >> 8) == 1 5070 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5071 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5072 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5073 const APInt &AndRHSC = AndRHS->getAPIntValue(); 5074 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 5075 unsigned ShiftBits = AndRHSC.countr_zero(); 5076 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5077 SDValue Shift = 5078 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 5079 DAG.getConstant(ShiftBits, dl, ShiftTy)); 5080 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 5081 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 5082 } 5083 } 5084 } 5085 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 5086 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 5087 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 5088 // X < 0x100000000 -> (X >> 32) < 1 5089 // X >= 0x100000000 -> (X >> 32) >= 1 5090 // X <= 0x0ffffffff -> (X >> 32) < 1 5091 // X > 0x0ffffffff -> (X >> 32) >= 1 5092 unsigned ShiftBits; 5093 APInt NewC = C1; 5094 ISD::CondCode NewCond = Cond; 5095 if (AdjOne) { 5096 ShiftBits = C1.countr_one(); 5097 NewC = NewC + 1; 5098 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 5099 } else { 5100 ShiftBits = C1.countr_zero(); 5101 } 5102 NewC.lshrInPlace(ShiftBits); 5103 if (ShiftBits && NewC.getSignificantBits() <= 64 && 5104 isLegalICmpImmediate(NewC.getSExtValue()) && 5105 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5106 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5107 DAG.getConstant(ShiftBits, dl, ShiftTy)); 5108 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 5109 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 5110 } 5111 } 5112 } 5113 } 5114 5115 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 5116 auto *CFP = cast<ConstantFPSDNode>(N1); 5117 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 5118 5119 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 5120 // constant if knowing that the operand is non-nan is enough. We prefer to 5121 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 5122 // materialize 0.0. 5123 if (Cond == ISD::SETO || Cond == ISD::SETUO) 5124 return DAG.getSetCC(dl, VT, N0, N0, Cond); 5125 5126 // setcc (fneg x), C -> setcc swap(pred) x, -C 5127 if (N0.getOpcode() == ISD::FNEG) { 5128 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 5129 if (DCI.isBeforeLegalizeOps() || 5130 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 5131 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 5132 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 5133 } 5134 } 5135 5136 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf 5137 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && 5138 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { 5139 bool IsFabs = N0.getOpcode() == ISD::FABS; 5140 SDValue Op = IsFabs ? N0.getOperand(0) : N0; 5141 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { 5142 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) 5143 : (IsFabs ? fcInf : fcPosInf); 5144 if (Cond == ISD::SETUEQ) 5145 Flag |= fcNan; 5146 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, 5147 DAG.getTargetConstant(Flag, dl, MVT::i32)); 5148 } 5149 } 5150 5151 // If the condition is not legal, see if we can find an equivalent one 5152 // which is legal. 5153 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 5154 // If the comparison was an awkward floating-point == or != and one of 5155 // the comparison operands is infinity or negative infinity, convert the 5156 // condition to a less-awkward <= or >=. 5157 if (CFP->getValueAPF().isInfinity()) { 5158 bool IsNegInf = CFP->getValueAPF().isNegative(); 5159 ISD::CondCode NewCond = ISD::SETCC_INVALID; 5160 switch (Cond) { 5161 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 5162 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 5163 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 5164 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 5165 default: break; 5166 } 5167 if (NewCond != ISD::SETCC_INVALID && 5168 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 5169 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5170 } 5171 } 5172 } 5173 5174 if (N0 == N1) { 5175 // The sext(setcc()) => setcc() optimization relies on the appropriate 5176 // constant being emitted. 5177 assert(!N0.getValueType().isInteger() && 5178 "Integer types should be handled by FoldSetCC"); 5179 5180 bool EqTrue = ISD::isTrueWhenEqual(Cond); 5181 unsigned UOF = ISD::getUnorderedFlavor(Cond); 5182 if (UOF == 2) // FP operators that are undefined on NaNs. 5183 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5184 if (UOF == unsigned(EqTrue)) 5185 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5186 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 5187 // if it is not already. 5188 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 5189 if (NewCond != Cond && 5190 (DCI.isBeforeLegalizeOps() || 5191 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 5192 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5193 } 5194 5195 // ~X > ~Y --> Y > X 5196 // ~X < ~Y --> Y < X 5197 // ~X < C --> X > ~C 5198 // ~X > C --> X < ~C 5199 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && 5200 N0.getValueType().isInteger()) { 5201 if (isBitwiseNot(N0)) { 5202 if (isBitwiseNot(N1)) 5203 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); 5204 5205 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 5206 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { 5207 SDValue Not = DAG.getNOT(dl, N1, OpVT); 5208 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); 5209 } 5210 } 5211 } 5212 5213 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5214 N0.getValueType().isInteger()) { 5215 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 5216 N0.getOpcode() == ISD::XOR) { 5217 // Simplify (X+Y) == (X+Z) --> Y == Z 5218 if (N0.getOpcode() == N1.getOpcode()) { 5219 if (N0.getOperand(0) == N1.getOperand(0)) 5220 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 5221 if (N0.getOperand(1) == N1.getOperand(1)) 5222 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 5223 if (isCommutativeBinOp(N0.getOpcode())) { 5224 // If X op Y == Y op X, try other combinations. 5225 if (N0.getOperand(0) == N1.getOperand(1)) 5226 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 5227 Cond); 5228 if (N0.getOperand(1) == N1.getOperand(0)) 5229 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5230 Cond); 5231 } 5232 } 5233 5234 // If RHS is a legal immediate value for a compare instruction, we need 5235 // to be careful about increasing register pressure needlessly. 5236 bool LegalRHSImm = false; 5237 5238 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5239 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5240 // Turn (X+C1) == C2 --> X == C2-C1 5241 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5242 return DAG.getSetCC( 5243 dl, VT, N0.getOperand(0), 5244 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5245 dl, N0.getValueType()), 5246 Cond); 5247 5248 // Turn (X^C1) == C2 --> X == C1^C2 5249 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5250 return DAG.getSetCC( 5251 dl, VT, N0.getOperand(0), 5252 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5253 dl, N0.getValueType()), 5254 Cond); 5255 } 5256 5257 // Turn (C1-X) == C2 --> X == C1-C2 5258 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5259 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5260 return DAG.getSetCC( 5261 dl, VT, N0.getOperand(1), 5262 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5263 dl, N0.getValueType()), 5264 Cond); 5265 5266 // Could RHSC fold directly into a compare? 5267 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5268 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5269 } 5270 5271 // (X+Y) == X --> Y == 0 and similar folds. 5272 // Don't do this if X is an immediate that can fold into a cmp 5273 // instruction and X+Y has other uses. It could be an induction variable 5274 // chain, and the transform would increase register pressure. 5275 if (!LegalRHSImm || N0.hasOneUse()) 5276 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5277 return V; 5278 } 5279 5280 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5281 N1.getOpcode() == ISD::XOR) 5282 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5283 return V; 5284 5285 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5286 return V; 5287 } 5288 5289 // Fold remainder of division by a constant. 5290 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5291 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5292 // When division is cheap or optimizing for minimum size, 5293 // fall through to DIVREM creation by skipping this fold. 5294 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5295 if (N0.getOpcode() == ISD::UREM) { 5296 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5297 return Folded; 5298 } else if (N0.getOpcode() == ISD::SREM) { 5299 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5300 return Folded; 5301 } 5302 } 5303 } 5304 5305 // Fold away ALL boolean setcc's. 5306 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5307 SDValue Temp; 5308 switch (Cond) { 5309 default: llvm_unreachable("Unknown integer setcc!"); 5310 case ISD::SETEQ: // X == Y -> ~(X^Y) 5311 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5312 N0 = DAG.getNOT(dl, Temp, OpVT); 5313 if (!DCI.isCalledByLegalizer()) 5314 DCI.AddToWorklist(Temp.getNode()); 5315 break; 5316 case ISD::SETNE: // X != Y --> (X^Y) 5317 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5318 break; 5319 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5320 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5321 Temp = DAG.getNOT(dl, N0, OpVT); 5322 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5323 if (!DCI.isCalledByLegalizer()) 5324 DCI.AddToWorklist(Temp.getNode()); 5325 break; 5326 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5327 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5328 Temp = DAG.getNOT(dl, N1, OpVT); 5329 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5330 if (!DCI.isCalledByLegalizer()) 5331 DCI.AddToWorklist(Temp.getNode()); 5332 break; 5333 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5334 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5335 Temp = DAG.getNOT(dl, N0, OpVT); 5336 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5337 if (!DCI.isCalledByLegalizer()) 5338 DCI.AddToWorklist(Temp.getNode()); 5339 break; 5340 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5341 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5342 Temp = DAG.getNOT(dl, N1, OpVT); 5343 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5344 break; 5345 } 5346 if (VT.getScalarType() != MVT::i1) { 5347 if (!DCI.isCalledByLegalizer()) 5348 DCI.AddToWorklist(N0.getNode()); 5349 // FIXME: If running after legalize, we probably can't do this. 5350 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5351 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5352 } 5353 return N0; 5354 } 5355 5356 // Could not fold it. 5357 return SDValue(); 5358 } 5359 5360 /// Returns true (and the GlobalValue and the offset) if the node is a 5361 /// GlobalAddress + offset. 5362 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5363 int64_t &Offset) const { 5364 5365 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5366 5367 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5368 GA = GASD->getGlobal(); 5369 Offset += GASD->getOffset(); 5370 return true; 5371 } 5372 5373 if (N->getOpcode() == ISD::ADD) { 5374 SDValue N1 = N->getOperand(0); 5375 SDValue N2 = N->getOperand(1); 5376 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5377 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5378 Offset += V->getSExtValue(); 5379 return true; 5380 } 5381 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5382 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5383 Offset += V->getSExtValue(); 5384 return true; 5385 } 5386 } 5387 } 5388 5389 return false; 5390 } 5391 5392 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5393 DAGCombinerInfo &DCI) const { 5394 // Default implementation: no optimization. 5395 return SDValue(); 5396 } 5397 5398 //===----------------------------------------------------------------------===// 5399 // Inline Assembler Implementation Methods 5400 //===----------------------------------------------------------------------===// 5401 5402 TargetLowering::ConstraintType 5403 TargetLowering::getConstraintType(StringRef Constraint) const { 5404 unsigned S = Constraint.size(); 5405 5406 if (S == 1) { 5407 switch (Constraint[0]) { 5408 default: break; 5409 case 'r': 5410 return C_RegisterClass; 5411 case 'm': // memory 5412 case 'o': // offsetable 5413 case 'V': // not offsetable 5414 return C_Memory; 5415 case 'p': // Address. 5416 return C_Address; 5417 case 'n': // Simple Integer 5418 case 'E': // Floating Point Constant 5419 case 'F': // Floating Point Constant 5420 return C_Immediate; 5421 case 'i': // Simple Integer or Relocatable Constant 5422 case 's': // Relocatable Constant 5423 case 'X': // Allow ANY value. 5424 case 'I': // Target registers. 5425 case 'J': 5426 case 'K': 5427 case 'L': 5428 case 'M': 5429 case 'N': 5430 case 'O': 5431 case 'P': 5432 case '<': 5433 case '>': 5434 return C_Other; 5435 } 5436 } 5437 5438 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5439 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5440 return C_Memory; 5441 return C_Register; 5442 } 5443 return C_Unknown; 5444 } 5445 5446 /// Try to replace an X constraint, which matches anything, with another that 5447 /// has more specific requirements based on the type of the corresponding 5448 /// operand. 5449 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5450 if (ConstraintVT.isInteger()) 5451 return "r"; 5452 if (ConstraintVT.isFloatingPoint()) 5453 return "f"; // works for many targets 5454 return nullptr; 5455 } 5456 5457 SDValue TargetLowering::LowerAsmOutputForConstraint( 5458 SDValue &Chain, SDValue &Glue, const SDLoc &DL, 5459 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5460 return SDValue(); 5461 } 5462 5463 /// Lower the specified operand into the Ops vector. 5464 /// If it is invalid, don't add anything to Ops. 5465 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5466 StringRef Constraint, 5467 std::vector<SDValue> &Ops, 5468 SelectionDAG &DAG) const { 5469 5470 if (Constraint.size() > 1) 5471 return; 5472 5473 char ConstraintLetter = Constraint[0]; 5474 switch (ConstraintLetter) { 5475 default: break; 5476 case 'X': // Allows any operand 5477 case 'i': // Simple Integer or Relocatable Constant 5478 case 'n': // Simple Integer 5479 case 's': { // Relocatable Constant 5480 5481 ConstantSDNode *C; 5482 uint64_t Offset = 0; 5483 5484 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5485 // etc., since getelementpointer is variadic. We can't use 5486 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5487 // while in this case the GA may be furthest from the root node which is 5488 // likely an ISD::ADD. 5489 while (true) { 5490 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5491 // gcc prints these as sign extended. Sign extend value to 64 bits 5492 // now; without this it would get ZExt'd later in 5493 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5494 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5495 BooleanContent BCont = getBooleanContents(MVT::i64); 5496 ISD::NodeType ExtOpc = 5497 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5498 int64_t ExtVal = 5499 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5500 Ops.push_back( 5501 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5502 return; 5503 } 5504 if (ConstraintLetter != 'n') { 5505 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5506 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5507 GA->getValueType(0), 5508 Offset + GA->getOffset())); 5509 return; 5510 } 5511 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5512 Ops.push_back(DAG.getTargetBlockAddress( 5513 BA->getBlockAddress(), BA->getValueType(0), 5514 Offset + BA->getOffset(), BA->getTargetFlags())); 5515 return; 5516 } 5517 if (isa<BasicBlockSDNode>(Op)) { 5518 Ops.push_back(Op); 5519 return; 5520 } 5521 } 5522 const unsigned OpCode = Op.getOpcode(); 5523 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5524 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5525 Op = Op.getOperand(1); 5526 // Subtraction is not commutative. 5527 else if (OpCode == ISD::ADD && 5528 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5529 Op = Op.getOperand(0); 5530 else 5531 return; 5532 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5533 continue; 5534 } 5535 return; 5536 } 5537 break; 5538 } 5539 } 5540 } 5541 5542 void TargetLowering::CollectTargetIntrinsicOperands( 5543 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { 5544 } 5545 5546 std::pair<unsigned, const TargetRegisterClass *> 5547 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5548 StringRef Constraint, 5549 MVT VT) const { 5550 if (Constraint.empty() || Constraint[0] != '{') 5551 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5552 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5553 5554 // Remove the braces from around the name. 5555 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5556 5557 std::pair<unsigned, const TargetRegisterClass *> R = 5558 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5559 5560 // Figure out which register class contains this reg. 5561 for (const TargetRegisterClass *RC : RI->regclasses()) { 5562 // If none of the value types for this register class are valid, we 5563 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5564 if (!isLegalRC(*RI, *RC)) 5565 continue; 5566 5567 for (const MCPhysReg &PR : *RC) { 5568 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5569 std::pair<unsigned, const TargetRegisterClass *> S = 5570 std::make_pair(PR, RC); 5571 5572 // If this register class has the requested value type, return it, 5573 // otherwise keep searching and return the first class found 5574 // if no other is found which explicitly has the requested type. 5575 if (RI->isTypeLegalForClass(*RC, VT)) 5576 return S; 5577 if (!R.second) 5578 R = S; 5579 } 5580 } 5581 } 5582 5583 return R; 5584 } 5585 5586 //===----------------------------------------------------------------------===// 5587 // Constraint Selection. 5588 5589 /// Return true of this is an input operand that is a matching constraint like 5590 /// "4". 5591 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5592 assert(!ConstraintCode.empty() && "No known constraint!"); 5593 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5594 } 5595 5596 /// If this is an input matching constraint, this method returns the output 5597 /// operand it matches. 5598 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5599 assert(!ConstraintCode.empty() && "No known constraint!"); 5600 return atoi(ConstraintCode.c_str()); 5601 } 5602 5603 /// Split up the constraint string from the inline assembly value into the 5604 /// specific constraints and their prefixes, and also tie in the associated 5605 /// operand values. 5606 /// If this returns an empty vector, and if the constraint string itself 5607 /// isn't empty, there was an error parsing. 5608 TargetLowering::AsmOperandInfoVector 5609 TargetLowering::ParseConstraints(const DataLayout &DL, 5610 const TargetRegisterInfo *TRI, 5611 const CallBase &Call) const { 5612 /// Information about all of the constraints. 5613 AsmOperandInfoVector ConstraintOperands; 5614 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5615 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5616 5617 // Do a prepass over the constraints, canonicalizing them, and building up the 5618 // ConstraintOperands list. 5619 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5620 unsigned ResNo = 0; // ResNo - The result number of the next output. 5621 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5622 5623 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5624 ConstraintOperands.emplace_back(std::move(CI)); 5625 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5626 5627 // Update multiple alternative constraint count. 5628 if (OpInfo.multipleAlternatives.size() > maCount) 5629 maCount = OpInfo.multipleAlternatives.size(); 5630 5631 OpInfo.ConstraintVT = MVT::Other; 5632 5633 // Compute the value type for each operand. 5634 switch (OpInfo.Type) { 5635 case InlineAsm::isOutput: 5636 // Indirect outputs just consume an argument. 5637 if (OpInfo.isIndirect) { 5638 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5639 break; 5640 } 5641 5642 // The return value of the call is this value. As such, there is no 5643 // corresponding argument. 5644 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5645 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5646 OpInfo.ConstraintVT = 5647 getSimpleValueType(DL, STy->getElementType(ResNo)); 5648 } else { 5649 assert(ResNo == 0 && "Asm only has one result!"); 5650 OpInfo.ConstraintVT = 5651 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5652 } 5653 ++ResNo; 5654 break; 5655 case InlineAsm::isInput: 5656 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5657 break; 5658 case InlineAsm::isLabel: 5659 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5660 ++LabelNo; 5661 continue; 5662 case InlineAsm::isClobber: 5663 // Nothing to do. 5664 break; 5665 } 5666 5667 if (OpInfo.CallOperandVal) { 5668 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5669 if (OpInfo.isIndirect) { 5670 OpTy = Call.getParamElementType(ArgNo); 5671 assert(OpTy && "Indirect operand must have elementtype attribute"); 5672 } 5673 5674 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5675 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5676 if (STy->getNumElements() == 1) 5677 OpTy = STy->getElementType(0); 5678 5679 // If OpTy is not a single value, it may be a struct/union that we 5680 // can tile with integers. 5681 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5682 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5683 switch (BitSize) { 5684 default: break; 5685 case 1: 5686 case 8: 5687 case 16: 5688 case 32: 5689 case 64: 5690 case 128: 5691 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5692 break; 5693 } 5694 } 5695 5696 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5697 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5698 ArgNo++; 5699 } 5700 } 5701 5702 // If we have multiple alternative constraints, select the best alternative. 5703 if (!ConstraintOperands.empty()) { 5704 if (maCount) { 5705 unsigned bestMAIndex = 0; 5706 int bestWeight = -1; 5707 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5708 int weight = -1; 5709 unsigned maIndex; 5710 // Compute the sums of the weights for each alternative, keeping track 5711 // of the best (highest weight) one so far. 5712 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5713 int weightSum = 0; 5714 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5715 cIndex != eIndex; ++cIndex) { 5716 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5717 if (OpInfo.Type == InlineAsm::isClobber) 5718 continue; 5719 5720 // If this is an output operand with a matching input operand, 5721 // look up the matching input. If their types mismatch, e.g. one 5722 // is an integer, the other is floating point, or their sizes are 5723 // different, flag it as an maCantMatch. 5724 if (OpInfo.hasMatchingInput()) { 5725 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5726 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5727 if ((OpInfo.ConstraintVT.isInteger() != 5728 Input.ConstraintVT.isInteger()) || 5729 (OpInfo.ConstraintVT.getSizeInBits() != 5730 Input.ConstraintVT.getSizeInBits())) { 5731 weightSum = -1; // Can't match. 5732 break; 5733 } 5734 } 5735 } 5736 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5737 if (weight == -1) { 5738 weightSum = -1; 5739 break; 5740 } 5741 weightSum += weight; 5742 } 5743 // Update best. 5744 if (weightSum > bestWeight) { 5745 bestWeight = weightSum; 5746 bestMAIndex = maIndex; 5747 } 5748 } 5749 5750 // Now select chosen alternative in each constraint. 5751 for (AsmOperandInfo &cInfo : ConstraintOperands) 5752 if (cInfo.Type != InlineAsm::isClobber) 5753 cInfo.selectAlternative(bestMAIndex); 5754 } 5755 } 5756 5757 // Check and hook up tied operands, choose constraint code to use. 5758 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5759 cIndex != eIndex; ++cIndex) { 5760 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5761 5762 // If this is an output operand with a matching input operand, look up the 5763 // matching input. If their types mismatch, e.g. one is an integer, the 5764 // other is floating point, or their sizes are different, flag it as an 5765 // error. 5766 if (OpInfo.hasMatchingInput()) { 5767 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5768 5769 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5770 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5771 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5772 OpInfo.ConstraintVT); 5773 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5774 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5775 Input.ConstraintVT); 5776 if ((OpInfo.ConstraintVT.isInteger() != 5777 Input.ConstraintVT.isInteger()) || 5778 (MatchRC.second != InputRC.second)) { 5779 report_fatal_error("Unsupported asm: input constraint" 5780 " with a matching output constraint of" 5781 " incompatible type!"); 5782 } 5783 } 5784 } 5785 } 5786 5787 return ConstraintOperands; 5788 } 5789 5790 /// Return a number indicating our preference for chosing a type of constraint 5791 /// over another, for the purpose of sorting them. Immediates are almost always 5792 /// preferrable (when they can be emitted). A higher return value means a 5793 /// stronger preference for one constraint type relative to another. 5794 /// FIXME: We should prefer registers over memory but doing so may lead to 5795 /// unrecoverable register exhaustion later. 5796 /// https://github.com/llvm/llvm-project/issues/20571 5797 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { 5798 switch (CT) { 5799 case TargetLowering::C_Immediate: 5800 case TargetLowering::C_Other: 5801 return 4; 5802 case TargetLowering::C_Memory: 5803 case TargetLowering::C_Address: 5804 return 3; 5805 case TargetLowering::C_RegisterClass: 5806 return 2; 5807 case TargetLowering::C_Register: 5808 return 1; 5809 case TargetLowering::C_Unknown: 5810 return 0; 5811 } 5812 llvm_unreachable("Invalid constraint type"); 5813 } 5814 5815 /// Examine constraint type and operand type and determine a weight value. 5816 /// This object must already have been set up with the operand type 5817 /// and the current alternative constraint selected. 5818 TargetLowering::ConstraintWeight 5819 TargetLowering::getMultipleConstraintMatchWeight( 5820 AsmOperandInfo &info, int maIndex) const { 5821 InlineAsm::ConstraintCodeVector *rCodes; 5822 if (maIndex >= (int)info.multipleAlternatives.size()) 5823 rCodes = &info.Codes; 5824 else 5825 rCodes = &info.multipleAlternatives[maIndex].Codes; 5826 ConstraintWeight BestWeight = CW_Invalid; 5827 5828 // Loop over the options, keeping track of the most general one. 5829 for (const std::string &rCode : *rCodes) { 5830 ConstraintWeight weight = 5831 getSingleConstraintMatchWeight(info, rCode.c_str()); 5832 if (weight > BestWeight) 5833 BestWeight = weight; 5834 } 5835 5836 return BestWeight; 5837 } 5838 5839 /// Examine constraint type and operand type and determine a weight value. 5840 /// This object must already have been set up with the operand type 5841 /// and the current alternative constraint selected. 5842 TargetLowering::ConstraintWeight 5843 TargetLowering::getSingleConstraintMatchWeight( 5844 AsmOperandInfo &info, const char *constraint) const { 5845 ConstraintWeight weight = CW_Invalid; 5846 Value *CallOperandVal = info.CallOperandVal; 5847 // If we don't have a value, we can't do a match, 5848 // but allow it at the lowest weight. 5849 if (!CallOperandVal) 5850 return CW_Default; 5851 // Look at the constraint type. 5852 switch (*constraint) { 5853 case 'i': // immediate integer. 5854 case 'n': // immediate integer with a known value. 5855 if (isa<ConstantInt>(CallOperandVal)) 5856 weight = CW_Constant; 5857 break; 5858 case 's': // non-explicit intregal immediate. 5859 if (isa<GlobalValue>(CallOperandVal)) 5860 weight = CW_Constant; 5861 break; 5862 case 'E': // immediate float if host format. 5863 case 'F': // immediate float. 5864 if (isa<ConstantFP>(CallOperandVal)) 5865 weight = CW_Constant; 5866 break; 5867 case '<': // memory operand with autodecrement. 5868 case '>': // memory operand with autoincrement. 5869 case 'm': // memory operand. 5870 case 'o': // offsettable memory operand 5871 case 'V': // non-offsettable memory operand 5872 weight = CW_Memory; 5873 break; 5874 case 'r': // general register. 5875 case 'g': // general register, memory operand or immediate integer. 5876 // note: Clang converts "g" to "imr". 5877 if (CallOperandVal->getType()->isIntegerTy()) 5878 weight = CW_Register; 5879 break; 5880 case 'X': // any operand. 5881 default: 5882 weight = CW_Default; 5883 break; 5884 } 5885 return weight; 5886 } 5887 5888 /// If there are multiple different constraints that we could pick for this 5889 /// operand (e.g. "imr") try to pick the 'best' one. 5890 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall 5891 /// into seven classes: 5892 /// Register -> one specific register 5893 /// RegisterClass -> a group of regs 5894 /// Memory -> memory 5895 /// Address -> a symbolic memory reference 5896 /// Immediate -> immediate values 5897 /// Other -> magic values (such as "Flag Output Operands") 5898 /// Unknown -> something we don't recognize yet and can't handle 5899 /// Ideally, we would pick the most specific constraint possible: if we have 5900 /// something that fits into a register, we would pick it. The problem here 5901 /// is that if we have something that could either be in a register or in 5902 /// memory that use of the register could cause selection of *other* 5903 /// operands to fail: they might only succeed if we pick memory. Because of 5904 /// this the heuristic we use is: 5905 /// 5906 /// 1) If there is an 'other' constraint, and if the operand is valid for 5907 /// that constraint, use it. This makes us take advantage of 'i' 5908 /// constraints when available. 5909 /// 2) Otherwise, pick the most general constraint present. This prefers 5910 /// 'm' over 'r', for example. 5911 /// 5912 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( 5913 TargetLowering::AsmOperandInfo &OpInfo) const { 5914 ConstraintGroup Ret; 5915 5916 Ret.reserve(OpInfo.Codes.size()); 5917 for (StringRef Code : OpInfo.Codes) { 5918 TargetLowering::ConstraintType CType = getConstraintType(Code); 5919 5920 // Indirect 'other' or 'immediate' constraints are not allowed. 5921 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5922 CType == TargetLowering::C_Register || 5923 CType == TargetLowering::C_RegisterClass)) 5924 continue; 5925 5926 // Things with matching constraints can only be registers, per gcc 5927 // documentation. This mainly affects "g" constraints. 5928 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5929 continue; 5930 5931 Ret.emplace_back(Code, CType); 5932 } 5933 5934 std::stable_sort( 5935 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { 5936 return getConstraintPiority(a.second) > getConstraintPiority(b.second); 5937 }); 5938 5939 return Ret; 5940 } 5941 5942 /// If we have an immediate, see if we can lower it. Return true if we can, 5943 /// false otherwise. 5944 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, 5945 SDValue Op, SelectionDAG *DAG, 5946 const TargetLowering &TLI) { 5947 5948 assert((P.second == TargetLowering::C_Other || 5949 P.second == TargetLowering::C_Immediate) && 5950 "need immediate or other"); 5951 5952 if (!Op.getNode()) 5953 return false; 5954 5955 std::vector<SDValue> ResultOps; 5956 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); 5957 return !ResultOps.empty(); 5958 } 5959 5960 /// Determines the constraint code and constraint type to use for the specific 5961 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5962 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5963 SDValue Op, 5964 SelectionDAG *DAG) const { 5965 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5966 5967 // Single-letter constraints ('r') are very common. 5968 if (OpInfo.Codes.size() == 1) { 5969 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5970 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5971 } else { 5972 ConstraintGroup G = getConstraintPreferences(OpInfo); 5973 if (G.empty()) 5974 return; 5975 5976 unsigned BestIdx = 0; 5977 for (const unsigned E = G.size(); 5978 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || 5979 G[BestIdx].second == TargetLowering::C_Immediate); 5980 ++BestIdx) { 5981 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) 5982 break; 5983 // If we're out of constraints, just pick the first one. 5984 if (BestIdx + 1 == E) { 5985 BestIdx = 0; 5986 break; 5987 } 5988 } 5989 5990 OpInfo.ConstraintCode = G[BestIdx].first; 5991 OpInfo.ConstraintType = G[BestIdx].second; 5992 } 5993 5994 // 'X' matches anything. 5995 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5996 // Constants are handled elsewhere. For Functions, the type here is the 5997 // type of the result, which is not what we want to look at; leave them 5998 // alone. 5999 Value *v = OpInfo.CallOperandVal; 6000 if (isa<ConstantInt>(v) || isa<Function>(v)) { 6001 return; 6002 } 6003 6004 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 6005 OpInfo.ConstraintCode = "i"; 6006 return; 6007 } 6008 6009 // Otherwise, try to resolve it to something we know about by looking at 6010 // the actual operand type. 6011 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 6012 OpInfo.ConstraintCode = Repl; 6013 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6014 } 6015 } 6016 } 6017 6018 /// Given an exact SDIV by a constant, create a multiplication 6019 /// with the multiplicative inverse of the constant. 6020 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 6021 const SDLoc &dl, SelectionDAG &DAG, 6022 SmallVectorImpl<SDNode *> &Created) { 6023 SDValue Op0 = N->getOperand(0); 6024 SDValue Op1 = N->getOperand(1); 6025 EVT VT = N->getValueType(0); 6026 EVT SVT = VT.getScalarType(); 6027 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6028 EVT ShSVT = ShVT.getScalarType(); 6029 6030 bool UseSRA = false; 6031 SmallVector<SDValue, 16> Shifts, Factors; 6032 6033 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6034 if (C->isZero()) 6035 return false; 6036 APInt Divisor = C->getAPIntValue(); 6037 unsigned Shift = Divisor.countr_zero(); 6038 if (Shift) { 6039 Divisor.ashrInPlace(Shift); 6040 UseSRA = true; 6041 } 6042 // Calculate the multiplicative inverse, using Newton's method. 6043 APInt t; 6044 APInt Factor = Divisor; 6045 while ((t = Divisor * Factor) != 1) 6046 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 6047 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6048 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6049 return true; 6050 }; 6051 6052 // Collect all magic values from the build vector. 6053 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 6054 return SDValue(); 6055 6056 SDValue Shift, Factor; 6057 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6058 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6059 Factor = DAG.getBuildVector(VT, dl, Factors); 6060 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6061 assert(Shifts.size() == 1 && Factors.size() == 1 && 6062 "Expected matchUnaryPredicate to return one element for scalable " 6063 "vectors"); 6064 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6065 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6066 } else { 6067 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6068 Shift = Shifts[0]; 6069 Factor = Factors[0]; 6070 } 6071 6072 SDValue Res = Op0; 6073 6074 // Shift the value upfront if it is even, so the LSB is one. 6075 if (UseSRA) { 6076 // TODO: For UDIV use SRL instead of SRA. 6077 SDNodeFlags Flags; 6078 Flags.setExact(true); 6079 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 6080 Created.push_back(Res.getNode()); 6081 } 6082 6083 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6084 } 6085 6086 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 6087 SelectionDAG &DAG, 6088 SmallVectorImpl<SDNode *> &Created) const { 6089 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6091 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 6092 return SDValue(N, 0); // Lower SDIV as SDIV 6093 return SDValue(); 6094 } 6095 6096 SDValue 6097 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 6098 SelectionDAG &DAG, 6099 SmallVectorImpl<SDNode *> &Created) const { 6100 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6101 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6102 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 6103 return SDValue(N, 0); // Lower SREM as SREM 6104 return SDValue(); 6105 } 6106 6107 /// Build sdiv by power-of-2 with conditional move instructions 6108 /// Ref: "Hacker's Delight" by Henry Warren 10-1 6109 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: 6110 /// bgez x, label 6111 /// add x, x, 2**k-1 6112 /// label: 6113 /// sra res, x, k 6114 /// neg res, res (when the divisor is negative) 6115 SDValue TargetLowering::buildSDIVPow2WithCMov( 6116 SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 6117 SmallVectorImpl<SDNode *> &Created) const { 6118 unsigned Lg2 = Divisor.countr_zero(); 6119 EVT VT = N->getValueType(0); 6120 6121 SDLoc DL(N); 6122 SDValue N0 = N->getOperand(0); 6123 SDValue Zero = DAG.getConstant(0, DL, VT); 6124 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); 6125 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); 6126 6127 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. 6128 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6129 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); 6130 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 6131 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 6132 6133 Created.push_back(Cmp.getNode()); 6134 Created.push_back(Add.getNode()); 6135 Created.push_back(CMov.getNode()); 6136 6137 // Divide by pow2. 6138 SDValue SRA = 6139 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); 6140 6141 // If we're dividing by a positive value, we're done. Otherwise, we must 6142 // negate the result. 6143 if (Divisor.isNonNegative()) 6144 return SRA; 6145 6146 Created.push_back(SRA.getNode()); 6147 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); 6148 } 6149 6150 /// Given an ISD::SDIV node expressing a divide by constant, 6151 /// return a DAG expression to select that will generate the same value by 6152 /// multiplying by a magic number. 6153 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6154 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 6155 bool IsAfterLegalization, 6156 SmallVectorImpl<SDNode *> &Created) const { 6157 SDLoc dl(N); 6158 EVT VT = N->getValueType(0); 6159 EVT SVT = VT.getScalarType(); 6160 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6161 EVT ShSVT = ShVT.getScalarType(); 6162 unsigned EltBits = VT.getScalarSizeInBits(); 6163 EVT MulVT; 6164 6165 // Check to see if we can do this. 6166 // FIXME: We should be more aggressive here. 6167 if (!isTypeLegal(VT)) { 6168 // Limit this to simple scalars for now. 6169 if (VT.isVector() || !VT.isSimple()) 6170 return SDValue(); 6171 6172 // If this type will be promoted to a large enough type with a legal 6173 // multiply operation, we can go ahead and do this transform. 6174 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6175 return SDValue(); 6176 6177 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6178 if (MulVT.getSizeInBits() < (2 * EltBits) || 6179 !isOperationLegal(ISD::MUL, MulVT)) 6180 return SDValue(); 6181 } 6182 6183 // If the sdiv has an 'exact' bit we can use a simpler lowering. 6184 if (N->getFlags().hasExact()) 6185 return BuildExactSDIV(*this, N, dl, DAG, Created); 6186 6187 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 6188 6189 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6190 if (C->isZero()) 6191 return false; 6192 6193 const APInt &Divisor = C->getAPIntValue(); 6194 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 6195 int NumeratorFactor = 0; 6196 int ShiftMask = -1; 6197 6198 if (Divisor.isOne() || Divisor.isAllOnes()) { 6199 // If d is +1/-1, we just multiply the numerator by +1/-1. 6200 NumeratorFactor = Divisor.getSExtValue(); 6201 magics.Magic = 0; 6202 magics.ShiftAmount = 0; 6203 ShiftMask = 0; 6204 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 6205 // If d > 0 and m < 0, add the numerator. 6206 NumeratorFactor = 1; 6207 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 6208 // If d < 0 and m > 0, subtract the numerator. 6209 NumeratorFactor = -1; 6210 } 6211 6212 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 6213 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 6214 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 6215 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 6216 return true; 6217 }; 6218 6219 SDValue N0 = N->getOperand(0); 6220 SDValue N1 = N->getOperand(1); 6221 6222 // Collect the shifts / magic values from each element. 6223 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 6224 return SDValue(); 6225 6226 SDValue MagicFactor, Factor, Shift, ShiftMask; 6227 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6228 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6229 Factor = DAG.getBuildVector(VT, dl, Factors); 6230 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6231 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 6232 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6233 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 6234 Shifts.size() == 1 && ShiftMasks.size() == 1 && 6235 "Expected matchUnaryPredicate to return one element for scalable " 6236 "vectors"); 6237 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6238 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6239 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6240 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 6241 } else { 6242 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6243 MagicFactor = MagicFactors[0]; 6244 Factor = Factors[0]; 6245 Shift = Shifts[0]; 6246 ShiftMask = ShiftMasks[0]; 6247 } 6248 6249 // Multiply the numerator (operand 0) by the magic value. 6250 // FIXME: We should support doing a MUL in a wider type. 6251 auto GetMULHS = [&](SDValue X, SDValue Y) { 6252 // If the type isn't legal, use a wider mul of the type calculated 6253 // earlier. 6254 if (!isTypeLegal(VT)) { 6255 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 6256 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 6257 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6258 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6259 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6260 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6261 } 6262 6263 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 6264 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 6265 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 6266 SDValue LoHi = 6267 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6268 return SDValue(LoHi.getNode(), 1); 6269 } 6270 // If type twice as wide legal, widen and use a mul plus a shift. 6271 unsigned Size = VT.getScalarSizeInBits(); 6272 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6273 if (VT.isVector()) 6274 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6275 VT.getVectorElementCount()); 6276 if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6277 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); 6278 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); 6279 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6280 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6281 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6282 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6283 } 6284 return SDValue(); 6285 }; 6286 6287 SDValue Q = GetMULHS(N0, MagicFactor); 6288 if (!Q) 6289 return SDValue(); 6290 6291 Created.push_back(Q.getNode()); 6292 6293 // (Optionally) Add/subtract the numerator using Factor. 6294 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 6295 Created.push_back(Factor.getNode()); 6296 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 6297 Created.push_back(Q.getNode()); 6298 6299 // Shift right algebraic by shift value. 6300 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 6301 Created.push_back(Q.getNode()); 6302 6303 // Extract the sign bit, mask it and add it to the quotient. 6304 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 6305 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 6306 Created.push_back(T.getNode()); 6307 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 6308 Created.push_back(T.getNode()); 6309 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6310 } 6311 6312 /// Given an ISD::UDIV node expressing a divide by constant, 6313 /// return a DAG expression to select that will generate the same value by 6314 /// multiplying by a magic number. 6315 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6316 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6317 bool IsAfterLegalization, 6318 SmallVectorImpl<SDNode *> &Created) const { 6319 SDLoc dl(N); 6320 EVT VT = N->getValueType(0); 6321 EVT SVT = VT.getScalarType(); 6322 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6323 EVT ShSVT = ShVT.getScalarType(); 6324 unsigned EltBits = VT.getScalarSizeInBits(); 6325 EVT MulVT; 6326 6327 // Check to see if we can do this. 6328 // FIXME: We should be more aggressive here. 6329 if (!isTypeLegal(VT)) { 6330 // Limit this to simple scalars for now. 6331 if (VT.isVector() || !VT.isSimple()) 6332 return SDValue(); 6333 6334 // If this type will be promoted to a large enough type with a legal 6335 // multiply operation, we can go ahead and do this transform. 6336 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6337 return SDValue(); 6338 6339 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6340 if (MulVT.getSizeInBits() < (2 * EltBits) || 6341 !isOperationLegal(ISD::MUL, MulVT)) 6342 return SDValue(); 6343 } 6344 6345 SDValue N0 = N->getOperand(0); 6346 SDValue N1 = N->getOperand(1); 6347 6348 // Try to use leading zeros of the dividend to reduce the multiplier and 6349 // avoid expensive fixups. 6350 // TODO: Support vectors. 6351 unsigned LeadingZeros = 0; 6352 if (!VT.isVector() && isa<ConstantSDNode>(N1)) { 6353 assert(!isOneConstant(N1) && "Unexpected divisor"); 6354 LeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6355 // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros in 6356 // the dividend exceeds the leading zeros for the divisor. 6357 LeadingZeros = std::min(LeadingZeros, N1->getAsAPIntVal().countl_zero()); 6358 } 6359 6360 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6361 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6362 6363 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6364 if (C->isZero()) 6365 return false; 6366 const APInt& Divisor = C->getAPIntValue(); 6367 6368 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6369 6370 // Magic algorithm doesn't work for division by 1. We need to emit a select 6371 // at the end. 6372 if (Divisor.isOne()) { 6373 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6374 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6375 } else { 6376 UnsignedDivisionByConstantInfo magics = 6377 UnsignedDivisionByConstantInfo::get(Divisor, LeadingZeros); 6378 6379 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6380 6381 assert(magics.PreShift < Divisor.getBitWidth() && 6382 "We shouldn't generate an undefined shift!"); 6383 assert(magics.PostShift < Divisor.getBitWidth() && 6384 "We shouldn't generate an undefined shift!"); 6385 assert((!magics.IsAdd || magics.PreShift == 0) && 6386 "Unexpected pre-shift"); 6387 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6388 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6389 NPQFactor = DAG.getConstant( 6390 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6391 : APInt::getZero(EltBits), 6392 dl, SVT); 6393 UseNPQ |= magics.IsAdd; 6394 UsePreShift |= magics.PreShift != 0; 6395 UsePostShift |= magics.PostShift != 0; 6396 } 6397 6398 PreShifts.push_back(PreShift); 6399 MagicFactors.push_back(MagicFactor); 6400 NPQFactors.push_back(NPQFactor); 6401 PostShifts.push_back(PostShift); 6402 return true; 6403 }; 6404 6405 // Collect the shifts/magic values from each element. 6406 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6407 return SDValue(); 6408 6409 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6410 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6411 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6412 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6413 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6414 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6415 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6416 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6417 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6418 "Expected matchUnaryPredicate to return one for scalable vectors"); 6419 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6420 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6421 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6422 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6423 } else { 6424 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6425 PreShift = PreShifts[0]; 6426 MagicFactor = MagicFactors[0]; 6427 PostShift = PostShifts[0]; 6428 } 6429 6430 SDValue Q = N0; 6431 if (UsePreShift) { 6432 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6433 Created.push_back(Q.getNode()); 6434 } 6435 6436 // FIXME: We should support doing a MUL in a wider type. 6437 auto GetMULHU = [&](SDValue X, SDValue Y) { 6438 // If the type isn't legal, use a wider mul of the type calculated 6439 // earlier. 6440 if (!isTypeLegal(VT)) { 6441 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6442 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6443 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6444 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6445 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6446 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6447 } 6448 6449 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6450 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6451 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6452 SDValue LoHi = 6453 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6454 return SDValue(LoHi.getNode(), 1); 6455 } 6456 // If type twice as wide legal, widen and use a mul plus a shift. 6457 unsigned Size = VT.getScalarSizeInBits(); 6458 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6459 if (VT.isVector()) 6460 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6461 VT.getVectorElementCount()); 6462 if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6463 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); 6464 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); 6465 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6466 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6467 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6468 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6469 } 6470 return SDValue(); // No mulhu or equivalent 6471 }; 6472 6473 // Multiply the numerator (operand 0) by the magic value. 6474 Q = GetMULHU(Q, MagicFactor); 6475 if (!Q) 6476 return SDValue(); 6477 6478 Created.push_back(Q.getNode()); 6479 6480 if (UseNPQ) { 6481 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6482 Created.push_back(NPQ.getNode()); 6483 6484 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6485 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6486 if (VT.isVector()) 6487 NPQ = GetMULHU(NPQ, NPQFactor); 6488 else 6489 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6490 6491 Created.push_back(NPQ.getNode()); 6492 6493 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6494 Created.push_back(Q.getNode()); 6495 } 6496 6497 if (UsePostShift) { 6498 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6499 Created.push_back(Q.getNode()); 6500 } 6501 6502 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6503 6504 SDValue One = DAG.getConstant(1, dl, VT); 6505 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6506 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6507 } 6508 6509 /// If all values in Values that *don't* match the predicate are same 'splat' 6510 /// value, then replace all values with that splat value. 6511 /// Else, if AlternativeReplacement was provided, then replace all values that 6512 /// do match predicate with AlternativeReplacement value. 6513 static void 6514 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6515 std::function<bool(SDValue)> Predicate, 6516 SDValue AlternativeReplacement = SDValue()) { 6517 SDValue Replacement; 6518 // Is there a value for which the Predicate does *NOT* match? What is it? 6519 auto SplatValue = llvm::find_if_not(Values, Predicate); 6520 if (SplatValue != Values.end()) { 6521 // Does Values consist only of SplatValue's and values matching Predicate? 6522 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6523 return Value == *SplatValue || Predicate(Value); 6524 })) // Then we shall replace values matching predicate with SplatValue. 6525 Replacement = *SplatValue; 6526 } 6527 if (!Replacement) { 6528 // Oops, we did not find the "baseline" splat value. 6529 if (!AlternativeReplacement) 6530 return; // Nothing to do. 6531 // Let's replace with provided value then. 6532 Replacement = AlternativeReplacement; 6533 } 6534 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6535 } 6536 6537 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6538 /// where the divisor is constant and the comparison target is zero, 6539 /// return a DAG expression that will generate the same comparison result 6540 /// using only multiplications, additions and shifts/rotations. 6541 /// Ref: "Hacker's Delight" 10-17. 6542 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6543 SDValue CompTargetNode, 6544 ISD::CondCode Cond, 6545 DAGCombinerInfo &DCI, 6546 const SDLoc &DL) const { 6547 SmallVector<SDNode *, 5> Built; 6548 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6549 DCI, DL, Built)) { 6550 for (SDNode *N : Built) 6551 DCI.AddToWorklist(N); 6552 return Folded; 6553 } 6554 6555 return SDValue(); 6556 } 6557 6558 SDValue 6559 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6560 SDValue CompTargetNode, ISD::CondCode Cond, 6561 DAGCombinerInfo &DCI, const SDLoc &DL, 6562 SmallVectorImpl<SDNode *> &Created) const { 6563 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6564 // - D must be constant, with D = D0 * 2^K where D0 is odd 6565 // - P is the multiplicative inverse of D0 modulo 2^W 6566 // - Q = floor(((2^W) - 1) / D) 6567 // where W is the width of the common type of N and D. 6568 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6569 "Only applicable for (in)equality comparisons."); 6570 6571 SelectionDAG &DAG = DCI.DAG; 6572 6573 EVT VT = REMNode.getValueType(); 6574 EVT SVT = VT.getScalarType(); 6575 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6576 EVT ShSVT = ShVT.getScalarType(); 6577 6578 // If MUL is unavailable, we cannot proceed in any case. 6579 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6580 return SDValue(); 6581 6582 bool ComparingWithAllZeros = true; 6583 bool AllComparisonsWithNonZerosAreTautological = true; 6584 bool HadTautologicalLanes = false; 6585 bool AllLanesAreTautological = true; 6586 bool HadEvenDivisor = false; 6587 bool AllDivisorsArePowerOfTwo = true; 6588 bool HadTautologicalInvertedLanes = false; 6589 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6590 6591 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6592 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6593 if (CDiv->isZero()) 6594 return false; 6595 6596 const APInt &D = CDiv->getAPIntValue(); 6597 const APInt &Cmp = CCmp->getAPIntValue(); 6598 6599 ComparingWithAllZeros &= Cmp.isZero(); 6600 6601 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6602 // if C2 is not less than C1, the comparison is always false. 6603 // But we will only be able to produce the comparison that will give the 6604 // opposive tautological answer. So this lane would need to be fixed up. 6605 bool TautologicalInvertedLane = D.ule(Cmp); 6606 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6607 6608 // If all lanes are tautological (either all divisors are ones, or divisor 6609 // is not greater than the constant we are comparing with), 6610 // we will prefer to avoid the fold. 6611 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6612 HadTautologicalLanes |= TautologicalLane; 6613 AllLanesAreTautological &= TautologicalLane; 6614 6615 // If we are comparing with non-zero, we need'll need to subtract said 6616 // comparison value from the LHS. But there is no point in doing that if 6617 // every lane where we are comparing with non-zero is tautological.. 6618 if (!Cmp.isZero()) 6619 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6620 6621 // Decompose D into D0 * 2^K 6622 unsigned K = D.countr_zero(); 6623 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6624 APInt D0 = D.lshr(K); 6625 6626 // D is even if it has trailing zeros. 6627 HadEvenDivisor |= (K != 0); 6628 // D is a power-of-two if D0 is one. 6629 // If all divisors are power-of-two, we will prefer to avoid the fold. 6630 AllDivisorsArePowerOfTwo &= D0.isOne(); 6631 6632 // P = inv(D0, 2^W) 6633 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6634 unsigned W = D.getBitWidth(); 6635 APInt P = D0.zext(W + 1) 6636 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6637 .trunc(W); 6638 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6639 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6640 6641 // Q = floor((2^W - 1) u/ D) 6642 // R = ((2^W - 1) u% D) 6643 APInt Q, R; 6644 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6645 6646 // If we are comparing with zero, then that comparison constant is okay, 6647 // else it may need to be one less than that. 6648 if (Cmp.ugt(R)) 6649 Q -= 1; 6650 6651 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6652 "We are expecting that K is always less than all-ones for ShSVT"); 6653 6654 // If the lane is tautological the result can be constant-folded. 6655 if (TautologicalLane) { 6656 // Set P and K amount to a bogus values so we can try to splat them. 6657 P = 0; 6658 K = -1; 6659 // And ensure that comparison constant is tautological, 6660 // it will always compare true/false. 6661 Q = -1; 6662 } 6663 6664 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6665 KAmts.push_back( 6666 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6667 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6668 return true; 6669 }; 6670 6671 SDValue N = REMNode.getOperand(0); 6672 SDValue D = REMNode.getOperand(1); 6673 6674 // Collect the values from each element. 6675 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6676 return SDValue(); 6677 6678 // If all lanes are tautological, the result can be constant-folded. 6679 if (AllLanesAreTautological) 6680 return SDValue(); 6681 6682 // If this is a urem by a powers-of-two, avoid the fold since it can be 6683 // best implemented as a bit test. 6684 if (AllDivisorsArePowerOfTwo) 6685 return SDValue(); 6686 6687 SDValue PVal, KVal, QVal; 6688 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6689 if (HadTautologicalLanes) { 6690 // Try to turn PAmts into a splat, since we don't care about the values 6691 // that are currently '0'. If we can't, just keep '0'`s. 6692 turnVectorIntoSplatVector(PAmts, isNullConstant); 6693 // Try to turn KAmts into a splat, since we don't care about the values 6694 // that are currently '-1'. If we can't, change them to '0'`s. 6695 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6696 DAG.getConstant(0, DL, ShSVT)); 6697 } 6698 6699 PVal = DAG.getBuildVector(VT, DL, PAmts); 6700 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6701 QVal = DAG.getBuildVector(VT, DL, QAmts); 6702 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6703 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6704 "Expected matchBinaryPredicate to return one element for " 6705 "SPLAT_VECTORs"); 6706 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6707 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6708 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6709 } else { 6710 PVal = PAmts[0]; 6711 KVal = KAmts[0]; 6712 QVal = QAmts[0]; 6713 } 6714 6715 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6716 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6717 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6718 assert(CompTargetNode.getValueType() == N.getValueType() && 6719 "Expecting that the types on LHS and RHS of comparisons match."); 6720 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6721 } 6722 6723 // (mul N, P) 6724 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6725 Created.push_back(Op0.getNode()); 6726 6727 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6728 // divisors as a performance improvement, since rotating by 0 is a no-op. 6729 if (HadEvenDivisor) { 6730 // We need ROTR to do this. 6731 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6732 return SDValue(); 6733 // UREM: (rotr (mul N, P), K) 6734 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6735 Created.push_back(Op0.getNode()); 6736 } 6737 6738 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6739 SDValue NewCC = 6740 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6741 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6742 if (!HadTautologicalInvertedLanes) 6743 return NewCC; 6744 6745 // If any lanes previously compared always-false, the NewCC will give 6746 // always-true result for them, so we need to fixup those lanes. 6747 // Or the other way around for inequality predicate. 6748 assert(VT.isVector() && "Can/should only get here for vectors."); 6749 Created.push_back(NewCC.getNode()); 6750 6751 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6752 // if C2 is not less than C1, the comparison is always false. 6753 // But we have produced the comparison that will give the 6754 // opposive tautological answer. So these lanes would need to be fixed up. 6755 SDValue TautologicalInvertedChannels = 6756 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6757 Created.push_back(TautologicalInvertedChannels.getNode()); 6758 6759 // NOTE: we avoid letting illegal types through even if we're before legalize 6760 // ops – legalization has a hard time producing good code for this. 6761 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6762 // If we have a vector select, let's replace the comparison results in the 6763 // affected lanes with the correct tautological result. 6764 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6765 DL, SETCCVT, SETCCVT); 6766 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6767 Replacement, NewCC); 6768 } 6769 6770 // Else, we can just invert the comparison result in the appropriate lanes. 6771 // 6772 // NOTE: see the note above VSELECT above. 6773 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6774 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6775 TautologicalInvertedChannels); 6776 6777 return SDValue(); // Don't know how to lower. 6778 } 6779 6780 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6781 /// where the divisor is constant and the comparison target is zero, 6782 /// return a DAG expression that will generate the same comparison result 6783 /// using only multiplications, additions and shifts/rotations. 6784 /// Ref: "Hacker's Delight" 10-17. 6785 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6786 SDValue CompTargetNode, 6787 ISD::CondCode Cond, 6788 DAGCombinerInfo &DCI, 6789 const SDLoc &DL) const { 6790 SmallVector<SDNode *, 7> Built; 6791 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6792 DCI, DL, Built)) { 6793 assert(Built.size() <= 7 && "Max size prediction failed."); 6794 for (SDNode *N : Built) 6795 DCI.AddToWorklist(N); 6796 return Folded; 6797 } 6798 6799 return SDValue(); 6800 } 6801 6802 SDValue 6803 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6804 SDValue CompTargetNode, ISD::CondCode Cond, 6805 DAGCombinerInfo &DCI, const SDLoc &DL, 6806 SmallVectorImpl<SDNode *> &Created) const { 6807 // Fold: 6808 // (seteq/ne (srem N, D), 0) 6809 // To: 6810 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6811 // 6812 // - D must be constant, with D = D0 * 2^K where D0 is odd 6813 // - P is the multiplicative inverse of D0 modulo 2^W 6814 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6815 // - Q = floor((2 * A) / (2^K)) 6816 // where W is the width of the common type of N and D. 6817 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6818 "Only applicable for (in)equality comparisons."); 6819 6820 SelectionDAG &DAG = DCI.DAG; 6821 6822 EVT VT = REMNode.getValueType(); 6823 EVT SVT = VT.getScalarType(); 6824 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6825 EVT ShSVT = ShVT.getScalarType(); 6826 6827 // If we are after ops legalization, and MUL is unavailable, we can not 6828 // proceed. 6829 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6830 return SDValue(); 6831 6832 // TODO: Could support comparing with non-zero too. 6833 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6834 if (!CompTarget || !CompTarget->isZero()) 6835 return SDValue(); 6836 6837 bool HadIntMinDivisor = false; 6838 bool HadOneDivisor = false; 6839 bool AllDivisorsAreOnes = true; 6840 bool HadEvenDivisor = false; 6841 bool NeedToApplyOffset = false; 6842 bool AllDivisorsArePowerOfTwo = true; 6843 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6844 6845 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6846 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6847 if (C->isZero()) 6848 return false; 6849 6850 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6851 6852 // WARNING: this fold is only valid for positive divisors! 6853 APInt D = C->getAPIntValue(); 6854 if (D.isNegative()) 6855 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6856 6857 HadIntMinDivisor |= D.isMinSignedValue(); 6858 6859 // If all divisors are ones, we will prefer to avoid the fold. 6860 HadOneDivisor |= D.isOne(); 6861 AllDivisorsAreOnes &= D.isOne(); 6862 6863 // Decompose D into D0 * 2^K 6864 unsigned K = D.countr_zero(); 6865 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6866 APInt D0 = D.lshr(K); 6867 6868 if (!D.isMinSignedValue()) { 6869 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6870 // we don't care about this lane in this fold, we'll special-handle it. 6871 HadEvenDivisor |= (K != 0); 6872 } 6873 6874 // D is a power-of-two if D0 is one. This includes INT_MIN. 6875 // If all divisors are power-of-two, we will prefer to avoid the fold. 6876 AllDivisorsArePowerOfTwo &= D0.isOne(); 6877 6878 // P = inv(D0, 2^W) 6879 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6880 unsigned W = D.getBitWidth(); 6881 APInt P = D0.zext(W + 1) 6882 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6883 .trunc(W); 6884 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6885 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6886 6887 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6888 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6889 A.clearLowBits(K); 6890 6891 if (!D.isMinSignedValue()) { 6892 // If divisor INT_MIN, then we don't care about this lane in this fold, 6893 // we'll special-handle it. 6894 NeedToApplyOffset |= A != 0; 6895 } 6896 6897 // Q = floor((2 * A) / (2^K)) 6898 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6899 6900 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6901 "We are expecting that A is always less than all-ones for SVT"); 6902 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6903 "We are expecting that K is always less than all-ones for ShSVT"); 6904 6905 // If the divisor is 1 the result can be constant-folded. Likewise, we 6906 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6907 if (D.isOne()) { 6908 // Set P, A and K to a bogus values so we can try to splat them. 6909 P = 0; 6910 A = -1; 6911 K = -1; 6912 6913 // x ?% 1 == 0 <--> true <--> x u<= -1 6914 Q = -1; 6915 } 6916 6917 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6918 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6919 KAmts.push_back( 6920 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6921 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6922 return true; 6923 }; 6924 6925 SDValue N = REMNode.getOperand(0); 6926 SDValue D = REMNode.getOperand(1); 6927 6928 // Collect the values from each element. 6929 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6930 return SDValue(); 6931 6932 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6933 if (AllDivisorsAreOnes) 6934 return SDValue(); 6935 6936 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6937 // since it can be best implemented as a bit test. 6938 if (AllDivisorsArePowerOfTwo) 6939 return SDValue(); 6940 6941 SDValue PVal, AVal, KVal, QVal; 6942 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6943 if (HadOneDivisor) { 6944 // Try to turn PAmts into a splat, since we don't care about the values 6945 // that are currently '0'. If we can't, just keep '0'`s. 6946 turnVectorIntoSplatVector(PAmts, isNullConstant); 6947 // Try to turn AAmts into a splat, since we don't care about the 6948 // values that are currently '-1'. If we can't, change them to '0'`s. 6949 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6950 DAG.getConstant(0, DL, SVT)); 6951 // Try to turn KAmts into a splat, since we don't care about the values 6952 // that are currently '-1'. If we can't, change them to '0'`s. 6953 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6954 DAG.getConstant(0, DL, ShSVT)); 6955 } 6956 6957 PVal = DAG.getBuildVector(VT, DL, PAmts); 6958 AVal = DAG.getBuildVector(VT, DL, AAmts); 6959 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6960 QVal = DAG.getBuildVector(VT, DL, QAmts); 6961 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6962 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6963 QAmts.size() == 1 && 6964 "Expected matchUnaryPredicate to return one element for scalable " 6965 "vectors"); 6966 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6967 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6968 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6969 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6970 } else { 6971 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6972 PVal = PAmts[0]; 6973 AVal = AAmts[0]; 6974 KVal = KAmts[0]; 6975 QVal = QAmts[0]; 6976 } 6977 6978 // (mul N, P) 6979 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6980 Created.push_back(Op0.getNode()); 6981 6982 if (NeedToApplyOffset) { 6983 // We need ADD to do this. 6984 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6985 return SDValue(); 6986 6987 // (add (mul N, P), A) 6988 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6989 Created.push_back(Op0.getNode()); 6990 } 6991 6992 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6993 // divisors as a performance improvement, since rotating by 0 is a no-op. 6994 if (HadEvenDivisor) { 6995 // We need ROTR to do this. 6996 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6997 return SDValue(); 6998 // SREM: (rotr (add (mul N, P), A), K) 6999 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 7000 Created.push_back(Op0.getNode()); 7001 } 7002 7003 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 7004 SDValue Fold = 7005 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 7006 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 7007 7008 // If we didn't have lanes with INT_MIN divisor, then we're done. 7009 if (!HadIntMinDivisor) 7010 return Fold; 7011 7012 // That fold is only valid for positive divisors. Which effectively means, 7013 // it is invalid for INT_MIN divisors. So if we have such a lane, 7014 // we must fix-up results for said lanes. 7015 assert(VT.isVector() && "Can/should only get here for vectors."); 7016 7017 // NOTE: we avoid letting illegal types through even if we're before legalize 7018 // ops – legalization has a hard time producing good code for the code that 7019 // follows. 7020 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || 7021 !isOperationLegalOrCustom(ISD::AND, VT) || 7022 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || 7023 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 7024 return SDValue(); 7025 7026 Created.push_back(Fold.getNode()); 7027 7028 SDValue IntMin = DAG.getConstant( 7029 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 7030 SDValue IntMax = DAG.getConstant( 7031 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 7032 SDValue Zero = 7033 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 7034 7035 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 7036 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 7037 Created.push_back(DivisorIsIntMin.getNode()); 7038 7039 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 7040 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 7041 Created.push_back(Masked.getNode()); 7042 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 7043 Created.push_back(MaskedIsZero.getNode()); 7044 7045 // To produce final result we need to blend 2 vectors: 'SetCC' and 7046 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 7047 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 7048 // constant-folded, select can get lowered to a shuffle with constant mask. 7049 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 7050 MaskedIsZero, Fold); 7051 7052 return Blended; 7053 } 7054 7055 bool TargetLowering:: 7056 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 7057 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 7058 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 7059 "be a constant integer"); 7060 return true; 7061 } 7062 7063 return false; 7064 } 7065 7066 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 7067 const DenormalMode &Mode) const { 7068 SDLoc DL(Op); 7069 EVT VT = Op.getValueType(); 7070 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7071 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 7072 7073 // This is specifically a check for the handling of denormal inputs, not the 7074 // result. 7075 if (Mode.Input == DenormalMode::PreserveSign || 7076 Mode.Input == DenormalMode::PositiveZero) { 7077 // Test = X == 0.0 7078 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 7079 } 7080 7081 // Testing it with denormal inputs to avoid wrong estimate. 7082 // 7083 // Test = fabs(X) < SmallestNormal 7084 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 7085 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 7086 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 7087 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 7088 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 7089 } 7090 7091 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 7092 bool LegalOps, bool OptForSize, 7093 NegatibleCost &Cost, 7094 unsigned Depth) const { 7095 // fneg is removable even if it has multiple uses. 7096 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { 7097 Cost = NegatibleCost::Cheaper; 7098 return Op.getOperand(0); 7099 } 7100 7101 // Don't recurse exponentially. 7102 if (Depth > SelectionDAG::MaxRecursionDepth) 7103 return SDValue(); 7104 7105 // Pre-increment recursion depth for use in recursive calls. 7106 ++Depth; 7107 const SDNodeFlags Flags = Op->getFlags(); 7108 const TargetOptions &Options = DAG.getTarget().Options; 7109 EVT VT = Op.getValueType(); 7110 unsigned Opcode = Op.getOpcode(); 7111 7112 // Don't allow anything with multiple uses unless we know it is free. 7113 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 7114 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 7115 isFPExtFree(VT, Op.getOperand(0).getValueType()); 7116 if (!IsFreeExtend) 7117 return SDValue(); 7118 } 7119 7120 auto RemoveDeadNode = [&](SDValue N) { 7121 if (N && N.getNode()->use_empty()) 7122 DAG.RemoveDeadNode(N.getNode()); 7123 }; 7124 7125 SDLoc DL(Op); 7126 7127 // Because getNegatedExpression can delete nodes we need a handle to keep 7128 // temporary nodes alive in case the recursion manages to create an identical 7129 // node. 7130 std::list<HandleSDNode> Handles; 7131 7132 switch (Opcode) { 7133 case ISD::ConstantFP: { 7134 // Don't invert constant FP values after legalization unless the target says 7135 // the negated constant is legal. 7136 bool IsOpLegal = 7137 isOperationLegal(ISD::ConstantFP, VT) || 7138 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 7139 OptForSize); 7140 7141 if (LegalOps && !IsOpLegal) 7142 break; 7143 7144 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 7145 V.changeSign(); 7146 SDValue CFP = DAG.getConstantFP(V, DL, VT); 7147 7148 // If we already have the use of the negated floating constant, it is free 7149 // to negate it even it has multiple uses. 7150 if (!Op.hasOneUse() && CFP.use_empty()) 7151 break; 7152 Cost = NegatibleCost::Neutral; 7153 return CFP; 7154 } 7155 case ISD::BUILD_VECTOR: { 7156 // Only permit BUILD_VECTOR of constants. 7157 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 7158 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 7159 })) 7160 break; 7161 7162 bool IsOpLegal = 7163 (isOperationLegal(ISD::ConstantFP, VT) && 7164 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 7165 llvm::all_of(Op->op_values(), [&](SDValue N) { 7166 return N.isUndef() || 7167 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 7168 OptForSize); 7169 }); 7170 7171 if (LegalOps && !IsOpLegal) 7172 break; 7173 7174 SmallVector<SDValue, 4> Ops; 7175 for (SDValue C : Op->op_values()) { 7176 if (C.isUndef()) { 7177 Ops.push_back(C); 7178 continue; 7179 } 7180 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 7181 V.changeSign(); 7182 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 7183 } 7184 Cost = NegatibleCost::Neutral; 7185 return DAG.getBuildVector(VT, DL, Ops); 7186 } 7187 case ISD::FADD: { 7188 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7189 break; 7190 7191 // After operation legalization, it might not be legal to create new FSUBs. 7192 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 7193 break; 7194 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7195 7196 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 7197 NegatibleCost CostX = NegatibleCost::Expensive; 7198 SDValue NegX = 7199 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7200 // Prevent this node from being deleted by the next call. 7201 if (NegX) 7202 Handles.emplace_back(NegX); 7203 7204 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 7205 NegatibleCost CostY = NegatibleCost::Expensive; 7206 SDValue NegY = 7207 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7208 7209 // We're done with the handles. 7210 Handles.clear(); 7211 7212 // Negate the X if its cost is less or equal than Y. 7213 if (NegX && (CostX <= CostY)) { 7214 Cost = CostX; 7215 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 7216 if (NegY != N) 7217 RemoveDeadNode(NegY); 7218 return N; 7219 } 7220 7221 // Negate the Y if it is not expensive. 7222 if (NegY) { 7223 Cost = CostY; 7224 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 7225 if (NegX != N) 7226 RemoveDeadNode(NegX); 7227 return N; 7228 } 7229 break; 7230 } 7231 case ISD::FSUB: { 7232 // We can't turn -(A-B) into B-A when we honor signed zeros. 7233 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7234 break; 7235 7236 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7237 // fold (fneg (fsub 0, Y)) -> Y 7238 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 7239 if (C->isZero()) { 7240 Cost = NegatibleCost::Cheaper; 7241 return Y; 7242 } 7243 7244 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 7245 Cost = NegatibleCost::Neutral; 7246 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 7247 } 7248 case ISD::FMUL: 7249 case ISD::FDIV: { 7250 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7251 7252 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 7253 NegatibleCost CostX = NegatibleCost::Expensive; 7254 SDValue NegX = 7255 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7256 // Prevent this node from being deleted by the next call. 7257 if (NegX) 7258 Handles.emplace_back(NegX); 7259 7260 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 7261 NegatibleCost CostY = NegatibleCost::Expensive; 7262 SDValue NegY = 7263 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7264 7265 // We're done with the handles. 7266 Handles.clear(); 7267 7268 // Negate the X if its cost is less or equal than Y. 7269 if (NegX && (CostX <= CostY)) { 7270 Cost = CostX; 7271 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 7272 if (NegY != N) 7273 RemoveDeadNode(NegY); 7274 return N; 7275 } 7276 7277 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 7278 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 7279 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 7280 break; 7281 7282 // Negate the Y if it is not expensive. 7283 if (NegY) { 7284 Cost = CostY; 7285 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 7286 if (NegX != N) 7287 RemoveDeadNode(NegX); 7288 return N; 7289 } 7290 break; 7291 } 7292 case ISD::FMA: 7293 case ISD::FMAD: { 7294 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7295 break; 7296 7297 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 7298 NegatibleCost CostZ = NegatibleCost::Expensive; 7299 SDValue NegZ = 7300 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 7301 // Give up if fail to negate the Z. 7302 if (!NegZ) 7303 break; 7304 7305 // Prevent this node from being deleted by the next two calls. 7306 Handles.emplace_back(NegZ); 7307 7308 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 7309 NegatibleCost CostX = NegatibleCost::Expensive; 7310 SDValue NegX = 7311 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7312 // Prevent this node from being deleted by the next call. 7313 if (NegX) 7314 Handles.emplace_back(NegX); 7315 7316 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 7317 NegatibleCost CostY = NegatibleCost::Expensive; 7318 SDValue NegY = 7319 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7320 7321 // We're done with the handles. 7322 Handles.clear(); 7323 7324 // Negate the X if its cost is less or equal than Y. 7325 if (NegX && (CostX <= CostY)) { 7326 Cost = std::min(CostX, CostZ); 7327 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7328 if (NegY != N) 7329 RemoveDeadNode(NegY); 7330 return N; 7331 } 7332 7333 // Negate the Y if it is not expensive. 7334 if (NegY) { 7335 Cost = std::min(CostY, CostZ); 7336 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7337 if (NegX != N) 7338 RemoveDeadNode(NegX); 7339 return N; 7340 } 7341 break; 7342 } 7343 7344 case ISD::FP_EXTEND: 7345 case ISD::FSIN: 7346 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7347 OptForSize, Cost, Depth)) 7348 return DAG.getNode(Opcode, DL, VT, NegV); 7349 break; 7350 case ISD::FP_ROUND: 7351 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7352 OptForSize, Cost, Depth)) 7353 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7354 break; 7355 case ISD::SELECT: 7356 case ISD::VSELECT: { 7357 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7358 // iff at least one cost is cheaper and the other is neutral/cheaper 7359 SDValue LHS = Op.getOperand(1); 7360 NegatibleCost CostLHS = NegatibleCost::Expensive; 7361 SDValue NegLHS = 7362 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7363 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7364 RemoveDeadNode(NegLHS); 7365 break; 7366 } 7367 7368 // Prevent this node from being deleted by the next call. 7369 Handles.emplace_back(NegLHS); 7370 7371 SDValue RHS = Op.getOperand(2); 7372 NegatibleCost CostRHS = NegatibleCost::Expensive; 7373 SDValue NegRHS = 7374 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7375 7376 // We're done with the handles. 7377 Handles.clear(); 7378 7379 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7380 (CostLHS != NegatibleCost::Cheaper && 7381 CostRHS != NegatibleCost::Cheaper)) { 7382 RemoveDeadNode(NegLHS); 7383 RemoveDeadNode(NegRHS); 7384 break; 7385 } 7386 7387 Cost = std::min(CostLHS, CostRHS); 7388 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7389 } 7390 } 7391 7392 return SDValue(); 7393 } 7394 7395 //===----------------------------------------------------------------------===// 7396 // Legalization Utilities 7397 //===----------------------------------------------------------------------===// 7398 7399 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7400 SDValue LHS, SDValue RHS, 7401 SmallVectorImpl<SDValue> &Result, 7402 EVT HiLoVT, SelectionDAG &DAG, 7403 MulExpansionKind Kind, SDValue LL, 7404 SDValue LH, SDValue RL, SDValue RH) const { 7405 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7406 Opcode == ISD::SMUL_LOHI); 7407 7408 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7409 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7410 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7411 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7412 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7413 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7414 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7415 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7416 7417 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7418 return false; 7419 7420 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7421 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7422 7423 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7424 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7425 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7426 7427 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7428 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7429 bool Signed) -> bool { 7430 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7431 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7432 Hi = SDValue(Lo.getNode(), 1); 7433 return true; 7434 } 7435 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7436 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7437 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7438 return true; 7439 } 7440 return false; 7441 }; 7442 7443 SDValue Lo, Hi; 7444 7445 if (!LL.getNode() && !RL.getNode() && 7446 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7447 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7448 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7449 } 7450 7451 if (!LL.getNode()) 7452 return false; 7453 7454 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7455 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7456 DAG.MaskedValueIsZero(RHS, HighMask)) { 7457 // The inputs are both zero-extended. 7458 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7459 Result.push_back(Lo); 7460 Result.push_back(Hi); 7461 if (Opcode != ISD::MUL) { 7462 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7463 Result.push_back(Zero); 7464 Result.push_back(Zero); 7465 } 7466 return true; 7467 } 7468 } 7469 7470 if (!VT.isVector() && Opcode == ISD::MUL && 7471 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7472 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7473 // The input values are both sign-extended. 7474 // TODO non-MUL case? 7475 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7476 Result.push_back(Lo); 7477 Result.push_back(Hi); 7478 return true; 7479 } 7480 } 7481 7482 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7483 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7484 7485 if (!LH.getNode() && !RH.getNode() && 7486 isOperationLegalOrCustom(ISD::SRL, VT) && 7487 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7488 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7489 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7490 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7491 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7492 } 7493 7494 if (!LH.getNode()) 7495 return false; 7496 7497 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7498 return false; 7499 7500 Result.push_back(Lo); 7501 7502 if (Opcode == ISD::MUL) { 7503 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7504 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7505 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7506 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7507 Result.push_back(Hi); 7508 return true; 7509 } 7510 7511 // Compute the full width result. 7512 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7513 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7514 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7515 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7516 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7517 }; 7518 7519 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7520 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7521 return false; 7522 7523 // This is effectively the add part of a multiply-add of half-sized operands, 7524 // so it cannot overflow. 7525 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7526 7527 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7528 return false; 7529 7530 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7531 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7532 7533 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7534 isOperationLegalOrCustom(ISD::ADDE, VT)); 7535 if (UseGlue) 7536 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7537 Merge(Lo, Hi)); 7538 else 7539 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, 7540 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7541 7542 SDValue Carry = Next.getValue(1); 7543 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7544 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7545 7546 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7547 return false; 7548 7549 if (UseGlue) 7550 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7551 Carry); 7552 else 7553 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7554 Zero, Carry); 7555 7556 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7557 7558 if (Opcode == ISD::SMUL_LOHI) { 7559 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7560 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7561 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7562 7563 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7564 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7565 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7566 } 7567 7568 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7569 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7570 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7571 return true; 7572 } 7573 7574 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7575 SelectionDAG &DAG, MulExpansionKind Kind, 7576 SDValue LL, SDValue LH, SDValue RL, 7577 SDValue RH) const { 7578 SmallVector<SDValue, 2> Result; 7579 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7580 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7581 DAG, Kind, LL, LH, RL, RH); 7582 if (Ok) { 7583 assert(Result.size() == 2); 7584 Lo = Result[0]; 7585 Hi = Result[1]; 7586 } 7587 return Ok; 7588 } 7589 7590 // Optimize unsigned division or remainder by constants for types twice as large 7591 // as a legal VT. 7592 // 7593 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7594 // can be computed 7595 // as: 7596 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7597 // Remainder = Sum % Constant 7598 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7599 // 7600 // For division, we can compute the remainder using the algorithm described 7601 // above, subtract it from the dividend to get an exact multiple of Constant. 7602 // Then multiply that extact multiply by the multiplicative inverse modulo 7603 // (1 << (BitWidth / 2)) to get the quotient. 7604 7605 // If Constant is even, we can shift right the dividend and the divisor by the 7606 // number of trailing zeros in Constant before applying the remainder algorithm. 7607 // If we're after the quotient, we can subtract this value from the shifted 7608 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7609 // If we want the remainder, we shift the value left by the number of trailing 7610 // zeros and add the bits that were shifted out of the dividend. 7611 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7612 SmallVectorImpl<SDValue> &Result, 7613 EVT HiLoVT, SelectionDAG &DAG, 7614 SDValue LL, SDValue LH) const { 7615 unsigned Opcode = N->getOpcode(); 7616 EVT VT = N->getValueType(0); 7617 7618 // TODO: Support signed division/remainder. 7619 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7620 return false; 7621 assert( 7622 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7623 "Unexpected opcode"); 7624 7625 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7626 if (!CN) 7627 return false; 7628 7629 APInt Divisor = CN->getAPIntValue(); 7630 unsigned BitWidth = Divisor.getBitWidth(); 7631 unsigned HBitWidth = BitWidth / 2; 7632 assert(VT.getScalarSizeInBits() == BitWidth && 7633 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7634 7635 // Divisor needs to less than (1 << HBitWidth). 7636 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7637 if (Divisor.uge(HalfMaxPlus1)) 7638 return false; 7639 7640 // We depend on the UREM by constant optimization in DAGCombiner that requires 7641 // high multiply. 7642 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7643 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7644 return false; 7645 7646 // Don't expand if optimizing for size. 7647 if (DAG.shouldOptForSize()) 7648 return false; 7649 7650 // Early out for 0 or 1 divisors. 7651 if (Divisor.ule(1)) 7652 return false; 7653 7654 // If the divisor is even, shift it until it becomes odd. 7655 unsigned TrailingZeros = 0; 7656 if (!Divisor[0]) { 7657 TrailingZeros = Divisor.countr_zero(); 7658 Divisor.lshrInPlace(TrailingZeros); 7659 } 7660 7661 SDLoc dl(N); 7662 SDValue Sum; 7663 SDValue PartialRem; 7664 7665 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7666 // then add in the carry. 7667 // TODO: If we can't split it in half, we might be able to split into 3 or 7668 // more pieces using a smaller bit width. 7669 if (HalfMaxPlus1.urem(Divisor).isOne()) { 7670 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7671 if (!LL) 7672 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); 7673 7674 // Shift the input by the number of TrailingZeros in the divisor. The 7675 // shifted out bits will be added to the remainder later. 7676 if (TrailingZeros) { 7677 // Save the shifted off bits if we need the remainder. 7678 if (Opcode != ISD::UDIV) { 7679 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7680 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7681 DAG.getConstant(Mask, dl, HiLoVT)); 7682 } 7683 7684 LL = DAG.getNode( 7685 ISD::OR, dl, HiLoVT, 7686 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7687 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7688 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7689 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7690 HiLoVT, dl))); 7691 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7692 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7693 } 7694 7695 // Use uaddo_carry if we can, otherwise use a compare to detect overflow. 7696 EVT SetCCType = 7697 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7698 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { 7699 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7700 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7701 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, 7702 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7703 } else { 7704 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7705 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7706 // If the boolean for the target is 0 or 1, we can add the setcc result 7707 // directly. 7708 if (getBooleanContents(HiLoVT) == 7709 TargetLoweringBase::ZeroOrOneBooleanContent) 7710 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7711 else 7712 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7713 DAG.getConstant(0, dl, HiLoVT)); 7714 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7715 } 7716 } 7717 7718 // If we didn't find a sum, we can't do the expansion. 7719 if (!Sum) 7720 return false; 7721 7722 // Perform a HiLoVT urem on the Sum using truncated divisor. 7723 SDValue RemL = 7724 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7725 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7726 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7727 7728 if (Opcode != ISD::UREM) { 7729 // Subtract the remainder from the shifted dividend. 7730 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7731 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7732 7733 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7734 7735 // Multiply by the multiplicative inverse of the divisor modulo 7736 // (1 << BitWidth). 7737 APInt Mod = APInt::getSignedMinValue(BitWidth + 1); 7738 APInt MulFactor = Divisor.zext(BitWidth + 1); 7739 MulFactor = MulFactor.multiplicativeInverse(Mod); 7740 MulFactor = MulFactor.trunc(BitWidth); 7741 7742 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7743 DAG.getConstant(MulFactor, dl, VT)); 7744 7745 // Split the quotient into low and high parts. 7746 SDValue QuotL, QuotH; 7747 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); 7748 Result.push_back(QuotL); 7749 Result.push_back(QuotH); 7750 } 7751 7752 if (Opcode != ISD::UDIV) { 7753 // If we shifted the input, shift the remainder left and add the bits we 7754 // shifted off the input. 7755 if (TrailingZeros) { 7756 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7757 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7758 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7759 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7760 } 7761 Result.push_back(RemL); 7762 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7763 } 7764 7765 return true; 7766 } 7767 7768 // Check that (every element of) Z is undef or not an exact multiple of BW. 7769 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7770 return ISD::matchUnaryPredicate( 7771 Z, 7772 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7773 true); 7774 } 7775 7776 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7777 EVT VT = Node->getValueType(0); 7778 SDValue ShX, ShY; 7779 SDValue ShAmt, InvShAmt; 7780 SDValue X = Node->getOperand(0); 7781 SDValue Y = Node->getOperand(1); 7782 SDValue Z = Node->getOperand(2); 7783 SDValue Mask = Node->getOperand(3); 7784 SDValue VL = Node->getOperand(4); 7785 7786 unsigned BW = VT.getScalarSizeInBits(); 7787 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7788 SDLoc DL(SDValue(Node, 0)); 7789 7790 EVT ShVT = Z.getValueType(); 7791 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7792 // fshl: X << C | Y >> (BW - C) 7793 // fshr: X << (BW - C) | Y >> C 7794 // where C = Z % BW is not zero 7795 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7796 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7797 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7798 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7799 VL); 7800 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7801 VL); 7802 } else { 7803 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7804 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7805 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7806 if (isPowerOf2_32(BW)) { 7807 // Z % BW -> Z & (BW - 1) 7808 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 7809 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7810 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 7811 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 7812 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 7813 } else { 7814 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7815 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7816 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 7817 } 7818 7819 SDValue One = DAG.getConstant(1, DL, ShVT); 7820 if (IsFSHL) { 7821 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 7822 SDValue ShY1 = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, One, Mask, VL); 7823 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, ShY1, InvShAmt, Mask, VL); 7824 } else { 7825 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 7826 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 7827 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, ShAmt, Mask, VL); 7828 } 7829 } 7830 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 7831 } 7832 7833 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7834 SelectionDAG &DAG) const { 7835 if (Node->isVPOpcode()) 7836 return expandVPFunnelShift(Node, DAG); 7837 7838 EVT VT = Node->getValueType(0); 7839 7840 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7841 !isOperationLegalOrCustom(ISD::SRL, VT) || 7842 !isOperationLegalOrCustom(ISD::SUB, VT) || 7843 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7844 return SDValue(); 7845 7846 SDValue X = Node->getOperand(0); 7847 SDValue Y = Node->getOperand(1); 7848 SDValue Z = Node->getOperand(2); 7849 7850 unsigned BW = VT.getScalarSizeInBits(); 7851 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7852 SDLoc DL(SDValue(Node, 0)); 7853 7854 EVT ShVT = Z.getValueType(); 7855 7856 // If a funnel shift in the other direction is more supported, use it. 7857 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7858 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7859 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7860 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7861 // fshl X, Y, Z -> fshr X, Y, -Z 7862 // fshr X, Y, Z -> fshl X, Y, -Z 7863 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7864 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7865 } else { 7866 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7867 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7868 SDValue One = DAG.getConstant(1, DL, ShVT); 7869 if (IsFSHL) { 7870 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7871 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7872 } else { 7873 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7874 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7875 } 7876 Z = DAG.getNOT(DL, Z, ShVT); 7877 } 7878 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7879 } 7880 7881 SDValue ShX, ShY; 7882 SDValue ShAmt, InvShAmt; 7883 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7884 // fshl: X << C | Y >> (BW - C) 7885 // fshr: X << (BW - C) | Y >> C 7886 // where C = Z % BW is not zero 7887 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7888 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7889 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7890 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7891 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7892 } else { 7893 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7894 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7895 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7896 if (isPowerOf2_32(BW)) { 7897 // Z % BW -> Z & (BW - 1) 7898 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7899 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7900 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7901 } else { 7902 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7903 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7904 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7905 } 7906 7907 SDValue One = DAG.getConstant(1, DL, ShVT); 7908 if (IsFSHL) { 7909 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7910 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7911 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7912 } else { 7913 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7914 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7915 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7916 } 7917 } 7918 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7919 } 7920 7921 // TODO: Merge with expandFunnelShift. 7922 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7923 SelectionDAG &DAG) const { 7924 EVT VT = Node->getValueType(0); 7925 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7926 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7927 SDValue Op0 = Node->getOperand(0); 7928 SDValue Op1 = Node->getOperand(1); 7929 SDLoc DL(SDValue(Node, 0)); 7930 7931 EVT ShVT = Op1.getValueType(); 7932 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7933 7934 // If a rotate in the other direction is more supported, use it. 7935 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7936 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7937 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7938 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7939 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7940 } 7941 7942 if (!AllowVectorOps && VT.isVector() && 7943 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7944 !isOperationLegalOrCustom(ISD::SRL, VT) || 7945 !isOperationLegalOrCustom(ISD::SUB, VT) || 7946 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7947 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7948 return SDValue(); 7949 7950 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7951 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7952 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7953 SDValue ShVal; 7954 SDValue HsVal; 7955 if (isPowerOf2_32(EltSizeInBits)) { 7956 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7957 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7958 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7959 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7960 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7961 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7962 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7963 } else { 7964 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7965 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7966 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7967 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7968 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7969 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7970 SDValue One = DAG.getConstant(1, DL, ShVT); 7971 HsVal = 7972 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7973 } 7974 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7975 } 7976 7977 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7978 SelectionDAG &DAG) const { 7979 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7980 EVT VT = Node->getValueType(0); 7981 unsigned VTBits = VT.getScalarSizeInBits(); 7982 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7983 7984 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7985 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7986 SDValue ShOpLo = Node->getOperand(0); 7987 SDValue ShOpHi = Node->getOperand(1); 7988 SDValue ShAmt = Node->getOperand(2); 7989 EVT ShAmtVT = ShAmt.getValueType(); 7990 EVT ShAmtCCVT = 7991 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7992 SDLoc dl(Node); 7993 7994 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7995 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7996 // away during isel. 7997 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7998 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7999 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 8000 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 8001 : DAG.getConstant(0, dl, VT); 8002 8003 SDValue Tmp2, Tmp3; 8004 if (IsSHL) { 8005 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 8006 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 8007 } else { 8008 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 8009 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 8010 } 8011 8012 // If the shift amount is larger or equal than the width of a part we don't 8013 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 8014 // values for large shift amounts. 8015 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8016 DAG.getConstant(VTBits, dl, ShAmtVT)); 8017 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 8018 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 8019 8020 if (IsSHL) { 8021 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8022 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8023 } else { 8024 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8025 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8026 } 8027 } 8028 8029 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 8030 SelectionDAG &DAG) const { 8031 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8032 SDValue Src = Node->getOperand(OpNo); 8033 EVT SrcVT = Src.getValueType(); 8034 EVT DstVT = Node->getValueType(0); 8035 SDLoc dl(SDValue(Node, 0)); 8036 8037 // FIXME: Only f32 to i64 conversions are supported. 8038 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 8039 return false; 8040 8041 if (Node->isStrictFPOpcode()) 8042 // When a NaN is converted to an integer a trap is allowed. We can't 8043 // use this expansion here because it would eliminate that trap. Other 8044 // traps are also allowed and cannot be eliminated. See 8045 // IEEE 754-2008 sec 5.8. 8046 return false; 8047 8048 // Expand f32 -> i64 conversion 8049 // This algorithm comes from compiler-rt's implementation of fixsfdi: 8050 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 8051 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 8052 EVT IntVT = SrcVT.changeTypeToInteger(); 8053 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 8054 8055 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 8056 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 8057 SDValue Bias = DAG.getConstant(127, dl, IntVT); 8058 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 8059 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 8060 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 8061 8062 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 8063 8064 SDValue ExponentBits = DAG.getNode( 8065 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 8066 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 8067 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 8068 8069 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 8070 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 8071 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 8072 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 8073 8074 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 8075 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 8076 DAG.getConstant(0x00800000, dl, IntVT)); 8077 8078 R = DAG.getZExtOrTrunc(R, dl, DstVT); 8079 8080 R = DAG.getSelectCC( 8081 dl, Exponent, ExponentLoBit, 8082 DAG.getNode(ISD::SHL, dl, DstVT, R, 8083 DAG.getZExtOrTrunc( 8084 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 8085 dl, IntShVT)), 8086 DAG.getNode(ISD::SRL, dl, DstVT, R, 8087 DAG.getZExtOrTrunc( 8088 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 8089 dl, IntShVT)), 8090 ISD::SETGT); 8091 8092 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 8093 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 8094 8095 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 8096 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 8097 return true; 8098 } 8099 8100 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 8101 SDValue &Chain, 8102 SelectionDAG &DAG) const { 8103 SDLoc dl(SDValue(Node, 0)); 8104 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8105 SDValue Src = Node->getOperand(OpNo); 8106 8107 EVT SrcVT = Src.getValueType(); 8108 EVT DstVT = Node->getValueType(0); 8109 EVT SetCCVT = 8110 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8111 EVT DstSetCCVT = 8112 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8113 8114 // Only expand vector types if we have the appropriate vector bit operations. 8115 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 8116 ISD::FP_TO_SINT; 8117 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 8118 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 8119 return false; 8120 8121 // If the maximum float value is smaller then the signed integer range, 8122 // the destination signmask can't be represented by the float, so we can 8123 // just use FP_TO_SINT directly. 8124 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 8125 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 8126 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 8127 if (APFloat::opOverflow & 8128 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 8129 if (Node->isStrictFPOpcode()) { 8130 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8131 { Node->getOperand(0), Src }); 8132 Chain = Result.getValue(1); 8133 } else 8134 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8135 return true; 8136 } 8137 8138 // Don't expand it if there isn't cheap fsub instruction. 8139 if (!isOperationLegalOrCustom( 8140 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 8141 return false; 8142 8143 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8144 SDValue Sel; 8145 8146 if (Node->isStrictFPOpcode()) { 8147 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8148 Node->getOperand(0), /*IsSignaling*/ true); 8149 Chain = Sel.getValue(1); 8150 } else { 8151 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 8152 } 8153 8154 bool Strict = Node->isStrictFPOpcode() || 8155 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 8156 8157 if (Strict) { 8158 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 8159 // signmask then offset (the result of which should be fully representable). 8160 // Sel = Src < 0x8000000000000000 8161 // FltOfs = select Sel, 0, 0x8000000000000000 8162 // IntOfs = select Sel, 0, 0x8000000000000000 8163 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8164 8165 // TODO: Should any fast-math-flags be set for the FSUB? 8166 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 8167 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8168 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8169 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 8170 DAG.getConstant(0, dl, DstVT), 8171 DAG.getConstant(SignMask, dl, DstVT)); 8172 SDValue SInt; 8173 if (Node->isStrictFPOpcode()) { 8174 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 8175 { Chain, Src, FltOfs }); 8176 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8177 { Val.getValue(1), Val }); 8178 Chain = SInt.getValue(1); 8179 } else { 8180 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 8181 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 8182 } 8183 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8184 } else { 8185 // Expand based on maximum range of FP_TO_SINT: 8186 // True = fp_to_sint(Src) 8187 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 8188 // Result = select (Src < 0x8000000000000000), True, False 8189 8190 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8191 // TODO: Should any fast-math-flags be set for the FSUB? 8192 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 8193 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 8194 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 8195 DAG.getConstant(SignMask, dl, DstVT)); 8196 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8197 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 8198 } 8199 return true; 8200 } 8201 8202 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 8203 SDValue &Chain, 8204 SelectionDAG &DAG) const { 8205 // This transform is not correct for converting 0 when rounding mode is set 8206 // to round toward negative infinity which will produce -0.0. So disable under 8207 // strictfp. 8208 if (Node->isStrictFPOpcode()) 8209 return false; 8210 8211 SDValue Src = Node->getOperand(0); 8212 EVT SrcVT = Src.getValueType(); 8213 EVT DstVT = Node->getValueType(0); 8214 8215 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 8216 return false; 8217 8218 // Only expand vector types if we have the appropriate vector bit operations. 8219 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 8220 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 8221 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 8222 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 8223 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 8224 return false; 8225 8226 SDLoc dl(SDValue(Node, 0)); 8227 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 8228 8229 // Implementation of unsigned i64 to f64 following the algorithm in 8230 // __floatundidf in compiler_rt. This implementation performs rounding 8231 // correctly in all rounding modes with the exception of converting 0 8232 // when rounding toward negative infinity. In that case the fsub will produce 8233 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 8234 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 8235 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 8236 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); 8237 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 8238 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 8239 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 8240 8241 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 8242 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 8243 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 8244 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 8245 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 8246 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 8247 SDValue HiSub = 8248 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 8249 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 8250 return true; 8251 } 8252 8253 SDValue 8254 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 8255 SelectionDAG &DAG) const { 8256 unsigned Opcode = Node->getOpcode(); 8257 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 8258 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 8259 "Wrong opcode"); 8260 8261 if (Node->getFlags().hasNoNaNs()) { 8262 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 8263 SDValue Op1 = Node->getOperand(0); 8264 SDValue Op2 = Node->getOperand(1); 8265 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 8266 // Copy FMF flags, but always set the no-signed-zeros flag 8267 // as this is implied by the FMINNUM/FMAXNUM semantics. 8268 SDNodeFlags Flags = Node->getFlags(); 8269 Flags.setNoSignedZeros(true); 8270 SelCC->setFlags(Flags); 8271 return SelCC; 8272 } 8273 8274 return SDValue(); 8275 } 8276 8277 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 8278 SelectionDAG &DAG) const { 8279 SDLoc dl(Node); 8280 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 8281 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8282 EVT VT = Node->getValueType(0); 8283 8284 if (VT.isScalableVector()) 8285 report_fatal_error( 8286 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 8287 8288 if (isOperationLegalOrCustom(NewOp, VT)) { 8289 SDValue Quiet0 = Node->getOperand(0); 8290 SDValue Quiet1 = Node->getOperand(1); 8291 8292 if (!Node->getFlags().hasNoNaNs()) { 8293 // Insert canonicalizes if it's possible we need to quiet to get correct 8294 // sNaN behavior. 8295 if (!DAG.isKnownNeverSNaN(Quiet0)) { 8296 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 8297 Node->getFlags()); 8298 } 8299 if (!DAG.isKnownNeverSNaN(Quiet1)) { 8300 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 8301 Node->getFlags()); 8302 } 8303 } 8304 8305 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 8306 } 8307 8308 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 8309 // instead if there are no NaNs and there can't be an incompatible zero 8310 // compare: at least one operand isn't +/-0, or there are no signed-zeros. 8311 if ((Node->getFlags().hasNoNaNs() || 8312 (DAG.isKnownNeverNaN(Node->getOperand(0)) && 8313 DAG.isKnownNeverNaN(Node->getOperand(1)))) && 8314 (Node->getFlags().hasNoSignedZeros() || 8315 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || 8316 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { 8317 unsigned IEEE2018Op = 8318 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8319 if (isOperationLegalOrCustom(IEEE2018Op, VT)) 8320 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 8321 Node->getOperand(1), Node->getFlags()); 8322 } 8323 8324 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8325 return SelCC; 8326 8327 return SDValue(); 8328 } 8329 8330 /// Returns a true value if if this FPClassTest can be performed with an ordered 8331 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns 8332 /// std::nullopt if it cannot be performed as a compare with 0. 8333 static std::optional<bool> isFCmpEqualZero(FPClassTest Test, 8334 const fltSemantics &Semantics, 8335 const MachineFunction &MF) { 8336 FPClassTest OrderedMask = Test & ~fcNan; 8337 FPClassTest NanTest = Test & fcNan; 8338 bool IsOrdered = NanTest == fcNone; 8339 bool IsUnordered = NanTest == fcNan; 8340 8341 // Skip cases that are testing for only a qnan or snan. 8342 if (!IsOrdered && !IsUnordered) 8343 return std::nullopt; 8344 8345 if (OrderedMask == fcZero && 8346 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) 8347 return IsOrdered; 8348 if (OrderedMask == (fcZero | fcSubnormal) && 8349 MF.getDenormalMode(Semantics).inputsAreZero()) 8350 return IsOrdered; 8351 return std::nullopt; 8352 } 8353 8354 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8355 FPClassTest Test, SDNodeFlags Flags, 8356 const SDLoc &DL, 8357 SelectionDAG &DAG) const { 8358 EVT OperandVT = Op.getValueType(); 8359 assert(OperandVT.isFloatingPoint()); 8360 8361 // Degenerated cases. 8362 if (Test == fcNone) 8363 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8364 if ((Test & fcAllFlags) == fcAllFlags) 8365 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8366 8367 // PPC double double is a pair of doubles, of which the higher part determines 8368 // the value class. 8369 if (OperandVT == MVT::ppcf128) { 8370 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8371 DAG.getConstant(1, DL, MVT::i32)); 8372 OperandVT = MVT::f64; 8373 } 8374 8375 // Some checks may be represented as inversion of simpler check, for example 8376 // "inf|normal|subnormal|zero" => !"nan". 8377 bool IsInverted = false; 8378 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) { 8379 IsInverted = true; 8380 Test = InvertedCheck; 8381 } 8382 8383 // Floating-point type properties. 8384 EVT ScalarFloatVT = OperandVT.getScalarType(); 8385 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8386 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8387 bool IsF80 = (ScalarFloatVT == MVT::f80); 8388 8389 // Some checks can be implemented using float comparisons, if floating point 8390 // exceptions are ignored. 8391 if (Flags.hasNoFPExcept() && 8392 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8393 ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ; 8394 ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ; 8395 8396 if (std::optional<bool> IsCmp0 = 8397 isFCmpEqualZero(Test, Semantics, DAG.getMachineFunction()); 8398 IsCmp0 && (isCondCodeLegalOrCustom( 8399 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, 8400 OperandVT.getScalarType().getSimpleVT()))) { 8401 8402 // If denormals could be implicitly treated as 0, this is not equivalent 8403 // to a compare with 0 since it will also be true for denormals. 8404 return DAG.getSetCC(DL, ResultVT, Op, 8405 DAG.getConstantFP(0.0, DL, OperandVT), 8406 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); 8407 } 8408 8409 if (Test == fcNan && 8410 isCondCodeLegalOrCustom(IsInverted ? ISD::SETO : ISD::SETUO, 8411 OperandVT.getScalarType().getSimpleVT())) { 8412 return DAG.getSetCC(DL, ResultVT, Op, Op, 8413 IsInverted ? ISD::SETO : ISD::SETUO); 8414 } 8415 8416 if (Test == fcInf && 8417 isCondCodeLegalOrCustom(IsInverted ? ISD::SETUNE : ISD::SETOEQ, 8418 OperandVT.getScalarType().getSimpleVT()) && 8419 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType())) { 8420 // isinf(x) --> fabs(x) == inf 8421 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8422 SDValue Inf = 8423 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8424 return DAG.getSetCC(DL, ResultVT, Abs, Inf, 8425 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 8426 } 8427 } 8428 8429 // In the general case use integer operations. 8430 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8431 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8432 if (OperandVT.isVector()) 8433 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8434 OperandVT.getVectorElementCount()); 8435 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8436 8437 // Various masks. 8438 APInt SignBit = APInt::getSignMask(BitSize); 8439 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8440 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8441 const unsigned ExplicitIntBitInF80 = 63; 8442 APInt ExpMask = Inf; 8443 if (IsF80) 8444 ExpMask.clearBit(ExplicitIntBitInF80); 8445 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8446 APInt QNaNBitMask = 8447 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8448 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); 8449 8450 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8451 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8452 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8453 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8454 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8455 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8456 8457 SDValue Res; 8458 const auto appendResult = [&](SDValue PartialRes) { 8459 if (PartialRes) { 8460 if (Res) 8461 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8462 else 8463 Res = PartialRes; 8464 } 8465 }; 8466 8467 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8468 const auto getIntBitIsSet = [&]() -> SDValue { 8469 if (!IntBitIsSetV) { 8470 APInt IntBitMask(BitSize, 0); 8471 IntBitMask.setBit(ExplicitIntBitInF80); 8472 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8473 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8474 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8475 } 8476 return IntBitIsSetV; 8477 }; 8478 8479 // Split the value into sign bit and absolute value. 8480 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8481 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8482 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 8483 8484 // Tests that involve more than one class should be processed first. 8485 SDValue PartialRes; 8486 8487 if (IsF80) 8488 ; // Detect finite numbers of f80 by checking individual classes because 8489 // they have different settings of the explicit integer bit. 8490 else if ((Test & fcFinite) == fcFinite) { 8491 // finite(V) ==> abs(V) < exp_mask 8492 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8493 Test &= ~fcFinite; 8494 } else if ((Test & fcFinite) == fcPosFinite) { 8495 // finite(V) && V > 0 ==> V < exp_mask 8496 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8497 Test &= ~fcPosFinite; 8498 } else if ((Test & fcFinite) == fcNegFinite) { 8499 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8500 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8501 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8502 Test &= ~fcNegFinite; 8503 } 8504 appendResult(PartialRes); 8505 8506 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { 8507 // fcZero | fcSubnormal => test all exponent bits are 0 8508 // TODO: Handle sign bit specific cases 8509 if (PartialCheck == (fcZero | fcSubnormal)) { 8510 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); 8511 SDValue ExpIsZero = 8512 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8513 appendResult(ExpIsZero); 8514 Test &= ~PartialCheck & fcAllFlags; 8515 } 8516 } 8517 8518 // Check for individual classes. 8519 8520 if (unsigned PartialCheck = Test & fcZero) { 8521 if (PartialCheck == fcPosZero) 8522 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8523 else if (PartialCheck == fcZero) 8524 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8525 else // ISD::fcNegZero 8526 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8527 appendResult(PartialRes); 8528 } 8529 8530 if (unsigned PartialCheck = Test & fcSubnormal) { 8531 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8532 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8533 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8534 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8535 SDValue VMinusOneV = 8536 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8537 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8538 if (PartialCheck == fcNegSubnormal) 8539 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8540 appendResult(PartialRes); 8541 } 8542 8543 if (unsigned PartialCheck = Test & fcInf) { 8544 if (PartialCheck == fcPosInf) 8545 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8546 else if (PartialCheck == fcInf) 8547 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8548 else { // ISD::fcNegInf 8549 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8550 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 8551 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 8552 } 8553 appendResult(PartialRes); 8554 } 8555 8556 if (unsigned PartialCheck = Test & fcNan) { 8557 APInt InfWithQnanBit = Inf | QNaNBitMask; 8558 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 8559 if (PartialCheck == fcNan) { 8560 // isnan(V) ==> abs(V) > int(inf) 8561 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8562 if (IsF80) { 8563 // Recognize unsupported values as NaNs for compatibility with glibc. 8564 // In them (exp(V)==0) == int_bit. 8565 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 8566 SDValue ExpIsZero = 8567 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8568 SDValue IsPseudo = 8569 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 8570 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 8571 } 8572 } else if (PartialCheck == fcQNan) { 8573 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 8574 PartialRes = 8575 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 8576 } else { // ISD::fcSNan 8577 // issignaling(V) ==> abs(V) > unsigned(Inf) && 8578 // abs(V) < (unsigned(Inf) | quiet_bit) 8579 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8580 SDValue IsNotQnan = 8581 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 8582 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 8583 } 8584 appendResult(PartialRes); 8585 } 8586 8587 if (unsigned PartialCheck = Test & fcNormal) { 8588 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 8589 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 8590 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 8591 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 8592 APInt ExpLimit = ExpMask - ExpLSB; 8593 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 8594 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 8595 if (PartialCheck == fcNegNormal) 8596 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8597 else if (PartialCheck == fcPosNormal) { 8598 SDValue PosSignV = 8599 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 8600 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 8601 } 8602 if (IsF80) 8603 PartialRes = 8604 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 8605 appendResult(PartialRes); 8606 } 8607 8608 if (!Res) 8609 return DAG.getConstant(IsInverted, DL, ResultVT); 8610 if (IsInverted) 8611 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 8612 return Res; 8613 } 8614 8615 // Only expand vector types if we have the appropriate vector bit operations. 8616 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 8617 assert(VT.isVector() && "Expected vector type"); 8618 unsigned Len = VT.getScalarSizeInBits(); 8619 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 8620 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 8621 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 8622 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 8623 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 8624 } 8625 8626 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8627 SDLoc dl(Node); 8628 EVT VT = Node->getValueType(0); 8629 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8630 SDValue Op = Node->getOperand(0); 8631 unsigned Len = VT.getScalarSizeInBits(); 8632 assert(VT.isInteger() && "CTPOP not implemented for this type."); 8633 8634 // TODO: Add support for irregular type lengths. 8635 if (!(Len <= 128 && Len % 8 == 0)) 8636 return SDValue(); 8637 8638 // Only expand vector types if we have the appropriate vector bit operations. 8639 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 8640 return SDValue(); 8641 8642 // This is the "best" algorithm from 8643 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8644 SDValue Mask55 = 8645 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8646 SDValue Mask33 = 8647 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8648 SDValue Mask0F = 8649 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8650 8651 // v = v - ((v >> 1) & 0x55555555...) 8652 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 8653 DAG.getNode(ISD::AND, dl, VT, 8654 DAG.getNode(ISD::SRL, dl, VT, Op, 8655 DAG.getConstant(1, dl, ShVT)), 8656 Mask55)); 8657 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8658 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 8659 DAG.getNode(ISD::AND, dl, VT, 8660 DAG.getNode(ISD::SRL, dl, VT, Op, 8661 DAG.getConstant(2, dl, ShVT)), 8662 Mask33)); 8663 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8664 Op = DAG.getNode(ISD::AND, dl, VT, 8665 DAG.getNode(ISD::ADD, dl, VT, Op, 8666 DAG.getNode(ISD::SRL, dl, VT, Op, 8667 DAG.getConstant(4, dl, ShVT))), 8668 Mask0F); 8669 8670 if (Len <= 8) 8671 return Op; 8672 8673 // Avoid the multiply if we only have 2 bytes to add. 8674 // TODO: Only doing this for scalars because vectors weren't as obviously 8675 // improved. 8676 if (Len == 16 && !VT.isVector()) { 8677 // v = (v + (v >> 8)) & 0x00FF; 8678 return DAG.getNode(ISD::AND, dl, VT, 8679 DAG.getNode(ISD::ADD, dl, VT, Op, 8680 DAG.getNode(ISD::SRL, dl, VT, Op, 8681 DAG.getConstant(8, dl, ShVT))), 8682 DAG.getConstant(0xFF, dl, VT)); 8683 } 8684 8685 // v = (v * 0x01010101...) >> (Len - 8) 8686 SDValue Mask01 = 8687 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8688 return DAG.getNode(ISD::SRL, dl, VT, 8689 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 8690 DAG.getConstant(Len - 8, dl, ShVT)); 8691 } 8692 8693 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8694 SDLoc dl(Node); 8695 EVT VT = Node->getValueType(0); 8696 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8697 SDValue Op = Node->getOperand(0); 8698 SDValue Mask = Node->getOperand(1); 8699 SDValue VL = Node->getOperand(2); 8700 unsigned Len = VT.getScalarSizeInBits(); 8701 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 8702 8703 // TODO: Add support for irregular type lengths. 8704 if (!(Len <= 128 && Len % 8 == 0)) 8705 return SDValue(); 8706 8707 // This is same algorithm of expandCTPOP from 8708 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8709 SDValue Mask55 = 8710 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8711 SDValue Mask33 = 8712 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8713 SDValue Mask0F = 8714 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8715 8716 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 8717 8718 // v = v - ((v >> 1) & 0x55555555...) 8719 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 8720 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, 8721 DAG.getConstant(1, dl, ShVT), Mask, VL), 8722 Mask55, Mask, VL); 8723 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 8724 8725 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8726 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 8727 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 8728 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, 8729 DAG.getConstant(2, dl, ShVT), Mask, VL), 8730 Mask33, Mask, VL); 8731 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 8732 8733 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8734 Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 8735 Mask, VL), 8736 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 8737 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 8738 8739 if (Len <= 8) 8740 return Op; 8741 8742 // v = (v * 0x01010101...) >> (Len - 8) 8743 SDValue Mask01 = 8744 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8745 return DAG.getNode(ISD::VP_LSHR, dl, VT, 8746 DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL), 8747 DAG.getConstant(Len - 8, dl, ShVT), Mask, VL); 8748 } 8749 8750 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8751 SDLoc dl(Node); 8752 EVT VT = Node->getValueType(0); 8753 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8754 SDValue Op = Node->getOperand(0); 8755 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8756 8757 // If the non-ZERO_UNDEF version is supported we can use that instead. 8758 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 8759 isOperationLegalOrCustom(ISD::CTLZ, VT)) 8760 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 8761 8762 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8763 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 8764 EVT SetCCVT = 8765 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8766 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 8767 SDValue Zero = DAG.getConstant(0, dl, VT); 8768 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8769 return DAG.getSelect(dl, VT, SrcIsZero, 8770 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 8771 } 8772 8773 // Only expand vector types if we have the appropriate vector bit operations. 8774 // This includes the operations needed to expand CTPOP if it isn't supported. 8775 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 8776 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 8777 !canExpandVectorCTPOP(*this, VT)) || 8778 !isOperationLegalOrCustom(ISD::SRL, VT) || 8779 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 8780 return SDValue(); 8781 8782 // for now, we do this: 8783 // x = x | (x >> 1); 8784 // x = x | (x >> 2); 8785 // ... 8786 // x = x | (x >>16); 8787 // x = x | (x >>32); // for 64-bit input 8788 // return popcount(~x); 8789 // 8790 // Ref: "Hacker's Delight" by Henry Warren 8791 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 8792 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 8793 Op = DAG.getNode(ISD::OR, dl, VT, Op, 8794 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 8795 } 8796 Op = DAG.getNOT(dl, Op, VT); 8797 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 8798 } 8799 8800 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8801 SDLoc dl(Node); 8802 EVT VT = Node->getValueType(0); 8803 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8804 SDValue Op = Node->getOperand(0); 8805 SDValue Mask = Node->getOperand(1); 8806 SDValue VL = Node->getOperand(2); 8807 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8808 8809 // do this: 8810 // x = x | (x >> 1); 8811 // x = x | (x >> 2); 8812 // ... 8813 // x = x | (x >>16); 8814 // x = x | (x >>32); // for 64-bit input 8815 // return popcount(~x); 8816 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 8817 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 8818 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 8819 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, Tmp, Mask, VL), Mask, 8820 VL); 8821 } 8822 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask, 8823 VL); 8824 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 8825 } 8826 8827 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 8828 const SDLoc &DL, EVT VT, SDValue Op, 8829 unsigned BitWidth) const { 8830 if (BitWidth != 32 && BitWidth != 64) 8831 return SDValue(); 8832 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 8833 : APInt(64, 0x0218A392CD3D5DBFULL); 8834 const DataLayout &TD = DAG.getDataLayout(); 8835 MachinePointerInfo PtrInfo = 8836 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 8837 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 8838 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 8839 SDValue Lookup = DAG.getNode( 8840 ISD::SRL, DL, VT, 8841 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 8842 DAG.getConstant(DeBruijn, DL, VT)), 8843 DAG.getConstant(ShiftAmt, DL, VT)); 8844 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 8845 8846 SmallVector<uint8_t> Table(BitWidth, 0); 8847 for (unsigned i = 0; i < BitWidth; i++) { 8848 APInt Shl = DeBruijn.shl(i); 8849 APInt Lshr = Shl.lshr(ShiftAmt); 8850 Table[Lshr.getZExtValue()] = i; 8851 } 8852 8853 // Create a ConstantArray in Constant Pool 8854 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 8855 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 8856 TD.getPrefTypeAlign(CA->getType())); 8857 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 8858 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 8859 PtrInfo, MVT::i8); 8860 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 8861 return ExtLoad; 8862 8863 EVT SetCCVT = 8864 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8865 SDValue Zero = DAG.getConstant(0, DL, VT); 8866 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 8867 return DAG.getSelect(DL, VT, SrcIsZero, 8868 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 8869 } 8870 8871 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 8872 SDLoc dl(Node); 8873 EVT VT = Node->getValueType(0); 8874 SDValue Op = Node->getOperand(0); 8875 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8876 8877 // If the non-ZERO_UNDEF version is supported we can use that instead. 8878 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 8879 isOperationLegalOrCustom(ISD::CTTZ, VT)) 8880 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 8881 8882 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8883 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 8884 EVT SetCCVT = 8885 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8886 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 8887 SDValue Zero = DAG.getConstant(0, dl, VT); 8888 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8889 return DAG.getSelect(dl, VT, SrcIsZero, 8890 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 8891 } 8892 8893 // Only expand vector types if we have the appropriate vector bit operations. 8894 // This includes the operations needed to expand CTPOP if it isn't supported. 8895 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 8896 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 8897 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 8898 !canExpandVectorCTPOP(*this, VT)) || 8899 !isOperationLegalOrCustom(ISD::SUB, VT) || 8900 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 8901 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8902 return SDValue(); 8903 8904 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 8905 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 8906 !isOperationLegal(ISD::CTLZ, VT)) 8907 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 8908 return V; 8909 8910 // for now, we use: { return popcount(~x & (x - 1)); } 8911 // unless the target has ctlz but not ctpop, in which case we use: 8912 // { return 32 - nlz(~x & (x-1)); } 8913 // Ref: "Hacker's Delight" by Henry Warren 8914 SDValue Tmp = DAG.getNode( 8915 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 8916 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 8917 8918 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 8919 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 8920 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 8921 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 8922 } 8923 8924 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 8925 } 8926 8927 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 8928 SDValue Op = Node->getOperand(0); 8929 SDValue Mask = Node->getOperand(1); 8930 SDValue VL = Node->getOperand(2); 8931 SDLoc dl(Node); 8932 EVT VT = Node->getValueType(0); 8933 8934 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 8935 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 8936 DAG.getConstant(-1, dl, VT), Mask, VL); 8937 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 8938 DAG.getConstant(1, dl, VT), Mask, VL); 8939 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 8940 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 8941 } 8942 8943 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 8944 bool IsNegative) const { 8945 SDLoc dl(N); 8946 EVT VT = N->getValueType(0); 8947 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8948 SDValue Op = N->getOperand(0); 8949 8950 // abs(x) -> smax(x,sub(0,x)) 8951 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8952 isOperationLegal(ISD::SMAX, VT)) { 8953 SDValue Zero = DAG.getConstant(0, dl, VT); 8954 return DAG.getNode(ISD::SMAX, dl, VT, Op, 8955 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8956 } 8957 8958 // abs(x) -> umin(x,sub(0,x)) 8959 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8960 isOperationLegal(ISD::UMIN, VT)) { 8961 SDValue Zero = DAG.getConstant(0, dl, VT); 8962 Op = DAG.getFreeze(Op); 8963 return DAG.getNode(ISD::UMIN, dl, VT, Op, 8964 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8965 } 8966 8967 // 0 - abs(x) -> smin(x, sub(0,x)) 8968 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 8969 isOperationLegal(ISD::SMIN, VT)) { 8970 Op = DAG.getFreeze(Op); 8971 SDValue Zero = DAG.getConstant(0, dl, VT); 8972 return DAG.getNode(ISD::SMIN, dl, VT, Op, 8973 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8974 } 8975 8976 // Only expand vector types if we have the appropriate vector operations. 8977 if (VT.isVector() && 8978 (!isOperationLegalOrCustom(ISD::SRA, VT) || 8979 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 8980 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 8981 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8982 return SDValue(); 8983 8984 Op = DAG.getFreeze(Op); 8985 SDValue Shift = 8986 DAG.getNode(ISD::SRA, dl, VT, Op, 8987 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 8988 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 8989 8990 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 8991 if (!IsNegative) 8992 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 8993 8994 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 8995 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 8996 } 8997 8998 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { 8999 SDLoc dl(N); 9000 EVT VT = N->getValueType(0); 9001 SDValue LHS = DAG.getFreeze(N->getOperand(0)); 9002 SDValue RHS = DAG.getFreeze(N->getOperand(1)); 9003 bool IsSigned = N->getOpcode() == ISD::ABDS; 9004 9005 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 9006 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 9007 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 9008 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 9009 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { 9010 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 9011 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 9012 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 9013 } 9014 9015 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) 9016 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) 9017 return DAG.getNode(ISD::OR, dl, VT, 9018 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), 9019 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); 9020 9021 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9022 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9023 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9024 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; 9025 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); 9026 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), 9027 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9028 } 9029 9030 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 9031 SDLoc dl(N); 9032 EVT VT = N->getValueType(0); 9033 SDValue Op = N->getOperand(0); 9034 9035 if (!VT.isSimple()) 9036 return SDValue(); 9037 9038 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9039 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9040 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9041 default: 9042 return SDValue(); 9043 case MVT::i16: 9044 // Use a rotate by 8. This can be further expanded if necessary. 9045 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9046 case MVT::i32: 9047 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9048 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 9049 DAG.getConstant(0xFF00, dl, VT)); 9050 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 9051 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9052 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 9053 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9054 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9055 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9056 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9057 case MVT::i64: 9058 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9059 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 9060 DAG.getConstant(255ULL<<8, dl, VT)); 9061 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 9062 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 9063 DAG.getConstant(255ULL<<16, dl, VT)); 9064 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 9065 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 9066 DAG.getConstant(255ULL<<24, dl, VT)); 9067 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 9068 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9069 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 9070 DAG.getConstant(255ULL<<24, dl, VT)); 9071 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9072 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 9073 DAG.getConstant(255ULL<<16, dl, VT)); 9074 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 9075 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 9076 DAG.getConstant(255ULL<<8, dl, VT)); 9077 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9078 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 9079 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 9080 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9081 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9082 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 9083 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9084 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 9085 } 9086 } 9087 9088 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 9089 SDLoc dl(N); 9090 EVT VT = N->getValueType(0); 9091 SDValue Op = N->getOperand(0); 9092 SDValue Mask = N->getOperand(1); 9093 SDValue EVL = N->getOperand(2); 9094 9095 if (!VT.isSimple()) 9096 return SDValue(); 9097 9098 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9099 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9100 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9101 default: 9102 return SDValue(); 9103 case MVT::i16: 9104 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9105 Mask, EVL); 9106 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9107 Mask, EVL); 9108 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 9109 case MVT::i32: 9110 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9111 Mask, EVL); 9112 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 9113 Mask, EVL); 9114 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 9115 Mask, EVL); 9116 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9117 Mask, EVL); 9118 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9119 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 9120 Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9121 Mask, EVL); 9122 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9123 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9124 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9125 case MVT::i64: 9126 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9127 Mask, EVL); 9128 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9129 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9130 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 9131 Mask, EVL); 9132 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9133 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9134 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 9135 Mask, EVL); 9136 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9137 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9138 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 9139 Mask, EVL); 9140 Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9141 Mask, EVL); 9142 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 9143 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9144 Tmp3 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9145 Mask, EVL); 9146 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 9147 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9148 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 9149 Mask, EVL); 9150 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9151 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9152 Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9153 Mask, EVL); 9154 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 9155 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 9156 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9157 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9158 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 9159 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9160 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 9161 } 9162 } 9163 9164 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9165 SDLoc dl(N); 9166 EVT VT = N->getValueType(0); 9167 SDValue Op = N->getOperand(0); 9168 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9169 unsigned Sz = VT.getScalarSizeInBits(); 9170 9171 SDValue Tmp, Tmp2, Tmp3; 9172 9173 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9174 // and finally the i1 pairs. 9175 // TODO: We can easily support i4/i2 legal types if any target ever does. 9176 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9177 // Create the masks - repeating the pattern every byte. 9178 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9179 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9180 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9181 9182 // BSWAP if the type is wider than a single byte. 9183 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 9184 9185 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9186 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 9187 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 9188 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 9189 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 9190 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9191 9192 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9193 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 9194 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 9195 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 9196 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 9197 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9198 9199 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9200 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 9201 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 9202 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 9203 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 9204 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9205 return Tmp; 9206 } 9207 9208 Tmp = DAG.getConstant(0, dl, VT); 9209 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 9210 if (I < J) 9211 Tmp2 = 9212 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 9213 else 9214 Tmp2 = 9215 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 9216 9217 APInt Shift = APInt::getOneBitSet(Sz, J); 9218 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 9219 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 9220 } 9221 9222 return Tmp; 9223 } 9224 9225 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9226 assert(N->getOpcode() == ISD::VP_BITREVERSE); 9227 9228 SDLoc dl(N); 9229 EVT VT = N->getValueType(0); 9230 SDValue Op = N->getOperand(0); 9231 SDValue Mask = N->getOperand(1); 9232 SDValue EVL = N->getOperand(2); 9233 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9234 unsigned Sz = VT.getScalarSizeInBits(); 9235 9236 SDValue Tmp, Tmp2, Tmp3; 9237 9238 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9239 // and finally the i1 pairs. 9240 // TODO: We can easily support i4/i2 legal types if any target ever does. 9241 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9242 // Create the masks - repeating the pattern every byte. 9243 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9244 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9245 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9246 9247 // BSWAP if the type is wider than a single byte. 9248 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 9249 9250 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9251 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 9252 Mask, EVL); 9253 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9254 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 9255 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 9256 Mask, EVL); 9257 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 9258 Mask, EVL); 9259 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9260 9261 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9262 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 9263 Mask, EVL); 9264 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9265 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 9266 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 9267 Mask, EVL); 9268 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 9269 Mask, EVL); 9270 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9271 9272 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9273 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 9274 Mask, EVL); 9275 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9276 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 9277 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 9278 Mask, EVL); 9279 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 9280 Mask, EVL); 9281 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9282 return Tmp; 9283 } 9284 return SDValue(); 9285 } 9286 9287 std::pair<SDValue, SDValue> 9288 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 9289 SelectionDAG &DAG) const { 9290 SDLoc SL(LD); 9291 SDValue Chain = LD->getChain(); 9292 SDValue BasePTR = LD->getBasePtr(); 9293 EVT SrcVT = LD->getMemoryVT(); 9294 EVT DstVT = LD->getValueType(0); 9295 ISD::LoadExtType ExtType = LD->getExtensionType(); 9296 9297 if (SrcVT.isScalableVector()) 9298 report_fatal_error("Cannot scalarize scalable vector loads"); 9299 9300 unsigned NumElem = SrcVT.getVectorNumElements(); 9301 9302 EVT SrcEltVT = SrcVT.getScalarType(); 9303 EVT DstEltVT = DstVT.getScalarType(); 9304 9305 // A vector must always be stored in memory as-is, i.e. without any padding 9306 // between the elements, since various code depend on it, e.g. in the 9307 // handling of a bitcast of a vector type to int, which may be done with a 9308 // vector store followed by an integer load. A vector that does not have 9309 // elements that are byte-sized must therefore be stored as an integer 9310 // built out of the extracted vector elements. 9311 if (!SrcEltVT.isByteSized()) { 9312 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 9313 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 9314 9315 unsigned NumSrcBits = SrcVT.getSizeInBits(); 9316 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 9317 9318 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 9319 SDValue SrcEltBitMask = DAG.getConstant( 9320 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 9321 9322 // Load the whole vector and avoid masking off the top bits as it makes 9323 // the codegen worse. 9324 SDValue Load = 9325 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 9326 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 9327 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9328 9329 SmallVector<SDValue, 8> Vals; 9330 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9331 unsigned ShiftIntoIdx = 9332 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9333 SDValue ShiftAmount = 9334 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 9335 LoadVT, SL, /*LegalTypes=*/false); 9336 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 9337 SDValue Elt = 9338 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 9339 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 9340 9341 if (ExtType != ISD::NON_EXTLOAD) { 9342 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 9343 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 9344 } 9345 9346 Vals.push_back(Scalar); 9347 } 9348 9349 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9350 return std::make_pair(Value, Load.getValue(1)); 9351 } 9352 9353 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 9354 assert(SrcEltVT.isByteSized()); 9355 9356 SmallVector<SDValue, 8> Vals; 9357 SmallVector<SDValue, 8> LoadChains; 9358 9359 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9360 SDValue ScalarLoad = 9361 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 9362 LD->getPointerInfo().getWithOffset(Idx * Stride), 9363 SrcEltVT, LD->getOriginalAlign(), 9364 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9365 9366 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); 9367 9368 Vals.push_back(ScalarLoad.getValue(0)); 9369 LoadChains.push_back(ScalarLoad.getValue(1)); 9370 } 9371 9372 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 9373 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9374 9375 return std::make_pair(Value, NewChain); 9376 } 9377 9378 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 9379 SelectionDAG &DAG) const { 9380 SDLoc SL(ST); 9381 9382 SDValue Chain = ST->getChain(); 9383 SDValue BasePtr = ST->getBasePtr(); 9384 SDValue Value = ST->getValue(); 9385 EVT StVT = ST->getMemoryVT(); 9386 9387 if (StVT.isScalableVector()) 9388 report_fatal_error("Cannot scalarize scalable vector stores"); 9389 9390 // The type of the data we want to save 9391 EVT RegVT = Value.getValueType(); 9392 EVT RegSclVT = RegVT.getScalarType(); 9393 9394 // The type of data as saved in memory. 9395 EVT MemSclVT = StVT.getScalarType(); 9396 9397 unsigned NumElem = StVT.getVectorNumElements(); 9398 9399 // A vector must always be stored in memory as-is, i.e. without any padding 9400 // between the elements, since various code depend on it, e.g. in the 9401 // handling of a bitcast of a vector type to int, which may be done with a 9402 // vector store followed by an integer load. A vector that does not have 9403 // elements that are byte-sized must therefore be stored as an integer 9404 // built out of the extracted vector elements. 9405 if (!MemSclVT.isByteSized()) { 9406 unsigned NumBits = StVT.getSizeInBits(); 9407 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 9408 9409 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 9410 9411 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9412 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9413 DAG.getVectorIdxConstant(Idx, SL)); 9414 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 9415 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 9416 unsigned ShiftIntoIdx = 9417 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9418 SDValue ShiftAmount = 9419 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 9420 SDValue ShiftedElt = 9421 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 9422 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 9423 } 9424 9425 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 9426 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9427 ST->getAAInfo()); 9428 } 9429 9430 // Store Stride in bytes 9431 unsigned Stride = MemSclVT.getSizeInBits() / 8; 9432 assert(Stride && "Zero stride!"); 9433 // Extract each of the elements from the original vector and save them into 9434 // memory individually. 9435 SmallVector<SDValue, 8> Stores; 9436 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9437 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9438 DAG.getVectorIdxConstant(Idx, SL)); 9439 9440 SDValue Ptr = 9441 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); 9442 9443 // This scalar TruncStore may be illegal, but we legalize it later. 9444 SDValue Store = DAG.getTruncStore( 9445 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 9446 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9447 ST->getAAInfo()); 9448 9449 Stores.push_back(Store); 9450 } 9451 9452 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 9453 } 9454 9455 std::pair<SDValue, SDValue> 9456 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 9457 assert(LD->getAddressingMode() == ISD::UNINDEXED && 9458 "unaligned indexed loads not implemented!"); 9459 SDValue Chain = LD->getChain(); 9460 SDValue Ptr = LD->getBasePtr(); 9461 EVT VT = LD->getValueType(0); 9462 EVT LoadedVT = LD->getMemoryVT(); 9463 SDLoc dl(LD); 9464 auto &MF = DAG.getMachineFunction(); 9465 9466 if (VT.isFloatingPoint() || VT.isVector()) { 9467 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 9468 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 9469 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 9470 LoadedVT.isVector()) { 9471 // Scalarize the load and let the individual components be handled. 9472 return scalarizeVectorLoad(LD, DAG); 9473 } 9474 9475 // Expand to a (misaligned) integer load of the same size, 9476 // then bitconvert to floating point or vector. 9477 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 9478 LD->getMemOperand()); 9479 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 9480 if (LoadedVT != VT) 9481 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 9482 ISD::ANY_EXTEND, dl, VT, Result); 9483 9484 return std::make_pair(Result, newLoad.getValue(1)); 9485 } 9486 9487 // Copy the value to a (aligned) stack slot using (unaligned) integer 9488 // loads and stores, then do a (aligned) load from the stack slot. 9489 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 9490 unsigned LoadedBytes = LoadedVT.getStoreSize(); 9491 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9492 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 9493 9494 // Make sure the stack slot is also aligned for the register type. 9495 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 9496 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 9497 SmallVector<SDValue, 8> Stores; 9498 SDValue StackPtr = StackBase; 9499 unsigned Offset = 0; 9500 9501 EVT PtrVT = Ptr.getValueType(); 9502 EVT StackPtrVT = StackPtr.getValueType(); 9503 9504 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9505 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9506 9507 // Do all but one copies using the full register width. 9508 for (unsigned i = 1; i < NumRegs; i++) { 9509 // Load one integer register's worth from the original location. 9510 SDValue Load = DAG.getLoad( 9511 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 9512 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9513 LD->getAAInfo()); 9514 // Follow the load with a store to the stack slot. Remember the store. 9515 Stores.push_back(DAG.getStore( 9516 Load.getValue(1), dl, Load, StackPtr, 9517 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 9518 // Increment the pointers. 9519 Offset += RegBytes; 9520 9521 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9522 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9523 } 9524 9525 // The last copy may be partial. Do an extending load. 9526 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 9527 8 * (LoadedBytes - Offset)); 9528 SDValue Load = 9529 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 9530 LD->getPointerInfo().getWithOffset(Offset), MemVT, 9531 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9532 LD->getAAInfo()); 9533 // Follow the load with a store to the stack slot. Remember the store. 9534 // On big-endian machines this requires a truncating store to ensure 9535 // that the bits end up in the right place. 9536 Stores.push_back(DAG.getTruncStore( 9537 Load.getValue(1), dl, Load, StackPtr, 9538 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 9539 9540 // The order of the stores doesn't matter - say it with a TokenFactor. 9541 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9542 9543 // Finally, perform the original load only redirected to the stack slot. 9544 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 9545 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 9546 LoadedVT); 9547 9548 // Callers expect a MERGE_VALUES node. 9549 return std::make_pair(Load, TF); 9550 } 9551 9552 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 9553 "Unaligned load of unsupported type."); 9554 9555 // Compute the new VT that is half the size of the old one. This is an 9556 // integer MVT. 9557 unsigned NumBits = LoadedVT.getSizeInBits(); 9558 EVT NewLoadedVT; 9559 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 9560 NumBits >>= 1; 9561 9562 Align Alignment = LD->getOriginalAlign(); 9563 unsigned IncrementSize = NumBits / 8; 9564 ISD::LoadExtType HiExtType = LD->getExtensionType(); 9565 9566 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 9567 if (HiExtType == ISD::NON_EXTLOAD) 9568 HiExtType = ISD::ZEXTLOAD; 9569 9570 // Load the value in two parts 9571 SDValue Lo, Hi; 9572 if (DAG.getDataLayout().isLittleEndian()) { 9573 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9574 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9575 LD->getAAInfo()); 9576 9577 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 9578 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 9579 LD->getPointerInfo().getWithOffset(IncrementSize), 9580 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9581 LD->getAAInfo()); 9582 } else { 9583 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9584 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9585 LD->getAAInfo()); 9586 9587 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 9588 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 9589 LD->getPointerInfo().getWithOffset(IncrementSize), 9590 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9591 LD->getAAInfo()); 9592 } 9593 9594 // aggregate the two parts 9595 SDValue ShiftAmount = 9596 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 9597 DAG.getDataLayout())); 9598 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 9599 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 9600 9601 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 9602 Hi.getValue(1)); 9603 9604 return std::make_pair(Result, TF); 9605 } 9606 9607 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 9608 SelectionDAG &DAG) const { 9609 assert(ST->getAddressingMode() == ISD::UNINDEXED && 9610 "unaligned indexed stores not implemented!"); 9611 SDValue Chain = ST->getChain(); 9612 SDValue Ptr = ST->getBasePtr(); 9613 SDValue Val = ST->getValue(); 9614 EVT VT = Val.getValueType(); 9615 Align Alignment = ST->getOriginalAlign(); 9616 auto &MF = DAG.getMachineFunction(); 9617 EVT StoreMemVT = ST->getMemoryVT(); 9618 9619 SDLoc dl(ST); 9620 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 9621 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 9622 if (isTypeLegal(intVT)) { 9623 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 9624 StoreMemVT.isVector()) { 9625 // Scalarize the store and let the individual components be handled. 9626 SDValue Result = scalarizeVectorStore(ST, DAG); 9627 return Result; 9628 } 9629 // Expand to a bitconvert of the value to the integer type of the 9630 // same size, then a (misaligned) int store. 9631 // FIXME: Does not handle truncating floating point stores! 9632 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 9633 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 9634 Alignment, ST->getMemOperand()->getFlags()); 9635 return Result; 9636 } 9637 // Do a (aligned) store to a stack slot, then copy from the stack slot 9638 // to the final destination using (unaligned) integer loads and stores. 9639 MVT RegVT = getRegisterType( 9640 *DAG.getContext(), 9641 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 9642 EVT PtrVT = Ptr.getValueType(); 9643 unsigned StoredBytes = StoreMemVT.getStoreSize(); 9644 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9645 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 9646 9647 // Make sure the stack slot is also aligned for the register type. 9648 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 9649 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9650 9651 // Perform the original store, only redirected to the stack slot. 9652 SDValue Store = DAG.getTruncStore( 9653 Chain, dl, Val, StackPtr, 9654 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 9655 9656 EVT StackPtrVT = StackPtr.getValueType(); 9657 9658 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9659 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9660 SmallVector<SDValue, 8> Stores; 9661 unsigned Offset = 0; 9662 9663 // Do all but one copies using the full register width. 9664 for (unsigned i = 1; i < NumRegs; i++) { 9665 // Load one integer register's worth from the stack slot. 9666 SDValue Load = DAG.getLoad( 9667 RegVT, dl, Store, StackPtr, 9668 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 9669 // Store it to the final location. Remember the store. 9670 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 9671 ST->getPointerInfo().getWithOffset(Offset), 9672 ST->getOriginalAlign(), 9673 ST->getMemOperand()->getFlags())); 9674 // Increment the pointers. 9675 Offset += RegBytes; 9676 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9677 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9678 } 9679 9680 // The last store may be partial. Do a truncating store. On big-endian 9681 // machines this requires an extending load from the stack slot to ensure 9682 // that the bits are in the right place. 9683 EVT LoadMemVT = 9684 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 9685 9686 // Load from the stack slot. 9687 SDValue Load = DAG.getExtLoad( 9688 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 9689 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 9690 9691 Stores.push_back( 9692 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 9693 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 9694 ST->getOriginalAlign(), 9695 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 9696 // The order of the stores doesn't matter - say it with a TokenFactor. 9697 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9698 return Result; 9699 } 9700 9701 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 9702 "Unaligned store of unknown type."); 9703 // Get the half-size VT 9704 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 9705 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 9706 unsigned IncrementSize = NumBits / 8; 9707 9708 // Divide the stored value in two parts. 9709 SDValue ShiftAmount = DAG.getConstant( 9710 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 9711 SDValue Lo = Val; 9712 // If Val is a constant, replace the upper bits with 0. The SRL will constant 9713 // fold and not use the upper bits. A smaller constant may be easier to 9714 // materialize. 9715 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) 9716 Lo = DAG.getNode( 9717 ISD::AND, dl, VT, Lo, 9718 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, 9719 VT)); 9720 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 9721 9722 // Store the two parts 9723 SDValue Store1, Store2; 9724 Store1 = DAG.getTruncStore(Chain, dl, 9725 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 9726 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 9727 ST->getMemOperand()->getFlags()); 9728 9729 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 9730 Store2 = DAG.getTruncStore( 9731 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 9732 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 9733 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 9734 9735 SDValue Result = 9736 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 9737 return Result; 9738 } 9739 9740 SDValue 9741 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 9742 const SDLoc &DL, EVT DataVT, 9743 SelectionDAG &DAG, 9744 bool IsCompressedMemory) const { 9745 SDValue Increment; 9746 EVT AddrVT = Addr.getValueType(); 9747 EVT MaskVT = Mask.getValueType(); 9748 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 9749 "Incompatible types of Data and Mask"); 9750 if (IsCompressedMemory) { 9751 if (DataVT.isScalableVector()) 9752 report_fatal_error( 9753 "Cannot currently handle compressed memory with scalable vectors"); 9754 // Incrementing the pointer according to number of '1's in the mask. 9755 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 9756 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 9757 if (MaskIntVT.getSizeInBits() < 32) { 9758 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 9759 MaskIntVT = MVT::i32; 9760 } 9761 9762 // Count '1's with POPCNT. 9763 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 9764 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 9765 // Scale is an element size in bytes. 9766 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 9767 AddrVT); 9768 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 9769 } else if (DataVT.isScalableVector()) { 9770 Increment = DAG.getVScale(DL, AddrVT, 9771 APInt(AddrVT.getFixedSizeInBits(), 9772 DataVT.getStoreSize().getKnownMinValue())); 9773 } else 9774 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 9775 9776 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 9777 } 9778 9779 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 9780 EVT VecVT, const SDLoc &dl, 9781 ElementCount SubEC) { 9782 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 9783 "Cannot index a scalable vector within a fixed-width vector"); 9784 9785 unsigned NElts = VecVT.getVectorMinNumElements(); 9786 unsigned NumSubElts = SubEC.getKnownMinValue(); 9787 EVT IdxVT = Idx.getValueType(); 9788 9789 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 9790 // If this is a constant index and we know the value plus the number of the 9791 // elements in the subvector minus one is less than the minimum number of 9792 // elements then it's safe to return Idx. 9793 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 9794 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 9795 return Idx; 9796 SDValue VS = 9797 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 9798 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 9799 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 9800 DAG.getConstant(NumSubElts, dl, IdxVT)); 9801 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 9802 } 9803 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 9804 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 9805 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 9806 DAG.getConstant(Imm, dl, IdxVT)); 9807 } 9808 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 9809 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 9810 DAG.getConstant(MaxIndex, dl, IdxVT)); 9811 } 9812 9813 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 9814 SDValue VecPtr, EVT VecVT, 9815 SDValue Index) const { 9816 return getVectorSubVecPointer( 9817 DAG, VecPtr, VecVT, 9818 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 9819 Index); 9820 } 9821 9822 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 9823 SDValue VecPtr, EVT VecVT, 9824 EVT SubVecVT, 9825 SDValue Index) const { 9826 SDLoc dl(Index); 9827 // Make sure the index type is big enough to compute in. 9828 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 9829 9830 EVT EltVT = VecVT.getVectorElementType(); 9831 9832 // Calculate the element offset and add it to the pointer. 9833 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 9834 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 9835 "Converting bits to bytes lost precision"); 9836 assert(SubVecVT.getVectorElementType() == EltVT && 9837 "Sub-vector must be a vector with matching element type"); 9838 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 9839 SubVecVT.getVectorElementCount()); 9840 9841 EVT IdxVT = Index.getValueType(); 9842 if (SubVecVT.isScalableVector()) 9843 Index = 9844 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 9845 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 9846 9847 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 9848 DAG.getConstant(EltSize, dl, IdxVT)); 9849 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 9850 } 9851 9852 //===----------------------------------------------------------------------===// 9853 // Implementation of Emulated TLS Model 9854 //===----------------------------------------------------------------------===// 9855 9856 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 9857 SelectionDAG &DAG) const { 9858 // Access to address of TLS varialbe xyz is lowered to a function call: 9859 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 9860 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9861 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); 9862 SDLoc dl(GA); 9863 9864 ArgListTy Args; 9865 ArgListEntry Entry; 9866 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 9867 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 9868 StringRef EmuTlsVarName(NameString); 9869 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 9870 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 9871 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 9872 Entry.Ty = VoidPtrType; 9873 Args.push_back(Entry); 9874 9875 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 9876 9877 TargetLowering::CallLoweringInfo CLI(DAG); 9878 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 9879 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 9880 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 9881 9882 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 9883 // At last for X86 targets, maybe good for other targets too? 9884 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9885 MFI.setAdjustsStack(true); // Is this only for X86 target? 9886 MFI.setHasCalls(true); 9887 9888 assert((GA->getOffset() == 0) && 9889 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 9890 return CallResult.first; 9891 } 9892 9893 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 9894 SelectionDAG &DAG) const { 9895 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 9896 if (!isCtlzFast()) 9897 return SDValue(); 9898 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 9899 SDLoc dl(Op); 9900 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { 9901 EVT VT = Op.getOperand(0).getValueType(); 9902 SDValue Zext = Op.getOperand(0); 9903 if (VT.bitsLT(MVT::i32)) { 9904 VT = MVT::i32; 9905 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 9906 } 9907 unsigned Log2b = Log2_32(VT.getSizeInBits()); 9908 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 9909 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 9910 DAG.getConstant(Log2b, dl, MVT::i32)); 9911 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 9912 } 9913 return SDValue(); 9914 } 9915 9916 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 9917 SDValue Op0 = Node->getOperand(0); 9918 SDValue Op1 = Node->getOperand(1); 9919 EVT VT = Op0.getValueType(); 9920 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9921 unsigned Opcode = Node->getOpcode(); 9922 SDLoc DL(Node); 9923 9924 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits 9925 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && 9926 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9927 Op0 = DAG.getFreeze(Op0); 9928 SDValue Zero = DAG.getConstant(0, DL, VT); 9929 return DAG.getNode(ISD::SUB, DL, VT, Op0, 9930 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); 9931 } 9932 9933 // umin(x,y) -> sub(x,usubsat(x,y)) 9934 // TODO: Missing freeze(Op0)? 9935 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 9936 isOperationLegal(ISD::USUBSAT, VT)) { 9937 return DAG.getNode(ISD::SUB, DL, VT, Op0, 9938 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 9939 } 9940 9941 // umax(x,y) -> add(x,usubsat(y,x)) 9942 // TODO: Missing freeze(Op0)? 9943 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 9944 isOperationLegal(ISD::USUBSAT, VT)) { 9945 return DAG.getNode(ISD::ADD, DL, VT, Op0, 9946 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 9947 } 9948 9949 // FIXME: Should really try to split the vector in case it's legal on a 9950 // subvector. 9951 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9952 return DAG.UnrollVectorOp(Node); 9953 9954 // Attempt to find an existing SETCC node that we can reuse. 9955 // TODO: Do we need a generic doesSETCCNodeExist? 9956 // TODO: Missing freeze(Op0)/freeze(Op1)? 9957 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, 9958 ISD::CondCode PrefCommuteCC, 9959 ISD::CondCode AltCommuteCC) { 9960 SDVTList BoolVTList = DAG.getVTList(BoolVT); 9961 for (ISD::CondCode CC : {PrefCC, AltCC}) { 9962 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 9963 {Op0, Op1, DAG.getCondCode(CC)})) { 9964 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 9965 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 9966 } 9967 } 9968 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { 9969 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 9970 {Op0, Op1, DAG.getCondCode(CC)})) { 9971 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 9972 return DAG.getSelect(DL, VT, Cond, Op1, Op0); 9973 } 9974 } 9975 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); 9976 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 9977 }; 9978 9979 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 9980 // -> Y = (A < B) ? B : A 9981 // -> Y = (A >= B) ? A : B 9982 // -> Y = (A <= B) ? B : A 9983 switch (Opcode) { 9984 case ISD::SMAX: 9985 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); 9986 case ISD::SMIN: 9987 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); 9988 case ISD::UMAX: 9989 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); 9990 case ISD::UMIN: 9991 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); 9992 } 9993 9994 llvm_unreachable("How did we get here?"); 9995 } 9996 9997 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 9998 unsigned Opcode = Node->getOpcode(); 9999 SDValue LHS = Node->getOperand(0); 10000 SDValue RHS = Node->getOperand(1); 10001 EVT VT = LHS.getValueType(); 10002 SDLoc dl(Node); 10003 10004 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10005 assert(VT.isInteger() && "Expected operands to be integers"); 10006 10007 // usub.sat(a, b) -> umax(a, b) - b 10008 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 10009 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 10010 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 10011 } 10012 10013 // uadd.sat(a, b) -> umin(a, ~b) + b 10014 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 10015 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 10016 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 10017 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 10018 } 10019 10020 unsigned OverflowOp; 10021 switch (Opcode) { 10022 case ISD::SADDSAT: 10023 OverflowOp = ISD::SADDO; 10024 break; 10025 case ISD::UADDSAT: 10026 OverflowOp = ISD::UADDO; 10027 break; 10028 case ISD::SSUBSAT: 10029 OverflowOp = ISD::SSUBO; 10030 break; 10031 case ISD::USUBSAT: 10032 OverflowOp = ISD::USUBO; 10033 break; 10034 default: 10035 llvm_unreachable("Expected method to receive signed or unsigned saturation " 10036 "addition or subtraction node."); 10037 } 10038 10039 // FIXME: Should really try to split the vector in case it's legal on a 10040 // subvector. 10041 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10042 return DAG.UnrollVectorOp(Node); 10043 10044 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 10045 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10046 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10047 SDValue SumDiff = Result.getValue(0); 10048 SDValue Overflow = Result.getValue(1); 10049 SDValue Zero = DAG.getConstant(0, dl, VT); 10050 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 10051 10052 if (Opcode == ISD::UADDSAT) { 10053 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10054 // (LHS + RHS) | OverflowMask 10055 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10056 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 10057 } 10058 // Overflow ? 0xffff.... : (LHS + RHS) 10059 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 10060 } 10061 10062 if (Opcode == ISD::USUBSAT) { 10063 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10064 // (LHS - RHS) & ~OverflowMask 10065 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10066 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 10067 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 10068 } 10069 // Overflow ? 0 : (LHS - RHS) 10070 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 10071 } 10072 10073 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { 10074 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10075 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 10076 10077 KnownBits KnownLHS = DAG.computeKnownBits(LHS); 10078 KnownBits KnownRHS = DAG.computeKnownBits(RHS); 10079 10080 // If either of the operand signs are known, then they are guaranteed to 10081 // only saturate in one direction. If non-negative they will saturate 10082 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. 10083 // 10084 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the 10085 // sign of 'y' has to be flipped. 10086 10087 bool LHSIsNonNegative = KnownLHS.isNonNegative(); 10088 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() 10089 : KnownRHS.isNegative(); 10090 if (LHSIsNonNegative || RHSIsNonNegative) { 10091 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10092 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); 10093 } 10094 10095 bool LHSIsNegative = KnownLHS.isNegative(); 10096 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() 10097 : KnownRHS.isNonNegative(); 10098 if (LHSIsNegative || RHSIsNegative) { 10099 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10100 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); 10101 } 10102 } 10103 10104 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 10105 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10106 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10107 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 10108 DAG.getConstant(BitWidth - 1, dl, VT)); 10109 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 10110 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 10111 } 10112 10113 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 10114 unsigned Opcode = Node->getOpcode(); 10115 bool IsSigned = Opcode == ISD::SSHLSAT; 10116 SDValue LHS = Node->getOperand(0); 10117 SDValue RHS = Node->getOperand(1); 10118 EVT VT = LHS.getValueType(); 10119 SDLoc dl(Node); 10120 10121 assert((Node->getOpcode() == ISD::SSHLSAT || 10122 Node->getOpcode() == ISD::USHLSAT) && 10123 "Expected a SHLSAT opcode"); 10124 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10125 assert(VT.isInteger() && "Expected operands to be integers"); 10126 10127 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10128 return DAG.UnrollVectorOp(Node); 10129 10130 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 10131 10132 unsigned BW = VT.getScalarSizeInBits(); 10133 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10134 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 10135 SDValue Orig = 10136 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 10137 10138 SDValue SatVal; 10139 if (IsSigned) { 10140 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 10141 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 10142 SDValue Cond = 10143 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 10144 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 10145 } else { 10146 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 10147 } 10148 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 10149 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 10150 } 10151 10152 SDValue 10153 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 10154 assert((Node->getOpcode() == ISD::SMULFIX || 10155 Node->getOpcode() == ISD::UMULFIX || 10156 Node->getOpcode() == ISD::SMULFIXSAT || 10157 Node->getOpcode() == ISD::UMULFIXSAT) && 10158 "Expected a fixed point multiplication opcode"); 10159 10160 SDLoc dl(Node); 10161 SDValue LHS = Node->getOperand(0); 10162 SDValue RHS = Node->getOperand(1); 10163 EVT VT = LHS.getValueType(); 10164 unsigned Scale = Node->getConstantOperandVal(2); 10165 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 10166 Node->getOpcode() == ISD::UMULFIXSAT); 10167 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 10168 Node->getOpcode() == ISD::SMULFIXSAT); 10169 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10170 unsigned VTSize = VT.getScalarSizeInBits(); 10171 10172 if (!Scale) { 10173 // [us]mul.fix(a, b, 0) -> mul(a, b) 10174 if (!Saturating) { 10175 if (isOperationLegalOrCustom(ISD::MUL, VT)) 10176 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10177 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 10178 SDValue Result = 10179 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10180 SDValue Product = Result.getValue(0); 10181 SDValue Overflow = Result.getValue(1); 10182 SDValue Zero = DAG.getConstant(0, dl, VT); 10183 10184 APInt MinVal = APInt::getSignedMinValue(VTSize); 10185 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 10186 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10187 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10188 // Xor the inputs, if resulting sign bit is 0 the product will be 10189 // positive, else negative. 10190 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 10191 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 10192 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 10193 return DAG.getSelect(dl, VT, Overflow, Result, Product); 10194 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 10195 SDValue Result = 10196 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10197 SDValue Product = Result.getValue(0); 10198 SDValue Overflow = Result.getValue(1); 10199 10200 APInt MaxVal = APInt::getMaxValue(VTSize); 10201 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10202 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 10203 } 10204 } 10205 10206 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 10207 "Expected scale to be less than the number of bits if signed or at " 10208 "most the number of bits if unsigned."); 10209 assert(LHS.getValueType() == RHS.getValueType() && 10210 "Expected both operands to be the same type"); 10211 10212 // Get the upper and lower bits of the result. 10213 SDValue Lo, Hi; 10214 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 10215 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 10216 if (isOperationLegalOrCustom(LoHiOp, VT)) { 10217 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 10218 Lo = Result.getValue(0); 10219 Hi = Result.getValue(1); 10220 } else if (isOperationLegalOrCustom(HiOp, VT)) { 10221 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10222 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 10223 } else if (VT.isVector()) { 10224 return SDValue(); 10225 } else { 10226 report_fatal_error("Unable to expand fixed point multiplication."); 10227 } 10228 10229 if (Scale == VTSize) 10230 // Result is just the top half since we'd be shifting by the width of the 10231 // operand. Overflow impossible so this works for both UMULFIX and 10232 // UMULFIXSAT. 10233 return Hi; 10234 10235 // The result will need to be shifted right by the scale since both operands 10236 // are scaled. The result is given to us in 2 halves, so we only want part of 10237 // both in the result. 10238 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 10239 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 10240 DAG.getConstant(Scale, dl, ShiftTy)); 10241 if (!Saturating) 10242 return Result; 10243 10244 if (!Signed) { 10245 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 10246 // widened multiplication) aren't all zeroes. 10247 10248 // Saturate to max if ((Hi >> Scale) != 0), 10249 // which is the same as if (Hi > ((1 << Scale) - 1)) 10250 APInt MaxVal = APInt::getMaxValue(VTSize); 10251 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 10252 dl, VT); 10253 Result = DAG.getSelectCC(dl, Hi, LowMask, 10254 DAG.getConstant(MaxVal, dl, VT), Result, 10255 ISD::SETUGT); 10256 10257 return Result; 10258 } 10259 10260 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 10261 // widened multiplication) aren't all ones or all zeroes. 10262 10263 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 10264 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 10265 10266 if (Scale == 0) { 10267 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 10268 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 10269 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 10270 // Saturated to SatMin if wide product is negative, and SatMax if wide 10271 // product is positive ... 10272 SDValue Zero = DAG.getConstant(0, dl, VT); 10273 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 10274 ISD::SETLT); 10275 // ... but only if we overflowed. 10276 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 10277 } 10278 10279 // We handled Scale==0 above so all the bits to examine is in Hi. 10280 10281 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 10282 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 10283 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 10284 dl, VT); 10285 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 10286 // Saturate to min if (Hi >> (Scale - 1)) < -1), 10287 // which is the same as if (HI < (-1 << (Scale - 1)) 10288 SDValue HighMask = 10289 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 10290 dl, VT); 10291 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 10292 return Result; 10293 } 10294 10295 SDValue 10296 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 10297 SDValue LHS, SDValue RHS, 10298 unsigned Scale, SelectionDAG &DAG) const { 10299 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 10300 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 10301 "Expected a fixed point division opcode"); 10302 10303 EVT VT = LHS.getValueType(); 10304 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 10305 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 10306 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10307 10308 // If there is enough room in the type to upscale the LHS or downscale the 10309 // RHS before the division, we can perform it in this type without having to 10310 // resize. For signed operations, the LHS headroom is the number of 10311 // redundant sign bits, and for unsigned ones it is the number of zeroes. 10312 // The headroom for the RHS is the number of trailing zeroes. 10313 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 10314 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 10315 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 10316 10317 // For signed saturating operations, we need to be able to detect true integer 10318 // division overflow; that is, when you have MIN / -EPS. However, this 10319 // is undefined behavior and if we emit divisions that could take such 10320 // values it may cause undesired behavior (arithmetic exceptions on x86, for 10321 // example). 10322 // Avoid this by requiring an extra bit so that we never get this case. 10323 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 10324 // signed saturating division, we need to emit a whopping 32-bit division. 10325 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 10326 return SDValue(); 10327 10328 unsigned LHSShift = std::min(LHSLead, Scale); 10329 unsigned RHSShift = Scale - LHSShift; 10330 10331 // At this point, we know that if we shift the LHS up by LHSShift and the 10332 // RHS down by RHSShift, we can emit a regular division with a final scaling 10333 // factor of Scale. 10334 10335 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 10336 if (LHSShift) 10337 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 10338 DAG.getConstant(LHSShift, dl, ShiftTy)); 10339 if (RHSShift) 10340 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 10341 DAG.getConstant(RHSShift, dl, ShiftTy)); 10342 10343 SDValue Quot; 10344 if (Signed) { 10345 // For signed operations, if the resulting quotient is negative and the 10346 // remainder is nonzero, subtract 1 from the quotient to round towards 10347 // negative infinity. 10348 SDValue Rem; 10349 // FIXME: Ideally we would always produce an SDIVREM here, but if the 10350 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 10351 // we couldn't just form a libcall, but the type legalizer doesn't do it. 10352 if (isTypeLegal(VT) && 10353 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 10354 Quot = DAG.getNode(ISD::SDIVREM, dl, 10355 DAG.getVTList(VT, VT), 10356 LHS, RHS); 10357 Rem = Quot.getValue(1); 10358 Quot = Quot.getValue(0); 10359 } else { 10360 Quot = DAG.getNode(ISD::SDIV, dl, VT, 10361 LHS, RHS); 10362 Rem = DAG.getNode(ISD::SREM, dl, VT, 10363 LHS, RHS); 10364 } 10365 SDValue Zero = DAG.getConstant(0, dl, VT); 10366 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 10367 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 10368 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 10369 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 10370 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 10371 DAG.getConstant(1, dl, VT)); 10372 Quot = DAG.getSelect(dl, VT, 10373 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 10374 Sub1, Quot); 10375 } else 10376 Quot = DAG.getNode(ISD::UDIV, dl, VT, 10377 LHS, RHS); 10378 10379 return Quot; 10380 } 10381 10382 void TargetLowering::expandUADDSUBO( 10383 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 10384 SDLoc dl(Node); 10385 SDValue LHS = Node->getOperand(0); 10386 SDValue RHS = Node->getOperand(1); 10387 bool IsAdd = Node->getOpcode() == ISD::UADDO; 10388 10389 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. 10390 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 10391 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 10392 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 10393 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 10394 { LHS, RHS, CarryIn }); 10395 Result = SDValue(NodeCarry.getNode(), 0); 10396 Overflow = SDValue(NodeCarry.getNode(), 1); 10397 return; 10398 } 10399 10400 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 10401 LHS.getValueType(), LHS, RHS); 10402 10403 EVT ResultType = Node->getValueType(1); 10404 EVT SetCCType = getSetCCResultType( 10405 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 10406 SDValue SetCC; 10407 if (IsAdd && isOneConstant(RHS)) { 10408 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 10409 // the live range of X. We assume comparing with 0 is cheap. 10410 // The general case (X + C) < C is not necessarily beneficial. Although we 10411 // reduce the live range of X, we may introduce the materialization of 10412 // constant C. 10413 SetCC = 10414 DAG.getSetCC(dl, SetCCType, Result, 10415 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 10416 } else if (IsAdd && isAllOnesConstant(RHS)) { 10417 // Special case: uaddo X, -1 overflows if X != 0. 10418 SetCC = 10419 DAG.getSetCC(dl, SetCCType, LHS, 10420 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); 10421 } else { 10422 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 10423 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 10424 } 10425 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 10426 } 10427 10428 void TargetLowering::expandSADDSUBO( 10429 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 10430 SDLoc dl(Node); 10431 SDValue LHS = Node->getOperand(0); 10432 SDValue RHS = Node->getOperand(1); 10433 bool IsAdd = Node->getOpcode() == ISD::SADDO; 10434 10435 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 10436 LHS.getValueType(), LHS, RHS); 10437 10438 EVT ResultType = Node->getValueType(1); 10439 EVT OType = getSetCCResultType( 10440 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 10441 10442 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 10443 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 10444 if (isOperationLegal(OpcSat, LHS.getValueType())) { 10445 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 10446 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 10447 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 10448 return; 10449 } 10450 10451 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 10452 10453 // For an addition, the result should be less than one of the operands (LHS) 10454 // if and only if the other operand (RHS) is negative, otherwise there will 10455 // be overflow. 10456 // For a subtraction, the result should be less than one of the operands 10457 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 10458 // otherwise there will be overflow. 10459 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 10460 SDValue ConditionRHS = 10461 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 10462 10463 Overflow = DAG.getBoolExtOrTrunc( 10464 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 10465 ResultType, ResultType); 10466 } 10467 10468 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 10469 SDValue &Overflow, SelectionDAG &DAG) const { 10470 SDLoc dl(Node); 10471 EVT VT = Node->getValueType(0); 10472 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10473 SDValue LHS = Node->getOperand(0); 10474 SDValue RHS = Node->getOperand(1); 10475 bool isSigned = Node->getOpcode() == ISD::SMULO; 10476 10477 // For power-of-two multiplications we can use a simpler shift expansion. 10478 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 10479 const APInt &C = RHSC->getAPIntValue(); 10480 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 10481 if (C.isPowerOf2()) { 10482 // smulo(x, signed_min) is same as umulo(x, signed_min). 10483 bool UseArithShift = isSigned && !C.isMinSignedValue(); 10484 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 10485 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 10486 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 10487 Overflow = DAG.getSetCC(dl, SetCCVT, 10488 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 10489 dl, VT, Result, ShiftAmt), 10490 LHS, ISD::SETNE); 10491 return true; 10492 } 10493 } 10494 10495 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 10496 if (VT.isVector()) 10497 WideVT = 10498 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 10499 10500 SDValue BottomHalf; 10501 SDValue TopHalf; 10502 static const unsigned Ops[2][3] = 10503 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 10504 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 10505 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 10506 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10507 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 10508 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 10509 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 10510 RHS); 10511 TopHalf = BottomHalf.getValue(1); 10512 } else if (isTypeLegal(WideVT)) { 10513 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 10514 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 10515 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 10516 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 10517 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 10518 getShiftAmountTy(WideVT, DAG.getDataLayout())); 10519 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 10520 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 10521 } else { 10522 if (VT.isVector()) 10523 return false; 10524 10525 // We can fall back to a libcall with an illegal type for the MUL if we 10526 // have a libcall big enough. 10527 // Also, we can fall back to a division in some cases, but that's a big 10528 // performance hit in the general case. 10529 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10530 if (WideVT == MVT::i16) 10531 LC = RTLIB::MUL_I16; 10532 else if (WideVT == MVT::i32) 10533 LC = RTLIB::MUL_I32; 10534 else if (WideVT == MVT::i64) 10535 LC = RTLIB::MUL_I64; 10536 else if (WideVT == MVT::i128) 10537 LC = RTLIB::MUL_I128; 10538 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 10539 10540 SDValue HiLHS; 10541 SDValue HiRHS; 10542 if (isSigned) { 10543 // The high part is obtained by SRA'ing all but one of the bits of low 10544 // part. 10545 unsigned LoSize = VT.getFixedSizeInBits(); 10546 HiLHS = 10547 DAG.getNode(ISD::SRA, dl, VT, LHS, 10548 DAG.getConstant(LoSize - 1, dl, 10549 getPointerTy(DAG.getDataLayout()))); 10550 HiRHS = 10551 DAG.getNode(ISD::SRA, dl, VT, RHS, 10552 DAG.getConstant(LoSize - 1, dl, 10553 getPointerTy(DAG.getDataLayout()))); 10554 } else { 10555 HiLHS = DAG.getConstant(0, dl, VT); 10556 HiRHS = DAG.getConstant(0, dl, VT); 10557 } 10558 10559 // Here we're passing the 2 arguments explicitly as 4 arguments that are 10560 // pre-lowered to the correct types. This all depends upon WideVT not 10561 // being a legal type for the architecture and thus has to be split to 10562 // two arguments. 10563 SDValue Ret; 10564 TargetLowering::MakeLibCallOptions CallOptions; 10565 CallOptions.setSExt(isSigned); 10566 CallOptions.setIsPostTypeLegalization(true); 10567 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10568 // Halves of WideVT are packed into registers in different order 10569 // depending on platform endianness. This is usually handled by 10570 // the C calling convention, but we can't defer to it in 10571 // the legalizer. 10572 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 10573 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10574 } else { 10575 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 10576 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10577 } 10578 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10579 "Ret value is a collection of constituent nodes holding result."); 10580 if (DAG.getDataLayout().isLittleEndian()) { 10581 // Same as above. 10582 BottomHalf = Ret.getOperand(0); 10583 TopHalf = Ret.getOperand(1); 10584 } else { 10585 BottomHalf = Ret.getOperand(1); 10586 TopHalf = Ret.getOperand(0); 10587 } 10588 } 10589 10590 Result = BottomHalf; 10591 if (isSigned) { 10592 SDValue ShiftAmt = DAG.getConstant( 10593 VT.getScalarSizeInBits() - 1, dl, 10594 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 10595 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 10596 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 10597 } else { 10598 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 10599 DAG.getConstant(0, dl, VT), ISD::SETNE); 10600 } 10601 10602 // Truncate the result if SetCC returns a larger type than needed. 10603 EVT RType = Node->getValueType(1); 10604 if (RType.bitsLT(Overflow.getValueType())) 10605 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 10606 10607 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 10608 "Unexpected result type for S/UMULO legalization"); 10609 return true; 10610 } 10611 10612 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 10613 SDLoc dl(Node); 10614 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 10615 SDValue Op = Node->getOperand(0); 10616 EVT VT = Op.getValueType(); 10617 10618 if (VT.isScalableVector()) 10619 report_fatal_error( 10620 "Expanding reductions for scalable vectors is undefined."); 10621 10622 // Try to use a shuffle reduction for power of two vectors. 10623 if (VT.isPow2VectorType()) { 10624 while (VT.getVectorNumElements() > 1) { 10625 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 10626 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 10627 break; 10628 10629 SDValue Lo, Hi; 10630 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 10631 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 10632 VT = HalfVT; 10633 } 10634 } 10635 10636 EVT EltVT = VT.getVectorElementType(); 10637 unsigned NumElts = VT.getVectorNumElements(); 10638 10639 SmallVector<SDValue, 8> Ops; 10640 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 10641 10642 SDValue Res = Ops[0]; 10643 for (unsigned i = 1; i < NumElts; i++) 10644 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 10645 10646 // Result type may be wider than element type. 10647 if (EltVT != Node->getValueType(0)) 10648 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 10649 return Res; 10650 } 10651 10652 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 10653 SDLoc dl(Node); 10654 SDValue AccOp = Node->getOperand(0); 10655 SDValue VecOp = Node->getOperand(1); 10656 SDNodeFlags Flags = Node->getFlags(); 10657 10658 EVT VT = VecOp.getValueType(); 10659 EVT EltVT = VT.getVectorElementType(); 10660 10661 if (VT.isScalableVector()) 10662 report_fatal_error( 10663 "Expanding reductions for scalable vectors is undefined."); 10664 10665 unsigned NumElts = VT.getVectorNumElements(); 10666 10667 SmallVector<SDValue, 8> Ops; 10668 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 10669 10670 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 10671 10672 SDValue Res = AccOp; 10673 for (unsigned i = 0; i < NumElts; i++) 10674 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 10675 10676 return Res; 10677 } 10678 10679 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 10680 SelectionDAG &DAG) const { 10681 EVT VT = Node->getValueType(0); 10682 SDLoc dl(Node); 10683 bool isSigned = Node->getOpcode() == ISD::SREM; 10684 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 10685 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 10686 SDValue Dividend = Node->getOperand(0); 10687 SDValue Divisor = Node->getOperand(1); 10688 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 10689 SDVTList VTs = DAG.getVTList(VT, VT); 10690 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 10691 return true; 10692 } 10693 if (isOperationLegalOrCustom(DivOpc, VT)) { 10694 // X % Y -> X-X/Y*Y 10695 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 10696 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 10697 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 10698 return true; 10699 } 10700 return false; 10701 } 10702 10703 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 10704 SelectionDAG &DAG) const { 10705 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 10706 SDLoc dl(SDValue(Node, 0)); 10707 SDValue Src = Node->getOperand(0); 10708 10709 // DstVT is the result type, while SatVT is the size to which we saturate 10710 EVT SrcVT = Src.getValueType(); 10711 EVT DstVT = Node->getValueType(0); 10712 10713 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 10714 unsigned SatWidth = SatVT.getScalarSizeInBits(); 10715 unsigned DstWidth = DstVT.getScalarSizeInBits(); 10716 assert(SatWidth <= DstWidth && 10717 "Expected saturation width smaller than result width"); 10718 10719 // Determine minimum and maximum integer values and their corresponding 10720 // floating-point values. 10721 APInt MinInt, MaxInt; 10722 if (IsSigned) { 10723 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 10724 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 10725 } else { 10726 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 10727 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 10728 } 10729 10730 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as 10731 // libcall emission cannot handle this. Large result types will fail. 10732 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { 10733 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 10734 SrcVT = Src.getValueType(); 10735 } 10736 10737 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 10738 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 10739 10740 APFloat::opStatus MinStatus = 10741 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 10742 APFloat::opStatus MaxStatus = 10743 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 10744 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 10745 !(MaxStatus & APFloat::opStatus::opInexact); 10746 10747 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 10748 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 10749 10750 // If the integer bounds are exactly representable as floats and min/max are 10751 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 10752 // of comparisons and selects. 10753 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 10754 isOperationLegal(ISD::FMAXNUM, SrcVT); 10755 if (AreExactFloatBounds && MinMaxLegal) { 10756 SDValue Clamped = Src; 10757 10758 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 10759 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 10760 // Clamp by MaxFloat from above. NaN cannot occur. 10761 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 10762 // Convert clamped value to integer. 10763 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 10764 dl, DstVT, Clamped); 10765 10766 // In the unsigned case we're done, because we mapped NaN to MinFloat, 10767 // which will cast to zero. 10768 if (!IsSigned) 10769 return FpToInt; 10770 10771 // Otherwise, select 0 if Src is NaN. 10772 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 10773 EVT SetCCVT = 10774 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 10775 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 10776 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); 10777 } 10778 10779 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 10780 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 10781 10782 // Result of direct conversion. The assumption here is that the operation is 10783 // non-trapping and it's fine to apply it to an out-of-range value if we 10784 // select it away later. 10785 SDValue FpToInt = 10786 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 10787 10788 SDValue Select = FpToInt; 10789 10790 EVT SetCCVT = 10791 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 10792 10793 // If Src ULT MinFloat, select MinInt. In particular, this also selects 10794 // MinInt if Src is NaN. 10795 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); 10796 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); 10797 // If Src OGT MaxFloat, select MaxInt. 10798 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); 10799 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); 10800 10801 // In the unsigned case we are done, because we mapped NaN to MinInt, which 10802 // is already zero. 10803 if (!IsSigned) 10804 return Select; 10805 10806 // Otherwise, select 0 if Src is NaN. 10807 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 10808 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 10809 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); 10810 } 10811 10812 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 10813 SelectionDAG &DAG) const { 10814 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 10815 assert(Node->getValueType(0).isScalableVector() && 10816 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 10817 10818 EVT VT = Node->getValueType(0); 10819 SDValue V1 = Node->getOperand(0); 10820 SDValue V2 = Node->getOperand(1); 10821 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 10822 SDLoc DL(Node); 10823 10824 // Expand through memory thusly: 10825 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 10826 // Store V1, Ptr 10827 // Store V2, Ptr + sizeof(V1) 10828 // If (Imm < 0) 10829 // TrailingElts = -Imm 10830 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 10831 // else 10832 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 10833 // Res = Load Ptr 10834 10835 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 10836 10837 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 10838 VT.getVectorElementCount() * 2); 10839 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 10840 EVT PtrVT = StackPtr.getValueType(); 10841 auto &MF = DAG.getMachineFunction(); 10842 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10843 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 10844 10845 // Store the lo part of CONCAT_VECTORS(V1, V2) 10846 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 10847 // Store the hi part of CONCAT_VECTORS(V1, V2) 10848 SDValue OffsetToV2 = DAG.getVScale( 10849 DL, PtrVT, 10850 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 10851 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 10852 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 10853 10854 if (Imm >= 0) { 10855 // Load back the required element. getVectorElementPointer takes care of 10856 // clamping the index if it's out-of-bounds. 10857 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 10858 // Load the spliced result 10859 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 10860 MachinePointerInfo::getUnknownStack(MF)); 10861 } 10862 10863 uint64_t TrailingElts = -Imm; 10864 10865 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 10866 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 10867 SDValue TrailingBytes = 10868 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 10869 10870 if (TrailingElts > VT.getVectorMinNumElements()) { 10871 SDValue VLBytes = 10872 DAG.getVScale(DL, PtrVT, 10873 APInt(PtrVT.getFixedSizeInBits(), 10874 VT.getStoreSize().getKnownMinValue())); 10875 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 10876 } 10877 10878 // Calculate the start address of the spliced result. 10879 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 10880 10881 // Load the spliced result 10882 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 10883 MachinePointerInfo::getUnknownStack(MF)); 10884 } 10885 10886 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 10887 SDValue &LHS, SDValue &RHS, 10888 SDValue &CC, SDValue Mask, 10889 SDValue EVL, bool &NeedInvert, 10890 const SDLoc &dl, SDValue &Chain, 10891 bool IsSignaling) const { 10892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10893 MVT OpVT = LHS.getSimpleValueType(); 10894 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 10895 NeedInvert = false; 10896 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 10897 bool IsNonVP = !EVL; 10898 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 10899 default: 10900 llvm_unreachable("Unknown condition code action!"); 10901 case TargetLowering::Legal: 10902 // Nothing to do. 10903 break; 10904 case TargetLowering::Expand: { 10905 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 10906 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10907 std::swap(LHS, RHS); 10908 CC = DAG.getCondCode(InvCC); 10909 return true; 10910 } 10911 // Swapping operands didn't work. Try inverting the condition. 10912 bool NeedSwap = false; 10913 InvCC = getSetCCInverse(CCCode, OpVT); 10914 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10915 // If inverting the condition is not enough, try swapping operands 10916 // on top of it. 10917 InvCC = ISD::getSetCCSwappedOperands(InvCC); 10918 NeedSwap = true; 10919 } 10920 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10921 CC = DAG.getCondCode(InvCC); 10922 NeedInvert = true; 10923 if (NeedSwap) 10924 std::swap(LHS, RHS); 10925 return true; 10926 } 10927 10928 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 10929 unsigned Opc = 0; 10930 switch (CCCode) { 10931 default: 10932 llvm_unreachable("Don't know how to expand this condition!"); 10933 case ISD::SETUO: 10934 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 10935 CC1 = ISD::SETUNE; 10936 CC2 = ISD::SETUNE; 10937 Opc = ISD::OR; 10938 break; 10939 } 10940 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 10941 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 10942 NeedInvert = true; 10943 [[fallthrough]]; 10944 case ISD::SETO: 10945 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 10946 "If SETO is expanded, SETOEQ must be legal!"); 10947 CC1 = ISD::SETOEQ; 10948 CC2 = ISD::SETOEQ; 10949 Opc = ISD::AND; 10950 break; 10951 case ISD::SETONE: 10952 case ISD::SETUEQ: 10953 // If the SETUO or SETO CC isn't legal, we might be able to use 10954 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 10955 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 10956 // the operands. 10957 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 10958 if (!TLI.isCondCodeLegal(CC2, OpVT) && 10959 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 10960 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 10961 CC1 = ISD::SETOGT; 10962 CC2 = ISD::SETOLT; 10963 Opc = ISD::OR; 10964 NeedInvert = ((unsigned)CCCode & 0x8U); 10965 break; 10966 } 10967 [[fallthrough]]; 10968 case ISD::SETOEQ: 10969 case ISD::SETOGT: 10970 case ISD::SETOGE: 10971 case ISD::SETOLT: 10972 case ISD::SETOLE: 10973 case ISD::SETUNE: 10974 case ISD::SETUGT: 10975 case ISD::SETUGE: 10976 case ISD::SETULT: 10977 case ISD::SETULE: 10978 // If we are floating point, assign and break, otherwise fall through. 10979 if (!OpVT.isInteger()) { 10980 // We can use the 4th bit to tell if we are the unordered 10981 // or ordered version of the opcode. 10982 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 10983 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 10984 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 10985 break; 10986 } 10987 // Fallthrough if we are unsigned integer. 10988 [[fallthrough]]; 10989 case ISD::SETLE: 10990 case ISD::SETGT: 10991 case ISD::SETGE: 10992 case ISD::SETLT: 10993 case ISD::SETNE: 10994 case ISD::SETEQ: 10995 // If all combinations of inverting the condition and swapping operands 10996 // didn't work then we have no means to expand the condition. 10997 llvm_unreachable("Don't know how to expand this condition!"); 10998 } 10999 11000 SDValue SetCC1, SetCC2; 11001 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 11002 // If we aren't the ordered or unorder operation, 11003 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 11004 if (IsNonVP) { 11005 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 11006 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 11007 } else { 11008 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 11009 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 11010 } 11011 } else { 11012 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 11013 if (IsNonVP) { 11014 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 11015 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 11016 } else { 11017 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 11018 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 11019 } 11020 } 11021 if (Chain) 11022 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 11023 SetCC2.getValue(1)); 11024 if (IsNonVP) 11025 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 11026 else { 11027 // Transform the binary opcode to the VP equivalent. 11028 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 11029 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 11030 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 11031 } 11032 RHS = SDValue(); 11033 CC = SDValue(); 11034 return true; 11035 } 11036 } 11037 return false; 11038 } 11039