1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/DivisionByConstantInfo.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() == ISD::AssertZext) 98 Value = Value.getOperand(0); 99 if (Value->getOpcode() != ISD::CopyFromReg) 100 return false; 101 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 102 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 103 return false; 104 } 105 return true; 106 } 107 108 /// Set CallLoweringInfo attribute flags based on a call instruction 109 /// and called function attributes. 110 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 111 unsigned ArgIdx) { 112 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 113 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 114 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 115 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 116 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 117 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 118 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 119 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 120 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 121 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 122 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 123 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 124 Alignment = Call->getParamStackAlign(ArgIdx); 125 IndirectType = nullptr; 126 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 127 "multiple ABI attributes?"); 128 if (IsByVal) { 129 IndirectType = Call->getParamByValType(ArgIdx); 130 if (!Alignment) 131 Alignment = Call->getParamAlign(ArgIdx); 132 } 133 if (IsPreallocated) 134 IndirectType = Call->getParamPreallocatedType(ArgIdx); 135 if (IsInAlloca) 136 IndirectType = Call->getParamInAllocaType(ArgIdx); 137 if (IsSRet) 138 IndirectType = Call->getParamStructRetType(ArgIdx); 139 } 140 141 /// Generate a libcall taking the given operands as arguments and returning a 142 /// result of type RetVT. 143 std::pair<SDValue, SDValue> 144 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 145 ArrayRef<SDValue> Ops, 146 MakeLibCallOptions CallOptions, 147 const SDLoc &dl, 148 SDValue InChain) const { 149 if (!InChain) 150 InChain = DAG.getEntryNode(); 151 152 TargetLowering::ArgListTy Args; 153 Args.reserve(Ops.size()); 154 155 TargetLowering::ArgListEntry Entry; 156 for (unsigned i = 0; i < Ops.size(); ++i) { 157 SDValue NewOp = Ops[i]; 158 Entry.Node = NewOp; 159 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 160 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 161 CallOptions.IsSExt); 162 Entry.IsZExt = !Entry.IsSExt; 163 164 if (CallOptions.IsSoften && 165 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 166 Entry.IsSExt = Entry.IsZExt = false; 167 } 168 Args.push_back(Entry); 169 } 170 171 if (LC == RTLIB::UNKNOWN_LIBCALL) 172 report_fatal_error("Unsupported library call operation!"); 173 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 174 getPointerTy(DAG.getDataLayout())); 175 176 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 177 TargetLowering::CallLoweringInfo CLI(DAG); 178 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 179 bool zeroExtend = !signExtend; 180 181 if (CallOptions.IsSoften && 182 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 183 signExtend = zeroExtend = false; 184 } 185 186 CLI.setDebugLoc(dl) 187 .setChain(InChain) 188 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 189 .setNoReturn(CallOptions.DoesNotReturn) 190 .setDiscardResult(!CallOptions.IsReturnValueUsed) 191 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 192 .setSExtResult(signExtend) 193 .setZExtResult(zeroExtend); 194 return LowerCallTo(CLI); 195 } 196 197 bool TargetLowering::findOptimalMemOpLowering( 198 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 199 unsigned SrcAS, const AttributeList &FuncAttributes) const { 200 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 201 Op.getSrcAlign() < Op.getDstAlign()) 202 return false; 203 204 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 205 206 if (VT == MVT::Other) { 207 // Use the largest integer type whose alignment constraints are satisfied. 208 // We only need to check DstAlign here as SrcAlign is always greater or 209 // equal to DstAlign (or zero). 210 VT = MVT::i64; 211 if (Op.isFixedDstAlign()) 212 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 213 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 214 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 215 assert(VT.isInteger()); 216 217 // Find the largest legal integer type. 218 MVT LVT = MVT::i64; 219 while (!isTypeLegal(LVT)) 220 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 221 assert(LVT.isInteger()); 222 223 // If the type we've chosen is larger than the largest legal integer type 224 // then use that instead. 225 if (VT.bitsGT(LVT)) 226 VT = LVT; 227 } 228 229 unsigned NumMemOps = 0; 230 uint64_t Size = Op.size(); 231 while (Size) { 232 unsigned VTSize = VT.getSizeInBits() / 8; 233 while (VTSize > Size) { 234 // For now, only use non-vector load / store's for the left-over pieces. 235 EVT NewVT = VT; 236 unsigned NewVTSize; 237 238 bool Found = false; 239 if (VT.isVector() || VT.isFloatingPoint()) { 240 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 241 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 242 isSafeMemOpType(NewVT.getSimpleVT())) 243 Found = true; 244 else if (NewVT == MVT::i64 && 245 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 246 isSafeMemOpType(MVT::f64)) { 247 // i64 is usually not legal on 32-bit targets, but f64 may be. 248 NewVT = MVT::f64; 249 Found = true; 250 } 251 } 252 253 if (!Found) { 254 do { 255 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 256 if (NewVT == MVT::i8) 257 break; 258 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 259 } 260 NewVTSize = NewVT.getSizeInBits() / 8; 261 262 // If the new VT cannot cover all of the remaining bits, then consider 263 // issuing a (or a pair of) unaligned and overlapping load / store. 264 unsigned Fast; 265 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 266 allowsMisalignedMemoryAccesses( 267 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 268 MachineMemOperand::MONone, &Fast) && 269 Fast) 270 VTSize = Size; 271 else { 272 VT = NewVT; 273 VTSize = NewVTSize; 274 } 275 } 276 277 if (++NumMemOps > Limit) 278 return false; 279 280 MemOps.push_back(VT); 281 Size -= VTSize; 282 } 283 284 return true; 285 } 286 287 /// Soften the operands of a comparison. This code is shared among BR_CC, 288 /// SELECT_CC, and SETCC handlers. 289 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 290 SDValue &NewLHS, SDValue &NewRHS, 291 ISD::CondCode &CCCode, 292 const SDLoc &dl, const SDValue OldLHS, 293 const SDValue OldRHS) const { 294 SDValue Chain; 295 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 296 OldRHS, Chain); 297 } 298 299 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 300 SDValue &NewLHS, SDValue &NewRHS, 301 ISD::CondCode &CCCode, 302 const SDLoc &dl, const SDValue OldLHS, 303 const SDValue OldRHS, 304 SDValue &Chain, 305 bool IsSignaling) const { 306 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 307 // not supporting it. We can update this code when libgcc provides such 308 // functions. 309 310 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 311 && "Unsupported setcc type!"); 312 313 // Expand into one or more soft-fp libcall(s). 314 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 315 bool ShouldInvertCC = false; 316 switch (CCCode) { 317 case ISD::SETEQ: 318 case ISD::SETOEQ: 319 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 320 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 321 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 322 break; 323 case ISD::SETNE: 324 case ISD::SETUNE: 325 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 326 (VT == MVT::f64) ? RTLIB::UNE_F64 : 327 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 328 break; 329 case ISD::SETGE: 330 case ISD::SETOGE: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 332 (VT == MVT::f64) ? RTLIB::OGE_F64 : 333 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 334 break; 335 case ISD::SETLT: 336 case ISD::SETOLT: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 338 (VT == MVT::f64) ? RTLIB::OLT_F64 : 339 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 340 break; 341 case ISD::SETLE: 342 case ISD::SETOLE: 343 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 344 (VT == MVT::f64) ? RTLIB::OLE_F64 : 345 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 346 break; 347 case ISD::SETGT: 348 case ISD::SETOGT: 349 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 350 (VT == MVT::f64) ? RTLIB::OGT_F64 : 351 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 352 break; 353 case ISD::SETO: 354 ShouldInvertCC = true; 355 [[fallthrough]]; 356 case ISD::SETUO: 357 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 358 (VT == MVT::f64) ? RTLIB::UO_F64 : 359 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 360 break; 361 case ISD::SETONE: 362 // SETONE = O && UNE 363 ShouldInvertCC = true; 364 [[fallthrough]]; 365 case ISD::SETUEQ: 366 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 367 (VT == MVT::f64) ? RTLIB::UO_F64 : 368 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 369 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 370 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 371 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 372 break; 373 default: 374 // Invert CC for unordered comparisons 375 ShouldInvertCC = true; 376 switch (CCCode) { 377 case ISD::SETULT: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 379 (VT == MVT::f64) ? RTLIB::OGE_F64 : 380 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 381 break; 382 case ISD::SETULE: 383 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 384 (VT == MVT::f64) ? RTLIB::OGT_F64 : 385 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 386 break; 387 case ISD::SETUGT: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 389 (VT == MVT::f64) ? RTLIB::OLE_F64 : 390 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 391 break; 392 case ISD::SETUGE: 393 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 394 (VT == MVT::f64) ? RTLIB::OLT_F64 : 395 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 396 break; 397 default: llvm_unreachable("Do not know how to soften this setcc!"); 398 } 399 } 400 401 // Use the target specific return value for comparison lib calls. 402 EVT RetVT = getCmpLibcallReturnType(); 403 SDValue Ops[2] = {NewLHS, NewRHS}; 404 TargetLowering::MakeLibCallOptions CallOptions; 405 EVT OpsVT[2] = { OldLHS.getValueType(), 406 OldRHS.getValueType() }; 407 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 408 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 409 NewLHS = Call.first; 410 NewRHS = DAG.getConstant(0, dl, RetVT); 411 412 CCCode = getCmpLibcallCC(LC1); 413 if (ShouldInvertCC) { 414 assert(RetVT.isInteger()); 415 CCCode = getSetCCInverse(CCCode, RetVT); 416 } 417 418 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 419 // Update Chain. 420 Chain = Call.second; 421 } else { 422 EVT SetCCVT = 423 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 424 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 425 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 426 CCCode = getCmpLibcallCC(LC2); 427 if (ShouldInvertCC) 428 CCCode = getSetCCInverse(CCCode, RetVT); 429 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 430 if (Chain) 431 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 432 Call2.second); 433 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 434 Tmp.getValueType(), Tmp, NewLHS); 435 NewRHS = SDValue(); 436 } 437 } 438 439 /// Return the entry encoding for a jump table in the current function. The 440 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 441 unsigned TargetLowering::getJumpTableEncoding() const { 442 // In non-pic modes, just use the address of a block. 443 if (!isPositionIndependent()) 444 return MachineJumpTableInfo::EK_BlockAddress; 445 446 // In PIC mode, if the target supports a GPRel32 directive, use it. 447 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 448 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 449 450 // Otherwise, use a label difference. 451 return MachineJumpTableInfo::EK_LabelDifference32; 452 } 453 454 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 455 SelectionDAG &DAG) const { 456 // If our PIC model is GP relative, use the global offset table as the base. 457 unsigned JTEncoding = getJumpTableEncoding(); 458 459 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 460 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 461 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 462 463 return Table; 464 } 465 466 /// This returns the relocation base for the given PIC jumptable, the same as 467 /// getPICJumpTableRelocBase, but as an MCExpr. 468 const MCExpr * 469 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 470 unsigned JTI,MCContext &Ctx) const{ 471 // The normal PIC reloc base is the label at the start of the jump table. 472 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 473 } 474 475 bool 476 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 477 const TargetMachine &TM = getTargetMachine(); 478 const GlobalValue *GV = GA->getGlobal(); 479 480 // If the address is not even local to this DSO we will have to load it from 481 // a got and then add the offset. 482 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 483 return false; 484 485 // If the code is position independent we will have to add a base register. 486 if (isPositionIndependent()) 487 return false; 488 489 // Otherwise we can do it. 490 return true; 491 } 492 493 //===----------------------------------------------------------------------===// 494 // Optimization Methods 495 //===----------------------------------------------------------------------===// 496 497 /// If the specified instruction has a constant integer operand and there are 498 /// bits set in that constant that are not demanded, then clear those bits and 499 /// return true. 500 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 501 const APInt &DemandedBits, 502 const APInt &DemandedElts, 503 TargetLoweringOpt &TLO) const { 504 SDLoc DL(Op); 505 unsigned Opcode = Op.getOpcode(); 506 507 // Do target-specific constant optimization. 508 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 509 return TLO.New.getNode(); 510 511 // FIXME: ISD::SELECT, ISD::SELECT_CC 512 switch (Opcode) { 513 default: 514 break; 515 case ISD::XOR: 516 case ISD::AND: 517 case ISD::OR: { 518 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 519 if (!Op1C || Op1C->isOpaque()) 520 return false; 521 522 // If this is a 'not' op, don't touch it because that's a canonical form. 523 const APInt &C = Op1C->getAPIntValue(); 524 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 525 return false; 526 527 if (!C.isSubsetOf(DemandedBits)) { 528 EVT VT = Op.getValueType(); 529 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 530 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 531 return TLO.CombineTo(Op, NewOp); 532 } 533 534 break; 535 } 536 } 537 538 return false; 539 } 540 541 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 542 const APInt &DemandedBits, 543 TargetLoweringOpt &TLO) const { 544 EVT VT = Op.getValueType(); 545 APInt DemandedElts = VT.isVector() 546 ? APInt::getAllOnes(VT.getVectorNumElements()) 547 : APInt(1, 1); 548 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 549 } 550 551 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 552 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 553 /// generalized for targets with other types of implicit widening casts. 554 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 555 const APInt &Demanded, 556 TargetLoweringOpt &TLO) const { 557 assert(Op.getNumOperands() == 2 && 558 "ShrinkDemandedOp only supports binary operators!"); 559 assert(Op.getNode()->getNumValues() == 1 && 560 "ShrinkDemandedOp only supports nodes with one result!"); 561 562 SelectionDAG &DAG = TLO.DAG; 563 SDLoc dl(Op); 564 565 // Early return, as this function cannot handle vector types. 566 if (Op.getValueType().isVector()) 567 return false; 568 569 // Don't do this if the node has another user, which may require the 570 // full value. 571 if (!Op.getNode()->hasOneUse()) 572 return false; 573 574 // Search for the smallest integer type with free casts to and from 575 // Op's type. For expedience, just check power-of-2 integer types. 576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 577 unsigned DemandedSize = Demanded.getActiveBits(); 578 unsigned SmallVTBits = DemandedSize; 579 if (!isPowerOf2_32(SmallVTBits)) 580 SmallVTBits = NextPowerOf2(SmallVTBits); 581 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 582 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 583 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 584 TLI.isZExtFree(SmallVT, Op.getValueType())) { 585 // We found a type with free casts. 586 SDValue X = DAG.getNode( 587 Op.getOpcode(), dl, SmallVT, 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 589 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 590 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 591 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 592 return TLO.CombineTo(Op, Z); 593 } 594 } 595 return false; 596 } 597 598 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 599 DAGCombinerInfo &DCI) const { 600 SelectionDAG &DAG = DCI.DAG; 601 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 602 !DCI.isBeforeLegalizeOps()); 603 KnownBits Known; 604 605 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 606 if (Simplified) { 607 DCI.AddToWorklist(Op.getNode()); 608 DCI.CommitTargetLoweringOpt(TLO); 609 } 610 return Simplified; 611 } 612 613 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 614 const APInt &DemandedElts, 615 DAGCombinerInfo &DCI) const { 616 SelectionDAG &DAG = DCI.DAG; 617 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 618 !DCI.isBeforeLegalizeOps()); 619 KnownBits Known; 620 621 bool Simplified = 622 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 623 if (Simplified) { 624 DCI.AddToWorklist(Op.getNode()); 625 DCI.CommitTargetLoweringOpt(TLO); 626 } 627 return Simplified; 628 } 629 630 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 631 KnownBits &Known, 632 TargetLoweringOpt &TLO, 633 unsigned Depth, 634 bool AssumeSingleUse) const { 635 EVT VT = Op.getValueType(); 636 637 // Since the number of lanes in a scalable vector is unknown at compile time, 638 // we track one bit which is implicitly broadcast to all lanes. This means 639 // that all lanes in a scalable vector are considered demanded. 640 APInt DemandedElts = VT.isFixedLengthVector() 641 ? APInt::getAllOnes(VT.getVectorNumElements()) 642 : APInt(1, 1); 643 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 644 AssumeSingleUse); 645 } 646 647 // TODO: Under what circumstances can we create nodes? Constant folding? 648 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 649 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 650 SelectionDAG &DAG, unsigned Depth) const { 651 EVT VT = Op.getValueType(); 652 653 // Limit search depth. 654 if (Depth >= SelectionDAG::MaxRecursionDepth) 655 return SDValue(); 656 657 // Ignore UNDEFs. 658 if (Op.isUndef()) 659 return SDValue(); 660 661 // Not demanding any bits/elts from Op. 662 if (DemandedBits == 0 || DemandedElts == 0) 663 return DAG.getUNDEF(VT); 664 665 bool IsLE = DAG.getDataLayout().isLittleEndian(); 666 unsigned NumElts = DemandedElts.getBitWidth(); 667 unsigned BitWidth = DemandedBits.getBitWidth(); 668 KnownBits LHSKnown, RHSKnown; 669 switch (Op.getOpcode()) { 670 case ISD::BITCAST: { 671 if (VT.isScalableVector()) 672 return SDValue(); 673 674 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 675 EVT SrcVT = Src.getValueType(); 676 EVT DstVT = Op.getValueType(); 677 if (SrcVT == DstVT) 678 return Src; 679 680 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 681 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 682 if (NumSrcEltBits == NumDstEltBits) 683 if (SDValue V = SimplifyMultipleUseDemandedBits( 684 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 685 return DAG.getBitcast(DstVT, V); 686 687 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 688 unsigned Scale = NumDstEltBits / NumSrcEltBits; 689 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 690 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 691 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 692 for (unsigned i = 0; i != Scale; ++i) { 693 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 694 unsigned BitOffset = EltOffset * NumSrcEltBits; 695 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 696 if (!Sub.isZero()) { 697 DemandedSrcBits |= Sub; 698 for (unsigned j = 0; j != NumElts; ++j) 699 if (DemandedElts[j]) 700 DemandedSrcElts.setBit((j * Scale) + i); 701 } 702 } 703 704 if (SDValue V = SimplifyMultipleUseDemandedBits( 705 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 706 return DAG.getBitcast(DstVT, V); 707 } 708 709 // TODO - bigendian once we have test coverage. 710 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 711 unsigned Scale = NumSrcEltBits / NumDstEltBits; 712 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 713 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 714 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 715 for (unsigned i = 0; i != NumElts; ++i) 716 if (DemandedElts[i]) { 717 unsigned Offset = (i % Scale) * NumDstEltBits; 718 DemandedSrcBits.insertBits(DemandedBits, Offset); 719 DemandedSrcElts.setBit(i / Scale); 720 } 721 722 if (SDValue V = SimplifyMultipleUseDemandedBits( 723 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 724 return DAG.getBitcast(DstVT, V); 725 } 726 727 break; 728 } 729 case ISD::AND: { 730 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 731 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 732 733 // If all of the demanded bits are known 1 on one side, return the other. 734 // These bits cannot contribute to the result of the 'and' in this 735 // context. 736 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 737 return Op.getOperand(0); 738 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 739 return Op.getOperand(1); 740 break; 741 } 742 case ISD::OR: { 743 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 744 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 745 746 // If all of the demanded bits are known zero on one side, return the 747 // other. These bits cannot contribute to the result of the 'or' in this 748 // context. 749 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 750 return Op.getOperand(0); 751 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 752 return Op.getOperand(1); 753 break; 754 } 755 case ISD::XOR: { 756 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 757 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 758 759 // If all of the demanded bits are known zero on one side, return the 760 // other. 761 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 762 return Op.getOperand(0); 763 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 764 return Op.getOperand(1); 765 break; 766 } 767 case ISD::SHL: { 768 // If we are only demanding sign bits then we can use the shift source 769 // directly. 770 if (const APInt *MaxSA = 771 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 772 SDValue Op0 = Op.getOperand(0); 773 unsigned ShAmt = MaxSA->getZExtValue(); 774 unsigned NumSignBits = 775 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 776 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 777 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 778 return Op0; 779 } 780 break; 781 } 782 case ISD::SETCC: { 783 SDValue Op0 = Op.getOperand(0); 784 SDValue Op1 = Op.getOperand(1); 785 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 786 // If (1) we only need the sign-bit, (2) the setcc operands are the same 787 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 788 // -1, we may be able to bypass the setcc. 789 if (DemandedBits.isSignMask() && 790 Op0.getScalarValueSizeInBits() == BitWidth && 791 getBooleanContents(Op0.getValueType()) == 792 BooleanContent::ZeroOrNegativeOneBooleanContent) { 793 // If we're testing X < 0, then this compare isn't needed - just use X! 794 // FIXME: We're limiting to integer types here, but this should also work 795 // if we don't care about FP signed-zero. The use of SETLT with FP means 796 // that we don't care about NaNs. 797 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 798 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 799 return Op0; 800 } 801 break; 802 } 803 case ISD::SIGN_EXTEND_INREG: { 804 // If none of the extended bits are demanded, eliminate the sextinreg. 805 SDValue Op0 = Op.getOperand(0); 806 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 807 unsigned ExBits = ExVT.getScalarSizeInBits(); 808 if (DemandedBits.getActiveBits() <= ExBits) 809 return Op0; 810 // If the input is already sign extended, just drop the extension. 811 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 812 if (NumSignBits >= (BitWidth - ExBits + 1)) 813 return Op0; 814 break; 815 } 816 case ISD::ANY_EXTEND_VECTOR_INREG: 817 case ISD::SIGN_EXTEND_VECTOR_INREG: 818 case ISD::ZERO_EXTEND_VECTOR_INREG: { 819 if (VT.isScalableVector()) 820 return SDValue(); 821 822 // If we only want the lowest element and none of extended bits, then we can 823 // return the bitcasted source vector. 824 SDValue Src = Op.getOperand(0); 825 EVT SrcVT = Src.getValueType(); 826 EVT DstVT = Op.getValueType(); 827 if (IsLE && DemandedElts == 1 && 828 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 829 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 830 return DAG.getBitcast(DstVT, Src); 831 } 832 break; 833 } 834 case ISD::INSERT_VECTOR_ELT: { 835 if (VT.isScalableVector()) 836 return SDValue(); 837 838 // If we don't demand the inserted element, return the base vector. 839 SDValue Vec = Op.getOperand(0); 840 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 841 EVT VecVT = Vec.getValueType(); 842 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 843 !DemandedElts[CIdx->getZExtValue()]) 844 return Vec; 845 break; 846 } 847 case ISD::INSERT_SUBVECTOR: { 848 if (VT.isScalableVector()) 849 return SDValue(); 850 851 SDValue Vec = Op.getOperand(0); 852 SDValue Sub = Op.getOperand(1); 853 uint64_t Idx = Op.getConstantOperandVal(2); 854 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 855 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 856 // If we don't demand the inserted subvector, return the base vector. 857 if (DemandedSubElts == 0) 858 return Vec; 859 // If this simply widens the lowest subvector, see if we can do it earlier. 860 // TODO: REMOVE ME - SimplifyMultipleUseDemandedBits shouldn't be creating 861 // general nodes like this. 862 if (Idx == 0 && Vec.isUndef()) { 863 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 864 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 865 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 866 Op.getOperand(0), NewSub, Op.getOperand(2)); 867 } 868 break; 869 } 870 case ISD::VECTOR_SHUFFLE: { 871 assert(!VT.isScalableVector()); 872 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 873 874 // If all the demanded elts are from one operand and are inline, 875 // then we can use the operand directly. 876 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 877 for (unsigned i = 0; i != NumElts; ++i) { 878 int M = ShuffleMask[i]; 879 if (M < 0 || !DemandedElts[i]) 880 continue; 881 AllUndef = false; 882 IdentityLHS &= (M == (int)i); 883 IdentityRHS &= ((M - NumElts) == i); 884 } 885 886 if (AllUndef) 887 return DAG.getUNDEF(Op.getValueType()); 888 if (IdentityLHS) 889 return Op.getOperand(0); 890 if (IdentityRHS) 891 return Op.getOperand(1); 892 break; 893 } 894 default: 895 // TODO: Probably okay to remove after audit; here to reduce change size 896 // in initial enablement patch for scalable vectors 897 if (VT.isScalableVector()) 898 return SDValue(); 899 900 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 901 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 902 Op, DemandedBits, DemandedElts, DAG, Depth)) 903 return V; 904 break; 905 } 906 return SDValue(); 907 } 908 909 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 910 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 911 unsigned Depth) const { 912 EVT VT = Op.getValueType(); 913 // Since the number of lanes in a scalable vector is unknown at compile time, 914 // we track one bit which is implicitly broadcast to all lanes. This means 915 // that all lanes in a scalable vector are considered demanded. 916 APInt DemandedElts = VT.isFixedLengthVector() 917 ? APInt::getAllOnes(VT.getVectorNumElements()) 918 : APInt(1, 1); 919 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 920 Depth); 921 } 922 923 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 924 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 925 unsigned Depth) const { 926 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 927 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 928 Depth); 929 } 930 931 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 932 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 933 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 934 const TargetLowering &TLI, 935 const APInt &DemandedBits, 936 const APInt &DemandedElts, 937 unsigned Depth) { 938 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 939 "SRL or SRA node is required here!"); 940 // Is the right shift using an immediate value of 1? 941 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 942 if (!N1C || !N1C->isOne()) 943 return SDValue(); 944 945 // We are looking for an avgfloor 946 // add(ext, ext) 947 // or one of these as a avgceil 948 // add(add(ext, ext), 1) 949 // add(add(ext, 1), ext) 950 // add(ext, add(ext, 1)) 951 SDValue Add = Op.getOperand(0); 952 if (Add.getOpcode() != ISD::ADD) 953 return SDValue(); 954 955 SDValue ExtOpA = Add.getOperand(0); 956 SDValue ExtOpB = Add.getOperand(1); 957 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 958 ConstantSDNode *ConstOp; 959 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 960 ConstOp->isOne()) { 961 ExtOpA = Op2; 962 ExtOpB = Op3; 963 return true; 964 } 965 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 966 ConstOp->isOne()) { 967 ExtOpA = Op1; 968 ExtOpB = Op3; 969 return true; 970 } 971 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 972 ConstOp->isOne()) { 973 ExtOpA = Op1; 974 ExtOpB = Op2; 975 return true; 976 } 977 return false; 978 }; 979 bool IsCeil = 980 (ExtOpA.getOpcode() == ISD::ADD && 981 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 982 (ExtOpB.getOpcode() == ISD::ADD && 983 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 984 985 // If the shift is signed (sra): 986 // - Needs >= 2 sign bit for both operands. 987 // - Needs >= 2 zero bits. 988 // If the shift is unsigned (srl): 989 // - Needs >= 1 zero bit for both operands. 990 // - Needs 1 demanded bit zero and >= 2 sign bits. 991 unsigned ShiftOpc = Op.getOpcode(); 992 bool IsSigned = false; 993 unsigned KnownBits; 994 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 995 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 996 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 997 unsigned NumZeroA = 998 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 999 unsigned NumZeroB = 1000 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1001 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1002 1003 switch (ShiftOpc) { 1004 default: 1005 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1006 case ISD::SRA: { 1007 if (NumZero >= 2 && NumSigned < NumZero) { 1008 IsSigned = false; 1009 KnownBits = NumZero; 1010 break; 1011 } 1012 if (NumSigned >= 1) { 1013 IsSigned = true; 1014 KnownBits = NumSigned; 1015 break; 1016 } 1017 return SDValue(); 1018 } 1019 case ISD::SRL: { 1020 if (NumZero >= 1 && NumSigned < NumZero) { 1021 IsSigned = false; 1022 KnownBits = NumZero; 1023 break; 1024 } 1025 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1026 IsSigned = true; 1027 KnownBits = NumSigned; 1028 break; 1029 } 1030 return SDValue(); 1031 } 1032 } 1033 1034 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1035 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1036 1037 // Find the smallest power-2 type that is legal for this vector size and 1038 // operation, given the original type size and the number of known sign/zero 1039 // bits. 1040 EVT VT = Op.getValueType(); 1041 unsigned MinWidth = 1042 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1043 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1044 if (VT.isVector()) 1045 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1046 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1047 return SDValue(); 1048 1049 SDLoc DL(Op); 1050 SDValue ResultAVG = 1051 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1052 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1053 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1054 ResultAVG); 1055 } 1056 1057 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1058 /// result of Op are ever used downstream. If we can use this information to 1059 /// simplify Op, create a new simplified DAG node and return true, returning the 1060 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1061 /// return a mask of Known bits for the expression (used to simplify the 1062 /// caller). The Known bits may only be accurate for those bits in the 1063 /// OriginalDemandedBits and OriginalDemandedElts. 1064 bool TargetLowering::SimplifyDemandedBits( 1065 SDValue Op, const APInt &OriginalDemandedBits, 1066 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1067 unsigned Depth, bool AssumeSingleUse) const { 1068 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1069 assert(Op.getScalarValueSizeInBits() == BitWidth && 1070 "Mask size mismatches value type size!"); 1071 1072 // Don't know anything. 1073 Known = KnownBits(BitWidth); 1074 1075 EVT VT = Op.getValueType(); 1076 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1077 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1078 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1079 "Unexpected vector size"); 1080 1081 APInt DemandedBits = OriginalDemandedBits; 1082 APInt DemandedElts = OriginalDemandedElts; 1083 SDLoc dl(Op); 1084 auto &DL = TLO.DAG.getDataLayout(); 1085 1086 // Undef operand. 1087 if (Op.isUndef()) 1088 return false; 1089 1090 // We can't simplify target constants. 1091 if (Op.getOpcode() == ISD::TargetConstant) 1092 return false; 1093 1094 if (Op.getOpcode() == ISD::Constant) { 1095 // We know all of the bits for a constant! 1096 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1097 return false; 1098 } 1099 1100 if (Op.getOpcode() == ISD::ConstantFP) { 1101 // We know all of the bits for a floating point constant! 1102 Known = KnownBits::makeConstant( 1103 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1104 return false; 1105 } 1106 1107 // Other users may use these bits. 1108 bool HasMultiUse = false; 1109 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1110 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1111 // Limit search depth. 1112 return false; 1113 } 1114 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1115 DemandedBits = APInt::getAllOnes(BitWidth); 1116 DemandedElts = APInt::getAllOnes(NumElts); 1117 HasMultiUse = true; 1118 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1119 // Not demanding any bits/elts from Op. 1120 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1121 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1122 // Limit search depth. 1123 return false; 1124 } 1125 1126 KnownBits Known2; 1127 switch (Op.getOpcode()) { 1128 case ISD::SCALAR_TO_VECTOR: { 1129 if (VT.isScalableVector()) 1130 return false; 1131 if (!DemandedElts[0]) 1132 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1133 1134 KnownBits SrcKnown; 1135 SDValue Src = Op.getOperand(0); 1136 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1137 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1138 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1139 return true; 1140 1141 // Upper elements are undef, so only get the knownbits if we just demand 1142 // the bottom element. 1143 if (DemandedElts == 1) 1144 Known = SrcKnown.anyextOrTrunc(BitWidth); 1145 break; 1146 } 1147 case ISD::BUILD_VECTOR: 1148 // Collect the known bits that are shared by every demanded element. 1149 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1150 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1151 return false; // Don't fall through, will infinitely loop. 1152 case ISD::LOAD: { 1153 auto *LD = cast<LoadSDNode>(Op); 1154 if (getTargetConstantFromLoad(LD)) { 1155 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1156 return false; // Don't fall through, will infinitely loop. 1157 } 1158 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1159 // If this is a ZEXTLoad and we are looking at the loaded value. 1160 EVT MemVT = LD->getMemoryVT(); 1161 unsigned MemBits = MemVT.getScalarSizeInBits(); 1162 Known.Zero.setBitsFrom(MemBits); 1163 return false; // Don't fall through, will infinitely loop. 1164 } 1165 break; 1166 } 1167 case ISD::INSERT_VECTOR_ELT: { 1168 if (VT.isScalableVector()) 1169 return false; 1170 SDValue Vec = Op.getOperand(0); 1171 SDValue Scl = Op.getOperand(1); 1172 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1173 EVT VecVT = Vec.getValueType(); 1174 1175 // If index isn't constant, assume we need all vector elements AND the 1176 // inserted element. 1177 APInt DemandedVecElts(DemandedElts); 1178 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1179 unsigned Idx = CIdx->getZExtValue(); 1180 DemandedVecElts.clearBit(Idx); 1181 1182 // Inserted element is not required. 1183 if (!DemandedElts[Idx]) 1184 return TLO.CombineTo(Op, Vec); 1185 } 1186 1187 KnownBits KnownScl; 1188 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1189 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1190 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1191 return true; 1192 1193 Known = KnownScl.anyextOrTrunc(BitWidth); 1194 1195 KnownBits KnownVec; 1196 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1197 Depth + 1)) 1198 return true; 1199 1200 if (!!DemandedVecElts) 1201 Known = KnownBits::commonBits(Known, KnownVec); 1202 1203 return false; 1204 } 1205 case ISD::INSERT_SUBVECTOR: { 1206 if (VT.isScalableVector()) 1207 return false; 1208 // Demand any elements from the subvector and the remainder from the src its 1209 // inserted into. 1210 SDValue Src = Op.getOperand(0); 1211 SDValue Sub = Op.getOperand(1); 1212 uint64_t Idx = Op.getConstantOperandVal(2); 1213 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1214 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1215 APInt DemandedSrcElts = DemandedElts; 1216 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1217 1218 KnownBits KnownSub, KnownSrc; 1219 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1220 Depth + 1)) 1221 return true; 1222 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1223 Depth + 1)) 1224 return true; 1225 1226 Known.Zero.setAllBits(); 1227 Known.One.setAllBits(); 1228 if (!!DemandedSubElts) 1229 Known = KnownBits::commonBits(Known, KnownSub); 1230 if (!!DemandedSrcElts) 1231 Known = KnownBits::commonBits(Known, KnownSrc); 1232 1233 // Attempt to avoid multi-use src if we don't need anything from it. 1234 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1235 !DemandedSrcElts.isAllOnes()) { 1236 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1237 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1238 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1239 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1240 if (NewSub || NewSrc) { 1241 NewSub = NewSub ? NewSub : Sub; 1242 NewSrc = NewSrc ? NewSrc : Src; 1243 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1244 Op.getOperand(2)); 1245 return TLO.CombineTo(Op, NewOp); 1246 } 1247 } 1248 break; 1249 } 1250 case ISD::EXTRACT_SUBVECTOR: { 1251 if (VT.isScalableVector()) 1252 return false; 1253 // Offset the demanded elts by the subvector index. 1254 SDValue Src = Op.getOperand(0); 1255 if (Src.getValueType().isScalableVector()) 1256 break; 1257 uint64_t Idx = Op.getConstantOperandVal(1); 1258 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1259 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1260 1261 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1262 Depth + 1)) 1263 return true; 1264 1265 // Attempt to avoid multi-use src if we don't need anything from it. 1266 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1267 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1268 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1269 if (DemandedSrc) { 1270 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1271 Op.getOperand(1)); 1272 return TLO.CombineTo(Op, NewOp); 1273 } 1274 } 1275 break; 1276 } 1277 case ISD::CONCAT_VECTORS: { 1278 if (VT.isScalableVector()) 1279 return false; 1280 Known.Zero.setAllBits(); 1281 Known.One.setAllBits(); 1282 EVT SubVT = Op.getOperand(0).getValueType(); 1283 unsigned NumSubVecs = Op.getNumOperands(); 1284 unsigned NumSubElts = SubVT.getVectorNumElements(); 1285 for (unsigned i = 0; i != NumSubVecs; ++i) { 1286 APInt DemandedSubElts = 1287 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1288 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1289 Known2, TLO, Depth + 1)) 1290 return true; 1291 // Known bits are shared by every demanded subvector element. 1292 if (!!DemandedSubElts) 1293 Known = KnownBits::commonBits(Known, Known2); 1294 } 1295 break; 1296 } 1297 case ISD::VECTOR_SHUFFLE: { 1298 assert(!VT.isScalableVector()); 1299 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1300 1301 // Collect demanded elements from shuffle operands.. 1302 APInt DemandedLHS, DemandedRHS; 1303 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1304 DemandedRHS)) 1305 break; 1306 1307 if (!!DemandedLHS || !!DemandedRHS) { 1308 SDValue Op0 = Op.getOperand(0); 1309 SDValue Op1 = Op.getOperand(1); 1310 1311 Known.Zero.setAllBits(); 1312 Known.One.setAllBits(); 1313 if (!!DemandedLHS) { 1314 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1315 Depth + 1)) 1316 return true; 1317 Known = KnownBits::commonBits(Known, Known2); 1318 } 1319 if (!!DemandedRHS) { 1320 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1321 Depth + 1)) 1322 return true; 1323 Known = KnownBits::commonBits(Known, Known2); 1324 } 1325 1326 // Attempt to avoid multi-use ops if we don't need anything from them. 1327 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1328 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1329 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1330 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1331 if (DemandedOp0 || DemandedOp1) { 1332 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1333 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1334 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1335 return TLO.CombineTo(Op, NewOp); 1336 } 1337 } 1338 break; 1339 } 1340 case ISD::AND: { 1341 SDValue Op0 = Op.getOperand(0); 1342 SDValue Op1 = Op.getOperand(1); 1343 1344 // If the RHS is a constant, check to see if the LHS would be zero without 1345 // using the bits from the RHS. Below, we use knowledge about the RHS to 1346 // simplify the LHS, here we're using information from the LHS to simplify 1347 // the RHS. 1348 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1349 // Do not increment Depth here; that can cause an infinite loop. 1350 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1351 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1352 if ((LHSKnown.Zero & DemandedBits) == 1353 (~RHSC->getAPIntValue() & DemandedBits)) 1354 return TLO.CombineTo(Op, Op0); 1355 1356 // If any of the set bits in the RHS are known zero on the LHS, shrink 1357 // the constant. 1358 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1359 DemandedElts, TLO)) 1360 return true; 1361 1362 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1363 // constant, but if this 'and' is only clearing bits that were just set by 1364 // the xor, then this 'and' can be eliminated by shrinking the mask of 1365 // the xor. For example, for a 32-bit X: 1366 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1367 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1368 LHSKnown.One == ~RHSC->getAPIntValue()) { 1369 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1370 return TLO.CombineTo(Op, Xor); 1371 } 1372 } 1373 1374 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1375 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1376 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1377 (Op0.getOperand(0).isUndef() || 1378 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1379 Op0->hasOneUse()) { 1380 unsigned NumSubElts = 1381 Op0.getOperand(1).getValueType().getVectorNumElements(); 1382 unsigned SubIdx = Op0.getConstantOperandVal(2); 1383 APInt DemandedSub = 1384 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1385 KnownBits KnownSubMask = 1386 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1387 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1388 SDValue NewAnd = 1389 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1390 SDValue NewInsert = 1391 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1392 Op0.getOperand(1), Op0.getOperand(2)); 1393 return TLO.CombineTo(Op, NewInsert); 1394 } 1395 } 1396 1397 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1398 Depth + 1)) 1399 return true; 1400 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1401 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1402 Known2, TLO, Depth + 1)) 1403 return true; 1404 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1405 1406 // If all of the demanded bits are known one on one side, return the other. 1407 // These bits cannot contribute to the result of the 'and'. 1408 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1409 return TLO.CombineTo(Op, Op0); 1410 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1411 return TLO.CombineTo(Op, Op1); 1412 // If all of the demanded bits in the inputs are known zeros, return zero. 1413 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1414 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1415 // If the RHS is a constant, see if we can simplify it. 1416 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1417 TLO)) 1418 return true; 1419 // If the operation can be done in a smaller type, do so. 1420 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1421 return true; 1422 1423 // Attempt to avoid multi-use ops if we don't need anything from them. 1424 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1425 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1426 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1427 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1428 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1429 if (DemandedOp0 || DemandedOp1) { 1430 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1431 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1432 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1433 return TLO.CombineTo(Op, NewOp); 1434 } 1435 } 1436 1437 Known &= Known2; 1438 break; 1439 } 1440 case ISD::OR: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 1444 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1445 Depth + 1)) 1446 return true; 1447 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1448 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1449 Known2, TLO, Depth + 1)) 1450 return true; 1451 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1452 1453 // If all of the demanded bits are known zero on one side, return the other. 1454 // These bits cannot contribute to the result of the 'or'. 1455 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1456 return TLO.CombineTo(Op, Op0); 1457 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1458 return TLO.CombineTo(Op, Op1); 1459 // If the RHS is a constant, see if we can simplify it. 1460 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1461 return true; 1462 // If the operation can be done in a smaller type, do so. 1463 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1464 return true; 1465 1466 // Attempt to avoid multi-use ops if we don't need anything from them. 1467 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1468 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1469 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1470 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1471 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1472 if (DemandedOp0 || DemandedOp1) { 1473 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1474 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1475 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1476 return TLO.CombineTo(Op, NewOp); 1477 } 1478 } 1479 1480 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1481 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1482 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1483 Op0->hasOneUse() && Op1->hasOneUse()) { 1484 // Attempt to match all commutations - m_c_Or would've been useful! 1485 for (int I = 0; I != 2; ++I) { 1486 SDValue X = Op.getOperand(I).getOperand(0); 1487 SDValue C1 = Op.getOperand(I).getOperand(1); 1488 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1489 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1490 if (Alt.getOpcode() == ISD::OR) { 1491 for (int J = 0; J != 2; ++J) { 1492 if (X == Alt.getOperand(J)) { 1493 SDValue Y = Alt.getOperand(1 - J); 1494 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1495 {C1, C2})) { 1496 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1497 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1498 return TLO.CombineTo( 1499 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1500 } 1501 } 1502 } 1503 } 1504 } 1505 } 1506 1507 Known |= Known2; 1508 break; 1509 } 1510 case ISD::XOR: { 1511 SDValue Op0 = Op.getOperand(0); 1512 SDValue Op1 = Op.getOperand(1); 1513 1514 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1515 Depth + 1)) 1516 return true; 1517 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1518 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1519 Depth + 1)) 1520 return true; 1521 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1522 1523 // If all of the demanded bits are known zero on one side, return the other. 1524 // These bits cannot contribute to the result of the 'xor'. 1525 if (DemandedBits.isSubsetOf(Known.Zero)) 1526 return TLO.CombineTo(Op, Op0); 1527 if (DemandedBits.isSubsetOf(Known2.Zero)) 1528 return TLO.CombineTo(Op, Op1); 1529 // If the operation can be done in a smaller type, do so. 1530 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1531 return true; 1532 1533 // If all of the unknown bits are known to be zero on one side or the other 1534 // turn this into an *inclusive* or. 1535 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1536 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1537 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1538 1539 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1540 if (C) { 1541 // If one side is a constant, and all of the set bits in the constant are 1542 // also known set on the other side, turn this into an AND, as we know 1543 // the bits will be cleared. 1544 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1545 // NB: it is okay if more bits are known than are requested 1546 if (C->getAPIntValue() == Known2.One) { 1547 SDValue ANDC = 1548 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1549 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1550 } 1551 1552 // If the RHS is a constant, see if we can change it. Don't alter a -1 1553 // constant because that's a 'not' op, and that is better for combining 1554 // and codegen. 1555 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1556 // We're flipping all demanded bits. Flip the undemanded bits too. 1557 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1558 return TLO.CombineTo(Op, New); 1559 } 1560 1561 unsigned Op0Opcode = Op0.getOpcode(); 1562 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1563 if (ConstantSDNode *ShiftC = 1564 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1565 // Don't crash on an oversized shift. We can not guarantee that a 1566 // bogus shift has been simplified to undef. 1567 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1568 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1569 APInt Ones = APInt::getAllOnes(BitWidth); 1570 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1571 : Ones.lshr(ShiftAmt); 1572 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 1573 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1574 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) { 1575 // If the xor constant is a demanded mask, do a 'not' before the 1576 // shift: 1577 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1578 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1579 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1580 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1581 Op0.getOperand(1))); 1582 } 1583 } 1584 } 1585 } 1586 } 1587 1588 // If we can't turn this into a 'not', try to shrink the constant. 1589 if (!C || !C->isAllOnes()) 1590 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1591 return true; 1592 1593 // Attempt to avoid multi-use ops if we don't need anything from them. 1594 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1595 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1596 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1597 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1598 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1599 if (DemandedOp0 || DemandedOp1) { 1600 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1601 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1602 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1603 return TLO.CombineTo(Op, NewOp); 1604 } 1605 } 1606 1607 Known ^= Known2; 1608 break; 1609 } 1610 case ISD::SELECT: 1611 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1612 Depth + 1)) 1613 return true; 1614 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1615 Depth + 1)) 1616 return true; 1617 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1618 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1619 1620 // If the operands are constants, see if we can simplify them. 1621 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1622 return true; 1623 1624 // Only known if known in both the LHS and RHS. 1625 Known = KnownBits::commonBits(Known, Known2); 1626 break; 1627 case ISD::VSELECT: 1628 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1629 Known, TLO, Depth + 1)) 1630 return true; 1631 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1632 Known2, TLO, Depth + 1)) 1633 return true; 1634 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1635 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1636 1637 // Only known if known in both the LHS and RHS. 1638 Known = KnownBits::commonBits(Known, Known2); 1639 break; 1640 case ISD::SELECT_CC: 1641 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1642 Depth + 1)) 1643 return true; 1644 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1645 Depth + 1)) 1646 return true; 1647 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1648 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1649 1650 // If the operands are constants, see if we can simplify them. 1651 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1652 return true; 1653 1654 // Only known if known in both the LHS and RHS. 1655 Known = KnownBits::commonBits(Known, Known2); 1656 break; 1657 case ISD::SETCC: { 1658 SDValue Op0 = Op.getOperand(0); 1659 SDValue Op1 = Op.getOperand(1); 1660 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1661 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1662 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1663 // -1, we may be able to bypass the setcc. 1664 if (DemandedBits.isSignMask() && 1665 Op0.getScalarValueSizeInBits() == BitWidth && 1666 getBooleanContents(Op0.getValueType()) == 1667 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1668 // If we're testing X < 0, then this compare isn't needed - just use X! 1669 // FIXME: We're limiting to integer types here, but this should also work 1670 // if we don't care about FP signed-zero. The use of SETLT with FP means 1671 // that we don't care about NaNs. 1672 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1673 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1674 return TLO.CombineTo(Op, Op0); 1675 1676 // TODO: Should we check for other forms of sign-bit comparisons? 1677 // Examples: X <= -1, X >= 0 1678 } 1679 if (getBooleanContents(Op0.getValueType()) == 1680 TargetLowering::ZeroOrOneBooleanContent && 1681 BitWidth > 1) 1682 Known.Zero.setBitsFrom(1); 1683 break; 1684 } 1685 case ISD::SHL: { 1686 SDValue Op0 = Op.getOperand(0); 1687 SDValue Op1 = Op.getOperand(1); 1688 EVT ShiftVT = Op1.getValueType(); 1689 1690 if (const APInt *SA = 1691 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1692 unsigned ShAmt = SA->getZExtValue(); 1693 if (ShAmt == 0) 1694 return TLO.CombineTo(Op, Op0); 1695 1696 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1697 // single shift. We can do this if the bottom bits (which are shifted 1698 // out) are never demanded. 1699 // TODO - support non-uniform vector amounts. 1700 if (Op0.getOpcode() == ISD::SRL) { 1701 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1702 if (const APInt *SA2 = 1703 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1704 unsigned C1 = SA2->getZExtValue(); 1705 unsigned Opc = ISD::SHL; 1706 int Diff = ShAmt - C1; 1707 if (Diff < 0) { 1708 Diff = -Diff; 1709 Opc = ISD::SRL; 1710 } 1711 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1712 return TLO.CombineTo( 1713 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1714 } 1715 } 1716 } 1717 1718 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1719 // are not demanded. This will likely allow the anyext to be folded away. 1720 // TODO - support non-uniform vector amounts. 1721 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1722 SDValue InnerOp = Op0.getOperand(0); 1723 EVT InnerVT = InnerOp.getValueType(); 1724 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1725 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1726 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1727 SDValue NarrowShl = TLO.DAG.getNode( 1728 ISD::SHL, dl, InnerVT, InnerOp, 1729 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1730 return TLO.CombineTo( 1731 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1732 } 1733 1734 // Repeat the SHL optimization above in cases where an extension 1735 // intervenes: (shl (anyext (shr x, c1)), c2) to 1736 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1737 // aren't demanded (as above) and that the shifted upper c1 bits of 1738 // x aren't demanded. 1739 // TODO - support non-uniform vector amounts. 1740 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1741 InnerOp.hasOneUse()) { 1742 if (const APInt *SA2 = 1743 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1744 unsigned InnerShAmt = SA2->getZExtValue(); 1745 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1746 DemandedBits.getActiveBits() <= 1747 (InnerBits - InnerShAmt + ShAmt) && 1748 DemandedBits.countTrailingZeros() >= ShAmt) { 1749 SDValue NewSA = 1750 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1751 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1752 InnerOp.getOperand(0)); 1753 return TLO.CombineTo( 1754 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1755 } 1756 } 1757 } 1758 } 1759 1760 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1761 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1762 Depth + 1)) 1763 return true; 1764 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1765 Known.Zero <<= ShAmt; 1766 Known.One <<= ShAmt; 1767 // low bits known zero. 1768 Known.Zero.setLowBits(ShAmt); 1769 1770 // Attempt to avoid multi-use ops if we don't need anything from them. 1771 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1772 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1773 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1774 if (DemandedOp0) { 1775 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1776 return TLO.CombineTo(Op, NewOp); 1777 } 1778 } 1779 1780 // Try shrinking the operation as long as the shift amount will still be 1781 // in range. 1782 if ((ShAmt < DemandedBits.getActiveBits()) && 1783 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1784 return true; 1785 } else { 1786 // This is a variable shift, so we can't shift the demand mask by a known 1787 // amount. But if we are not demanding high bits, then we are not 1788 // demanding those bits from the pre-shifted operand either. 1789 if (unsigned CTLZ = DemandedBits.countLeadingZeros()) { 1790 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1791 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1792 Depth + 1)) { 1793 SDNodeFlags Flags = Op.getNode()->getFlags(); 1794 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1795 // Disable the nsw and nuw flags. We can no longer guarantee that we 1796 // won't wrap after simplification. 1797 Flags.setNoSignedWrap(false); 1798 Flags.setNoUnsignedWrap(false); 1799 Op->setFlags(Flags); 1800 } 1801 return true; 1802 } 1803 Known.resetAll(); 1804 } 1805 } 1806 1807 // If we are only demanding sign bits then we can use the shift source 1808 // directly. 1809 if (const APInt *MaxSA = 1810 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1811 unsigned ShAmt = MaxSA->getZExtValue(); 1812 unsigned NumSignBits = 1813 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1814 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1815 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1816 return TLO.CombineTo(Op, Op0); 1817 } 1818 break; 1819 } 1820 case ISD::SRL: { 1821 SDValue Op0 = Op.getOperand(0); 1822 SDValue Op1 = Op.getOperand(1); 1823 EVT ShiftVT = Op1.getValueType(); 1824 1825 // Try to match AVG patterns. 1826 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1827 DemandedElts, Depth + 1)) 1828 return TLO.CombineTo(Op, AVG); 1829 1830 if (const APInt *SA = 1831 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1832 unsigned ShAmt = SA->getZExtValue(); 1833 if (ShAmt == 0) 1834 return TLO.CombineTo(Op, Op0); 1835 1836 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1837 // single shift. We can do this if the top bits (which are shifted out) 1838 // are never demanded. 1839 // TODO - support non-uniform vector amounts. 1840 if (Op0.getOpcode() == ISD::SHL) { 1841 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1842 if (const APInt *SA2 = 1843 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1844 unsigned C1 = SA2->getZExtValue(); 1845 unsigned Opc = ISD::SRL; 1846 int Diff = ShAmt - C1; 1847 if (Diff < 0) { 1848 Diff = -Diff; 1849 Opc = ISD::SHL; 1850 } 1851 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1852 return TLO.CombineTo( 1853 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1854 } 1855 } 1856 } 1857 1858 APInt InDemandedMask = (DemandedBits << ShAmt); 1859 1860 // If the shift is exact, then it does demand the low bits (and knows that 1861 // they are zero). 1862 if (Op->getFlags().hasExact()) 1863 InDemandedMask.setLowBits(ShAmt); 1864 1865 // Compute the new bits that are at the top now. 1866 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1867 Depth + 1)) 1868 return true; 1869 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1870 Known.Zero.lshrInPlace(ShAmt); 1871 Known.One.lshrInPlace(ShAmt); 1872 // High bits known zero. 1873 Known.Zero.setHighBits(ShAmt); 1874 1875 // Attempt to avoid multi-use ops if we don't need anything from them. 1876 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1877 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1878 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1879 if (DemandedOp0) { 1880 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 1881 return TLO.CombineTo(Op, NewOp); 1882 } 1883 } 1884 } 1885 break; 1886 } 1887 case ISD::SRA: { 1888 SDValue Op0 = Op.getOperand(0); 1889 SDValue Op1 = Op.getOperand(1); 1890 EVT ShiftVT = Op1.getValueType(); 1891 1892 // If we only want bits that already match the signbit then we don't need 1893 // to shift. 1894 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1895 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1896 NumHiDemandedBits) 1897 return TLO.CombineTo(Op, Op0); 1898 1899 // If this is an arithmetic shift right and only the low-bit is set, we can 1900 // always convert this into a logical shr, even if the shift amount is 1901 // variable. The low bit of the shift cannot be an input sign bit unless 1902 // the shift amount is >= the size of the datatype, which is undefined. 1903 if (DemandedBits.isOne()) 1904 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1905 1906 // Try to match AVG patterns. 1907 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1908 DemandedElts, Depth + 1)) 1909 return TLO.CombineTo(Op, AVG); 1910 1911 if (const APInt *SA = 1912 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1913 unsigned ShAmt = SA->getZExtValue(); 1914 if (ShAmt == 0) 1915 return TLO.CombineTo(Op, Op0); 1916 1917 APInt InDemandedMask = (DemandedBits << ShAmt); 1918 1919 // If the shift is exact, then it does demand the low bits (and knows that 1920 // they are zero). 1921 if (Op->getFlags().hasExact()) 1922 InDemandedMask.setLowBits(ShAmt); 1923 1924 // If any of the demanded bits are produced by the sign extension, we also 1925 // demand the input sign bit. 1926 if (DemandedBits.countLeadingZeros() < ShAmt) 1927 InDemandedMask.setSignBit(); 1928 1929 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1930 Depth + 1)) 1931 return true; 1932 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1933 Known.Zero.lshrInPlace(ShAmt); 1934 Known.One.lshrInPlace(ShAmt); 1935 1936 // If the input sign bit is known to be zero, or if none of the top bits 1937 // are demanded, turn this into an unsigned shift right. 1938 if (Known.Zero[BitWidth - ShAmt - 1] || 1939 DemandedBits.countLeadingZeros() >= ShAmt) { 1940 SDNodeFlags Flags; 1941 Flags.setExact(Op->getFlags().hasExact()); 1942 return TLO.CombineTo( 1943 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1944 } 1945 1946 int Log2 = DemandedBits.exactLogBase2(); 1947 if (Log2 >= 0) { 1948 // The bit must come from the sign. 1949 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1950 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1951 } 1952 1953 if (Known.One[BitWidth - ShAmt - 1]) 1954 // New bits are known one. 1955 Known.One.setHighBits(ShAmt); 1956 1957 // Attempt to avoid multi-use ops if we don't need anything from them. 1958 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1959 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1960 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1961 if (DemandedOp0) { 1962 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1963 return TLO.CombineTo(Op, NewOp); 1964 } 1965 } 1966 } 1967 break; 1968 } 1969 case ISD::FSHL: 1970 case ISD::FSHR: { 1971 SDValue Op0 = Op.getOperand(0); 1972 SDValue Op1 = Op.getOperand(1); 1973 SDValue Op2 = Op.getOperand(2); 1974 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1975 1976 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1977 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1978 1979 // For fshl, 0-shift returns the 1st arg. 1980 // For fshr, 0-shift returns the 2nd arg. 1981 if (Amt == 0) { 1982 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1983 Known, TLO, Depth + 1)) 1984 return true; 1985 break; 1986 } 1987 1988 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1989 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1990 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1991 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1992 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1993 Depth + 1)) 1994 return true; 1995 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1996 Depth + 1)) 1997 return true; 1998 1999 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2000 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2001 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2002 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2003 Known.One |= Known2.One; 2004 Known.Zero |= Known2.Zero; 2005 2006 // Attempt to avoid multi-use ops if we don't need anything from them. 2007 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2008 !DemandedElts.isAllOnes()) { 2009 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2010 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2011 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2012 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2013 if (DemandedOp0 || DemandedOp1) { 2014 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2015 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2017 DemandedOp1, Op2); 2018 return TLO.CombineTo(Op, NewOp); 2019 } 2020 } 2021 } 2022 2023 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2024 if (isPowerOf2_32(BitWidth)) { 2025 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2026 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2027 Known2, TLO, Depth + 1)) 2028 return true; 2029 } 2030 break; 2031 } 2032 case ISD::ROTL: 2033 case ISD::ROTR: { 2034 SDValue Op0 = Op.getOperand(0); 2035 SDValue Op1 = Op.getOperand(1); 2036 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2037 2038 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2039 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2040 return TLO.CombineTo(Op, Op0); 2041 2042 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2043 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2044 unsigned RevAmt = BitWidth - Amt; 2045 2046 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2047 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2048 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2049 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2050 Depth + 1)) 2051 return true; 2052 2053 // rot*(x, 0) --> x 2054 if (Amt == 0) 2055 return TLO.CombineTo(Op, Op0); 2056 2057 // See if we don't demand either half of the rotated bits. 2058 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2059 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 2060 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2061 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2062 } 2063 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2064 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 2065 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2066 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2067 } 2068 } 2069 2070 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2071 if (isPowerOf2_32(BitWidth)) { 2072 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2073 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2074 Depth + 1)) 2075 return true; 2076 } 2077 break; 2078 } 2079 case ISD::UMIN: { 2080 // Check if one arg is always less than (or equal) to the other arg. 2081 SDValue Op0 = Op.getOperand(0); 2082 SDValue Op1 = Op.getOperand(1); 2083 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2084 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2085 Known = KnownBits::umin(Known0, Known1); 2086 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2087 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2088 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2089 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2090 break; 2091 } 2092 case ISD::UMAX: { 2093 // Check if one arg is always greater than (or equal) to the other arg. 2094 SDValue Op0 = Op.getOperand(0); 2095 SDValue Op1 = Op.getOperand(1); 2096 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2097 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2098 Known = KnownBits::umax(Known0, Known1); 2099 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2100 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2101 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2102 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2103 break; 2104 } 2105 case ISD::BITREVERSE: { 2106 SDValue Src = Op.getOperand(0); 2107 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2108 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2109 Depth + 1)) 2110 return true; 2111 Known.One = Known2.One.reverseBits(); 2112 Known.Zero = Known2.Zero.reverseBits(); 2113 break; 2114 } 2115 case ISD::BSWAP: { 2116 SDValue Src = Op.getOperand(0); 2117 2118 // If the only bits demanded come from one byte of the bswap result, 2119 // just shift the input byte into position to eliminate the bswap. 2120 unsigned NLZ = DemandedBits.countLeadingZeros(); 2121 unsigned NTZ = DemandedBits.countTrailingZeros(); 2122 2123 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2124 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2125 // have 14 leading zeros, round to 8. 2126 NLZ = alignDown(NLZ, 8); 2127 NTZ = alignDown(NTZ, 8); 2128 // If we need exactly one byte, we can do this transformation. 2129 if (BitWidth - NLZ - NTZ == 8) { 2130 // Replace this with either a left or right shift to get the byte into 2131 // the right place. 2132 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2133 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2134 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2135 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2136 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2137 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2138 return TLO.CombineTo(Op, NewOp); 2139 } 2140 } 2141 2142 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2143 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2144 Depth + 1)) 2145 return true; 2146 Known.One = Known2.One.byteSwap(); 2147 Known.Zero = Known2.Zero.byteSwap(); 2148 break; 2149 } 2150 case ISD::CTPOP: { 2151 // If only 1 bit is demanded, replace with PARITY as long as we're before 2152 // op legalization. 2153 // FIXME: Limit to scalars for now. 2154 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2155 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2156 Op.getOperand(0))); 2157 2158 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2159 break; 2160 } 2161 case ISD::SIGN_EXTEND_INREG: { 2162 SDValue Op0 = Op.getOperand(0); 2163 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2164 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2165 2166 // If we only care about the highest bit, don't bother shifting right. 2167 if (DemandedBits.isSignMask()) { 2168 unsigned MinSignedBits = 2169 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2170 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2171 // However if the input is already sign extended we expect the sign 2172 // extension to be dropped altogether later and do not simplify. 2173 if (!AlreadySignExtended) { 2174 // Compute the correct shift amount type, which must be getShiftAmountTy 2175 // for scalar types after legalization. 2176 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2177 getShiftAmountTy(VT, DL)); 2178 return TLO.CombineTo(Op, 2179 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2180 } 2181 } 2182 2183 // If none of the extended bits are demanded, eliminate the sextinreg. 2184 if (DemandedBits.getActiveBits() <= ExVTBits) 2185 return TLO.CombineTo(Op, Op0); 2186 2187 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2188 2189 // Since the sign extended bits are demanded, we know that the sign 2190 // bit is demanded. 2191 InputDemandedBits.setBit(ExVTBits - 1); 2192 2193 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2194 Depth + 1)) 2195 return true; 2196 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2197 2198 // If the sign bit of the input is known set or clear, then we know the 2199 // top bits of the result. 2200 2201 // If the input sign bit is known zero, convert this into a zero extension. 2202 if (Known.Zero[ExVTBits - 1]) 2203 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2204 2205 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2206 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2207 Known.One.setBitsFrom(ExVTBits); 2208 Known.Zero &= Mask; 2209 } else { // Input sign bit unknown 2210 Known.Zero &= Mask; 2211 Known.One &= Mask; 2212 } 2213 break; 2214 } 2215 case ISD::BUILD_PAIR: { 2216 EVT HalfVT = Op.getOperand(0).getValueType(); 2217 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2218 2219 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2220 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2221 2222 KnownBits KnownLo, KnownHi; 2223 2224 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2225 return true; 2226 2227 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2228 return true; 2229 2230 Known = KnownHi.concat(KnownLo); 2231 break; 2232 } 2233 case ISD::ZERO_EXTEND_VECTOR_INREG: 2234 if (VT.isScalableVector()) 2235 return false; 2236 [[fallthrough]]; 2237 case ISD::ZERO_EXTEND: { 2238 SDValue Src = Op.getOperand(0); 2239 EVT SrcVT = Src.getValueType(); 2240 unsigned InBits = SrcVT.getScalarSizeInBits(); 2241 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2242 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2243 2244 // If none of the top bits are demanded, convert this into an any_extend. 2245 if (DemandedBits.getActiveBits() <= InBits) { 2246 // If we only need the non-extended bits of the bottom element 2247 // then we can just bitcast to the result. 2248 if (IsLE && IsVecInReg && DemandedElts == 1 && 2249 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2250 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2251 2252 unsigned Opc = 2253 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2254 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2255 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2256 } 2257 2258 APInt InDemandedBits = DemandedBits.trunc(InBits); 2259 APInt InDemandedElts = DemandedElts.zext(InElts); 2260 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2261 Depth + 1)) 2262 return true; 2263 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2264 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2265 Known = Known.zext(BitWidth); 2266 2267 // Attempt to avoid multi-use ops if we don't need anything from them. 2268 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2269 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2270 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2271 break; 2272 } 2273 case ISD::SIGN_EXTEND_VECTOR_INREG: 2274 if (VT.isScalableVector()) 2275 return false; 2276 [[fallthrough]]; 2277 case ISD::SIGN_EXTEND: { 2278 SDValue Src = Op.getOperand(0); 2279 EVT SrcVT = Src.getValueType(); 2280 unsigned InBits = SrcVT.getScalarSizeInBits(); 2281 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2282 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2283 2284 // If none of the top bits are demanded, convert this into an any_extend. 2285 if (DemandedBits.getActiveBits() <= InBits) { 2286 // If we only need the non-extended bits of the bottom element 2287 // then we can just bitcast to the result. 2288 if (IsLE && IsVecInReg && DemandedElts == 1 && 2289 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2290 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2291 2292 unsigned Opc = 2293 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2294 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2295 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2296 } 2297 2298 APInt InDemandedBits = DemandedBits.trunc(InBits); 2299 APInt InDemandedElts = DemandedElts.zext(InElts); 2300 2301 // Since some of the sign extended bits are demanded, we know that the sign 2302 // bit is demanded. 2303 InDemandedBits.setBit(InBits - 1); 2304 2305 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2306 Depth + 1)) 2307 return true; 2308 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2309 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2310 2311 // If the sign bit is known one, the top bits match. 2312 Known = Known.sext(BitWidth); 2313 2314 // If the sign bit is known zero, convert this to a zero extend. 2315 if (Known.isNonNegative()) { 2316 unsigned Opc = 2317 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2318 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2319 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2320 } 2321 2322 // Attempt to avoid multi-use ops if we don't need anything from them. 2323 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2324 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2325 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2326 break; 2327 } 2328 case ISD::ANY_EXTEND_VECTOR_INREG: 2329 if (VT.isScalableVector()) 2330 return false; 2331 [[fallthrough]]; 2332 case ISD::ANY_EXTEND: { 2333 SDValue Src = Op.getOperand(0); 2334 EVT SrcVT = Src.getValueType(); 2335 unsigned InBits = SrcVT.getScalarSizeInBits(); 2336 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2337 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2338 2339 // If we only need the bottom element then we can just bitcast. 2340 // TODO: Handle ANY_EXTEND? 2341 if (IsLE && IsVecInReg && DemandedElts == 1 && 2342 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2343 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2344 2345 APInt InDemandedBits = DemandedBits.trunc(InBits); 2346 APInt InDemandedElts = DemandedElts.zext(InElts); 2347 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2348 Depth + 1)) 2349 return true; 2350 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2351 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2352 Known = Known.anyext(BitWidth); 2353 2354 // Attempt to avoid multi-use ops if we don't need anything from them. 2355 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2356 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2357 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2358 break; 2359 } 2360 case ISD::TRUNCATE: { 2361 SDValue Src = Op.getOperand(0); 2362 2363 // Simplify the input, using demanded bit information, and compute the known 2364 // zero/one bits live out. 2365 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2366 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2367 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2368 Depth + 1)) 2369 return true; 2370 Known = Known.trunc(BitWidth); 2371 2372 // Attempt to avoid multi-use ops if we don't need anything from them. 2373 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2374 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2375 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2376 2377 // If the input is only used by this truncate, see if we can shrink it based 2378 // on the known demanded bits. 2379 switch (Src.getOpcode()) { 2380 default: 2381 break; 2382 case ISD::SRL: 2383 // Shrink SRL by a constant if none of the high bits shifted in are 2384 // demanded. 2385 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2386 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2387 // undesirable. 2388 break; 2389 2390 if (Src.getNode()->hasOneUse()) { 2391 const APInt *ShAmtC = 2392 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2393 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2394 break; 2395 uint64_t ShVal = ShAmtC->getZExtValue(); 2396 2397 APInt HighBits = 2398 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2399 HighBits.lshrInPlace(ShVal); 2400 HighBits = HighBits.trunc(BitWidth); 2401 2402 if (!(HighBits & DemandedBits)) { 2403 // None of the shifted in bits are needed. Add a truncate of the 2404 // shift input, then shift it. 2405 SDValue NewShAmt = TLO.DAG.getConstant( 2406 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2407 SDValue NewTrunc = 2408 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2409 return TLO.CombineTo( 2410 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2411 } 2412 } 2413 break; 2414 } 2415 2416 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2417 break; 2418 } 2419 case ISD::AssertZext: { 2420 // AssertZext demands all of the high bits, plus any of the low bits 2421 // demanded by its users. 2422 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2423 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2424 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2425 TLO, Depth + 1)) 2426 return true; 2427 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2428 2429 Known.Zero |= ~InMask; 2430 Known.One &= (~Known.Zero); 2431 break; 2432 } 2433 case ISD::EXTRACT_VECTOR_ELT: { 2434 SDValue Src = Op.getOperand(0); 2435 SDValue Idx = Op.getOperand(1); 2436 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2437 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2438 2439 if (SrcEltCnt.isScalable()) 2440 return false; 2441 2442 // Demand the bits from every vector element without a constant index. 2443 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2444 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2445 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2446 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2447 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2448 2449 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2450 // anything about the extended bits. 2451 APInt DemandedSrcBits = DemandedBits; 2452 if (BitWidth > EltBitWidth) 2453 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2454 2455 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2456 Depth + 1)) 2457 return true; 2458 2459 // Attempt to avoid multi-use ops if we don't need anything from them. 2460 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2461 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2462 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2463 SDValue NewOp = 2464 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2465 return TLO.CombineTo(Op, NewOp); 2466 } 2467 } 2468 2469 Known = Known2; 2470 if (BitWidth > EltBitWidth) 2471 Known = Known.anyext(BitWidth); 2472 break; 2473 } 2474 case ISD::BITCAST: { 2475 if (VT.isScalableVector()) 2476 return false; 2477 SDValue Src = Op.getOperand(0); 2478 EVT SrcVT = Src.getValueType(); 2479 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2480 2481 // If this is an FP->Int bitcast and if the sign bit is the only 2482 // thing demanded, turn this into a FGETSIGN. 2483 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2484 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2485 SrcVT.isFloatingPoint()) { 2486 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2487 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2488 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2489 SrcVT != MVT::f128) { 2490 // Cannot eliminate/lower SHL for f128 yet. 2491 EVT Ty = OpVTLegal ? VT : MVT::i32; 2492 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2493 // place. We expect the SHL to be eliminated by other optimizations. 2494 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2495 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2496 if (!OpVTLegal && OpVTSizeInBits > 32) 2497 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2498 unsigned ShVal = Op.getValueSizeInBits() - 1; 2499 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2500 return TLO.CombineTo(Op, 2501 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2502 } 2503 } 2504 2505 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2506 // Demand the elt/bit if any of the original elts/bits are demanded. 2507 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2508 unsigned Scale = BitWidth / NumSrcEltBits; 2509 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2510 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2511 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2512 for (unsigned i = 0; i != Scale; ++i) { 2513 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2514 unsigned BitOffset = EltOffset * NumSrcEltBits; 2515 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2516 if (!Sub.isZero()) { 2517 DemandedSrcBits |= Sub; 2518 for (unsigned j = 0; j != NumElts; ++j) 2519 if (DemandedElts[j]) 2520 DemandedSrcElts.setBit((j * Scale) + i); 2521 } 2522 } 2523 2524 APInt KnownSrcUndef, KnownSrcZero; 2525 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2526 KnownSrcZero, TLO, Depth + 1)) 2527 return true; 2528 2529 KnownBits KnownSrcBits; 2530 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2531 KnownSrcBits, TLO, Depth + 1)) 2532 return true; 2533 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2534 // TODO - bigendian once we have test coverage. 2535 unsigned Scale = NumSrcEltBits / BitWidth; 2536 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2537 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2538 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2539 for (unsigned i = 0; i != NumElts; ++i) 2540 if (DemandedElts[i]) { 2541 unsigned Offset = (i % Scale) * BitWidth; 2542 DemandedSrcBits.insertBits(DemandedBits, Offset); 2543 DemandedSrcElts.setBit(i / Scale); 2544 } 2545 2546 if (SrcVT.isVector()) { 2547 APInt KnownSrcUndef, KnownSrcZero; 2548 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2549 KnownSrcZero, TLO, Depth + 1)) 2550 return true; 2551 } 2552 2553 KnownBits KnownSrcBits; 2554 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2555 KnownSrcBits, TLO, Depth + 1)) 2556 return true; 2557 } 2558 2559 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2560 // recursive call where Known may be useful to the caller. 2561 if (Depth > 0) { 2562 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2563 return false; 2564 } 2565 break; 2566 } 2567 case ISD::MUL: 2568 if (DemandedBits.isPowerOf2()) { 2569 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2570 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2571 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2572 unsigned CTZ = DemandedBits.countTrailingZeros(); 2573 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2574 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2575 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2576 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2577 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2578 return TLO.CombineTo(Op, Shl); 2579 } 2580 } 2581 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2582 // X * X is odd iff X is odd. 2583 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2584 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2585 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2586 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2587 return TLO.CombineTo(Op, And1); 2588 } 2589 [[fallthrough]]; 2590 case ISD::ADD: 2591 case ISD::SUB: { 2592 // Add, Sub, and Mul don't demand any bits in positions beyond that 2593 // of the highest bit demanded of them. 2594 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2595 SDNodeFlags Flags = Op.getNode()->getFlags(); 2596 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2597 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2598 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2599 Depth + 1) || 2600 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2601 Depth + 1) || 2602 // See if the operation should be performed at a smaller bit width. 2603 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2604 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2605 // Disable the nsw and nuw flags. We can no longer guarantee that we 2606 // won't wrap after simplification. 2607 Flags.setNoSignedWrap(false); 2608 Flags.setNoUnsignedWrap(false); 2609 Op->setFlags(Flags); 2610 } 2611 return true; 2612 } 2613 2614 // neg x with only low bit demanded is simply x. 2615 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2616 isa<ConstantSDNode>(Op0) && cast<ConstantSDNode>(Op0)->isZero()) 2617 return TLO.CombineTo(Op, Op1); 2618 2619 // Attempt to avoid multi-use ops if we don't need anything from them. 2620 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2621 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2622 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2623 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2624 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2625 if (DemandedOp0 || DemandedOp1) { 2626 Flags.setNoSignedWrap(false); 2627 Flags.setNoUnsignedWrap(false); 2628 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2629 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2630 SDValue NewOp = 2631 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2632 return TLO.CombineTo(Op, NewOp); 2633 } 2634 } 2635 2636 // If we have a constant operand, we may be able to turn it into -1 if we 2637 // do not demand the high bits. This can make the constant smaller to 2638 // encode, allow more general folding, or match specialized instruction 2639 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2640 // is probably not useful (and could be detrimental). 2641 ConstantSDNode *C = isConstOrConstSplat(Op1); 2642 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2643 if (C && !C->isAllOnes() && !C->isOne() && 2644 (C->getAPIntValue() | HighMask).isAllOnes()) { 2645 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2646 // Disable the nsw and nuw flags. We can no longer guarantee that we 2647 // won't wrap after simplification. 2648 Flags.setNoSignedWrap(false); 2649 Flags.setNoUnsignedWrap(false); 2650 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2651 return TLO.CombineTo(Op, NewOp); 2652 } 2653 2654 // Match a multiply with a disguised negated-power-of-2 and convert to a 2655 // an equivalent shift-left amount. 2656 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2657 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2658 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2659 return 0; 2660 2661 // Don't touch opaque constants. Also, ignore zero and power-of-2 2662 // multiplies. Those will get folded later. 2663 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2664 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2665 !MulC->getAPIntValue().isPowerOf2()) { 2666 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2667 if (UnmaskedC.isNegatedPowerOf2()) 2668 return (-UnmaskedC).logBase2(); 2669 } 2670 return 0; 2671 }; 2672 2673 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2674 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2675 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2676 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2677 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2678 return TLO.CombineTo(Op, Res); 2679 }; 2680 2681 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2682 if (Op.getOpcode() == ISD::ADD) { 2683 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2684 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2685 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2686 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2687 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2688 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2689 } 2690 if (Op.getOpcode() == ISD::SUB) { 2691 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2692 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2693 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2694 } 2695 } 2696 2697 [[fallthrough]]; 2698 } 2699 default: 2700 // We also ask the target about intrinsics (which could be specific to it). 2701 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2702 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2703 // TODO: Probably okay to remove after audit; here to reduce change size 2704 // in initial enablement patch for scalable vectors 2705 if (Op.getValueType().isScalableVector()) 2706 break; 2707 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2708 Known, TLO, Depth)) 2709 return true; 2710 break; 2711 } 2712 2713 // Just use computeKnownBits to compute output bits. 2714 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2715 break; 2716 } 2717 2718 // If we know the value of all of the demanded bits, return this as a 2719 // constant. 2720 if (!isTargetCanonicalConstantNode(Op) && 2721 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2722 // Avoid folding to a constant if any OpaqueConstant is involved. 2723 const SDNode *N = Op.getNode(); 2724 for (SDNode *Op : 2725 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2726 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2727 if (C->isOpaque()) 2728 return false; 2729 } 2730 if (VT.isInteger()) 2731 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2732 if (VT.isFloatingPoint()) 2733 return TLO.CombineTo( 2734 Op, 2735 TLO.DAG.getConstantFP( 2736 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2737 } 2738 2739 // A multi use 'all demanded elts' simplify failed to find any knownbits. 2740 // Try again just for the original demanded elts. 2741 // Ensure we do this AFTER constant folding above. 2742 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 2743 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 2744 2745 return false; 2746 } 2747 2748 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2749 const APInt &DemandedElts, 2750 DAGCombinerInfo &DCI) const { 2751 SelectionDAG &DAG = DCI.DAG; 2752 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2753 !DCI.isBeforeLegalizeOps()); 2754 2755 APInt KnownUndef, KnownZero; 2756 bool Simplified = 2757 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2758 if (Simplified) { 2759 DCI.AddToWorklist(Op.getNode()); 2760 DCI.CommitTargetLoweringOpt(TLO); 2761 } 2762 2763 return Simplified; 2764 } 2765 2766 /// Given a vector binary operation and known undefined elements for each input 2767 /// operand, compute whether each element of the output is undefined. 2768 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2769 const APInt &UndefOp0, 2770 const APInt &UndefOp1) { 2771 EVT VT = BO.getValueType(); 2772 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2773 "Vector binop only"); 2774 2775 EVT EltVT = VT.getVectorElementType(); 2776 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 2777 assert(UndefOp0.getBitWidth() == NumElts && 2778 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2779 2780 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2781 const APInt &UndefVals) { 2782 if (UndefVals[Index]) 2783 return DAG.getUNDEF(EltVT); 2784 2785 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2786 // Try hard to make sure that the getNode() call is not creating temporary 2787 // nodes. Ignore opaque integers because they do not constant fold. 2788 SDValue Elt = BV->getOperand(Index); 2789 auto *C = dyn_cast<ConstantSDNode>(Elt); 2790 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2791 return Elt; 2792 } 2793 2794 return SDValue(); 2795 }; 2796 2797 APInt KnownUndef = APInt::getZero(NumElts); 2798 for (unsigned i = 0; i != NumElts; ++i) { 2799 // If both inputs for this element are either constant or undef and match 2800 // the element type, compute the constant/undef result for this element of 2801 // the vector. 2802 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2803 // not handle FP constants. The code within getNode() should be refactored 2804 // to avoid the danger of creating a bogus temporary node here. 2805 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2806 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2807 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2808 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2809 KnownUndef.setBit(i); 2810 } 2811 return KnownUndef; 2812 } 2813 2814 bool TargetLowering::SimplifyDemandedVectorElts( 2815 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2816 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2817 bool AssumeSingleUse) const { 2818 EVT VT = Op.getValueType(); 2819 unsigned Opcode = Op.getOpcode(); 2820 APInt DemandedElts = OriginalDemandedElts; 2821 unsigned NumElts = DemandedElts.getBitWidth(); 2822 assert(VT.isVector() && "Expected vector op"); 2823 2824 KnownUndef = KnownZero = APInt::getZero(NumElts); 2825 2826 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2827 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2828 return false; 2829 2830 // TODO: For now we assume we know nothing about scalable vectors. 2831 if (VT.isScalableVector()) 2832 return false; 2833 2834 assert(VT.getVectorNumElements() == NumElts && 2835 "Mask size mismatches value type element count!"); 2836 2837 // Undef operand. 2838 if (Op.isUndef()) { 2839 KnownUndef.setAllBits(); 2840 return false; 2841 } 2842 2843 // If Op has other users, assume that all elements are needed. 2844 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 2845 DemandedElts.setAllBits(); 2846 2847 // Not demanding any elements from Op. 2848 if (DemandedElts == 0) { 2849 KnownUndef.setAllBits(); 2850 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2851 } 2852 2853 // Limit search depth. 2854 if (Depth >= SelectionDAG::MaxRecursionDepth) 2855 return false; 2856 2857 SDLoc DL(Op); 2858 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2859 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2860 2861 // Helper for demanding the specified elements and all the bits of both binary 2862 // operands. 2863 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2864 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2865 TLO.DAG, Depth + 1); 2866 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2867 TLO.DAG, Depth + 1); 2868 if (NewOp0 || NewOp1) { 2869 SDValue NewOp = TLO.DAG.getNode( 2870 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2871 return TLO.CombineTo(Op, NewOp); 2872 } 2873 return false; 2874 }; 2875 2876 switch (Opcode) { 2877 case ISD::SCALAR_TO_VECTOR: { 2878 if (!DemandedElts[0]) { 2879 KnownUndef.setAllBits(); 2880 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2881 } 2882 SDValue ScalarSrc = Op.getOperand(0); 2883 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2884 SDValue Src = ScalarSrc.getOperand(0); 2885 SDValue Idx = ScalarSrc.getOperand(1); 2886 EVT SrcVT = Src.getValueType(); 2887 2888 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2889 2890 if (SrcEltCnt.isScalable()) 2891 return false; 2892 2893 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2894 if (isNullConstant(Idx)) { 2895 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2896 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2897 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2898 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2899 TLO, Depth + 1)) 2900 return true; 2901 } 2902 } 2903 KnownUndef.setHighBits(NumElts - 1); 2904 break; 2905 } 2906 case ISD::BITCAST: { 2907 SDValue Src = Op.getOperand(0); 2908 EVT SrcVT = Src.getValueType(); 2909 2910 // We only handle vectors here. 2911 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2912 if (!SrcVT.isVector()) 2913 break; 2914 2915 // Fast handling of 'identity' bitcasts. 2916 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2917 if (NumSrcElts == NumElts) 2918 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2919 KnownZero, TLO, Depth + 1); 2920 2921 APInt SrcDemandedElts, SrcZero, SrcUndef; 2922 2923 // Bitcast from 'large element' src vector to 'small element' vector, we 2924 // must demand a source element if any DemandedElt maps to it. 2925 if ((NumElts % NumSrcElts) == 0) { 2926 unsigned Scale = NumElts / NumSrcElts; 2927 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2928 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2929 TLO, Depth + 1)) 2930 return true; 2931 2932 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2933 // of the large element. 2934 // TODO - bigendian once we have test coverage. 2935 if (IsLE) { 2936 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2937 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2938 for (unsigned i = 0; i != NumElts; ++i) 2939 if (DemandedElts[i]) { 2940 unsigned Ofs = (i % Scale) * EltSizeInBits; 2941 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2942 } 2943 2944 KnownBits Known; 2945 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2946 TLO, Depth + 1)) 2947 return true; 2948 2949 // The bitcast has split each wide element into a number of 2950 // narrow subelements. We have just computed the Known bits 2951 // for wide elements. See if element splitting results in 2952 // some subelements being zero. Only for demanded elements! 2953 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2954 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2955 .isAllOnes()) 2956 continue; 2957 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2958 unsigned Elt = Scale * SrcElt + SubElt; 2959 if (DemandedElts[Elt]) 2960 KnownZero.setBit(Elt); 2961 } 2962 } 2963 } 2964 2965 // If the src element is zero/undef then all the output elements will be - 2966 // only demanded elements are guaranteed to be correct. 2967 for (unsigned i = 0; i != NumSrcElts; ++i) { 2968 if (SrcDemandedElts[i]) { 2969 if (SrcZero[i]) 2970 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2971 if (SrcUndef[i]) 2972 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2973 } 2974 } 2975 } 2976 2977 // Bitcast from 'small element' src vector to 'large element' vector, we 2978 // demand all smaller source elements covered by the larger demanded element 2979 // of this vector. 2980 if ((NumSrcElts % NumElts) == 0) { 2981 unsigned Scale = NumSrcElts / NumElts; 2982 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2983 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2984 TLO, Depth + 1)) 2985 return true; 2986 2987 // If all the src elements covering an output element are zero/undef, then 2988 // the output element will be as well, assuming it was demanded. 2989 for (unsigned i = 0; i != NumElts; ++i) { 2990 if (DemandedElts[i]) { 2991 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2992 KnownZero.setBit(i); 2993 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2994 KnownUndef.setBit(i); 2995 } 2996 } 2997 } 2998 break; 2999 } 3000 case ISD::BUILD_VECTOR: { 3001 // Check all elements and simplify any unused elements with UNDEF. 3002 if (!DemandedElts.isAllOnes()) { 3003 // Don't simplify BROADCASTS. 3004 if (llvm::any_of(Op->op_values(), 3005 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3006 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 3007 bool Updated = false; 3008 for (unsigned i = 0; i != NumElts; ++i) { 3009 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3010 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3011 KnownUndef.setBit(i); 3012 Updated = true; 3013 } 3014 } 3015 if (Updated) 3016 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3017 } 3018 } 3019 for (unsigned i = 0; i != NumElts; ++i) { 3020 SDValue SrcOp = Op.getOperand(i); 3021 if (SrcOp.isUndef()) { 3022 KnownUndef.setBit(i); 3023 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3024 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3025 KnownZero.setBit(i); 3026 } 3027 } 3028 break; 3029 } 3030 case ISD::CONCAT_VECTORS: { 3031 EVT SubVT = Op.getOperand(0).getValueType(); 3032 unsigned NumSubVecs = Op.getNumOperands(); 3033 unsigned NumSubElts = SubVT.getVectorNumElements(); 3034 for (unsigned i = 0; i != NumSubVecs; ++i) { 3035 SDValue SubOp = Op.getOperand(i); 3036 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3037 APInt SubUndef, SubZero; 3038 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3039 Depth + 1)) 3040 return true; 3041 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3042 KnownZero.insertBits(SubZero, i * NumSubElts); 3043 } 3044 3045 // Attempt to avoid multi-use ops if we don't need anything from them. 3046 if (!DemandedElts.isAllOnes()) { 3047 bool FoundNewSub = false; 3048 SmallVector<SDValue, 2> DemandedSubOps; 3049 for (unsigned i = 0; i != NumSubVecs; ++i) { 3050 SDValue SubOp = Op.getOperand(i); 3051 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3052 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3053 SubOp, SubElts, TLO.DAG, Depth + 1); 3054 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3055 FoundNewSub = NewSubOp ? true : FoundNewSub; 3056 } 3057 if (FoundNewSub) { 3058 SDValue NewOp = 3059 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3060 return TLO.CombineTo(Op, NewOp); 3061 } 3062 } 3063 break; 3064 } 3065 case ISD::INSERT_SUBVECTOR: { 3066 // Demand any elements from the subvector and the remainder from the src its 3067 // inserted into. 3068 SDValue Src = Op.getOperand(0); 3069 SDValue Sub = Op.getOperand(1); 3070 uint64_t Idx = Op.getConstantOperandVal(2); 3071 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3072 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3073 APInt DemandedSrcElts = DemandedElts; 3074 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3075 3076 APInt SubUndef, SubZero; 3077 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3078 Depth + 1)) 3079 return true; 3080 3081 // If none of the src operand elements are demanded, replace it with undef. 3082 if (!DemandedSrcElts && !Src.isUndef()) 3083 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3084 TLO.DAG.getUNDEF(VT), Sub, 3085 Op.getOperand(2))); 3086 3087 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3088 TLO, Depth + 1)) 3089 return true; 3090 KnownUndef.insertBits(SubUndef, Idx); 3091 KnownZero.insertBits(SubZero, Idx); 3092 3093 // Attempt to avoid multi-use ops if we don't need anything from them. 3094 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3095 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3096 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3097 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3098 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3099 if (NewSrc || NewSub) { 3100 NewSrc = NewSrc ? NewSrc : Src; 3101 NewSub = NewSub ? NewSub : Sub; 3102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3103 NewSub, Op.getOperand(2)); 3104 return TLO.CombineTo(Op, NewOp); 3105 } 3106 } 3107 break; 3108 } 3109 case ISD::EXTRACT_SUBVECTOR: { 3110 // Offset the demanded elts by the subvector index. 3111 SDValue Src = Op.getOperand(0); 3112 if (Src.getValueType().isScalableVector()) 3113 break; 3114 uint64_t Idx = Op.getConstantOperandVal(1); 3115 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3116 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3117 3118 APInt SrcUndef, SrcZero; 3119 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3120 Depth + 1)) 3121 return true; 3122 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3123 KnownZero = SrcZero.extractBits(NumElts, Idx); 3124 3125 // Attempt to avoid multi-use ops if we don't need anything from them. 3126 if (!DemandedElts.isAllOnes()) { 3127 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3128 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3129 if (NewSrc) { 3130 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3131 Op.getOperand(1)); 3132 return TLO.CombineTo(Op, NewOp); 3133 } 3134 } 3135 break; 3136 } 3137 case ISD::INSERT_VECTOR_ELT: { 3138 SDValue Vec = Op.getOperand(0); 3139 SDValue Scl = Op.getOperand(1); 3140 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3141 3142 // For a legal, constant insertion index, if we don't need this insertion 3143 // then strip it, else remove it from the demanded elts. 3144 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3145 unsigned Idx = CIdx->getZExtValue(); 3146 if (!DemandedElts[Idx]) 3147 return TLO.CombineTo(Op, Vec); 3148 3149 APInt DemandedVecElts(DemandedElts); 3150 DemandedVecElts.clearBit(Idx); 3151 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3152 KnownZero, TLO, Depth + 1)) 3153 return true; 3154 3155 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3156 3157 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3158 break; 3159 } 3160 3161 APInt VecUndef, VecZero; 3162 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3163 Depth + 1)) 3164 return true; 3165 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3166 break; 3167 } 3168 case ISD::VSELECT: { 3169 SDValue Sel = Op.getOperand(0); 3170 SDValue LHS = Op.getOperand(1); 3171 SDValue RHS = Op.getOperand(2); 3172 3173 // Try to transform the select condition based on the current demanded 3174 // elements. 3175 APInt UndefSel, UndefZero; 3176 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO, 3177 Depth + 1)) 3178 return true; 3179 3180 // See if we can simplify either vselect operand. 3181 APInt DemandedLHS(DemandedElts); 3182 APInt DemandedRHS(DemandedElts); 3183 APInt UndefLHS, ZeroLHS; 3184 APInt UndefRHS, ZeroRHS; 3185 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3186 Depth + 1)) 3187 return true; 3188 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3189 Depth + 1)) 3190 return true; 3191 3192 KnownUndef = UndefLHS & UndefRHS; 3193 KnownZero = ZeroLHS & ZeroRHS; 3194 3195 // If we know that the selected element is always zero, we don't need the 3196 // select value element. 3197 APInt DemandedSel = DemandedElts & ~KnownZero; 3198 if (DemandedSel != DemandedElts) 3199 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO, 3200 Depth + 1)) 3201 return true; 3202 3203 break; 3204 } 3205 case ISD::VECTOR_SHUFFLE: { 3206 SDValue LHS = Op.getOperand(0); 3207 SDValue RHS = Op.getOperand(1); 3208 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3209 3210 // Collect demanded elements from shuffle operands.. 3211 APInt DemandedLHS(NumElts, 0); 3212 APInt DemandedRHS(NumElts, 0); 3213 for (unsigned i = 0; i != NumElts; ++i) { 3214 int M = ShuffleMask[i]; 3215 if (M < 0 || !DemandedElts[i]) 3216 continue; 3217 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3218 if (M < (int)NumElts) 3219 DemandedLHS.setBit(M); 3220 else 3221 DemandedRHS.setBit(M - NumElts); 3222 } 3223 3224 // See if we can simplify either shuffle operand. 3225 APInt UndefLHS, ZeroLHS; 3226 APInt UndefRHS, ZeroRHS; 3227 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3228 Depth + 1)) 3229 return true; 3230 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3231 Depth + 1)) 3232 return true; 3233 3234 // Simplify mask using undef elements from LHS/RHS. 3235 bool Updated = false; 3236 bool IdentityLHS = true, IdentityRHS = true; 3237 SmallVector<int, 32> NewMask(ShuffleMask); 3238 for (unsigned i = 0; i != NumElts; ++i) { 3239 int &M = NewMask[i]; 3240 if (M < 0) 3241 continue; 3242 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3243 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3244 Updated = true; 3245 M = -1; 3246 } 3247 IdentityLHS &= (M < 0) || (M == (int)i); 3248 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3249 } 3250 3251 // Update legal shuffle masks based on demanded elements if it won't reduce 3252 // to Identity which can cause premature removal of the shuffle mask. 3253 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3254 SDValue LegalShuffle = 3255 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3256 if (LegalShuffle) 3257 return TLO.CombineTo(Op, LegalShuffle); 3258 } 3259 3260 // Propagate undef/zero elements from LHS/RHS. 3261 for (unsigned i = 0; i != NumElts; ++i) { 3262 int M = ShuffleMask[i]; 3263 if (M < 0) { 3264 KnownUndef.setBit(i); 3265 } else if (M < (int)NumElts) { 3266 if (UndefLHS[M]) 3267 KnownUndef.setBit(i); 3268 if (ZeroLHS[M]) 3269 KnownZero.setBit(i); 3270 } else { 3271 if (UndefRHS[M - NumElts]) 3272 KnownUndef.setBit(i); 3273 if (ZeroRHS[M - NumElts]) 3274 KnownZero.setBit(i); 3275 } 3276 } 3277 break; 3278 } 3279 case ISD::ANY_EXTEND_VECTOR_INREG: 3280 case ISD::SIGN_EXTEND_VECTOR_INREG: 3281 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3282 APInt SrcUndef, SrcZero; 3283 SDValue Src = Op.getOperand(0); 3284 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3285 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3286 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3287 Depth + 1)) 3288 return true; 3289 KnownZero = SrcZero.zextOrTrunc(NumElts); 3290 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3291 3292 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3293 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3294 DemandedSrcElts == 1) { 3295 // aext - if we just need the bottom element then we can bitcast. 3296 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3297 } 3298 3299 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3300 // zext(undef) upper bits are guaranteed to be zero. 3301 if (DemandedElts.isSubsetOf(KnownUndef)) 3302 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3303 KnownUndef.clearAllBits(); 3304 3305 // zext - if we just need the bottom element then we can mask: 3306 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3307 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3308 Op->isOnlyUserOf(Src.getNode()) && 3309 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3310 SDLoc DL(Op); 3311 EVT SrcVT = Src.getValueType(); 3312 EVT SrcSVT = SrcVT.getScalarType(); 3313 SmallVector<SDValue> MaskElts; 3314 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3315 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3316 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3317 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3318 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3319 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3320 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3321 } 3322 } 3323 } 3324 break; 3325 } 3326 3327 // TODO: There are more binop opcodes that could be handled here - MIN, 3328 // MAX, saturated math, etc. 3329 case ISD::ADD: { 3330 SDValue Op0 = Op.getOperand(0); 3331 SDValue Op1 = Op.getOperand(1); 3332 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3333 APInt UndefLHS, ZeroLHS; 3334 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3335 Depth + 1, /*AssumeSingleUse*/ true)) 3336 return true; 3337 } 3338 [[fallthrough]]; 3339 } 3340 case ISD::OR: 3341 case ISD::XOR: 3342 case ISD::SUB: 3343 case ISD::FADD: 3344 case ISD::FSUB: 3345 case ISD::FMUL: 3346 case ISD::FDIV: 3347 case ISD::FREM: { 3348 SDValue Op0 = Op.getOperand(0); 3349 SDValue Op1 = Op.getOperand(1); 3350 3351 APInt UndefRHS, ZeroRHS; 3352 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3353 Depth + 1)) 3354 return true; 3355 APInt UndefLHS, ZeroLHS; 3356 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3357 Depth + 1)) 3358 return true; 3359 3360 KnownZero = ZeroLHS & ZeroRHS; 3361 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3362 3363 // Attempt to avoid multi-use ops if we don't need anything from them. 3364 // TODO - use KnownUndef to relax the demandedelts? 3365 if (!DemandedElts.isAllOnes()) 3366 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3367 return true; 3368 break; 3369 } 3370 case ISD::SHL: 3371 case ISD::SRL: 3372 case ISD::SRA: 3373 case ISD::ROTL: 3374 case ISD::ROTR: { 3375 SDValue Op0 = Op.getOperand(0); 3376 SDValue Op1 = Op.getOperand(1); 3377 3378 APInt UndefRHS, ZeroRHS; 3379 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3380 Depth + 1)) 3381 return true; 3382 APInt UndefLHS, ZeroLHS; 3383 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3384 Depth + 1)) 3385 return true; 3386 3387 KnownZero = ZeroLHS; 3388 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3389 3390 // Attempt to avoid multi-use ops if we don't need anything from them. 3391 // TODO - use KnownUndef to relax the demandedelts? 3392 if (!DemandedElts.isAllOnes()) 3393 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3394 return true; 3395 break; 3396 } 3397 case ISD::MUL: 3398 case ISD::MULHU: 3399 case ISD::MULHS: 3400 case ISD::AND: { 3401 SDValue Op0 = Op.getOperand(0); 3402 SDValue Op1 = Op.getOperand(1); 3403 3404 APInt SrcUndef, SrcZero; 3405 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3406 Depth + 1)) 3407 return true; 3408 // If we know that a demanded element was zero in Op1 we don't need to 3409 // demand it in Op0 - its guaranteed to be zero. 3410 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3411 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3412 TLO, Depth + 1)) 3413 return true; 3414 3415 KnownUndef &= DemandedElts0; 3416 KnownZero &= DemandedElts0; 3417 3418 // If every element pair has a zero/undef then just fold to zero. 3419 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3420 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3421 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3422 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3423 3424 // If either side has a zero element, then the result element is zero, even 3425 // if the other is an UNDEF. 3426 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3427 // and then handle 'and' nodes with the rest of the binop opcodes. 3428 KnownZero |= SrcZero; 3429 KnownUndef &= SrcUndef; 3430 KnownUndef &= ~KnownZero; 3431 3432 // Attempt to avoid multi-use ops if we don't need anything from them. 3433 if (!DemandedElts.isAllOnes()) 3434 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3435 return true; 3436 break; 3437 } 3438 case ISD::TRUNCATE: 3439 case ISD::SIGN_EXTEND: 3440 case ISD::ZERO_EXTEND: 3441 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3442 KnownZero, TLO, Depth + 1)) 3443 return true; 3444 3445 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3446 // zext(undef) upper bits are guaranteed to be zero. 3447 if (DemandedElts.isSubsetOf(KnownUndef)) 3448 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3449 KnownUndef.clearAllBits(); 3450 } 3451 break; 3452 default: { 3453 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3454 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3455 KnownZero, TLO, Depth)) 3456 return true; 3457 } else { 3458 KnownBits Known; 3459 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3460 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3461 TLO, Depth, AssumeSingleUse)) 3462 return true; 3463 } 3464 break; 3465 } 3466 } 3467 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3468 3469 // Constant fold all undef cases. 3470 // TODO: Handle zero cases as well. 3471 if (DemandedElts.isSubsetOf(KnownUndef)) 3472 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3473 3474 return false; 3475 } 3476 3477 /// Determine which of the bits specified in Mask are known to be either zero or 3478 /// one and return them in the Known. 3479 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3480 KnownBits &Known, 3481 const APInt &DemandedElts, 3482 const SelectionDAG &DAG, 3483 unsigned Depth) const { 3484 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3485 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3486 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3487 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3488 "Should use MaskedValueIsZero if you don't know whether Op" 3489 " is a target node!"); 3490 Known.resetAll(); 3491 } 3492 3493 void TargetLowering::computeKnownBitsForTargetInstr( 3494 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3495 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3496 unsigned Depth) const { 3497 Known.resetAll(); 3498 } 3499 3500 void TargetLowering::computeKnownBitsForFrameIndex( 3501 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3502 // The low bits are known zero if the pointer is aligned. 3503 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3504 } 3505 3506 Align TargetLowering::computeKnownAlignForTargetInstr( 3507 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3508 unsigned Depth) const { 3509 return Align(1); 3510 } 3511 3512 /// This method can be implemented by targets that want to expose additional 3513 /// information about sign bits to the DAG Combiner. 3514 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3515 const APInt &, 3516 const SelectionDAG &, 3517 unsigned Depth) const { 3518 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3519 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3520 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3521 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3522 "Should use ComputeNumSignBits if you don't know whether Op" 3523 " is a target node!"); 3524 return 1; 3525 } 3526 3527 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3528 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3529 const MachineRegisterInfo &MRI, unsigned Depth) const { 3530 return 1; 3531 } 3532 3533 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3534 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3535 TargetLoweringOpt &TLO, unsigned Depth) const { 3536 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3537 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3538 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3539 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3540 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3541 " is a target node!"); 3542 return false; 3543 } 3544 3545 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3546 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3547 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3548 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3549 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3550 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3551 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3552 "Should use SimplifyDemandedBits if you don't know whether Op" 3553 " is a target node!"); 3554 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3555 return false; 3556 } 3557 3558 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3559 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3560 SelectionDAG &DAG, unsigned Depth) const { 3561 assert( 3562 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3563 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3564 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3565 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3566 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3567 " is a target node!"); 3568 return SDValue(); 3569 } 3570 3571 SDValue 3572 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3573 SDValue N1, MutableArrayRef<int> Mask, 3574 SelectionDAG &DAG) const { 3575 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3576 if (!LegalMask) { 3577 std::swap(N0, N1); 3578 ShuffleVectorSDNode::commuteMask(Mask); 3579 LegalMask = isShuffleMaskLegal(Mask, VT); 3580 } 3581 3582 if (!LegalMask) 3583 return SDValue(); 3584 3585 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3586 } 3587 3588 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3589 return nullptr; 3590 } 3591 3592 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3593 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3594 bool PoisonOnly, unsigned Depth) const { 3595 assert( 3596 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3597 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3598 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3599 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3600 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3601 " is a target node!"); 3602 return false; 3603 } 3604 3605 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3606 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3607 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3608 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3609 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3610 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3611 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3612 "Should use canCreateUndefOrPoison if you don't know whether Op" 3613 " is a target node!"); 3614 // Be conservative and return true. 3615 return true; 3616 } 3617 3618 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3619 const SelectionDAG &DAG, 3620 bool SNaN, 3621 unsigned Depth) const { 3622 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3623 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3624 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3625 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3626 "Should use isKnownNeverNaN if you don't know whether Op" 3627 " is a target node!"); 3628 return false; 3629 } 3630 3631 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3632 const APInt &DemandedElts, 3633 APInt &UndefElts, 3634 const SelectionDAG &DAG, 3635 unsigned Depth) const { 3636 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3637 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3638 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3639 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3640 "Should use isSplatValue if you don't know whether Op" 3641 " is a target node!"); 3642 return false; 3643 } 3644 3645 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3646 // work with truncating build vectors and vectors with elements of less than 3647 // 8 bits. 3648 bool TargetLowering::isConstTrueVal(SDValue N) const { 3649 if (!N) 3650 return false; 3651 3652 unsigned EltWidth; 3653 APInt CVal; 3654 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3655 /*AllowTruncation=*/true)) { 3656 CVal = CN->getAPIntValue(); 3657 EltWidth = N.getValueType().getScalarSizeInBits(); 3658 } else 3659 return false; 3660 3661 // If this is a truncating splat, truncate the splat value. 3662 // Otherwise, we may fail to match the expected values below. 3663 if (EltWidth < CVal.getBitWidth()) 3664 CVal = CVal.trunc(EltWidth); 3665 3666 switch (getBooleanContents(N.getValueType())) { 3667 case UndefinedBooleanContent: 3668 return CVal[0]; 3669 case ZeroOrOneBooleanContent: 3670 return CVal.isOne(); 3671 case ZeroOrNegativeOneBooleanContent: 3672 return CVal.isAllOnes(); 3673 } 3674 3675 llvm_unreachable("Invalid boolean contents"); 3676 } 3677 3678 bool TargetLowering::isConstFalseVal(SDValue N) const { 3679 if (!N) 3680 return false; 3681 3682 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3683 if (!CN) { 3684 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3685 if (!BV) 3686 return false; 3687 3688 // Only interested in constant splats, we don't care about undef 3689 // elements in identifying boolean constants and getConstantSplatNode 3690 // returns NULL if all ops are undef; 3691 CN = BV->getConstantSplatNode(); 3692 if (!CN) 3693 return false; 3694 } 3695 3696 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3697 return !CN->getAPIntValue()[0]; 3698 3699 return CN->isZero(); 3700 } 3701 3702 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3703 bool SExt) const { 3704 if (VT == MVT::i1) 3705 return N->isOne(); 3706 3707 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3708 switch (Cnt) { 3709 case TargetLowering::ZeroOrOneBooleanContent: 3710 // An extended value of 1 is always true, unless its original type is i1, 3711 // in which case it will be sign extended to -1. 3712 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3713 case TargetLowering::UndefinedBooleanContent: 3714 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3715 return N->isAllOnes() && SExt; 3716 } 3717 llvm_unreachable("Unexpected enumeration."); 3718 } 3719 3720 /// This helper function of SimplifySetCC tries to optimize the comparison when 3721 /// either operand of the SetCC node is a bitwise-and instruction. 3722 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3723 ISD::CondCode Cond, const SDLoc &DL, 3724 DAGCombinerInfo &DCI) const { 3725 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3726 std::swap(N0, N1); 3727 3728 SelectionDAG &DAG = DCI.DAG; 3729 EVT OpVT = N0.getValueType(); 3730 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3731 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3732 return SDValue(); 3733 3734 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3735 // iff everything but LSB is known zero: 3736 if (Cond == ISD::SETNE && isNullConstant(N1) && 3737 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3738 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3739 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3740 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3741 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3742 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3743 } 3744 3745 // Try to eliminate a power-of-2 mask constant by converting to a signbit 3746 // test in a narrow type that we can truncate to with no cost. Examples: 3747 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 3748 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 3749 // TODO: This conservatively checks for type legality on the source and 3750 // destination types. That may inhibit optimizations, but it also 3751 // allows setcc->shift transforms that may be more beneficial. 3752 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3753 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 3754 isTypeLegal(OpVT) && N0.hasOneUse()) { 3755 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 3756 AndC->getAPIntValue().getActiveBits()); 3757 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 3758 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 3759 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 3760 return DAG.getSetCC(DL, VT, Trunc, Zero, 3761 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 3762 } 3763 } 3764 3765 // Match these patterns in any of their permutations: 3766 // (X & Y) == Y 3767 // (X & Y) != Y 3768 SDValue X, Y; 3769 if (N0.getOperand(0) == N1) { 3770 X = N0.getOperand(1); 3771 Y = N0.getOperand(0); 3772 } else if (N0.getOperand(1) == N1) { 3773 X = N0.getOperand(0); 3774 Y = N0.getOperand(1); 3775 } else { 3776 return SDValue(); 3777 } 3778 3779 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3780 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3781 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3782 // Note that where Y is variable and is known to have at most one bit set 3783 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3784 // equivalent when Y == 0. 3785 assert(OpVT.isInteger()); 3786 Cond = ISD::getSetCCInverse(Cond, OpVT); 3787 if (DCI.isBeforeLegalizeOps() || 3788 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3789 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3790 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3791 // If the target supports an 'and-not' or 'and-complement' logic operation, 3792 // try to use that to make a comparison operation more efficient. 3793 // But don't do this transform if the mask is a single bit because there are 3794 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3795 // 'rlwinm' on PPC). 3796 3797 // Bail out if the compare operand that we want to turn into a zero is 3798 // already a zero (otherwise, infinite loop). 3799 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3800 if (YConst && YConst->isZero()) 3801 return SDValue(); 3802 3803 // Transform this into: ~X & Y == 0. 3804 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3805 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3806 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3807 } 3808 3809 return SDValue(); 3810 } 3811 3812 /// There are multiple IR patterns that could be checking whether certain 3813 /// truncation of a signed number would be lossy or not. The pattern which is 3814 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3815 /// We are looking for the following pattern: (KeptBits is a constant) 3816 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3817 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3818 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3819 /// We will unfold it into the natural trunc+sext pattern: 3820 /// ((%x << C) a>> C) dstcond %x 3821 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3822 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3823 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3824 const SDLoc &DL) const { 3825 // We must be comparing with a constant. 3826 ConstantSDNode *C1; 3827 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3828 return SDValue(); 3829 3830 // N0 should be: add %x, (1 << (KeptBits-1)) 3831 if (N0->getOpcode() != ISD::ADD) 3832 return SDValue(); 3833 3834 // And we must be 'add'ing a constant. 3835 ConstantSDNode *C01; 3836 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3837 return SDValue(); 3838 3839 SDValue X = N0->getOperand(0); 3840 EVT XVT = X.getValueType(); 3841 3842 // Validate constants ... 3843 3844 APInt I1 = C1->getAPIntValue(); 3845 3846 ISD::CondCode NewCond; 3847 if (Cond == ISD::CondCode::SETULT) { 3848 NewCond = ISD::CondCode::SETEQ; 3849 } else if (Cond == ISD::CondCode::SETULE) { 3850 NewCond = ISD::CondCode::SETEQ; 3851 // But need to 'canonicalize' the constant. 3852 I1 += 1; 3853 } else if (Cond == ISD::CondCode::SETUGT) { 3854 NewCond = ISD::CondCode::SETNE; 3855 // But need to 'canonicalize' the constant. 3856 I1 += 1; 3857 } else if (Cond == ISD::CondCode::SETUGE) { 3858 NewCond = ISD::CondCode::SETNE; 3859 } else 3860 return SDValue(); 3861 3862 APInt I01 = C01->getAPIntValue(); 3863 3864 auto checkConstants = [&I1, &I01]() -> bool { 3865 // Both of them must be power-of-two, and the constant from setcc is bigger. 3866 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3867 }; 3868 3869 if (checkConstants()) { 3870 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3871 } else { 3872 // What if we invert constants? (and the target predicate) 3873 I1.negate(); 3874 I01.negate(); 3875 assert(XVT.isInteger()); 3876 NewCond = getSetCCInverse(NewCond, XVT); 3877 if (!checkConstants()) 3878 return SDValue(); 3879 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3880 } 3881 3882 // They are power-of-two, so which bit is set? 3883 const unsigned KeptBits = I1.logBase2(); 3884 const unsigned KeptBitsMinusOne = I01.logBase2(); 3885 3886 // Magic! 3887 if (KeptBits != (KeptBitsMinusOne + 1)) 3888 return SDValue(); 3889 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3890 3891 // We don't want to do this in every single case. 3892 SelectionDAG &DAG = DCI.DAG; 3893 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3894 XVT, KeptBits)) 3895 return SDValue(); 3896 3897 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3898 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3899 3900 // Unfold into: ((%x << C) a>> C) cond %x 3901 // Where 'cond' will be either 'eq' or 'ne'. 3902 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3903 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3904 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3905 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3906 3907 return T2; 3908 } 3909 3910 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3911 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3912 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3913 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3914 assert(isConstOrConstSplat(N1C) && 3915 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3916 "Should be a comparison with 0."); 3917 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3918 "Valid only for [in]equality comparisons."); 3919 3920 unsigned NewShiftOpcode; 3921 SDValue X, C, Y; 3922 3923 SelectionDAG &DAG = DCI.DAG; 3924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3925 3926 // Look for '(C l>>/<< Y)'. 3927 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3928 // The shift should be one-use. 3929 if (!V.hasOneUse()) 3930 return false; 3931 unsigned OldShiftOpcode = V.getOpcode(); 3932 switch (OldShiftOpcode) { 3933 case ISD::SHL: 3934 NewShiftOpcode = ISD::SRL; 3935 break; 3936 case ISD::SRL: 3937 NewShiftOpcode = ISD::SHL; 3938 break; 3939 default: 3940 return false; // must be a logical shift. 3941 } 3942 // We should be shifting a constant. 3943 // FIXME: best to use isConstantOrConstantVector(). 3944 C = V.getOperand(0); 3945 ConstantSDNode *CC = 3946 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3947 if (!CC) 3948 return false; 3949 Y = V.getOperand(1); 3950 3951 ConstantSDNode *XC = 3952 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3953 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3954 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3955 }; 3956 3957 // LHS of comparison should be an one-use 'and'. 3958 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3959 return SDValue(); 3960 3961 X = N0.getOperand(0); 3962 SDValue Mask = N0.getOperand(1); 3963 3964 // 'and' is commutative! 3965 if (!Match(Mask)) { 3966 std::swap(X, Mask); 3967 if (!Match(Mask)) 3968 return SDValue(); 3969 } 3970 3971 EVT VT = X.getValueType(); 3972 3973 // Produce: 3974 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3975 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3976 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3977 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3978 return T2; 3979 } 3980 3981 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3982 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3983 /// handle the commuted versions of these patterns. 3984 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3985 ISD::CondCode Cond, const SDLoc &DL, 3986 DAGCombinerInfo &DCI) const { 3987 unsigned BOpcode = N0.getOpcode(); 3988 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3989 "Unexpected binop"); 3990 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3991 3992 // (X + Y) == X --> Y == 0 3993 // (X - Y) == X --> Y == 0 3994 // (X ^ Y) == X --> Y == 0 3995 SelectionDAG &DAG = DCI.DAG; 3996 EVT OpVT = N0.getValueType(); 3997 SDValue X = N0.getOperand(0); 3998 SDValue Y = N0.getOperand(1); 3999 if (X == N1) 4000 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4001 4002 if (Y != N1) 4003 return SDValue(); 4004 4005 // (X + Y) == Y --> X == 0 4006 // (X ^ Y) == Y --> X == 0 4007 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4008 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4009 4010 // The shift would not be valid if the operands are boolean (i1). 4011 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4012 return SDValue(); 4013 4014 // (X - Y) == Y --> X == Y << 1 4015 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 4016 !DCI.isBeforeLegalize()); 4017 SDValue One = DAG.getConstant(1, DL, ShiftVT); 4018 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4019 if (!DCI.isCalledByLegalizer()) 4020 DCI.AddToWorklist(YShl1.getNode()); 4021 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4022 } 4023 4024 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4025 SDValue N0, const APInt &C1, 4026 ISD::CondCode Cond, const SDLoc &dl, 4027 SelectionDAG &DAG) { 4028 // Look through truncs that don't change the value of a ctpop. 4029 // FIXME: Add vector support? Need to be careful with setcc result type below. 4030 SDValue CTPOP = N0; 4031 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4032 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4033 CTPOP = N0.getOperand(0); 4034 4035 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4036 return SDValue(); 4037 4038 EVT CTVT = CTPOP.getValueType(); 4039 SDValue CTOp = CTPOP.getOperand(0); 4040 4041 // Expand a power-of-2-or-zero comparison based on ctpop: 4042 // (ctpop x) u< 2 -> (x & x-1) == 0 4043 // (ctpop x) u> 1 -> (x & x-1) != 0 4044 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4045 // Keep the CTPOP if it is a legal vector op. 4046 if (CTVT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 4047 return SDValue(); 4048 4049 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4050 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4051 return SDValue(); 4052 if (C1 == 0 && (Cond == ISD::SETULT)) 4053 return SDValue(); // This is handled elsewhere. 4054 4055 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4056 4057 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4058 SDValue Result = CTOp; 4059 for (unsigned i = 0; i < Passes; i++) { 4060 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4061 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4062 } 4063 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4064 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4065 } 4066 4067 // Expand a power-of-2 comparison based on ctpop: 4068 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 4069 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 4070 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4071 // Keep the CTPOP if it is legal. 4072 if (TLI.isOperationLegal(ISD::CTPOP, CTVT)) 4073 return SDValue(); 4074 4075 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4076 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4077 assert(CTVT.isInteger()); 4078 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 4079 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4080 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4081 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 4082 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4083 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 4084 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 4085 } 4086 4087 return SDValue(); 4088 } 4089 4090 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4091 ISD::CondCode Cond, const SDLoc &dl, 4092 SelectionDAG &DAG) { 4093 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4094 return SDValue(); 4095 4096 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4097 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4098 return SDValue(); 4099 4100 auto getRotateSource = [](SDValue X) { 4101 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4102 return X.getOperand(0); 4103 return SDValue(); 4104 }; 4105 4106 // Peek through a rotated value compared against 0 or -1: 4107 // (rot X, Y) == 0/-1 --> X == 0/-1 4108 // (rot X, Y) != 0/-1 --> X != 0/-1 4109 if (SDValue R = getRotateSource(N0)) 4110 return DAG.getSetCC(dl, VT, R, N1, Cond); 4111 4112 // Peek through an 'or' of a rotated value compared against 0: 4113 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4114 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4115 // 4116 // TODO: Add the 'and' with -1 sibling. 4117 // TODO: Recurse through a series of 'or' ops to find the rotate. 4118 EVT OpVT = N0.getValueType(); 4119 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4120 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4121 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4122 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4123 } 4124 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4125 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4126 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4127 } 4128 } 4129 4130 return SDValue(); 4131 } 4132 4133 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4134 ISD::CondCode Cond, const SDLoc &dl, 4135 SelectionDAG &DAG) { 4136 // If we are testing for all-bits-clear, we might be able to do that with 4137 // less shifting since bit-order does not matter. 4138 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4139 return SDValue(); 4140 4141 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4142 if (!C1 || !C1->isZero()) 4143 return SDValue(); 4144 4145 if (!N0.hasOneUse() || 4146 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4147 return SDValue(); 4148 4149 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4150 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4151 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4152 return SDValue(); 4153 4154 // Canonicalize fshr as fshl to reduce pattern-matching. 4155 unsigned ShAmt = ShAmtC->getZExtValue(); 4156 if (N0.getOpcode() == ISD::FSHR) 4157 ShAmt = BitWidth - ShAmt; 4158 4159 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4160 SDValue X, Y; 4161 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4162 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4163 return false; 4164 if (Or.getOperand(0) == Other) { 4165 X = Or.getOperand(0); 4166 Y = Or.getOperand(1); 4167 return true; 4168 } 4169 if (Or.getOperand(1) == Other) { 4170 X = Or.getOperand(1); 4171 Y = Or.getOperand(0); 4172 return true; 4173 } 4174 return false; 4175 }; 4176 4177 EVT OpVT = N0.getValueType(); 4178 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4179 SDValue F0 = N0.getOperand(0); 4180 SDValue F1 = N0.getOperand(1); 4181 if (matchOr(F0, F1)) { 4182 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4183 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4184 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4185 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4186 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4187 } 4188 if (matchOr(F1, F0)) { 4189 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4190 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4191 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4192 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4193 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4194 } 4195 4196 return SDValue(); 4197 } 4198 4199 /// Try to simplify a setcc built with the specified operands and cc. If it is 4200 /// unable to simplify it, return a null SDValue. 4201 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4202 ISD::CondCode Cond, bool foldBooleans, 4203 DAGCombinerInfo &DCI, 4204 const SDLoc &dl) const { 4205 SelectionDAG &DAG = DCI.DAG; 4206 const DataLayout &Layout = DAG.getDataLayout(); 4207 EVT OpVT = N0.getValueType(); 4208 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4209 4210 // Constant fold or commute setcc. 4211 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4212 return Fold; 4213 4214 bool N0ConstOrSplat = 4215 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4216 bool N1ConstOrSplat = 4217 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4218 4219 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4220 // TODO: Handle non-splat vector constants. All undef causes trouble. 4221 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4222 // infinite loop here when we encounter one. 4223 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4224 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4225 (DCI.isBeforeLegalizeOps() || 4226 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4227 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4228 4229 // If we have a subtract with the same 2 non-constant operands as this setcc 4230 // -- but in reverse order -- then try to commute the operands of this setcc 4231 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4232 // instruction on some targets. 4233 if (!N0ConstOrSplat && !N1ConstOrSplat && 4234 (DCI.isBeforeLegalizeOps() || 4235 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4236 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4237 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4238 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4239 4240 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4241 return V; 4242 4243 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4244 return V; 4245 4246 if (auto *N1C = isConstOrConstSplat(N1)) { 4247 const APInt &C1 = N1C->getAPIntValue(); 4248 4249 // Optimize some CTPOP cases. 4250 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4251 return V; 4252 4253 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4254 // X * Y == 0 --> (X == 0) || (Y == 0) 4255 // X * Y != 0 --> (X != 0) && (Y != 0) 4256 // TODO: This bails out if minsize is set, but if the target doesn't have a 4257 // single instruction multiply for this type, it would likely be 4258 // smaller to decompose. 4259 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4260 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4261 (N0->getFlags().hasNoUnsignedWrap() || 4262 N0->getFlags().hasNoSignedWrap()) && 4263 !Attr.hasFnAttr(Attribute::MinSize)) { 4264 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4265 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4266 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4267 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4268 } 4269 4270 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4271 // equality comparison, then we're just comparing whether X itself is 4272 // zero. 4273 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4274 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4275 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4276 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4277 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4278 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4279 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4280 // (srl (ctlz x), 5) == 0 -> X != 0 4281 // (srl (ctlz x), 5) != 1 -> X != 0 4282 Cond = ISD::SETNE; 4283 } else { 4284 // (srl (ctlz x), 5) != 0 -> X == 0 4285 // (srl (ctlz x), 5) == 1 -> X == 0 4286 Cond = ISD::SETEQ; 4287 } 4288 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4289 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4290 Cond); 4291 } 4292 } 4293 } 4294 } 4295 4296 // FIXME: Support vectors. 4297 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4298 const APInt &C1 = N1C->getAPIntValue(); 4299 4300 // (zext x) == C --> x == (trunc C) 4301 // (sext x) == C --> x == (trunc C) 4302 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4303 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4304 unsigned MinBits = N0.getValueSizeInBits(); 4305 SDValue PreExt; 4306 bool Signed = false; 4307 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4308 // ZExt 4309 MinBits = N0->getOperand(0).getValueSizeInBits(); 4310 PreExt = N0->getOperand(0); 4311 } else if (N0->getOpcode() == ISD::AND) { 4312 // DAGCombine turns costly ZExts into ANDs 4313 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4314 if ((C->getAPIntValue()+1).isPowerOf2()) { 4315 MinBits = C->getAPIntValue().countTrailingOnes(); 4316 PreExt = N0->getOperand(0); 4317 } 4318 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4319 // SExt 4320 MinBits = N0->getOperand(0).getValueSizeInBits(); 4321 PreExt = N0->getOperand(0); 4322 Signed = true; 4323 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4324 // ZEXTLOAD / SEXTLOAD 4325 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4326 MinBits = LN0->getMemoryVT().getSizeInBits(); 4327 PreExt = N0; 4328 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4329 Signed = true; 4330 MinBits = LN0->getMemoryVT().getSizeInBits(); 4331 PreExt = N0; 4332 } 4333 } 4334 4335 // Figure out how many bits we need to preserve this constant. 4336 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4337 4338 // Make sure we're not losing bits from the constant. 4339 if (MinBits > 0 && 4340 MinBits < C1.getBitWidth() && 4341 MinBits >= ReqdBits) { 4342 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4343 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4344 // Will get folded away. 4345 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4346 if (MinBits == 1 && C1 == 1) 4347 // Invert the condition. 4348 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4349 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4350 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4351 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4352 } 4353 4354 // If truncating the setcc operands is not desirable, we can still 4355 // simplify the expression in some cases: 4356 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4357 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4358 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4359 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4360 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4361 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4362 SDValue TopSetCC = N0->getOperand(0); 4363 unsigned N0Opc = N0->getOpcode(); 4364 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4365 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4366 TopSetCC.getOpcode() == ISD::SETCC && 4367 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4368 (isConstFalseVal(N1) || 4369 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4370 4371 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4372 (!N1C->isZero() && Cond == ISD::SETNE); 4373 4374 if (!Inverse) 4375 return TopSetCC; 4376 4377 ISD::CondCode InvCond = ISD::getSetCCInverse( 4378 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4379 TopSetCC.getOperand(0).getValueType()); 4380 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4381 TopSetCC.getOperand(1), 4382 InvCond); 4383 } 4384 } 4385 } 4386 4387 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4388 // equality or unsigned, and all 1 bits of the const are in the same 4389 // partial word, see if we can shorten the load. 4390 if (DCI.isBeforeLegalize() && 4391 !ISD::isSignedIntSetCC(Cond) && 4392 N0.getOpcode() == ISD::AND && C1 == 0 && 4393 N0.getNode()->hasOneUse() && 4394 isa<LoadSDNode>(N0.getOperand(0)) && 4395 N0.getOperand(0).getNode()->hasOneUse() && 4396 isa<ConstantSDNode>(N0.getOperand(1))) { 4397 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4398 APInt bestMask; 4399 unsigned bestWidth = 0, bestOffset = 0; 4400 if (Lod->isSimple() && Lod->isUnindexed()) { 4401 unsigned origWidth = N0.getValueSizeInBits(); 4402 unsigned maskWidth = origWidth; 4403 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4404 // 8 bits, but have to be careful... 4405 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4406 origWidth = Lod->getMemoryVT().getSizeInBits(); 4407 const APInt &Mask = N0.getConstantOperandAPInt(1); 4408 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4409 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4410 for (unsigned offset=0; offset<origWidth/width; offset++) { 4411 if (Mask.isSubsetOf(newMask)) { 4412 if (Layout.isLittleEndian()) 4413 bestOffset = (uint64_t)offset * (width/8); 4414 else 4415 bestOffset = (origWidth/width - offset - 1) * (width/8); 4416 bestMask = Mask.lshr(offset * (width/8) * 8); 4417 bestWidth = width; 4418 break; 4419 } 4420 newMask <<= width; 4421 } 4422 } 4423 } 4424 if (bestWidth) { 4425 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4426 if (newVT.isRound() && 4427 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4428 SDValue Ptr = Lod->getBasePtr(); 4429 if (bestOffset != 0) 4430 Ptr = 4431 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4432 SDValue NewLoad = 4433 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4434 Lod->getPointerInfo().getWithOffset(bestOffset), 4435 Lod->getOriginalAlign()); 4436 return DAG.getSetCC(dl, VT, 4437 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4438 DAG.getConstant(bestMask.trunc(bestWidth), 4439 dl, newVT)), 4440 DAG.getConstant(0LL, dl, newVT), Cond); 4441 } 4442 } 4443 } 4444 4445 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4446 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4447 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4448 4449 // If the comparison constant has bits in the upper part, the 4450 // zero-extended value could never match. 4451 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4452 C1.getBitWidth() - InSize))) { 4453 switch (Cond) { 4454 case ISD::SETUGT: 4455 case ISD::SETUGE: 4456 case ISD::SETEQ: 4457 return DAG.getConstant(0, dl, VT); 4458 case ISD::SETULT: 4459 case ISD::SETULE: 4460 case ISD::SETNE: 4461 return DAG.getConstant(1, dl, VT); 4462 case ISD::SETGT: 4463 case ISD::SETGE: 4464 // True if the sign bit of C1 is set. 4465 return DAG.getConstant(C1.isNegative(), dl, VT); 4466 case ISD::SETLT: 4467 case ISD::SETLE: 4468 // True if the sign bit of C1 isn't set. 4469 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4470 default: 4471 break; 4472 } 4473 } 4474 4475 // Otherwise, we can perform the comparison with the low bits. 4476 switch (Cond) { 4477 case ISD::SETEQ: 4478 case ISD::SETNE: 4479 case ISD::SETUGT: 4480 case ISD::SETUGE: 4481 case ISD::SETULT: 4482 case ISD::SETULE: { 4483 EVT newVT = N0.getOperand(0).getValueType(); 4484 if (DCI.isBeforeLegalizeOps() || 4485 (isOperationLegal(ISD::SETCC, newVT) && 4486 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4487 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4488 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4489 4490 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4491 NewConst, Cond); 4492 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4493 } 4494 break; 4495 } 4496 default: 4497 break; // todo, be more careful with signed comparisons 4498 } 4499 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4500 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4501 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4502 OpVT)) { 4503 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4504 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4505 EVT ExtDstTy = N0.getValueType(); 4506 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4507 4508 // If the constant doesn't fit into the number of bits for the source of 4509 // the sign extension, it is impossible for both sides to be equal. 4510 if (C1.getMinSignedBits() > ExtSrcTyBits) 4511 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4512 4513 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4514 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4515 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4516 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4517 DAG.getConstant(Imm, dl, ExtDstTy)); 4518 if (!DCI.isCalledByLegalizer()) 4519 DCI.AddToWorklist(ZextOp.getNode()); 4520 // Otherwise, make this a use of a zext. 4521 return DAG.getSetCC(dl, VT, ZextOp, 4522 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4523 } else if ((N1C->isZero() || N1C->isOne()) && 4524 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4525 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4526 if (N0.getOpcode() == ISD::SETCC && 4527 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4528 (N0.getValueType() == MVT::i1 || 4529 getBooleanContents(N0.getOperand(0).getValueType()) == 4530 ZeroOrOneBooleanContent)) { 4531 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4532 if (TrueWhenTrue) 4533 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4534 // Invert the condition. 4535 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4536 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4537 if (DCI.isBeforeLegalizeOps() || 4538 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4539 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4540 } 4541 4542 if ((N0.getOpcode() == ISD::XOR || 4543 (N0.getOpcode() == ISD::AND && 4544 N0.getOperand(0).getOpcode() == ISD::XOR && 4545 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4546 isOneConstant(N0.getOperand(1))) { 4547 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4548 // can only do this if the top bits are known zero. 4549 unsigned BitWidth = N0.getValueSizeInBits(); 4550 if (DAG.MaskedValueIsZero(N0, 4551 APInt::getHighBitsSet(BitWidth, 4552 BitWidth-1))) { 4553 // Okay, get the un-inverted input value. 4554 SDValue Val; 4555 if (N0.getOpcode() == ISD::XOR) { 4556 Val = N0.getOperand(0); 4557 } else { 4558 assert(N0.getOpcode() == ISD::AND && 4559 N0.getOperand(0).getOpcode() == ISD::XOR); 4560 // ((X^1)&1)^1 -> X & 1 4561 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4562 N0.getOperand(0).getOperand(0), 4563 N0.getOperand(1)); 4564 } 4565 4566 return DAG.getSetCC(dl, VT, Val, N1, 4567 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4568 } 4569 } else if (N1C->isOne()) { 4570 SDValue Op0 = N0; 4571 if (Op0.getOpcode() == ISD::TRUNCATE) 4572 Op0 = Op0.getOperand(0); 4573 4574 if ((Op0.getOpcode() == ISD::XOR) && 4575 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4576 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4577 SDValue XorLHS = Op0.getOperand(0); 4578 SDValue XorRHS = Op0.getOperand(1); 4579 // Ensure that the input setccs return an i1 type or 0/1 value. 4580 if (Op0.getValueType() == MVT::i1 || 4581 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4582 ZeroOrOneBooleanContent && 4583 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4584 ZeroOrOneBooleanContent)) { 4585 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4586 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4587 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4588 } 4589 } 4590 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4591 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4592 if (Op0.getValueType().bitsGT(VT)) 4593 Op0 = DAG.getNode(ISD::AND, dl, VT, 4594 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4595 DAG.getConstant(1, dl, VT)); 4596 else if (Op0.getValueType().bitsLT(VT)) 4597 Op0 = DAG.getNode(ISD::AND, dl, VT, 4598 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4599 DAG.getConstant(1, dl, VT)); 4600 4601 return DAG.getSetCC(dl, VT, Op0, 4602 DAG.getConstant(0, dl, Op0.getValueType()), 4603 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4604 } 4605 if (Op0.getOpcode() == ISD::AssertZext && 4606 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4607 return DAG.getSetCC(dl, VT, Op0, 4608 DAG.getConstant(0, dl, Op0.getValueType()), 4609 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4610 } 4611 } 4612 4613 // Given: 4614 // icmp eq/ne (urem %x, %y), 0 4615 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4616 // icmp eq/ne %x, 0 4617 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4618 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4619 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4620 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4621 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4622 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4623 } 4624 4625 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4626 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4627 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4628 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4629 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4630 N1C && N1C->isAllOnes()) { 4631 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4632 DAG.getConstant(0, dl, OpVT), 4633 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4634 } 4635 4636 if (SDValue V = 4637 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4638 return V; 4639 } 4640 4641 // These simplifications apply to splat vectors as well. 4642 // TODO: Handle more splat vector cases. 4643 if (auto *N1C = isConstOrConstSplat(N1)) { 4644 const APInt &C1 = N1C->getAPIntValue(); 4645 4646 APInt MinVal, MaxVal; 4647 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4648 if (ISD::isSignedIntSetCC(Cond)) { 4649 MinVal = APInt::getSignedMinValue(OperandBitSize); 4650 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4651 } else { 4652 MinVal = APInt::getMinValue(OperandBitSize); 4653 MaxVal = APInt::getMaxValue(OperandBitSize); 4654 } 4655 4656 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4657 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4658 // X >= MIN --> true 4659 if (C1 == MinVal) 4660 return DAG.getBoolConstant(true, dl, VT, OpVT); 4661 4662 if (!VT.isVector()) { // TODO: Support this for vectors. 4663 // X >= C0 --> X > (C0 - 1) 4664 APInt C = C1 - 1; 4665 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4666 if ((DCI.isBeforeLegalizeOps() || 4667 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4668 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4669 isLegalICmpImmediate(C.getSExtValue())))) { 4670 return DAG.getSetCC(dl, VT, N0, 4671 DAG.getConstant(C, dl, N1.getValueType()), 4672 NewCC); 4673 } 4674 } 4675 } 4676 4677 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4678 // X <= MAX --> true 4679 if (C1 == MaxVal) 4680 return DAG.getBoolConstant(true, dl, VT, OpVT); 4681 4682 // X <= C0 --> X < (C0 + 1) 4683 if (!VT.isVector()) { // TODO: Support this for vectors. 4684 APInt C = C1 + 1; 4685 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4686 if ((DCI.isBeforeLegalizeOps() || 4687 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4688 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4689 isLegalICmpImmediate(C.getSExtValue())))) { 4690 return DAG.getSetCC(dl, VT, N0, 4691 DAG.getConstant(C, dl, N1.getValueType()), 4692 NewCC); 4693 } 4694 } 4695 } 4696 4697 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4698 if (C1 == MinVal) 4699 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4700 4701 // TODO: Support this for vectors after legalize ops. 4702 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4703 // Canonicalize setlt X, Max --> setne X, Max 4704 if (C1 == MaxVal) 4705 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4706 4707 // If we have setult X, 1, turn it into seteq X, 0 4708 if (C1 == MinVal+1) 4709 return DAG.getSetCC(dl, VT, N0, 4710 DAG.getConstant(MinVal, dl, N0.getValueType()), 4711 ISD::SETEQ); 4712 } 4713 } 4714 4715 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4716 if (C1 == MaxVal) 4717 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4718 4719 // TODO: Support this for vectors after legalize ops. 4720 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4721 // Canonicalize setgt X, Min --> setne X, Min 4722 if (C1 == MinVal) 4723 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4724 4725 // If we have setugt X, Max-1, turn it into seteq X, Max 4726 if (C1 == MaxVal-1) 4727 return DAG.getSetCC(dl, VT, N0, 4728 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4729 ISD::SETEQ); 4730 } 4731 } 4732 4733 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4734 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4735 if (C1.isZero()) 4736 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4737 VT, N0, N1, Cond, DCI, dl)) 4738 return CC; 4739 4740 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4741 // For example, when high 32-bits of i64 X are known clear: 4742 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4743 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4744 bool CmpZero = N1C->getAPIntValue().isZero(); 4745 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4746 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4747 // Match or(lo,shl(hi,bw/2)) pattern. 4748 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4749 unsigned EltBits = V.getScalarValueSizeInBits(); 4750 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4751 return false; 4752 SDValue LHS = V.getOperand(0); 4753 SDValue RHS = V.getOperand(1); 4754 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4755 // Unshifted element must have zero upperbits. 4756 if (RHS.getOpcode() == ISD::SHL && 4757 isa<ConstantSDNode>(RHS.getOperand(1)) && 4758 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4759 DAG.MaskedValueIsZero(LHS, HiBits)) { 4760 Lo = LHS; 4761 Hi = RHS.getOperand(0); 4762 return true; 4763 } 4764 if (LHS.getOpcode() == ISD::SHL && 4765 isa<ConstantSDNode>(LHS.getOperand(1)) && 4766 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4767 DAG.MaskedValueIsZero(RHS, HiBits)) { 4768 Lo = RHS; 4769 Hi = LHS.getOperand(0); 4770 return true; 4771 } 4772 return false; 4773 }; 4774 4775 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4776 unsigned EltBits = N0.getScalarValueSizeInBits(); 4777 unsigned HalfBits = EltBits / 2; 4778 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4779 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4780 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4781 SDValue NewN0 = 4782 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4783 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4784 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4785 }; 4786 4787 SDValue Lo, Hi; 4788 if (IsConcat(N0, Lo, Hi)) 4789 return MergeConcat(Lo, Hi); 4790 4791 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4792 SDValue Lo0, Lo1, Hi0, Hi1; 4793 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4794 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4795 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4796 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4797 } 4798 } 4799 } 4800 } 4801 4802 // If we have "setcc X, C0", check to see if we can shrink the immediate 4803 // by changing cc. 4804 // TODO: Support this for vectors after legalize ops. 4805 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4806 // SETUGT X, SINTMAX -> SETLT X, 0 4807 // SETUGE X, SINTMIN -> SETLT X, 0 4808 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4809 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4810 return DAG.getSetCC(dl, VT, N0, 4811 DAG.getConstant(0, dl, N1.getValueType()), 4812 ISD::SETLT); 4813 4814 // SETULT X, SINTMIN -> SETGT X, -1 4815 // SETULE X, SINTMAX -> SETGT X, -1 4816 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4817 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4818 return DAG.getSetCC(dl, VT, N0, 4819 DAG.getAllOnesConstant(dl, N1.getValueType()), 4820 ISD::SETGT); 4821 } 4822 } 4823 4824 // Back to non-vector simplifications. 4825 // TODO: Can we do these for vector splats? 4826 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4828 const APInt &C1 = N1C->getAPIntValue(); 4829 EVT ShValTy = N0.getValueType(); 4830 4831 // Fold bit comparisons when we can. This will result in an 4832 // incorrect value when boolean false is negative one, unless 4833 // the bitsize is 1 in which case the false value is the same 4834 // in practice regardless of the representation. 4835 if ((VT.getSizeInBits() == 1 || 4836 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4837 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4838 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4839 N0.getOpcode() == ISD::AND) { 4840 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4841 EVT ShiftTy = 4842 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4843 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4844 // Perform the xform if the AND RHS is a single bit. 4845 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4846 if (AndRHS->getAPIntValue().isPowerOf2() && 4847 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4848 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4849 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4850 DAG.getConstant(ShCt, dl, ShiftTy))); 4851 } 4852 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4853 // (X & 8) == 8 --> (X & 8) >> 3 4854 // Perform the xform if C1 is a single bit. 4855 unsigned ShCt = C1.logBase2(); 4856 if (C1.isPowerOf2() && 4857 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4858 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4859 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4860 DAG.getConstant(ShCt, dl, ShiftTy))); 4861 } 4862 } 4863 } 4864 } 4865 4866 if (C1.getMinSignedBits() <= 64 && 4867 !isLegalICmpImmediate(C1.getSExtValue())) { 4868 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4869 // (X & -256) == 256 -> (X >> 8) == 1 4870 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4871 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4872 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4873 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4874 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4875 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4876 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4877 SDValue Shift = 4878 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4879 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4880 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4881 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4882 } 4883 } 4884 } 4885 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4886 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4887 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4888 // X < 0x100000000 -> (X >> 32) < 1 4889 // X >= 0x100000000 -> (X >> 32) >= 1 4890 // X <= 0x0ffffffff -> (X >> 32) < 1 4891 // X > 0x0ffffffff -> (X >> 32) >= 1 4892 unsigned ShiftBits; 4893 APInt NewC = C1; 4894 ISD::CondCode NewCond = Cond; 4895 if (AdjOne) { 4896 ShiftBits = C1.countTrailingOnes(); 4897 NewC = NewC + 1; 4898 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4899 } else { 4900 ShiftBits = C1.countTrailingZeros(); 4901 } 4902 NewC.lshrInPlace(ShiftBits); 4903 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4904 isLegalICmpImmediate(NewC.getSExtValue()) && 4905 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4906 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4907 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4908 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4909 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4910 } 4911 } 4912 } 4913 } 4914 4915 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4916 auto *CFP = cast<ConstantFPSDNode>(N1); 4917 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4918 4919 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4920 // constant if knowing that the operand is non-nan is enough. We prefer to 4921 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4922 // materialize 0.0. 4923 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4924 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4925 4926 // setcc (fneg x), C -> setcc swap(pred) x, -C 4927 if (N0.getOpcode() == ISD::FNEG) { 4928 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4929 if (DCI.isBeforeLegalizeOps() || 4930 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4931 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4932 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4933 } 4934 } 4935 4936 // If the condition is not legal, see if we can find an equivalent one 4937 // which is legal. 4938 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4939 // If the comparison was an awkward floating-point == or != and one of 4940 // the comparison operands is infinity or negative infinity, convert the 4941 // condition to a less-awkward <= or >=. 4942 if (CFP->getValueAPF().isInfinity()) { 4943 bool IsNegInf = CFP->getValueAPF().isNegative(); 4944 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4945 switch (Cond) { 4946 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4947 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4948 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4949 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4950 default: break; 4951 } 4952 if (NewCond != ISD::SETCC_INVALID && 4953 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4954 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4955 } 4956 } 4957 } 4958 4959 if (N0 == N1) { 4960 // The sext(setcc()) => setcc() optimization relies on the appropriate 4961 // constant being emitted. 4962 assert(!N0.getValueType().isInteger() && 4963 "Integer types should be handled by FoldSetCC"); 4964 4965 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4966 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4967 if (UOF == 2) // FP operators that are undefined on NaNs. 4968 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4969 if (UOF == unsigned(EqTrue)) 4970 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4971 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4972 // if it is not already. 4973 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4974 if (NewCond != Cond && 4975 (DCI.isBeforeLegalizeOps() || 4976 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4977 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4978 } 4979 4980 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4981 N0.getValueType().isInteger()) { 4982 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4983 N0.getOpcode() == ISD::XOR) { 4984 // Simplify (X+Y) == (X+Z) --> Y == Z 4985 if (N0.getOpcode() == N1.getOpcode()) { 4986 if (N0.getOperand(0) == N1.getOperand(0)) 4987 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4988 if (N0.getOperand(1) == N1.getOperand(1)) 4989 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4990 if (isCommutativeBinOp(N0.getOpcode())) { 4991 // If X op Y == Y op X, try other combinations. 4992 if (N0.getOperand(0) == N1.getOperand(1)) 4993 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4994 Cond); 4995 if (N0.getOperand(1) == N1.getOperand(0)) 4996 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4997 Cond); 4998 } 4999 } 5000 5001 // If RHS is a legal immediate value for a compare instruction, we need 5002 // to be careful about increasing register pressure needlessly. 5003 bool LegalRHSImm = false; 5004 5005 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5006 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5007 // Turn (X+C1) == C2 --> X == C2-C1 5008 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5009 return DAG.getSetCC( 5010 dl, VT, N0.getOperand(0), 5011 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5012 dl, N0.getValueType()), 5013 Cond); 5014 5015 // Turn (X^C1) == C2 --> X == C1^C2 5016 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5017 return DAG.getSetCC( 5018 dl, VT, N0.getOperand(0), 5019 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5020 dl, N0.getValueType()), 5021 Cond); 5022 } 5023 5024 // Turn (C1-X) == C2 --> X == C1-C2 5025 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5026 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5027 return DAG.getSetCC( 5028 dl, VT, N0.getOperand(1), 5029 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5030 dl, N0.getValueType()), 5031 Cond); 5032 5033 // Could RHSC fold directly into a compare? 5034 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5035 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5036 } 5037 5038 // (X+Y) == X --> Y == 0 and similar folds. 5039 // Don't do this if X is an immediate that can fold into a cmp 5040 // instruction and X+Y has other uses. It could be an induction variable 5041 // chain, and the transform would increase register pressure. 5042 if (!LegalRHSImm || N0.hasOneUse()) 5043 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5044 return V; 5045 } 5046 5047 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5048 N1.getOpcode() == ISD::XOR) 5049 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5050 return V; 5051 5052 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5053 return V; 5054 } 5055 5056 // Fold remainder of division by a constant. 5057 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5058 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5059 // When division is cheap or optimizing for minimum size, 5060 // fall through to DIVREM creation by skipping this fold. 5061 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5062 if (N0.getOpcode() == ISD::UREM) { 5063 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5064 return Folded; 5065 } else if (N0.getOpcode() == ISD::SREM) { 5066 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5067 return Folded; 5068 } 5069 } 5070 } 5071 5072 // Fold away ALL boolean setcc's. 5073 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5074 SDValue Temp; 5075 switch (Cond) { 5076 default: llvm_unreachable("Unknown integer setcc!"); 5077 case ISD::SETEQ: // X == Y -> ~(X^Y) 5078 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5079 N0 = DAG.getNOT(dl, Temp, OpVT); 5080 if (!DCI.isCalledByLegalizer()) 5081 DCI.AddToWorklist(Temp.getNode()); 5082 break; 5083 case ISD::SETNE: // X != Y --> (X^Y) 5084 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5085 break; 5086 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5087 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5088 Temp = DAG.getNOT(dl, N0, OpVT); 5089 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5090 if (!DCI.isCalledByLegalizer()) 5091 DCI.AddToWorklist(Temp.getNode()); 5092 break; 5093 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5094 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5095 Temp = DAG.getNOT(dl, N1, OpVT); 5096 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5097 if (!DCI.isCalledByLegalizer()) 5098 DCI.AddToWorklist(Temp.getNode()); 5099 break; 5100 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5101 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5102 Temp = DAG.getNOT(dl, N0, OpVT); 5103 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5104 if (!DCI.isCalledByLegalizer()) 5105 DCI.AddToWorklist(Temp.getNode()); 5106 break; 5107 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5108 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5109 Temp = DAG.getNOT(dl, N1, OpVT); 5110 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5111 break; 5112 } 5113 if (VT.getScalarType() != MVT::i1) { 5114 if (!DCI.isCalledByLegalizer()) 5115 DCI.AddToWorklist(N0.getNode()); 5116 // FIXME: If running after legalize, we probably can't do this. 5117 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5118 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5119 } 5120 return N0; 5121 } 5122 5123 // Could not fold it. 5124 return SDValue(); 5125 } 5126 5127 /// Returns true (and the GlobalValue and the offset) if the node is a 5128 /// GlobalAddress + offset. 5129 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5130 int64_t &Offset) const { 5131 5132 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5133 5134 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5135 GA = GASD->getGlobal(); 5136 Offset += GASD->getOffset(); 5137 return true; 5138 } 5139 5140 if (N->getOpcode() == ISD::ADD) { 5141 SDValue N1 = N->getOperand(0); 5142 SDValue N2 = N->getOperand(1); 5143 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5144 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5145 Offset += V->getSExtValue(); 5146 return true; 5147 } 5148 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5149 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5150 Offset += V->getSExtValue(); 5151 return true; 5152 } 5153 } 5154 } 5155 5156 return false; 5157 } 5158 5159 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5160 DAGCombinerInfo &DCI) const { 5161 // Default implementation: no optimization. 5162 return SDValue(); 5163 } 5164 5165 //===----------------------------------------------------------------------===// 5166 // Inline Assembler Implementation Methods 5167 //===----------------------------------------------------------------------===// 5168 5169 TargetLowering::ConstraintType 5170 TargetLowering::getConstraintType(StringRef Constraint) const { 5171 unsigned S = Constraint.size(); 5172 5173 if (S == 1) { 5174 switch (Constraint[0]) { 5175 default: break; 5176 case 'r': 5177 return C_RegisterClass; 5178 case 'm': // memory 5179 case 'o': // offsetable 5180 case 'V': // not offsetable 5181 return C_Memory; 5182 case 'p': // Address. 5183 return C_Address; 5184 case 'n': // Simple Integer 5185 case 'E': // Floating Point Constant 5186 case 'F': // Floating Point Constant 5187 return C_Immediate; 5188 case 'i': // Simple Integer or Relocatable Constant 5189 case 's': // Relocatable Constant 5190 case 'X': // Allow ANY value. 5191 case 'I': // Target registers. 5192 case 'J': 5193 case 'K': 5194 case 'L': 5195 case 'M': 5196 case 'N': 5197 case 'O': 5198 case 'P': 5199 case '<': 5200 case '>': 5201 return C_Other; 5202 } 5203 } 5204 5205 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5206 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5207 return C_Memory; 5208 return C_Register; 5209 } 5210 return C_Unknown; 5211 } 5212 5213 /// Try to replace an X constraint, which matches anything, with another that 5214 /// has more specific requirements based on the type of the corresponding 5215 /// operand. 5216 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5217 if (ConstraintVT.isInteger()) 5218 return "r"; 5219 if (ConstraintVT.isFloatingPoint()) 5220 return "f"; // works for many targets 5221 return nullptr; 5222 } 5223 5224 SDValue TargetLowering::LowerAsmOutputForConstraint( 5225 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5226 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5227 return SDValue(); 5228 } 5229 5230 /// Lower the specified operand into the Ops vector. 5231 /// If it is invalid, don't add anything to Ops. 5232 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5233 std::string &Constraint, 5234 std::vector<SDValue> &Ops, 5235 SelectionDAG &DAG) const { 5236 5237 if (Constraint.length() > 1) return; 5238 5239 char ConstraintLetter = Constraint[0]; 5240 switch (ConstraintLetter) { 5241 default: break; 5242 case 'X': // Allows any operand 5243 case 'i': // Simple Integer or Relocatable Constant 5244 case 'n': // Simple Integer 5245 case 's': { // Relocatable Constant 5246 5247 ConstantSDNode *C; 5248 uint64_t Offset = 0; 5249 5250 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5251 // etc., since getelementpointer is variadic. We can't use 5252 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5253 // while in this case the GA may be furthest from the root node which is 5254 // likely an ISD::ADD. 5255 while (true) { 5256 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5257 // gcc prints these as sign extended. Sign extend value to 64 bits 5258 // now; without this it would get ZExt'd later in 5259 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5260 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5261 BooleanContent BCont = getBooleanContents(MVT::i64); 5262 ISD::NodeType ExtOpc = 5263 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5264 int64_t ExtVal = 5265 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5266 Ops.push_back( 5267 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5268 return; 5269 } 5270 if (ConstraintLetter != 'n') { 5271 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5272 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5273 GA->getValueType(0), 5274 Offset + GA->getOffset())); 5275 return; 5276 } 5277 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5278 Ops.push_back(DAG.getTargetBlockAddress( 5279 BA->getBlockAddress(), BA->getValueType(0), 5280 Offset + BA->getOffset(), BA->getTargetFlags())); 5281 return; 5282 } 5283 if (isa<BasicBlockSDNode>(Op)) { 5284 Ops.push_back(Op); 5285 return; 5286 } 5287 } 5288 const unsigned OpCode = Op.getOpcode(); 5289 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5290 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5291 Op = Op.getOperand(1); 5292 // Subtraction is not commutative. 5293 else if (OpCode == ISD::ADD && 5294 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5295 Op = Op.getOperand(0); 5296 else 5297 return; 5298 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5299 continue; 5300 } 5301 return; 5302 } 5303 break; 5304 } 5305 } 5306 } 5307 5308 void TargetLowering::CollectTargetIntrinsicOperands(const CallInst &I, 5309 SmallVectorImpl<SDValue> &Ops, 5310 SelectionDAG &DAG) const { 5311 return; 5312 } 5313 5314 std::pair<unsigned, const TargetRegisterClass *> 5315 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5316 StringRef Constraint, 5317 MVT VT) const { 5318 if (Constraint.empty() || Constraint[0] != '{') 5319 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5320 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5321 5322 // Remove the braces from around the name. 5323 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5324 5325 std::pair<unsigned, const TargetRegisterClass *> R = 5326 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5327 5328 // Figure out which register class contains this reg. 5329 for (const TargetRegisterClass *RC : RI->regclasses()) { 5330 // If none of the value types for this register class are valid, we 5331 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5332 if (!isLegalRC(*RI, *RC)) 5333 continue; 5334 5335 for (const MCPhysReg &PR : *RC) { 5336 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5337 std::pair<unsigned, const TargetRegisterClass *> S = 5338 std::make_pair(PR, RC); 5339 5340 // If this register class has the requested value type, return it, 5341 // otherwise keep searching and return the first class found 5342 // if no other is found which explicitly has the requested type. 5343 if (RI->isTypeLegalForClass(*RC, VT)) 5344 return S; 5345 if (!R.second) 5346 R = S; 5347 } 5348 } 5349 } 5350 5351 return R; 5352 } 5353 5354 //===----------------------------------------------------------------------===// 5355 // Constraint Selection. 5356 5357 /// Return true of this is an input operand that is a matching constraint like 5358 /// "4". 5359 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5360 assert(!ConstraintCode.empty() && "No known constraint!"); 5361 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5362 } 5363 5364 /// If this is an input matching constraint, this method returns the output 5365 /// operand it matches. 5366 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5367 assert(!ConstraintCode.empty() && "No known constraint!"); 5368 return atoi(ConstraintCode.c_str()); 5369 } 5370 5371 /// Split up the constraint string from the inline assembly value into the 5372 /// specific constraints and their prefixes, and also tie in the associated 5373 /// operand values. 5374 /// If this returns an empty vector, and if the constraint string itself 5375 /// isn't empty, there was an error parsing. 5376 TargetLowering::AsmOperandInfoVector 5377 TargetLowering::ParseConstraints(const DataLayout &DL, 5378 const TargetRegisterInfo *TRI, 5379 const CallBase &Call) const { 5380 /// Information about all of the constraints. 5381 AsmOperandInfoVector ConstraintOperands; 5382 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5383 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5384 5385 // Do a prepass over the constraints, canonicalizing them, and building up the 5386 // ConstraintOperands list. 5387 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5388 unsigned ResNo = 0; // ResNo - The result number of the next output. 5389 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5390 5391 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5392 ConstraintOperands.emplace_back(std::move(CI)); 5393 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5394 5395 // Update multiple alternative constraint count. 5396 if (OpInfo.multipleAlternatives.size() > maCount) 5397 maCount = OpInfo.multipleAlternatives.size(); 5398 5399 OpInfo.ConstraintVT = MVT::Other; 5400 5401 // Compute the value type for each operand. 5402 switch (OpInfo.Type) { 5403 case InlineAsm::isOutput: 5404 // Indirect outputs just consume an argument. 5405 if (OpInfo.isIndirect) { 5406 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5407 break; 5408 } 5409 5410 // The return value of the call is this value. As such, there is no 5411 // corresponding argument. 5412 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5413 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5414 OpInfo.ConstraintVT = 5415 getSimpleValueType(DL, STy->getElementType(ResNo)); 5416 } else { 5417 assert(ResNo == 0 && "Asm only has one result!"); 5418 OpInfo.ConstraintVT = 5419 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5420 } 5421 ++ResNo; 5422 break; 5423 case InlineAsm::isInput: 5424 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5425 break; 5426 case InlineAsm::isLabel: 5427 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5428 ++LabelNo; 5429 continue; 5430 case InlineAsm::isClobber: 5431 // Nothing to do. 5432 break; 5433 } 5434 5435 if (OpInfo.CallOperandVal) { 5436 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5437 if (OpInfo.isIndirect) { 5438 OpTy = Call.getParamElementType(ArgNo); 5439 assert(OpTy && "Indirect operand must have elementtype attribute"); 5440 } 5441 5442 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5443 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5444 if (STy->getNumElements() == 1) 5445 OpTy = STy->getElementType(0); 5446 5447 // If OpTy is not a single value, it may be a struct/union that we 5448 // can tile with integers. 5449 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5450 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5451 switch (BitSize) { 5452 default: break; 5453 case 1: 5454 case 8: 5455 case 16: 5456 case 32: 5457 case 64: 5458 case 128: 5459 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5460 break; 5461 } 5462 } 5463 5464 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5465 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5466 ArgNo++; 5467 } 5468 } 5469 5470 // If we have multiple alternative constraints, select the best alternative. 5471 if (!ConstraintOperands.empty()) { 5472 if (maCount) { 5473 unsigned bestMAIndex = 0; 5474 int bestWeight = -1; 5475 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5476 int weight = -1; 5477 unsigned maIndex; 5478 // Compute the sums of the weights for each alternative, keeping track 5479 // of the best (highest weight) one so far. 5480 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5481 int weightSum = 0; 5482 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5483 cIndex != eIndex; ++cIndex) { 5484 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5485 if (OpInfo.Type == InlineAsm::isClobber) 5486 continue; 5487 5488 // If this is an output operand with a matching input operand, 5489 // look up the matching input. If their types mismatch, e.g. one 5490 // is an integer, the other is floating point, or their sizes are 5491 // different, flag it as an maCantMatch. 5492 if (OpInfo.hasMatchingInput()) { 5493 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5494 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5495 if ((OpInfo.ConstraintVT.isInteger() != 5496 Input.ConstraintVT.isInteger()) || 5497 (OpInfo.ConstraintVT.getSizeInBits() != 5498 Input.ConstraintVT.getSizeInBits())) { 5499 weightSum = -1; // Can't match. 5500 break; 5501 } 5502 } 5503 } 5504 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5505 if (weight == -1) { 5506 weightSum = -1; 5507 break; 5508 } 5509 weightSum += weight; 5510 } 5511 // Update best. 5512 if (weightSum > bestWeight) { 5513 bestWeight = weightSum; 5514 bestMAIndex = maIndex; 5515 } 5516 } 5517 5518 // Now select chosen alternative in each constraint. 5519 for (AsmOperandInfo &cInfo : ConstraintOperands) 5520 if (cInfo.Type != InlineAsm::isClobber) 5521 cInfo.selectAlternative(bestMAIndex); 5522 } 5523 } 5524 5525 // Check and hook up tied operands, choose constraint code to use. 5526 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5527 cIndex != eIndex; ++cIndex) { 5528 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5529 5530 // If this is an output operand with a matching input operand, look up the 5531 // matching input. If their types mismatch, e.g. one is an integer, the 5532 // other is floating point, or their sizes are different, flag it as an 5533 // error. 5534 if (OpInfo.hasMatchingInput()) { 5535 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5536 5537 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5538 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5539 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5540 OpInfo.ConstraintVT); 5541 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5542 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5543 Input.ConstraintVT); 5544 if ((OpInfo.ConstraintVT.isInteger() != 5545 Input.ConstraintVT.isInteger()) || 5546 (MatchRC.second != InputRC.second)) { 5547 report_fatal_error("Unsupported asm: input constraint" 5548 " with a matching output constraint of" 5549 " incompatible type!"); 5550 } 5551 } 5552 } 5553 } 5554 5555 return ConstraintOperands; 5556 } 5557 5558 /// Return an integer indicating how general CT is. 5559 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5560 switch (CT) { 5561 case TargetLowering::C_Immediate: 5562 case TargetLowering::C_Other: 5563 case TargetLowering::C_Unknown: 5564 return 0; 5565 case TargetLowering::C_Register: 5566 return 1; 5567 case TargetLowering::C_RegisterClass: 5568 return 2; 5569 case TargetLowering::C_Memory: 5570 case TargetLowering::C_Address: 5571 return 3; 5572 } 5573 llvm_unreachable("Invalid constraint type"); 5574 } 5575 5576 /// Examine constraint type and operand type and determine a weight value. 5577 /// This object must already have been set up with the operand type 5578 /// and the current alternative constraint selected. 5579 TargetLowering::ConstraintWeight 5580 TargetLowering::getMultipleConstraintMatchWeight( 5581 AsmOperandInfo &info, int maIndex) const { 5582 InlineAsm::ConstraintCodeVector *rCodes; 5583 if (maIndex >= (int)info.multipleAlternatives.size()) 5584 rCodes = &info.Codes; 5585 else 5586 rCodes = &info.multipleAlternatives[maIndex].Codes; 5587 ConstraintWeight BestWeight = CW_Invalid; 5588 5589 // Loop over the options, keeping track of the most general one. 5590 for (const std::string &rCode : *rCodes) { 5591 ConstraintWeight weight = 5592 getSingleConstraintMatchWeight(info, rCode.c_str()); 5593 if (weight > BestWeight) 5594 BestWeight = weight; 5595 } 5596 5597 return BestWeight; 5598 } 5599 5600 /// Examine constraint type and operand type and determine a weight value. 5601 /// This object must already have been set up with the operand type 5602 /// and the current alternative constraint selected. 5603 TargetLowering::ConstraintWeight 5604 TargetLowering::getSingleConstraintMatchWeight( 5605 AsmOperandInfo &info, const char *constraint) const { 5606 ConstraintWeight weight = CW_Invalid; 5607 Value *CallOperandVal = info.CallOperandVal; 5608 // If we don't have a value, we can't do a match, 5609 // but allow it at the lowest weight. 5610 if (!CallOperandVal) 5611 return CW_Default; 5612 // Look at the constraint type. 5613 switch (*constraint) { 5614 case 'i': // immediate integer. 5615 case 'n': // immediate integer with a known value. 5616 if (isa<ConstantInt>(CallOperandVal)) 5617 weight = CW_Constant; 5618 break; 5619 case 's': // non-explicit intregal immediate. 5620 if (isa<GlobalValue>(CallOperandVal)) 5621 weight = CW_Constant; 5622 break; 5623 case 'E': // immediate float if host format. 5624 case 'F': // immediate float. 5625 if (isa<ConstantFP>(CallOperandVal)) 5626 weight = CW_Constant; 5627 break; 5628 case '<': // memory operand with autodecrement. 5629 case '>': // memory operand with autoincrement. 5630 case 'm': // memory operand. 5631 case 'o': // offsettable memory operand 5632 case 'V': // non-offsettable memory operand 5633 weight = CW_Memory; 5634 break; 5635 case 'r': // general register. 5636 case 'g': // general register, memory operand or immediate integer. 5637 // note: Clang converts "g" to "imr". 5638 if (CallOperandVal->getType()->isIntegerTy()) 5639 weight = CW_Register; 5640 break; 5641 case 'X': // any operand. 5642 default: 5643 weight = CW_Default; 5644 break; 5645 } 5646 return weight; 5647 } 5648 5649 /// If there are multiple different constraints that we could pick for this 5650 /// operand (e.g. "imr") try to pick the 'best' one. 5651 /// This is somewhat tricky: constraints fall into four classes: 5652 /// Other -> immediates and magic values 5653 /// Register -> one specific register 5654 /// RegisterClass -> a group of regs 5655 /// Memory -> memory 5656 /// Ideally, we would pick the most specific constraint possible: if we have 5657 /// something that fits into a register, we would pick it. The problem here 5658 /// is that if we have something that could either be in a register or in 5659 /// memory that use of the register could cause selection of *other* 5660 /// operands to fail: they might only succeed if we pick memory. Because of 5661 /// this the heuristic we use is: 5662 /// 5663 /// 1) If there is an 'other' constraint, and if the operand is valid for 5664 /// that constraint, use it. This makes us take advantage of 'i' 5665 /// constraints when available. 5666 /// 2) Otherwise, pick the most general constraint present. This prefers 5667 /// 'm' over 'r', for example. 5668 /// 5669 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5670 const TargetLowering &TLI, 5671 SDValue Op, SelectionDAG *DAG) { 5672 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5673 unsigned BestIdx = 0; 5674 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5675 int BestGenerality = -1; 5676 5677 // Loop over the options, keeping track of the most general one. 5678 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5679 TargetLowering::ConstraintType CType = 5680 TLI.getConstraintType(OpInfo.Codes[i]); 5681 5682 // Indirect 'other' or 'immediate' constraints are not allowed. 5683 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5684 CType == TargetLowering::C_Register || 5685 CType == TargetLowering::C_RegisterClass)) 5686 continue; 5687 5688 // If this is an 'other' or 'immediate' constraint, see if the operand is 5689 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5690 // the operand is an integer in the range [0..31] we want to use I (saving a 5691 // load of a register), otherwise we must use 'r'. 5692 if ((CType == TargetLowering::C_Other || 5693 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5694 assert(OpInfo.Codes[i].size() == 1 && 5695 "Unhandled multi-letter 'other' constraint"); 5696 std::vector<SDValue> ResultOps; 5697 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5698 ResultOps, *DAG); 5699 if (!ResultOps.empty()) { 5700 BestType = CType; 5701 BestIdx = i; 5702 break; 5703 } 5704 } 5705 5706 // Things with matching constraints can only be registers, per gcc 5707 // documentation. This mainly affects "g" constraints. 5708 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5709 continue; 5710 5711 // This constraint letter is more general than the previous one, use it. 5712 int Generality = getConstraintGenerality(CType); 5713 if (Generality > BestGenerality) { 5714 BestType = CType; 5715 BestIdx = i; 5716 BestGenerality = Generality; 5717 } 5718 } 5719 5720 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5721 OpInfo.ConstraintType = BestType; 5722 } 5723 5724 /// Determines the constraint code and constraint type to use for the specific 5725 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5726 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5727 SDValue Op, 5728 SelectionDAG *DAG) const { 5729 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5730 5731 // Single-letter constraints ('r') are very common. 5732 if (OpInfo.Codes.size() == 1) { 5733 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5734 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5735 } else { 5736 ChooseConstraint(OpInfo, *this, Op, DAG); 5737 } 5738 5739 // 'X' matches anything. 5740 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5741 // Constants are handled elsewhere. For Functions, the type here is the 5742 // type of the result, which is not what we want to look at; leave them 5743 // alone. 5744 Value *v = OpInfo.CallOperandVal; 5745 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5746 return; 5747 } 5748 5749 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5750 OpInfo.ConstraintCode = "i"; 5751 return; 5752 } 5753 5754 // Otherwise, try to resolve it to something we know about by looking at 5755 // the actual operand type. 5756 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5757 OpInfo.ConstraintCode = Repl; 5758 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5759 } 5760 } 5761 } 5762 5763 /// Given an exact SDIV by a constant, create a multiplication 5764 /// with the multiplicative inverse of the constant. 5765 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5766 const SDLoc &dl, SelectionDAG &DAG, 5767 SmallVectorImpl<SDNode *> &Created) { 5768 SDValue Op0 = N->getOperand(0); 5769 SDValue Op1 = N->getOperand(1); 5770 EVT VT = N->getValueType(0); 5771 EVT SVT = VT.getScalarType(); 5772 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5773 EVT ShSVT = ShVT.getScalarType(); 5774 5775 bool UseSRA = false; 5776 SmallVector<SDValue, 16> Shifts, Factors; 5777 5778 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5779 if (C->isZero()) 5780 return false; 5781 APInt Divisor = C->getAPIntValue(); 5782 unsigned Shift = Divisor.countTrailingZeros(); 5783 if (Shift) { 5784 Divisor.ashrInPlace(Shift); 5785 UseSRA = true; 5786 } 5787 // Calculate the multiplicative inverse, using Newton's method. 5788 APInt t; 5789 APInt Factor = Divisor; 5790 while ((t = Divisor * Factor) != 1) 5791 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5792 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5793 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5794 return true; 5795 }; 5796 5797 // Collect all magic values from the build vector. 5798 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5799 return SDValue(); 5800 5801 SDValue Shift, Factor; 5802 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5803 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5804 Factor = DAG.getBuildVector(VT, dl, Factors); 5805 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5806 assert(Shifts.size() == 1 && Factors.size() == 1 && 5807 "Expected matchUnaryPredicate to return one element for scalable " 5808 "vectors"); 5809 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5810 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5811 } else { 5812 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5813 Shift = Shifts[0]; 5814 Factor = Factors[0]; 5815 } 5816 5817 SDValue Res = Op0; 5818 5819 // Shift the value upfront if it is even, so the LSB is one. 5820 if (UseSRA) { 5821 // TODO: For UDIV use SRL instead of SRA. 5822 SDNodeFlags Flags; 5823 Flags.setExact(true); 5824 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5825 Created.push_back(Res.getNode()); 5826 } 5827 5828 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5829 } 5830 5831 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5832 SelectionDAG &DAG, 5833 SmallVectorImpl<SDNode *> &Created) const { 5834 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5836 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5837 return SDValue(N, 0); // Lower SDIV as SDIV 5838 return SDValue(); 5839 } 5840 5841 SDValue 5842 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5843 SelectionDAG &DAG, 5844 SmallVectorImpl<SDNode *> &Created) const { 5845 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5847 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5848 return SDValue(N, 0); // Lower SREM as SREM 5849 return SDValue(); 5850 } 5851 5852 /// Given an ISD::SDIV node expressing a divide by constant, 5853 /// return a DAG expression to select that will generate the same value by 5854 /// multiplying by a magic number. 5855 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5856 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5857 bool IsAfterLegalization, 5858 SmallVectorImpl<SDNode *> &Created) const { 5859 SDLoc dl(N); 5860 EVT VT = N->getValueType(0); 5861 EVT SVT = VT.getScalarType(); 5862 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5863 EVT ShSVT = ShVT.getScalarType(); 5864 unsigned EltBits = VT.getScalarSizeInBits(); 5865 EVT MulVT; 5866 5867 // Check to see if we can do this. 5868 // FIXME: We should be more aggressive here. 5869 if (!isTypeLegal(VT)) { 5870 // Limit this to simple scalars for now. 5871 if (VT.isVector() || !VT.isSimple()) 5872 return SDValue(); 5873 5874 // If this type will be promoted to a large enough type with a legal 5875 // multiply operation, we can go ahead and do this transform. 5876 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5877 return SDValue(); 5878 5879 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5880 if (MulVT.getSizeInBits() < (2 * EltBits) || 5881 !isOperationLegal(ISD::MUL, MulVT)) 5882 return SDValue(); 5883 } 5884 5885 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5886 if (N->getFlags().hasExact()) 5887 return BuildExactSDIV(*this, N, dl, DAG, Created); 5888 5889 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5890 5891 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5892 if (C->isZero()) 5893 return false; 5894 5895 const APInt &Divisor = C->getAPIntValue(); 5896 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5897 int NumeratorFactor = 0; 5898 int ShiftMask = -1; 5899 5900 if (Divisor.isOne() || Divisor.isAllOnes()) { 5901 // If d is +1/-1, we just multiply the numerator by +1/-1. 5902 NumeratorFactor = Divisor.getSExtValue(); 5903 magics.Magic = 0; 5904 magics.ShiftAmount = 0; 5905 ShiftMask = 0; 5906 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5907 // If d > 0 and m < 0, add the numerator. 5908 NumeratorFactor = 1; 5909 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5910 // If d < 0 and m > 0, subtract the numerator. 5911 NumeratorFactor = -1; 5912 } 5913 5914 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5915 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5916 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5917 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5918 return true; 5919 }; 5920 5921 SDValue N0 = N->getOperand(0); 5922 SDValue N1 = N->getOperand(1); 5923 5924 // Collect the shifts / magic values from each element. 5925 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5926 return SDValue(); 5927 5928 SDValue MagicFactor, Factor, Shift, ShiftMask; 5929 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5930 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5931 Factor = DAG.getBuildVector(VT, dl, Factors); 5932 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5933 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5934 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5935 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5936 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5937 "Expected matchUnaryPredicate to return one element for scalable " 5938 "vectors"); 5939 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5940 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5941 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5942 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5943 } else { 5944 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5945 MagicFactor = MagicFactors[0]; 5946 Factor = Factors[0]; 5947 Shift = Shifts[0]; 5948 ShiftMask = ShiftMasks[0]; 5949 } 5950 5951 // Multiply the numerator (operand 0) by the magic value. 5952 // FIXME: We should support doing a MUL in a wider type. 5953 auto GetMULHS = [&](SDValue X, SDValue Y) { 5954 // If the type isn't legal, use a wider mul of the the type calculated 5955 // earlier. 5956 if (!isTypeLegal(VT)) { 5957 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5958 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5959 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5960 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5961 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5962 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5963 } 5964 5965 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5966 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5967 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5968 SDValue LoHi = 5969 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5970 return SDValue(LoHi.getNode(), 1); 5971 } 5972 return SDValue(); 5973 }; 5974 5975 SDValue Q = GetMULHS(N0, MagicFactor); 5976 if (!Q) 5977 return SDValue(); 5978 5979 Created.push_back(Q.getNode()); 5980 5981 // (Optionally) Add/subtract the numerator using Factor. 5982 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5983 Created.push_back(Factor.getNode()); 5984 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5985 Created.push_back(Q.getNode()); 5986 5987 // Shift right algebraic by shift value. 5988 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5989 Created.push_back(Q.getNode()); 5990 5991 // Extract the sign bit, mask it and add it to the quotient. 5992 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5993 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5994 Created.push_back(T.getNode()); 5995 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5996 Created.push_back(T.getNode()); 5997 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5998 } 5999 6000 /// Given an ISD::UDIV node expressing a divide by constant, 6001 /// return a DAG expression to select that will generate the same value by 6002 /// multiplying by a magic number. 6003 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6004 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6005 bool IsAfterLegalization, 6006 SmallVectorImpl<SDNode *> &Created) const { 6007 SDLoc dl(N); 6008 EVT VT = N->getValueType(0); 6009 EVT SVT = VT.getScalarType(); 6010 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6011 EVT ShSVT = ShVT.getScalarType(); 6012 unsigned EltBits = VT.getScalarSizeInBits(); 6013 EVT MulVT; 6014 6015 // Check to see if we can do this. 6016 // FIXME: We should be more aggressive here. 6017 if (!isTypeLegal(VT)) { 6018 // Limit this to simple scalars for now. 6019 if (VT.isVector() || !VT.isSimple()) 6020 return SDValue(); 6021 6022 // If this type will be promoted to a large enough type with a legal 6023 // multiply operation, we can go ahead and do this transform. 6024 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6025 return SDValue(); 6026 6027 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6028 if (MulVT.getSizeInBits() < (2 * EltBits) || 6029 !isOperationLegal(ISD::MUL, MulVT)) 6030 return SDValue(); 6031 } 6032 6033 SDValue N0 = N->getOperand(0); 6034 SDValue N1 = N->getOperand(1); 6035 6036 // Try to use leading zeros of the dividend to reduce the multiplier and 6037 // avoid expensive fixups. 6038 // TODO: Support vectors. 6039 unsigned LeadingZeros = 0; 6040 if (!VT.isVector() && isa<ConstantSDNode>(N1)) { 6041 assert(!isOneConstant(N1) && "Unexpected divisor"); 6042 LeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6043 // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros in 6044 // the dividend exceeds the leading zeros for the divisor. 6045 LeadingZeros = 6046 std::min(LeadingZeros, 6047 cast<ConstantSDNode>(N1)->getAPIntValue().countLeadingZeros()); 6048 } 6049 6050 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6051 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6052 6053 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6054 if (C->isZero()) 6055 return false; 6056 const APInt& Divisor = C->getAPIntValue(); 6057 6058 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6059 6060 // Magic algorithm doesn't work for division by 1. We need to emit a select 6061 // at the end. 6062 if (Divisor.isOne()) { 6063 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6064 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6065 } else { 6066 UnsignedDivisionByConstantInfo magics = 6067 UnsignedDivisionByConstantInfo::get(Divisor, LeadingZeros); 6068 6069 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6070 6071 assert(magics.PreShift < Divisor.getBitWidth() && 6072 "We shouldn't generate an undefined shift!"); 6073 assert(magics.PostShift < Divisor.getBitWidth() && 6074 "We shouldn't generate an undefined shift!"); 6075 assert((!magics.IsAdd || magics.PreShift == 0) && 6076 "Unexpected pre-shift"); 6077 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6078 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6079 NPQFactor = DAG.getConstant( 6080 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6081 : APInt::getZero(EltBits), 6082 dl, SVT); 6083 UseNPQ |= magics.IsAdd; 6084 UsePreShift |= magics.PreShift != 0; 6085 UsePostShift |= magics.PostShift != 0; 6086 } 6087 6088 PreShifts.push_back(PreShift); 6089 MagicFactors.push_back(MagicFactor); 6090 NPQFactors.push_back(NPQFactor); 6091 PostShifts.push_back(PostShift); 6092 return true; 6093 }; 6094 6095 // Collect the shifts/magic values from each element. 6096 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6097 return SDValue(); 6098 6099 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6100 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6101 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6102 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6103 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6104 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6105 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6106 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6107 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6108 "Expected matchUnaryPredicate to return one for scalable vectors"); 6109 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6110 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6111 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6112 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6113 } else { 6114 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6115 PreShift = PreShifts[0]; 6116 MagicFactor = MagicFactors[0]; 6117 PostShift = PostShifts[0]; 6118 } 6119 6120 SDValue Q = N0; 6121 if (UsePreShift) { 6122 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6123 Created.push_back(Q.getNode()); 6124 } 6125 6126 // FIXME: We should support doing a MUL in a wider type. 6127 auto GetMULHU = [&](SDValue X, SDValue Y) { 6128 // If the type isn't legal, use a wider mul of the the type calculated 6129 // earlier. 6130 if (!isTypeLegal(VT)) { 6131 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6132 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6133 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6134 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6135 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6136 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6137 } 6138 6139 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6140 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6141 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6142 SDValue LoHi = 6143 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6144 return SDValue(LoHi.getNode(), 1); 6145 } 6146 return SDValue(); // No mulhu or equivalent 6147 }; 6148 6149 // Multiply the numerator (operand 0) by the magic value. 6150 Q = GetMULHU(Q, MagicFactor); 6151 if (!Q) 6152 return SDValue(); 6153 6154 Created.push_back(Q.getNode()); 6155 6156 if (UseNPQ) { 6157 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6158 Created.push_back(NPQ.getNode()); 6159 6160 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6161 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6162 if (VT.isVector()) 6163 NPQ = GetMULHU(NPQ, NPQFactor); 6164 else 6165 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6166 6167 Created.push_back(NPQ.getNode()); 6168 6169 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6170 Created.push_back(Q.getNode()); 6171 } 6172 6173 if (UsePostShift) { 6174 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6175 Created.push_back(Q.getNode()); 6176 } 6177 6178 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6179 6180 SDValue One = DAG.getConstant(1, dl, VT); 6181 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6182 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6183 } 6184 6185 /// If all values in Values that *don't* match the predicate are same 'splat' 6186 /// value, then replace all values with that splat value. 6187 /// Else, if AlternativeReplacement was provided, then replace all values that 6188 /// do match predicate with AlternativeReplacement value. 6189 static void 6190 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6191 std::function<bool(SDValue)> Predicate, 6192 SDValue AlternativeReplacement = SDValue()) { 6193 SDValue Replacement; 6194 // Is there a value for which the Predicate does *NOT* match? What is it? 6195 auto SplatValue = llvm::find_if_not(Values, Predicate); 6196 if (SplatValue != Values.end()) { 6197 // Does Values consist only of SplatValue's and values matching Predicate? 6198 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6199 return Value == *SplatValue || Predicate(Value); 6200 })) // Then we shall replace values matching predicate with SplatValue. 6201 Replacement = *SplatValue; 6202 } 6203 if (!Replacement) { 6204 // Oops, we did not find the "baseline" splat value. 6205 if (!AlternativeReplacement) 6206 return; // Nothing to do. 6207 // Let's replace with provided value then. 6208 Replacement = AlternativeReplacement; 6209 } 6210 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6211 } 6212 6213 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6214 /// where the divisor is constant and the comparison target is zero, 6215 /// return a DAG expression that will generate the same comparison result 6216 /// using only multiplications, additions and shifts/rotations. 6217 /// Ref: "Hacker's Delight" 10-17. 6218 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6219 SDValue CompTargetNode, 6220 ISD::CondCode Cond, 6221 DAGCombinerInfo &DCI, 6222 const SDLoc &DL) const { 6223 SmallVector<SDNode *, 5> Built; 6224 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6225 DCI, DL, Built)) { 6226 for (SDNode *N : Built) 6227 DCI.AddToWorklist(N); 6228 return Folded; 6229 } 6230 6231 return SDValue(); 6232 } 6233 6234 SDValue 6235 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6236 SDValue CompTargetNode, ISD::CondCode Cond, 6237 DAGCombinerInfo &DCI, const SDLoc &DL, 6238 SmallVectorImpl<SDNode *> &Created) const { 6239 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6240 // - D must be constant, with D = D0 * 2^K where D0 is odd 6241 // - P is the multiplicative inverse of D0 modulo 2^W 6242 // - Q = floor(((2^W) - 1) / D) 6243 // where W is the width of the common type of N and D. 6244 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6245 "Only applicable for (in)equality comparisons."); 6246 6247 SelectionDAG &DAG = DCI.DAG; 6248 6249 EVT VT = REMNode.getValueType(); 6250 EVT SVT = VT.getScalarType(); 6251 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6252 EVT ShSVT = ShVT.getScalarType(); 6253 6254 // If MUL is unavailable, we cannot proceed in any case. 6255 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6256 return SDValue(); 6257 6258 bool ComparingWithAllZeros = true; 6259 bool AllComparisonsWithNonZerosAreTautological = true; 6260 bool HadTautologicalLanes = false; 6261 bool AllLanesAreTautological = true; 6262 bool HadEvenDivisor = false; 6263 bool AllDivisorsArePowerOfTwo = true; 6264 bool HadTautologicalInvertedLanes = false; 6265 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6266 6267 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6268 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6269 if (CDiv->isZero()) 6270 return false; 6271 6272 const APInt &D = CDiv->getAPIntValue(); 6273 const APInt &Cmp = CCmp->getAPIntValue(); 6274 6275 ComparingWithAllZeros &= Cmp.isZero(); 6276 6277 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6278 // if C2 is not less than C1, the comparison is always false. 6279 // But we will only be able to produce the comparison that will give the 6280 // opposive tautological answer. So this lane would need to be fixed up. 6281 bool TautologicalInvertedLane = D.ule(Cmp); 6282 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6283 6284 // If all lanes are tautological (either all divisors are ones, or divisor 6285 // is not greater than the constant we are comparing with), 6286 // we will prefer to avoid the fold. 6287 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6288 HadTautologicalLanes |= TautologicalLane; 6289 AllLanesAreTautological &= TautologicalLane; 6290 6291 // If we are comparing with non-zero, we need'll need to subtract said 6292 // comparison value from the LHS. But there is no point in doing that if 6293 // every lane where we are comparing with non-zero is tautological.. 6294 if (!Cmp.isZero()) 6295 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6296 6297 // Decompose D into D0 * 2^K 6298 unsigned K = D.countTrailingZeros(); 6299 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6300 APInt D0 = D.lshr(K); 6301 6302 // D is even if it has trailing zeros. 6303 HadEvenDivisor |= (K != 0); 6304 // D is a power-of-two if D0 is one. 6305 // If all divisors are power-of-two, we will prefer to avoid the fold. 6306 AllDivisorsArePowerOfTwo &= D0.isOne(); 6307 6308 // P = inv(D0, 2^W) 6309 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6310 unsigned W = D.getBitWidth(); 6311 APInt P = D0.zext(W + 1) 6312 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6313 .trunc(W); 6314 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6315 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6316 6317 // Q = floor((2^W - 1) u/ D) 6318 // R = ((2^W - 1) u% D) 6319 APInt Q, R; 6320 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6321 6322 // If we are comparing with zero, then that comparison constant is okay, 6323 // else it may need to be one less than that. 6324 if (Cmp.ugt(R)) 6325 Q -= 1; 6326 6327 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6328 "We are expecting that K is always less than all-ones for ShSVT"); 6329 6330 // If the lane is tautological the result can be constant-folded. 6331 if (TautologicalLane) { 6332 // Set P and K amount to a bogus values so we can try to splat them. 6333 P = 0; 6334 K = -1; 6335 // And ensure that comparison constant is tautological, 6336 // it will always compare true/false. 6337 Q = -1; 6338 } 6339 6340 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6341 KAmts.push_back( 6342 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6343 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6344 return true; 6345 }; 6346 6347 SDValue N = REMNode.getOperand(0); 6348 SDValue D = REMNode.getOperand(1); 6349 6350 // Collect the values from each element. 6351 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6352 return SDValue(); 6353 6354 // If all lanes are tautological, the result can be constant-folded. 6355 if (AllLanesAreTautological) 6356 return SDValue(); 6357 6358 // If this is a urem by a powers-of-two, avoid the fold since it can be 6359 // best implemented as a bit test. 6360 if (AllDivisorsArePowerOfTwo) 6361 return SDValue(); 6362 6363 SDValue PVal, KVal, QVal; 6364 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6365 if (HadTautologicalLanes) { 6366 // Try to turn PAmts into a splat, since we don't care about the values 6367 // that are currently '0'. If we can't, just keep '0'`s. 6368 turnVectorIntoSplatVector(PAmts, isNullConstant); 6369 // Try to turn KAmts into a splat, since we don't care about the values 6370 // that are currently '-1'. If we can't, change them to '0'`s. 6371 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6372 DAG.getConstant(0, DL, ShSVT)); 6373 } 6374 6375 PVal = DAG.getBuildVector(VT, DL, PAmts); 6376 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6377 QVal = DAG.getBuildVector(VT, DL, QAmts); 6378 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6379 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6380 "Expected matchBinaryPredicate to return one element for " 6381 "SPLAT_VECTORs"); 6382 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6383 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6384 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6385 } else { 6386 PVal = PAmts[0]; 6387 KVal = KAmts[0]; 6388 QVal = QAmts[0]; 6389 } 6390 6391 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6392 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6393 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6394 assert(CompTargetNode.getValueType() == N.getValueType() && 6395 "Expecting that the types on LHS and RHS of comparisons match."); 6396 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6397 } 6398 6399 // (mul N, P) 6400 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6401 Created.push_back(Op0.getNode()); 6402 6403 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6404 // divisors as a performance improvement, since rotating by 0 is a no-op. 6405 if (HadEvenDivisor) { 6406 // We need ROTR to do this. 6407 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6408 return SDValue(); 6409 // UREM: (rotr (mul N, P), K) 6410 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6411 Created.push_back(Op0.getNode()); 6412 } 6413 6414 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6415 SDValue NewCC = 6416 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6417 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6418 if (!HadTautologicalInvertedLanes) 6419 return NewCC; 6420 6421 // If any lanes previously compared always-false, the NewCC will give 6422 // always-true result for them, so we need to fixup those lanes. 6423 // Or the other way around for inequality predicate. 6424 assert(VT.isVector() && "Can/should only get here for vectors."); 6425 Created.push_back(NewCC.getNode()); 6426 6427 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6428 // if C2 is not less than C1, the comparison is always false. 6429 // But we have produced the comparison that will give the 6430 // opposive tautological answer. So these lanes would need to be fixed up. 6431 SDValue TautologicalInvertedChannels = 6432 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6433 Created.push_back(TautologicalInvertedChannels.getNode()); 6434 6435 // NOTE: we avoid letting illegal types through even if we're before legalize 6436 // ops – legalization has a hard time producing good code for this. 6437 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6438 // If we have a vector select, let's replace the comparison results in the 6439 // affected lanes with the correct tautological result. 6440 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6441 DL, SETCCVT, SETCCVT); 6442 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6443 Replacement, NewCC); 6444 } 6445 6446 // Else, we can just invert the comparison result in the appropriate lanes. 6447 // 6448 // NOTE: see the note above VSELECT above. 6449 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6450 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6451 TautologicalInvertedChannels); 6452 6453 return SDValue(); // Don't know how to lower. 6454 } 6455 6456 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6457 /// where the divisor is constant and the comparison target is zero, 6458 /// return a DAG expression that will generate the same comparison result 6459 /// using only multiplications, additions and shifts/rotations. 6460 /// Ref: "Hacker's Delight" 10-17. 6461 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6462 SDValue CompTargetNode, 6463 ISD::CondCode Cond, 6464 DAGCombinerInfo &DCI, 6465 const SDLoc &DL) const { 6466 SmallVector<SDNode *, 7> Built; 6467 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6468 DCI, DL, Built)) { 6469 assert(Built.size() <= 7 && "Max size prediction failed."); 6470 for (SDNode *N : Built) 6471 DCI.AddToWorklist(N); 6472 return Folded; 6473 } 6474 6475 return SDValue(); 6476 } 6477 6478 SDValue 6479 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6480 SDValue CompTargetNode, ISD::CondCode Cond, 6481 DAGCombinerInfo &DCI, const SDLoc &DL, 6482 SmallVectorImpl<SDNode *> &Created) const { 6483 // Fold: 6484 // (seteq/ne (srem N, D), 0) 6485 // To: 6486 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6487 // 6488 // - D must be constant, with D = D0 * 2^K where D0 is odd 6489 // - P is the multiplicative inverse of D0 modulo 2^W 6490 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6491 // - Q = floor((2 * A) / (2^K)) 6492 // where W is the width of the common type of N and D. 6493 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6494 "Only applicable for (in)equality comparisons."); 6495 6496 SelectionDAG &DAG = DCI.DAG; 6497 6498 EVT VT = REMNode.getValueType(); 6499 EVT SVT = VT.getScalarType(); 6500 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6501 EVT ShSVT = ShVT.getScalarType(); 6502 6503 // If we are after ops legalization, and MUL is unavailable, we can not 6504 // proceed. 6505 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6506 return SDValue(); 6507 6508 // TODO: Could support comparing with non-zero too. 6509 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6510 if (!CompTarget || !CompTarget->isZero()) 6511 return SDValue(); 6512 6513 bool HadIntMinDivisor = false; 6514 bool HadOneDivisor = false; 6515 bool AllDivisorsAreOnes = true; 6516 bool HadEvenDivisor = false; 6517 bool NeedToApplyOffset = false; 6518 bool AllDivisorsArePowerOfTwo = true; 6519 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6520 6521 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6522 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6523 if (C->isZero()) 6524 return false; 6525 6526 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6527 6528 // WARNING: this fold is only valid for positive divisors! 6529 APInt D = C->getAPIntValue(); 6530 if (D.isNegative()) 6531 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6532 6533 HadIntMinDivisor |= D.isMinSignedValue(); 6534 6535 // If all divisors are ones, we will prefer to avoid the fold. 6536 HadOneDivisor |= D.isOne(); 6537 AllDivisorsAreOnes &= D.isOne(); 6538 6539 // Decompose D into D0 * 2^K 6540 unsigned K = D.countTrailingZeros(); 6541 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6542 APInt D0 = D.lshr(K); 6543 6544 if (!D.isMinSignedValue()) { 6545 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6546 // we don't care about this lane in this fold, we'll special-handle it. 6547 HadEvenDivisor |= (K != 0); 6548 } 6549 6550 // D is a power-of-two if D0 is one. This includes INT_MIN. 6551 // If all divisors are power-of-two, we will prefer to avoid the fold. 6552 AllDivisorsArePowerOfTwo &= D0.isOne(); 6553 6554 // P = inv(D0, 2^W) 6555 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6556 unsigned W = D.getBitWidth(); 6557 APInt P = D0.zext(W + 1) 6558 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6559 .trunc(W); 6560 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6561 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6562 6563 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6564 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6565 A.clearLowBits(K); 6566 6567 if (!D.isMinSignedValue()) { 6568 // If divisor INT_MIN, then we don't care about this lane in this fold, 6569 // we'll special-handle it. 6570 NeedToApplyOffset |= A != 0; 6571 } 6572 6573 // Q = floor((2 * A) / (2^K)) 6574 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6575 6576 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6577 "We are expecting that A is always less than all-ones for SVT"); 6578 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6579 "We are expecting that K is always less than all-ones for ShSVT"); 6580 6581 // If the divisor is 1 the result can be constant-folded. Likewise, we 6582 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6583 if (D.isOne()) { 6584 // Set P, A and K to a bogus values so we can try to splat them. 6585 P = 0; 6586 A = -1; 6587 K = -1; 6588 6589 // x ?% 1 == 0 <--> true <--> x u<= -1 6590 Q = -1; 6591 } 6592 6593 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6594 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6595 KAmts.push_back( 6596 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6597 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6598 return true; 6599 }; 6600 6601 SDValue N = REMNode.getOperand(0); 6602 SDValue D = REMNode.getOperand(1); 6603 6604 // Collect the values from each element. 6605 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6606 return SDValue(); 6607 6608 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6609 if (AllDivisorsAreOnes) 6610 return SDValue(); 6611 6612 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6613 // since it can be best implemented as a bit test. 6614 if (AllDivisorsArePowerOfTwo) 6615 return SDValue(); 6616 6617 SDValue PVal, AVal, KVal, QVal; 6618 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6619 if (HadOneDivisor) { 6620 // Try to turn PAmts into a splat, since we don't care about the values 6621 // that are currently '0'. If we can't, just keep '0'`s. 6622 turnVectorIntoSplatVector(PAmts, isNullConstant); 6623 // Try to turn AAmts into a splat, since we don't care about the 6624 // values that are currently '-1'. If we can't, change them to '0'`s. 6625 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6626 DAG.getConstant(0, DL, SVT)); 6627 // Try to turn KAmts into a splat, since we don't care about the values 6628 // that are currently '-1'. If we can't, change them to '0'`s. 6629 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6630 DAG.getConstant(0, DL, ShSVT)); 6631 } 6632 6633 PVal = DAG.getBuildVector(VT, DL, PAmts); 6634 AVal = DAG.getBuildVector(VT, DL, AAmts); 6635 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6636 QVal = DAG.getBuildVector(VT, DL, QAmts); 6637 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6638 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6639 QAmts.size() == 1 && 6640 "Expected matchUnaryPredicate to return one element for scalable " 6641 "vectors"); 6642 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6643 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6644 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6645 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6646 } else { 6647 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6648 PVal = PAmts[0]; 6649 AVal = AAmts[0]; 6650 KVal = KAmts[0]; 6651 QVal = QAmts[0]; 6652 } 6653 6654 // (mul N, P) 6655 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6656 Created.push_back(Op0.getNode()); 6657 6658 if (NeedToApplyOffset) { 6659 // We need ADD to do this. 6660 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6661 return SDValue(); 6662 6663 // (add (mul N, P), A) 6664 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6665 Created.push_back(Op0.getNode()); 6666 } 6667 6668 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6669 // divisors as a performance improvement, since rotating by 0 is a no-op. 6670 if (HadEvenDivisor) { 6671 // We need ROTR to do this. 6672 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6673 return SDValue(); 6674 // SREM: (rotr (add (mul N, P), A), K) 6675 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6676 Created.push_back(Op0.getNode()); 6677 } 6678 6679 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6680 SDValue Fold = 6681 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6682 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6683 6684 // If we didn't have lanes with INT_MIN divisor, then we're done. 6685 if (!HadIntMinDivisor) 6686 return Fold; 6687 6688 // That fold is only valid for positive divisors. Which effectively means, 6689 // it is invalid for INT_MIN divisors. So if we have such a lane, 6690 // we must fix-up results for said lanes. 6691 assert(VT.isVector() && "Can/should only get here for vectors."); 6692 6693 // NOTE: we avoid letting illegal types through even if we're before legalize 6694 // ops – legalization has a hard time producing good code for the code that 6695 // follows. 6696 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6697 !isOperationLegalOrCustom(ISD::AND, VT) || 6698 !isOperationLegalOrCustom(Cond, VT) || 6699 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6700 return SDValue(); 6701 6702 Created.push_back(Fold.getNode()); 6703 6704 SDValue IntMin = DAG.getConstant( 6705 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6706 SDValue IntMax = DAG.getConstant( 6707 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6708 SDValue Zero = 6709 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6710 6711 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6712 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6713 Created.push_back(DivisorIsIntMin.getNode()); 6714 6715 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6716 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6717 Created.push_back(Masked.getNode()); 6718 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6719 Created.push_back(MaskedIsZero.getNode()); 6720 6721 // To produce final result we need to blend 2 vectors: 'SetCC' and 6722 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6723 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6724 // constant-folded, select can get lowered to a shuffle with constant mask. 6725 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6726 MaskedIsZero, Fold); 6727 6728 return Blended; 6729 } 6730 6731 bool TargetLowering:: 6732 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6733 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6734 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6735 "be a constant integer"); 6736 return true; 6737 } 6738 6739 return false; 6740 } 6741 6742 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6743 const DenormalMode &Mode) const { 6744 SDLoc DL(Op); 6745 EVT VT = Op.getValueType(); 6746 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6747 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6748 // Testing it with denormal inputs to avoid wrong estimate. 6749 if (Mode.Input == DenormalMode::IEEE) { 6750 // This is specifically a check for the handling of denormal inputs, 6751 // not the result. 6752 6753 // Test = fabs(X) < SmallestNormal 6754 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6755 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6756 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6757 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6758 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6759 } 6760 // Test = X == 0.0 6761 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6762 } 6763 6764 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6765 bool LegalOps, bool OptForSize, 6766 NegatibleCost &Cost, 6767 unsigned Depth) const { 6768 // fneg is removable even if it has multiple uses. 6769 if (Op.getOpcode() == ISD::FNEG) { 6770 Cost = NegatibleCost::Cheaper; 6771 return Op.getOperand(0); 6772 } 6773 6774 // Don't recurse exponentially. 6775 if (Depth > SelectionDAG::MaxRecursionDepth) 6776 return SDValue(); 6777 6778 // Pre-increment recursion depth for use in recursive calls. 6779 ++Depth; 6780 const SDNodeFlags Flags = Op->getFlags(); 6781 const TargetOptions &Options = DAG.getTarget().Options; 6782 EVT VT = Op.getValueType(); 6783 unsigned Opcode = Op.getOpcode(); 6784 6785 // Don't allow anything with multiple uses unless we know it is free. 6786 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6787 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6788 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6789 if (!IsFreeExtend) 6790 return SDValue(); 6791 } 6792 6793 auto RemoveDeadNode = [&](SDValue N) { 6794 if (N && N.getNode()->use_empty()) 6795 DAG.RemoveDeadNode(N.getNode()); 6796 }; 6797 6798 SDLoc DL(Op); 6799 6800 // Because getNegatedExpression can delete nodes we need a handle to keep 6801 // temporary nodes alive in case the recursion manages to create an identical 6802 // node. 6803 std::list<HandleSDNode> Handles; 6804 6805 switch (Opcode) { 6806 case ISD::ConstantFP: { 6807 // Don't invert constant FP values after legalization unless the target says 6808 // the negated constant is legal. 6809 bool IsOpLegal = 6810 isOperationLegal(ISD::ConstantFP, VT) || 6811 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6812 OptForSize); 6813 6814 if (LegalOps && !IsOpLegal) 6815 break; 6816 6817 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6818 V.changeSign(); 6819 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6820 6821 // If we already have the use of the negated floating constant, it is free 6822 // to negate it even it has multiple uses. 6823 if (!Op.hasOneUse() && CFP.use_empty()) 6824 break; 6825 Cost = NegatibleCost::Neutral; 6826 return CFP; 6827 } 6828 case ISD::BUILD_VECTOR: { 6829 // Only permit BUILD_VECTOR of constants. 6830 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6831 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6832 })) 6833 break; 6834 6835 bool IsOpLegal = 6836 (isOperationLegal(ISD::ConstantFP, VT) && 6837 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6838 llvm::all_of(Op->op_values(), [&](SDValue N) { 6839 return N.isUndef() || 6840 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6841 OptForSize); 6842 }); 6843 6844 if (LegalOps && !IsOpLegal) 6845 break; 6846 6847 SmallVector<SDValue, 4> Ops; 6848 for (SDValue C : Op->op_values()) { 6849 if (C.isUndef()) { 6850 Ops.push_back(C); 6851 continue; 6852 } 6853 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6854 V.changeSign(); 6855 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6856 } 6857 Cost = NegatibleCost::Neutral; 6858 return DAG.getBuildVector(VT, DL, Ops); 6859 } 6860 case ISD::FADD: { 6861 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6862 break; 6863 6864 // After operation legalization, it might not be legal to create new FSUBs. 6865 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6866 break; 6867 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6868 6869 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6870 NegatibleCost CostX = NegatibleCost::Expensive; 6871 SDValue NegX = 6872 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6873 // Prevent this node from being deleted by the next call. 6874 if (NegX) 6875 Handles.emplace_back(NegX); 6876 6877 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6878 NegatibleCost CostY = NegatibleCost::Expensive; 6879 SDValue NegY = 6880 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6881 6882 // We're done with the handles. 6883 Handles.clear(); 6884 6885 // Negate the X if its cost is less or equal than Y. 6886 if (NegX && (CostX <= CostY)) { 6887 Cost = CostX; 6888 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6889 if (NegY != N) 6890 RemoveDeadNode(NegY); 6891 return N; 6892 } 6893 6894 // Negate the Y if it is not expensive. 6895 if (NegY) { 6896 Cost = CostY; 6897 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6898 if (NegX != N) 6899 RemoveDeadNode(NegX); 6900 return N; 6901 } 6902 break; 6903 } 6904 case ISD::FSUB: { 6905 // We can't turn -(A-B) into B-A when we honor signed zeros. 6906 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6907 break; 6908 6909 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6910 // fold (fneg (fsub 0, Y)) -> Y 6911 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6912 if (C->isZero()) { 6913 Cost = NegatibleCost::Cheaper; 6914 return Y; 6915 } 6916 6917 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6918 Cost = NegatibleCost::Neutral; 6919 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6920 } 6921 case ISD::FMUL: 6922 case ISD::FDIV: { 6923 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6924 6925 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6926 NegatibleCost CostX = NegatibleCost::Expensive; 6927 SDValue NegX = 6928 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6929 // Prevent this node from being deleted by the next call. 6930 if (NegX) 6931 Handles.emplace_back(NegX); 6932 6933 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6934 NegatibleCost CostY = NegatibleCost::Expensive; 6935 SDValue NegY = 6936 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6937 6938 // We're done with the handles. 6939 Handles.clear(); 6940 6941 // Negate the X if its cost is less or equal than Y. 6942 if (NegX && (CostX <= CostY)) { 6943 Cost = CostX; 6944 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6945 if (NegY != N) 6946 RemoveDeadNode(NegY); 6947 return N; 6948 } 6949 6950 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6951 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6952 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6953 break; 6954 6955 // Negate the Y if it is not expensive. 6956 if (NegY) { 6957 Cost = CostY; 6958 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6959 if (NegX != N) 6960 RemoveDeadNode(NegX); 6961 return N; 6962 } 6963 break; 6964 } 6965 case ISD::FMA: 6966 case ISD::FMAD: { 6967 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6968 break; 6969 6970 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6971 NegatibleCost CostZ = NegatibleCost::Expensive; 6972 SDValue NegZ = 6973 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6974 // Give up if fail to negate the Z. 6975 if (!NegZ) 6976 break; 6977 6978 // Prevent this node from being deleted by the next two calls. 6979 Handles.emplace_back(NegZ); 6980 6981 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6982 NegatibleCost CostX = NegatibleCost::Expensive; 6983 SDValue NegX = 6984 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6985 // Prevent this node from being deleted by the next call. 6986 if (NegX) 6987 Handles.emplace_back(NegX); 6988 6989 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6990 NegatibleCost CostY = NegatibleCost::Expensive; 6991 SDValue NegY = 6992 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6993 6994 // We're done with the handles. 6995 Handles.clear(); 6996 6997 // Negate the X if its cost is less or equal than Y. 6998 if (NegX && (CostX <= CostY)) { 6999 Cost = std::min(CostX, CostZ); 7000 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7001 if (NegY != N) 7002 RemoveDeadNode(NegY); 7003 return N; 7004 } 7005 7006 // Negate the Y if it is not expensive. 7007 if (NegY) { 7008 Cost = std::min(CostY, CostZ); 7009 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7010 if (NegX != N) 7011 RemoveDeadNode(NegX); 7012 return N; 7013 } 7014 break; 7015 } 7016 7017 case ISD::FP_EXTEND: 7018 case ISD::FSIN: 7019 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7020 OptForSize, Cost, Depth)) 7021 return DAG.getNode(Opcode, DL, VT, NegV); 7022 break; 7023 case ISD::FP_ROUND: 7024 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7025 OptForSize, Cost, Depth)) 7026 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7027 break; 7028 case ISD::SELECT: 7029 case ISD::VSELECT: { 7030 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7031 // iff at least one cost is cheaper and the other is neutral/cheaper 7032 SDValue LHS = Op.getOperand(1); 7033 NegatibleCost CostLHS = NegatibleCost::Expensive; 7034 SDValue NegLHS = 7035 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7036 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7037 RemoveDeadNode(NegLHS); 7038 break; 7039 } 7040 7041 // Prevent this node from being deleted by the next call. 7042 Handles.emplace_back(NegLHS); 7043 7044 SDValue RHS = Op.getOperand(2); 7045 NegatibleCost CostRHS = NegatibleCost::Expensive; 7046 SDValue NegRHS = 7047 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7048 7049 // We're done with the handles. 7050 Handles.clear(); 7051 7052 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7053 (CostLHS != NegatibleCost::Cheaper && 7054 CostRHS != NegatibleCost::Cheaper)) { 7055 RemoveDeadNode(NegLHS); 7056 RemoveDeadNode(NegRHS); 7057 break; 7058 } 7059 7060 Cost = std::min(CostLHS, CostRHS); 7061 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7062 } 7063 } 7064 7065 return SDValue(); 7066 } 7067 7068 //===----------------------------------------------------------------------===// 7069 // Legalization Utilities 7070 //===----------------------------------------------------------------------===// 7071 7072 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7073 SDValue LHS, SDValue RHS, 7074 SmallVectorImpl<SDValue> &Result, 7075 EVT HiLoVT, SelectionDAG &DAG, 7076 MulExpansionKind Kind, SDValue LL, 7077 SDValue LH, SDValue RL, SDValue RH) const { 7078 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7079 Opcode == ISD::SMUL_LOHI); 7080 7081 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7082 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7083 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7084 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7085 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7086 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7087 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7088 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7089 7090 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7091 return false; 7092 7093 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7094 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7095 7096 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7097 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7098 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7099 7100 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7101 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7102 bool Signed) -> bool { 7103 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7104 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7105 Hi = SDValue(Lo.getNode(), 1); 7106 return true; 7107 } 7108 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7109 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7110 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7111 return true; 7112 } 7113 return false; 7114 }; 7115 7116 SDValue Lo, Hi; 7117 7118 if (!LL.getNode() && !RL.getNode() && 7119 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7120 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7121 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7122 } 7123 7124 if (!LL.getNode()) 7125 return false; 7126 7127 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7128 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7129 DAG.MaskedValueIsZero(RHS, HighMask)) { 7130 // The inputs are both zero-extended. 7131 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7132 Result.push_back(Lo); 7133 Result.push_back(Hi); 7134 if (Opcode != ISD::MUL) { 7135 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7136 Result.push_back(Zero); 7137 Result.push_back(Zero); 7138 } 7139 return true; 7140 } 7141 } 7142 7143 if (!VT.isVector() && Opcode == ISD::MUL && 7144 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7145 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7146 // The input values are both sign-extended. 7147 // TODO non-MUL case? 7148 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7149 Result.push_back(Lo); 7150 Result.push_back(Hi); 7151 return true; 7152 } 7153 } 7154 7155 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7156 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7157 7158 if (!LH.getNode() && !RH.getNode() && 7159 isOperationLegalOrCustom(ISD::SRL, VT) && 7160 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7161 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7162 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7163 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7164 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7165 } 7166 7167 if (!LH.getNode()) 7168 return false; 7169 7170 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7171 return false; 7172 7173 Result.push_back(Lo); 7174 7175 if (Opcode == ISD::MUL) { 7176 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7177 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7178 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7179 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7180 Result.push_back(Hi); 7181 return true; 7182 } 7183 7184 // Compute the full width result. 7185 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7186 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7187 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7188 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7189 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7190 }; 7191 7192 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7193 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7194 return false; 7195 7196 // This is effectively the add part of a multiply-add of half-sized operands, 7197 // so it cannot overflow. 7198 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7199 7200 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7201 return false; 7202 7203 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7204 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7205 7206 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7207 isOperationLegalOrCustom(ISD::ADDE, VT)); 7208 if (UseGlue) 7209 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7210 Merge(Lo, Hi)); 7211 else 7212 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 7213 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7214 7215 SDValue Carry = Next.getValue(1); 7216 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7217 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7218 7219 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7220 return false; 7221 7222 if (UseGlue) 7223 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7224 Carry); 7225 else 7226 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7227 Zero, Carry); 7228 7229 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7230 7231 if (Opcode == ISD::SMUL_LOHI) { 7232 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7233 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7234 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7235 7236 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7237 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7238 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7239 } 7240 7241 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7242 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7243 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7244 return true; 7245 } 7246 7247 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7248 SelectionDAG &DAG, MulExpansionKind Kind, 7249 SDValue LL, SDValue LH, SDValue RL, 7250 SDValue RH) const { 7251 SmallVector<SDValue, 2> Result; 7252 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7253 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7254 DAG, Kind, LL, LH, RL, RH); 7255 if (Ok) { 7256 assert(Result.size() == 2); 7257 Lo = Result[0]; 7258 Hi = Result[1]; 7259 } 7260 return Ok; 7261 } 7262 7263 // Optimize unsigned division or remainder by constants for types twice as large 7264 // as a legal VT. 7265 // 7266 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7267 // can be computed 7268 // as: 7269 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7270 // Remainder = Sum % Constant 7271 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7272 // 7273 // For division, we can compute the remainder using the algorithm described 7274 // above, subtract it from the dividend to get an exact multiple of Constant. 7275 // Then multiply that extact multiply by the multiplicative inverse modulo 7276 // (1 << (BitWidth / 2)) to get the quotient. 7277 7278 // If Constant is even, we can shift right the dividend and the divisor by the 7279 // number of trailing zeros in Constant before applying the remainder algorithm. 7280 // If we're after the quotient, we can subtract this value from the shifted 7281 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7282 // If we want the remainder, we shift the value left by the number of trailing 7283 // zeros and add the bits that were shifted out of the dividend. 7284 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7285 SmallVectorImpl<SDValue> &Result, 7286 EVT HiLoVT, SelectionDAG &DAG, 7287 SDValue LL, SDValue LH) const { 7288 unsigned Opcode = N->getOpcode(); 7289 EVT VT = N->getValueType(0); 7290 7291 // TODO: Support signed division/remainder. 7292 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7293 return false; 7294 assert( 7295 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7296 "Unexpected opcode"); 7297 7298 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7299 if (!CN) 7300 return false; 7301 7302 APInt Divisor = CN->getAPIntValue(); 7303 unsigned BitWidth = Divisor.getBitWidth(); 7304 unsigned HBitWidth = BitWidth / 2; 7305 assert(VT.getScalarSizeInBits() == BitWidth && 7306 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7307 7308 // Divisor needs to less than (1 << HBitWidth). 7309 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7310 if (Divisor.uge(HalfMaxPlus1)) 7311 return false; 7312 7313 // We depend on the UREM by constant optimization in DAGCombiner that requires 7314 // high multiply. 7315 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7316 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7317 return false; 7318 7319 // Don't expand if optimizing for size. 7320 if (DAG.shouldOptForSize()) 7321 return false; 7322 7323 // Early out for 0 or 1 divisors. 7324 if (Divisor.ule(1)) 7325 return false; 7326 7327 // If the divisor is even, shift it until it becomes odd. 7328 unsigned TrailingZeros = 0; 7329 if (!Divisor[0]) { 7330 TrailingZeros = Divisor.countTrailingZeros(); 7331 Divisor.lshrInPlace(TrailingZeros); 7332 } 7333 7334 SDLoc dl(N); 7335 SDValue Sum; 7336 SDValue PartialRem; 7337 7338 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7339 // then add in the carry. 7340 // TODO: If we can't split it in half, we might be able to split into 3 or 7341 // more pieces using a smaller bit width. 7342 if (HalfMaxPlus1.urem(Divisor).isOneValue()) { 7343 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7344 if (!LL) { 7345 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, N->getOperand(0), 7346 DAG.getIntPtrConstant(0, dl)); 7347 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, N->getOperand(0), 7348 DAG.getIntPtrConstant(1, dl)); 7349 } 7350 7351 // Shift the input by the number of TrailingZeros in the divisor. The 7352 // shifted out bits will be added to the remainder later. 7353 if (TrailingZeros) { 7354 // Save the shifted off bits if we need the remainder. 7355 if (Opcode != ISD::UDIV) { 7356 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7357 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7358 DAG.getConstant(Mask, dl, HiLoVT)); 7359 } 7360 7361 LL = DAG.getNode( 7362 ISD::OR, dl, HiLoVT, 7363 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7364 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7365 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7366 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7367 HiLoVT, dl))); 7368 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7369 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7370 } 7371 7372 // Use addcarry if we can, otherwise use a compare to detect overflow. 7373 EVT SetCCType = 7374 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7375 if (isOperationLegalOrCustom(ISD::ADDCARRY, HiLoVT)) { 7376 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7377 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7378 Sum = DAG.getNode(ISD::ADDCARRY, dl, VTList, Sum, 7379 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7380 } else { 7381 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7382 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7383 // If the boolean for the target is 0 or 1, we can add the setcc result 7384 // directly. 7385 if (getBooleanContents(HiLoVT) == 7386 TargetLoweringBase::ZeroOrOneBooleanContent) 7387 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7388 else 7389 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7390 DAG.getConstant(0, dl, HiLoVT)); 7391 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7392 } 7393 } 7394 7395 // If we didn't find a sum, we can't do the expansion. 7396 if (!Sum) 7397 return false; 7398 7399 // Perform a HiLoVT urem on the Sum using truncated divisor. 7400 SDValue RemL = 7401 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7402 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7403 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7404 7405 if (Opcode != ISD::UREM) { 7406 // Subtract the remainder from the shifted dividend. 7407 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7408 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7409 7410 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7411 7412 // Multiply by the multiplicative inverse of the divisor modulo 7413 // (1 << BitWidth). 7414 APInt Mod = APInt::getSignedMinValue(BitWidth + 1); 7415 APInt MulFactor = Divisor.zext(BitWidth + 1); 7416 MulFactor = MulFactor.multiplicativeInverse(Mod); 7417 MulFactor = MulFactor.trunc(BitWidth); 7418 7419 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7420 DAG.getConstant(MulFactor, dl, VT)); 7421 7422 // Split the quotient into low and high parts. 7423 SDValue QuotL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, Quotient, 7424 DAG.getIntPtrConstant(0, dl)); 7425 SDValue QuotH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, Quotient, 7426 DAG.getIntPtrConstant(1, dl)); 7427 Result.push_back(QuotL); 7428 Result.push_back(QuotH); 7429 } 7430 7431 if (Opcode != ISD::UDIV) { 7432 // If we shifted the input, shift the remainder left and add the bits we 7433 // shifted off the input. 7434 if (TrailingZeros) { 7435 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7436 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7437 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7438 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7439 } 7440 Result.push_back(RemL); 7441 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7442 } 7443 7444 return true; 7445 } 7446 7447 // Check that (every element of) Z is undef or not an exact multiple of BW. 7448 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7449 return ISD::matchUnaryPredicate( 7450 Z, 7451 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7452 true); 7453 } 7454 7455 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7456 EVT VT = Node->getValueType(0); 7457 SDValue ShX, ShY; 7458 SDValue ShAmt, InvShAmt; 7459 SDValue X = Node->getOperand(0); 7460 SDValue Y = Node->getOperand(1); 7461 SDValue Z = Node->getOperand(2); 7462 SDValue Mask = Node->getOperand(3); 7463 SDValue VL = Node->getOperand(4); 7464 7465 unsigned BW = VT.getScalarSizeInBits(); 7466 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7467 SDLoc DL(SDValue(Node, 0)); 7468 7469 EVT ShVT = Z.getValueType(); 7470 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7471 // fshl: X << C | Y >> (BW - C) 7472 // fshr: X << (BW - C) | Y >> C 7473 // where C = Z % BW is not zero 7474 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7475 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7476 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7477 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7478 VL); 7479 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7480 VL); 7481 } else { 7482 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7483 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7484 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7485 if (isPowerOf2_32(BW)) { 7486 // Z % BW -> Z & (BW - 1) 7487 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 7488 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7489 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 7490 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 7491 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 7492 } else { 7493 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7494 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7495 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 7496 } 7497 7498 SDValue One = DAG.getConstant(1, DL, ShVT); 7499 if (IsFSHL) { 7500 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 7501 SDValue ShY1 = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, One, Mask, VL); 7502 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, ShY1, InvShAmt, Mask, VL); 7503 } else { 7504 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 7505 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 7506 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, ShAmt, Mask, VL); 7507 } 7508 } 7509 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 7510 } 7511 7512 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7513 SelectionDAG &DAG) const { 7514 if (Node->isVPOpcode()) 7515 return expandVPFunnelShift(Node, DAG); 7516 7517 EVT VT = Node->getValueType(0); 7518 7519 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7520 !isOperationLegalOrCustom(ISD::SRL, VT) || 7521 !isOperationLegalOrCustom(ISD::SUB, VT) || 7522 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7523 return SDValue(); 7524 7525 SDValue X = Node->getOperand(0); 7526 SDValue Y = Node->getOperand(1); 7527 SDValue Z = Node->getOperand(2); 7528 7529 unsigned BW = VT.getScalarSizeInBits(); 7530 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7531 SDLoc DL(SDValue(Node, 0)); 7532 7533 EVT ShVT = Z.getValueType(); 7534 7535 // If a funnel shift in the other direction is more supported, use it. 7536 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7537 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7538 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7539 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7540 // fshl X, Y, Z -> fshr X, Y, -Z 7541 // fshr X, Y, Z -> fshl X, Y, -Z 7542 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7543 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7544 } else { 7545 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7546 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7547 SDValue One = DAG.getConstant(1, DL, ShVT); 7548 if (IsFSHL) { 7549 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7550 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7551 } else { 7552 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7553 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7554 } 7555 Z = DAG.getNOT(DL, Z, ShVT); 7556 } 7557 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7558 } 7559 7560 SDValue ShX, ShY; 7561 SDValue ShAmt, InvShAmt; 7562 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7563 // fshl: X << C | Y >> (BW - C) 7564 // fshr: X << (BW - C) | Y >> C 7565 // where C = Z % BW is not zero 7566 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7567 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7568 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7569 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7570 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7571 } else { 7572 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7573 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7574 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7575 if (isPowerOf2_32(BW)) { 7576 // Z % BW -> Z & (BW - 1) 7577 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7578 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7579 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7580 } else { 7581 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7582 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7583 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7584 } 7585 7586 SDValue One = DAG.getConstant(1, DL, ShVT); 7587 if (IsFSHL) { 7588 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7589 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7590 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7591 } else { 7592 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7593 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7594 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7595 } 7596 } 7597 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7598 } 7599 7600 // TODO: Merge with expandFunnelShift. 7601 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7602 SelectionDAG &DAG) const { 7603 EVT VT = Node->getValueType(0); 7604 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7605 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7606 SDValue Op0 = Node->getOperand(0); 7607 SDValue Op1 = Node->getOperand(1); 7608 SDLoc DL(SDValue(Node, 0)); 7609 7610 EVT ShVT = Op1.getValueType(); 7611 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7612 7613 // If a rotate in the other direction is more supported, use it. 7614 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7615 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7616 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7617 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7618 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7619 } 7620 7621 if (!AllowVectorOps && VT.isVector() && 7622 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7623 !isOperationLegalOrCustom(ISD::SRL, VT) || 7624 !isOperationLegalOrCustom(ISD::SUB, VT) || 7625 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7626 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7627 return SDValue(); 7628 7629 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7630 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7631 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7632 SDValue ShVal; 7633 SDValue HsVal; 7634 if (isPowerOf2_32(EltSizeInBits)) { 7635 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7636 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7637 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7638 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7639 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7640 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7641 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7642 } else { 7643 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7644 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7645 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7646 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7647 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7648 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7649 SDValue One = DAG.getConstant(1, DL, ShVT); 7650 HsVal = 7651 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7652 } 7653 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7654 } 7655 7656 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7657 SelectionDAG &DAG) const { 7658 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7659 EVT VT = Node->getValueType(0); 7660 unsigned VTBits = VT.getScalarSizeInBits(); 7661 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7662 7663 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7664 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7665 SDValue ShOpLo = Node->getOperand(0); 7666 SDValue ShOpHi = Node->getOperand(1); 7667 SDValue ShAmt = Node->getOperand(2); 7668 EVT ShAmtVT = ShAmt.getValueType(); 7669 EVT ShAmtCCVT = 7670 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7671 SDLoc dl(Node); 7672 7673 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7674 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7675 // away during isel. 7676 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7677 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7678 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7679 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7680 : DAG.getConstant(0, dl, VT); 7681 7682 SDValue Tmp2, Tmp3; 7683 if (IsSHL) { 7684 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7685 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7686 } else { 7687 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7688 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7689 } 7690 7691 // If the shift amount is larger or equal than the width of a part we don't 7692 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7693 // values for large shift amounts. 7694 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7695 DAG.getConstant(VTBits, dl, ShAmtVT)); 7696 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7697 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7698 7699 if (IsSHL) { 7700 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7701 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7702 } else { 7703 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7704 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7705 } 7706 } 7707 7708 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7709 SelectionDAG &DAG) const { 7710 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7711 SDValue Src = Node->getOperand(OpNo); 7712 EVT SrcVT = Src.getValueType(); 7713 EVT DstVT = Node->getValueType(0); 7714 SDLoc dl(SDValue(Node, 0)); 7715 7716 // FIXME: Only f32 to i64 conversions are supported. 7717 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7718 return false; 7719 7720 if (Node->isStrictFPOpcode()) 7721 // When a NaN is converted to an integer a trap is allowed. We can't 7722 // use this expansion here because it would eliminate that trap. Other 7723 // traps are also allowed and cannot be eliminated. See 7724 // IEEE 754-2008 sec 5.8. 7725 return false; 7726 7727 // Expand f32 -> i64 conversion 7728 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7729 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7730 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7731 EVT IntVT = SrcVT.changeTypeToInteger(); 7732 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7733 7734 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7735 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7736 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7737 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7738 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7739 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7740 7741 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7742 7743 SDValue ExponentBits = DAG.getNode( 7744 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7745 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7746 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7747 7748 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7749 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7750 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7751 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7752 7753 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7754 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7755 DAG.getConstant(0x00800000, dl, IntVT)); 7756 7757 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7758 7759 R = DAG.getSelectCC( 7760 dl, Exponent, ExponentLoBit, 7761 DAG.getNode(ISD::SHL, dl, DstVT, R, 7762 DAG.getZExtOrTrunc( 7763 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7764 dl, IntShVT)), 7765 DAG.getNode(ISD::SRL, dl, DstVT, R, 7766 DAG.getZExtOrTrunc( 7767 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7768 dl, IntShVT)), 7769 ISD::SETGT); 7770 7771 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7772 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7773 7774 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7775 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7776 return true; 7777 } 7778 7779 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7780 SDValue &Chain, 7781 SelectionDAG &DAG) const { 7782 SDLoc dl(SDValue(Node, 0)); 7783 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7784 SDValue Src = Node->getOperand(OpNo); 7785 7786 EVT SrcVT = Src.getValueType(); 7787 EVT DstVT = Node->getValueType(0); 7788 EVT SetCCVT = 7789 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7790 EVT DstSetCCVT = 7791 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7792 7793 // Only expand vector types if we have the appropriate vector bit operations. 7794 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7795 ISD::FP_TO_SINT; 7796 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7797 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7798 return false; 7799 7800 // If the maximum float value is smaller then the signed integer range, 7801 // the destination signmask can't be represented by the float, so we can 7802 // just use FP_TO_SINT directly. 7803 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7804 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7805 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7806 if (APFloat::opOverflow & 7807 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7808 if (Node->isStrictFPOpcode()) { 7809 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7810 { Node->getOperand(0), Src }); 7811 Chain = Result.getValue(1); 7812 } else 7813 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7814 return true; 7815 } 7816 7817 // Don't expand it if there isn't cheap fsub instruction. 7818 if (!isOperationLegalOrCustom( 7819 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7820 return false; 7821 7822 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7823 SDValue Sel; 7824 7825 if (Node->isStrictFPOpcode()) { 7826 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7827 Node->getOperand(0), /*IsSignaling*/ true); 7828 Chain = Sel.getValue(1); 7829 } else { 7830 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7831 } 7832 7833 bool Strict = Node->isStrictFPOpcode() || 7834 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7835 7836 if (Strict) { 7837 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7838 // signmask then offset (the result of which should be fully representable). 7839 // Sel = Src < 0x8000000000000000 7840 // FltOfs = select Sel, 0, 0x8000000000000000 7841 // IntOfs = select Sel, 0, 0x8000000000000000 7842 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7843 7844 // TODO: Should any fast-math-flags be set for the FSUB? 7845 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7846 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7847 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7848 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7849 DAG.getConstant(0, dl, DstVT), 7850 DAG.getConstant(SignMask, dl, DstVT)); 7851 SDValue SInt; 7852 if (Node->isStrictFPOpcode()) { 7853 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7854 { Chain, Src, FltOfs }); 7855 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7856 { Val.getValue(1), Val }); 7857 Chain = SInt.getValue(1); 7858 } else { 7859 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7860 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7861 } 7862 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7863 } else { 7864 // Expand based on maximum range of FP_TO_SINT: 7865 // True = fp_to_sint(Src) 7866 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7867 // Result = select (Src < 0x8000000000000000), True, False 7868 7869 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7870 // TODO: Should any fast-math-flags be set for the FSUB? 7871 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7872 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7873 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7874 DAG.getConstant(SignMask, dl, DstVT)); 7875 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7876 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7877 } 7878 return true; 7879 } 7880 7881 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7882 SDValue &Chain, 7883 SelectionDAG &DAG) const { 7884 // This transform is not correct for converting 0 when rounding mode is set 7885 // to round toward negative infinity which will produce -0.0. So disable under 7886 // strictfp. 7887 if (Node->isStrictFPOpcode()) 7888 return false; 7889 7890 SDValue Src = Node->getOperand(0); 7891 EVT SrcVT = Src.getValueType(); 7892 EVT DstVT = Node->getValueType(0); 7893 7894 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7895 return false; 7896 7897 // Only expand vector types if we have the appropriate vector bit operations. 7898 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7899 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7900 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7901 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7902 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7903 return false; 7904 7905 SDLoc dl(SDValue(Node, 0)); 7906 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7907 7908 // Implementation of unsigned i64 to f64 following the algorithm in 7909 // __floatundidf in compiler_rt. This implementation performs rounding 7910 // correctly in all rounding modes with the exception of converting 0 7911 // when rounding toward negative infinity. In that case the fsub will produce 7912 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7913 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7914 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7915 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7916 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7917 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7918 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7919 7920 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7921 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7922 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7923 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7924 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7925 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7926 SDValue HiSub = 7927 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7928 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7929 return true; 7930 } 7931 7932 SDValue 7933 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7934 SelectionDAG &DAG) const { 7935 unsigned Opcode = Node->getOpcode(); 7936 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7937 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7938 "Wrong opcode"); 7939 7940 if (Node->getFlags().hasNoNaNs()) { 7941 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7942 SDValue Op1 = Node->getOperand(0); 7943 SDValue Op2 = Node->getOperand(1); 7944 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7945 // Copy FMF flags, but always set the no-signed-zeros flag 7946 // as this is implied by the FMINNUM/FMAXNUM semantics. 7947 SDNodeFlags Flags = Node->getFlags(); 7948 Flags.setNoSignedZeros(true); 7949 SelCC->setFlags(Flags); 7950 return SelCC; 7951 } 7952 7953 return SDValue(); 7954 } 7955 7956 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7957 SelectionDAG &DAG) const { 7958 SDLoc dl(Node); 7959 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7960 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7961 EVT VT = Node->getValueType(0); 7962 7963 if (VT.isScalableVector()) 7964 report_fatal_error( 7965 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7966 7967 if (isOperationLegalOrCustom(NewOp, VT)) { 7968 SDValue Quiet0 = Node->getOperand(0); 7969 SDValue Quiet1 = Node->getOperand(1); 7970 7971 if (!Node->getFlags().hasNoNaNs()) { 7972 // Insert canonicalizes if it's possible we need to quiet to get correct 7973 // sNaN behavior. 7974 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7975 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7976 Node->getFlags()); 7977 } 7978 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7979 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7980 Node->getFlags()); 7981 } 7982 } 7983 7984 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7985 } 7986 7987 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7988 // instead if there are no NaNs. 7989 if (Node->getFlags().hasNoNaNs()) { 7990 unsigned IEEE2018Op = 7991 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7992 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7993 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7994 Node->getOperand(1), Node->getFlags()); 7995 } 7996 } 7997 7998 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7999 return SelCC; 8000 8001 return SDValue(); 8002 } 8003 8004 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8005 unsigned Test, SDNodeFlags Flags, 8006 const SDLoc &DL, 8007 SelectionDAG &DAG) const { 8008 EVT OperandVT = Op.getValueType(); 8009 assert(OperandVT.isFloatingPoint()); 8010 8011 // Degenerated cases. 8012 if (Test == 0) 8013 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8014 if ((Test & fcAllFlags) == fcAllFlags) 8015 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8016 8017 // PPC double double is a pair of doubles, of which the higher part determines 8018 // the value class. 8019 if (OperandVT == MVT::ppcf128) { 8020 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8021 DAG.getConstant(1, DL, MVT::i32)); 8022 OperandVT = MVT::f64; 8023 } 8024 8025 // Some checks may be represented as inversion of simpler check, for example 8026 // "inf|normal|subnormal|zero" => !"nan". 8027 bool IsInverted = false; 8028 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 8029 IsInverted = true; 8030 Test = InvertedCheck; 8031 } 8032 8033 // Floating-point type properties. 8034 EVT ScalarFloatVT = OperandVT.getScalarType(); 8035 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8036 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8037 bool IsF80 = (ScalarFloatVT == MVT::f80); 8038 8039 // Some checks can be implemented using float comparisons, if floating point 8040 // exceptions are ignored. 8041 if (Flags.hasNoFPExcept() && 8042 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8043 if (Test == fcZero) 8044 return DAG.getSetCC(DL, ResultVT, Op, 8045 DAG.getConstantFP(0.0, DL, OperandVT), 8046 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 8047 if (Test == fcNan) 8048 return DAG.getSetCC(DL, ResultVT, Op, Op, 8049 IsInverted ? ISD::SETO : ISD::SETUO); 8050 } 8051 8052 // In the general case use integer operations. 8053 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8054 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8055 if (OperandVT.isVector()) 8056 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8057 OperandVT.getVectorElementCount()); 8058 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8059 8060 // Various masks. 8061 APInt SignBit = APInt::getSignMask(BitSize); 8062 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8063 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8064 const unsigned ExplicitIntBitInF80 = 63; 8065 APInt ExpMask = Inf; 8066 if (IsF80) 8067 ExpMask.clearBit(ExplicitIntBitInF80); 8068 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8069 APInt QNaNBitMask = 8070 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8071 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 8072 8073 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8074 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8075 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8076 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8077 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8078 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8079 8080 SDValue Res; 8081 const auto appendResult = [&](SDValue PartialRes) { 8082 if (PartialRes) { 8083 if (Res) 8084 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8085 else 8086 Res = PartialRes; 8087 } 8088 }; 8089 8090 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8091 const auto getIntBitIsSet = [&]() -> SDValue { 8092 if (!IntBitIsSetV) { 8093 APInt IntBitMask(BitSize, 0); 8094 IntBitMask.setBit(ExplicitIntBitInF80); 8095 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8096 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8097 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8098 } 8099 return IntBitIsSetV; 8100 }; 8101 8102 // Split the value into sign bit and absolute value. 8103 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8104 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8105 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 8106 8107 // Tests that involve more than one class should be processed first. 8108 SDValue PartialRes; 8109 8110 if (IsF80) 8111 ; // Detect finite numbers of f80 by checking individual classes because 8112 // they have different settings of the explicit integer bit. 8113 else if ((Test & fcFinite) == fcFinite) { 8114 // finite(V) ==> abs(V) < exp_mask 8115 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8116 Test &= ~fcFinite; 8117 } else if ((Test & fcFinite) == fcPosFinite) { 8118 // finite(V) && V > 0 ==> V < exp_mask 8119 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8120 Test &= ~fcPosFinite; 8121 } else if ((Test & fcFinite) == fcNegFinite) { 8122 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8123 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8124 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8125 Test &= ~fcNegFinite; 8126 } 8127 appendResult(PartialRes); 8128 8129 // Check for individual classes. 8130 8131 if (unsigned PartialCheck = Test & fcZero) { 8132 if (PartialCheck == fcPosZero) 8133 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8134 else if (PartialCheck == fcZero) 8135 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8136 else // ISD::fcNegZero 8137 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8138 appendResult(PartialRes); 8139 } 8140 8141 if (unsigned PartialCheck = Test & fcInf) { 8142 if (PartialCheck == fcPosInf) 8143 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8144 else if (PartialCheck == fcInf) 8145 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8146 else { // ISD::fcNegInf 8147 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8148 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 8149 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 8150 } 8151 appendResult(PartialRes); 8152 } 8153 8154 if (unsigned PartialCheck = Test & fcNan) { 8155 APInt InfWithQnanBit = Inf | QNaNBitMask; 8156 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 8157 if (PartialCheck == fcNan) { 8158 // isnan(V) ==> abs(V) > int(inf) 8159 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8160 if (IsF80) { 8161 // Recognize unsupported values as NaNs for compatibility with glibc. 8162 // In them (exp(V)==0) == int_bit. 8163 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 8164 SDValue ExpIsZero = 8165 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8166 SDValue IsPseudo = 8167 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 8168 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 8169 } 8170 } else if (PartialCheck == fcQNan) { 8171 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 8172 PartialRes = 8173 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 8174 } else { // ISD::fcSNan 8175 // issignaling(V) ==> abs(V) > unsigned(Inf) && 8176 // abs(V) < (unsigned(Inf) | quiet_bit) 8177 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8178 SDValue IsNotQnan = 8179 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 8180 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 8181 } 8182 appendResult(PartialRes); 8183 } 8184 8185 if (unsigned PartialCheck = Test & fcSubnormal) { 8186 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8187 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8188 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8189 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8190 SDValue VMinusOneV = 8191 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8192 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8193 if (PartialCheck == fcNegSubnormal) 8194 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8195 appendResult(PartialRes); 8196 } 8197 8198 if (unsigned PartialCheck = Test & fcNormal) { 8199 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 8200 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 8201 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 8202 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 8203 APInt ExpLimit = ExpMask - ExpLSB; 8204 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 8205 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 8206 if (PartialCheck == fcNegNormal) 8207 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8208 else if (PartialCheck == fcPosNormal) { 8209 SDValue PosSignV = 8210 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 8211 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 8212 } 8213 if (IsF80) 8214 PartialRes = 8215 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 8216 appendResult(PartialRes); 8217 } 8218 8219 if (!Res) 8220 return DAG.getConstant(IsInverted, DL, ResultVT); 8221 if (IsInverted) 8222 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 8223 return Res; 8224 } 8225 8226 // Only expand vector types if we have the appropriate vector bit operations. 8227 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 8228 assert(VT.isVector() && "Expected vector type"); 8229 unsigned Len = VT.getScalarSizeInBits(); 8230 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 8231 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 8232 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 8233 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 8234 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 8235 } 8236 8237 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8238 SDLoc dl(Node); 8239 EVT VT = Node->getValueType(0); 8240 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8241 SDValue Op = Node->getOperand(0); 8242 unsigned Len = VT.getScalarSizeInBits(); 8243 assert(VT.isInteger() && "CTPOP not implemented for this type."); 8244 8245 // TODO: Add support for irregular type lengths. 8246 if (!(Len <= 128 && Len % 8 == 0)) 8247 return SDValue(); 8248 8249 // Only expand vector types if we have the appropriate vector bit operations. 8250 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 8251 return SDValue(); 8252 8253 // This is the "best" algorithm from 8254 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8255 SDValue Mask55 = 8256 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8257 SDValue Mask33 = 8258 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8259 SDValue Mask0F = 8260 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8261 8262 // v = v - ((v >> 1) & 0x55555555...) 8263 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 8264 DAG.getNode(ISD::AND, dl, VT, 8265 DAG.getNode(ISD::SRL, dl, VT, Op, 8266 DAG.getConstant(1, dl, ShVT)), 8267 Mask55)); 8268 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8269 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 8270 DAG.getNode(ISD::AND, dl, VT, 8271 DAG.getNode(ISD::SRL, dl, VT, Op, 8272 DAG.getConstant(2, dl, ShVT)), 8273 Mask33)); 8274 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8275 Op = DAG.getNode(ISD::AND, dl, VT, 8276 DAG.getNode(ISD::ADD, dl, VT, Op, 8277 DAG.getNode(ISD::SRL, dl, VT, Op, 8278 DAG.getConstant(4, dl, ShVT))), 8279 Mask0F); 8280 8281 if (Len <= 8) 8282 return Op; 8283 8284 // Avoid the multiply if we only have 2 bytes to add. 8285 // TODO: Only doing this for scalars because vectors weren't as obviously 8286 // improved. 8287 if (Len == 16 && !VT.isVector()) { 8288 // v = (v + (v >> 8)) & 0x00FF; 8289 return DAG.getNode(ISD::AND, dl, VT, 8290 DAG.getNode(ISD::ADD, dl, VT, Op, 8291 DAG.getNode(ISD::SRL, dl, VT, Op, 8292 DAG.getConstant(8, dl, ShVT))), 8293 DAG.getConstant(0xFF, dl, VT)); 8294 } 8295 8296 // v = (v * 0x01010101...) >> (Len - 8) 8297 SDValue Mask01 = 8298 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8299 return DAG.getNode(ISD::SRL, dl, VT, 8300 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 8301 DAG.getConstant(Len - 8, dl, ShVT)); 8302 } 8303 8304 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8305 SDLoc dl(Node); 8306 EVT VT = Node->getValueType(0); 8307 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8308 SDValue Op = Node->getOperand(0); 8309 SDValue Mask = Node->getOperand(1); 8310 SDValue VL = Node->getOperand(2); 8311 unsigned Len = VT.getScalarSizeInBits(); 8312 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 8313 8314 // TODO: Add support for irregular type lengths. 8315 if (!(Len <= 128 && Len % 8 == 0)) 8316 return SDValue(); 8317 8318 // This is same algorithm of expandCTPOP from 8319 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8320 SDValue Mask55 = 8321 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8322 SDValue Mask33 = 8323 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8324 SDValue Mask0F = 8325 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8326 8327 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 8328 8329 // v = v - ((v >> 1) & 0x55555555...) 8330 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 8331 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, 8332 DAG.getConstant(1, dl, ShVT), Mask, VL), 8333 Mask55, Mask, VL); 8334 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 8335 8336 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8337 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 8338 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 8339 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, 8340 DAG.getConstant(2, dl, ShVT), Mask, VL), 8341 Mask33, Mask, VL); 8342 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 8343 8344 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8345 Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 8346 Mask, VL), 8347 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 8348 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 8349 8350 if (Len <= 8) 8351 return Op; 8352 8353 // v = (v * 0x01010101...) >> (Len - 8) 8354 SDValue Mask01 = 8355 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8356 return DAG.getNode(ISD::VP_LSHR, dl, VT, 8357 DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL), 8358 DAG.getConstant(Len - 8, dl, ShVT), Mask, VL); 8359 } 8360 8361 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8362 SDLoc dl(Node); 8363 EVT VT = Node->getValueType(0); 8364 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8365 SDValue Op = Node->getOperand(0); 8366 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8367 8368 // If the non-ZERO_UNDEF version is supported we can use that instead. 8369 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 8370 isOperationLegalOrCustom(ISD::CTLZ, VT)) 8371 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 8372 8373 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8374 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 8375 EVT SetCCVT = 8376 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8377 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 8378 SDValue Zero = DAG.getConstant(0, dl, VT); 8379 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8380 return DAG.getSelect(dl, VT, SrcIsZero, 8381 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 8382 } 8383 8384 // Only expand vector types if we have the appropriate vector bit operations. 8385 // This includes the operations needed to expand CTPOP if it isn't supported. 8386 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 8387 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 8388 !canExpandVectorCTPOP(*this, VT)) || 8389 !isOperationLegalOrCustom(ISD::SRL, VT) || 8390 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 8391 return SDValue(); 8392 8393 // for now, we do this: 8394 // x = x | (x >> 1); 8395 // x = x | (x >> 2); 8396 // ... 8397 // x = x | (x >>16); 8398 // x = x | (x >>32); // for 64-bit input 8399 // return popcount(~x); 8400 // 8401 // Ref: "Hacker's Delight" by Henry Warren 8402 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 8403 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 8404 Op = DAG.getNode(ISD::OR, dl, VT, Op, 8405 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 8406 } 8407 Op = DAG.getNOT(dl, Op, VT); 8408 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 8409 } 8410 8411 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8412 SDLoc dl(Node); 8413 EVT VT = Node->getValueType(0); 8414 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8415 SDValue Op = Node->getOperand(0); 8416 SDValue Mask = Node->getOperand(1); 8417 SDValue VL = Node->getOperand(2); 8418 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8419 8420 // do this: 8421 // x = x | (x >> 1); 8422 // x = x | (x >> 2); 8423 // ... 8424 // x = x | (x >>16); 8425 // x = x | (x >>32); // for 64-bit input 8426 // return popcount(~x); 8427 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 8428 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 8429 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 8430 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, Tmp, Mask, VL), Mask, 8431 VL); 8432 } 8433 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask, 8434 VL); 8435 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 8436 } 8437 8438 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 8439 const SDLoc &DL, EVT VT, SDValue Op, 8440 unsigned BitWidth) const { 8441 if (BitWidth != 32 && BitWidth != 64) 8442 return SDValue(); 8443 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 8444 : APInt(64, 0x0218A392CD3D5DBFULL); 8445 const DataLayout &TD = DAG.getDataLayout(); 8446 MachinePointerInfo PtrInfo = 8447 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 8448 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 8449 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 8450 SDValue Lookup = DAG.getNode( 8451 ISD::SRL, DL, VT, 8452 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 8453 DAG.getConstant(DeBruijn, DL, VT)), 8454 DAG.getConstant(ShiftAmt, DL, VT)); 8455 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 8456 8457 SmallVector<uint8_t> Table(BitWidth, 0); 8458 for (unsigned i = 0; i < BitWidth; i++) { 8459 APInt Shl = DeBruijn.shl(i); 8460 APInt Lshr = Shl.lshr(ShiftAmt); 8461 Table[Lshr.getZExtValue()] = i; 8462 } 8463 8464 // Create a ConstantArray in Constant Pool 8465 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 8466 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 8467 TD.getPrefTypeAlign(CA->getType())); 8468 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 8469 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 8470 PtrInfo, MVT::i8); 8471 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 8472 return ExtLoad; 8473 8474 EVT SetCCVT = 8475 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8476 SDValue Zero = DAG.getConstant(0, DL, VT); 8477 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 8478 return DAG.getSelect(DL, VT, SrcIsZero, 8479 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 8480 } 8481 8482 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 8483 SDLoc dl(Node); 8484 EVT VT = Node->getValueType(0); 8485 SDValue Op = Node->getOperand(0); 8486 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8487 8488 // If the non-ZERO_UNDEF version is supported we can use that instead. 8489 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 8490 isOperationLegalOrCustom(ISD::CTTZ, VT)) 8491 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 8492 8493 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8494 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 8495 EVT SetCCVT = 8496 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8497 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 8498 SDValue Zero = DAG.getConstant(0, dl, VT); 8499 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8500 return DAG.getSelect(dl, VT, SrcIsZero, 8501 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 8502 } 8503 8504 // Only expand vector types if we have the appropriate vector bit operations. 8505 // This includes the operations needed to expand CTPOP if it isn't supported. 8506 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 8507 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 8508 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 8509 !canExpandVectorCTPOP(*this, VT)) || 8510 !isOperationLegalOrCustom(ISD::SUB, VT) || 8511 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 8512 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8513 return SDValue(); 8514 8515 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 8516 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 8517 !isOperationLegal(ISD::CTLZ, VT)) 8518 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 8519 return V; 8520 8521 // for now, we use: { return popcount(~x & (x - 1)); } 8522 // unless the target has ctlz but not ctpop, in which case we use: 8523 // { return 32 - nlz(~x & (x-1)); } 8524 // Ref: "Hacker's Delight" by Henry Warren 8525 SDValue Tmp = DAG.getNode( 8526 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 8527 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 8528 8529 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 8530 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 8531 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 8532 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 8533 } 8534 8535 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 8536 } 8537 8538 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 8539 SDValue Op = Node->getOperand(0); 8540 SDValue Mask = Node->getOperand(1); 8541 SDValue VL = Node->getOperand(2); 8542 SDLoc dl(Node); 8543 EVT VT = Node->getValueType(0); 8544 8545 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 8546 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 8547 DAG.getConstant(-1, dl, VT), Mask, VL); 8548 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 8549 DAG.getConstant(1, dl, VT), Mask, VL); 8550 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 8551 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 8552 } 8553 8554 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 8555 bool IsNegative) const { 8556 SDLoc dl(N); 8557 EVT VT = N->getValueType(0); 8558 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8559 SDValue Op = N->getOperand(0); 8560 8561 // abs(x) -> smax(x,sub(0,x)) 8562 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8563 isOperationLegal(ISD::SMAX, VT)) { 8564 SDValue Zero = DAG.getConstant(0, dl, VT); 8565 return DAG.getNode(ISD::SMAX, dl, VT, Op, 8566 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8567 } 8568 8569 // abs(x) -> umin(x,sub(0,x)) 8570 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8571 isOperationLegal(ISD::UMIN, VT)) { 8572 SDValue Zero = DAG.getConstant(0, dl, VT); 8573 Op = DAG.getFreeze(Op); 8574 return DAG.getNode(ISD::UMIN, dl, VT, Op, 8575 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8576 } 8577 8578 // 0 - abs(x) -> smin(x, sub(0,x)) 8579 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 8580 isOperationLegal(ISD::SMIN, VT)) { 8581 Op = DAG.getFreeze(Op); 8582 SDValue Zero = DAG.getConstant(0, dl, VT); 8583 return DAG.getNode(ISD::SMIN, dl, VT, Op, 8584 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8585 } 8586 8587 // Only expand vector types if we have the appropriate vector operations. 8588 if (VT.isVector() && 8589 (!isOperationLegalOrCustom(ISD::SRA, VT) || 8590 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 8591 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 8592 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8593 return SDValue(); 8594 8595 Op = DAG.getFreeze(Op); 8596 SDValue Shift = 8597 DAG.getNode(ISD::SRA, dl, VT, Op, 8598 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 8599 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 8600 8601 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 8602 if (!IsNegative) 8603 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 8604 8605 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 8606 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 8607 } 8608 8609 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 8610 SDLoc dl(N); 8611 EVT VT = N->getValueType(0); 8612 SDValue Op = N->getOperand(0); 8613 8614 if (!VT.isSimple()) 8615 return SDValue(); 8616 8617 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8618 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 8619 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 8620 default: 8621 return SDValue(); 8622 case MVT::i16: 8623 // Use a rotate by 8. This can be further expanded if necessary. 8624 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8625 case MVT::i32: 8626 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8627 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 8628 DAG.getConstant(0xFF00, dl, VT)); 8629 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 8630 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8631 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 8632 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8633 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8634 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8635 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8636 case MVT::i64: 8637 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8638 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 8639 DAG.getConstant(255ULL<<8, dl, VT)); 8640 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 8641 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 8642 DAG.getConstant(255ULL<<16, dl, VT)); 8643 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 8644 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 8645 DAG.getConstant(255ULL<<24, dl, VT)); 8646 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 8647 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8648 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 8649 DAG.getConstant(255ULL<<24, dl, VT)); 8650 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8651 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 8652 DAG.getConstant(255ULL<<16, dl, VT)); 8653 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8654 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 8655 DAG.getConstant(255ULL<<8, dl, VT)); 8656 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8657 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 8658 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 8659 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8660 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8661 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8662 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8663 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8664 } 8665 } 8666 8667 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 8668 SDLoc dl(N); 8669 EVT VT = N->getValueType(0); 8670 SDValue Op = N->getOperand(0); 8671 SDValue Mask = N->getOperand(1); 8672 SDValue EVL = N->getOperand(2); 8673 8674 if (!VT.isSimple()) 8675 return SDValue(); 8676 8677 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8678 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 8679 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 8680 default: 8681 return SDValue(); 8682 case MVT::i16: 8683 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 8684 Mask, EVL); 8685 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 8686 Mask, EVL); 8687 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 8688 case MVT::i32: 8689 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 8690 Mask, EVL); 8691 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 8692 Mask, EVL); 8693 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 8694 Mask, EVL); 8695 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 8696 Mask, EVL); 8697 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8698 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 8699 Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 8700 Mask, EVL); 8701 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 8702 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 8703 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 8704 case MVT::i64: 8705 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 8706 Mask, EVL); 8707 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 8708 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 8709 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 8710 Mask, EVL); 8711 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 8712 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 8713 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 8714 Mask, EVL); 8715 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 8716 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 8717 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 8718 Mask, EVL); 8719 Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 8720 Mask, EVL); 8721 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 8722 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 8723 Tmp3 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 8724 Mask, EVL); 8725 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 8726 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 8727 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 8728 Mask, EVL); 8729 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8730 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 8731 Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 8732 Mask, EVL); 8733 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 8734 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 8735 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 8736 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 8737 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 8738 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 8739 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 8740 } 8741 } 8742 8743 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8744 SDLoc dl(N); 8745 EVT VT = N->getValueType(0); 8746 SDValue Op = N->getOperand(0); 8747 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8748 unsigned Sz = VT.getScalarSizeInBits(); 8749 8750 SDValue Tmp, Tmp2, Tmp3; 8751 8752 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8753 // and finally the i1 pairs. 8754 // TODO: We can easily support i4/i2 legal types if any target ever does. 8755 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8756 // Create the masks - repeating the pattern every byte. 8757 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8758 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8759 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8760 8761 // BSWAP if the type is wider than a single byte. 8762 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8763 8764 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8765 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8766 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8767 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8768 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8769 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8770 8771 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8772 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8773 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8774 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8775 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8776 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8777 8778 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8779 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8780 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8781 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8782 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8783 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8784 return Tmp; 8785 } 8786 8787 Tmp = DAG.getConstant(0, dl, VT); 8788 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8789 if (I < J) 8790 Tmp2 = 8791 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8792 else 8793 Tmp2 = 8794 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8795 8796 APInt Shift(Sz, 1); 8797 Shift <<= J; 8798 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8799 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8800 } 8801 8802 return Tmp; 8803 } 8804 8805 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8806 assert(N->getOpcode() == ISD::VP_BITREVERSE); 8807 8808 SDLoc dl(N); 8809 EVT VT = N->getValueType(0); 8810 SDValue Op = N->getOperand(0); 8811 SDValue Mask = N->getOperand(1); 8812 SDValue EVL = N->getOperand(2); 8813 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8814 unsigned Sz = VT.getScalarSizeInBits(); 8815 8816 SDValue Tmp, Tmp2, Tmp3; 8817 8818 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8819 // and finally the i1 pairs. 8820 // TODO: We can easily support i4/i2 legal types if any target ever does. 8821 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8822 // Create the masks - repeating the pattern every byte. 8823 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8824 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8825 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8826 8827 // BSWAP if the type is wider than a single byte. 8828 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 8829 8830 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8831 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 8832 Mask, EVL); 8833 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8834 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 8835 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 8836 Mask, EVL); 8837 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 8838 Mask, EVL); 8839 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 8840 8841 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8842 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 8843 Mask, EVL); 8844 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8845 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 8846 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 8847 Mask, EVL); 8848 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 8849 Mask, EVL); 8850 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 8851 8852 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8853 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 8854 Mask, EVL); 8855 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8856 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 8857 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 8858 Mask, EVL); 8859 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 8860 Mask, EVL); 8861 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 8862 return Tmp; 8863 } 8864 return SDValue(); 8865 } 8866 8867 std::pair<SDValue, SDValue> 8868 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8869 SelectionDAG &DAG) const { 8870 SDLoc SL(LD); 8871 SDValue Chain = LD->getChain(); 8872 SDValue BasePTR = LD->getBasePtr(); 8873 EVT SrcVT = LD->getMemoryVT(); 8874 EVT DstVT = LD->getValueType(0); 8875 ISD::LoadExtType ExtType = LD->getExtensionType(); 8876 8877 if (SrcVT.isScalableVector()) 8878 report_fatal_error("Cannot scalarize scalable vector loads"); 8879 8880 unsigned NumElem = SrcVT.getVectorNumElements(); 8881 8882 EVT SrcEltVT = SrcVT.getScalarType(); 8883 EVT DstEltVT = DstVT.getScalarType(); 8884 8885 // A vector must always be stored in memory as-is, i.e. without any padding 8886 // between the elements, since various code depend on it, e.g. in the 8887 // handling of a bitcast of a vector type to int, which may be done with a 8888 // vector store followed by an integer load. A vector that does not have 8889 // elements that are byte-sized must therefore be stored as an integer 8890 // built out of the extracted vector elements. 8891 if (!SrcEltVT.isByteSized()) { 8892 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8893 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8894 8895 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8896 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8897 8898 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8899 SDValue SrcEltBitMask = DAG.getConstant( 8900 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8901 8902 // Load the whole vector and avoid masking off the top bits as it makes 8903 // the codegen worse. 8904 SDValue Load = 8905 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8906 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8907 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8908 8909 SmallVector<SDValue, 8> Vals; 8910 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8911 unsigned ShiftIntoIdx = 8912 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8913 SDValue ShiftAmount = 8914 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8915 LoadVT, SL, /*LegalTypes=*/false); 8916 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8917 SDValue Elt = 8918 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8919 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8920 8921 if (ExtType != ISD::NON_EXTLOAD) { 8922 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8923 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8924 } 8925 8926 Vals.push_back(Scalar); 8927 } 8928 8929 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8930 return std::make_pair(Value, Load.getValue(1)); 8931 } 8932 8933 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8934 assert(SrcEltVT.isByteSized()); 8935 8936 SmallVector<SDValue, 8> Vals; 8937 SmallVector<SDValue, 8> LoadChains; 8938 8939 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8940 SDValue ScalarLoad = 8941 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8942 LD->getPointerInfo().getWithOffset(Idx * Stride), 8943 SrcEltVT, LD->getOriginalAlign(), 8944 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8945 8946 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8947 8948 Vals.push_back(ScalarLoad.getValue(0)); 8949 LoadChains.push_back(ScalarLoad.getValue(1)); 8950 } 8951 8952 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8953 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8954 8955 return std::make_pair(Value, NewChain); 8956 } 8957 8958 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8959 SelectionDAG &DAG) const { 8960 SDLoc SL(ST); 8961 8962 SDValue Chain = ST->getChain(); 8963 SDValue BasePtr = ST->getBasePtr(); 8964 SDValue Value = ST->getValue(); 8965 EVT StVT = ST->getMemoryVT(); 8966 8967 if (StVT.isScalableVector()) 8968 report_fatal_error("Cannot scalarize scalable vector stores"); 8969 8970 // The type of the data we want to save 8971 EVT RegVT = Value.getValueType(); 8972 EVT RegSclVT = RegVT.getScalarType(); 8973 8974 // The type of data as saved in memory. 8975 EVT MemSclVT = StVT.getScalarType(); 8976 8977 unsigned NumElem = StVT.getVectorNumElements(); 8978 8979 // A vector must always be stored in memory as-is, i.e. without any padding 8980 // between the elements, since various code depend on it, e.g. in the 8981 // handling of a bitcast of a vector type to int, which may be done with a 8982 // vector store followed by an integer load. A vector that does not have 8983 // elements that are byte-sized must therefore be stored as an integer 8984 // built out of the extracted vector elements. 8985 if (!MemSclVT.isByteSized()) { 8986 unsigned NumBits = StVT.getSizeInBits(); 8987 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8988 8989 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8990 8991 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8992 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8993 DAG.getVectorIdxConstant(Idx, SL)); 8994 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8995 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8996 unsigned ShiftIntoIdx = 8997 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8998 SDValue ShiftAmount = 8999 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 9000 SDValue ShiftedElt = 9001 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 9002 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 9003 } 9004 9005 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 9006 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9007 ST->getAAInfo()); 9008 } 9009 9010 // Store Stride in bytes 9011 unsigned Stride = MemSclVT.getSizeInBits() / 8; 9012 assert(Stride && "Zero stride!"); 9013 // Extract each of the elements from the original vector and save them into 9014 // memory individually. 9015 SmallVector<SDValue, 8> Stores; 9016 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9017 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9018 DAG.getVectorIdxConstant(Idx, SL)); 9019 9020 SDValue Ptr = 9021 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 9022 9023 // This scalar TruncStore may be illegal, but we legalize it later. 9024 SDValue Store = DAG.getTruncStore( 9025 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 9026 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9027 ST->getAAInfo()); 9028 9029 Stores.push_back(Store); 9030 } 9031 9032 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 9033 } 9034 9035 std::pair<SDValue, SDValue> 9036 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 9037 assert(LD->getAddressingMode() == ISD::UNINDEXED && 9038 "unaligned indexed loads not implemented!"); 9039 SDValue Chain = LD->getChain(); 9040 SDValue Ptr = LD->getBasePtr(); 9041 EVT VT = LD->getValueType(0); 9042 EVT LoadedVT = LD->getMemoryVT(); 9043 SDLoc dl(LD); 9044 auto &MF = DAG.getMachineFunction(); 9045 9046 if (VT.isFloatingPoint() || VT.isVector()) { 9047 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 9048 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 9049 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 9050 LoadedVT.isVector()) { 9051 // Scalarize the load and let the individual components be handled. 9052 return scalarizeVectorLoad(LD, DAG); 9053 } 9054 9055 // Expand to a (misaligned) integer load of the same size, 9056 // then bitconvert to floating point or vector. 9057 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 9058 LD->getMemOperand()); 9059 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 9060 if (LoadedVT != VT) 9061 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 9062 ISD::ANY_EXTEND, dl, VT, Result); 9063 9064 return std::make_pair(Result, newLoad.getValue(1)); 9065 } 9066 9067 // Copy the value to a (aligned) stack slot using (unaligned) integer 9068 // loads and stores, then do a (aligned) load from the stack slot. 9069 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 9070 unsigned LoadedBytes = LoadedVT.getStoreSize(); 9071 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9072 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 9073 9074 // Make sure the stack slot is also aligned for the register type. 9075 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 9076 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 9077 SmallVector<SDValue, 8> Stores; 9078 SDValue StackPtr = StackBase; 9079 unsigned Offset = 0; 9080 9081 EVT PtrVT = Ptr.getValueType(); 9082 EVT StackPtrVT = StackPtr.getValueType(); 9083 9084 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9085 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9086 9087 // Do all but one copies using the full register width. 9088 for (unsigned i = 1; i < NumRegs; i++) { 9089 // Load one integer register's worth from the original location. 9090 SDValue Load = DAG.getLoad( 9091 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 9092 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9093 LD->getAAInfo()); 9094 // Follow the load with a store to the stack slot. Remember the store. 9095 Stores.push_back(DAG.getStore( 9096 Load.getValue(1), dl, Load, StackPtr, 9097 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 9098 // Increment the pointers. 9099 Offset += RegBytes; 9100 9101 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9102 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9103 } 9104 9105 // The last copy may be partial. Do an extending load. 9106 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 9107 8 * (LoadedBytes - Offset)); 9108 SDValue Load = 9109 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 9110 LD->getPointerInfo().getWithOffset(Offset), MemVT, 9111 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9112 LD->getAAInfo()); 9113 // Follow the load with a store to the stack slot. Remember the store. 9114 // On big-endian machines this requires a truncating store to ensure 9115 // that the bits end up in the right place. 9116 Stores.push_back(DAG.getTruncStore( 9117 Load.getValue(1), dl, Load, StackPtr, 9118 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 9119 9120 // The order of the stores doesn't matter - say it with a TokenFactor. 9121 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9122 9123 // Finally, perform the original load only redirected to the stack slot. 9124 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 9125 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 9126 LoadedVT); 9127 9128 // Callers expect a MERGE_VALUES node. 9129 return std::make_pair(Load, TF); 9130 } 9131 9132 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 9133 "Unaligned load of unsupported type."); 9134 9135 // Compute the new VT that is half the size of the old one. This is an 9136 // integer MVT. 9137 unsigned NumBits = LoadedVT.getSizeInBits(); 9138 EVT NewLoadedVT; 9139 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 9140 NumBits >>= 1; 9141 9142 Align Alignment = LD->getOriginalAlign(); 9143 unsigned IncrementSize = NumBits / 8; 9144 ISD::LoadExtType HiExtType = LD->getExtensionType(); 9145 9146 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 9147 if (HiExtType == ISD::NON_EXTLOAD) 9148 HiExtType = ISD::ZEXTLOAD; 9149 9150 // Load the value in two parts 9151 SDValue Lo, Hi; 9152 if (DAG.getDataLayout().isLittleEndian()) { 9153 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9154 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9155 LD->getAAInfo()); 9156 9157 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 9158 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 9159 LD->getPointerInfo().getWithOffset(IncrementSize), 9160 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9161 LD->getAAInfo()); 9162 } else { 9163 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9164 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9165 LD->getAAInfo()); 9166 9167 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 9168 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 9169 LD->getPointerInfo().getWithOffset(IncrementSize), 9170 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9171 LD->getAAInfo()); 9172 } 9173 9174 // aggregate the two parts 9175 SDValue ShiftAmount = 9176 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 9177 DAG.getDataLayout())); 9178 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 9179 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 9180 9181 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 9182 Hi.getValue(1)); 9183 9184 return std::make_pair(Result, TF); 9185 } 9186 9187 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 9188 SelectionDAG &DAG) const { 9189 assert(ST->getAddressingMode() == ISD::UNINDEXED && 9190 "unaligned indexed stores not implemented!"); 9191 SDValue Chain = ST->getChain(); 9192 SDValue Ptr = ST->getBasePtr(); 9193 SDValue Val = ST->getValue(); 9194 EVT VT = Val.getValueType(); 9195 Align Alignment = ST->getOriginalAlign(); 9196 auto &MF = DAG.getMachineFunction(); 9197 EVT StoreMemVT = ST->getMemoryVT(); 9198 9199 SDLoc dl(ST); 9200 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 9201 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 9202 if (isTypeLegal(intVT)) { 9203 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 9204 StoreMemVT.isVector()) { 9205 // Scalarize the store and let the individual components be handled. 9206 SDValue Result = scalarizeVectorStore(ST, DAG); 9207 return Result; 9208 } 9209 // Expand to a bitconvert of the value to the integer type of the 9210 // same size, then a (misaligned) int store. 9211 // FIXME: Does not handle truncating floating point stores! 9212 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 9213 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 9214 Alignment, ST->getMemOperand()->getFlags()); 9215 return Result; 9216 } 9217 // Do a (aligned) store to a stack slot, then copy from the stack slot 9218 // to the final destination using (unaligned) integer loads and stores. 9219 MVT RegVT = getRegisterType( 9220 *DAG.getContext(), 9221 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 9222 EVT PtrVT = Ptr.getValueType(); 9223 unsigned StoredBytes = StoreMemVT.getStoreSize(); 9224 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9225 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 9226 9227 // Make sure the stack slot is also aligned for the register type. 9228 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 9229 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9230 9231 // Perform the original store, only redirected to the stack slot. 9232 SDValue Store = DAG.getTruncStore( 9233 Chain, dl, Val, StackPtr, 9234 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 9235 9236 EVT StackPtrVT = StackPtr.getValueType(); 9237 9238 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9239 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9240 SmallVector<SDValue, 8> Stores; 9241 unsigned Offset = 0; 9242 9243 // Do all but one copies using the full register width. 9244 for (unsigned i = 1; i < NumRegs; i++) { 9245 // Load one integer register's worth from the stack slot. 9246 SDValue Load = DAG.getLoad( 9247 RegVT, dl, Store, StackPtr, 9248 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 9249 // Store it to the final location. Remember the store. 9250 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 9251 ST->getPointerInfo().getWithOffset(Offset), 9252 ST->getOriginalAlign(), 9253 ST->getMemOperand()->getFlags())); 9254 // Increment the pointers. 9255 Offset += RegBytes; 9256 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9257 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9258 } 9259 9260 // The last store may be partial. Do a truncating store. On big-endian 9261 // machines this requires an extending load from the stack slot to ensure 9262 // that the bits are in the right place. 9263 EVT LoadMemVT = 9264 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 9265 9266 // Load from the stack slot. 9267 SDValue Load = DAG.getExtLoad( 9268 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 9269 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 9270 9271 Stores.push_back( 9272 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 9273 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 9274 ST->getOriginalAlign(), 9275 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 9276 // The order of the stores doesn't matter - say it with a TokenFactor. 9277 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9278 return Result; 9279 } 9280 9281 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 9282 "Unaligned store of unknown type."); 9283 // Get the half-size VT 9284 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 9285 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 9286 unsigned IncrementSize = NumBits / 8; 9287 9288 // Divide the stored value in two parts. 9289 SDValue ShiftAmount = DAG.getConstant( 9290 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 9291 SDValue Lo = Val; 9292 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 9293 9294 // Store the two parts 9295 SDValue Store1, Store2; 9296 Store1 = DAG.getTruncStore(Chain, dl, 9297 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 9298 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 9299 ST->getMemOperand()->getFlags()); 9300 9301 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 9302 Store2 = DAG.getTruncStore( 9303 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 9304 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 9305 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 9306 9307 SDValue Result = 9308 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 9309 return Result; 9310 } 9311 9312 SDValue 9313 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 9314 const SDLoc &DL, EVT DataVT, 9315 SelectionDAG &DAG, 9316 bool IsCompressedMemory) const { 9317 SDValue Increment; 9318 EVT AddrVT = Addr.getValueType(); 9319 EVT MaskVT = Mask.getValueType(); 9320 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 9321 "Incompatible types of Data and Mask"); 9322 if (IsCompressedMemory) { 9323 if (DataVT.isScalableVector()) 9324 report_fatal_error( 9325 "Cannot currently handle compressed memory with scalable vectors"); 9326 // Incrementing the pointer according to number of '1's in the mask. 9327 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 9328 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 9329 if (MaskIntVT.getSizeInBits() < 32) { 9330 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 9331 MaskIntVT = MVT::i32; 9332 } 9333 9334 // Count '1's with POPCNT. 9335 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 9336 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 9337 // Scale is an element size in bytes. 9338 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 9339 AddrVT); 9340 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 9341 } else if (DataVT.isScalableVector()) { 9342 Increment = DAG.getVScale(DL, AddrVT, 9343 APInt(AddrVT.getFixedSizeInBits(), 9344 DataVT.getStoreSize().getKnownMinValue())); 9345 } else 9346 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 9347 9348 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 9349 } 9350 9351 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 9352 EVT VecVT, const SDLoc &dl, 9353 ElementCount SubEC) { 9354 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 9355 "Cannot index a scalable vector within a fixed-width vector"); 9356 9357 unsigned NElts = VecVT.getVectorMinNumElements(); 9358 unsigned NumSubElts = SubEC.getKnownMinValue(); 9359 EVT IdxVT = Idx.getValueType(); 9360 9361 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 9362 // If this is a constant index and we know the value plus the number of the 9363 // elements in the subvector minus one is less than the minimum number of 9364 // elements then it's safe to return Idx. 9365 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 9366 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 9367 return Idx; 9368 SDValue VS = 9369 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 9370 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 9371 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 9372 DAG.getConstant(NumSubElts, dl, IdxVT)); 9373 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 9374 } 9375 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 9376 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 9377 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 9378 DAG.getConstant(Imm, dl, IdxVT)); 9379 } 9380 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 9381 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 9382 DAG.getConstant(MaxIndex, dl, IdxVT)); 9383 } 9384 9385 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 9386 SDValue VecPtr, EVT VecVT, 9387 SDValue Index) const { 9388 return getVectorSubVecPointer( 9389 DAG, VecPtr, VecVT, 9390 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 9391 Index); 9392 } 9393 9394 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 9395 SDValue VecPtr, EVT VecVT, 9396 EVT SubVecVT, 9397 SDValue Index) const { 9398 SDLoc dl(Index); 9399 // Make sure the index type is big enough to compute in. 9400 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 9401 9402 EVT EltVT = VecVT.getVectorElementType(); 9403 9404 // Calculate the element offset and add it to the pointer. 9405 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 9406 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 9407 "Converting bits to bytes lost precision"); 9408 assert(SubVecVT.getVectorElementType() == EltVT && 9409 "Sub-vector must be a vector with matching element type"); 9410 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 9411 SubVecVT.getVectorElementCount()); 9412 9413 EVT IdxVT = Index.getValueType(); 9414 if (SubVecVT.isScalableVector()) 9415 Index = 9416 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 9417 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 9418 9419 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 9420 DAG.getConstant(EltSize, dl, IdxVT)); 9421 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 9422 } 9423 9424 //===----------------------------------------------------------------------===// 9425 // Implementation of Emulated TLS Model 9426 //===----------------------------------------------------------------------===// 9427 9428 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 9429 SelectionDAG &DAG) const { 9430 // Access to address of TLS varialbe xyz is lowered to a function call: 9431 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 9432 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9433 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 9434 SDLoc dl(GA); 9435 9436 ArgListTy Args; 9437 ArgListEntry Entry; 9438 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 9439 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 9440 StringRef EmuTlsVarName(NameString); 9441 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 9442 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 9443 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 9444 Entry.Ty = VoidPtrType; 9445 Args.push_back(Entry); 9446 9447 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 9448 9449 TargetLowering::CallLoweringInfo CLI(DAG); 9450 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 9451 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 9452 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 9453 9454 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 9455 // At last for X86 targets, maybe good for other targets too? 9456 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9457 MFI.setAdjustsStack(true); // Is this only for X86 target? 9458 MFI.setHasCalls(true); 9459 9460 assert((GA->getOffset() == 0) && 9461 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 9462 return CallResult.first; 9463 } 9464 9465 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 9466 SelectionDAG &DAG) const { 9467 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 9468 if (!isCtlzFast()) 9469 return SDValue(); 9470 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 9471 SDLoc dl(Op); 9472 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9473 if (C->isZero() && CC == ISD::SETEQ) { 9474 EVT VT = Op.getOperand(0).getValueType(); 9475 SDValue Zext = Op.getOperand(0); 9476 if (VT.bitsLT(MVT::i32)) { 9477 VT = MVT::i32; 9478 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 9479 } 9480 unsigned Log2b = Log2_32(VT.getSizeInBits()); 9481 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 9482 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 9483 DAG.getConstant(Log2b, dl, MVT::i32)); 9484 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 9485 } 9486 } 9487 return SDValue(); 9488 } 9489 9490 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 9491 SDValue Op0 = Node->getOperand(0); 9492 SDValue Op1 = Node->getOperand(1); 9493 EVT VT = Op0.getValueType(); 9494 unsigned Opcode = Node->getOpcode(); 9495 SDLoc DL(Node); 9496 9497 // umin(x,y) -> sub(x,usubsat(x,y)) 9498 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 9499 isOperationLegal(ISD::USUBSAT, VT)) { 9500 return DAG.getNode(ISD::SUB, DL, VT, Op0, 9501 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 9502 } 9503 9504 // umax(x,y) -> add(x,usubsat(y,x)) 9505 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 9506 isOperationLegal(ISD::USUBSAT, VT)) { 9507 return DAG.getNode(ISD::ADD, DL, VT, Op0, 9508 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 9509 } 9510 9511 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 9512 ISD::CondCode CC; 9513 switch (Opcode) { 9514 default: llvm_unreachable("How did we get here?"); 9515 case ISD::SMAX: CC = ISD::SETGT; break; 9516 case ISD::SMIN: CC = ISD::SETLT; break; 9517 case ISD::UMAX: CC = ISD::SETUGT; break; 9518 case ISD::UMIN: CC = ISD::SETULT; break; 9519 } 9520 9521 // FIXME: Should really try to split the vector in case it's legal on a 9522 // subvector. 9523 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9524 return DAG.UnrollVectorOp(Node); 9525 9526 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9527 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 9528 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 9529 } 9530 9531 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 9532 unsigned Opcode = Node->getOpcode(); 9533 SDValue LHS = Node->getOperand(0); 9534 SDValue RHS = Node->getOperand(1); 9535 EVT VT = LHS.getValueType(); 9536 SDLoc dl(Node); 9537 9538 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 9539 assert(VT.isInteger() && "Expected operands to be integers"); 9540 9541 // usub.sat(a, b) -> umax(a, b) - b 9542 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 9543 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 9544 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 9545 } 9546 9547 // uadd.sat(a, b) -> umin(a, ~b) + b 9548 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 9549 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 9550 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 9551 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 9552 } 9553 9554 unsigned OverflowOp; 9555 switch (Opcode) { 9556 case ISD::SADDSAT: 9557 OverflowOp = ISD::SADDO; 9558 break; 9559 case ISD::UADDSAT: 9560 OverflowOp = ISD::UADDO; 9561 break; 9562 case ISD::SSUBSAT: 9563 OverflowOp = ISD::SSUBO; 9564 break; 9565 case ISD::USUBSAT: 9566 OverflowOp = ISD::USUBO; 9567 break; 9568 default: 9569 llvm_unreachable("Expected method to receive signed or unsigned saturation " 9570 "addition or subtraction node."); 9571 } 9572 9573 // FIXME: Should really try to split the vector in case it's legal on a 9574 // subvector. 9575 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9576 return DAG.UnrollVectorOp(Node); 9577 9578 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 9579 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9580 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 9581 SDValue SumDiff = Result.getValue(0); 9582 SDValue Overflow = Result.getValue(1); 9583 SDValue Zero = DAG.getConstant(0, dl, VT); 9584 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 9585 9586 if (Opcode == ISD::UADDSAT) { 9587 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9588 // (LHS + RHS) | OverflowMask 9589 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 9590 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 9591 } 9592 // Overflow ? 0xffff.... : (LHS + RHS) 9593 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 9594 } 9595 9596 if (Opcode == ISD::USUBSAT) { 9597 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9598 // (LHS - RHS) & ~OverflowMask 9599 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 9600 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 9601 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 9602 } 9603 // Overflow ? 0 : (LHS - RHS) 9604 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 9605 } 9606 9607 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 9608 APInt MinVal = APInt::getSignedMinValue(BitWidth); 9609 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 9610 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 9611 DAG.getConstant(BitWidth - 1, dl, VT)); 9612 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 9613 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 9614 } 9615 9616 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 9617 unsigned Opcode = Node->getOpcode(); 9618 bool IsSigned = Opcode == ISD::SSHLSAT; 9619 SDValue LHS = Node->getOperand(0); 9620 SDValue RHS = Node->getOperand(1); 9621 EVT VT = LHS.getValueType(); 9622 SDLoc dl(Node); 9623 9624 assert((Node->getOpcode() == ISD::SSHLSAT || 9625 Node->getOpcode() == ISD::USHLSAT) && 9626 "Expected a SHLSAT opcode"); 9627 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 9628 assert(VT.isInteger() && "Expected operands to be integers"); 9629 9630 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9631 return DAG.UnrollVectorOp(Node); 9632 9633 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 9634 9635 unsigned BW = VT.getScalarSizeInBits(); 9636 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9637 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 9638 SDValue Orig = 9639 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 9640 9641 SDValue SatVal; 9642 if (IsSigned) { 9643 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 9644 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 9645 SDValue Cond = 9646 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 9647 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 9648 } else { 9649 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 9650 } 9651 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 9652 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 9653 } 9654 9655 SDValue 9656 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 9657 assert((Node->getOpcode() == ISD::SMULFIX || 9658 Node->getOpcode() == ISD::UMULFIX || 9659 Node->getOpcode() == ISD::SMULFIXSAT || 9660 Node->getOpcode() == ISD::UMULFIXSAT) && 9661 "Expected a fixed point multiplication opcode"); 9662 9663 SDLoc dl(Node); 9664 SDValue LHS = Node->getOperand(0); 9665 SDValue RHS = Node->getOperand(1); 9666 EVT VT = LHS.getValueType(); 9667 unsigned Scale = Node->getConstantOperandVal(2); 9668 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 9669 Node->getOpcode() == ISD::UMULFIXSAT); 9670 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 9671 Node->getOpcode() == ISD::SMULFIXSAT); 9672 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9673 unsigned VTSize = VT.getScalarSizeInBits(); 9674 9675 if (!Scale) { 9676 // [us]mul.fix(a, b, 0) -> mul(a, b) 9677 if (!Saturating) { 9678 if (isOperationLegalOrCustom(ISD::MUL, VT)) 9679 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9680 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 9681 SDValue Result = 9682 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 9683 SDValue Product = Result.getValue(0); 9684 SDValue Overflow = Result.getValue(1); 9685 SDValue Zero = DAG.getConstant(0, dl, VT); 9686 9687 APInt MinVal = APInt::getSignedMinValue(VTSize); 9688 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 9689 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 9690 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 9691 // Xor the inputs, if resulting sign bit is 0 the product will be 9692 // positive, else negative. 9693 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9694 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 9695 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 9696 return DAG.getSelect(dl, VT, Overflow, Result, Product); 9697 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 9698 SDValue Result = 9699 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 9700 SDValue Product = Result.getValue(0); 9701 SDValue Overflow = Result.getValue(1); 9702 9703 APInt MaxVal = APInt::getMaxValue(VTSize); 9704 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 9705 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 9706 } 9707 } 9708 9709 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 9710 "Expected scale to be less than the number of bits if signed or at " 9711 "most the number of bits if unsigned."); 9712 assert(LHS.getValueType() == RHS.getValueType() && 9713 "Expected both operands to be the same type"); 9714 9715 // Get the upper and lower bits of the result. 9716 SDValue Lo, Hi; 9717 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 9718 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 9719 if (isOperationLegalOrCustom(LoHiOp, VT)) { 9720 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 9721 Lo = Result.getValue(0); 9722 Hi = Result.getValue(1); 9723 } else if (isOperationLegalOrCustom(HiOp, VT)) { 9724 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9725 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 9726 } else if (VT.isVector()) { 9727 return SDValue(); 9728 } else { 9729 report_fatal_error("Unable to expand fixed point multiplication."); 9730 } 9731 9732 if (Scale == VTSize) 9733 // Result is just the top half since we'd be shifting by the width of the 9734 // operand. Overflow impossible so this works for both UMULFIX and 9735 // UMULFIXSAT. 9736 return Hi; 9737 9738 // The result will need to be shifted right by the scale since both operands 9739 // are scaled. The result is given to us in 2 halves, so we only want part of 9740 // both in the result. 9741 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9742 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 9743 DAG.getConstant(Scale, dl, ShiftTy)); 9744 if (!Saturating) 9745 return Result; 9746 9747 if (!Signed) { 9748 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 9749 // widened multiplication) aren't all zeroes. 9750 9751 // Saturate to max if ((Hi >> Scale) != 0), 9752 // which is the same as if (Hi > ((1 << Scale) - 1)) 9753 APInt MaxVal = APInt::getMaxValue(VTSize); 9754 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 9755 dl, VT); 9756 Result = DAG.getSelectCC(dl, Hi, LowMask, 9757 DAG.getConstant(MaxVal, dl, VT), Result, 9758 ISD::SETUGT); 9759 9760 return Result; 9761 } 9762 9763 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 9764 // widened multiplication) aren't all ones or all zeroes. 9765 9766 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 9767 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 9768 9769 if (Scale == 0) { 9770 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 9771 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 9772 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 9773 // Saturated to SatMin if wide product is negative, and SatMax if wide 9774 // product is positive ... 9775 SDValue Zero = DAG.getConstant(0, dl, VT); 9776 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 9777 ISD::SETLT); 9778 // ... but only if we overflowed. 9779 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 9780 } 9781 9782 // We handled Scale==0 above so all the bits to examine is in Hi. 9783 9784 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 9785 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 9786 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 9787 dl, VT); 9788 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 9789 // Saturate to min if (Hi >> (Scale - 1)) < -1), 9790 // which is the same as if (HI < (-1 << (Scale - 1)) 9791 SDValue HighMask = 9792 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 9793 dl, VT); 9794 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 9795 return Result; 9796 } 9797 9798 SDValue 9799 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 9800 SDValue LHS, SDValue RHS, 9801 unsigned Scale, SelectionDAG &DAG) const { 9802 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9803 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9804 "Expected a fixed point division opcode"); 9805 9806 EVT VT = LHS.getValueType(); 9807 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9808 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9809 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9810 9811 // If there is enough room in the type to upscale the LHS or downscale the 9812 // RHS before the division, we can perform it in this type without having to 9813 // resize. For signed operations, the LHS headroom is the number of 9814 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9815 // The headroom for the RHS is the number of trailing zeroes. 9816 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9817 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9818 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9819 9820 // For signed saturating operations, we need to be able to detect true integer 9821 // division overflow; that is, when you have MIN / -EPS. However, this 9822 // is undefined behavior and if we emit divisions that could take such 9823 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9824 // example). 9825 // Avoid this by requiring an extra bit so that we never get this case. 9826 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9827 // signed saturating division, we need to emit a whopping 32-bit division. 9828 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9829 return SDValue(); 9830 9831 unsigned LHSShift = std::min(LHSLead, Scale); 9832 unsigned RHSShift = Scale - LHSShift; 9833 9834 // At this point, we know that if we shift the LHS up by LHSShift and the 9835 // RHS down by RHSShift, we can emit a regular division with a final scaling 9836 // factor of Scale. 9837 9838 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9839 if (LHSShift) 9840 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9841 DAG.getConstant(LHSShift, dl, ShiftTy)); 9842 if (RHSShift) 9843 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9844 DAG.getConstant(RHSShift, dl, ShiftTy)); 9845 9846 SDValue Quot; 9847 if (Signed) { 9848 // For signed operations, if the resulting quotient is negative and the 9849 // remainder is nonzero, subtract 1 from the quotient to round towards 9850 // negative infinity. 9851 SDValue Rem; 9852 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9853 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9854 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9855 if (isTypeLegal(VT) && 9856 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9857 Quot = DAG.getNode(ISD::SDIVREM, dl, 9858 DAG.getVTList(VT, VT), 9859 LHS, RHS); 9860 Rem = Quot.getValue(1); 9861 Quot = Quot.getValue(0); 9862 } else { 9863 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9864 LHS, RHS); 9865 Rem = DAG.getNode(ISD::SREM, dl, VT, 9866 LHS, RHS); 9867 } 9868 SDValue Zero = DAG.getConstant(0, dl, VT); 9869 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9870 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9871 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9872 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9873 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9874 DAG.getConstant(1, dl, VT)); 9875 Quot = DAG.getSelect(dl, VT, 9876 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9877 Sub1, Quot); 9878 } else 9879 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9880 LHS, RHS); 9881 9882 return Quot; 9883 } 9884 9885 void TargetLowering::expandUADDSUBO( 9886 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9887 SDLoc dl(Node); 9888 SDValue LHS = Node->getOperand(0); 9889 SDValue RHS = Node->getOperand(1); 9890 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9891 9892 // If ADD/SUBCARRY is legal, use that instead. 9893 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9894 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9895 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9896 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9897 { LHS, RHS, CarryIn }); 9898 Result = SDValue(NodeCarry.getNode(), 0); 9899 Overflow = SDValue(NodeCarry.getNode(), 1); 9900 return; 9901 } 9902 9903 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9904 LHS.getValueType(), LHS, RHS); 9905 9906 EVT ResultType = Node->getValueType(1); 9907 EVT SetCCType = getSetCCResultType( 9908 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9909 SDValue SetCC; 9910 if (IsAdd && isOneConstant(RHS)) { 9911 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9912 // the live range of X. We assume comparing with 0 is cheap. 9913 // The general case (X + C) < C is not necessarily beneficial. Although we 9914 // reduce the live range of X, we may introduce the materialization of 9915 // constant C. 9916 SetCC = 9917 DAG.getSetCC(dl, SetCCType, Result, 9918 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9919 } else { 9920 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9921 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9922 } 9923 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9924 } 9925 9926 void TargetLowering::expandSADDSUBO( 9927 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9928 SDLoc dl(Node); 9929 SDValue LHS = Node->getOperand(0); 9930 SDValue RHS = Node->getOperand(1); 9931 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9932 9933 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9934 LHS.getValueType(), LHS, RHS); 9935 9936 EVT ResultType = Node->getValueType(1); 9937 EVT OType = getSetCCResultType( 9938 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9939 9940 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9941 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9942 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9943 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9944 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9945 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9946 return; 9947 } 9948 9949 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9950 9951 // For an addition, the result should be less than one of the operands (LHS) 9952 // if and only if the other operand (RHS) is negative, otherwise there will 9953 // be overflow. 9954 // For a subtraction, the result should be less than one of the operands 9955 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9956 // otherwise there will be overflow. 9957 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9958 SDValue ConditionRHS = 9959 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9960 9961 Overflow = DAG.getBoolExtOrTrunc( 9962 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9963 ResultType, ResultType); 9964 } 9965 9966 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9967 SDValue &Overflow, SelectionDAG &DAG) const { 9968 SDLoc dl(Node); 9969 EVT VT = Node->getValueType(0); 9970 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9971 SDValue LHS = Node->getOperand(0); 9972 SDValue RHS = Node->getOperand(1); 9973 bool isSigned = Node->getOpcode() == ISD::SMULO; 9974 9975 // For power-of-two multiplications we can use a simpler shift expansion. 9976 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9977 const APInt &C = RHSC->getAPIntValue(); 9978 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9979 if (C.isPowerOf2()) { 9980 // smulo(x, signed_min) is same as umulo(x, signed_min). 9981 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9982 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9983 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9984 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9985 Overflow = DAG.getSetCC(dl, SetCCVT, 9986 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9987 dl, VT, Result, ShiftAmt), 9988 LHS, ISD::SETNE); 9989 return true; 9990 } 9991 } 9992 9993 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9994 if (VT.isVector()) 9995 WideVT = 9996 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9997 9998 SDValue BottomHalf; 9999 SDValue TopHalf; 10000 static const unsigned Ops[2][3] = 10001 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 10002 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 10003 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 10004 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10005 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 10006 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 10007 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 10008 RHS); 10009 TopHalf = BottomHalf.getValue(1); 10010 } else if (isTypeLegal(WideVT)) { 10011 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 10012 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 10013 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 10014 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 10015 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 10016 getShiftAmountTy(WideVT, DAG.getDataLayout())); 10017 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 10018 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 10019 } else { 10020 if (VT.isVector()) 10021 return false; 10022 10023 // We can fall back to a libcall with an illegal type for the MUL if we 10024 // have a libcall big enough. 10025 // Also, we can fall back to a division in some cases, but that's a big 10026 // performance hit in the general case. 10027 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10028 if (WideVT == MVT::i16) 10029 LC = RTLIB::MUL_I16; 10030 else if (WideVT == MVT::i32) 10031 LC = RTLIB::MUL_I32; 10032 else if (WideVT == MVT::i64) 10033 LC = RTLIB::MUL_I64; 10034 else if (WideVT == MVT::i128) 10035 LC = RTLIB::MUL_I128; 10036 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 10037 10038 SDValue HiLHS; 10039 SDValue HiRHS; 10040 if (isSigned) { 10041 // The high part is obtained by SRA'ing all but one of the bits of low 10042 // part. 10043 unsigned LoSize = VT.getFixedSizeInBits(); 10044 HiLHS = 10045 DAG.getNode(ISD::SRA, dl, VT, LHS, 10046 DAG.getConstant(LoSize - 1, dl, 10047 getPointerTy(DAG.getDataLayout()))); 10048 HiRHS = 10049 DAG.getNode(ISD::SRA, dl, VT, RHS, 10050 DAG.getConstant(LoSize - 1, dl, 10051 getPointerTy(DAG.getDataLayout()))); 10052 } else { 10053 HiLHS = DAG.getConstant(0, dl, VT); 10054 HiRHS = DAG.getConstant(0, dl, VT); 10055 } 10056 10057 // Here we're passing the 2 arguments explicitly as 4 arguments that are 10058 // pre-lowered to the correct types. This all depends upon WideVT not 10059 // being a legal type for the architecture and thus has to be split to 10060 // two arguments. 10061 SDValue Ret; 10062 TargetLowering::MakeLibCallOptions CallOptions; 10063 CallOptions.setSExt(isSigned); 10064 CallOptions.setIsPostTypeLegalization(true); 10065 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10066 // Halves of WideVT are packed into registers in different order 10067 // depending on platform endianness. This is usually handled by 10068 // the C calling convention, but we can't defer to it in 10069 // the legalizer. 10070 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 10071 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10072 } else { 10073 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 10074 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10075 } 10076 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10077 "Ret value is a collection of constituent nodes holding result."); 10078 if (DAG.getDataLayout().isLittleEndian()) { 10079 // Same as above. 10080 BottomHalf = Ret.getOperand(0); 10081 TopHalf = Ret.getOperand(1); 10082 } else { 10083 BottomHalf = Ret.getOperand(1); 10084 TopHalf = Ret.getOperand(0); 10085 } 10086 } 10087 10088 Result = BottomHalf; 10089 if (isSigned) { 10090 SDValue ShiftAmt = DAG.getConstant( 10091 VT.getScalarSizeInBits() - 1, dl, 10092 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 10093 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 10094 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 10095 } else { 10096 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 10097 DAG.getConstant(0, dl, VT), ISD::SETNE); 10098 } 10099 10100 // Truncate the result if SetCC returns a larger type than needed. 10101 EVT RType = Node->getValueType(1); 10102 if (RType.bitsLT(Overflow.getValueType())) 10103 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 10104 10105 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 10106 "Unexpected result type for S/UMULO legalization"); 10107 return true; 10108 } 10109 10110 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 10111 SDLoc dl(Node); 10112 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 10113 SDValue Op = Node->getOperand(0); 10114 EVT VT = Op.getValueType(); 10115 10116 if (VT.isScalableVector()) 10117 report_fatal_error( 10118 "Expanding reductions for scalable vectors is undefined."); 10119 10120 // Try to use a shuffle reduction for power of two vectors. 10121 if (VT.isPow2VectorType()) { 10122 while (VT.getVectorNumElements() > 1) { 10123 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 10124 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 10125 break; 10126 10127 SDValue Lo, Hi; 10128 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 10129 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 10130 VT = HalfVT; 10131 } 10132 } 10133 10134 EVT EltVT = VT.getVectorElementType(); 10135 unsigned NumElts = VT.getVectorNumElements(); 10136 10137 SmallVector<SDValue, 8> Ops; 10138 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 10139 10140 SDValue Res = Ops[0]; 10141 for (unsigned i = 1; i < NumElts; i++) 10142 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 10143 10144 // Result type may be wider than element type. 10145 if (EltVT != Node->getValueType(0)) 10146 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 10147 return Res; 10148 } 10149 10150 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 10151 SDLoc dl(Node); 10152 SDValue AccOp = Node->getOperand(0); 10153 SDValue VecOp = Node->getOperand(1); 10154 SDNodeFlags Flags = Node->getFlags(); 10155 10156 EVT VT = VecOp.getValueType(); 10157 EVT EltVT = VT.getVectorElementType(); 10158 10159 if (VT.isScalableVector()) 10160 report_fatal_error( 10161 "Expanding reductions for scalable vectors is undefined."); 10162 10163 unsigned NumElts = VT.getVectorNumElements(); 10164 10165 SmallVector<SDValue, 8> Ops; 10166 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 10167 10168 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 10169 10170 SDValue Res = AccOp; 10171 for (unsigned i = 0; i < NumElts; i++) 10172 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 10173 10174 return Res; 10175 } 10176 10177 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 10178 SelectionDAG &DAG) const { 10179 EVT VT = Node->getValueType(0); 10180 SDLoc dl(Node); 10181 bool isSigned = Node->getOpcode() == ISD::SREM; 10182 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 10183 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 10184 SDValue Dividend = Node->getOperand(0); 10185 SDValue Divisor = Node->getOperand(1); 10186 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 10187 SDVTList VTs = DAG.getVTList(VT, VT); 10188 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 10189 return true; 10190 } 10191 if (isOperationLegalOrCustom(DivOpc, VT)) { 10192 // X % Y -> X-X/Y*Y 10193 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 10194 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 10195 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 10196 return true; 10197 } 10198 return false; 10199 } 10200 10201 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 10202 SelectionDAG &DAG) const { 10203 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 10204 SDLoc dl(SDValue(Node, 0)); 10205 SDValue Src = Node->getOperand(0); 10206 10207 // DstVT is the result type, while SatVT is the size to which we saturate 10208 EVT SrcVT = Src.getValueType(); 10209 EVT DstVT = Node->getValueType(0); 10210 10211 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 10212 unsigned SatWidth = SatVT.getScalarSizeInBits(); 10213 unsigned DstWidth = DstVT.getScalarSizeInBits(); 10214 assert(SatWidth <= DstWidth && 10215 "Expected saturation width smaller than result width"); 10216 10217 // Determine minimum and maximum integer values and their corresponding 10218 // floating-point values. 10219 APInt MinInt, MaxInt; 10220 if (IsSigned) { 10221 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 10222 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 10223 } else { 10224 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 10225 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 10226 } 10227 10228 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 10229 // libcall emission cannot handle this. Large result types will fail. 10230 if (SrcVT == MVT::f16) { 10231 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 10232 SrcVT = Src.getValueType(); 10233 } 10234 10235 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 10236 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 10237 10238 APFloat::opStatus MinStatus = 10239 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 10240 APFloat::opStatus MaxStatus = 10241 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 10242 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 10243 !(MaxStatus & APFloat::opStatus::opInexact); 10244 10245 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 10246 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 10247 10248 // If the integer bounds are exactly representable as floats and min/max are 10249 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 10250 // of comparisons and selects. 10251 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 10252 isOperationLegal(ISD::FMAXNUM, SrcVT); 10253 if (AreExactFloatBounds && MinMaxLegal) { 10254 SDValue Clamped = Src; 10255 10256 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 10257 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 10258 // Clamp by MaxFloat from above. NaN cannot occur. 10259 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 10260 // Convert clamped value to integer. 10261 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 10262 dl, DstVT, Clamped); 10263 10264 // In the unsigned case we're done, because we mapped NaN to MinFloat, 10265 // which will cast to zero. 10266 if (!IsSigned) 10267 return FpToInt; 10268 10269 // Otherwise, select 0 if Src is NaN. 10270 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 10271 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 10272 ISD::CondCode::SETUO); 10273 } 10274 10275 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 10276 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 10277 10278 // Result of direct conversion. The assumption here is that the operation is 10279 // non-trapping and it's fine to apply it to an out-of-range value if we 10280 // select it away later. 10281 SDValue FpToInt = 10282 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 10283 10284 SDValue Select = FpToInt; 10285 10286 // If Src ULT MinFloat, select MinInt. In particular, this also selects 10287 // MinInt if Src is NaN. 10288 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 10289 ISD::CondCode::SETULT); 10290 // If Src OGT MaxFloat, select MaxInt. 10291 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 10292 ISD::CondCode::SETOGT); 10293 10294 // In the unsigned case we are done, because we mapped NaN to MinInt, which 10295 // is already zero. 10296 if (!IsSigned) 10297 return Select; 10298 10299 // Otherwise, select 0 if Src is NaN. 10300 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 10301 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 10302 } 10303 10304 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 10305 SelectionDAG &DAG) const { 10306 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 10307 assert(Node->getValueType(0).isScalableVector() && 10308 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 10309 10310 EVT VT = Node->getValueType(0); 10311 SDValue V1 = Node->getOperand(0); 10312 SDValue V2 = Node->getOperand(1); 10313 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 10314 SDLoc DL(Node); 10315 10316 // Expand through memory thusly: 10317 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 10318 // Store V1, Ptr 10319 // Store V2, Ptr + sizeof(V1) 10320 // If (Imm < 0) 10321 // TrailingElts = -Imm 10322 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 10323 // else 10324 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 10325 // Res = Load Ptr 10326 10327 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 10328 10329 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 10330 VT.getVectorElementCount() * 2); 10331 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 10332 EVT PtrVT = StackPtr.getValueType(); 10333 auto &MF = DAG.getMachineFunction(); 10334 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10335 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 10336 10337 // Store the lo part of CONCAT_VECTORS(V1, V2) 10338 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 10339 // Store the hi part of CONCAT_VECTORS(V1, V2) 10340 SDValue OffsetToV2 = DAG.getVScale( 10341 DL, PtrVT, 10342 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 10343 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 10344 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 10345 10346 if (Imm >= 0) { 10347 // Load back the required element. getVectorElementPointer takes care of 10348 // clamping the index if it's out-of-bounds. 10349 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 10350 // Load the spliced result 10351 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 10352 MachinePointerInfo::getUnknownStack(MF)); 10353 } 10354 10355 uint64_t TrailingElts = -Imm; 10356 10357 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 10358 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 10359 SDValue TrailingBytes = 10360 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 10361 10362 if (TrailingElts > VT.getVectorMinNumElements()) { 10363 SDValue VLBytes = 10364 DAG.getVScale(DL, PtrVT, 10365 APInt(PtrVT.getFixedSizeInBits(), 10366 VT.getStoreSize().getKnownMinValue())); 10367 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 10368 } 10369 10370 // Calculate the start address of the spliced result. 10371 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 10372 10373 // Load the spliced result 10374 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 10375 MachinePointerInfo::getUnknownStack(MF)); 10376 } 10377 10378 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 10379 SDValue &LHS, SDValue &RHS, 10380 SDValue &CC, SDValue Mask, 10381 SDValue EVL, bool &NeedInvert, 10382 const SDLoc &dl, SDValue &Chain, 10383 bool IsSignaling) const { 10384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10385 MVT OpVT = LHS.getSimpleValueType(); 10386 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 10387 NeedInvert = false; 10388 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 10389 bool IsNonVP = !EVL; 10390 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 10391 default: 10392 llvm_unreachable("Unknown condition code action!"); 10393 case TargetLowering::Legal: 10394 // Nothing to do. 10395 break; 10396 case TargetLowering::Expand: { 10397 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 10398 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10399 std::swap(LHS, RHS); 10400 CC = DAG.getCondCode(InvCC); 10401 return true; 10402 } 10403 // Swapping operands didn't work. Try inverting the condition. 10404 bool NeedSwap = false; 10405 InvCC = getSetCCInverse(CCCode, OpVT); 10406 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10407 // If inverting the condition is not enough, try swapping operands 10408 // on top of it. 10409 InvCC = ISD::getSetCCSwappedOperands(InvCC); 10410 NeedSwap = true; 10411 } 10412 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10413 CC = DAG.getCondCode(InvCC); 10414 NeedInvert = true; 10415 if (NeedSwap) 10416 std::swap(LHS, RHS); 10417 return true; 10418 } 10419 10420 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 10421 unsigned Opc = 0; 10422 switch (CCCode) { 10423 default: 10424 llvm_unreachable("Don't know how to expand this condition!"); 10425 case ISD::SETUO: 10426 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 10427 CC1 = ISD::SETUNE; 10428 CC2 = ISD::SETUNE; 10429 Opc = ISD::OR; 10430 break; 10431 } 10432 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 10433 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 10434 NeedInvert = true; 10435 [[fallthrough]]; 10436 case ISD::SETO: 10437 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 10438 "If SETO is expanded, SETOEQ must be legal!"); 10439 CC1 = ISD::SETOEQ; 10440 CC2 = ISD::SETOEQ; 10441 Opc = ISD::AND; 10442 break; 10443 case ISD::SETONE: 10444 case ISD::SETUEQ: 10445 // If the SETUO or SETO CC isn't legal, we might be able to use 10446 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 10447 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 10448 // the operands. 10449 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 10450 if (!TLI.isCondCodeLegal(CC2, OpVT) && 10451 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 10452 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 10453 CC1 = ISD::SETOGT; 10454 CC2 = ISD::SETOLT; 10455 Opc = ISD::OR; 10456 NeedInvert = ((unsigned)CCCode & 0x8U); 10457 break; 10458 } 10459 [[fallthrough]]; 10460 case ISD::SETOEQ: 10461 case ISD::SETOGT: 10462 case ISD::SETOGE: 10463 case ISD::SETOLT: 10464 case ISD::SETOLE: 10465 case ISD::SETUNE: 10466 case ISD::SETUGT: 10467 case ISD::SETUGE: 10468 case ISD::SETULT: 10469 case ISD::SETULE: 10470 // If we are floating point, assign and break, otherwise fall through. 10471 if (!OpVT.isInteger()) { 10472 // We can use the 4th bit to tell if we are the unordered 10473 // or ordered version of the opcode. 10474 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 10475 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 10476 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 10477 break; 10478 } 10479 // Fallthrough if we are unsigned integer. 10480 [[fallthrough]]; 10481 case ISD::SETLE: 10482 case ISD::SETGT: 10483 case ISD::SETGE: 10484 case ISD::SETLT: 10485 case ISD::SETNE: 10486 case ISD::SETEQ: 10487 // If all combinations of inverting the condition and swapping operands 10488 // didn't work then we have no means to expand the condition. 10489 llvm_unreachable("Don't know how to expand this condition!"); 10490 } 10491 10492 SDValue SetCC1, SetCC2; 10493 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 10494 // If we aren't the ordered or unorder operation, 10495 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 10496 if (IsNonVP) { 10497 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 10498 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 10499 } else { 10500 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 10501 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 10502 } 10503 } else { 10504 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 10505 if (IsNonVP) { 10506 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 10507 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 10508 } else { 10509 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 10510 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 10511 } 10512 } 10513 if (Chain) 10514 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 10515 SetCC2.getValue(1)); 10516 if (IsNonVP) 10517 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 10518 else { 10519 // Transform the binary opcode to the VP equivalent. 10520 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 10521 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 10522 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 10523 } 10524 RHS = SDValue(); 10525 CC = SDValue(); 10526 return true; 10527 } 10528 } 10529 return false; 10530 } 10531