1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 ByValType = nullptr; 116 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 117 ByValType = Call->getParamByValType(ArgIdx); 118 } 119 120 /// Generate a libcall taking the given operands as arguments and returning a 121 /// result of type RetVT. 122 std::pair<SDValue, SDValue> 123 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 124 ArrayRef<SDValue> Ops, bool isSigned, 125 const SDLoc &dl, bool doesNotReturn, 126 bool isReturnValueUsed, 127 bool isPostTypeLegalization) const { 128 TargetLowering::ArgListTy Args; 129 Args.reserve(Ops.size()); 130 131 TargetLowering::ArgListEntry Entry; 132 for (SDValue Op : Ops) { 133 Entry.Node = Op; 134 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 135 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 136 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 137 Args.push_back(Entry); 138 } 139 140 if (LC == RTLIB::UNKNOWN_LIBCALL) 141 report_fatal_error("Unsupported library call operation!"); 142 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 143 getPointerTy(DAG.getDataLayout())); 144 145 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 146 TargetLowering::CallLoweringInfo CLI(DAG); 147 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 148 CLI.setDebugLoc(dl) 149 .setChain(DAG.getEntryNode()) 150 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 151 .setNoReturn(doesNotReturn) 152 .setDiscardResult(!isReturnValueUsed) 153 .setIsPostTypeLegalization(isPostTypeLegalization) 154 .setSExtResult(signExtend) 155 .setZExtResult(!signExtend); 156 return LowerCallTo(CLI); 157 } 158 159 bool 160 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 161 unsigned Limit, uint64_t Size, 162 unsigned DstAlign, unsigned SrcAlign, 163 bool IsMemset, 164 bool ZeroMemset, 165 bool MemcpyStrSrc, 166 bool AllowOverlap, 167 unsigned DstAS, unsigned SrcAS, 168 const AttributeList &FuncAttributes) const { 169 // If 'SrcAlign' is zero, that means the memory operation does not need to 170 // load the value, i.e. memset or memcpy from constant string. Otherwise, 171 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 172 // is the specified alignment of the memory operation. If it is zero, that 173 // means it's possible to change the alignment of the destination. 174 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 175 // not need to be loaded. 176 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 177 return false; 178 179 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 180 IsMemset, ZeroMemset, MemcpyStrSrc, 181 FuncAttributes); 182 183 if (VT == MVT::Other) { 184 // Use the largest integer type whose alignment constraints are satisfied. 185 // We only need to check DstAlign here as SrcAlign is always greater or 186 // equal to DstAlign (or zero). 187 VT = MVT::i64; 188 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 189 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 190 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 191 assert(VT.isInteger()); 192 193 // Find the largest legal integer type. 194 MVT LVT = MVT::i64; 195 while (!isTypeLegal(LVT)) 196 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 197 assert(LVT.isInteger()); 198 199 // If the type we've chosen is larger than the largest legal integer type 200 // then use that instead. 201 if (VT.bitsGT(LVT)) 202 VT = LVT; 203 } 204 205 unsigned NumMemOps = 0; 206 while (Size != 0) { 207 unsigned VTSize = VT.getSizeInBits() / 8; 208 while (VTSize > Size) { 209 // For now, only use non-vector load / store's for the left-over pieces. 210 EVT NewVT = VT; 211 unsigned NewVTSize; 212 213 bool Found = false; 214 if (VT.isVector() || VT.isFloatingPoint()) { 215 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 216 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 217 isSafeMemOpType(NewVT.getSimpleVT())) 218 Found = true; 219 else if (NewVT == MVT::i64 && 220 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 221 isSafeMemOpType(MVT::f64)) { 222 // i64 is usually not legal on 32-bit targets, but f64 may be. 223 NewVT = MVT::f64; 224 Found = true; 225 } 226 } 227 228 if (!Found) { 229 do { 230 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 231 if (NewVT == MVT::i8) 232 break; 233 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 234 } 235 NewVTSize = NewVT.getSizeInBits() / 8; 236 237 // If the new VT cannot cover all of the remaining bits, then consider 238 // issuing a (or a pair of) unaligned and overlapping load / store. 239 bool Fast; 240 if (NumMemOps && AllowOverlap && NewVTSize < Size && 241 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 242 MachineMemOperand::MONone, &Fast) && 243 Fast) 244 VTSize = Size; 245 else { 246 VT = NewVT; 247 VTSize = NewVTSize; 248 } 249 } 250 251 if (++NumMemOps > Limit) 252 return false; 253 254 MemOps.push_back(VT); 255 Size -= VTSize; 256 } 257 258 return true; 259 } 260 261 /// Soften the operands of a comparison. This code is shared among BR_CC, 262 /// SELECT_CC, and SETCC handlers. 263 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 264 SDValue &NewLHS, SDValue &NewRHS, 265 ISD::CondCode &CCCode, 266 const SDLoc &dl) const { 267 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 268 && "Unsupported setcc type!"); 269 270 // Expand into one or more soft-fp libcall(s). 271 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 272 bool ShouldInvertCC = false; 273 switch (CCCode) { 274 case ISD::SETEQ: 275 case ISD::SETOEQ: 276 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 277 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 278 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 279 break; 280 case ISD::SETNE: 281 case ISD::SETUNE: 282 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 283 (VT == MVT::f64) ? RTLIB::UNE_F64 : 284 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 285 break; 286 case ISD::SETGE: 287 case ISD::SETOGE: 288 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 289 (VT == MVT::f64) ? RTLIB::OGE_F64 : 290 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 291 break; 292 case ISD::SETLT: 293 case ISD::SETOLT: 294 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 295 (VT == MVT::f64) ? RTLIB::OLT_F64 : 296 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 297 break; 298 case ISD::SETLE: 299 case ISD::SETOLE: 300 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 301 (VT == MVT::f64) ? RTLIB::OLE_F64 : 302 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 303 break; 304 case ISD::SETGT: 305 case ISD::SETOGT: 306 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 307 (VT == MVT::f64) ? RTLIB::OGT_F64 : 308 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 309 break; 310 case ISD::SETUO: 311 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 312 (VT == MVT::f64) ? RTLIB::UO_F64 : 313 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 314 break; 315 case ISD::SETO: 316 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 317 (VT == MVT::f64) ? RTLIB::O_F64 : 318 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 319 break; 320 case ISD::SETONE: 321 // SETONE = SETOLT | SETOGT 322 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 323 (VT == MVT::f64) ? RTLIB::OLT_F64 : 324 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 325 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 326 (VT == MVT::f64) ? RTLIB::OGT_F64 : 327 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 328 break; 329 case ISD::SETUEQ: 330 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 331 (VT == MVT::f64) ? RTLIB::UO_F64 : 332 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 333 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 334 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 335 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 336 break; 337 default: 338 // Invert CC for unordered comparisons 339 ShouldInvertCC = true; 340 switch (CCCode) { 341 case ISD::SETULT: 342 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 343 (VT == MVT::f64) ? RTLIB::OGE_F64 : 344 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 345 break; 346 case ISD::SETULE: 347 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 348 (VT == MVT::f64) ? RTLIB::OGT_F64 : 349 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 350 break; 351 case ISD::SETUGT: 352 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 353 (VT == MVT::f64) ? RTLIB::OLE_F64 : 354 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 355 break; 356 case ISD::SETUGE: 357 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 358 (VT == MVT::f64) ? RTLIB::OLT_F64 : 359 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 360 break; 361 default: llvm_unreachable("Do not know how to soften this setcc!"); 362 } 363 } 364 365 // Use the target specific return value for comparions lib calls. 366 EVT RetVT = getCmpLibcallReturnType(); 367 SDValue Ops[2] = {NewLHS, NewRHS}; 368 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 369 dl).first; 370 NewRHS = DAG.getConstant(0, dl, RetVT); 371 372 CCCode = getCmpLibcallCC(LC1); 373 if (ShouldInvertCC) 374 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 375 376 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 377 SDValue Tmp = DAG.getNode( 378 ISD::SETCC, dl, 379 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 380 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 381 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 382 dl).first; 383 NewLHS = DAG.getNode( 384 ISD::SETCC, dl, 385 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 386 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 387 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 388 NewRHS = SDValue(); 389 } 390 } 391 392 /// Return the entry encoding for a jump table in the current function. The 393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 394 unsigned TargetLowering::getJumpTableEncoding() const { 395 // In non-pic modes, just use the address of a block. 396 if (!isPositionIndependent()) 397 return MachineJumpTableInfo::EK_BlockAddress; 398 399 // In PIC mode, if the target supports a GPRel32 directive, use it. 400 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 401 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 402 403 // Otherwise, use a label difference. 404 return MachineJumpTableInfo::EK_LabelDifference32; 405 } 406 407 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 408 SelectionDAG &DAG) const { 409 // If our PIC model is GP relative, use the global offset table as the base. 410 unsigned JTEncoding = getJumpTableEncoding(); 411 412 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 413 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 414 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 415 416 return Table; 417 } 418 419 /// This returns the relocation base for the given PIC jumptable, the same as 420 /// getPICJumpTableRelocBase, but as an MCExpr. 421 const MCExpr * 422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 423 unsigned JTI,MCContext &Ctx) const{ 424 // The normal PIC reloc base is the label at the start of the jump table. 425 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 426 } 427 428 bool 429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 430 const TargetMachine &TM = getTargetMachine(); 431 const GlobalValue *GV = GA->getGlobal(); 432 433 // If the address is not even local to this DSO we will have to load it from 434 // a got and then add the offset. 435 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 436 return false; 437 438 // If the code is position independent we will have to add a base register. 439 if (isPositionIndependent()) 440 return false; 441 442 // Otherwise we can do it. 443 return true; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // Optimization Methods 448 //===----------------------------------------------------------------------===// 449 450 /// If the specified instruction has a constant integer operand and there are 451 /// bits set in that constant that are not demanded, then clear those bits and 452 /// return true. 453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 454 TargetLoweringOpt &TLO) const { 455 SDLoc DL(Op); 456 unsigned Opcode = Op.getOpcode(); 457 458 // Do target-specific constant optimization. 459 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 460 return TLO.New.getNode(); 461 462 // FIXME: ISD::SELECT, ISD::SELECT_CC 463 switch (Opcode) { 464 default: 465 break; 466 case ISD::XOR: 467 case ISD::AND: 468 case ISD::OR: { 469 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 470 if (!Op1C) 471 return false; 472 473 // If this is a 'not' op, don't touch it because that's a canonical form. 474 const APInt &C = Op1C->getAPIntValue(); 475 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 476 return false; 477 478 if (!C.isSubsetOf(Demanded)) { 479 EVT VT = Op.getValueType(); 480 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 481 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 482 return TLO.CombineTo(Op, NewOp); 483 } 484 485 break; 486 } 487 } 488 489 return false; 490 } 491 492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 494 /// generalized for targets with other types of implicit widening casts. 495 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 496 const APInt &Demanded, 497 TargetLoweringOpt &TLO) const { 498 assert(Op.getNumOperands() == 2 && 499 "ShrinkDemandedOp only supports binary operators!"); 500 assert(Op.getNode()->getNumValues() == 1 && 501 "ShrinkDemandedOp only supports nodes with one result!"); 502 503 SelectionDAG &DAG = TLO.DAG; 504 SDLoc dl(Op); 505 506 // Early return, as this function cannot handle vector types. 507 if (Op.getValueType().isVector()) 508 return false; 509 510 // Don't do this if the node has another user, which may require the 511 // full value. 512 if (!Op.getNode()->hasOneUse()) 513 return false; 514 515 // Search for the smallest integer type with free casts to and from 516 // Op's type. For expedience, just check power-of-2 integer types. 517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 518 unsigned DemandedSize = Demanded.getActiveBits(); 519 unsigned SmallVTBits = DemandedSize; 520 if (!isPowerOf2_32(SmallVTBits)) 521 SmallVTBits = NextPowerOf2(SmallVTBits); 522 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 523 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 524 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 525 TLI.isZExtFree(SmallVT, Op.getValueType())) { 526 // We found a type with free casts. 527 SDValue X = DAG.getNode( 528 Op.getOpcode(), dl, SmallVT, 529 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 530 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 531 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 532 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 533 return TLO.CombineTo(Op, Z); 534 } 535 } 536 return false; 537 } 538 539 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 540 DAGCombinerInfo &DCI) const { 541 SelectionDAG &DAG = DCI.DAG; 542 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 543 !DCI.isBeforeLegalizeOps()); 544 KnownBits Known; 545 546 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 547 if (Simplified) { 548 DCI.AddToWorklist(Op.getNode()); 549 DCI.CommitTargetLoweringOpt(TLO); 550 } 551 return Simplified; 552 } 553 554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 555 KnownBits &Known, 556 TargetLoweringOpt &TLO, 557 unsigned Depth, 558 bool AssumeSingleUse) const { 559 EVT VT = Op.getValueType(); 560 APInt DemandedElts = VT.isVector() 561 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 562 : APInt(1, 1); 563 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 564 AssumeSingleUse); 565 } 566 567 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 568 /// result of Op are ever used downstream. If we can use this information to 569 /// simplify Op, create a new simplified DAG node and return true, returning the 570 /// original and new nodes in Old and New. Otherwise, analyze the expression and 571 /// return a mask of Known bits for the expression (used to simplify the 572 /// caller). The Known bits may only be accurate for those bits in the 573 /// OriginalDemandedBits and OriginalDemandedElts. 574 bool TargetLowering::SimplifyDemandedBits( 575 SDValue Op, const APInt &OriginalDemandedBits, 576 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 577 unsigned Depth, bool AssumeSingleUse) const { 578 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 579 assert(Op.getScalarValueSizeInBits() == BitWidth && 580 "Mask size mismatches value type size!"); 581 582 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 583 assert((!Op.getValueType().isVector() || 584 NumElts == Op.getValueType().getVectorNumElements()) && 585 "Unexpected vector size"); 586 587 APInt DemandedBits = OriginalDemandedBits; 588 APInt DemandedElts = OriginalDemandedElts; 589 SDLoc dl(Op); 590 auto &DL = TLO.DAG.getDataLayout(); 591 592 // Don't know anything. 593 Known = KnownBits(BitWidth); 594 595 // Undef operand. 596 if (Op.isUndef()) 597 return false; 598 599 if (Op.getOpcode() == ISD::Constant) { 600 // We know all of the bits for a constant! 601 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 602 Known.Zero = ~Known.One; 603 return false; 604 } 605 606 // Other users may use these bits. 607 EVT VT = Op.getValueType(); 608 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 609 if (Depth != 0) { 610 // If not at the root, Just compute the Known bits to 611 // simplify things downstream. 612 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 613 return false; 614 } 615 // If this is the root being simplified, allow it to have multiple uses, 616 // just set the DemandedBits/Elts to all bits. 617 DemandedBits = APInt::getAllOnesValue(BitWidth); 618 DemandedElts = APInt::getAllOnesValue(NumElts); 619 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 620 // Not demanding any bits/elts from Op. 621 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 622 } else if (Depth == 6) { // Limit search depth. 623 return false; 624 } 625 626 KnownBits Known2, KnownOut; 627 switch (Op.getOpcode()) { 628 case ISD::SCALAR_TO_VECTOR: { 629 if (!DemandedElts[0]) 630 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 631 632 KnownBits SrcKnown; 633 SDValue Src = Op.getOperand(0); 634 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 635 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 636 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 637 return true; 638 Known = SrcKnown.zextOrTrunc(BitWidth, false); 639 break; 640 } 641 case ISD::BUILD_VECTOR: 642 // Collect the known bits that are shared by every demanded element. 643 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 644 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 645 return false; // Don't fall through, will infinitely loop. 646 case ISD::LOAD: { 647 LoadSDNode *LD = cast<LoadSDNode>(Op); 648 if (getTargetConstantFromLoad(LD)) { 649 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 650 return false; // Don't fall through, will infinitely loop. 651 } 652 break; 653 } 654 case ISD::INSERT_VECTOR_ELT: { 655 SDValue Vec = Op.getOperand(0); 656 SDValue Scl = Op.getOperand(1); 657 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 658 EVT VecVT = Vec.getValueType(); 659 660 // If index isn't constant, assume we need all vector elements AND the 661 // inserted element. 662 APInt DemandedVecElts(DemandedElts); 663 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 664 unsigned Idx = CIdx->getZExtValue(); 665 DemandedVecElts.clearBit(Idx); 666 667 // Inserted element is not required. 668 if (!DemandedElts[Idx]) 669 return TLO.CombineTo(Op, Vec); 670 } 671 672 KnownBits KnownScl; 673 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 674 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 675 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 676 return true; 677 678 Known = KnownScl.zextOrTrunc(BitWidth, false); 679 680 KnownBits KnownVec; 681 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 682 Depth + 1)) 683 return true; 684 685 if (!!DemandedVecElts) { 686 Known.One &= KnownVec.One; 687 Known.Zero &= KnownVec.Zero; 688 } 689 690 return false; 691 } 692 case ISD::INSERT_SUBVECTOR: { 693 SDValue Base = Op.getOperand(0); 694 SDValue Sub = Op.getOperand(1); 695 EVT SubVT = Sub.getValueType(); 696 unsigned NumSubElts = SubVT.getVectorNumElements(); 697 698 // If index isn't constant, assume we need the original demanded base 699 // elements and ALL the inserted subvector elements. 700 APInt BaseElts = DemandedElts; 701 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 702 if (isa<ConstantSDNode>(Op.getOperand(2))) { 703 const APInt &Idx = Op.getConstantOperandAPInt(2); 704 if (Idx.ule(NumElts - NumSubElts)) { 705 unsigned SubIdx = Idx.getZExtValue(); 706 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 707 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 708 } 709 } 710 711 KnownBits KnownSub, KnownBase; 712 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 713 Depth + 1)) 714 return true; 715 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 716 Depth + 1)) 717 return true; 718 719 Known.Zero.setAllBits(); 720 Known.One.setAllBits(); 721 if (!!SubElts) { 722 Known.One &= KnownSub.One; 723 Known.Zero &= KnownSub.Zero; 724 } 725 if (!!BaseElts) { 726 Known.One &= KnownBase.One; 727 Known.Zero &= KnownBase.Zero; 728 } 729 break; 730 } 731 case ISD::CONCAT_VECTORS: { 732 Known.Zero.setAllBits(); 733 Known.One.setAllBits(); 734 EVT SubVT = Op.getOperand(0).getValueType(); 735 unsigned NumSubVecs = Op.getNumOperands(); 736 unsigned NumSubElts = SubVT.getVectorNumElements(); 737 for (unsigned i = 0; i != NumSubVecs; ++i) { 738 APInt DemandedSubElts = 739 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 740 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 741 Known2, TLO, Depth + 1)) 742 return true; 743 // Known bits are shared by every demanded subvector element. 744 if (!!DemandedSubElts) { 745 Known.One &= Known2.One; 746 Known.Zero &= Known2.Zero; 747 } 748 } 749 break; 750 } 751 case ISD::VECTOR_SHUFFLE: { 752 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 753 754 // Collect demanded elements from shuffle operands.. 755 APInt DemandedLHS(NumElts, 0); 756 APInt DemandedRHS(NumElts, 0); 757 for (unsigned i = 0; i != NumElts; ++i) { 758 if (!DemandedElts[i]) 759 continue; 760 int M = ShuffleMask[i]; 761 if (M < 0) { 762 // For UNDEF elements, we don't know anything about the common state of 763 // the shuffle result. 764 DemandedLHS.clearAllBits(); 765 DemandedRHS.clearAllBits(); 766 break; 767 } 768 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 769 if (M < (int)NumElts) 770 DemandedLHS.setBit(M); 771 else 772 DemandedRHS.setBit(M - NumElts); 773 } 774 775 if (!!DemandedLHS || !!DemandedRHS) { 776 Known.Zero.setAllBits(); 777 Known.One.setAllBits(); 778 if (!!DemandedLHS) { 779 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 780 Known2, TLO, Depth + 1)) 781 return true; 782 Known.One &= Known2.One; 783 Known.Zero &= Known2.Zero; 784 } 785 if (!!DemandedRHS) { 786 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 787 Known2, TLO, Depth + 1)) 788 return true; 789 Known.One &= Known2.One; 790 Known.Zero &= Known2.Zero; 791 } 792 } 793 break; 794 } 795 case ISD::AND: { 796 SDValue Op0 = Op.getOperand(0); 797 SDValue Op1 = Op.getOperand(1); 798 799 // If the RHS is a constant, check to see if the LHS would be zero without 800 // using the bits from the RHS. Below, we use knowledge about the RHS to 801 // simplify the LHS, here we're using information from the LHS to simplify 802 // the RHS. 803 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 804 // Do not increment Depth here; that can cause an infinite loop. 805 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 806 // If the LHS already has zeros where RHSC does, this 'and' is dead. 807 if ((LHSKnown.Zero & DemandedBits) == 808 (~RHSC->getAPIntValue() & DemandedBits)) 809 return TLO.CombineTo(Op, Op0); 810 811 // If any of the set bits in the RHS are known zero on the LHS, shrink 812 // the constant. 813 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 814 return true; 815 816 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 817 // constant, but if this 'and' is only clearing bits that were just set by 818 // the xor, then this 'and' can be eliminated by shrinking the mask of 819 // the xor. For example, for a 32-bit X: 820 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 821 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 822 LHSKnown.One == ~RHSC->getAPIntValue()) { 823 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 824 return TLO.CombineTo(Op, Xor); 825 } 826 } 827 828 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 829 Depth + 1)) 830 return true; 831 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 832 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 833 Known2, TLO, Depth + 1)) 834 return true; 835 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 836 837 // If all of the demanded bits are known one on one side, return the other. 838 // These bits cannot contribute to the result of the 'and'. 839 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 840 return TLO.CombineTo(Op, Op0); 841 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 842 return TLO.CombineTo(Op, Op1); 843 // If all of the demanded bits in the inputs are known zeros, return zero. 844 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 845 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 846 // If the RHS is a constant, see if we can simplify it. 847 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 848 return true; 849 // If the operation can be done in a smaller type, do so. 850 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 851 return true; 852 853 // Output known-1 bits are only known if set in both the LHS & RHS. 854 Known.One &= Known2.One; 855 // Output known-0 are known to be clear if zero in either the LHS | RHS. 856 Known.Zero |= Known2.Zero; 857 break; 858 } 859 case ISD::OR: { 860 SDValue Op0 = Op.getOperand(0); 861 SDValue Op1 = Op.getOperand(1); 862 863 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 864 Depth + 1)) 865 return true; 866 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 867 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 868 Known2, TLO, Depth + 1)) 869 return true; 870 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 871 872 // If all of the demanded bits are known zero on one side, return the other. 873 // These bits cannot contribute to the result of the 'or'. 874 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 875 return TLO.CombineTo(Op, Op0); 876 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 877 return TLO.CombineTo(Op, Op1); 878 // If the RHS is a constant, see if we can simplify it. 879 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 880 return true; 881 // If the operation can be done in a smaller type, do so. 882 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 883 return true; 884 885 // Output known-0 bits are only known if clear in both the LHS & RHS. 886 Known.Zero &= Known2.Zero; 887 // Output known-1 are known to be set if set in either the LHS | RHS. 888 Known.One |= Known2.One; 889 break; 890 } 891 case ISD::XOR: { 892 SDValue Op0 = Op.getOperand(0); 893 SDValue Op1 = Op.getOperand(1); 894 895 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 896 Depth + 1)) 897 return true; 898 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 899 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 900 Depth + 1)) 901 return true; 902 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 903 904 // If all of the demanded bits are known zero on one side, return the other. 905 // These bits cannot contribute to the result of the 'xor'. 906 if (DemandedBits.isSubsetOf(Known.Zero)) 907 return TLO.CombineTo(Op, Op0); 908 if (DemandedBits.isSubsetOf(Known2.Zero)) 909 return TLO.CombineTo(Op, Op1); 910 // If the operation can be done in a smaller type, do so. 911 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 912 return true; 913 914 // If all of the unknown bits are known to be zero on one side or the other 915 // (but not both) turn this into an *inclusive* or. 916 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 917 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 918 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 919 920 // Output known-0 bits are known if clear or set in both the LHS & RHS. 921 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 922 // Output known-1 are known to be set if set in only one of the LHS, RHS. 923 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 924 925 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 926 // If one side is a constant, and all of the known set bits on the other 927 // side are also set in the constant, turn this into an AND, as we know 928 // the bits will be cleared. 929 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 930 // NB: it is okay if more bits are known than are requested 931 if (C->getAPIntValue() == Known2.One) { 932 SDValue ANDC = 933 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 934 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 935 } 936 937 // If the RHS is a constant, see if we can change it. Don't alter a -1 938 // constant because that's a 'not' op, and that is better for combining 939 // and codegen. 940 if (!C->isAllOnesValue()) { 941 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 942 // We're flipping all demanded bits. Flip the undemanded bits too. 943 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 944 return TLO.CombineTo(Op, New); 945 } 946 // If we can't turn this into a 'not', try to shrink the constant. 947 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 948 return true; 949 } 950 } 951 952 Known = std::move(KnownOut); 953 break; 954 } 955 case ISD::SELECT: 956 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 957 Depth + 1)) 958 return true; 959 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 960 Depth + 1)) 961 return true; 962 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 963 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 964 965 // If the operands are constants, see if we can simplify them. 966 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 967 return true; 968 969 // Only known if known in both the LHS and RHS. 970 Known.One &= Known2.One; 971 Known.Zero &= Known2.Zero; 972 break; 973 case ISD::SELECT_CC: 974 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 975 Depth + 1)) 976 return true; 977 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 978 Depth + 1)) 979 return true; 980 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 981 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 982 983 // If the operands are constants, see if we can simplify them. 984 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 985 return true; 986 987 // Only known if known in both the LHS and RHS. 988 Known.One &= Known2.One; 989 Known.Zero &= Known2.Zero; 990 break; 991 case ISD::SETCC: { 992 SDValue Op0 = Op.getOperand(0); 993 SDValue Op1 = Op.getOperand(1); 994 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 995 // If (1) we only need the sign-bit, (2) the setcc operands are the same 996 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 997 // -1, we may be able to bypass the setcc. 998 if (DemandedBits.isSignMask() && 999 Op0.getScalarValueSizeInBits() == BitWidth && 1000 getBooleanContents(VT) == 1001 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1002 // If we're testing X < 0, then this compare isn't needed - just use X! 1003 // FIXME: We're limiting to integer types here, but this should also work 1004 // if we don't care about FP signed-zero. The use of SETLT with FP means 1005 // that we don't care about NaNs. 1006 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1007 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1008 return TLO.CombineTo(Op, Op0); 1009 1010 // TODO: Should we check for other forms of sign-bit comparisons? 1011 // Examples: X <= -1, X >= 0 1012 } 1013 if (getBooleanContents(Op0.getValueType()) == 1014 TargetLowering::ZeroOrOneBooleanContent && 1015 BitWidth > 1) 1016 Known.Zero.setBitsFrom(1); 1017 break; 1018 } 1019 case ISD::SHL: { 1020 SDValue Op0 = Op.getOperand(0); 1021 SDValue Op1 = Op.getOperand(1); 1022 1023 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1024 // If the shift count is an invalid immediate, don't do anything. 1025 if (SA->getAPIntValue().uge(BitWidth)) 1026 break; 1027 1028 unsigned ShAmt = SA->getZExtValue(); 1029 if (ShAmt == 0) 1030 return TLO.CombineTo(Op, Op0); 1031 1032 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1033 // single shift. We can do this if the bottom bits (which are shifted 1034 // out) are never demanded. 1035 // TODO - support non-uniform vector amounts. 1036 if (Op0.getOpcode() == ISD::SRL) { 1037 if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1038 if (ConstantSDNode *SA2 = 1039 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1040 if (SA2->getAPIntValue().ult(BitWidth)) { 1041 unsigned C1 = SA2->getZExtValue(); 1042 unsigned Opc = ISD::SHL; 1043 int Diff = ShAmt - C1; 1044 if (Diff < 0) { 1045 Diff = -Diff; 1046 Opc = ISD::SRL; 1047 } 1048 1049 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1050 return TLO.CombineTo( 1051 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1052 } 1053 } 1054 } 1055 } 1056 1057 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1058 Known, TLO, Depth + 1)) 1059 return true; 1060 1061 // Try shrinking the operation as long as the shift amount will still be 1062 // in range. 1063 if ((ShAmt < DemandedBits.getActiveBits()) && 1064 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1065 return true; 1066 1067 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1068 // are not demanded. This will likely allow the anyext to be folded away. 1069 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1070 SDValue InnerOp = Op0.getOperand(0); 1071 EVT InnerVT = InnerOp.getValueType(); 1072 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1073 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1074 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1075 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1076 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1077 ShTy = InnerVT; 1078 SDValue NarrowShl = 1079 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1080 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1081 return TLO.CombineTo( 1082 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1083 } 1084 // Repeat the SHL optimization above in cases where an extension 1085 // intervenes: (shl (anyext (shr x, c1)), c2) to 1086 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1087 // aren't demanded (as above) and that the shifted upper c1 bits of 1088 // x aren't demanded. 1089 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1090 InnerOp.hasOneUse()) { 1091 if (ConstantSDNode *SA2 = 1092 isConstOrConstSplat(InnerOp.getOperand(1))) { 1093 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1094 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1095 DemandedBits.getActiveBits() <= 1096 (InnerBits - InnerShAmt + ShAmt) && 1097 DemandedBits.countTrailingZeros() >= ShAmt) { 1098 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1099 Op1.getValueType()); 1100 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1101 InnerOp.getOperand(0)); 1102 return TLO.CombineTo( 1103 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1104 } 1105 } 1106 } 1107 } 1108 1109 Known.Zero <<= ShAmt; 1110 Known.One <<= ShAmt; 1111 // low bits known zero. 1112 Known.Zero.setLowBits(ShAmt); 1113 } 1114 break; 1115 } 1116 case ISD::SRL: { 1117 SDValue Op0 = Op.getOperand(0); 1118 SDValue Op1 = Op.getOperand(1); 1119 1120 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1121 // If the shift count is an invalid immediate, don't do anything. 1122 if (SA->getAPIntValue().uge(BitWidth)) 1123 break; 1124 1125 unsigned ShAmt = SA->getZExtValue(); 1126 if (ShAmt == 0) 1127 return TLO.CombineTo(Op, Op0); 1128 1129 EVT ShiftVT = Op1.getValueType(); 1130 APInt InDemandedMask = (DemandedBits << ShAmt); 1131 1132 // If the shift is exact, then it does demand the low bits (and knows that 1133 // they are zero). 1134 if (Op->getFlags().hasExact()) 1135 InDemandedMask.setLowBits(ShAmt); 1136 1137 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1138 // single shift. We can do this if the top bits (which are shifted out) 1139 // are never demanded. 1140 // TODO - support non-uniform vector amounts. 1141 if (Op0.getOpcode() == ISD::SHL) { 1142 if (ConstantSDNode *SA2 = 1143 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1144 if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 1145 if (SA2->getAPIntValue().ult(BitWidth)) { 1146 unsigned C1 = SA2->getZExtValue(); 1147 unsigned Opc = ISD::SRL; 1148 int Diff = ShAmt - C1; 1149 if (Diff < 0) { 1150 Diff = -Diff; 1151 Opc = ISD::SHL; 1152 } 1153 1154 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1155 return TLO.CombineTo( 1156 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1157 } 1158 } 1159 } 1160 } 1161 1162 // Compute the new bits that are at the top now. 1163 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1164 Depth + 1)) 1165 return true; 1166 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1167 Known.Zero.lshrInPlace(ShAmt); 1168 Known.One.lshrInPlace(ShAmt); 1169 1170 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1171 } 1172 break; 1173 } 1174 case ISD::SRA: { 1175 SDValue Op0 = Op.getOperand(0); 1176 SDValue Op1 = Op.getOperand(1); 1177 1178 // If this is an arithmetic shift right and only the low-bit is set, we can 1179 // always convert this into a logical shr, even if the shift amount is 1180 // variable. The low bit of the shift cannot be an input sign bit unless 1181 // the shift amount is >= the size of the datatype, which is undefined. 1182 if (DemandedBits.isOneValue()) 1183 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1184 1185 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1186 // If the shift count is an invalid immediate, don't do anything. 1187 if (SA->getAPIntValue().uge(BitWidth)) 1188 break; 1189 1190 unsigned ShAmt = SA->getZExtValue(); 1191 if (ShAmt == 0) 1192 return TLO.CombineTo(Op, Op0); 1193 1194 APInt InDemandedMask = (DemandedBits << ShAmt); 1195 1196 // If the shift is exact, then it does demand the low bits (and knows that 1197 // they are zero). 1198 if (Op->getFlags().hasExact()) 1199 InDemandedMask.setLowBits(ShAmt); 1200 1201 // If any of the demanded bits are produced by the sign extension, we also 1202 // demand the input sign bit. 1203 if (DemandedBits.countLeadingZeros() < ShAmt) 1204 InDemandedMask.setSignBit(); 1205 1206 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1207 Depth + 1)) 1208 return true; 1209 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1210 Known.Zero.lshrInPlace(ShAmt); 1211 Known.One.lshrInPlace(ShAmt); 1212 1213 // If the input sign bit is known to be zero, or if none of the top bits 1214 // are demanded, turn this into an unsigned shift right. 1215 if (Known.Zero[BitWidth - ShAmt - 1] || 1216 DemandedBits.countLeadingZeros() >= ShAmt) { 1217 SDNodeFlags Flags; 1218 Flags.setExact(Op->getFlags().hasExact()); 1219 return TLO.CombineTo( 1220 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1221 } 1222 1223 int Log2 = DemandedBits.exactLogBase2(); 1224 if (Log2 >= 0) { 1225 // The bit must come from the sign. 1226 SDValue NewSA = 1227 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1228 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1229 } 1230 1231 if (Known.One[BitWidth - ShAmt - 1]) 1232 // New bits are known one. 1233 Known.One.setHighBits(ShAmt); 1234 } 1235 break; 1236 } 1237 case ISD::FSHL: 1238 case ISD::FSHR: { 1239 SDValue Op0 = Op.getOperand(0); 1240 SDValue Op1 = Op.getOperand(1); 1241 SDValue Op2 = Op.getOperand(2); 1242 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1243 1244 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1245 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1246 1247 // For fshl, 0-shift returns the 1st arg. 1248 // For fshr, 0-shift returns the 2nd arg. 1249 if (Amt == 0) { 1250 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1251 Known, TLO, Depth + 1)) 1252 return true; 1253 break; 1254 } 1255 1256 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1257 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1258 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1259 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1260 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1261 Depth + 1)) 1262 return true; 1263 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1264 Depth + 1)) 1265 return true; 1266 1267 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1268 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1269 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1270 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1271 Known.One |= Known2.One; 1272 Known.Zero |= Known2.Zero; 1273 } 1274 break; 1275 } 1276 case ISD::BITREVERSE: { 1277 SDValue Src = Op.getOperand(0); 1278 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1279 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1280 Depth + 1)) 1281 return true; 1282 Known.One = Known2.One.reverseBits(); 1283 Known.Zero = Known2.Zero.reverseBits(); 1284 break; 1285 } 1286 case ISD::SIGN_EXTEND_INREG: { 1287 SDValue Op0 = Op.getOperand(0); 1288 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1289 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1290 1291 // If we only care about the highest bit, don't bother shifting right. 1292 if (DemandedBits.isSignMask()) { 1293 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1294 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1295 // However if the input is already sign extended we expect the sign 1296 // extension to be dropped altogether later and do not simplify. 1297 if (!AlreadySignExtended) { 1298 // Compute the correct shift amount type, which must be getShiftAmountTy 1299 // for scalar types after legalization. 1300 EVT ShiftAmtTy = VT; 1301 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1302 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1303 1304 SDValue ShiftAmt = 1305 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1306 return TLO.CombineTo(Op, 1307 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1308 } 1309 } 1310 1311 // If none of the extended bits are demanded, eliminate the sextinreg. 1312 if (DemandedBits.getActiveBits() <= ExVTBits) 1313 return TLO.CombineTo(Op, Op0); 1314 1315 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1316 1317 // Since the sign extended bits are demanded, we know that the sign 1318 // bit is demanded. 1319 InputDemandedBits.setBit(ExVTBits - 1); 1320 1321 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1322 return true; 1323 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1324 1325 // If the sign bit of the input is known set or clear, then we know the 1326 // top bits of the result. 1327 1328 // If the input sign bit is known zero, convert this into a zero extension. 1329 if (Known.Zero[ExVTBits - 1]) 1330 return TLO.CombineTo( 1331 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1332 1333 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1334 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1335 Known.One.setBitsFrom(ExVTBits); 1336 Known.Zero &= Mask; 1337 } else { // Input sign bit unknown 1338 Known.Zero &= Mask; 1339 Known.One &= Mask; 1340 } 1341 break; 1342 } 1343 case ISD::BUILD_PAIR: { 1344 EVT HalfVT = Op.getOperand(0).getValueType(); 1345 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1346 1347 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1348 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1349 1350 KnownBits KnownLo, KnownHi; 1351 1352 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1353 return true; 1354 1355 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1356 return true; 1357 1358 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1359 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1360 1361 Known.One = KnownLo.One.zext(BitWidth) | 1362 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1363 break; 1364 } 1365 case ISD::ZERO_EXTEND: 1366 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1367 SDValue Src = Op.getOperand(0); 1368 EVT SrcVT = Src.getValueType(); 1369 unsigned InBits = SrcVT.getScalarSizeInBits(); 1370 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1371 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1372 1373 // If none of the top bits are demanded, convert this into an any_extend. 1374 if (DemandedBits.getActiveBits() <= InBits) { 1375 // If we only need the non-extended bits of the bottom element 1376 // then we can just bitcast to the result. 1377 if (IsVecInReg && DemandedElts == 1 && 1378 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1379 TLO.DAG.getDataLayout().isLittleEndian()) 1380 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1381 1382 unsigned Opc = 1383 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1384 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1385 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1386 } 1387 1388 APInt InDemandedBits = DemandedBits.trunc(InBits); 1389 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1390 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1391 Depth + 1)) 1392 return true; 1393 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1394 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1395 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1396 break; 1397 } 1398 case ISD::SIGN_EXTEND: 1399 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1400 SDValue Src = Op.getOperand(0); 1401 EVT SrcVT = Src.getValueType(); 1402 unsigned InBits = SrcVT.getScalarSizeInBits(); 1403 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1404 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1405 1406 // If none of the top bits are demanded, convert this into an any_extend. 1407 if (DemandedBits.getActiveBits() <= InBits) { 1408 // If we only need the non-extended bits of the bottom element 1409 // then we can just bitcast to the result. 1410 if (IsVecInReg && DemandedElts == 1 && 1411 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1412 TLO.DAG.getDataLayout().isLittleEndian()) 1413 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1414 1415 unsigned Opc = 1416 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1417 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1418 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1419 } 1420 1421 APInt InDemandedBits = DemandedBits.trunc(InBits); 1422 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1423 1424 // Since some of the sign extended bits are demanded, we know that the sign 1425 // bit is demanded. 1426 InDemandedBits.setBit(InBits - 1); 1427 1428 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1429 Depth + 1)) 1430 return true; 1431 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1432 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1433 1434 // If the sign bit is known one, the top bits match. 1435 Known = Known.sext(BitWidth); 1436 1437 // If the sign bit is known zero, convert this to a zero extend. 1438 if (Known.isNonNegative()) { 1439 unsigned Opc = 1440 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1441 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1442 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1443 } 1444 break; 1445 } 1446 case ISD::ANY_EXTEND: 1447 case ISD::ANY_EXTEND_VECTOR_INREG: { 1448 SDValue Src = Op.getOperand(0); 1449 EVT SrcVT = Src.getValueType(); 1450 unsigned InBits = SrcVT.getScalarSizeInBits(); 1451 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1452 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1453 1454 // If we only need the bottom element then we can just bitcast. 1455 // TODO: Handle ANY_EXTEND? 1456 if (IsVecInReg && DemandedElts == 1 && 1457 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1458 TLO.DAG.getDataLayout().isLittleEndian()) 1459 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1460 1461 APInt InDemandedBits = DemandedBits.trunc(InBits); 1462 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1463 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1464 Depth + 1)) 1465 return true; 1466 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1467 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1468 Known = Known.zext(BitWidth, false /* => any extend */); 1469 break; 1470 } 1471 case ISD::TRUNCATE: { 1472 SDValue Src = Op.getOperand(0); 1473 1474 // Simplify the input, using demanded bit information, and compute the known 1475 // zero/one bits live out. 1476 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1477 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1478 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1479 return true; 1480 Known = Known.trunc(BitWidth); 1481 1482 // If the input is only used by this truncate, see if we can shrink it based 1483 // on the known demanded bits. 1484 if (Src.getNode()->hasOneUse()) { 1485 switch (Src.getOpcode()) { 1486 default: 1487 break; 1488 case ISD::SRL: 1489 // Shrink SRL by a constant if none of the high bits shifted in are 1490 // demanded. 1491 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1492 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1493 // undesirable. 1494 break; 1495 1496 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1497 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1498 break; 1499 1500 SDValue Shift = Src.getOperand(1); 1501 uint64_t ShVal = ShAmt->getZExtValue(); 1502 1503 if (TLO.LegalTypes()) 1504 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1505 1506 APInt HighBits = 1507 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1508 HighBits.lshrInPlace(ShVal); 1509 HighBits = HighBits.trunc(BitWidth); 1510 1511 if (!(HighBits & DemandedBits)) { 1512 // None of the shifted in bits are needed. Add a truncate of the 1513 // shift input, then shift it. 1514 SDValue NewTrunc = 1515 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1516 return TLO.CombineTo( 1517 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1518 } 1519 break; 1520 } 1521 } 1522 1523 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1524 break; 1525 } 1526 case ISD::AssertZext: { 1527 // AssertZext demands all of the high bits, plus any of the low bits 1528 // demanded by its users. 1529 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1530 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1531 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1532 TLO, Depth + 1)) 1533 return true; 1534 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1535 1536 Known.Zero |= ~InMask; 1537 break; 1538 } 1539 case ISD::EXTRACT_VECTOR_ELT: { 1540 SDValue Src = Op.getOperand(0); 1541 SDValue Idx = Op.getOperand(1); 1542 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1543 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1544 1545 // Demand the bits from every vector element without a constant index. 1546 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1547 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1548 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1549 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1550 1551 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1552 // anything about the extended bits. 1553 APInt DemandedSrcBits = DemandedBits; 1554 if (BitWidth > EltBitWidth) 1555 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1556 1557 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1558 Depth + 1)) 1559 return true; 1560 1561 Known = Known2; 1562 if (BitWidth > EltBitWidth) 1563 Known = Known.zext(BitWidth, false /* => any extend */); 1564 break; 1565 } 1566 case ISD::BITCAST: { 1567 SDValue Src = Op.getOperand(0); 1568 EVT SrcVT = Src.getValueType(); 1569 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1570 1571 // If this is an FP->Int bitcast and if the sign bit is the only 1572 // thing demanded, turn this into a FGETSIGN. 1573 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1574 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1575 SrcVT.isFloatingPoint()) { 1576 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1577 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1578 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1579 SrcVT != MVT::f128) { 1580 // Cannot eliminate/lower SHL for f128 yet. 1581 EVT Ty = OpVTLegal ? VT : MVT::i32; 1582 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1583 // place. We expect the SHL to be eliminated by other optimizations. 1584 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1585 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1586 if (!OpVTLegal && OpVTSizeInBits > 32) 1587 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1588 unsigned ShVal = Op.getValueSizeInBits() - 1; 1589 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1590 return TLO.CombineTo(Op, 1591 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1592 } 1593 } 1594 1595 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1596 // Demand the elt/bit if any of the original elts/bits are demanded. 1597 // TODO - bigendian once we have test coverage. 1598 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1599 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1600 (BitWidth % NumSrcEltBits) == 0 && 1601 TLO.DAG.getDataLayout().isLittleEndian()) { 1602 unsigned Scale = BitWidth / NumSrcEltBits; 1603 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1604 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1605 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1606 for (unsigned i = 0; i != Scale; ++i) { 1607 unsigned Offset = i * NumSrcEltBits; 1608 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1609 if (!Sub.isNullValue()) { 1610 DemandedSrcBits |= Sub; 1611 for (unsigned j = 0; j != NumElts; ++j) 1612 if (DemandedElts[j]) 1613 DemandedSrcElts.setBit((j * Scale) + i); 1614 } 1615 } 1616 1617 APInt KnownSrcUndef, KnownSrcZero; 1618 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1619 KnownSrcZero, TLO, Depth + 1)) 1620 return true; 1621 1622 KnownBits KnownSrcBits; 1623 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1624 KnownSrcBits, TLO, Depth + 1)) 1625 return true; 1626 } else if ((NumSrcEltBits % BitWidth) == 0 && 1627 TLO.DAG.getDataLayout().isLittleEndian()) { 1628 unsigned Scale = NumSrcEltBits / BitWidth; 1629 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1630 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1631 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1632 for (unsigned i = 0; i != NumElts; ++i) 1633 if (DemandedElts[i]) { 1634 unsigned Offset = (i % Scale) * BitWidth; 1635 DemandedSrcBits.insertBits(DemandedBits, Offset); 1636 DemandedSrcElts.setBit(i / Scale); 1637 } 1638 1639 if (SrcVT.isVector()) { 1640 APInt KnownSrcUndef, KnownSrcZero; 1641 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1642 KnownSrcZero, TLO, Depth + 1)) 1643 return true; 1644 } 1645 1646 KnownBits KnownSrcBits; 1647 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1648 KnownSrcBits, TLO, Depth + 1)) 1649 return true; 1650 } 1651 1652 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1653 // recursive call where Known may be useful to the caller. 1654 if (Depth > 0) { 1655 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1656 return false; 1657 } 1658 break; 1659 } 1660 case ISD::ADD: 1661 case ISD::MUL: 1662 case ISD::SUB: { 1663 // Add, Sub, and Mul don't demand any bits in positions beyond that 1664 // of the highest bit demanded of them. 1665 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1666 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1667 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1668 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1669 Depth + 1) || 1670 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1671 Depth + 1) || 1672 // See if the operation should be performed at a smaller bit width. 1673 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1674 SDNodeFlags Flags = Op.getNode()->getFlags(); 1675 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1676 // Disable the nsw and nuw flags. We can no longer guarantee that we 1677 // won't wrap after simplification. 1678 Flags.setNoSignedWrap(false); 1679 Flags.setNoUnsignedWrap(false); 1680 SDValue NewOp = 1681 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1682 return TLO.CombineTo(Op, NewOp); 1683 } 1684 return true; 1685 } 1686 1687 // If we have a constant operand, we may be able to turn it into -1 if we 1688 // do not demand the high bits. This can make the constant smaller to 1689 // encode, allow more general folding, or match specialized instruction 1690 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1691 // is probably not useful (and could be detrimental). 1692 ConstantSDNode *C = isConstOrConstSplat(Op1); 1693 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1694 if (C && !C->isAllOnesValue() && !C->isOne() && 1695 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1696 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1697 // We can't guarantee that the new math op doesn't wrap, so explicitly 1698 // clear those flags to prevent folding with a potential existing node 1699 // that has those flags set. 1700 SDNodeFlags Flags; 1701 Flags.setNoSignedWrap(false); 1702 Flags.setNoUnsignedWrap(false); 1703 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1704 return TLO.CombineTo(Op, NewOp); 1705 } 1706 1707 LLVM_FALLTHROUGH; 1708 } 1709 default: 1710 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1711 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1712 Known, TLO, Depth)) 1713 return true; 1714 break; 1715 } 1716 1717 // Just use computeKnownBits to compute output bits. 1718 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1719 break; 1720 } 1721 1722 // If we know the value of all of the demanded bits, return this as a 1723 // constant. 1724 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1725 // Avoid folding to a constant if any OpaqueConstant is involved. 1726 const SDNode *N = Op.getNode(); 1727 for (SDNodeIterator I = SDNodeIterator::begin(N), 1728 E = SDNodeIterator::end(N); 1729 I != E; ++I) { 1730 SDNode *Op = *I; 1731 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1732 if (C->isOpaque()) 1733 return false; 1734 } 1735 // TODO: Handle float bits as well. 1736 if (VT.isInteger()) 1737 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1738 } 1739 1740 return false; 1741 } 1742 1743 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1744 const APInt &DemandedElts, 1745 APInt &KnownUndef, 1746 APInt &KnownZero, 1747 DAGCombinerInfo &DCI) const { 1748 SelectionDAG &DAG = DCI.DAG; 1749 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1750 !DCI.isBeforeLegalizeOps()); 1751 1752 bool Simplified = 1753 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1754 if (Simplified) { 1755 DCI.AddToWorklist(Op.getNode()); 1756 DCI.CommitTargetLoweringOpt(TLO); 1757 } 1758 1759 return Simplified; 1760 } 1761 1762 /// Given a vector binary operation and known undefined elements for each input 1763 /// operand, compute whether each element of the output is undefined. 1764 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1765 const APInt &UndefOp0, 1766 const APInt &UndefOp1) { 1767 EVT VT = BO.getValueType(); 1768 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 1769 "Vector binop only"); 1770 1771 EVT EltVT = VT.getVectorElementType(); 1772 unsigned NumElts = VT.getVectorNumElements(); 1773 assert(UndefOp0.getBitWidth() == NumElts && 1774 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1775 1776 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1777 const APInt &UndefVals) { 1778 if (UndefVals[Index]) 1779 return DAG.getUNDEF(EltVT); 1780 1781 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1782 // Try hard to make sure that the getNode() call is not creating temporary 1783 // nodes. Ignore opaque integers because they do not constant fold. 1784 SDValue Elt = BV->getOperand(Index); 1785 auto *C = dyn_cast<ConstantSDNode>(Elt); 1786 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1787 return Elt; 1788 } 1789 1790 return SDValue(); 1791 }; 1792 1793 APInt KnownUndef = APInt::getNullValue(NumElts); 1794 for (unsigned i = 0; i != NumElts; ++i) { 1795 // If both inputs for this element are either constant or undef and match 1796 // the element type, compute the constant/undef result for this element of 1797 // the vector. 1798 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1799 // not handle FP constants. The code within getNode() should be refactored 1800 // to avoid the danger of creating a bogus temporary node here. 1801 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1802 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1803 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1804 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1805 KnownUndef.setBit(i); 1806 } 1807 return KnownUndef; 1808 } 1809 1810 bool TargetLowering::SimplifyDemandedVectorElts( 1811 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 1812 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1813 bool AssumeSingleUse) const { 1814 EVT VT = Op.getValueType(); 1815 APInt DemandedElts = OriginalDemandedElts; 1816 unsigned NumElts = DemandedElts.getBitWidth(); 1817 assert(VT.isVector() && "Expected vector op"); 1818 assert(VT.getVectorNumElements() == NumElts && 1819 "Mask size mismatches value type element count!"); 1820 1821 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1822 1823 // Undef operand. 1824 if (Op.isUndef()) { 1825 KnownUndef.setAllBits(); 1826 return false; 1827 } 1828 1829 // If Op has other users, assume that all elements are needed. 1830 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1831 DemandedElts.setAllBits(); 1832 1833 // Not demanding any elements from Op. 1834 if (DemandedElts == 0) { 1835 KnownUndef.setAllBits(); 1836 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1837 } 1838 1839 // Limit search depth. 1840 if (Depth >= 6) 1841 return false; 1842 1843 SDLoc DL(Op); 1844 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1845 1846 switch (Op.getOpcode()) { 1847 case ISD::SCALAR_TO_VECTOR: { 1848 if (!DemandedElts[0]) { 1849 KnownUndef.setAllBits(); 1850 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1851 } 1852 KnownUndef.setHighBits(NumElts - 1); 1853 break; 1854 } 1855 case ISD::BITCAST: { 1856 SDValue Src = Op.getOperand(0); 1857 EVT SrcVT = Src.getValueType(); 1858 1859 // We only handle vectors here. 1860 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1861 if (!SrcVT.isVector()) 1862 break; 1863 1864 // Fast handling of 'identity' bitcasts. 1865 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1866 if (NumSrcElts == NumElts) 1867 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1868 KnownZero, TLO, Depth + 1); 1869 1870 APInt SrcZero, SrcUndef; 1871 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1872 1873 // Bitcast from 'large element' src vector to 'small element' vector, we 1874 // must demand a source element if any DemandedElt maps to it. 1875 if ((NumElts % NumSrcElts) == 0) { 1876 unsigned Scale = NumElts / NumSrcElts; 1877 for (unsigned i = 0; i != NumElts; ++i) 1878 if (DemandedElts[i]) 1879 SrcDemandedElts.setBit(i / Scale); 1880 1881 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1882 TLO, Depth + 1)) 1883 return true; 1884 1885 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1886 // of the large element. 1887 // TODO - bigendian once we have test coverage. 1888 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1889 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1890 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1891 for (unsigned i = 0; i != NumElts; ++i) 1892 if (DemandedElts[i]) { 1893 unsigned Ofs = (i % Scale) * EltSizeInBits; 1894 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1895 } 1896 1897 KnownBits Known; 1898 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1899 return true; 1900 } 1901 1902 // If the src element is zero/undef then all the output elements will be - 1903 // only demanded elements are guaranteed to be correct. 1904 for (unsigned i = 0; i != NumSrcElts; ++i) { 1905 if (SrcDemandedElts[i]) { 1906 if (SrcZero[i]) 1907 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1908 if (SrcUndef[i]) 1909 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1910 } 1911 } 1912 } 1913 1914 // Bitcast from 'small element' src vector to 'large element' vector, we 1915 // demand all smaller source elements covered by the larger demanded element 1916 // of this vector. 1917 if ((NumSrcElts % NumElts) == 0) { 1918 unsigned Scale = NumSrcElts / NumElts; 1919 for (unsigned i = 0; i != NumElts; ++i) 1920 if (DemandedElts[i]) 1921 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1922 1923 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1924 TLO, Depth + 1)) 1925 return true; 1926 1927 // If all the src elements covering an output element are zero/undef, then 1928 // the output element will be as well, assuming it was demanded. 1929 for (unsigned i = 0; i != NumElts; ++i) { 1930 if (DemandedElts[i]) { 1931 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1932 KnownZero.setBit(i); 1933 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1934 KnownUndef.setBit(i); 1935 } 1936 } 1937 } 1938 break; 1939 } 1940 case ISD::BUILD_VECTOR: { 1941 // Check all elements and simplify any unused elements with UNDEF. 1942 if (!DemandedElts.isAllOnesValue()) { 1943 // Don't simplify BROADCASTS. 1944 if (llvm::any_of(Op->op_values(), 1945 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1946 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1947 bool Updated = false; 1948 for (unsigned i = 0; i != NumElts; ++i) { 1949 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1950 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1951 KnownUndef.setBit(i); 1952 Updated = true; 1953 } 1954 } 1955 if (Updated) 1956 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1957 } 1958 } 1959 for (unsigned i = 0; i != NumElts; ++i) { 1960 SDValue SrcOp = Op.getOperand(i); 1961 if (SrcOp.isUndef()) { 1962 KnownUndef.setBit(i); 1963 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1964 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1965 KnownZero.setBit(i); 1966 } 1967 } 1968 break; 1969 } 1970 case ISD::CONCAT_VECTORS: { 1971 EVT SubVT = Op.getOperand(0).getValueType(); 1972 unsigned NumSubVecs = Op.getNumOperands(); 1973 unsigned NumSubElts = SubVT.getVectorNumElements(); 1974 for (unsigned i = 0; i != NumSubVecs; ++i) { 1975 SDValue SubOp = Op.getOperand(i); 1976 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1977 APInt SubUndef, SubZero; 1978 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1979 Depth + 1)) 1980 return true; 1981 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1982 KnownZero.insertBits(SubZero, i * NumSubElts); 1983 } 1984 break; 1985 } 1986 case ISD::INSERT_SUBVECTOR: { 1987 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1988 break; 1989 SDValue Base = Op.getOperand(0); 1990 SDValue Sub = Op.getOperand(1); 1991 EVT SubVT = Sub.getValueType(); 1992 unsigned NumSubElts = SubVT.getVectorNumElements(); 1993 const APInt &Idx = Op.getConstantOperandAPInt(2); 1994 if (Idx.ugt(NumElts - NumSubElts)) 1995 break; 1996 unsigned SubIdx = Idx.getZExtValue(); 1997 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1998 APInt SubUndef, SubZero; 1999 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2000 Depth + 1)) 2001 return true; 2002 APInt BaseElts = DemandedElts; 2003 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2004 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2005 Depth + 1)) 2006 return true; 2007 KnownUndef.insertBits(SubUndef, SubIdx); 2008 KnownZero.insertBits(SubZero, SubIdx); 2009 break; 2010 } 2011 case ISD::EXTRACT_SUBVECTOR: { 2012 SDValue Src = Op.getOperand(0); 2013 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2014 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2015 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2016 // Offset the demanded elts by the subvector index. 2017 uint64_t Idx = SubIdx->getZExtValue(); 2018 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2019 APInt SrcUndef, SrcZero; 2020 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2021 Depth + 1)) 2022 return true; 2023 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2024 KnownZero = SrcZero.extractBits(NumElts, Idx); 2025 } 2026 break; 2027 } 2028 case ISD::INSERT_VECTOR_ELT: { 2029 SDValue Vec = Op.getOperand(0); 2030 SDValue Scl = Op.getOperand(1); 2031 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2032 2033 // For a legal, constant insertion index, if we don't need this insertion 2034 // then strip it, else remove it from the demanded elts. 2035 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2036 unsigned Idx = CIdx->getZExtValue(); 2037 if (!DemandedElts[Idx]) 2038 return TLO.CombineTo(Op, Vec); 2039 2040 APInt DemandedVecElts(DemandedElts); 2041 DemandedVecElts.clearBit(Idx); 2042 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2043 KnownZero, TLO, Depth + 1)) 2044 return true; 2045 2046 KnownUndef.clearBit(Idx); 2047 if (Scl.isUndef()) 2048 KnownUndef.setBit(Idx); 2049 2050 KnownZero.clearBit(Idx); 2051 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2052 KnownZero.setBit(Idx); 2053 break; 2054 } 2055 2056 APInt VecUndef, VecZero; 2057 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2058 Depth + 1)) 2059 return true; 2060 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2061 break; 2062 } 2063 case ISD::VSELECT: { 2064 // Try to transform the select condition based on the current demanded 2065 // elements. 2066 // TODO: If a condition element is undef, we can choose from one arm of the 2067 // select (and if one arm is undef, then we can propagate that to the 2068 // result). 2069 // TODO - add support for constant vselect masks (see IR version of this). 2070 APInt UnusedUndef, UnusedZero; 2071 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2072 UnusedZero, TLO, Depth + 1)) 2073 return true; 2074 2075 // See if we can simplify either vselect operand. 2076 APInt DemandedLHS(DemandedElts); 2077 APInt DemandedRHS(DemandedElts); 2078 APInt UndefLHS, ZeroLHS; 2079 APInt UndefRHS, ZeroRHS; 2080 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2081 ZeroLHS, TLO, Depth + 1)) 2082 return true; 2083 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2084 ZeroRHS, TLO, Depth + 1)) 2085 return true; 2086 2087 KnownUndef = UndefLHS & UndefRHS; 2088 KnownZero = ZeroLHS & ZeroRHS; 2089 break; 2090 } 2091 case ISD::VECTOR_SHUFFLE: { 2092 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2093 2094 // Collect demanded elements from shuffle operands.. 2095 APInt DemandedLHS(NumElts, 0); 2096 APInt DemandedRHS(NumElts, 0); 2097 for (unsigned i = 0; i != NumElts; ++i) { 2098 int M = ShuffleMask[i]; 2099 if (M < 0 || !DemandedElts[i]) 2100 continue; 2101 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2102 if (M < (int)NumElts) 2103 DemandedLHS.setBit(M); 2104 else 2105 DemandedRHS.setBit(M - NumElts); 2106 } 2107 2108 // See if we can simplify either shuffle operand. 2109 APInt UndefLHS, ZeroLHS; 2110 APInt UndefRHS, ZeroRHS; 2111 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2112 ZeroLHS, TLO, Depth + 1)) 2113 return true; 2114 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2115 ZeroRHS, TLO, Depth + 1)) 2116 return true; 2117 2118 // Simplify mask using undef elements from LHS/RHS. 2119 bool Updated = false; 2120 bool IdentityLHS = true, IdentityRHS = true; 2121 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2122 for (unsigned i = 0; i != NumElts; ++i) { 2123 int &M = NewMask[i]; 2124 if (M < 0) 2125 continue; 2126 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2127 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2128 Updated = true; 2129 M = -1; 2130 } 2131 IdentityLHS &= (M < 0) || (M == (int)i); 2132 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2133 } 2134 2135 // Update legal shuffle masks based on demanded elements if it won't reduce 2136 // to Identity which can cause premature removal of the shuffle mask. 2137 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 2138 isShuffleMaskLegal(NewMask, VT)) 2139 return TLO.CombineTo(Op, 2140 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 2141 Op.getOperand(1), NewMask)); 2142 2143 // Propagate undef/zero elements from LHS/RHS. 2144 for (unsigned i = 0; i != NumElts; ++i) { 2145 int M = ShuffleMask[i]; 2146 if (M < 0) { 2147 KnownUndef.setBit(i); 2148 } else if (M < (int)NumElts) { 2149 if (UndefLHS[M]) 2150 KnownUndef.setBit(i); 2151 if (ZeroLHS[M]) 2152 KnownZero.setBit(i); 2153 } else { 2154 if (UndefRHS[M - NumElts]) 2155 KnownUndef.setBit(i); 2156 if (ZeroRHS[M - NumElts]) 2157 KnownZero.setBit(i); 2158 } 2159 } 2160 break; 2161 } 2162 case ISD::ANY_EXTEND_VECTOR_INREG: 2163 case ISD::SIGN_EXTEND_VECTOR_INREG: 2164 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2165 APInt SrcUndef, SrcZero; 2166 SDValue Src = Op.getOperand(0); 2167 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2168 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2169 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2170 Depth + 1)) 2171 return true; 2172 KnownZero = SrcZero.zextOrTrunc(NumElts); 2173 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2174 2175 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2176 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2177 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2178 // aext - if we just need the bottom element then we can bitcast. 2179 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2180 } 2181 2182 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2183 // zext(undef) upper bits are guaranteed to be zero. 2184 if (DemandedElts.isSubsetOf(KnownUndef)) 2185 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2186 KnownUndef.clearAllBits(); 2187 } 2188 break; 2189 } 2190 2191 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2192 // MAX, saturated math, etc. 2193 case ISD::OR: 2194 case ISD::XOR: 2195 case ISD::ADD: 2196 case ISD::SUB: 2197 case ISD::FADD: 2198 case ISD::FSUB: 2199 case ISD::FMUL: 2200 case ISD::FDIV: 2201 case ISD::FREM: { 2202 APInt UndefRHS, ZeroRHS; 2203 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2204 ZeroRHS, TLO, Depth + 1)) 2205 return true; 2206 APInt UndefLHS, ZeroLHS; 2207 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2208 ZeroLHS, TLO, Depth + 1)) 2209 return true; 2210 2211 KnownZero = ZeroLHS & ZeroRHS; 2212 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2213 break; 2214 } 2215 case ISD::SHL: 2216 case ISD::SRL: 2217 case ISD::SRA: 2218 case ISD::ROTL: 2219 case ISD::ROTR: { 2220 APInt UndefRHS, ZeroRHS; 2221 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2222 ZeroRHS, TLO, Depth + 1)) 2223 return true; 2224 APInt UndefLHS, ZeroLHS; 2225 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2226 ZeroLHS, TLO, Depth + 1)) 2227 return true; 2228 2229 KnownZero = ZeroLHS; 2230 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2231 break; 2232 } 2233 case ISD::MUL: 2234 case ISD::AND: { 2235 APInt SrcUndef, SrcZero; 2236 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2237 SrcZero, TLO, Depth + 1)) 2238 return true; 2239 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2240 KnownZero, TLO, Depth + 1)) 2241 return true; 2242 2243 // If either side has a zero element, then the result element is zero, even 2244 // if the other is an UNDEF. 2245 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2246 // and then handle 'and' nodes with the rest of the binop opcodes. 2247 KnownZero |= SrcZero; 2248 KnownUndef &= SrcUndef; 2249 KnownUndef &= ~KnownZero; 2250 break; 2251 } 2252 case ISD::TRUNCATE: 2253 case ISD::SIGN_EXTEND: 2254 case ISD::ZERO_EXTEND: 2255 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2256 KnownZero, TLO, Depth + 1)) 2257 return true; 2258 2259 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2260 // zext(undef) upper bits are guaranteed to be zero. 2261 if (DemandedElts.isSubsetOf(KnownUndef)) 2262 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2263 KnownUndef.clearAllBits(); 2264 } 2265 break; 2266 default: { 2267 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2268 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2269 KnownZero, TLO, Depth)) 2270 return true; 2271 } else { 2272 KnownBits Known; 2273 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2274 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2275 TLO, Depth, AssumeSingleUse)) 2276 return true; 2277 } 2278 break; 2279 } 2280 } 2281 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2282 2283 // Constant fold all undef cases. 2284 // TODO: Handle zero cases as well. 2285 if (DemandedElts.isSubsetOf(KnownUndef)) 2286 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2287 2288 return false; 2289 } 2290 2291 /// Determine which of the bits specified in Mask are known to be either zero or 2292 /// one and return them in the Known. 2293 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2294 KnownBits &Known, 2295 const APInt &DemandedElts, 2296 const SelectionDAG &DAG, 2297 unsigned Depth) const { 2298 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2299 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2300 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2301 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2302 "Should use MaskedValueIsZero if you don't know whether Op" 2303 " is a target node!"); 2304 Known.resetAll(); 2305 } 2306 2307 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2308 KnownBits &Known, 2309 const APInt &DemandedElts, 2310 const SelectionDAG &DAG, 2311 unsigned Depth) const { 2312 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2313 2314 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2315 // The low bits are known zero if the pointer is aligned. 2316 Known.Zero.setLowBits(Log2_32(Align)); 2317 } 2318 } 2319 2320 /// This method can be implemented by targets that want to expose additional 2321 /// information about sign bits to the DAG Combiner. 2322 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2323 const APInt &, 2324 const SelectionDAG &, 2325 unsigned Depth) const { 2326 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2327 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2328 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2329 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2330 "Should use ComputeNumSignBits if you don't know whether Op" 2331 " is a target node!"); 2332 return 1; 2333 } 2334 2335 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2336 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2337 TargetLoweringOpt &TLO, unsigned Depth) const { 2338 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2339 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2340 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2341 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2342 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2343 " is a target node!"); 2344 return false; 2345 } 2346 2347 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2348 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2349 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2350 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2351 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2352 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2353 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2354 "Should use SimplifyDemandedBits if you don't know whether Op" 2355 " is a target node!"); 2356 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2357 return false; 2358 } 2359 2360 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2361 return nullptr; 2362 } 2363 2364 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2365 const SelectionDAG &DAG, 2366 bool SNaN, 2367 unsigned Depth) const { 2368 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2369 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2370 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2371 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2372 "Should use isKnownNeverNaN if you don't know whether Op" 2373 " is a target node!"); 2374 return false; 2375 } 2376 2377 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2378 // work with truncating build vectors and vectors with elements of less than 2379 // 8 bits. 2380 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2381 if (!N) 2382 return false; 2383 2384 APInt CVal; 2385 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2386 CVal = CN->getAPIntValue(); 2387 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2388 auto *CN = BV->getConstantSplatNode(); 2389 if (!CN) 2390 return false; 2391 2392 // If this is a truncating build vector, truncate the splat value. 2393 // Otherwise, we may fail to match the expected values below. 2394 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2395 CVal = CN->getAPIntValue(); 2396 if (BVEltWidth < CVal.getBitWidth()) 2397 CVal = CVal.trunc(BVEltWidth); 2398 } else { 2399 return false; 2400 } 2401 2402 switch (getBooleanContents(N->getValueType(0))) { 2403 case UndefinedBooleanContent: 2404 return CVal[0]; 2405 case ZeroOrOneBooleanContent: 2406 return CVal.isOneValue(); 2407 case ZeroOrNegativeOneBooleanContent: 2408 return CVal.isAllOnesValue(); 2409 } 2410 2411 llvm_unreachable("Invalid boolean contents"); 2412 } 2413 2414 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2415 if (!N) 2416 return false; 2417 2418 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2419 if (!CN) { 2420 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2421 if (!BV) 2422 return false; 2423 2424 // Only interested in constant splats, we don't care about undef 2425 // elements in identifying boolean constants and getConstantSplatNode 2426 // returns NULL if all ops are undef; 2427 CN = BV->getConstantSplatNode(); 2428 if (!CN) 2429 return false; 2430 } 2431 2432 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2433 return !CN->getAPIntValue()[0]; 2434 2435 return CN->isNullValue(); 2436 } 2437 2438 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2439 bool SExt) const { 2440 if (VT == MVT::i1) 2441 return N->isOne(); 2442 2443 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2444 switch (Cnt) { 2445 case TargetLowering::ZeroOrOneBooleanContent: 2446 // An extended value of 1 is always true, unless its original type is i1, 2447 // in which case it will be sign extended to -1. 2448 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2449 case TargetLowering::UndefinedBooleanContent: 2450 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2451 return N->isAllOnesValue() && SExt; 2452 } 2453 llvm_unreachable("Unexpected enumeration."); 2454 } 2455 2456 /// This helper function of SimplifySetCC tries to optimize the comparison when 2457 /// either operand of the SetCC node is a bitwise-and instruction. 2458 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2459 ISD::CondCode Cond, const SDLoc &DL, 2460 DAGCombinerInfo &DCI) const { 2461 // Match these patterns in any of their permutations: 2462 // (X & Y) == Y 2463 // (X & Y) != Y 2464 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2465 std::swap(N0, N1); 2466 2467 EVT OpVT = N0.getValueType(); 2468 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2469 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2470 return SDValue(); 2471 2472 SDValue X, Y; 2473 if (N0.getOperand(0) == N1) { 2474 X = N0.getOperand(1); 2475 Y = N0.getOperand(0); 2476 } else if (N0.getOperand(1) == N1) { 2477 X = N0.getOperand(0); 2478 Y = N0.getOperand(1); 2479 } else { 2480 return SDValue(); 2481 } 2482 2483 SelectionDAG &DAG = DCI.DAG; 2484 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2485 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2486 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2487 // Note that where Y is variable and is known to have at most one bit set 2488 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2489 // equivalent when Y == 0. 2490 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2491 if (DCI.isBeforeLegalizeOps() || 2492 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2493 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2494 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2495 // If the target supports an 'and-not' or 'and-complement' logic operation, 2496 // try to use that to make a comparison operation more efficient. 2497 // But don't do this transform if the mask is a single bit because there are 2498 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2499 // 'rlwinm' on PPC). 2500 2501 // Bail out if the compare operand that we want to turn into a zero is 2502 // already a zero (otherwise, infinite loop). 2503 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2504 if (YConst && YConst->isNullValue()) 2505 return SDValue(); 2506 2507 // Transform this into: ~X & Y == 0. 2508 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2509 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2510 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2511 } 2512 2513 return SDValue(); 2514 } 2515 2516 /// There are multiple IR patterns that could be checking whether certain 2517 /// truncation of a signed number would be lossy or not. The pattern which is 2518 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2519 /// We are looking for the following pattern: (KeptBits is a constant) 2520 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2521 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2522 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2523 /// We will unfold it into the natural trunc+sext pattern: 2524 /// ((%x << C) a>> C) dstcond %x 2525 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2526 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2527 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2528 const SDLoc &DL) const { 2529 // We must be comparing with a constant. 2530 ConstantSDNode *C1; 2531 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2532 return SDValue(); 2533 2534 // N0 should be: add %x, (1 << (KeptBits-1)) 2535 if (N0->getOpcode() != ISD::ADD) 2536 return SDValue(); 2537 2538 // And we must be 'add'ing a constant. 2539 ConstantSDNode *C01; 2540 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2541 return SDValue(); 2542 2543 SDValue X = N0->getOperand(0); 2544 EVT XVT = X.getValueType(); 2545 2546 // Validate constants ... 2547 2548 APInt I1 = C1->getAPIntValue(); 2549 2550 ISD::CondCode NewCond; 2551 if (Cond == ISD::CondCode::SETULT) { 2552 NewCond = ISD::CondCode::SETEQ; 2553 } else if (Cond == ISD::CondCode::SETULE) { 2554 NewCond = ISD::CondCode::SETEQ; 2555 // But need to 'canonicalize' the constant. 2556 I1 += 1; 2557 } else if (Cond == ISD::CondCode::SETUGT) { 2558 NewCond = ISD::CondCode::SETNE; 2559 // But need to 'canonicalize' the constant. 2560 I1 += 1; 2561 } else if (Cond == ISD::CondCode::SETUGE) { 2562 NewCond = ISD::CondCode::SETNE; 2563 } else 2564 return SDValue(); 2565 2566 APInt I01 = C01->getAPIntValue(); 2567 2568 auto checkConstants = [&I1, &I01]() -> bool { 2569 // Both of them must be power-of-two, and the constant from setcc is bigger. 2570 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2571 }; 2572 2573 if (checkConstants()) { 2574 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2575 } else { 2576 // What if we invert constants? (and the target predicate) 2577 I1.negate(); 2578 I01.negate(); 2579 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2580 if (!checkConstants()) 2581 return SDValue(); 2582 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2583 } 2584 2585 // They are power-of-two, so which bit is set? 2586 const unsigned KeptBits = I1.logBase2(); 2587 const unsigned KeptBitsMinusOne = I01.logBase2(); 2588 2589 // Magic! 2590 if (KeptBits != (KeptBitsMinusOne + 1)) 2591 return SDValue(); 2592 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2593 2594 // We don't want to do this in every single case. 2595 SelectionDAG &DAG = DCI.DAG; 2596 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2597 XVT, KeptBits)) 2598 return SDValue(); 2599 2600 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2601 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2602 2603 // Unfold into: ((%x << C) a>> C) cond %x 2604 // Where 'cond' will be either 'eq' or 'ne'. 2605 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2606 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2607 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2608 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2609 2610 return T2; 2611 } 2612 2613 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2614 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2615 /// handle the commuted versions of these patterns. 2616 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2617 ISD::CondCode Cond, const SDLoc &DL, 2618 DAGCombinerInfo &DCI) const { 2619 unsigned BOpcode = N0.getOpcode(); 2620 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2621 "Unexpected binop"); 2622 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2623 2624 // (X + Y) == X --> Y == 0 2625 // (X - Y) == X --> Y == 0 2626 // (X ^ Y) == X --> Y == 0 2627 SelectionDAG &DAG = DCI.DAG; 2628 EVT OpVT = N0.getValueType(); 2629 SDValue X = N0.getOperand(0); 2630 SDValue Y = N0.getOperand(1); 2631 if (X == N1) 2632 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2633 2634 if (Y != N1) 2635 return SDValue(); 2636 2637 // (X + Y) == Y --> X == 0 2638 // (X ^ Y) == Y --> X == 0 2639 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2640 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2641 2642 // The shift would not be valid if the operands are boolean (i1). 2643 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2644 return SDValue(); 2645 2646 // (X - Y) == Y --> X == Y << 1 2647 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2648 !DCI.isBeforeLegalize()); 2649 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2650 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2651 if (!DCI.isCalledByLegalizer()) 2652 DCI.AddToWorklist(YShl1.getNode()); 2653 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2654 } 2655 2656 /// Try to simplify a setcc built with the specified operands and cc. If it is 2657 /// unable to simplify it, return a null SDValue. 2658 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2659 ISD::CondCode Cond, bool foldBooleans, 2660 DAGCombinerInfo &DCI, 2661 const SDLoc &dl) const { 2662 SelectionDAG &DAG = DCI.DAG; 2663 EVT OpVT = N0.getValueType(); 2664 2665 // Constant fold or commute setcc. 2666 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 2667 return Fold; 2668 2669 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2670 // TODO: Handle non-splat vector constants. All undef causes trouble. 2671 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2672 if (isConstOrConstSplat(N0) && 2673 (DCI.isBeforeLegalizeOps() || 2674 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2675 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2676 2677 // If we have a subtract with the same 2 non-constant operands as this setcc 2678 // -- but in reverse order -- then try to commute the operands of this setcc 2679 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 2680 // instruction on some targets. 2681 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 2682 (DCI.isBeforeLegalizeOps() || 2683 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 2684 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 2685 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 2686 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2687 2688 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2689 const APInt &C1 = N1C->getAPIntValue(); 2690 2691 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2692 // equality comparison, then we're just comparing whether X itself is 2693 // zero. 2694 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2695 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2696 N0.getOperand(1).getOpcode() == ISD::Constant) { 2697 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2698 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2699 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2700 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2701 // (srl (ctlz x), 5) == 0 -> X != 0 2702 // (srl (ctlz x), 5) != 1 -> X != 0 2703 Cond = ISD::SETNE; 2704 } else { 2705 // (srl (ctlz x), 5) != 0 -> X == 0 2706 // (srl (ctlz x), 5) == 1 -> X == 0 2707 Cond = ISD::SETEQ; 2708 } 2709 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2710 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2711 Zero, Cond); 2712 } 2713 } 2714 2715 SDValue CTPOP = N0; 2716 // Look through truncs that don't change the value of a ctpop. 2717 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2718 CTPOP = N0.getOperand(0); 2719 2720 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2721 (N0 == CTPOP || 2722 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2723 EVT CTVT = CTPOP.getValueType(); 2724 SDValue CTOp = CTPOP.getOperand(0); 2725 2726 // (ctpop x) u< 2 -> (x & x-1) == 0 2727 // (ctpop x) u> 1 -> (x & x-1) != 0 2728 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2729 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2730 DAG.getConstant(1, dl, CTVT)); 2731 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2732 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2733 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2734 } 2735 2736 // If ctpop is not supported, expand a power-of-2 comparison based on it. 2737 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 2738 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2739 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 2740 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 2741 SDValue Zero = DAG.getConstant(0, dl, CTVT); 2742 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 2743 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true); 2744 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 2745 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 2746 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 2747 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 2748 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 2749 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 2750 } 2751 } 2752 2753 // (zext x) == C --> x == (trunc C) 2754 // (sext x) == C --> x == (trunc C) 2755 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2756 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2757 unsigned MinBits = N0.getValueSizeInBits(); 2758 SDValue PreExt; 2759 bool Signed = false; 2760 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2761 // ZExt 2762 MinBits = N0->getOperand(0).getValueSizeInBits(); 2763 PreExt = N0->getOperand(0); 2764 } else if (N0->getOpcode() == ISD::AND) { 2765 // DAGCombine turns costly ZExts into ANDs 2766 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2767 if ((C->getAPIntValue()+1).isPowerOf2()) { 2768 MinBits = C->getAPIntValue().countTrailingOnes(); 2769 PreExt = N0->getOperand(0); 2770 } 2771 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2772 // SExt 2773 MinBits = N0->getOperand(0).getValueSizeInBits(); 2774 PreExt = N0->getOperand(0); 2775 Signed = true; 2776 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2777 // ZEXTLOAD / SEXTLOAD 2778 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2779 MinBits = LN0->getMemoryVT().getSizeInBits(); 2780 PreExt = N0; 2781 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2782 Signed = true; 2783 MinBits = LN0->getMemoryVT().getSizeInBits(); 2784 PreExt = N0; 2785 } 2786 } 2787 2788 // Figure out how many bits we need to preserve this constant. 2789 unsigned ReqdBits = Signed ? 2790 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2791 C1.getActiveBits(); 2792 2793 // Make sure we're not losing bits from the constant. 2794 if (MinBits > 0 && 2795 MinBits < C1.getBitWidth() && 2796 MinBits >= ReqdBits) { 2797 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2798 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2799 // Will get folded away. 2800 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2801 if (MinBits == 1 && C1 == 1) 2802 // Invert the condition. 2803 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2804 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2805 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2806 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2807 } 2808 2809 // If truncating the setcc operands is not desirable, we can still 2810 // simplify the expression in some cases: 2811 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2812 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2813 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2814 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2815 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2816 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2817 SDValue TopSetCC = N0->getOperand(0); 2818 unsigned N0Opc = N0->getOpcode(); 2819 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2820 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2821 TopSetCC.getOpcode() == ISD::SETCC && 2822 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2823 (isConstFalseVal(N1C) || 2824 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2825 2826 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2827 (!N1C->isNullValue() && Cond == ISD::SETNE); 2828 2829 if (!Inverse) 2830 return TopSetCC; 2831 2832 ISD::CondCode InvCond = ISD::getSetCCInverse( 2833 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2834 TopSetCC.getOperand(0).getValueType().isInteger()); 2835 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2836 TopSetCC.getOperand(1), 2837 InvCond); 2838 } 2839 } 2840 } 2841 2842 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2843 // equality or unsigned, and all 1 bits of the const are in the same 2844 // partial word, see if we can shorten the load. 2845 if (DCI.isBeforeLegalize() && 2846 !ISD::isSignedIntSetCC(Cond) && 2847 N0.getOpcode() == ISD::AND && C1 == 0 && 2848 N0.getNode()->hasOneUse() && 2849 isa<LoadSDNode>(N0.getOperand(0)) && 2850 N0.getOperand(0).getNode()->hasOneUse() && 2851 isa<ConstantSDNode>(N0.getOperand(1))) { 2852 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2853 APInt bestMask; 2854 unsigned bestWidth = 0, bestOffset = 0; 2855 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2856 unsigned origWidth = N0.getValueSizeInBits(); 2857 unsigned maskWidth = origWidth; 2858 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2859 // 8 bits, but have to be careful... 2860 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2861 origWidth = Lod->getMemoryVT().getSizeInBits(); 2862 const APInt &Mask = N0.getConstantOperandAPInt(1); 2863 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2864 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2865 for (unsigned offset=0; offset<origWidth/width; offset++) { 2866 if (Mask.isSubsetOf(newMask)) { 2867 if (DAG.getDataLayout().isLittleEndian()) 2868 bestOffset = (uint64_t)offset * (width/8); 2869 else 2870 bestOffset = (origWidth/width - offset - 1) * (width/8); 2871 bestMask = Mask.lshr(offset * (width/8) * 8); 2872 bestWidth = width; 2873 break; 2874 } 2875 newMask <<= width; 2876 } 2877 } 2878 } 2879 if (bestWidth) { 2880 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2881 if (newVT.isRound() && 2882 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2883 EVT PtrType = Lod->getOperand(1).getValueType(); 2884 SDValue Ptr = Lod->getBasePtr(); 2885 if (bestOffset != 0) 2886 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2887 DAG.getConstant(bestOffset, dl, PtrType)); 2888 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2889 SDValue NewLoad = DAG.getLoad( 2890 newVT, dl, Lod->getChain(), Ptr, 2891 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2892 return DAG.getSetCC(dl, VT, 2893 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2894 DAG.getConstant(bestMask.trunc(bestWidth), 2895 dl, newVT)), 2896 DAG.getConstant(0LL, dl, newVT), Cond); 2897 } 2898 } 2899 } 2900 2901 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2902 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2903 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2904 2905 // If the comparison constant has bits in the upper part, the 2906 // zero-extended value could never match. 2907 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2908 C1.getBitWidth() - InSize))) { 2909 switch (Cond) { 2910 case ISD::SETUGT: 2911 case ISD::SETUGE: 2912 case ISD::SETEQ: 2913 return DAG.getConstant(0, dl, VT); 2914 case ISD::SETULT: 2915 case ISD::SETULE: 2916 case ISD::SETNE: 2917 return DAG.getConstant(1, dl, VT); 2918 case ISD::SETGT: 2919 case ISD::SETGE: 2920 // True if the sign bit of C1 is set. 2921 return DAG.getConstant(C1.isNegative(), dl, VT); 2922 case ISD::SETLT: 2923 case ISD::SETLE: 2924 // True if the sign bit of C1 isn't set. 2925 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2926 default: 2927 break; 2928 } 2929 } 2930 2931 // Otherwise, we can perform the comparison with the low bits. 2932 switch (Cond) { 2933 case ISD::SETEQ: 2934 case ISD::SETNE: 2935 case ISD::SETUGT: 2936 case ISD::SETUGE: 2937 case ISD::SETULT: 2938 case ISD::SETULE: { 2939 EVT newVT = N0.getOperand(0).getValueType(); 2940 if (DCI.isBeforeLegalizeOps() || 2941 (isOperationLegal(ISD::SETCC, newVT) && 2942 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2943 EVT NewSetCCVT = 2944 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2945 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2946 2947 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2948 NewConst, Cond); 2949 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2950 } 2951 break; 2952 } 2953 default: 2954 break; // todo, be more careful with signed comparisons 2955 } 2956 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2957 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2958 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2959 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2960 EVT ExtDstTy = N0.getValueType(); 2961 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2962 2963 // If the constant doesn't fit into the number of bits for the source of 2964 // the sign extension, it is impossible for both sides to be equal. 2965 if (C1.getMinSignedBits() > ExtSrcTyBits) 2966 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2967 2968 SDValue ZextOp; 2969 EVT Op0Ty = N0.getOperand(0).getValueType(); 2970 if (Op0Ty == ExtSrcTy) { 2971 ZextOp = N0.getOperand(0); 2972 } else { 2973 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2974 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2975 DAG.getConstant(Imm, dl, Op0Ty)); 2976 } 2977 if (!DCI.isCalledByLegalizer()) 2978 DCI.AddToWorklist(ZextOp.getNode()); 2979 // Otherwise, make this a use of a zext. 2980 return DAG.getSetCC(dl, VT, ZextOp, 2981 DAG.getConstant(C1 & APInt::getLowBitsSet( 2982 ExtDstTyBits, 2983 ExtSrcTyBits), 2984 dl, ExtDstTy), 2985 Cond); 2986 } else if ((N1C->isNullValue() || N1C->isOne()) && 2987 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2988 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2989 if (N0.getOpcode() == ISD::SETCC && 2990 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2991 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2992 if (TrueWhenTrue) 2993 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2994 // Invert the condition. 2995 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2996 CC = ISD::getSetCCInverse(CC, 2997 N0.getOperand(0).getValueType().isInteger()); 2998 if (DCI.isBeforeLegalizeOps() || 2999 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3000 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3001 } 3002 3003 if ((N0.getOpcode() == ISD::XOR || 3004 (N0.getOpcode() == ISD::AND && 3005 N0.getOperand(0).getOpcode() == ISD::XOR && 3006 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3007 isa<ConstantSDNode>(N0.getOperand(1)) && 3008 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3009 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3010 // can only do this if the top bits are known zero. 3011 unsigned BitWidth = N0.getValueSizeInBits(); 3012 if (DAG.MaskedValueIsZero(N0, 3013 APInt::getHighBitsSet(BitWidth, 3014 BitWidth-1))) { 3015 // Okay, get the un-inverted input value. 3016 SDValue Val; 3017 if (N0.getOpcode() == ISD::XOR) { 3018 Val = N0.getOperand(0); 3019 } else { 3020 assert(N0.getOpcode() == ISD::AND && 3021 N0.getOperand(0).getOpcode() == ISD::XOR); 3022 // ((X^1)&1)^1 -> X & 1 3023 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3024 N0.getOperand(0).getOperand(0), 3025 N0.getOperand(1)); 3026 } 3027 3028 return DAG.getSetCC(dl, VT, Val, N1, 3029 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3030 } 3031 } else if (N1C->isOne() && 3032 (VT == MVT::i1 || 3033 getBooleanContents(N0->getValueType(0)) == 3034 ZeroOrOneBooleanContent)) { 3035 SDValue Op0 = N0; 3036 if (Op0.getOpcode() == ISD::TRUNCATE) 3037 Op0 = Op0.getOperand(0); 3038 3039 if ((Op0.getOpcode() == ISD::XOR) && 3040 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3041 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3042 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3043 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3044 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 3045 Cond); 3046 } 3047 if (Op0.getOpcode() == ISD::AND && 3048 isa<ConstantSDNode>(Op0.getOperand(1)) && 3049 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3050 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3051 if (Op0.getValueType().bitsGT(VT)) 3052 Op0 = DAG.getNode(ISD::AND, dl, VT, 3053 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3054 DAG.getConstant(1, dl, VT)); 3055 else if (Op0.getValueType().bitsLT(VT)) 3056 Op0 = DAG.getNode(ISD::AND, dl, VT, 3057 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3058 DAG.getConstant(1, dl, VT)); 3059 3060 return DAG.getSetCC(dl, VT, Op0, 3061 DAG.getConstant(0, dl, Op0.getValueType()), 3062 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3063 } 3064 if (Op0.getOpcode() == ISD::AssertZext && 3065 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3066 return DAG.getSetCC(dl, VT, Op0, 3067 DAG.getConstant(0, dl, Op0.getValueType()), 3068 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3069 } 3070 } 3071 3072 // Given: 3073 // icmp eq/ne (urem %x, %y), 0 3074 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3075 // icmp eq/ne %x, 0 3076 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3077 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3078 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3079 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3080 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3081 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3082 } 3083 3084 if (SDValue V = 3085 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3086 return V; 3087 } 3088 3089 // These simplifications apply to splat vectors as well. 3090 // TODO: Handle more splat vector cases. 3091 if (auto *N1C = isConstOrConstSplat(N1)) { 3092 const APInt &C1 = N1C->getAPIntValue(); 3093 3094 APInt MinVal, MaxVal; 3095 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3096 if (ISD::isSignedIntSetCC(Cond)) { 3097 MinVal = APInt::getSignedMinValue(OperandBitSize); 3098 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3099 } else { 3100 MinVal = APInt::getMinValue(OperandBitSize); 3101 MaxVal = APInt::getMaxValue(OperandBitSize); 3102 } 3103 3104 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3105 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3106 // X >= MIN --> true 3107 if (C1 == MinVal) 3108 return DAG.getBoolConstant(true, dl, VT, OpVT); 3109 3110 if (!VT.isVector()) { // TODO: Support this for vectors. 3111 // X >= C0 --> X > (C0 - 1) 3112 APInt C = C1 - 1; 3113 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3114 if ((DCI.isBeforeLegalizeOps() || 3115 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3116 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3117 isLegalICmpImmediate(C.getSExtValue())))) { 3118 return DAG.getSetCC(dl, VT, N0, 3119 DAG.getConstant(C, dl, N1.getValueType()), 3120 NewCC); 3121 } 3122 } 3123 } 3124 3125 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3126 // X <= MAX --> true 3127 if (C1 == MaxVal) 3128 return DAG.getBoolConstant(true, dl, VT, OpVT); 3129 3130 // X <= C0 --> X < (C0 + 1) 3131 if (!VT.isVector()) { // TODO: Support this for vectors. 3132 APInt C = C1 + 1; 3133 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3134 if ((DCI.isBeforeLegalizeOps() || 3135 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3136 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3137 isLegalICmpImmediate(C.getSExtValue())))) { 3138 return DAG.getSetCC(dl, VT, N0, 3139 DAG.getConstant(C, dl, N1.getValueType()), 3140 NewCC); 3141 } 3142 } 3143 } 3144 3145 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3146 if (C1 == MinVal) 3147 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3148 3149 // TODO: Support this for vectors after legalize ops. 3150 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3151 // Canonicalize setlt X, Max --> setne X, Max 3152 if (C1 == MaxVal) 3153 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3154 3155 // If we have setult X, 1, turn it into seteq X, 0 3156 if (C1 == MinVal+1) 3157 return DAG.getSetCC(dl, VT, N0, 3158 DAG.getConstant(MinVal, dl, N0.getValueType()), 3159 ISD::SETEQ); 3160 } 3161 } 3162 3163 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3164 if (C1 == MaxVal) 3165 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3166 3167 // TODO: Support this for vectors after legalize ops. 3168 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3169 // Canonicalize setgt X, Min --> setne X, Min 3170 if (C1 == MinVal) 3171 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3172 3173 // If we have setugt X, Max-1, turn it into seteq X, Max 3174 if (C1 == MaxVal-1) 3175 return DAG.getSetCC(dl, VT, N0, 3176 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3177 ISD::SETEQ); 3178 } 3179 } 3180 3181 // If we have "setcc X, C0", check to see if we can shrink the immediate 3182 // by changing cc. 3183 // TODO: Support this for vectors after legalize ops. 3184 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3185 // SETUGT X, SINTMAX -> SETLT X, 0 3186 if (Cond == ISD::SETUGT && 3187 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3188 return DAG.getSetCC(dl, VT, N0, 3189 DAG.getConstant(0, dl, N1.getValueType()), 3190 ISD::SETLT); 3191 3192 // SETULT X, SINTMIN -> SETGT X, -1 3193 if (Cond == ISD::SETULT && 3194 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3195 SDValue ConstMinusOne = 3196 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3197 N1.getValueType()); 3198 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3199 } 3200 } 3201 } 3202 3203 // Back to non-vector simplifications. 3204 // TODO: Can we do these for vector splats? 3205 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3206 const APInt &C1 = N1C->getAPIntValue(); 3207 3208 // Fold bit comparisons when we can. 3209 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3210 (VT == N0.getValueType() || 3211 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 3212 N0.getOpcode() == ISD::AND) { 3213 auto &DL = DAG.getDataLayout(); 3214 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3215 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3216 !DCI.isBeforeLegalize()); 3217 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3218 // Perform the xform if the AND RHS is a single bit. 3219 if (AndRHS->getAPIntValue().isPowerOf2()) { 3220 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3221 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3222 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 3223 ShiftTy))); 3224 } 3225 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3226 // (X & 8) == 8 --> (X & 8) >> 3 3227 // Perform the xform if C1 is a single bit. 3228 if (C1.isPowerOf2()) { 3229 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3230 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3231 DAG.getConstant(C1.logBase2(), dl, 3232 ShiftTy))); 3233 } 3234 } 3235 } 3236 } 3237 3238 if (C1.getMinSignedBits() <= 64 && 3239 !isLegalICmpImmediate(C1.getSExtValue())) { 3240 // (X & -256) == 256 -> (X >> 8) == 1 3241 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3242 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3243 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3244 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3245 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3246 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3247 auto &DL = DAG.getDataLayout(); 3248 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3249 !DCI.isBeforeLegalize()); 3250 EVT CmpTy = N0.getValueType(); 3251 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3252 DAG.getConstant(ShiftBits, dl, 3253 ShiftTy)); 3254 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3255 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3256 } 3257 } 3258 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3259 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3260 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3261 // X < 0x100000000 -> (X >> 32) < 1 3262 // X >= 0x100000000 -> (X >> 32) >= 1 3263 // X <= 0x0ffffffff -> (X >> 32) < 1 3264 // X > 0x0ffffffff -> (X >> 32) >= 1 3265 unsigned ShiftBits; 3266 APInt NewC = C1; 3267 ISD::CondCode NewCond = Cond; 3268 if (AdjOne) { 3269 ShiftBits = C1.countTrailingOnes(); 3270 NewC = NewC + 1; 3271 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3272 } else { 3273 ShiftBits = C1.countTrailingZeros(); 3274 } 3275 NewC.lshrInPlace(ShiftBits); 3276 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3277 isLegalICmpImmediate(NewC.getSExtValue())) { 3278 auto &DL = DAG.getDataLayout(); 3279 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3280 !DCI.isBeforeLegalize()); 3281 EVT CmpTy = N0.getValueType(); 3282 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3283 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3284 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3285 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3286 } 3287 } 3288 } 3289 } 3290 3291 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3292 auto *CFP = cast<ConstantFPSDNode>(N1); 3293 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3294 3295 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3296 // constant if knowing that the operand is non-nan is enough. We prefer to 3297 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3298 // materialize 0.0. 3299 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3300 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3301 3302 // setcc (fneg x), C -> setcc swap(pred) x, -C 3303 if (N0.getOpcode() == ISD::FNEG) { 3304 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3305 if (DCI.isBeforeLegalizeOps() || 3306 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3307 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3308 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3309 } 3310 } 3311 3312 // If the condition is not legal, see if we can find an equivalent one 3313 // which is legal. 3314 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3315 // If the comparison was an awkward floating-point == or != and one of 3316 // the comparison operands is infinity or negative infinity, convert the 3317 // condition to a less-awkward <= or >=. 3318 if (CFP->getValueAPF().isInfinity()) { 3319 if (CFP->getValueAPF().isNegative()) { 3320 if (Cond == ISD::SETOEQ && 3321 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3322 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3323 if (Cond == ISD::SETUEQ && 3324 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3325 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3326 if (Cond == ISD::SETUNE && 3327 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3328 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3329 if (Cond == ISD::SETONE && 3330 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3331 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3332 } else { 3333 if (Cond == ISD::SETOEQ && 3334 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3335 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3336 if (Cond == ISD::SETUEQ && 3337 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3338 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3339 if (Cond == ISD::SETUNE && 3340 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3341 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3342 if (Cond == ISD::SETONE && 3343 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3344 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3345 } 3346 } 3347 } 3348 } 3349 3350 if (N0 == N1) { 3351 // The sext(setcc()) => setcc() optimization relies on the appropriate 3352 // constant being emitted. 3353 assert(!N0.getValueType().isInteger() && 3354 "Integer types should be handled by FoldSetCC"); 3355 3356 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3357 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3358 if (UOF == 2) // FP operators that are undefined on NaNs. 3359 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3360 if (UOF == unsigned(EqTrue)) 3361 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3362 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3363 // if it is not already. 3364 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3365 if (NewCond != Cond && 3366 (DCI.isBeforeLegalizeOps() || 3367 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3368 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3369 } 3370 3371 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3372 N0.getValueType().isInteger()) { 3373 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3374 N0.getOpcode() == ISD::XOR) { 3375 // Simplify (X+Y) == (X+Z) --> Y == Z 3376 if (N0.getOpcode() == N1.getOpcode()) { 3377 if (N0.getOperand(0) == N1.getOperand(0)) 3378 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3379 if (N0.getOperand(1) == N1.getOperand(1)) 3380 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3381 if (isCommutativeBinOp(N0.getOpcode())) { 3382 // If X op Y == Y op X, try other combinations. 3383 if (N0.getOperand(0) == N1.getOperand(1)) 3384 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3385 Cond); 3386 if (N0.getOperand(1) == N1.getOperand(0)) 3387 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3388 Cond); 3389 } 3390 } 3391 3392 // If RHS is a legal immediate value for a compare instruction, we need 3393 // to be careful about increasing register pressure needlessly. 3394 bool LegalRHSImm = false; 3395 3396 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3397 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3398 // Turn (X+C1) == C2 --> X == C2-C1 3399 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3400 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3401 DAG.getConstant(RHSC->getAPIntValue()- 3402 LHSR->getAPIntValue(), 3403 dl, N0.getValueType()), Cond); 3404 } 3405 3406 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3407 if (N0.getOpcode() == ISD::XOR) 3408 // If we know that all of the inverted bits are zero, don't bother 3409 // performing the inversion. 3410 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3411 return 3412 DAG.getSetCC(dl, VT, N0.getOperand(0), 3413 DAG.getConstant(LHSR->getAPIntValue() ^ 3414 RHSC->getAPIntValue(), 3415 dl, N0.getValueType()), 3416 Cond); 3417 } 3418 3419 // Turn (C1-X) == C2 --> X == C1-C2 3420 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3421 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3422 return 3423 DAG.getSetCC(dl, VT, N0.getOperand(1), 3424 DAG.getConstant(SUBC->getAPIntValue() - 3425 RHSC->getAPIntValue(), 3426 dl, N0.getValueType()), 3427 Cond); 3428 } 3429 } 3430 3431 // Could RHSC fold directly into a compare? 3432 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3433 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3434 } 3435 3436 // (X+Y) == X --> Y == 0 and similar folds. 3437 // Don't do this if X is an immediate that can fold into a cmp 3438 // instruction and X+Y has other uses. It could be an induction variable 3439 // chain, and the transform would increase register pressure. 3440 if (!LegalRHSImm || N0.hasOneUse()) 3441 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3442 return V; 3443 } 3444 3445 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3446 N1.getOpcode() == ISD::XOR) 3447 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3448 return V; 3449 3450 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3451 return V; 3452 } 3453 3454 // Fold remainder of division by a constant. 3455 if (N0.getOpcode() == ISD::UREM && N0.hasOneUse() && 3456 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3457 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3458 3459 // When division is cheap or optimizing for minimum size, 3460 // fall through to DIVREM creation by skipping this fold. 3461 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) 3462 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3463 return Folded; 3464 } 3465 3466 // Fold away ALL boolean setcc's. 3467 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3468 SDValue Temp; 3469 switch (Cond) { 3470 default: llvm_unreachable("Unknown integer setcc!"); 3471 case ISD::SETEQ: // X == Y -> ~(X^Y) 3472 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3473 N0 = DAG.getNOT(dl, Temp, OpVT); 3474 if (!DCI.isCalledByLegalizer()) 3475 DCI.AddToWorklist(Temp.getNode()); 3476 break; 3477 case ISD::SETNE: // X != Y --> (X^Y) 3478 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3479 break; 3480 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3481 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3482 Temp = DAG.getNOT(dl, N0, OpVT); 3483 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3484 if (!DCI.isCalledByLegalizer()) 3485 DCI.AddToWorklist(Temp.getNode()); 3486 break; 3487 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3488 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3489 Temp = DAG.getNOT(dl, N1, OpVT); 3490 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3491 if (!DCI.isCalledByLegalizer()) 3492 DCI.AddToWorklist(Temp.getNode()); 3493 break; 3494 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3495 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3496 Temp = DAG.getNOT(dl, N0, OpVT); 3497 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3498 if (!DCI.isCalledByLegalizer()) 3499 DCI.AddToWorklist(Temp.getNode()); 3500 break; 3501 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3502 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3503 Temp = DAG.getNOT(dl, N1, OpVT); 3504 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3505 break; 3506 } 3507 if (VT.getScalarType() != MVT::i1) { 3508 if (!DCI.isCalledByLegalizer()) 3509 DCI.AddToWorklist(N0.getNode()); 3510 // FIXME: If running after legalize, we probably can't do this. 3511 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3512 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3513 } 3514 return N0; 3515 } 3516 3517 // Could not fold it. 3518 return SDValue(); 3519 } 3520 3521 /// Returns true (and the GlobalValue and the offset) if the node is a 3522 /// GlobalAddress + offset. 3523 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3524 int64_t &Offset) const { 3525 3526 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3527 3528 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3529 GA = GASD->getGlobal(); 3530 Offset += GASD->getOffset(); 3531 return true; 3532 } 3533 3534 if (N->getOpcode() == ISD::ADD) { 3535 SDValue N1 = N->getOperand(0); 3536 SDValue N2 = N->getOperand(1); 3537 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3538 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3539 Offset += V->getSExtValue(); 3540 return true; 3541 } 3542 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3543 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3544 Offset += V->getSExtValue(); 3545 return true; 3546 } 3547 } 3548 } 3549 3550 return false; 3551 } 3552 3553 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3554 DAGCombinerInfo &DCI) const { 3555 // Default implementation: no optimization. 3556 return SDValue(); 3557 } 3558 3559 //===----------------------------------------------------------------------===// 3560 // Inline Assembler Implementation Methods 3561 //===----------------------------------------------------------------------===// 3562 3563 TargetLowering::ConstraintType 3564 TargetLowering::getConstraintType(StringRef Constraint) const { 3565 unsigned S = Constraint.size(); 3566 3567 if (S == 1) { 3568 switch (Constraint[0]) { 3569 default: break; 3570 case 'r': 3571 return C_RegisterClass; 3572 case 'm': // memory 3573 case 'o': // offsetable 3574 case 'V': // not offsetable 3575 return C_Memory; 3576 case 'n': // Simple Integer 3577 case 'E': // Floating Point Constant 3578 case 'F': // Floating Point Constant 3579 return C_Immediate; 3580 case 'i': // Simple Integer or Relocatable Constant 3581 case 's': // Relocatable Constant 3582 case 'p': // Address. 3583 case 'X': // Allow ANY value. 3584 case 'I': // Target registers. 3585 case 'J': 3586 case 'K': 3587 case 'L': 3588 case 'M': 3589 case 'N': 3590 case 'O': 3591 case 'P': 3592 case '<': 3593 case '>': 3594 return C_Other; 3595 } 3596 } 3597 3598 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3599 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3600 return C_Memory; 3601 return C_Register; 3602 } 3603 return C_Unknown; 3604 } 3605 3606 /// Try to replace an X constraint, which matches anything, with another that 3607 /// has more specific requirements based on the type of the corresponding 3608 /// operand. 3609 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3610 if (ConstraintVT.isInteger()) 3611 return "r"; 3612 if (ConstraintVT.isFloatingPoint()) 3613 return "f"; // works for many targets 3614 return nullptr; 3615 } 3616 3617 SDValue TargetLowering::LowerAsmOutputForConstraint( 3618 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3619 SelectionDAG &DAG) const { 3620 return SDValue(); 3621 } 3622 3623 /// Lower the specified operand into the Ops vector. 3624 /// If it is invalid, don't add anything to Ops. 3625 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3626 std::string &Constraint, 3627 std::vector<SDValue> &Ops, 3628 SelectionDAG &DAG) const { 3629 3630 if (Constraint.length() > 1) return; 3631 3632 char ConstraintLetter = Constraint[0]; 3633 switch (ConstraintLetter) { 3634 default: break; 3635 case 'X': // Allows any operand; labels (basic block) use this. 3636 if (Op.getOpcode() == ISD::BasicBlock || 3637 Op.getOpcode() == ISD::TargetBlockAddress) { 3638 Ops.push_back(Op); 3639 return; 3640 } 3641 LLVM_FALLTHROUGH; 3642 case 'i': // Simple Integer or Relocatable Constant 3643 case 'n': // Simple Integer 3644 case 's': { // Relocatable Constant 3645 3646 GlobalAddressSDNode *GA; 3647 ConstantSDNode *C; 3648 BlockAddressSDNode *BA; 3649 uint64_t Offset = 0; 3650 3651 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 3652 // etc., since getelementpointer is variadic. We can't use 3653 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 3654 // while in this case the GA may be furthest from the root node which is 3655 // likely an ISD::ADD. 3656 while (1) { 3657 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 3658 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 3659 GA->getValueType(0), 3660 Offset + GA->getOffset())); 3661 return; 3662 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 3663 ConstraintLetter != 's') { 3664 // gcc prints these as sign extended. Sign extend value to 64 bits 3665 // now; without this it would get ZExt'd later in 3666 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3667 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 3668 BooleanContent BCont = getBooleanContents(MVT::i64); 3669 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 3670 : ISD::SIGN_EXTEND; 3671 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 3672 : C->getSExtValue(); 3673 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 3674 SDLoc(C), MVT::i64)); 3675 return; 3676 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 3677 ConstraintLetter != 'n') { 3678 Ops.push_back(DAG.getTargetBlockAddress( 3679 BA->getBlockAddress(), BA->getValueType(0), 3680 Offset + BA->getOffset(), BA->getTargetFlags())); 3681 return; 3682 } else { 3683 const unsigned OpCode = Op.getOpcode(); 3684 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 3685 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 3686 Op = Op.getOperand(1); 3687 // Subtraction is not commutative. 3688 else if (OpCode == ISD::ADD && 3689 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 3690 Op = Op.getOperand(0); 3691 else 3692 return; 3693 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 3694 continue; 3695 } 3696 } 3697 return; 3698 } 3699 break; 3700 } 3701 } 3702 } 3703 3704 std::pair<unsigned, const TargetRegisterClass *> 3705 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3706 StringRef Constraint, 3707 MVT VT) const { 3708 if (Constraint.empty() || Constraint[0] != '{') 3709 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3710 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3711 3712 // Remove the braces from around the name. 3713 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3714 3715 std::pair<unsigned, const TargetRegisterClass *> R = 3716 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3717 3718 // Figure out which register class contains this reg. 3719 for (const TargetRegisterClass *RC : RI->regclasses()) { 3720 // If none of the value types for this register class are valid, we 3721 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3722 if (!isLegalRC(*RI, *RC)) 3723 continue; 3724 3725 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3726 I != E; ++I) { 3727 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3728 std::pair<unsigned, const TargetRegisterClass *> S = 3729 std::make_pair(*I, RC); 3730 3731 // If this register class has the requested value type, return it, 3732 // otherwise keep searching and return the first class found 3733 // if no other is found which explicitly has the requested type. 3734 if (RI->isTypeLegalForClass(*RC, VT)) 3735 return S; 3736 if (!R.second) 3737 R = S; 3738 } 3739 } 3740 } 3741 3742 return R; 3743 } 3744 3745 //===----------------------------------------------------------------------===// 3746 // Constraint Selection. 3747 3748 /// Return true of this is an input operand that is a matching constraint like 3749 /// "4". 3750 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3751 assert(!ConstraintCode.empty() && "No known constraint!"); 3752 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3753 } 3754 3755 /// If this is an input matching constraint, this method returns the output 3756 /// operand it matches. 3757 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3758 assert(!ConstraintCode.empty() && "No known constraint!"); 3759 return atoi(ConstraintCode.c_str()); 3760 } 3761 3762 /// Split up the constraint string from the inline assembly value into the 3763 /// specific constraints and their prefixes, and also tie in the associated 3764 /// operand values. 3765 /// If this returns an empty vector, and if the constraint string itself 3766 /// isn't empty, there was an error parsing. 3767 TargetLowering::AsmOperandInfoVector 3768 TargetLowering::ParseConstraints(const DataLayout &DL, 3769 const TargetRegisterInfo *TRI, 3770 ImmutableCallSite CS) const { 3771 /// Information about all of the constraints. 3772 AsmOperandInfoVector ConstraintOperands; 3773 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3774 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3775 3776 // Do a prepass over the constraints, canonicalizing them, and building up the 3777 // ConstraintOperands list. 3778 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3779 unsigned ResNo = 0; // ResNo - The result number of the next output. 3780 3781 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3782 ConstraintOperands.emplace_back(std::move(CI)); 3783 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3784 3785 // Update multiple alternative constraint count. 3786 if (OpInfo.multipleAlternatives.size() > maCount) 3787 maCount = OpInfo.multipleAlternatives.size(); 3788 3789 OpInfo.ConstraintVT = MVT::Other; 3790 3791 // Compute the value type for each operand. 3792 switch (OpInfo.Type) { 3793 case InlineAsm::isOutput: 3794 // Indirect outputs just consume an argument. 3795 if (OpInfo.isIndirect) { 3796 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3797 break; 3798 } 3799 3800 // The return value of the call is this value. As such, there is no 3801 // corresponding argument. 3802 assert(!CS.getType()->isVoidTy() && 3803 "Bad inline asm!"); 3804 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3805 OpInfo.ConstraintVT = 3806 getSimpleValueType(DL, STy->getElementType(ResNo)); 3807 } else { 3808 assert(ResNo == 0 && "Asm only has one result!"); 3809 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3810 } 3811 ++ResNo; 3812 break; 3813 case InlineAsm::isInput: 3814 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3815 break; 3816 case InlineAsm::isClobber: 3817 // Nothing to do. 3818 break; 3819 } 3820 3821 if (OpInfo.CallOperandVal) { 3822 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3823 if (OpInfo.isIndirect) { 3824 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3825 if (!PtrTy) 3826 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3827 OpTy = PtrTy->getElementType(); 3828 } 3829 3830 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3831 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3832 if (STy->getNumElements() == 1) 3833 OpTy = STy->getElementType(0); 3834 3835 // If OpTy is not a single value, it may be a struct/union that we 3836 // can tile with integers. 3837 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3838 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3839 switch (BitSize) { 3840 default: break; 3841 case 1: 3842 case 8: 3843 case 16: 3844 case 32: 3845 case 64: 3846 case 128: 3847 OpInfo.ConstraintVT = 3848 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3849 break; 3850 } 3851 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3852 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3853 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3854 } else { 3855 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3856 } 3857 } 3858 } 3859 3860 // If we have multiple alternative constraints, select the best alternative. 3861 if (!ConstraintOperands.empty()) { 3862 if (maCount) { 3863 unsigned bestMAIndex = 0; 3864 int bestWeight = -1; 3865 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3866 int weight = -1; 3867 unsigned maIndex; 3868 // Compute the sums of the weights for each alternative, keeping track 3869 // of the best (highest weight) one so far. 3870 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3871 int weightSum = 0; 3872 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3873 cIndex != eIndex; ++cIndex) { 3874 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3875 if (OpInfo.Type == InlineAsm::isClobber) 3876 continue; 3877 3878 // If this is an output operand with a matching input operand, 3879 // look up the matching input. If their types mismatch, e.g. one 3880 // is an integer, the other is floating point, or their sizes are 3881 // different, flag it as an maCantMatch. 3882 if (OpInfo.hasMatchingInput()) { 3883 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3884 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3885 if ((OpInfo.ConstraintVT.isInteger() != 3886 Input.ConstraintVT.isInteger()) || 3887 (OpInfo.ConstraintVT.getSizeInBits() != 3888 Input.ConstraintVT.getSizeInBits())) { 3889 weightSum = -1; // Can't match. 3890 break; 3891 } 3892 } 3893 } 3894 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3895 if (weight == -1) { 3896 weightSum = -1; 3897 break; 3898 } 3899 weightSum += weight; 3900 } 3901 // Update best. 3902 if (weightSum > bestWeight) { 3903 bestWeight = weightSum; 3904 bestMAIndex = maIndex; 3905 } 3906 } 3907 3908 // Now select chosen alternative in each constraint. 3909 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3910 cIndex != eIndex; ++cIndex) { 3911 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3912 if (cInfo.Type == InlineAsm::isClobber) 3913 continue; 3914 cInfo.selectAlternative(bestMAIndex); 3915 } 3916 } 3917 } 3918 3919 // Check and hook up tied operands, choose constraint code to use. 3920 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3921 cIndex != eIndex; ++cIndex) { 3922 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3923 3924 // If this is an output operand with a matching input operand, look up the 3925 // matching input. If their types mismatch, e.g. one is an integer, the 3926 // other is floating point, or their sizes are different, flag it as an 3927 // error. 3928 if (OpInfo.hasMatchingInput()) { 3929 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3930 3931 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3932 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3933 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3934 OpInfo.ConstraintVT); 3935 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3936 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3937 Input.ConstraintVT); 3938 if ((OpInfo.ConstraintVT.isInteger() != 3939 Input.ConstraintVT.isInteger()) || 3940 (MatchRC.second != InputRC.second)) { 3941 report_fatal_error("Unsupported asm: input constraint" 3942 " with a matching output constraint of" 3943 " incompatible type!"); 3944 } 3945 } 3946 } 3947 } 3948 3949 return ConstraintOperands; 3950 } 3951 3952 /// Return an integer indicating how general CT is. 3953 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3954 switch (CT) { 3955 case TargetLowering::C_Immediate: 3956 case TargetLowering::C_Other: 3957 case TargetLowering::C_Unknown: 3958 return 0; 3959 case TargetLowering::C_Register: 3960 return 1; 3961 case TargetLowering::C_RegisterClass: 3962 return 2; 3963 case TargetLowering::C_Memory: 3964 return 3; 3965 } 3966 llvm_unreachable("Invalid constraint type"); 3967 } 3968 3969 /// Examine constraint type and operand type and determine a weight value. 3970 /// This object must already have been set up with the operand type 3971 /// and the current alternative constraint selected. 3972 TargetLowering::ConstraintWeight 3973 TargetLowering::getMultipleConstraintMatchWeight( 3974 AsmOperandInfo &info, int maIndex) const { 3975 InlineAsm::ConstraintCodeVector *rCodes; 3976 if (maIndex >= (int)info.multipleAlternatives.size()) 3977 rCodes = &info.Codes; 3978 else 3979 rCodes = &info.multipleAlternatives[maIndex].Codes; 3980 ConstraintWeight BestWeight = CW_Invalid; 3981 3982 // Loop over the options, keeping track of the most general one. 3983 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3984 ConstraintWeight weight = 3985 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3986 if (weight > BestWeight) 3987 BestWeight = weight; 3988 } 3989 3990 return BestWeight; 3991 } 3992 3993 /// Examine constraint type and operand type and determine a weight value. 3994 /// This object must already have been set up with the operand type 3995 /// and the current alternative constraint selected. 3996 TargetLowering::ConstraintWeight 3997 TargetLowering::getSingleConstraintMatchWeight( 3998 AsmOperandInfo &info, const char *constraint) const { 3999 ConstraintWeight weight = CW_Invalid; 4000 Value *CallOperandVal = info.CallOperandVal; 4001 // If we don't have a value, we can't do a match, 4002 // but allow it at the lowest weight. 4003 if (!CallOperandVal) 4004 return CW_Default; 4005 // Look at the constraint type. 4006 switch (*constraint) { 4007 case 'i': // immediate integer. 4008 case 'n': // immediate integer with a known value. 4009 if (isa<ConstantInt>(CallOperandVal)) 4010 weight = CW_Constant; 4011 break; 4012 case 's': // non-explicit intregal immediate. 4013 if (isa<GlobalValue>(CallOperandVal)) 4014 weight = CW_Constant; 4015 break; 4016 case 'E': // immediate float if host format. 4017 case 'F': // immediate float. 4018 if (isa<ConstantFP>(CallOperandVal)) 4019 weight = CW_Constant; 4020 break; 4021 case '<': // memory operand with autodecrement. 4022 case '>': // memory operand with autoincrement. 4023 case 'm': // memory operand. 4024 case 'o': // offsettable memory operand 4025 case 'V': // non-offsettable memory operand 4026 weight = CW_Memory; 4027 break; 4028 case 'r': // general register. 4029 case 'g': // general register, memory operand or immediate integer. 4030 // note: Clang converts "g" to "imr". 4031 if (CallOperandVal->getType()->isIntegerTy()) 4032 weight = CW_Register; 4033 break; 4034 case 'X': // any operand. 4035 default: 4036 weight = CW_Default; 4037 break; 4038 } 4039 return weight; 4040 } 4041 4042 /// If there are multiple different constraints that we could pick for this 4043 /// operand (e.g. "imr") try to pick the 'best' one. 4044 /// This is somewhat tricky: constraints fall into four classes: 4045 /// Other -> immediates and magic values 4046 /// Register -> one specific register 4047 /// RegisterClass -> a group of regs 4048 /// Memory -> memory 4049 /// Ideally, we would pick the most specific constraint possible: if we have 4050 /// something that fits into a register, we would pick it. The problem here 4051 /// is that if we have something that could either be in a register or in 4052 /// memory that use of the register could cause selection of *other* 4053 /// operands to fail: they might only succeed if we pick memory. Because of 4054 /// this the heuristic we use is: 4055 /// 4056 /// 1) If there is an 'other' constraint, and if the operand is valid for 4057 /// that constraint, use it. This makes us take advantage of 'i' 4058 /// constraints when available. 4059 /// 2) Otherwise, pick the most general constraint present. This prefers 4060 /// 'm' over 'r', for example. 4061 /// 4062 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4063 const TargetLowering &TLI, 4064 SDValue Op, SelectionDAG *DAG) { 4065 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4066 unsigned BestIdx = 0; 4067 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4068 int BestGenerality = -1; 4069 4070 // Loop over the options, keeping track of the most general one. 4071 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4072 TargetLowering::ConstraintType CType = 4073 TLI.getConstraintType(OpInfo.Codes[i]); 4074 4075 // If this is an 'other' or 'immediate' constraint, see if the operand is 4076 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4077 // the operand is an integer in the range [0..31] we want to use I (saving a 4078 // load of a register), otherwise we must use 'r'. 4079 if ((CType == TargetLowering::C_Other || 4080 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4081 assert(OpInfo.Codes[i].size() == 1 && 4082 "Unhandled multi-letter 'other' constraint"); 4083 std::vector<SDValue> ResultOps; 4084 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4085 ResultOps, *DAG); 4086 if (!ResultOps.empty()) { 4087 BestType = CType; 4088 BestIdx = i; 4089 break; 4090 } 4091 } 4092 4093 // Things with matching constraints can only be registers, per gcc 4094 // documentation. This mainly affects "g" constraints. 4095 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4096 continue; 4097 4098 // This constraint letter is more general than the previous one, use it. 4099 int Generality = getConstraintGenerality(CType); 4100 if (Generality > BestGenerality) { 4101 BestType = CType; 4102 BestIdx = i; 4103 BestGenerality = Generality; 4104 } 4105 } 4106 4107 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4108 OpInfo.ConstraintType = BestType; 4109 } 4110 4111 /// Determines the constraint code and constraint type to use for the specific 4112 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4113 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4114 SDValue Op, 4115 SelectionDAG *DAG) const { 4116 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4117 4118 // Single-letter constraints ('r') are very common. 4119 if (OpInfo.Codes.size() == 1) { 4120 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4121 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4122 } else { 4123 ChooseConstraint(OpInfo, *this, Op, DAG); 4124 } 4125 4126 // 'X' matches anything. 4127 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4128 // Labels and constants are handled elsewhere ('X' is the only thing 4129 // that matches labels). For Functions, the type here is the type of 4130 // the result, which is not what we want to look at; leave them alone. 4131 Value *v = OpInfo.CallOperandVal; 4132 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4133 OpInfo.CallOperandVal = v; 4134 return; 4135 } 4136 4137 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4138 return; 4139 4140 // Otherwise, try to resolve it to something we know about by looking at 4141 // the actual operand type. 4142 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4143 OpInfo.ConstraintCode = Repl; 4144 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4145 } 4146 } 4147 } 4148 4149 /// Given an exact SDIV by a constant, create a multiplication 4150 /// with the multiplicative inverse of the constant. 4151 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4152 const SDLoc &dl, SelectionDAG &DAG, 4153 SmallVectorImpl<SDNode *> &Created) { 4154 SDValue Op0 = N->getOperand(0); 4155 SDValue Op1 = N->getOperand(1); 4156 EVT VT = N->getValueType(0); 4157 EVT SVT = VT.getScalarType(); 4158 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4159 EVT ShSVT = ShVT.getScalarType(); 4160 4161 bool UseSRA = false; 4162 SmallVector<SDValue, 16> Shifts, Factors; 4163 4164 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4165 if (C->isNullValue()) 4166 return false; 4167 APInt Divisor = C->getAPIntValue(); 4168 unsigned Shift = Divisor.countTrailingZeros(); 4169 if (Shift) { 4170 Divisor.ashrInPlace(Shift); 4171 UseSRA = true; 4172 } 4173 // Calculate the multiplicative inverse, using Newton's method. 4174 APInt t; 4175 APInt Factor = Divisor; 4176 while ((t = Divisor * Factor) != 1) 4177 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4178 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4179 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4180 return true; 4181 }; 4182 4183 // Collect all magic values from the build vector. 4184 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4185 return SDValue(); 4186 4187 SDValue Shift, Factor; 4188 if (VT.isVector()) { 4189 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4190 Factor = DAG.getBuildVector(VT, dl, Factors); 4191 } else { 4192 Shift = Shifts[0]; 4193 Factor = Factors[0]; 4194 } 4195 4196 SDValue Res = Op0; 4197 4198 // Shift the value upfront if it is even, so the LSB is one. 4199 if (UseSRA) { 4200 // TODO: For UDIV use SRL instead of SRA. 4201 SDNodeFlags Flags; 4202 Flags.setExact(true); 4203 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4204 Created.push_back(Res.getNode()); 4205 } 4206 4207 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4208 } 4209 4210 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4211 SelectionDAG &DAG, 4212 SmallVectorImpl<SDNode *> &Created) const { 4213 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4215 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4216 return SDValue(N, 0); // Lower SDIV as SDIV 4217 return SDValue(); 4218 } 4219 4220 /// Given an ISD::SDIV node expressing a divide by constant, 4221 /// return a DAG expression to select that will generate the same value by 4222 /// multiplying by a magic number. 4223 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4224 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4225 bool IsAfterLegalization, 4226 SmallVectorImpl<SDNode *> &Created) const { 4227 SDLoc dl(N); 4228 EVT VT = N->getValueType(0); 4229 EVT SVT = VT.getScalarType(); 4230 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4231 EVT ShSVT = ShVT.getScalarType(); 4232 unsigned EltBits = VT.getScalarSizeInBits(); 4233 4234 // Check to see if we can do this. 4235 // FIXME: We should be more aggressive here. 4236 if (!isTypeLegal(VT)) 4237 return SDValue(); 4238 4239 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4240 if (N->getFlags().hasExact()) 4241 return BuildExactSDIV(*this, N, dl, DAG, Created); 4242 4243 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4244 4245 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4246 if (C->isNullValue()) 4247 return false; 4248 4249 const APInt &Divisor = C->getAPIntValue(); 4250 APInt::ms magics = Divisor.magic(); 4251 int NumeratorFactor = 0; 4252 int ShiftMask = -1; 4253 4254 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4255 // If d is +1/-1, we just multiply the numerator by +1/-1. 4256 NumeratorFactor = Divisor.getSExtValue(); 4257 magics.m = 0; 4258 magics.s = 0; 4259 ShiftMask = 0; 4260 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4261 // If d > 0 and m < 0, add the numerator. 4262 NumeratorFactor = 1; 4263 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4264 // If d < 0 and m > 0, subtract the numerator. 4265 NumeratorFactor = -1; 4266 } 4267 4268 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4269 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4270 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4271 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4272 return true; 4273 }; 4274 4275 SDValue N0 = N->getOperand(0); 4276 SDValue N1 = N->getOperand(1); 4277 4278 // Collect the shifts / magic values from each element. 4279 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4280 return SDValue(); 4281 4282 SDValue MagicFactor, Factor, Shift, ShiftMask; 4283 if (VT.isVector()) { 4284 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4285 Factor = DAG.getBuildVector(VT, dl, Factors); 4286 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4287 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4288 } else { 4289 MagicFactor = MagicFactors[0]; 4290 Factor = Factors[0]; 4291 Shift = Shifts[0]; 4292 ShiftMask = ShiftMasks[0]; 4293 } 4294 4295 // Multiply the numerator (operand 0) by the magic value. 4296 // FIXME: We should support doing a MUL in a wider type. 4297 SDValue Q; 4298 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4299 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4300 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4301 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4302 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4303 SDValue LoHi = 4304 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4305 Q = SDValue(LoHi.getNode(), 1); 4306 } else 4307 return SDValue(); // No mulhs or equivalent. 4308 Created.push_back(Q.getNode()); 4309 4310 // (Optionally) Add/subtract the numerator using Factor. 4311 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4312 Created.push_back(Factor.getNode()); 4313 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4314 Created.push_back(Q.getNode()); 4315 4316 // Shift right algebraic by shift value. 4317 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4318 Created.push_back(Q.getNode()); 4319 4320 // Extract the sign bit, mask it and add it to the quotient. 4321 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4322 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4323 Created.push_back(T.getNode()); 4324 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4325 Created.push_back(T.getNode()); 4326 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4327 } 4328 4329 /// Given an ISD::UDIV node expressing a divide by constant, 4330 /// return a DAG expression to select that will generate the same value by 4331 /// multiplying by a magic number. 4332 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4333 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4334 bool IsAfterLegalization, 4335 SmallVectorImpl<SDNode *> &Created) const { 4336 SDLoc dl(N); 4337 EVT VT = N->getValueType(0); 4338 EVT SVT = VT.getScalarType(); 4339 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4340 EVT ShSVT = ShVT.getScalarType(); 4341 unsigned EltBits = VT.getScalarSizeInBits(); 4342 4343 // Check to see if we can do this. 4344 // FIXME: We should be more aggressive here. 4345 if (!isTypeLegal(VT)) 4346 return SDValue(); 4347 4348 bool UseNPQ = false; 4349 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4350 4351 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4352 if (C->isNullValue()) 4353 return false; 4354 // FIXME: We should use a narrower constant when the upper 4355 // bits are known to be zero. 4356 APInt Divisor = C->getAPIntValue(); 4357 APInt::mu magics = Divisor.magicu(); 4358 unsigned PreShift = 0, PostShift = 0; 4359 4360 // If the divisor is even, we can avoid using the expensive fixup by 4361 // shifting the divided value upfront. 4362 if (magics.a != 0 && !Divisor[0]) { 4363 PreShift = Divisor.countTrailingZeros(); 4364 // Get magic number for the shifted divisor. 4365 magics = Divisor.lshr(PreShift).magicu(PreShift); 4366 assert(magics.a == 0 && "Should use cheap fixup now"); 4367 } 4368 4369 APInt Magic = magics.m; 4370 4371 unsigned SelNPQ; 4372 if (magics.a == 0 || Divisor.isOneValue()) { 4373 assert(magics.s < Divisor.getBitWidth() && 4374 "We shouldn't generate an undefined shift!"); 4375 PostShift = magics.s; 4376 SelNPQ = false; 4377 } else { 4378 PostShift = magics.s - 1; 4379 SelNPQ = true; 4380 } 4381 4382 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4383 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4384 NPQFactors.push_back( 4385 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4386 : APInt::getNullValue(EltBits), 4387 dl, SVT)); 4388 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4389 UseNPQ |= SelNPQ; 4390 return true; 4391 }; 4392 4393 SDValue N0 = N->getOperand(0); 4394 SDValue N1 = N->getOperand(1); 4395 4396 // Collect the shifts/magic values from each element. 4397 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4398 return SDValue(); 4399 4400 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4401 if (VT.isVector()) { 4402 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4403 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4404 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4405 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4406 } else { 4407 PreShift = PreShifts[0]; 4408 MagicFactor = MagicFactors[0]; 4409 PostShift = PostShifts[0]; 4410 } 4411 4412 SDValue Q = N0; 4413 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4414 Created.push_back(Q.getNode()); 4415 4416 // FIXME: We should support doing a MUL in a wider type. 4417 auto GetMULHU = [&](SDValue X, SDValue Y) { 4418 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4419 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4420 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4421 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4422 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4423 SDValue LoHi = 4424 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4425 return SDValue(LoHi.getNode(), 1); 4426 } 4427 return SDValue(); // No mulhu or equivalent 4428 }; 4429 4430 // Multiply the numerator (operand 0) by the magic value. 4431 Q = GetMULHU(Q, MagicFactor); 4432 if (!Q) 4433 return SDValue(); 4434 4435 Created.push_back(Q.getNode()); 4436 4437 if (UseNPQ) { 4438 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4439 Created.push_back(NPQ.getNode()); 4440 4441 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4442 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4443 if (VT.isVector()) 4444 NPQ = GetMULHU(NPQ, NPQFactor); 4445 else 4446 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4447 4448 Created.push_back(NPQ.getNode()); 4449 4450 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4451 Created.push_back(Q.getNode()); 4452 } 4453 4454 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4455 Created.push_back(Q.getNode()); 4456 4457 SDValue One = DAG.getConstant(1, dl, VT); 4458 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4459 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4460 } 4461 4462 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4463 /// where the divisor is constant and the comparison target is zero, 4464 /// return a DAG expression that will generate the same comparison result 4465 /// using only multiplications, additions and shifts/rotations. 4466 /// Ref: "Hacker's Delight" 10-17. 4467 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4468 SDValue CompTargetNode, 4469 ISD::CondCode Cond, 4470 DAGCombinerInfo &DCI, 4471 const SDLoc &DL) const { 4472 SmallVector<SDNode *, 2> Built; 4473 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4474 DCI, DL, Built)) { 4475 for (SDNode *N : Built) 4476 DCI.AddToWorklist(N); 4477 return Folded; 4478 } 4479 4480 return SDValue(); 4481 } 4482 4483 SDValue 4484 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4485 SDValue CompTargetNode, ISD::CondCode Cond, 4486 DAGCombinerInfo &DCI, const SDLoc &DL, 4487 SmallVectorImpl<SDNode *> &Created) const { 4488 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4489 // - D must be constant with D = D0 * 2^K where D0 is odd and D0 != 1 4490 // - P is the multiplicative inverse of D0 modulo 2^W 4491 // - Q = floor((2^W - 1) / D0) 4492 // where W is the width of the common type of N and D. 4493 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4494 "Only applicable for (in)equality comparisons."); 4495 4496 EVT VT = REMNode.getValueType(); 4497 4498 // If MUL is unavailable, we cannot proceed in any case. 4499 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4500 return SDValue(); 4501 4502 // TODO: Add non-uniform constant support. 4503 ConstantSDNode *Divisor = isConstOrConstSplat(REMNode->getOperand(1)); 4504 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 4505 if (!Divisor || !CompTarget || Divisor->isNullValue() || 4506 !CompTarget->isNullValue()) 4507 return SDValue(); 4508 4509 const APInt &D = Divisor->getAPIntValue(); 4510 4511 // Decompose D into D0 * 2^K 4512 unsigned K = D.countTrailingZeros(); 4513 bool DivisorIsEven = (K != 0); 4514 APInt D0 = D.lshr(K); 4515 4516 // The fold is invalid when D0 == 1. 4517 // This is reachable because visitSetCC happens before visitREM. 4518 if (D0.isOneValue()) 4519 return SDValue(); 4520 4521 // P = inv(D0, 2^W) 4522 // 2^W requires W + 1 bits, so we have to extend and then truncate. 4523 unsigned W = D.getBitWidth(); 4524 APInt P = D0.zext(W + 1) 4525 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 4526 .trunc(W); 4527 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 4528 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 4529 4530 // Q = floor((2^W - 1) / D) 4531 APInt Q = APInt::getAllOnesValue(W).udiv(D); 4532 4533 SelectionDAG &DAG = DCI.DAG; 4534 4535 SDValue PVal = DAG.getConstant(P, DL, VT); 4536 SDValue QVal = DAG.getConstant(Q, DL, VT); 4537 // (mul N, P) 4538 SDValue Op1 = DAG.getNode(ISD::MUL, DL, VT, REMNode->getOperand(0), PVal); 4539 Created.push_back(Op1.getNode()); 4540 4541 // Rotate right only if D was even. 4542 if (DivisorIsEven) { 4543 // We need ROTR to do this. 4544 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 4545 return SDValue(); 4546 SDValue ShAmt = 4547 DAG.getConstant(K, DL, getShiftAmountTy(VT, DAG.getDataLayout())); 4548 SDNodeFlags Flags; 4549 Flags.setExact(true); 4550 // UREM: (rotr (mul N, P), K) 4551 Op1 = DAG.getNode(ISD::ROTR, DL, VT, Op1, ShAmt, Flags); 4552 Created.push_back(Op1.getNode()); 4553 } 4554 4555 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 4556 return DAG.getSetCC(DL, SETCCVT, Op1, QVal, 4557 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 4558 } 4559 4560 bool TargetLowering:: 4561 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4562 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4563 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4564 "be a constant integer"); 4565 return true; 4566 } 4567 4568 return false; 4569 } 4570 4571 //===----------------------------------------------------------------------===// 4572 // Legalization Utilities 4573 //===----------------------------------------------------------------------===// 4574 4575 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4576 SDValue LHS, SDValue RHS, 4577 SmallVectorImpl<SDValue> &Result, 4578 EVT HiLoVT, SelectionDAG &DAG, 4579 MulExpansionKind Kind, SDValue LL, 4580 SDValue LH, SDValue RL, SDValue RH) const { 4581 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4582 Opcode == ISD::SMUL_LOHI); 4583 4584 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4585 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4586 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4587 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4588 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4589 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4590 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4591 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4592 4593 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4594 return false; 4595 4596 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4597 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4598 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4599 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4600 4601 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4602 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4603 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4604 4605 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4606 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4607 bool Signed) -> bool { 4608 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4609 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4610 Hi = SDValue(Lo.getNode(), 1); 4611 return true; 4612 } 4613 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4614 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4615 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4616 return true; 4617 } 4618 return false; 4619 }; 4620 4621 SDValue Lo, Hi; 4622 4623 if (!LL.getNode() && !RL.getNode() && 4624 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4625 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4626 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4627 } 4628 4629 if (!LL.getNode()) 4630 return false; 4631 4632 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4633 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4634 DAG.MaskedValueIsZero(RHS, HighMask)) { 4635 // The inputs are both zero-extended. 4636 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4637 Result.push_back(Lo); 4638 Result.push_back(Hi); 4639 if (Opcode != ISD::MUL) { 4640 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4641 Result.push_back(Zero); 4642 Result.push_back(Zero); 4643 } 4644 return true; 4645 } 4646 } 4647 4648 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4649 RHSSB > InnerBitSize) { 4650 // The input values are both sign-extended. 4651 // TODO non-MUL case? 4652 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4653 Result.push_back(Lo); 4654 Result.push_back(Hi); 4655 return true; 4656 } 4657 } 4658 4659 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4660 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4661 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4662 // FIXME getShiftAmountTy does not always return a sensible result when VT 4663 // is an illegal type, and so the type may be too small to fit the shift 4664 // amount. Override it with i32. The shift will have to be legalized. 4665 ShiftAmountTy = MVT::i32; 4666 } 4667 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4668 4669 if (!LH.getNode() && !RH.getNode() && 4670 isOperationLegalOrCustom(ISD::SRL, VT) && 4671 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4672 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4673 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4674 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4675 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4676 } 4677 4678 if (!LH.getNode()) 4679 return false; 4680 4681 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4682 return false; 4683 4684 Result.push_back(Lo); 4685 4686 if (Opcode == ISD::MUL) { 4687 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4688 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4689 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4690 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4691 Result.push_back(Hi); 4692 return true; 4693 } 4694 4695 // Compute the full width result. 4696 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4697 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4698 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4699 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4700 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4701 }; 4702 4703 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4704 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4705 return false; 4706 4707 // This is effectively the add part of a multiply-add of half-sized operands, 4708 // so it cannot overflow. 4709 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4710 4711 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4712 return false; 4713 4714 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4715 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4716 4717 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4718 isOperationLegalOrCustom(ISD::ADDE, VT)); 4719 if (UseGlue) 4720 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4721 Merge(Lo, Hi)); 4722 else 4723 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4724 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4725 4726 SDValue Carry = Next.getValue(1); 4727 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4728 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4729 4730 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4731 return false; 4732 4733 if (UseGlue) 4734 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4735 Carry); 4736 else 4737 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4738 Zero, Carry); 4739 4740 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4741 4742 if (Opcode == ISD::SMUL_LOHI) { 4743 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4744 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4745 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4746 4747 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4748 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4749 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4750 } 4751 4752 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4753 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4754 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4755 return true; 4756 } 4757 4758 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4759 SelectionDAG &DAG, MulExpansionKind Kind, 4760 SDValue LL, SDValue LH, SDValue RL, 4761 SDValue RH) const { 4762 SmallVector<SDValue, 2> Result; 4763 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4764 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4765 DAG, Kind, LL, LH, RL, RH); 4766 if (Ok) { 4767 assert(Result.size() == 2); 4768 Lo = Result[0]; 4769 Hi = Result[1]; 4770 } 4771 return Ok; 4772 } 4773 4774 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4775 SelectionDAG &DAG) const { 4776 EVT VT = Node->getValueType(0); 4777 4778 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4779 !isOperationLegalOrCustom(ISD::SRL, VT) || 4780 !isOperationLegalOrCustom(ISD::SUB, VT) || 4781 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4782 return false; 4783 4784 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4785 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4786 SDValue X = Node->getOperand(0); 4787 SDValue Y = Node->getOperand(1); 4788 SDValue Z = Node->getOperand(2); 4789 4790 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4791 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4792 SDLoc DL(SDValue(Node, 0)); 4793 4794 EVT ShVT = Z.getValueType(); 4795 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4796 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4797 4798 SDValue ShAmt; 4799 if (isPowerOf2_32(EltSizeInBits)) { 4800 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4801 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4802 } else { 4803 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4804 } 4805 4806 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4807 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4808 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4809 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4810 4811 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4812 // and that is undefined. We must compare and select to avoid UB. 4813 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4814 4815 // For fshl, 0-shift returns the 1st arg (X). 4816 // For fshr, 0-shift returns the 2nd arg (Y). 4817 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4818 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4819 return true; 4820 } 4821 4822 // TODO: Merge with expandFunnelShift. 4823 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4824 SelectionDAG &DAG) const { 4825 EVT VT = Node->getValueType(0); 4826 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4827 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4828 SDValue Op0 = Node->getOperand(0); 4829 SDValue Op1 = Node->getOperand(1); 4830 SDLoc DL(SDValue(Node, 0)); 4831 4832 EVT ShVT = Op1.getValueType(); 4833 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4834 4835 // If a rotate in the other direction is legal, use it. 4836 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4837 if (isOperationLegal(RevRot, VT)) { 4838 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4839 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4840 return true; 4841 } 4842 4843 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4844 !isOperationLegalOrCustom(ISD::SRL, VT) || 4845 !isOperationLegalOrCustom(ISD::SUB, VT) || 4846 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4847 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4848 return false; 4849 4850 // Otherwise, 4851 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4852 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4853 // 4854 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4855 "Expecting the type bitwidth to be a power of 2"); 4856 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4857 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4858 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4859 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4860 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4861 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4862 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4863 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4864 return true; 4865 } 4866 4867 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4868 SelectionDAG &DAG) const { 4869 SDValue Src = Node->getOperand(0); 4870 EVT SrcVT = Src.getValueType(); 4871 EVT DstVT = Node->getValueType(0); 4872 SDLoc dl(SDValue(Node, 0)); 4873 4874 // FIXME: Only f32 to i64 conversions are supported. 4875 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4876 return false; 4877 4878 // Expand f32 -> i64 conversion 4879 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4880 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4881 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4882 EVT IntVT = SrcVT.changeTypeToInteger(); 4883 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4884 4885 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4886 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4887 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4888 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4889 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4890 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4891 4892 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4893 4894 SDValue ExponentBits = DAG.getNode( 4895 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4896 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4897 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4898 4899 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4900 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4901 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4902 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4903 4904 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4905 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4906 DAG.getConstant(0x00800000, dl, IntVT)); 4907 4908 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4909 4910 R = DAG.getSelectCC( 4911 dl, Exponent, ExponentLoBit, 4912 DAG.getNode(ISD::SHL, dl, DstVT, R, 4913 DAG.getZExtOrTrunc( 4914 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4915 dl, IntShVT)), 4916 DAG.getNode(ISD::SRL, dl, DstVT, R, 4917 DAG.getZExtOrTrunc( 4918 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4919 dl, IntShVT)), 4920 ISD::SETGT); 4921 4922 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4923 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4924 4925 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4926 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4927 return true; 4928 } 4929 4930 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4931 SelectionDAG &DAG) const { 4932 SDLoc dl(SDValue(Node, 0)); 4933 SDValue Src = Node->getOperand(0); 4934 4935 EVT SrcVT = Src.getValueType(); 4936 EVT DstVT = Node->getValueType(0); 4937 EVT SetCCVT = 4938 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4939 4940 // Only expand vector types if we have the appropriate vector bit operations. 4941 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4942 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4943 return false; 4944 4945 // If the maximum float value is smaller then the signed integer range, 4946 // the destination signmask can't be represented by the float, so we can 4947 // just use FP_TO_SINT directly. 4948 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4949 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4950 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4951 if (APFloat::opOverflow & 4952 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4953 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4954 return true; 4955 } 4956 4957 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4958 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4959 4960 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4961 if (Strict) { 4962 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4963 // signmask then offset (the result of which should be fully representable). 4964 // Sel = Src < 0x8000000000000000 4965 // Val = select Sel, Src, Src - 0x8000000000000000 4966 // Ofs = select Sel, 0, 0x8000000000000000 4967 // Result = fp_to_sint(Val) ^ Ofs 4968 4969 // TODO: Should any fast-math-flags be set for the FSUB? 4970 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4971 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4972 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4973 DAG.getConstant(SignMask, dl, DstVT)); 4974 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4975 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4976 } else { 4977 // Expand based on maximum range of FP_TO_SINT: 4978 // True = fp_to_sint(Src) 4979 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4980 // Result = select (Src < 0x8000000000000000), True, False 4981 4982 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4983 // TODO: Should any fast-math-flags be set for the FSUB? 4984 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4985 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4986 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4987 DAG.getConstant(SignMask, dl, DstVT)); 4988 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4989 } 4990 return true; 4991 } 4992 4993 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4994 SelectionDAG &DAG) const { 4995 SDValue Src = Node->getOperand(0); 4996 EVT SrcVT = Src.getValueType(); 4997 EVT DstVT = Node->getValueType(0); 4998 4999 if (SrcVT.getScalarType() != MVT::i64) 5000 return false; 5001 5002 SDLoc dl(SDValue(Node, 0)); 5003 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 5004 5005 if (DstVT.getScalarType() == MVT::f32) { 5006 // Only expand vector types if we have the appropriate vector bit 5007 // operations. 5008 if (SrcVT.isVector() && 5009 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 5010 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 5011 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 5012 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 5013 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 5014 return false; 5015 5016 // For unsigned conversions, convert them to signed conversions using the 5017 // algorithm from the x86_64 __floatundidf in compiler_rt. 5018 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 5019 5020 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 5021 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 5022 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 5023 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 5024 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 5025 5026 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 5027 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 5028 5029 // TODO: This really should be implemented using a branch rather than a 5030 // select. We happen to get lucky and machinesink does the right 5031 // thing most of the time. This would be a good candidate for a 5032 // pseudo-op, or, even better, for whole-function isel. 5033 EVT SetCCVT = 5034 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5035 5036 SDValue SignBitTest = DAG.getSetCC( 5037 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 5038 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 5039 return true; 5040 } 5041 5042 if (DstVT.getScalarType() == MVT::f64) { 5043 // Only expand vector types if we have the appropriate vector bit 5044 // operations. 5045 if (SrcVT.isVector() && 5046 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 5047 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 5048 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 5049 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 5050 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 5051 return false; 5052 5053 // Implementation of unsigned i64 to f64 following the algorithm in 5054 // __floatundidf in compiler_rt. This implementation has the advantage 5055 // of performing rounding correctly, both in the default rounding mode 5056 // and in all alternate rounding modes. 5057 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 5058 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 5059 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 5060 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 5061 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 5062 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 5063 5064 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 5065 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 5066 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 5067 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 5068 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 5069 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 5070 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 5071 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 5072 return true; 5073 } 5074 5075 return false; 5076 } 5077 5078 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 5079 SelectionDAG &DAG) const { 5080 SDLoc dl(Node); 5081 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 5082 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 5083 EVT VT = Node->getValueType(0); 5084 if (isOperationLegalOrCustom(NewOp, VT)) { 5085 SDValue Quiet0 = Node->getOperand(0); 5086 SDValue Quiet1 = Node->getOperand(1); 5087 5088 if (!Node->getFlags().hasNoNaNs()) { 5089 // Insert canonicalizes if it's possible we need to quiet to get correct 5090 // sNaN behavior. 5091 if (!DAG.isKnownNeverSNaN(Quiet0)) { 5092 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 5093 Node->getFlags()); 5094 } 5095 if (!DAG.isKnownNeverSNaN(Quiet1)) { 5096 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 5097 Node->getFlags()); 5098 } 5099 } 5100 5101 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 5102 } 5103 5104 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 5105 // instead if there are no NaNs. 5106 if (Node->getFlags().hasNoNaNs()) { 5107 unsigned IEEE2018Op = 5108 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 5109 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 5110 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 5111 Node->getOperand(1), Node->getFlags()); 5112 } 5113 } 5114 5115 return SDValue(); 5116 } 5117 5118 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 5119 SelectionDAG &DAG) const { 5120 SDLoc dl(Node); 5121 EVT VT = Node->getValueType(0); 5122 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5123 SDValue Op = Node->getOperand(0); 5124 unsigned Len = VT.getScalarSizeInBits(); 5125 assert(VT.isInteger() && "CTPOP not implemented for this type."); 5126 5127 // TODO: Add support for irregular type lengths. 5128 if (!(Len <= 128 && Len % 8 == 0)) 5129 return false; 5130 5131 // Only expand vector types if we have the appropriate vector bit operations. 5132 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 5133 !isOperationLegalOrCustom(ISD::SUB, VT) || 5134 !isOperationLegalOrCustom(ISD::SRL, VT) || 5135 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 5136 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5137 return false; 5138 5139 // This is the "best" algorithm from 5140 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 5141 SDValue Mask55 = 5142 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 5143 SDValue Mask33 = 5144 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 5145 SDValue Mask0F = 5146 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 5147 SDValue Mask01 = 5148 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 5149 5150 // v = v - ((v >> 1) & 0x55555555...) 5151 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 5152 DAG.getNode(ISD::AND, dl, VT, 5153 DAG.getNode(ISD::SRL, dl, VT, Op, 5154 DAG.getConstant(1, dl, ShVT)), 5155 Mask55)); 5156 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 5157 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 5158 DAG.getNode(ISD::AND, dl, VT, 5159 DAG.getNode(ISD::SRL, dl, VT, Op, 5160 DAG.getConstant(2, dl, ShVT)), 5161 Mask33)); 5162 // v = (v + (v >> 4)) & 0x0F0F0F0F... 5163 Op = DAG.getNode(ISD::AND, dl, VT, 5164 DAG.getNode(ISD::ADD, dl, VT, Op, 5165 DAG.getNode(ISD::SRL, dl, VT, Op, 5166 DAG.getConstant(4, dl, ShVT))), 5167 Mask0F); 5168 // v = (v * 0x01010101...) >> (Len - 8) 5169 if (Len > 8) 5170 Op = 5171 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 5172 DAG.getConstant(Len - 8, dl, ShVT)); 5173 5174 Result = Op; 5175 return true; 5176 } 5177 5178 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 5179 SelectionDAG &DAG) const { 5180 SDLoc dl(Node); 5181 EVT VT = Node->getValueType(0); 5182 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5183 SDValue Op = Node->getOperand(0); 5184 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5185 5186 // If the non-ZERO_UNDEF version is supported we can use that instead. 5187 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 5188 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 5189 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 5190 return true; 5191 } 5192 5193 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5194 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 5195 EVT SetCCVT = 5196 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5197 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 5198 SDValue Zero = DAG.getConstant(0, dl, VT); 5199 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5200 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5201 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 5202 return true; 5203 } 5204 5205 // Only expand vector types if we have the appropriate vector bit operations. 5206 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5207 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 5208 !isOperationLegalOrCustom(ISD::SRL, VT) || 5209 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5210 return false; 5211 5212 // for now, we do this: 5213 // x = x | (x >> 1); 5214 // x = x | (x >> 2); 5215 // ... 5216 // x = x | (x >>16); 5217 // x = x | (x >>32); // for 64-bit input 5218 // return popcount(~x); 5219 // 5220 // Ref: "Hacker's Delight" by Henry Warren 5221 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 5222 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 5223 Op = DAG.getNode(ISD::OR, dl, VT, Op, 5224 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 5225 } 5226 Op = DAG.getNOT(dl, Op, VT); 5227 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 5228 return true; 5229 } 5230 5231 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 5232 SelectionDAG &DAG) const { 5233 SDLoc dl(Node); 5234 EVT VT = Node->getValueType(0); 5235 SDValue Op = Node->getOperand(0); 5236 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5237 5238 // If the non-ZERO_UNDEF version is supported we can use that instead. 5239 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 5240 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 5241 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 5242 return true; 5243 } 5244 5245 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5246 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 5247 EVT SetCCVT = 5248 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5249 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 5250 SDValue Zero = DAG.getConstant(0, dl, VT); 5251 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5252 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5253 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 5254 return true; 5255 } 5256 5257 // Only expand vector types if we have the appropriate vector bit operations. 5258 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5259 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 5260 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 5261 !isOperationLegalOrCustom(ISD::SUB, VT) || 5262 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 5263 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5264 return false; 5265 5266 // for now, we use: { return popcount(~x & (x - 1)); } 5267 // unless the target has ctlz but not ctpop, in which case we use: 5268 // { return 32 - nlz(~x & (x-1)); } 5269 // Ref: "Hacker's Delight" by Henry Warren 5270 SDValue Tmp = DAG.getNode( 5271 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 5272 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 5273 5274 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5275 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 5276 Result = 5277 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 5278 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 5279 return true; 5280 } 5281 5282 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 5283 return true; 5284 } 5285 5286 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 5287 SelectionDAG &DAG) const { 5288 SDLoc dl(N); 5289 EVT VT = N->getValueType(0); 5290 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5291 SDValue Op = N->getOperand(0); 5292 5293 // Only expand vector types if we have the appropriate vector operations. 5294 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 5295 !isOperationLegalOrCustom(ISD::ADD, VT) || 5296 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5297 return false; 5298 5299 SDValue Shift = 5300 DAG.getNode(ISD::SRA, dl, VT, Op, 5301 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 5302 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 5303 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 5304 return true; 5305 } 5306 5307 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 5308 SelectionDAG &DAG) const { 5309 SDLoc SL(LD); 5310 SDValue Chain = LD->getChain(); 5311 SDValue BasePTR = LD->getBasePtr(); 5312 EVT SrcVT = LD->getMemoryVT(); 5313 ISD::LoadExtType ExtType = LD->getExtensionType(); 5314 5315 unsigned NumElem = SrcVT.getVectorNumElements(); 5316 5317 EVT SrcEltVT = SrcVT.getScalarType(); 5318 EVT DstEltVT = LD->getValueType(0).getScalarType(); 5319 5320 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 5321 assert(SrcEltVT.isByteSized()); 5322 5323 SmallVector<SDValue, 8> Vals; 5324 SmallVector<SDValue, 8> LoadChains; 5325 5326 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5327 SDValue ScalarLoad = 5328 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 5329 LD->getPointerInfo().getWithOffset(Idx * Stride), 5330 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 5331 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5332 5333 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 5334 5335 Vals.push_back(ScalarLoad.getValue(0)); 5336 LoadChains.push_back(ScalarLoad.getValue(1)); 5337 } 5338 5339 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 5340 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 5341 5342 return DAG.getMergeValues({Value, NewChain}, SL); 5343 } 5344 5345 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 5346 SelectionDAG &DAG) const { 5347 SDLoc SL(ST); 5348 5349 SDValue Chain = ST->getChain(); 5350 SDValue BasePtr = ST->getBasePtr(); 5351 SDValue Value = ST->getValue(); 5352 EVT StVT = ST->getMemoryVT(); 5353 5354 // The type of the data we want to save 5355 EVT RegVT = Value.getValueType(); 5356 EVT RegSclVT = RegVT.getScalarType(); 5357 5358 // The type of data as saved in memory. 5359 EVT MemSclVT = StVT.getScalarType(); 5360 5361 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 5362 unsigned NumElem = StVT.getVectorNumElements(); 5363 5364 // A vector must always be stored in memory as-is, i.e. without any padding 5365 // between the elements, since various code depend on it, e.g. in the 5366 // handling of a bitcast of a vector type to int, which may be done with a 5367 // vector store followed by an integer load. A vector that does not have 5368 // elements that are byte-sized must therefore be stored as an integer 5369 // built out of the extracted vector elements. 5370 if (!MemSclVT.isByteSized()) { 5371 unsigned NumBits = StVT.getSizeInBits(); 5372 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 5373 5374 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 5375 5376 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5377 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5378 DAG.getConstant(Idx, SL, IdxVT)); 5379 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 5380 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 5381 unsigned ShiftIntoIdx = 5382 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 5383 SDValue ShiftAmount = 5384 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 5385 SDValue ShiftedElt = 5386 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 5387 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 5388 } 5389 5390 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 5391 ST->getAlignment(), ST->getMemOperand()->getFlags(), 5392 ST->getAAInfo()); 5393 } 5394 5395 // Store Stride in bytes 5396 unsigned Stride = MemSclVT.getSizeInBits() / 8; 5397 assert(Stride && "Zero stride!"); 5398 // Extract each of the elements from the original vector and save them into 5399 // memory individually. 5400 SmallVector<SDValue, 8> Stores; 5401 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5402 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5403 DAG.getConstant(Idx, SL, IdxVT)); 5404 5405 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 5406 5407 // This scalar TruncStore may be illegal, but we legalize it later. 5408 SDValue Store = DAG.getTruncStore( 5409 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 5410 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 5411 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5412 5413 Stores.push_back(Store); 5414 } 5415 5416 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 5417 } 5418 5419 std::pair<SDValue, SDValue> 5420 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 5421 assert(LD->getAddressingMode() == ISD::UNINDEXED && 5422 "unaligned indexed loads not implemented!"); 5423 SDValue Chain = LD->getChain(); 5424 SDValue Ptr = LD->getBasePtr(); 5425 EVT VT = LD->getValueType(0); 5426 EVT LoadedVT = LD->getMemoryVT(); 5427 SDLoc dl(LD); 5428 auto &MF = DAG.getMachineFunction(); 5429 5430 if (VT.isFloatingPoint() || VT.isVector()) { 5431 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 5432 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 5433 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 5434 LoadedVT.isVector()) { 5435 // Scalarize the load and let the individual components be handled. 5436 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 5437 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 5438 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 5439 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 5440 } 5441 5442 // Expand to a (misaligned) integer load of the same size, 5443 // then bitconvert to floating point or vector. 5444 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 5445 LD->getMemOperand()); 5446 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 5447 if (LoadedVT != VT) 5448 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 5449 ISD::ANY_EXTEND, dl, VT, Result); 5450 5451 return std::make_pair(Result, newLoad.getValue(1)); 5452 } 5453 5454 // Copy the value to a (aligned) stack slot using (unaligned) integer 5455 // loads and stores, then do a (aligned) load from the stack slot. 5456 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5457 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5458 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5459 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5460 5461 // Make sure the stack slot is also aligned for the register type. 5462 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5463 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5464 SmallVector<SDValue, 8> Stores; 5465 SDValue StackPtr = StackBase; 5466 unsigned Offset = 0; 5467 5468 EVT PtrVT = Ptr.getValueType(); 5469 EVT StackPtrVT = StackPtr.getValueType(); 5470 5471 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5472 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5473 5474 // Do all but one copies using the full register width. 5475 for (unsigned i = 1; i < NumRegs; i++) { 5476 // Load one integer register's worth from the original location. 5477 SDValue Load = DAG.getLoad( 5478 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5479 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5480 LD->getAAInfo()); 5481 // Follow the load with a store to the stack slot. Remember the store. 5482 Stores.push_back(DAG.getStore( 5483 Load.getValue(1), dl, Load, StackPtr, 5484 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5485 // Increment the pointers. 5486 Offset += RegBytes; 5487 5488 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5489 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5490 } 5491 5492 // The last copy may be partial. Do an extending load. 5493 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5494 8 * (LoadedBytes - Offset)); 5495 SDValue Load = 5496 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5497 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5498 MinAlign(LD->getAlignment(), Offset), 5499 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5500 // Follow the load with a store to the stack slot. Remember the store. 5501 // On big-endian machines this requires a truncating store to ensure 5502 // that the bits end up in the right place. 5503 Stores.push_back(DAG.getTruncStore( 5504 Load.getValue(1), dl, Load, StackPtr, 5505 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5506 5507 // The order of the stores doesn't matter - say it with a TokenFactor. 5508 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5509 5510 // Finally, perform the original load only redirected to the stack slot. 5511 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5512 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5513 LoadedVT); 5514 5515 // Callers expect a MERGE_VALUES node. 5516 return std::make_pair(Load, TF); 5517 } 5518 5519 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5520 "Unaligned load of unsupported type."); 5521 5522 // Compute the new VT that is half the size of the old one. This is an 5523 // integer MVT. 5524 unsigned NumBits = LoadedVT.getSizeInBits(); 5525 EVT NewLoadedVT; 5526 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5527 NumBits >>= 1; 5528 5529 unsigned Alignment = LD->getAlignment(); 5530 unsigned IncrementSize = NumBits / 8; 5531 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5532 5533 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5534 if (HiExtType == ISD::NON_EXTLOAD) 5535 HiExtType = ISD::ZEXTLOAD; 5536 5537 // Load the value in two parts 5538 SDValue Lo, Hi; 5539 if (DAG.getDataLayout().isLittleEndian()) { 5540 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5541 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5542 LD->getAAInfo()); 5543 5544 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5545 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5546 LD->getPointerInfo().getWithOffset(IncrementSize), 5547 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5548 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5549 } else { 5550 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5551 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5552 LD->getAAInfo()); 5553 5554 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5555 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5556 LD->getPointerInfo().getWithOffset(IncrementSize), 5557 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5558 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5559 } 5560 5561 // aggregate the two parts 5562 SDValue ShiftAmount = 5563 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5564 DAG.getDataLayout())); 5565 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5566 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5567 5568 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5569 Hi.getValue(1)); 5570 5571 return std::make_pair(Result, TF); 5572 } 5573 5574 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5575 SelectionDAG &DAG) const { 5576 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5577 "unaligned indexed stores not implemented!"); 5578 SDValue Chain = ST->getChain(); 5579 SDValue Ptr = ST->getBasePtr(); 5580 SDValue Val = ST->getValue(); 5581 EVT VT = Val.getValueType(); 5582 int Alignment = ST->getAlignment(); 5583 auto &MF = DAG.getMachineFunction(); 5584 EVT StoreMemVT = ST->getMemoryVT(); 5585 5586 SDLoc dl(ST); 5587 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 5588 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5589 if (isTypeLegal(intVT)) { 5590 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5591 StoreMemVT.isVector()) { 5592 // Scalarize the store and let the individual components be handled. 5593 SDValue Result = scalarizeVectorStore(ST, DAG); 5594 return Result; 5595 } 5596 // Expand to a bitconvert of the value to the integer type of the 5597 // same size, then a (misaligned) int store. 5598 // FIXME: Does not handle truncating floating point stores! 5599 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5600 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5601 Alignment, ST->getMemOperand()->getFlags()); 5602 return Result; 5603 } 5604 // Do a (aligned) store to a stack slot, then copy from the stack slot 5605 // to the final destination using (unaligned) integer loads and stores. 5606 MVT RegVT = getRegisterType( 5607 *DAG.getContext(), 5608 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 5609 EVT PtrVT = Ptr.getValueType(); 5610 unsigned StoredBytes = StoreMemVT.getStoreSize(); 5611 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5612 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5613 5614 // Make sure the stack slot is also aligned for the register type. 5615 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 5616 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5617 5618 // Perform the original store, only redirected to the stack slot. 5619 SDValue Store = DAG.getTruncStore( 5620 Chain, dl, Val, StackPtr, 5621 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 5622 5623 EVT StackPtrVT = StackPtr.getValueType(); 5624 5625 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5626 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5627 SmallVector<SDValue, 8> Stores; 5628 unsigned Offset = 0; 5629 5630 // Do all but one copies using the full register width. 5631 for (unsigned i = 1; i < NumRegs; i++) { 5632 // Load one integer register's worth from the stack slot. 5633 SDValue Load = DAG.getLoad( 5634 RegVT, dl, Store, StackPtr, 5635 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5636 // Store it to the final location. Remember the store. 5637 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5638 ST->getPointerInfo().getWithOffset(Offset), 5639 MinAlign(ST->getAlignment(), Offset), 5640 ST->getMemOperand()->getFlags())); 5641 // Increment the pointers. 5642 Offset += RegBytes; 5643 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5644 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5645 } 5646 5647 // The last store may be partial. Do a truncating store. On big-endian 5648 // machines this requires an extending load from the stack slot to ensure 5649 // that the bits are in the right place. 5650 EVT LoadMemVT = 5651 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 5652 5653 // Load from the stack slot. 5654 SDValue Load = DAG.getExtLoad( 5655 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5656 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 5657 5658 Stores.push_back( 5659 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5660 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 5661 MinAlign(ST->getAlignment(), Offset), 5662 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5663 // The order of the stores doesn't matter - say it with a TokenFactor. 5664 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5665 return Result; 5666 } 5667 5668 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 5669 "Unaligned store of unknown type."); 5670 // Get the half-size VT 5671 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 5672 int NumBits = NewStoredVT.getSizeInBits(); 5673 int IncrementSize = NumBits / 8; 5674 5675 // Divide the stored value in two parts. 5676 SDValue ShiftAmount = DAG.getConstant( 5677 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 5678 SDValue Lo = Val; 5679 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5680 5681 // Store the two parts 5682 SDValue Store1, Store2; 5683 Store1 = DAG.getTruncStore(Chain, dl, 5684 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5685 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5686 ST->getMemOperand()->getFlags()); 5687 5688 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5689 Alignment = MinAlign(Alignment, IncrementSize); 5690 Store2 = DAG.getTruncStore( 5691 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5692 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5693 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5694 5695 SDValue Result = 5696 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5697 return Result; 5698 } 5699 5700 SDValue 5701 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5702 const SDLoc &DL, EVT DataVT, 5703 SelectionDAG &DAG, 5704 bool IsCompressedMemory) const { 5705 SDValue Increment; 5706 EVT AddrVT = Addr.getValueType(); 5707 EVT MaskVT = Mask.getValueType(); 5708 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5709 "Incompatible types of Data and Mask"); 5710 if (IsCompressedMemory) { 5711 // Incrementing the pointer according to number of '1's in the mask. 5712 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5713 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5714 if (MaskIntVT.getSizeInBits() < 32) { 5715 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5716 MaskIntVT = MVT::i32; 5717 } 5718 5719 // Count '1's with POPCNT. 5720 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5721 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5722 // Scale is an element size in bytes. 5723 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5724 AddrVT); 5725 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5726 } else 5727 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5728 5729 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5730 } 5731 5732 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5733 SDValue Idx, 5734 EVT VecVT, 5735 const SDLoc &dl) { 5736 if (isa<ConstantSDNode>(Idx)) 5737 return Idx; 5738 5739 EVT IdxVT = Idx.getValueType(); 5740 unsigned NElts = VecVT.getVectorNumElements(); 5741 if (isPowerOf2_32(NElts)) { 5742 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5743 Log2_32(NElts)); 5744 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5745 DAG.getConstant(Imm, dl, IdxVT)); 5746 } 5747 5748 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5749 DAG.getConstant(NElts - 1, dl, IdxVT)); 5750 } 5751 5752 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5753 SDValue VecPtr, EVT VecVT, 5754 SDValue Index) const { 5755 SDLoc dl(Index); 5756 // Make sure the index type is big enough to compute in. 5757 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5758 5759 EVT EltVT = VecVT.getVectorElementType(); 5760 5761 // Calculate the element offset and add it to the pointer. 5762 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5763 assert(EltSize * 8 == EltVT.getSizeInBits() && 5764 "Converting bits to bytes lost precision"); 5765 5766 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5767 5768 EVT IdxVT = Index.getValueType(); 5769 5770 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5771 DAG.getConstant(EltSize, dl, IdxVT)); 5772 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5773 } 5774 5775 //===----------------------------------------------------------------------===// 5776 // Implementation of Emulated TLS Model 5777 //===----------------------------------------------------------------------===// 5778 5779 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5780 SelectionDAG &DAG) const { 5781 // Access to address of TLS varialbe xyz is lowered to a function call: 5782 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5783 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5784 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5785 SDLoc dl(GA); 5786 5787 ArgListTy Args; 5788 ArgListEntry Entry; 5789 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5790 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5791 StringRef EmuTlsVarName(NameString); 5792 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5793 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5794 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5795 Entry.Ty = VoidPtrType; 5796 Args.push_back(Entry); 5797 5798 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5799 5800 TargetLowering::CallLoweringInfo CLI(DAG); 5801 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5802 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5803 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5804 5805 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5806 // At last for X86 targets, maybe good for other targets too? 5807 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5808 MFI.setAdjustsStack(true); // Is this only for X86 target? 5809 MFI.setHasCalls(true); 5810 5811 assert((GA->getOffset() == 0) && 5812 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5813 return CallResult.first; 5814 } 5815 5816 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5817 SelectionDAG &DAG) const { 5818 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5819 if (!isCtlzFast()) 5820 return SDValue(); 5821 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5822 SDLoc dl(Op); 5823 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5824 if (C->isNullValue() && CC == ISD::SETEQ) { 5825 EVT VT = Op.getOperand(0).getValueType(); 5826 SDValue Zext = Op.getOperand(0); 5827 if (VT.bitsLT(MVT::i32)) { 5828 VT = MVT::i32; 5829 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5830 } 5831 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5832 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5833 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5834 DAG.getConstant(Log2b, dl, MVT::i32)); 5835 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5836 } 5837 } 5838 return SDValue(); 5839 } 5840 5841 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5842 unsigned Opcode = Node->getOpcode(); 5843 SDValue LHS = Node->getOperand(0); 5844 SDValue RHS = Node->getOperand(1); 5845 EVT VT = LHS.getValueType(); 5846 SDLoc dl(Node); 5847 5848 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5849 assert(VT.isInteger() && "Expected operands to be integers"); 5850 5851 // usub.sat(a, b) -> umax(a, b) - b 5852 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5853 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5854 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5855 } 5856 5857 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5858 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5859 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5860 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5861 } 5862 5863 unsigned OverflowOp; 5864 switch (Opcode) { 5865 case ISD::SADDSAT: 5866 OverflowOp = ISD::SADDO; 5867 break; 5868 case ISD::UADDSAT: 5869 OverflowOp = ISD::UADDO; 5870 break; 5871 case ISD::SSUBSAT: 5872 OverflowOp = ISD::SSUBO; 5873 break; 5874 case ISD::USUBSAT: 5875 OverflowOp = ISD::USUBO; 5876 break; 5877 default: 5878 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5879 "addition or subtraction node."); 5880 } 5881 5882 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5883 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5884 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5885 LHS, RHS); 5886 SDValue SumDiff = Result.getValue(0); 5887 SDValue Overflow = Result.getValue(1); 5888 SDValue Zero = DAG.getConstant(0, dl, VT); 5889 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5890 5891 if (Opcode == ISD::UADDSAT) { 5892 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5893 // (LHS + RHS) | OverflowMask 5894 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5895 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 5896 } 5897 // Overflow ? 0xffff.... : (LHS + RHS) 5898 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5899 } else if (Opcode == ISD::USUBSAT) { 5900 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5901 // (LHS - RHS) & ~OverflowMask 5902 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5903 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 5904 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 5905 } 5906 // Overflow ? 0 : (LHS - RHS) 5907 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5908 } else { 5909 // SatMax -> Overflow && SumDiff < 0 5910 // SatMin -> Overflow && SumDiff >= 0 5911 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5912 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5913 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5914 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5915 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5916 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5917 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5918 } 5919 } 5920 5921 SDValue 5922 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5923 assert((Node->getOpcode() == ISD::SMULFIX || 5924 Node->getOpcode() == ISD::UMULFIX || 5925 Node->getOpcode() == ISD::SMULFIXSAT) && 5926 "Expected a fixed point multiplication opcode"); 5927 5928 SDLoc dl(Node); 5929 SDValue LHS = Node->getOperand(0); 5930 SDValue RHS = Node->getOperand(1); 5931 EVT VT = LHS.getValueType(); 5932 unsigned Scale = Node->getConstantOperandVal(2); 5933 bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT; 5934 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5935 unsigned VTSize = VT.getScalarSizeInBits(); 5936 5937 if (!Scale) { 5938 // [us]mul.fix(a, b, 0) -> mul(a, b) 5939 if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) { 5940 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5941 } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) { 5942 SDValue Result = 5943 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 5944 SDValue Product = Result.getValue(0); 5945 SDValue Overflow = Result.getValue(1); 5946 SDValue Zero = DAG.getConstant(0, dl, VT); 5947 5948 APInt MinVal = APInt::getSignedMinValue(VTSize); 5949 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 5950 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5951 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5952 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 5953 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 5954 return DAG.getSelect(dl, VT, Overflow, Result, Product); 5955 } 5956 } 5957 5958 bool Signed = 5959 Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT; 5960 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5961 "Expected scale to be less than the number of bits if signed or at " 5962 "most the number of bits if unsigned."); 5963 assert(LHS.getValueType() == RHS.getValueType() && 5964 "Expected both operands to be the same type"); 5965 5966 // Get the upper and lower bits of the result. 5967 SDValue Lo, Hi; 5968 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5969 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5970 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5971 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5972 Lo = Result.getValue(0); 5973 Hi = Result.getValue(1); 5974 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5975 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5976 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5977 } else if (VT.isVector()) { 5978 return SDValue(); 5979 } else { 5980 report_fatal_error("Unable to expand fixed point multiplication."); 5981 } 5982 5983 if (Scale == VTSize) 5984 // Result is just the top half since we'd be shifting by the width of the 5985 // operand. 5986 return Hi; 5987 5988 // The result will need to be shifted right by the scale since both operands 5989 // are scaled. The result is given to us in 2 halves, so we only want part of 5990 // both in the result. 5991 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5992 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5993 DAG.getConstant(Scale, dl, ShiftTy)); 5994 if (!Saturating) 5995 return Result; 5996 5997 unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign 5998 SDValue HiMask = 5999 DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT); 6000 SDValue LoMask = DAG.getConstant( 6001 APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT); 6002 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 6003 APInt MinVal = APInt::getSignedMinValue(VTSize); 6004 6005 Result = DAG.getSelectCC(dl, Hi, LoMask, 6006 DAG.getConstant(MaxVal, dl, VT), Result, 6007 ISD::SETGT); 6008 return DAG.getSelectCC(dl, Hi, HiMask, 6009 DAG.getConstant(MinVal, dl, VT), Result, 6010 ISD::SETLT); 6011 } 6012 6013 void TargetLowering::expandUADDSUBO( 6014 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 6015 SDLoc dl(Node); 6016 SDValue LHS = Node->getOperand(0); 6017 SDValue RHS = Node->getOperand(1); 6018 bool IsAdd = Node->getOpcode() == ISD::UADDO; 6019 6020 // If ADD/SUBCARRY is legal, use that instead. 6021 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 6022 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 6023 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 6024 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 6025 { LHS, RHS, CarryIn }); 6026 Result = SDValue(NodeCarry.getNode(), 0); 6027 Overflow = SDValue(NodeCarry.getNode(), 1); 6028 return; 6029 } 6030 6031 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 6032 LHS.getValueType(), LHS, RHS); 6033 6034 EVT ResultType = Node->getValueType(1); 6035 EVT SetCCType = getSetCCResultType( 6036 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 6037 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 6038 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 6039 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 6040 } 6041 6042 void TargetLowering::expandSADDSUBO( 6043 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 6044 SDLoc dl(Node); 6045 SDValue LHS = Node->getOperand(0); 6046 SDValue RHS = Node->getOperand(1); 6047 bool IsAdd = Node->getOpcode() == ISD::SADDO; 6048 6049 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 6050 LHS.getValueType(), LHS, RHS); 6051 6052 EVT ResultType = Node->getValueType(1); 6053 EVT OType = getSetCCResultType( 6054 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 6055 6056 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6057 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 6058 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 6059 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 6060 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 6061 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 6062 return; 6063 } 6064 6065 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 6066 6067 // LHSSign -> LHS >= 0 6068 // RHSSign -> RHS >= 0 6069 // SumSign -> Result >= 0 6070 // 6071 // Add: 6072 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 6073 // Sub: 6074 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 6075 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 6076 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 6077 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 6078 IsAdd ? ISD::SETEQ : ISD::SETNE); 6079 6080 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE); 6081 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 6082 6083 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 6084 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType); 6085 } 6086 6087 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 6088 SDValue &Overflow, SelectionDAG &DAG) const { 6089 SDLoc dl(Node); 6090 EVT VT = Node->getValueType(0); 6091 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6092 SDValue LHS = Node->getOperand(0); 6093 SDValue RHS = Node->getOperand(1); 6094 bool isSigned = Node->getOpcode() == ISD::SMULO; 6095 6096 // For power-of-two multiplications we can use a simpler shift expansion. 6097 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 6098 const APInt &C = RHSC->getAPIntValue(); 6099 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 6100 if (C.isPowerOf2()) { 6101 // smulo(x, signed_min) is same as umulo(x, signed_min). 6102 bool UseArithShift = isSigned && !C.isMinSignedValue(); 6103 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6104 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 6105 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 6106 Overflow = DAG.getSetCC(dl, SetCCVT, 6107 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 6108 dl, VT, Result, ShiftAmt), 6109 LHS, ISD::SETNE); 6110 return true; 6111 } 6112 } 6113 6114 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 6115 if (VT.isVector()) 6116 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6117 VT.getVectorNumElements()); 6118 6119 SDValue BottomHalf; 6120 SDValue TopHalf; 6121 static const unsigned Ops[2][3] = 6122 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 6123 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 6124 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 6125 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6126 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 6127 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 6128 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 6129 RHS); 6130 TopHalf = BottomHalf.getValue(1); 6131 } else if (isTypeLegal(WideVT)) { 6132 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 6133 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 6134 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 6135 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 6136 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 6137 getShiftAmountTy(WideVT, DAG.getDataLayout())); 6138 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 6139 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 6140 } else { 6141 if (VT.isVector()) 6142 return false; 6143 6144 // We can fall back to a libcall with an illegal type for the MUL if we 6145 // have a libcall big enough. 6146 // Also, we can fall back to a division in some cases, but that's a big 6147 // performance hit in the general case. 6148 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6149 if (WideVT == MVT::i16) 6150 LC = RTLIB::MUL_I16; 6151 else if (WideVT == MVT::i32) 6152 LC = RTLIB::MUL_I32; 6153 else if (WideVT == MVT::i64) 6154 LC = RTLIB::MUL_I64; 6155 else if (WideVT == MVT::i128) 6156 LC = RTLIB::MUL_I128; 6157 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 6158 6159 SDValue HiLHS; 6160 SDValue HiRHS; 6161 if (isSigned) { 6162 // The high part is obtained by SRA'ing all but one of the bits of low 6163 // part. 6164 unsigned LoSize = VT.getSizeInBits(); 6165 HiLHS = 6166 DAG.getNode(ISD::SRA, dl, VT, LHS, 6167 DAG.getConstant(LoSize - 1, dl, 6168 getPointerTy(DAG.getDataLayout()))); 6169 HiRHS = 6170 DAG.getNode(ISD::SRA, dl, VT, RHS, 6171 DAG.getConstant(LoSize - 1, dl, 6172 getPointerTy(DAG.getDataLayout()))); 6173 } else { 6174 HiLHS = DAG.getConstant(0, dl, VT); 6175 HiRHS = DAG.getConstant(0, dl, VT); 6176 } 6177 6178 // Here we're passing the 2 arguments explicitly as 4 arguments that are 6179 // pre-lowered to the correct types. This all depends upon WideVT not 6180 // being a legal type for the architecture and thus has to be split to 6181 // two arguments. 6182 SDValue Ret; 6183 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 6184 // Halves of WideVT are packed into registers in different order 6185 // depending on platform endianness. This is usually handled by 6186 // the C calling convention, but we can't defer to it in 6187 // the legalizer. 6188 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 6189 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 6190 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 6191 /* isPostTypeLegalization */ true).first; 6192 } else { 6193 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 6194 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 6195 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 6196 /* isPostTypeLegalization */ true).first; 6197 } 6198 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 6199 "Ret value is a collection of constituent nodes holding result."); 6200 if (DAG.getDataLayout().isLittleEndian()) { 6201 // Same as above. 6202 BottomHalf = Ret.getOperand(0); 6203 TopHalf = Ret.getOperand(1); 6204 } else { 6205 BottomHalf = Ret.getOperand(1); 6206 TopHalf = Ret.getOperand(0); 6207 } 6208 } 6209 6210 Result = BottomHalf; 6211 if (isSigned) { 6212 SDValue ShiftAmt = DAG.getConstant( 6213 VT.getScalarSizeInBits() - 1, dl, 6214 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 6215 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 6216 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 6217 } else { 6218 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 6219 DAG.getConstant(0, dl, VT), ISD::SETNE); 6220 } 6221 6222 // Truncate the result if SetCC returns a larger type than needed. 6223 EVT RType = Node->getValueType(1); 6224 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 6225 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 6226 6227 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 6228 "Unexpected result type for S/UMULO legalization"); 6229 return true; 6230 } 6231 6232 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 6233 SDLoc dl(Node); 6234 bool NoNaN = Node->getFlags().hasNoNaNs(); 6235 unsigned BaseOpcode = 0; 6236 switch (Node->getOpcode()) { 6237 default: llvm_unreachable("Expected VECREDUCE opcode"); 6238 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 6239 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 6240 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 6241 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 6242 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 6243 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 6244 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 6245 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 6246 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 6247 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 6248 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 6249 case ISD::VECREDUCE_FMAX: 6250 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 6251 break; 6252 case ISD::VECREDUCE_FMIN: 6253 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 6254 break; 6255 } 6256 6257 SDValue Op = Node->getOperand(0); 6258 EVT VT = Op.getValueType(); 6259 6260 // Try to use a shuffle reduction for power of two vectors. 6261 if (VT.isPow2VectorType()) { 6262 while (VT.getVectorNumElements() > 1) { 6263 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 6264 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 6265 break; 6266 6267 SDValue Lo, Hi; 6268 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 6269 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 6270 VT = HalfVT; 6271 } 6272 } 6273 6274 EVT EltVT = VT.getVectorElementType(); 6275 unsigned NumElts = VT.getVectorNumElements(); 6276 6277 SmallVector<SDValue, 8> Ops; 6278 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 6279 6280 SDValue Res = Ops[0]; 6281 for (unsigned i = 1; i < NumElts; i++) 6282 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 6283 6284 // Result type may be wider than element type. 6285 if (EltVT != Node->getValueType(0)) 6286 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 6287 return Res; 6288 } 6289