xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/DivisionByConstantInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull, Attribute::NoUndef})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() == ISD::AssertZext)
98       Value = Value.getOperand(0);
99     if (Value->getOpcode() != ISD::CopyFromReg)
100       return false;
101     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
102     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
103       return false;
104   }
105   return true;
106 }
107 
108 /// Set CallLoweringInfo attribute flags based on a call instruction
109 /// and called function attributes.
110 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
111                                                      unsigned ArgIdx) {
112   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
113   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
114   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
115   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
116   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
117   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
118   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
119   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
120   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
121   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
122   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
123   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
124   Alignment = Call->getParamStackAlign(ArgIdx);
125   IndirectType = nullptr;
126   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
127          "multiple ABI attributes?");
128   if (IsByVal) {
129     IndirectType = Call->getParamByValType(ArgIdx);
130     if (!Alignment)
131       Alignment = Call->getParamAlign(ArgIdx);
132   }
133   if (IsPreallocated)
134     IndirectType = Call->getParamPreallocatedType(ArgIdx);
135   if (IsInAlloca)
136     IndirectType = Call->getParamInAllocaType(ArgIdx);
137   if (IsSRet)
138     IndirectType = Call->getParamStructRetType(ArgIdx);
139 }
140 
141 /// Generate a libcall taking the given operands as arguments and returning a
142 /// result of type RetVT.
143 std::pair<SDValue, SDValue>
144 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
145                             ArrayRef<SDValue> Ops,
146                             MakeLibCallOptions CallOptions,
147                             const SDLoc &dl,
148                             SDValue InChain) const {
149   if (!InChain)
150     InChain = DAG.getEntryNode();
151 
152   TargetLowering::ArgListTy Args;
153   Args.reserve(Ops.size());
154 
155   TargetLowering::ArgListEntry Entry;
156   for (unsigned i = 0; i < Ops.size(); ++i) {
157     SDValue NewOp = Ops[i];
158     Entry.Node = NewOp;
159     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
160     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
161                                                  CallOptions.IsSExt);
162     Entry.IsZExt = !Entry.IsSExt;
163 
164     if (CallOptions.IsSoften &&
165         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
166       Entry.IsSExt = Entry.IsZExt = false;
167     }
168     Args.push_back(Entry);
169   }
170 
171   if (LC == RTLIB::UNKNOWN_LIBCALL)
172     report_fatal_error("Unsupported library call operation!");
173   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
174                                          getPointerTy(DAG.getDataLayout()));
175 
176   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
177   TargetLowering::CallLoweringInfo CLI(DAG);
178   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
179   bool zeroExtend = !signExtend;
180 
181   if (CallOptions.IsSoften &&
182       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
183     signExtend = zeroExtend = false;
184   }
185 
186   CLI.setDebugLoc(dl)
187       .setChain(InChain)
188       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
189       .setNoReturn(CallOptions.DoesNotReturn)
190       .setDiscardResult(!CallOptions.IsReturnValueUsed)
191       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
192       .setSExtResult(signExtend)
193       .setZExtResult(zeroExtend);
194   return LowerCallTo(CLI);
195 }
196 
197 bool TargetLowering::findOptimalMemOpLowering(
198     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
199     unsigned SrcAS, const AttributeList &FuncAttributes) const {
200   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
201       Op.getSrcAlign() < Op.getDstAlign())
202     return false;
203 
204   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
205 
206   if (VT == MVT::Other) {
207     // Use the largest integer type whose alignment constraints are satisfied.
208     // We only need to check DstAlign here as SrcAlign is always greater or
209     // equal to DstAlign (or zero).
210     VT = MVT::i64;
211     if (Op.isFixedDstAlign())
212       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
213              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
214         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
215     assert(VT.isInteger());
216 
217     // Find the largest legal integer type.
218     MVT LVT = MVT::i64;
219     while (!isTypeLegal(LVT))
220       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
221     assert(LVT.isInteger());
222 
223     // If the type we've chosen is larger than the largest legal integer type
224     // then use that instead.
225     if (VT.bitsGT(LVT))
226       VT = LVT;
227   }
228 
229   unsigned NumMemOps = 0;
230   uint64_t Size = Op.size();
231   while (Size) {
232     unsigned VTSize = VT.getSizeInBits() / 8;
233     while (VTSize > Size) {
234       // For now, only use non-vector load / store's for the left-over pieces.
235       EVT NewVT = VT;
236       unsigned NewVTSize;
237 
238       bool Found = false;
239       if (VT.isVector() || VT.isFloatingPoint()) {
240         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
241         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
242             isSafeMemOpType(NewVT.getSimpleVT()))
243           Found = true;
244         else if (NewVT == MVT::i64 &&
245                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
246                  isSafeMemOpType(MVT::f64)) {
247           // i64 is usually not legal on 32-bit targets, but f64 may be.
248           NewVT = MVT::f64;
249           Found = true;
250         }
251       }
252 
253       if (!Found) {
254         do {
255           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
256           if (NewVT == MVT::i8)
257             break;
258         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
259       }
260       NewVTSize = NewVT.getSizeInBits() / 8;
261 
262       // If the new VT cannot cover all of the remaining bits, then consider
263       // issuing a (or a pair of) unaligned and overlapping load / store.
264       unsigned Fast;
265       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
266           allowsMisalignedMemoryAccesses(
267               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
268               MachineMemOperand::MONone, &Fast) &&
269           Fast)
270         VTSize = Size;
271       else {
272         VT = NewVT;
273         VTSize = NewVTSize;
274       }
275     }
276 
277     if (++NumMemOps > Limit)
278       return false;
279 
280     MemOps.push_back(VT);
281     Size -= VTSize;
282   }
283 
284   return true;
285 }
286 
287 /// Soften the operands of a comparison. This code is shared among BR_CC,
288 /// SELECT_CC, and SETCC handlers.
289 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
290                                          SDValue &NewLHS, SDValue &NewRHS,
291                                          ISD::CondCode &CCCode,
292                                          const SDLoc &dl, const SDValue OldLHS,
293                                          const SDValue OldRHS) const {
294   SDValue Chain;
295   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
296                              OldRHS, Chain);
297 }
298 
299 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
300                                          SDValue &NewLHS, SDValue &NewRHS,
301                                          ISD::CondCode &CCCode,
302                                          const SDLoc &dl, const SDValue OldLHS,
303                                          const SDValue OldRHS,
304                                          SDValue &Chain,
305                                          bool IsSignaling) const {
306   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
307   // not supporting it. We can update this code when libgcc provides such
308   // functions.
309 
310   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
311          && "Unsupported setcc type!");
312 
313   // Expand into one or more soft-fp libcall(s).
314   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
315   bool ShouldInvertCC = false;
316   switch (CCCode) {
317   case ISD::SETEQ:
318   case ISD::SETOEQ:
319     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
320           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
321           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
322     break;
323   case ISD::SETNE:
324   case ISD::SETUNE:
325     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
326           (VT == MVT::f64) ? RTLIB::UNE_F64 :
327           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
328     break;
329   case ISD::SETGE:
330   case ISD::SETOGE:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
332           (VT == MVT::f64) ? RTLIB::OGE_F64 :
333           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
334     break;
335   case ISD::SETLT:
336   case ISD::SETOLT:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
338           (VT == MVT::f64) ? RTLIB::OLT_F64 :
339           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
340     break;
341   case ISD::SETLE:
342   case ISD::SETOLE:
343     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
344           (VT == MVT::f64) ? RTLIB::OLE_F64 :
345           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
346     break;
347   case ISD::SETGT:
348   case ISD::SETOGT:
349     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
350           (VT == MVT::f64) ? RTLIB::OGT_F64 :
351           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
352     break;
353   case ISD::SETO:
354     ShouldInvertCC = true;
355     [[fallthrough]];
356   case ISD::SETUO:
357     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
358           (VT == MVT::f64) ? RTLIB::UO_F64 :
359           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
360     break;
361   case ISD::SETONE:
362     // SETONE = O && UNE
363     ShouldInvertCC = true;
364     [[fallthrough]];
365   case ISD::SETUEQ:
366     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
367           (VT == MVT::f64) ? RTLIB::UO_F64 :
368           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
369     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
370           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
371           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
372     break;
373   default:
374     // Invert CC for unordered comparisons
375     ShouldInvertCC = true;
376     switch (CCCode) {
377     case ISD::SETULT:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
379             (VT == MVT::f64) ? RTLIB::OGE_F64 :
380             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
381       break;
382     case ISD::SETULE:
383       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
384             (VT == MVT::f64) ? RTLIB::OGT_F64 :
385             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
386       break;
387     case ISD::SETUGT:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
389             (VT == MVT::f64) ? RTLIB::OLE_F64 :
390             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
391       break;
392     case ISD::SETUGE:
393       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
394             (VT == MVT::f64) ? RTLIB::OLT_F64 :
395             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
396       break;
397     default: llvm_unreachable("Do not know how to soften this setcc!");
398     }
399   }
400 
401   // Use the target specific return value for comparison lib calls.
402   EVT RetVT = getCmpLibcallReturnType();
403   SDValue Ops[2] = {NewLHS, NewRHS};
404   TargetLowering::MakeLibCallOptions CallOptions;
405   EVT OpsVT[2] = { OldLHS.getValueType(),
406                    OldRHS.getValueType() };
407   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
408   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
409   NewLHS = Call.first;
410   NewRHS = DAG.getConstant(0, dl, RetVT);
411 
412   CCCode = getCmpLibcallCC(LC1);
413   if (ShouldInvertCC) {
414     assert(RetVT.isInteger());
415     CCCode = getSetCCInverse(CCCode, RetVT);
416   }
417 
418   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
419     // Update Chain.
420     Chain = Call.second;
421   } else {
422     EVT SetCCVT =
423         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
424     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
425     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
426     CCCode = getCmpLibcallCC(LC2);
427     if (ShouldInvertCC)
428       CCCode = getSetCCInverse(CCCode, RetVT);
429     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
430     if (Chain)
431       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
432                           Call2.second);
433     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
434                          Tmp.getValueType(), Tmp, NewLHS);
435     NewRHS = SDValue();
436   }
437 }
438 
439 /// Return the entry encoding for a jump table in the current function. The
440 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
441 unsigned TargetLowering::getJumpTableEncoding() const {
442   // In non-pic modes, just use the address of a block.
443   if (!isPositionIndependent())
444     return MachineJumpTableInfo::EK_BlockAddress;
445 
446   // In PIC mode, if the target supports a GPRel32 directive, use it.
447   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
448     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
449 
450   // Otherwise, use a label difference.
451   return MachineJumpTableInfo::EK_LabelDifference32;
452 }
453 
454 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
455                                                  SelectionDAG &DAG) const {
456   // If our PIC model is GP relative, use the global offset table as the base.
457   unsigned JTEncoding = getJumpTableEncoding();
458 
459   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
460       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
461     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
462 
463   return Table;
464 }
465 
466 /// This returns the relocation base for the given PIC jumptable, the same as
467 /// getPICJumpTableRelocBase, but as an MCExpr.
468 const MCExpr *
469 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
470                                              unsigned JTI,MCContext &Ctx) const{
471   // The normal PIC reloc base is the label at the start of the jump table.
472   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
473 }
474 
475 bool
476 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
477   const TargetMachine &TM = getTargetMachine();
478   const GlobalValue *GV = GA->getGlobal();
479 
480   // If the address is not even local to this DSO we will have to load it from
481   // a got and then add the offset.
482   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
483     return false;
484 
485   // If the code is position independent we will have to add a base register.
486   if (isPositionIndependent())
487     return false;
488 
489   // Otherwise we can do it.
490   return true;
491 }
492 
493 //===----------------------------------------------------------------------===//
494 //  Optimization Methods
495 //===----------------------------------------------------------------------===//
496 
497 /// If the specified instruction has a constant integer operand and there are
498 /// bits set in that constant that are not demanded, then clear those bits and
499 /// return true.
500 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
501                                             const APInt &DemandedBits,
502                                             const APInt &DemandedElts,
503                                             TargetLoweringOpt &TLO) const {
504   SDLoc DL(Op);
505   unsigned Opcode = Op.getOpcode();
506 
507   // Do target-specific constant optimization.
508   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
509     return TLO.New.getNode();
510 
511   // FIXME: ISD::SELECT, ISD::SELECT_CC
512   switch (Opcode) {
513   default:
514     break;
515   case ISD::XOR:
516   case ISD::AND:
517   case ISD::OR: {
518     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
519     if (!Op1C || Op1C->isOpaque())
520       return false;
521 
522     // If this is a 'not' op, don't touch it because that's a canonical form.
523     const APInt &C = Op1C->getAPIntValue();
524     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
525       return false;
526 
527     if (!C.isSubsetOf(DemandedBits)) {
528       EVT VT = Op.getValueType();
529       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
530       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
531       return TLO.CombineTo(Op, NewOp);
532     }
533 
534     break;
535   }
536   }
537 
538   return false;
539 }
540 
541 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
542                                             const APInt &DemandedBits,
543                                             TargetLoweringOpt &TLO) const {
544   EVT VT = Op.getValueType();
545   APInt DemandedElts = VT.isVector()
546                            ? APInt::getAllOnes(VT.getVectorNumElements())
547                            : APInt(1, 1);
548   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
549 }
550 
551 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
552 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
553 /// generalized for targets with other types of implicit widening casts.
554 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
555                                       const APInt &Demanded,
556                                       TargetLoweringOpt &TLO) const {
557   assert(Op.getNumOperands() == 2 &&
558          "ShrinkDemandedOp only supports binary operators!");
559   assert(Op.getNode()->getNumValues() == 1 &&
560          "ShrinkDemandedOp only supports nodes with one result!");
561 
562   SelectionDAG &DAG = TLO.DAG;
563   SDLoc dl(Op);
564 
565   // Early return, as this function cannot handle vector types.
566   if (Op.getValueType().isVector())
567     return false;
568 
569   // Don't do this if the node has another user, which may require the
570   // full value.
571   if (!Op.getNode()->hasOneUse())
572     return false;
573 
574   // Search for the smallest integer type with free casts to and from
575   // Op's type. For expedience, just check power-of-2 integer types.
576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
577   unsigned DemandedSize = Demanded.getActiveBits();
578   unsigned SmallVTBits = DemandedSize;
579   if (!isPowerOf2_32(SmallVTBits))
580     SmallVTBits = NextPowerOf2(SmallVTBits);
581   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
582     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
583     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
584         TLI.isZExtFree(SmallVT, Op.getValueType())) {
585       // We found a type with free casts.
586       SDValue X = DAG.getNode(
587           Op.getOpcode(), dl, SmallVT,
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
589           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
590       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
591       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
592       return TLO.CombineTo(Op, Z);
593     }
594   }
595   return false;
596 }
597 
598 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
599                                           DAGCombinerInfo &DCI) const {
600   SelectionDAG &DAG = DCI.DAG;
601   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
602                         !DCI.isBeforeLegalizeOps());
603   KnownBits Known;
604 
605   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
606   if (Simplified) {
607     DCI.AddToWorklist(Op.getNode());
608     DCI.CommitTargetLoweringOpt(TLO);
609   }
610   return Simplified;
611 }
612 
613 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
614                                           const APInt &DemandedElts,
615                                           DAGCombinerInfo &DCI) const {
616   SelectionDAG &DAG = DCI.DAG;
617   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
618                         !DCI.isBeforeLegalizeOps());
619   KnownBits Known;
620 
621   bool Simplified =
622       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
623   if (Simplified) {
624     DCI.AddToWorklist(Op.getNode());
625     DCI.CommitTargetLoweringOpt(TLO);
626   }
627   return Simplified;
628 }
629 
630 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
631                                           KnownBits &Known,
632                                           TargetLoweringOpt &TLO,
633                                           unsigned Depth,
634                                           bool AssumeSingleUse) const {
635   EVT VT = Op.getValueType();
636 
637   // Since the number of lanes in a scalable vector is unknown at compile time,
638   // we track one bit which is implicitly broadcast to all lanes.  This means
639   // that all lanes in a scalable vector are considered demanded.
640   APInt DemandedElts = VT.isFixedLengthVector()
641                            ? APInt::getAllOnes(VT.getVectorNumElements())
642                            : APInt(1, 1);
643   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
644                               AssumeSingleUse);
645 }
646 
647 // TODO: Under what circumstances can we create nodes? Constant folding?
648 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
649     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
650     SelectionDAG &DAG, unsigned Depth) const {
651   EVT VT = Op.getValueType();
652 
653   // Limit search depth.
654   if (Depth >= SelectionDAG::MaxRecursionDepth)
655     return SDValue();
656 
657   // Ignore UNDEFs.
658   if (Op.isUndef())
659     return SDValue();
660 
661   // Not demanding any bits/elts from Op.
662   if (DemandedBits == 0 || DemandedElts == 0)
663     return DAG.getUNDEF(VT);
664 
665   bool IsLE = DAG.getDataLayout().isLittleEndian();
666   unsigned NumElts = DemandedElts.getBitWidth();
667   unsigned BitWidth = DemandedBits.getBitWidth();
668   KnownBits LHSKnown, RHSKnown;
669   switch (Op.getOpcode()) {
670   case ISD::BITCAST: {
671     if (VT.isScalableVector())
672       return SDValue();
673 
674     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
675     EVT SrcVT = Src.getValueType();
676     EVT DstVT = Op.getValueType();
677     if (SrcVT == DstVT)
678       return Src;
679 
680     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
681     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
682     if (NumSrcEltBits == NumDstEltBits)
683       if (SDValue V = SimplifyMultipleUseDemandedBits(
684               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
685         return DAG.getBitcast(DstVT, V);
686 
687     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
688       unsigned Scale = NumDstEltBits / NumSrcEltBits;
689       unsigned NumSrcElts = SrcVT.getVectorNumElements();
690       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
691       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
692       for (unsigned i = 0; i != Scale; ++i) {
693         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
694         unsigned BitOffset = EltOffset * NumSrcEltBits;
695         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
696         if (!Sub.isZero()) {
697           DemandedSrcBits |= Sub;
698           for (unsigned j = 0; j != NumElts; ++j)
699             if (DemandedElts[j])
700               DemandedSrcElts.setBit((j * Scale) + i);
701         }
702       }
703 
704       if (SDValue V = SimplifyMultipleUseDemandedBits(
705               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
706         return DAG.getBitcast(DstVT, V);
707     }
708 
709     // TODO - bigendian once we have test coverage.
710     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
711       unsigned Scale = NumSrcEltBits / NumDstEltBits;
712       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
713       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
714       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
715       for (unsigned i = 0; i != NumElts; ++i)
716         if (DemandedElts[i]) {
717           unsigned Offset = (i % Scale) * NumDstEltBits;
718           DemandedSrcBits.insertBits(DemandedBits, Offset);
719           DemandedSrcElts.setBit(i / Scale);
720         }
721 
722       if (SDValue V = SimplifyMultipleUseDemandedBits(
723               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
724         return DAG.getBitcast(DstVT, V);
725     }
726 
727     break;
728   }
729   case ISD::AND: {
730     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
731     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
732 
733     // If all of the demanded bits are known 1 on one side, return the other.
734     // These bits cannot contribute to the result of the 'and' in this
735     // context.
736     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
737       return Op.getOperand(0);
738     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
739       return Op.getOperand(1);
740     break;
741   }
742   case ISD::OR: {
743     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
744     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
745 
746     // If all of the demanded bits are known zero on one side, return the
747     // other.  These bits cannot contribute to the result of the 'or' in this
748     // context.
749     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
750       return Op.getOperand(0);
751     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
752       return Op.getOperand(1);
753     break;
754   }
755   case ISD::XOR: {
756     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
757     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
758 
759     // If all of the demanded bits are known zero on one side, return the
760     // other.
761     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
762       return Op.getOperand(0);
763     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
764       return Op.getOperand(1);
765     break;
766   }
767   case ISD::SHL: {
768     // If we are only demanding sign bits then we can use the shift source
769     // directly.
770     if (const APInt *MaxSA =
771             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
772       SDValue Op0 = Op.getOperand(0);
773       unsigned ShAmt = MaxSA->getZExtValue();
774       unsigned NumSignBits =
775           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
776       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
777       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
778         return Op0;
779     }
780     break;
781   }
782   case ISD::SETCC: {
783     SDValue Op0 = Op.getOperand(0);
784     SDValue Op1 = Op.getOperand(1);
785     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
786     // If (1) we only need the sign-bit, (2) the setcc operands are the same
787     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
788     // -1, we may be able to bypass the setcc.
789     if (DemandedBits.isSignMask() &&
790         Op0.getScalarValueSizeInBits() == BitWidth &&
791         getBooleanContents(Op0.getValueType()) ==
792             BooleanContent::ZeroOrNegativeOneBooleanContent) {
793       // If we're testing X < 0, then this compare isn't needed - just use X!
794       // FIXME: We're limiting to integer types here, but this should also work
795       // if we don't care about FP signed-zero. The use of SETLT with FP means
796       // that we don't care about NaNs.
797       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
798           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
799         return Op0;
800     }
801     break;
802   }
803   case ISD::SIGN_EXTEND_INREG: {
804     // If none of the extended bits are demanded, eliminate the sextinreg.
805     SDValue Op0 = Op.getOperand(0);
806     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
807     unsigned ExBits = ExVT.getScalarSizeInBits();
808     if (DemandedBits.getActiveBits() <= ExBits)
809       return Op0;
810     // If the input is already sign extended, just drop the extension.
811     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
812     if (NumSignBits >= (BitWidth - ExBits + 1))
813       return Op0;
814     break;
815   }
816   case ISD::ANY_EXTEND_VECTOR_INREG:
817   case ISD::SIGN_EXTEND_VECTOR_INREG:
818   case ISD::ZERO_EXTEND_VECTOR_INREG: {
819     if (VT.isScalableVector())
820       return SDValue();
821 
822     // If we only want the lowest element and none of extended bits, then we can
823     // return the bitcasted source vector.
824     SDValue Src = Op.getOperand(0);
825     EVT SrcVT = Src.getValueType();
826     EVT DstVT = Op.getValueType();
827     if (IsLE && DemandedElts == 1 &&
828         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
829         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
830       return DAG.getBitcast(DstVT, Src);
831     }
832     break;
833   }
834   case ISD::INSERT_VECTOR_ELT: {
835     if (VT.isScalableVector())
836       return SDValue();
837 
838     // If we don't demand the inserted element, return the base vector.
839     SDValue Vec = Op.getOperand(0);
840     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
841     EVT VecVT = Vec.getValueType();
842     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
843         !DemandedElts[CIdx->getZExtValue()])
844       return Vec;
845     break;
846   }
847   case ISD::INSERT_SUBVECTOR: {
848     if (VT.isScalableVector())
849       return SDValue();
850 
851     SDValue Vec = Op.getOperand(0);
852     SDValue Sub = Op.getOperand(1);
853     uint64_t Idx = Op.getConstantOperandVal(2);
854     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
855     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
856     // If we don't demand the inserted subvector, return the base vector.
857     if (DemandedSubElts == 0)
858       return Vec;
859     // If this simply widens the lowest subvector, see if we can do it earlier.
860     // TODO: REMOVE ME - SimplifyMultipleUseDemandedBits shouldn't be creating
861     // general nodes like this.
862     if (Idx == 0 && Vec.isUndef()) {
863       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
864               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
865         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
866                            Op.getOperand(0), NewSub, Op.getOperand(2));
867     }
868     break;
869   }
870   case ISD::VECTOR_SHUFFLE: {
871     assert(!VT.isScalableVector());
872     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
873 
874     // If all the demanded elts are from one operand and are inline,
875     // then we can use the operand directly.
876     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
877     for (unsigned i = 0; i != NumElts; ++i) {
878       int M = ShuffleMask[i];
879       if (M < 0 || !DemandedElts[i])
880         continue;
881       AllUndef = false;
882       IdentityLHS &= (M == (int)i);
883       IdentityRHS &= ((M - NumElts) == i);
884     }
885 
886     if (AllUndef)
887       return DAG.getUNDEF(Op.getValueType());
888     if (IdentityLHS)
889       return Op.getOperand(0);
890     if (IdentityRHS)
891       return Op.getOperand(1);
892     break;
893   }
894   default:
895     // TODO: Probably okay to remove after audit; here to reduce change size
896     // in initial enablement patch for scalable vectors
897     if (VT.isScalableVector())
898       return SDValue();
899 
900     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
901       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
902               Op, DemandedBits, DemandedElts, DAG, Depth))
903         return V;
904     break;
905   }
906   return SDValue();
907 }
908 
909 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
910     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
911     unsigned Depth) const {
912   EVT VT = Op.getValueType();
913   // Since the number of lanes in a scalable vector is unknown at compile time,
914   // we track one bit which is implicitly broadcast to all lanes.  This means
915   // that all lanes in a scalable vector are considered demanded.
916   APInt DemandedElts = VT.isFixedLengthVector()
917                            ? APInt::getAllOnes(VT.getVectorNumElements())
918                            : APInt(1, 1);
919   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
920                                          Depth);
921 }
922 
923 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
924     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
925     unsigned Depth) const {
926   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
927   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
928                                          Depth);
929 }
930 
931 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
932 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
933 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
934                                  const TargetLowering &TLI,
935                                  const APInt &DemandedBits,
936                                  const APInt &DemandedElts,
937                                  unsigned Depth) {
938   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
939          "SRL or SRA node is required here!");
940   // Is the right shift using an immediate value of 1?
941   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
942   if (!N1C || !N1C->isOne())
943     return SDValue();
944 
945   // We are looking for an avgfloor
946   // add(ext, ext)
947   // or one of these as a avgceil
948   // add(add(ext, ext), 1)
949   // add(add(ext, 1), ext)
950   // add(ext, add(ext, 1))
951   SDValue Add = Op.getOperand(0);
952   if (Add.getOpcode() != ISD::ADD)
953     return SDValue();
954 
955   SDValue ExtOpA = Add.getOperand(0);
956   SDValue ExtOpB = Add.getOperand(1);
957   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
958     ConstantSDNode *ConstOp;
959     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
960         ConstOp->isOne()) {
961       ExtOpA = Op2;
962       ExtOpB = Op3;
963       return true;
964     }
965     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
966         ConstOp->isOne()) {
967       ExtOpA = Op1;
968       ExtOpB = Op3;
969       return true;
970     }
971     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
972         ConstOp->isOne()) {
973       ExtOpA = Op1;
974       ExtOpB = Op2;
975       return true;
976     }
977     return false;
978   };
979   bool IsCeil =
980       (ExtOpA.getOpcode() == ISD::ADD &&
981        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
982       (ExtOpB.getOpcode() == ISD::ADD &&
983        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
984 
985   // If the shift is signed (sra):
986   //  - Needs >= 2 sign bit for both operands.
987   //  - Needs >= 2 zero bits.
988   // If the shift is unsigned (srl):
989   //  - Needs >= 1 zero bit for both operands.
990   //  - Needs 1 demanded bit zero and >= 2 sign bits.
991   unsigned ShiftOpc = Op.getOpcode();
992   bool IsSigned = false;
993   unsigned KnownBits;
994   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
995   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
996   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
997   unsigned NumZeroA =
998       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
999   unsigned NumZeroB =
1000       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1001   unsigned NumZero = std::min(NumZeroA, NumZeroB);
1002 
1003   switch (ShiftOpc) {
1004   default:
1005     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1006   case ISD::SRA: {
1007     if (NumZero >= 2 && NumSigned < NumZero) {
1008       IsSigned = false;
1009       KnownBits = NumZero;
1010       break;
1011     }
1012     if (NumSigned >= 1) {
1013       IsSigned = true;
1014       KnownBits = NumSigned;
1015       break;
1016     }
1017     return SDValue();
1018   }
1019   case ISD::SRL: {
1020     if (NumZero >= 1 && NumSigned < NumZero) {
1021       IsSigned = false;
1022       KnownBits = NumZero;
1023       break;
1024     }
1025     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1026       IsSigned = true;
1027       KnownBits = NumSigned;
1028       break;
1029     }
1030     return SDValue();
1031   }
1032   }
1033 
1034   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1035                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1036 
1037   // Find the smallest power-2 type that is legal for this vector size and
1038   // operation, given the original type size and the number of known sign/zero
1039   // bits.
1040   EVT VT = Op.getValueType();
1041   unsigned MinWidth =
1042       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1043   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1044   if (VT.isVector())
1045     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1046   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1047     return SDValue();
1048 
1049   SDLoc DL(Op);
1050   SDValue ResultAVG =
1051       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1052                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1053   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1054                      ResultAVG);
1055 }
1056 
1057 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1058 /// result of Op are ever used downstream. If we can use this information to
1059 /// simplify Op, create a new simplified DAG node and return true, returning the
1060 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1061 /// return a mask of Known bits for the expression (used to simplify the
1062 /// caller).  The Known bits may only be accurate for those bits in the
1063 /// OriginalDemandedBits and OriginalDemandedElts.
1064 bool TargetLowering::SimplifyDemandedBits(
1065     SDValue Op, const APInt &OriginalDemandedBits,
1066     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1067     unsigned Depth, bool AssumeSingleUse) const {
1068   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1069   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1070          "Mask size mismatches value type size!");
1071 
1072   // Don't know anything.
1073   Known = KnownBits(BitWidth);
1074 
1075   EVT VT = Op.getValueType();
1076   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1077   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1078   assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1079          "Unexpected vector size");
1080 
1081   APInt DemandedBits = OriginalDemandedBits;
1082   APInt DemandedElts = OriginalDemandedElts;
1083   SDLoc dl(Op);
1084   auto &DL = TLO.DAG.getDataLayout();
1085 
1086   // Undef operand.
1087   if (Op.isUndef())
1088     return false;
1089 
1090   // We can't simplify target constants.
1091   if (Op.getOpcode() == ISD::TargetConstant)
1092     return false;
1093 
1094   if (Op.getOpcode() == ISD::Constant) {
1095     // We know all of the bits for a constant!
1096     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1097     return false;
1098   }
1099 
1100   if (Op.getOpcode() == ISD::ConstantFP) {
1101     // We know all of the bits for a floating point constant!
1102     Known = KnownBits::makeConstant(
1103         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1104     return false;
1105   }
1106 
1107   // Other users may use these bits.
1108   bool HasMultiUse = false;
1109   if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1110     if (Depth >= SelectionDAG::MaxRecursionDepth) {
1111       // Limit search depth.
1112       return false;
1113     }
1114     // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1115     DemandedBits = APInt::getAllOnes(BitWidth);
1116     DemandedElts = APInt::getAllOnes(NumElts);
1117     HasMultiUse = true;
1118   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1119     // Not demanding any bits/elts from Op.
1120     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1121   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1122     // Limit search depth.
1123     return false;
1124   }
1125 
1126   KnownBits Known2;
1127   switch (Op.getOpcode()) {
1128   case ISD::SCALAR_TO_VECTOR: {
1129     if (VT.isScalableVector())
1130       return false;
1131     if (!DemandedElts[0])
1132       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1133 
1134     KnownBits SrcKnown;
1135     SDValue Src = Op.getOperand(0);
1136     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1137     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1138     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1139       return true;
1140 
1141     // Upper elements are undef, so only get the knownbits if we just demand
1142     // the bottom element.
1143     if (DemandedElts == 1)
1144       Known = SrcKnown.anyextOrTrunc(BitWidth);
1145     break;
1146   }
1147   case ISD::BUILD_VECTOR:
1148     // Collect the known bits that are shared by every demanded element.
1149     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1150     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1151     return false; // Don't fall through, will infinitely loop.
1152   case ISD::LOAD: {
1153     auto *LD = cast<LoadSDNode>(Op);
1154     if (getTargetConstantFromLoad(LD)) {
1155       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1156       return false; // Don't fall through, will infinitely loop.
1157     }
1158     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1159       // If this is a ZEXTLoad and we are looking at the loaded value.
1160       EVT MemVT = LD->getMemoryVT();
1161       unsigned MemBits = MemVT.getScalarSizeInBits();
1162       Known.Zero.setBitsFrom(MemBits);
1163       return false; // Don't fall through, will infinitely loop.
1164     }
1165     break;
1166   }
1167   case ISD::INSERT_VECTOR_ELT: {
1168     if (VT.isScalableVector())
1169       return false;
1170     SDValue Vec = Op.getOperand(0);
1171     SDValue Scl = Op.getOperand(1);
1172     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1173     EVT VecVT = Vec.getValueType();
1174 
1175     // If index isn't constant, assume we need all vector elements AND the
1176     // inserted element.
1177     APInt DemandedVecElts(DemandedElts);
1178     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1179       unsigned Idx = CIdx->getZExtValue();
1180       DemandedVecElts.clearBit(Idx);
1181 
1182       // Inserted element is not required.
1183       if (!DemandedElts[Idx])
1184         return TLO.CombineTo(Op, Vec);
1185     }
1186 
1187     KnownBits KnownScl;
1188     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1189     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1190     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1191       return true;
1192 
1193     Known = KnownScl.anyextOrTrunc(BitWidth);
1194 
1195     KnownBits KnownVec;
1196     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1197                              Depth + 1))
1198       return true;
1199 
1200     if (!!DemandedVecElts)
1201       Known = KnownBits::commonBits(Known, KnownVec);
1202 
1203     return false;
1204   }
1205   case ISD::INSERT_SUBVECTOR: {
1206     if (VT.isScalableVector())
1207       return false;
1208     // Demand any elements from the subvector and the remainder from the src its
1209     // inserted into.
1210     SDValue Src = Op.getOperand(0);
1211     SDValue Sub = Op.getOperand(1);
1212     uint64_t Idx = Op.getConstantOperandVal(2);
1213     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1214     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1215     APInt DemandedSrcElts = DemandedElts;
1216     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1217 
1218     KnownBits KnownSub, KnownSrc;
1219     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1220                              Depth + 1))
1221       return true;
1222     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1223                              Depth + 1))
1224       return true;
1225 
1226     Known.Zero.setAllBits();
1227     Known.One.setAllBits();
1228     if (!!DemandedSubElts)
1229       Known = KnownBits::commonBits(Known, KnownSub);
1230     if (!!DemandedSrcElts)
1231       Known = KnownBits::commonBits(Known, KnownSrc);
1232 
1233     // Attempt to avoid multi-use src if we don't need anything from it.
1234     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1235         !DemandedSrcElts.isAllOnes()) {
1236       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1237           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1238       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1239           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1240       if (NewSub || NewSrc) {
1241         NewSub = NewSub ? NewSub : Sub;
1242         NewSrc = NewSrc ? NewSrc : Src;
1243         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1244                                         Op.getOperand(2));
1245         return TLO.CombineTo(Op, NewOp);
1246       }
1247     }
1248     break;
1249   }
1250   case ISD::EXTRACT_SUBVECTOR: {
1251     if (VT.isScalableVector())
1252       return false;
1253     // Offset the demanded elts by the subvector index.
1254     SDValue Src = Op.getOperand(0);
1255     if (Src.getValueType().isScalableVector())
1256       break;
1257     uint64_t Idx = Op.getConstantOperandVal(1);
1258     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1259     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1260 
1261     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1262                              Depth + 1))
1263       return true;
1264 
1265     // Attempt to avoid multi-use src if we don't need anything from it.
1266     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1267       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1268           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1269       if (DemandedSrc) {
1270         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1271                                         Op.getOperand(1));
1272         return TLO.CombineTo(Op, NewOp);
1273       }
1274     }
1275     break;
1276   }
1277   case ISD::CONCAT_VECTORS: {
1278     if (VT.isScalableVector())
1279       return false;
1280     Known.Zero.setAllBits();
1281     Known.One.setAllBits();
1282     EVT SubVT = Op.getOperand(0).getValueType();
1283     unsigned NumSubVecs = Op.getNumOperands();
1284     unsigned NumSubElts = SubVT.getVectorNumElements();
1285     for (unsigned i = 0; i != NumSubVecs; ++i) {
1286       APInt DemandedSubElts =
1287           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1288       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1289                                Known2, TLO, Depth + 1))
1290         return true;
1291       // Known bits are shared by every demanded subvector element.
1292       if (!!DemandedSubElts)
1293         Known = KnownBits::commonBits(Known, Known2);
1294     }
1295     break;
1296   }
1297   case ISD::VECTOR_SHUFFLE: {
1298     assert(!VT.isScalableVector());
1299     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1300 
1301     // Collect demanded elements from shuffle operands..
1302     APInt DemandedLHS, DemandedRHS;
1303     if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1304                                 DemandedRHS))
1305       break;
1306 
1307     if (!!DemandedLHS || !!DemandedRHS) {
1308       SDValue Op0 = Op.getOperand(0);
1309       SDValue Op1 = Op.getOperand(1);
1310 
1311       Known.Zero.setAllBits();
1312       Known.One.setAllBits();
1313       if (!!DemandedLHS) {
1314         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1315                                  Depth + 1))
1316           return true;
1317         Known = KnownBits::commonBits(Known, Known2);
1318       }
1319       if (!!DemandedRHS) {
1320         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1321                                  Depth + 1))
1322           return true;
1323         Known = KnownBits::commonBits(Known, Known2);
1324       }
1325 
1326       // Attempt to avoid multi-use ops if we don't need anything from them.
1327       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1328           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1329       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1330           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1331       if (DemandedOp0 || DemandedOp1) {
1332         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1333         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1334         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1335         return TLO.CombineTo(Op, NewOp);
1336       }
1337     }
1338     break;
1339   }
1340   case ISD::AND: {
1341     SDValue Op0 = Op.getOperand(0);
1342     SDValue Op1 = Op.getOperand(1);
1343 
1344     // If the RHS is a constant, check to see if the LHS would be zero without
1345     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1346     // simplify the LHS, here we're using information from the LHS to simplify
1347     // the RHS.
1348     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1349       // Do not increment Depth here; that can cause an infinite loop.
1350       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1351       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1352       if ((LHSKnown.Zero & DemandedBits) ==
1353           (~RHSC->getAPIntValue() & DemandedBits))
1354         return TLO.CombineTo(Op, Op0);
1355 
1356       // If any of the set bits in the RHS are known zero on the LHS, shrink
1357       // the constant.
1358       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1359                                  DemandedElts, TLO))
1360         return true;
1361 
1362       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1363       // constant, but if this 'and' is only clearing bits that were just set by
1364       // the xor, then this 'and' can be eliminated by shrinking the mask of
1365       // the xor. For example, for a 32-bit X:
1366       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1367       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1368           LHSKnown.One == ~RHSC->getAPIntValue()) {
1369         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1370         return TLO.CombineTo(Op, Xor);
1371       }
1372     }
1373 
1374     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1375     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1376     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1377         (Op0.getOperand(0).isUndef() ||
1378          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1379         Op0->hasOneUse()) {
1380       unsigned NumSubElts =
1381           Op0.getOperand(1).getValueType().getVectorNumElements();
1382       unsigned SubIdx = Op0.getConstantOperandVal(2);
1383       APInt DemandedSub =
1384           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1385       KnownBits KnownSubMask =
1386           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1387       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1388         SDValue NewAnd =
1389             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1390         SDValue NewInsert =
1391             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1392                             Op0.getOperand(1), Op0.getOperand(2));
1393         return TLO.CombineTo(Op, NewInsert);
1394       }
1395     }
1396 
1397     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1398                              Depth + 1))
1399       return true;
1400     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1401     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1402                              Known2, TLO, Depth + 1))
1403       return true;
1404     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1405 
1406     // If all of the demanded bits are known one on one side, return the other.
1407     // These bits cannot contribute to the result of the 'and'.
1408     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1409       return TLO.CombineTo(Op, Op0);
1410     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1411       return TLO.CombineTo(Op, Op1);
1412     // If all of the demanded bits in the inputs are known zeros, return zero.
1413     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1414       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1415     // If the RHS is a constant, see if we can simplify it.
1416     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1417                                TLO))
1418       return true;
1419     // If the operation can be done in a smaller type, do so.
1420     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1421       return true;
1422 
1423     // Attempt to avoid multi-use ops if we don't need anything from them.
1424     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1425       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1426           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1427       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1428           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1429       if (DemandedOp0 || DemandedOp1) {
1430         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1431         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1432         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1433         return TLO.CombineTo(Op, NewOp);
1434       }
1435     }
1436 
1437     Known &= Known2;
1438     break;
1439   }
1440   case ISD::OR: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443 
1444     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1445                              Depth + 1))
1446       return true;
1447     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1448     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1449                              Known2, TLO, Depth + 1))
1450       return true;
1451     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1452 
1453     // If all of the demanded bits are known zero on one side, return the other.
1454     // These bits cannot contribute to the result of the 'or'.
1455     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1456       return TLO.CombineTo(Op, Op0);
1457     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1458       return TLO.CombineTo(Op, Op1);
1459     // If the RHS is a constant, see if we can simplify it.
1460     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1461       return true;
1462     // If the operation can be done in a smaller type, do so.
1463     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1464       return true;
1465 
1466     // Attempt to avoid multi-use ops if we don't need anything from them.
1467     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1468       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1469           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1470       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1471           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1472       if (DemandedOp0 || DemandedOp1) {
1473         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1474         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1475         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1476         return TLO.CombineTo(Op, NewOp);
1477       }
1478     }
1479 
1480     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1481     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1482     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1483         Op0->hasOneUse() && Op1->hasOneUse()) {
1484       // Attempt to match all commutations - m_c_Or would've been useful!
1485       for (int I = 0; I != 2; ++I) {
1486         SDValue X = Op.getOperand(I).getOperand(0);
1487         SDValue C1 = Op.getOperand(I).getOperand(1);
1488         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1489         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1490         if (Alt.getOpcode() == ISD::OR) {
1491           for (int J = 0; J != 2; ++J) {
1492             if (X == Alt.getOperand(J)) {
1493               SDValue Y = Alt.getOperand(1 - J);
1494               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1495                                                                {C1, C2})) {
1496                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1497                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1498                 return TLO.CombineTo(
1499                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1500               }
1501             }
1502           }
1503         }
1504       }
1505     }
1506 
1507     Known |= Known2;
1508     break;
1509   }
1510   case ISD::XOR: {
1511     SDValue Op0 = Op.getOperand(0);
1512     SDValue Op1 = Op.getOperand(1);
1513 
1514     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1515                              Depth + 1))
1516       return true;
1517     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1518     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1519                              Depth + 1))
1520       return true;
1521     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1522 
1523     // If all of the demanded bits are known zero on one side, return the other.
1524     // These bits cannot contribute to the result of the 'xor'.
1525     if (DemandedBits.isSubsetOf(Known.Zero))
1526       return TLO.CombineTo(Op, Op0);
1527     if (DemandedBits.isSubsetOf(Known2.Zero))
1528       return TLO.CombineTo(Op, Op1);
1529     // If the operation can be done in a smaller type, do so.
1530     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1531       return true;
1532 
1533     // If all of the unknown bits are known to be zero on one side or the other
1534     // turn this into an *inclusive* or.
1535     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1536     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1537       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1538 
1539     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1540     if (C) {
1541       // If one side is a constant, and all of the set bits in the constant are
1542       // also known set on the other side, turn this into an AND, as we know
1543       // the bits will be cleared.
1544       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1545       // NB: it is okay if more bits are known than are requested
1546       if (C->getAPIntValue() == Known2.One) {
1547         SDValue ANDC =
1548             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1549         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1550       }
1551 
1552       // If the RHS is a constant, see if we can change it. Don't alter a -1
1553       // constant because that's a 'not' op, and that is better for combining
1554       // and codegen.
1555       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1556         // We're flipping all demanded bits. Flip the undemanded bits too.
1557         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1558         return TLO.CombineTo(Op, New);
1559       }
1560 
1561       unsigned Op0Opcode = Op0.getOpcode();
1562       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1563         if (ConstantSDNode *ShiftC =
1564                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1565           // Don't crash on an oversized shift. We can not guarantee that a
1566           // bogus shift has been simplified to undef.
1567           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1568             uint64_t ShiftAmt = ShiftC->getZExtValue();
1569             APInt Ones = APInt::getAllOnes(BitWidth);
1570             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1571                                          : Ones.lshr(ShiftAmt);
1572             const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1573             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1574                 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1575               // If the xor constant is a demanded mask, do a 'not' before the
1576               // shift:
1577               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1578               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1579               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1580               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1581                                                        Op0.getOperand(1)));
1582             }
1583           }
1584         }
1585       }
1586     }
1587 
1588     // If we can't turn this into a 'not', try to shrink the constant.
1589     if (!C || !C->isAllOnes())
1590       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1591         return true;
1592 
1593     // Attempt to avoid multi-use ops if we don't need anything from them.
1594     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1595       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1596           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1597       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1598           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1599       if (DemandedOp0 || DemandedOp1) {
1600         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1601         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1602         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1603         return TLO.CombineTo(Op, NewOp);
1604       }
1605     }
1606 
1607     Known ^= Known2;
1608     break;
1609   }
1610   case ISD::SELECT:
1611     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1612                              Depth + 1))
1613       return true;
1614     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1615                              Depth + 1))
1616       return true;
1617     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1618     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1619 
1620     // If the operands are constants, see if we can simplify them.
1621     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1622       return true;
1623 
1624     // Only known if known in both the LHS and RHS.
1625     Known = KnownBits::commonBits(Known, Known2);
1626     break;
1627   case ISD::VSELECT:
1628     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1629                              Known, TLO, Depth + 1))
1630       return true;
1631     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1632                              Known2, TLO, Depth + 1))
1633       return true;
1634     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1635     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1636 
1637     // Only known if known in both the LHS and RHS.
1638     Known = KnownBits::commonBits(Known, Known2);
1639     break;
1640   case ISD::SELECT_CC:
1641     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1642                              Depth + 1))
1643       return true;
1644     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1645                              Depth + 1))
1646       return true;
1647     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1648     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1649 
1650     // If the operands are constants, see if we can simplify them.
1651     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1652       return true;
1653 
1654     // Only known if known in both the LHS and RHS.
1655     Known = KnownBits::commonBits(Known, Known2);
1656     break;
1657   case ISD::SETCC: {
1658     SDValue Op0 = Op.getOperand(0);
1659     SDValue Op1 = Op.getOperand(1);
1660     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1661     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1662     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1663     // -1, we may be able to bypass the setcc.
1664     if (DemandedBits.isSignMask() &&
1665         Op0.getScalarValueSizeInBits() == BitWidth &&
1666         getBooleanContents(Op0.getValueType()) ==
1667             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1668       // If we're testing X < 0, then this compare isn't needed - just use X!
1669       // FIXME: We're limiting to integer types here, but this should also work
1670       // if we don't care about FP signed-zero. The use of SETLT with FP means
1671       // that we don't care about NaNs.
1672       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1673           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1674         return TLO.CombineTo(Op, Op0);
1675 
1676       // TODO: Should we check for other forms of sign-bit comparisons?
1677       // Examples: X <= -1, X >= 0
1678     }
1679     if (getBooleanContents(Op0.getValueType()) ==
1680             TargetLowering::ZeroOrOneBooleanContent &&
1681         BitWidth > 1)
1682       Known.Zero.setBitsFrom(1);
1683     break;
1684   }
1685   case ISD::SHL: {
1686     SDValue Op0 = Op.getOperand(0);
1687     SDValue Op1 = Op.getOperand(1);
1688     EVT ShiftVT = Op1.getValueType();
1689 
1690     if (const APInt *SA =
1691             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1692       unsigned ShAmt = SA->getZExtValue();
1693       if (ShAmt == 0)
1694         return TLO.CombineTo(Op, Op0);
1695 
1696       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1697       // single shift.  We can do this if the bottom bits (which are shifted
1698       // out) are never demanded.
1699       // TODO - support non-uniform vector amounts.
1700       if (Op0.getOpcode() == ISD::SRL) {
1701         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1702           if (const APInt *SA2 =
1703                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1704             unsigned C1 = SA2->getZExtValue();
1705             unsigned Opc = ISD::SHL;
1706             int Diff = ShAmt - C1;
1707             if (Diff < 0) {
1708               Diff = -Diff;
1709               Opc = ISD::SRL;
1710             }
1711             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1712             return TLO.CombineTo(
1713                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1714           }
1715         }
1716       }
1717 
1718       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1719       // are not demanded. This will likely allow the anyext to be folded away.
1720       // TODO - support non-uniform vector amounts.
1721       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1722         SDValue InnerOp = Op0.getOperand(0);
1723         EVT InnerVT = InnerOp.getValueType();
1724         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1725         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1726             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1727           SDValue NarrowShl = TLO.DAG.getNode(
1728               ISD::SHL, dl, InnerVT, InnerOp,
1729               TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1730           return TLO.CombineTo(
1731               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1732         }
1733 
1734         // Repeat the SHL optimization above in cases where an extension
1735         // intervenes: (shl (anyext (shr x, c1)), c2) to
1736         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1737         // aren't demanded (as above) and that the shifted upper c1 bits of
1738         // x aren't demanded.
1739         // TODO - support non-uniform vector amounts.
1740         if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1741             InnerOp.hasOneUse()) {
1742           if (const APInt *SA2 =
1743                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1744             unsigned InnerShAmt = SA2->getZExtValue();
1745             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1746                 DemandedBits.getActiveBits() <=
1747                     (InnerBits - InnerShAmt + ShAmt) &&
1748                 DemandedBits.countTrailingZeros() >= ShAmt) {
1749               SDValue NewSA =
1750                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1751               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1752                                                InnerOp.getOperand(0));
1753               return TLO.CombineTo(
1754                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1755             }
1756           }
1757         }
1758       }
1759 
1760       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1761       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1762                                Depth + 1))
1763         return true;
1764       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1765       Known.Zero <<= ShAmt;
1766       Known.One <<= ShAmt;
1767       // low bits known zero.
1768       Known.Zero.setLowBits(ShAmt);
1769 
1770       // Attempt to avoid multi-use ops if we don't need anything from them.
1771       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1772         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1773             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1774         if (DemandedOp0) {
1775           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1776           return TLO.CombineTo(Op, NewOp);
1777         }
1778       }
1779 
1780       // Try shrinking the operation as long as the shift amount will still be
1781       // in range.
1782       if ((ShAmt < DemandedBits.getActiveBits()) &&
1783           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1784         return true;
1785     } else {
1786       // This is a variable shift, so we can't shift the demand mask by a known
1787       // amount. But if we are not demanding high bits, then we are not
1788       // demanding those bits from the pre-shifted operand either.
1789       if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
1790         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1791         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1792                                  Depth + 1)) {
1793           SDNodeFlags Flags = Op.getNode()->getFlags();
1794           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1795             // Disable the nsw and nuw flags. We can no longer guarantee that we
1796             // won't wrap after simplification.
1797             Flags.setNoSignedWrap(false);
1798             Flags.setNoUnsignedWrap(false);
1799             Op->setFlags(Flags);
1800           }
1801           return true;
1802         }
1803         Known.resetAll();
1804       }
1805     }
1806 
1807     // If we are only demanding sign bits then we can use the shift source
1808     // directly.
1809     if (const APInt *MaxSA =
1810             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1811       unsigned ShAmt = MaxSA->getZExtValue();
1812       unsigned NumSignBits =
1813           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1814       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1815       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1816         return TLO.CombineTo(Op, Op0);
1817     }
1818     break;
1819   }
1820   case ISD::SRL: {
1821     SDValue Op0 = Op.getOperand(0);
1822     SDValue Op1 = Op.getOperand(1);
1823     EVT ShiftVT = Op1.getValueType();
1824 
1825     // Try to match AVG patterns.
1826     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1827                                         DemandedElts, Depth + 1))
1828       return TLO.CombineTo(Op, AVG);
1829 
1830     if (const APInt *SA =
1831             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1832       unsigned ShAmt = SA->getZExtValue();
1833       if (ShAmt == 0)
1834         return TLO.CombineTo(Op, Op0);
1835 
1836       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1837       // single shift.  We can do this if the top bits (which are shifted out)
1838       // are never demanded.
1839       // TODO - support non-uniform vector amounts.
1840       if (Op0.getOpcode() == ISD::SHL) {
1841         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1842           if (const APInt *SA2 =
1843                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1844             unsigned C1 = SA2->getZExtValue();
1845             unsigned Opc = ISD::SRL;
1846             int Diff = ShAmt - C1;
1847             if (Diff < 0) {
1848               Diff = -Diff;
1849               Opc = ISD::SHL;
1850             }
1851             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1852             return TLO.CombineTo(
1853                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1854           }
1855         }
1856       }
1857 
1858       APInt InDemandedMask = (DemandedBits << ShAmt);
1859 
1860       // If the shift is exact, then it does demand the low bits (and knows that
1861       // they are zero).
1862       if (Op->getFlags().hasExact())
1863         InDemandedMask.setLowBits(ShAmt);
1864 
1865       // Compute the new bits that are at the top now.
1866       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1867                                Depth + 1))
1868         return true;
1869       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1870       Known.Zero.lshrInPlace(ShAmt);
1871       Known.One.lshrInPlace(ShAmt);
1872       // High bits known zero.
1873       Known.Zero.setHighBits(ShAmt);
1874 
1875       // Attempt to avoid multi-use ops if we don't need anything from them.
1876       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1877         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1878             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1879         if (DemandedOp0) {
1880           SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
1881           return TLO.CombineTo(Op, NewOp);
1882         }
1883       }
1884     }
1885     break;
1886   }
1887   case ISD::SRA: {
1888     SDValue Op0 = Op.getOperand(0);
1889     SDValue Op1 = Op.getOperand(1);
1890     EVT ShiftVT = Op1.getValueType();
1891 
1892     // If we only want bits that already match the signbit then we don't need
1893     // to shift.
1894     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1895     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1896         NumHiDemandedBits)
1897       return TLO.CombineTo(Op, Op0);
1898 
1899     // If this is an arithmetic shift right and only the low-bit is set, we can
1900     // always convert this into a logical shr, even if the shift amount is
1901     // variable.  The low bit of the shift cannot be an input sign bit unless
1902     // the shift amount is >= the size of the datatype, which is undefined.
1903     if (DemandedBits.isOne())
1904       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1905 
1906     // Try to match AVG patterns.
1907     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1908                                         DemandedElts, Depth + 1))
1909       return TLO.CombineTo(Op, AVG);
1910 
1911     if (const APInt *SA =
1912             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1913       unsigned ShAmt = SA->getZExtValue();
1914       if (ShAmt == 0)
1915         return TLO.CombineTo(Op, Op0);
1916 
1917       APInt InDemandedMask = (DemandedBits << ShAmt);
1918 
1919       // If the shift is exact, then it does demand the low bits (and knows that
1920       // they are zero).
1921       if (Op->getFlags().hasExact())
1922         InDemandedMask.setLowBits(ShAmt);
1923 
1924       // If any of the demanded bits are produced by the sign extension, we also
1925       // demand the input sign bit.
1926       if (DemandedBits.countLeadingZeros() < ShAmt)
1927         InDemandedMask.setSignBit();
1928 
1929       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1930                                Depth + 1))
1931         return true;
1932       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1933       Known.Zero.lshrInPlace(ShAmt);
1934       Known.One.lshrInPlace(ShAmt);
1935 
1936       // If the input sign bit is known to be zero, or if none of the top bits
1937       // are demanded, turn this into an unsigned shift right.
1938       if (Known.Zero[BitWidth - ShAmt - 1] ||
1939           DemandedBits.countLeadingZeros() >= ShAmt) {
1940         SDNodeFlags Flags;
1941         Flags.setExact(Op->getFlags().hasExact());
1942         return TLO.CombineTo(
1943             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1944       }
1945 
1946       int Log2 = DemandedBits.exactLogBase2();
1947       if (Log2 >= 0) {
1948         // The bit must come from the sign.
1949         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1950         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1951       }
1952 
1953       if (Known.One[BitWidth - ShAmt - 1])
1954         // New bits are known one.
1955         Known.One.setHighBits(ShAmt);
1956 
1957       // Attempt to avoid multi-use ops if we don't need anything from them.
1958       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1959         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1960             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1961         if (DemandedOp0) {
1962           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1963           return TLO.CombineTo(Op, NewOp);
1964         }
1965       }
1966     }
1967     break;
1968   }
1969   case ISD::FSHL:
1970   case ISD::FSHR: {
1971     SDValue Op0 = Op.getOperand(0);
1972     SDValue Op1 = Op.getOperand(1);
1973     SDValue Op2 = Op.getOperand(2);
1974     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1975 
1976     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1977       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1978 
1979       // For fshl, 0-shift returns the 1st arg.
1980       // For fshr, 0-shift returns the 2nd arg.
1981       if (Amt == 0) {
1982         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1983                                  Known, TLO, Depth + 1))
1984           return true;
1985         break;
1986       }
1987 
1988       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1989       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1990       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1991       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1992       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1993                                Depth + 1))
1994         return true;
1995       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1996                                Depth + 1))
1997         return true;
1998 
1999       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2000       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2001       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2002       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2003       Known.One |= Known2.One;
2004       Known.Zero |= Known2.Zero;
2005 
2006       // Attempt to avoid multi-use ops if we don't need anything from them.
2007       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2008           !DemandedElts.isAllOnes()) {
2009         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2010             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2011         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2012             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2013         if (DemandedOp0 || DemandedOp1) {
2014           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2015           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2016           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2017                                           DemandedOp1, Op2);
2018           return TLO.CombineTo(Op, NewOp);
2019         }
2020       }
2021     }
2022 
2023     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2024     if (isPowerOf2_32(BitWidth)) {
2025       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2026       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2027                                Known2, TLO, Depth + 1))
2028         return true;
2029     }
2030     break;
2031   }
2032   case ISD::ROTL:
2033   case ISD::ROTR: {
2034     SDValue Op0 = Op.getOperand(0);
2035     SDValue Op1 = Op.getOperand(1);
2036     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2037 
2038     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2039     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2040       return TLO.CombineTo(Op, Op0);
2041 
2042     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2043       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2044       unsigned RevAmt = BitWidth - Amt;
2045 
2046       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2047       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2048       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2049       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2050                                Depth + 1))
2051         return true;
2052 
2053       // rot*(x, 0) --> x
2054       if (Amt == 0)
2055         return TLO.CombineTo(Op, Op0);
2056 
2057       // See if we don't demand either half of the rotated bits.
2058       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2059           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
2060         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2061         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2062       }
2063       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2064           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
2065         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2066         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2067       }
2068     }
2069 
2070     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2071     if (isPowerOf2_32(BitWidth)) {
2072       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2073       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2074                                Depth + 1))
2075         return true;
2076     }
2077     break;
2078   }
2079   case ISD::UMIN: {
2080     // Check if one arg is always less than (or equal) to the other arg.
2081     SDValue Op0 = Op.getOperand(0);
2082     SDValue Op1 = Op.getOperand(1);
2083     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2084     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2085     Known = KnownBits::umin(Known0, Known1);
2086     if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2087       return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2088     if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2089       return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2090     break;
2091   }
2092   case ISD::UMAX: {
2093     // Check if one arg is always greater than (or equal) to the other arg.
2094     SDValue Op0 = Op.getOperand(0);
2095     SDValue Op1 = Op.getOperand(1);
2096     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2097     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2098     Known = KnownBits::umax(Known0, Known1);
2099     if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2100       return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2101     if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2102       return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2103     break;
2104   }
2105   case ISD::BITREVERSE: {
2106     SDValue Src = Op.getOperand(0);
2107     APInt DemandedSrcBits = DemandedBits.reverseBits();
2108     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2109                              Depth + 1))
2110       return true;
2111     Known.One = Known2.One.reverseBits();
2112     Known.Zero = Known2.Zero.reverseBits();
2113     break;
2114   }
2115   case ISD::BSWAP: {
2116     SDValue Src = Op.getOperand(0);
2117 
2118     // If the only bits demanded come from one byte of the bswap result,
2119     // just shift the input byte into position to eliminate the bswap.
2120     unsigned NLZ = DemandedBits.countLeadingZeros();
2121     unsigned NTZ = DemandedBits.countTrailingZeros();
2122 
2123     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2124     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2125     // have 14 leading zeros, round to 8.
2126     NLZ = alignDown(NLZ, 8);
2127     NTZ = alignDown(NTZ, 8);
2128     // If we need exactly one byte, we can do this transformation.
2129     if (BitWidth - NLZ - NTZ == 8) {
2130       // Replace this with either a left or right shift to get the byte into
2131       // the right place.
2132       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2133       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2134         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2135         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2136         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2137         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2138         return TLO.CombineTo(Op, NewOp);
2139       }
2140     }
2141 
2142     APInt DemandedSrcBits = DemandedBits.byteSwap();
2143     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2144                              Depth + 1))
2145       return true;
2146     Known.One = Known2.One.byteSwap();
2147     Known.Zero = Known2.Zero.byteSwap();
2148     break;
2149   }
2150   case ISD::CTPOP: {
2151     // If only 1 bit is demanded, replace with PARITY as long as we're before
2152     // op legalization.
2153     // FIXME: Limit to scalars for now.
2154     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2155       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2156                                                Op.getOperand(0)));
2157 
2158     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2159     break;
2160   }
2161   case ISD::SIGN_EXTEND_INREG: {
2162     SDValue Op0 = Op.getOperand(0);
2163     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2164     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2165 
2166     // If we only care about the highest bit, don't bother shifting right.
2167     if (DemandedBits.isSignMask()) {
2168       unsigned MinSignedBits =
2169           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2170       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2171       // However if the input is already sign extended we expect the sign
2172       // extension to be dropped altogether later and do not simplify.
2173       if (!AlreadySignExtended) {
2174         // Compute the correct shift amount type, which must be getShiftAmountTy
2175         // for scalar types after legalization.
2176         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2177                                                getShiftAmountTy(VT, DL));
2178         return TLO.CombineTo(Op,
2179                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2180       }
2181     }
2182 
2183     // If none of the extended bits are demanded, eliminate the sextinreg.
2184     if (DemandedBits.getActiveBits() <= ExVTBits)
2185       return TLO.CombineTo(Op, Op0);
2186 
2187     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2188 
2189     // Since the sign extended bits are demanded, we know that the sign
2190     // bit is demanded.
2191     InputDemandedBits.setBit(ExVTBits - 1);
2192 
2193     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2194                              Depth + 1))
2195       return true;
2196     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2197 
2198     // If the sign bit of the input is known set or clear, then we know the
2199     // top bits of the result.
2200 
2201     // If the input sign bit is known zero, convert this into a zero extension.
2202     if (Known.Zero[ExVTBits - 1])
2203       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2204 
2205     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2206     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2207       Known.One.setBitsFrom(ExVTBits);
2208       Known.Zero &= Mask;
2209     } else { // Input sign bit unknown
2210       Known.Zero &= Mask;
2211       Known.One &= Mask;
2212     }
2213     break;
2214   }
2215   case ISD::BUILD_PAIR: {
2216     EVT HalfVT = Op.getOperand(0).getValueType();
2217     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2218 
2219     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2220     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2221 
2222     KnownBits KnownLo, KnownHi;
2223 
2224     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2225       return true;
2226 
2227     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2228       return true;
2229 
2230     Known = KnownHi.concat(KnownLo);
2231     break;
2232   }
2233   case ISD::ZERO_EXTEND_VECTOR_INREG:
2234     if (VT.isScalableVector())
2235       return false;
2236     [[fallthrough]];
2237   case ISD::ZERO_EXTEND: {
2238     SDValue Src = Op.getOperand(0);
2239     EVT SrcVT = Src.getValueType();
2240     unsigned InBits = SrcVT.getScalarSizeInBits();
2241     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2242     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2243 
2244     // If none of the top bits are demanded, convert this into an any_extend.
2245     if (DemandedBits.getActiveBits() <= InBits) {
2246       // If we only need the non-extended bits of the bottom element
2247       // then we can just bitcast to the result.
2248       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2249           VT.getSizeInBits() == SrcVT.getSizeInBits())
2250         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2251 
2252       unsigned Opc =
2253           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2254       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2255         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2256     }
2257 
2258     APInt InDemandedBits = DemandedBits.trunc(InBits);
2259     APInt InDemandedElts = DemandedElts.zext(InElts);
2260     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2261                              Depth + 1))
2262       return true;
2263     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2264     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2265     Known = Known.zext(BitWidth);
2266 
2267     // Attempt to avoid multi-use ops if we don't need anything from them.
2268     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2269             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2270       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2271     break;
2272   }
2273   case ISD::SIGN_EXTEND_VECTOR_INREG:
2274     if (VT.isScalableVector())
2275       return false;
2276     [[fallthrough]];
2277   case ISD::SIGN_EXTEND: {
2278     SDValue Src = Op.getOperand(0);
2279     EVT SrcVT = Src.getValueType();
2280     unsigned InBits = SrcVT.getScalarSizeInBits();
2281     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2282     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2283 
2284     // If none of the top bits are demanded, convert this into an any_extend.
2285     if (DemandedBits.getActiveBits() <= InBits) {
2286       // If we only need the non-extended bits of the bottom element
2287       // then we can just bitcast to the result.
2288       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2289           VT.getSizeInBits() == SrcVT.getSizeInBits())
2290         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2291 
2292       unsigned Opc =
2293           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2294       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2295         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2296     }
2297 
2298     APInt InDemandedBits = DemandedBits.trunc(InBits);
2299     APInt InDemandedElts = DemandedElts.zext(InElts);
2300 
2301     // Since some of the sign extended bits are demanded, we know that the sign
2302     // bit is demanded.
2303     InDemandedBits.setBit(InBits - 1);
2304 
2305     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2306                              Depth + 1))
2307       return true;
2308     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2309     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2310 
2311     // If the sign bit is known one, the top bits match.
2312     Known = Known.sext(BitWidth);
2313 
2314     // If the sign bit is known zero, convert this to a zero extend.
2315     if (Known.isNonNegative()) {
2316       unsigned Opc =
2317           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2318       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2319         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2320     }
2321 
2322     // Attempt to avoid multi-use ops if we don't need anything from them.
2323     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2324             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2325       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2326     break;
2327   }
2328   case ISD::ANY_EXTEND_VECTOR_INREG:
2329     if (VT.isScalableVector())
2330       return false;
2331     [[fallthrough]];
2332   case ISD::ANY_EXTEND: {
2333     SDValue Src = Op.getOperand(0);
2334     EVT SrcVT = Src.getValueType();
2335     unsigned InBits = SrcVT.getScalarSizeInBits();
2336     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2337     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2338 
2339     // If we only need the bottom element then we can just bitcast.
2340     // TODO: Handle ANY_EXTEND?
2341     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2342         VT.getSizeInBits() == SrcVT.getSizeInBits())
2343       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2344 
2345     APInt InDemandedBits = DemandedBits.trunc(InBits);
2346     APInt InDemandedElts = DemandedElts.zext(InElts);
2347     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2348                              Depth + 1))
2349       return true;
2350     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2351     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2352     Known = Known.anyext(BitWidth);
2353 
2354     // Attempt to avoid multi-use ops if we don't need anything from them.
2355     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2356             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2357       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2358     break;
2359   }
2360   case ISD::TRUNCATE: {
2361     SDValue Src = Op.getOperand(0);
2362 
2363     // Simplify the input, using demanded bit information, and compute the known
2364     // zero/one bits live out.
2365     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2366     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2367     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2368                              Depth + 1))
2369       return true;
2370     Known = Known.trunc(BitWidth);
2371 
2372     // Attempt to avoid multi-use ops if we don't need anything from them.
2373     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2374             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2375       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2376 
2377     // If the input is only used by this truncate, see if we can shrink it based
2378     // on the known demanded bits.
2379     switch (Src.getOpcode()) {
2380     default:
2381       break;
2382     case ISD::SRL:
2383       // Shrink SRL by a constant if none of the high bits shifted in are
2384       // demanded.
2385       if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2386         // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2387         // undesirable.
2388         break;
2389 
2390       if (Src.getNode()->hasOneUse()) {
2391         const APInt *ShAmtC =
2392             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2393         if (!ShAmtC || ShAmtC->uge(BitWidth))
2394           break;
2395         uint64_t ShVal = ShAmtC->getZExtValue();
2396 
2397         APInt HighBits =
2398             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2399         HighBits.lshrInPlace(ShVal);
2400         HighBits = HighBits.trunc(BitWidth);
2401 
2402         if (!(HighBits & DemandedBits)) {
2403           // None of the shifted in bits are needed.  Add a truncate of the
2404           // shift input, then shift it.
2405           SDValue NewShAmt = TLO.DAG.getConstant(
2406               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2407           SDValue NewTrunc =
2408               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2409           return TLO.CombineTo(
2410               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2411         }
2412       }
2413       break;
2414     }
2415 
2416     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2417     break;
2418   }
2419   case ISD::AssertZext: {
2420     // AssertZext demands all of the high bits, plus any of the low bits
2421     // demanded by its users.
2422     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2423     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2424     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2425                              TLO, Depth + 1))
2426       return true;
2427     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2428 
2429     Known.Zero |= ~InMask;
2430     Known.One &= (~Known.Zero);
2431     break;
2432   }
2433   case ISD::EXTRACT_VECTOR_ELT: {
2434     SDValue Src = Op.getOperand(0);
2435     SDValue Idx = Op.getOperand(1);
2436     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2437     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2438 
2439     if (SrcEltCnt.isScalable())
2440       return false;
2441 
2442     // Demand the bits from every vector element without a constant index.
2443     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2444     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2445     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2446       if (CIdx->getAPIntValue().ult(NumSrcElts))
2447         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2448 
2449     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2450     // anything about the extended bits.
2451     APInt DemandedSrcBits = DemandedBits;
2452     if (BitWidth > EltBitWidth)
2453       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2454 
2455     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2456                              Depth + 1))
2457       return true;
2458 
2459     // Attempt to avoid multi-use ops if we don't need anything from them.
2460     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2461       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2462               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2463         SDValue NewOp =
2464             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2465         return TLO.CombineTo(Op, NewOp);
2466       }
2467     }
2468 
2469     Known = Known2;
2470     if (BitWidth > EltBitWidth)
2471       Known = Known.anyext(BitWidth);
2472     break;
2473   }
2474   case ISD::BITCAST: {
2475     if (VT.isScalableVector())
2476       return false;
2477     SDValue Src = Op.getOperand(0);
2478     EVT SrcVT = Src.getValueType();
2479     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2480 
2481     // If this is an FP->Int bitcast and if the sign bit is the only
2482     // thing demanded, turn this into a FGETSIGN.
2483     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2484         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2485         SrcVT.isFloatingPoint()) {
2486       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2487       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2488       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2489           SrcVT != MVT::f128) {
2490         // Cannot eliminate/lower SHL for f128 yet.
2491         EVT Ty = OpVTLegal ? VT : MVT::i32;
2492         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2493         // place.  We expect the SHL to be eliminated by other optimizations.
2494         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2495         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2496         if (!OpVTLegal && OpVTSizeInBits > 32)
2497           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2498         unsigned ShVal = Op.getValueSizeInBits() - 1;
2499         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2500         return TLO.CombineTo(Op,
2501                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2502       }
2503     }
2504 
2505     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2506     // Demand the elt/bit if any of the original elts/bits are demanded.
2507     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2508       unsigned Scale = BitWidth / NumSrcEltBits;
2509       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2510       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2511       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2512       for (unsigned i = 0; i != Scale; ++i) {
2513         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2514         unsigned BitOffset = EltOffset * NumSrcEltBits;
2515         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2516         if (!Sub.isZero()) {
2517           DemandedSrcBits |= Sub;
2518           for (unsigned j = 0; j != NumElts; ++j)
2519             if (DemandedElts[j])
2520               DemandedSrcElts.setBit((j * Scale) + i);
2521         }
2522       }
2523 
2524       APInt KnownSrcUndef, KnownSrcZero;
2525       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2526                                      KnownSrcZero, TLO, Depth + 1))
2527         return true;
2528 
2529       KnownBits KnownSrcBits;
2530       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2531                                KnownSrcBits, TLO, Depth + 1))
2532         return true;
2533     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2534       // TODO - bigendian once we have test coverage.
2535       unsigned Scale = NumSrcEltBits / BitWidth;
2536       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2537       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2538       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2539       for (unsigned i = 0; i != NumElts; ++i)
2540         if (DemandedElts[i]) {
2541           unsigned Offset = (i % Scale) * BitWidth;
2542           DemandedSrcBits.insertBits(DemandedBits, Offset);
2543           DemandedSrcElts.setBit(i / Scale);
2544         }
2545 
2546       if (SrcVT.isVector()) {
2547         APInt KnownSrcUndef, KnownSrcZero;
2548         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2549                                        KnownSrcZero, TLO, Depth + 1))
2550           return true;
2551       }
2552 
2553       KnownBits KnownSrcBits;
2554       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2555                                KnownSrcBits, TLO, Depth + 1))
2556         return true;
2557     }
2558 
2559     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2560     // recursive call where Known may be useful to the caller.
2561     if (Depth > 0) {
2562       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2563       return false;
2564     }
2565     break;
2566   }
2567   case ISD::MUL:
2568     if (DemandedBits.isPowerOf2()) {
2569       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2570       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2571       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2572       unsigned CTZ = DemandedBits.countTrailingZeros();
2573       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2574       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2575         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2576         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2577         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2578         return TLO.CombineTo(Op, Shl);
2579       }
2580     }
2581     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2582     // X * X is odd iff X is odd.
2583     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2584     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2585       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2586       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2587       return TLO.CombineTo(Op, And1);
2588     }
2589     [[fallthrough]];
2590   case ISD::ADD:
2591   case ISD::SUB: {
2592     // Add, Sub, and Mul don't demand any bits in positions beyond that
2593     // of the highest bit demanded of them.
2594     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2595     SDNodeFlags Flags = Op.getNode()->getFlags();
2596     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2597     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2598     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2599                              Depth + 1) ||
2600         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2601                              Depth + 1) ||
2602         // See if the operation should be performed at a smaller bit width.
2603         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2604       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2605         // Disable the nsw and nuw flags. We can no longer guarantee that we
2606         // won't wrap after simplification.
2607         Flags.setNoSignedWrap(false);
2608         Flags.setNoUnsignedWrap(false);
2609         Op->setFlags(Flags);
2610       }
2611       return true;
2612     }
2613 
2614     // neg x with only low bit demanded is simply x.
2615     if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2616         isa<ConstantSDNode>(Op0) && cast<ConstantSDNode>(Op0)->isZero())
2617       return TLO.CombineTo(Op, Op1);
2618 
2619     // Attempt to avoid multi-use ops if we don't need anything from them.
2620     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2621       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2622           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2623       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2624           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2625       if (DemandedOp0 || DemandedOp1) {
2626         Flags.setNoSignedWrap(false);
2627         Flags.setNoUnsignedWrap(false);
2628         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2629         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2630         SDValue NewOp =
2631             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2632         return TLO.CombineTo(Op, NewOp);
2633       }
2634     }
2635 
2636     // If we have a constant operand, we may be able to turn it into -1 if we
2637     // do not demand the high bits. This can make the constant smaller to
2638     // encode, allow more general folding, or match specialized instruction
2639     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2640     // is probably not useful (and could be detrimental).
2641     ConstantSDNode *C = isConstOrConstSplat(Op1);
2642     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2643     if (C && !C->isAllOnes() && !C->isOne() &&
2644         (C->getAPIntValue() | HighMask).isAllOnes()) {
2645       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2646       // Disable the nsw and nuw flags. We can no longer guarantee that we
2647       // won't wrap after simplification.
2648       Flags.setNoSignedWrap(false);
2649       Flags.setNoUnsignedWrap(false);
2650       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2651       return TLO.CombineTo(Op, NewOp);
2652     }
2653 
2654     // Match a multiply with a disguised negated-power-of-2 and convert to a
2655     // an equivalent shift-left amount.
2656     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2657     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2658       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2659         return 0;
2660 
2661       // Don't touch opaque constants. Also, ignore zero and power-of-2
2662       // multiplies. Those will get folded later.
2663       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2664       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2665           !MulC->getAPIntValue().isPowerOf2()) {
2666         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2667         if (UnmaskedC.isNegatedPowerOf2())
2668           return (-UnmaskedC).logBase2();
2669       }
2670       return 0;
2671     };
2672 
2673     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2674       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2675       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2676       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2677       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2678       return TLO.CombineTo(Op, Res);
2679     };
2680 
2681     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2682       if (Op.getOpcode() == ISD::ADD) {
2683         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2684         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2685           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2686         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2687         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2688           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2689       }
2690       if (Op.getOpcode() == ISD::SUB) {
2691         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2692         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2693           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2694       }
2695     }
2696 
2697     [[fallthrough]];
2698   }
2699   default:
2700     // We also ask the target about intrinsics (which could be specific to it).
2701     if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2702         Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2703       // TODO: Probably okay to remove after audit; here to reduce change size
2704       // in initial enablement patch for scalable vectors
2705       if (Op.getValueType().isScalableVector())
2706         break;
2707       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2708                                             Known, TLO, Depth))
2709         return true;
2710       break;
2711     }
2712 
2713     // Just use computeKnownBits to compute output bits.
2714     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2715     break;
2716   }
2717 
2718   // If we know the value of all of the demanded bits, return this as a
2719   // constant.
2720   if (!isTargetCanonicalConstantNode(Op) &&
2721       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2722     // Avoid folding to a constant if any OpaqueConstant is involved.
2723     const SDNode *N = Op.getNode();
2724     for (SDNode *Op :
2725          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2726       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2727         if (C->isOpaque())
2728           return false;
2729     }
2730     if (VT.isInteger())
2731       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2732     if (VT.isFloatingPoint())
2733       return TLO.CombineTo(
2734           Op,
2735           TLO.DAG.getConstantFP(
2736               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2737   }
2738 
2739   // A multi use 'all demanded elts' simplify failed to find any knownbits.
2740   // Try again just for the original demanded elts.
2741   // Ensure we do this AFTER constant folding above.
2742   if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
2743     Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
2744 
2745   return false;
2746 }
2747 
2748 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2749                                                 const APInt &DemandedElts,
2750                                                 DAGCombinerInfo &DCI) const {
2751   SelectionDAG &DAG = DCI.DAG;
2752   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2753                         !DCI.isBeforeLegalizeOps());
2754 
2755   APInt KnownUndef, KnownZero;
2756   bool Simplified =
2757       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2758   if (Simplified) {
2759     DCI.AddToWorklist(Op.getNode());
2760     DCI.CommitTargetLoweringOpt(TLO);
2761   }
2762 
2763   return Simplified;
2764 }
2765 
2766 /// Given a vector binary operation and known undefined elements for each input
2767 /// operand, compute whether each element of the output is undefined.
2768 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2769                                          const APInt &UndefOp0,
2770                                          const APInt &UndefOp1) {
2771   EVT VT = BO.getValueType();
2772   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2773          "Vector binop only");
2774 
2775   EVT EltVT = VT.getVectorElementType();
2776   unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
2777   assert(UndefOp0.getBitWidth() == NumElts &&
2778          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2779 
2780   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2781                                    const APInt &UndefVals) {
2782     if (UndefVals[Index])
2783       return DAG.getUNDEF(EltVT);
2784 
2785     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2786       // Try hard to make sure that the getNode() call is not creating temporary
2787       // nodes. Ignore opaque integers because they do not constant fold.
2788       SDValue Elt = BV->getOperand(Index);
2789       auto *C = dyn_cast<ConstantSDNode>(Elt);
2790       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2791         return Elt;
2792     }
2793 
2794     return SDValue();
2795   };
2796 
2797   APInt KnownUndef = APInt::getZero(NumElts);
2798   for (unsigned i = 0; i != NumElts; ++i) {
2799     // If both inputs for this element are either constant or undef and match
2800     // the element type, compute the constant/undef result for this element of
2801     // the vector.
2802     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2803     // not handle FP constants. The code within getNode() should be refactored
2804     // to avoid the danger of creating a bogus temporary node here.
2805     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2806     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2807     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2808       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2809         KnownUndef.setBit(i);
2810   }
2811   return KnownUndef;
2812 }
2813 
2814 bool TargetLowering::SimplifyDemandedVectorElts(
2815     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2816     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2817     bool AssumeSingleUse) const {
2818   EVT VT = Op.getValueType();
2819   unsigned Opcode = Op.getOpcode();
2820   APInt DemandedElts = OriginalDemandedElts;
2821   unsigned NumElts = DemandedElts.getBitWidth();
2822   assert(VT.isVector() && "Expected vector op");
2823 
2824   KnownUndef = KnownZero = APInt::getZero(NumElts);
2825 
2826   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2827   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2828     return false;
2829 
2830   // TODO: For now we assume we know nothing about scalable vectors.
2831   if (VT.isScalableVector())
2832     return false;
2833 
2834   assert(VT.getVectorNumElements() == NumElts &&
2835          "Mask size mismatches value type element count!");
2836 
2837   // Undef operand.
2838   if (Op.isUndef()) {
2839     KnownUndef.setAllBits();
2840     return false;
2841   }
2842 
2843   // If Op has other users, assume that all elements are needed.
2844   if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
2845     DemandedElts.setAllBits();
2846 
2847   // Not demanding any elements from Op.
2848   if (DemandedElts == 0) {
2849     KnownUndef.setAllBits();
2850     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2851   }
2852 
2853   // Limit search depth.
2854   if (Depth >= SelectionDAG::MaxRecursionDepth)
2855     return false;
2856 
2857   SDLoc DL(Op);
2858   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2859   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2860 
2861   // Helper for demanding the specified elements and all the bits of both binary
2862   // operands.
2863   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2864     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2865                                                            TLO.DAG, Depth + 1);
2866     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2867                                                            TLO.DAG, Depth + 1);
2868     if (NewOp0 || NewOp1) {
2869       SDValue NewOp = TLO.DAG.getNode(
2870           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2871       return TLO.CombineTo(Op, NewOp);
2872     }
2873     return false;
2874   };
2875 
2876   switch (Opcode) {
2877   case ISD::SCALAR_TO_VECTOR: {
2878     if (!DemandedElts[0]) {
2879       KnownUndef.setAllBits();
2880       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2881     }
2882     SDValue ScalarSrc = Op.getOperand(0);
2883     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2884       SDValue Src = ScalarSrc.getOperand(0);
2885       SDValue Idx = ScalarSrc.getOperand(1);
2886       EVT SrcVT = Src.getValueType();
2887 
2888       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2889 
2890       if (SrcEltCnt.isScalable())
2891         return false;
2892 
2893       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2894       if (isNullConstant(Idx)) {
2895         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2896         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2897         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2898         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2899                                        TLO, Depth + 1))
2900           return true;
2901       }
2902     }
2903     KnownUndef.setHighBits(NumElts - 1);
2904     break;
2905   }
2906   case ISD::BITCAST: {
2907     SDValue Src = Op.getOperand(0);
2908     EVT SrcVT = Src.getValueType();
2909 
2910     // We only handle vectors here.
2911     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2912     if (!SrcVT.isVector())
2913       break;
2914 
2915     // Fast handling of 'identity' bitcasts.
2916     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2917     if (NumSrcElts == NumElts)
2918       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2919                                         KnownZero, TLO, Depth + 1);
2920 
2921     APInt SrcDemandedElts, SrcZero, SrcUndef;
2922 
2923     // Bitcast from 'large element' src vector to 'small element' vector, we
2924     // must demand a source element if any DemandedElt maps to it.
2925     if ((NumElts % NumSrcElts) == 0) {
2926       unsigned Scale = NumElts / NumSrcElts;
2927       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2928       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2929                                      TLO, Depth + 1))
2930         return true;
2931 
2932       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2933       // of the large element.
2934       // TODO - bigendian once we have test coverage.
2935       if (IsLE) {
2936         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2937         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2938         for (unsigned i = 0; i != NumElts; ++i)
2939           if (DemandedElts[i]) {
2940             unsigned Ofs = (i % Scale) * EltSizeInBits;
2941             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2942           }
2943 
2944         KnownBits Known;
2945         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2946                                  TLO, Depth + 1))
2947           return true;
2948 
2949         // The bitcast has split each wide element into a number of
2950         // narrow subelements. We have just computed the Known bits
2951         // for wide elements. See if element splitting results in
2952         // some subelements being zero. Only for demanded elements!
2953         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2954           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2955                    .isAllOnes())
2956             continue;
2957           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2958             unsigned Elt = Scale * SrcElt + SubElt;
2959             if (DemandedElts[Elt])
2960               KnownZero.setBit(Elt);
2961           }
2962         }
2963       }
2964 
2965       // If the src element is zero/undef then all the output elements will be -
2966       // only demanded elements are guaranteed to be correct.
2967       for (unsigned i = 0; i != NumSrcElts; ++i) {
2968         if (SrcDemandedElts[i]) {
2969           if (SrcZero[i])
2970             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2971           if (SrcUndef[i])
2972             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2973         }
2974       }
2975     }
2976 
2977     // Bitcast from 'small element' src vector to 'large element' vector, we
2978     // demand all smaller source elements covered by the larger demanded element
2979     // of this vector.
2980     if ((NumSrcElts % NumElts) == 0) {
2981       unsigned Scale = NumSrcElts / NumElts;
2982       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2983       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2984                                      TLO, Depth + 1))
2985         return true;
2986 
2987       // If all the src elements covering an output element are zero/undef, then
2988       // the output element will be as well, assuming it was demanded.
2989       for (unsigned i = 0; i != NumElts; ++i) {
2990         if (DemandedElts[i]) {
2991           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2992             KnownZero.setBit(i);
2993           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2994             KnownUndef.setBit(i);
2995         }
2996       }
2997     }
2998     break;
2999   }
3000   case ISD::BUILD_VECTOR: {
3001     // Check all elements and simplify any unused elements with UNDEF.
3002     if (!DemandedElts.isAllOnes()) {
3003       // Don't simplify BROADCASTS.
3004       if (llvm::any_of(Op->op_values(),
3005                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3006         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
3007         bool Updated = false;
3008         for (unsigned i = 0; i != NumElts; ++i) {
3009           if (!DemandedElts[i] && !Ops[i].isUndef()) {
3010             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3011             KnownUndef.setBit(i);
3012             Updated = true;
3013           }
3014         }
3015         if (Updated)
3016           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3017       }
3018     }
3019     for (unsigned i = 0; i != NumElts; ++i) {
3020       SDValue SrcOp = Op.getOperand(i);
3021       if (SrcOp.isUndef()) {
3022         KnownUndef.setBit(i);
3023       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3024                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3025         KnownZero.setBit(i);
3026       }
3027     }
3028     break;
3029   }
3030   case ISD::CONCAT_VECTORS: {
3031     EVT SubVT = Op.getOperand(0).getValueType();
3032     unsigned NumSubVecs = Op.getNumOperands();
3033     unsigned NumSubElts = SubVT.getVectorNumElements();
3034     for (unsigned i = 0; i != NumSubVecs; ++i) {
3035       SDValue SubOp = Op.getOperand(i);
3036       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3037       APInt SubUndef, SubZero;
3038       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3039                                      Depth + 1))
3040         return true;
3041       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3042       KnownZero.insertBits(SubZero, i * NumSubElts);
3043     }
3044 
3045     // Attempt to avoid multi-use ops if we don't need anything from them.
3046     if (!DemandedElts.isAllOnes()) {
3047       bool FoundNewSub = false;
3048       SmallVector<SDValue, 2> DemandedSubOps;
3049       for (unsigned i = 0; i != NumSubVecs; ++i) {
3050         SDValue SubOp = Op.getOperand(i);
3051         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3052         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3053             SubOp, SubElts, TLO.DAG, Depth + 1);
3054         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3055         FoundNewSub = NewSubOp ? true : FoundNewSub;
3056       }
3057       if (FoundNewSub) {
3058         SDValue NewOp =
3059             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3060         return TLO.CombineTo(Op, NewOp);
3061       }
3062     }
3063     break;
3064   }
3065   case ISD::INSERT_SUBVECTOR: {
3066     // Demand any elements from the subvector and the remainder from the src its
3067     // inserted into.
3068     SDValue Src = Op.getOperand(0);
3069     SDValue Sub = Op.getOperand(1);
3070     uint64_t Idx = Op.getConstantOperandVal(2);
3071     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3072     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3073     APInt DemandedSrcElts = DemandedElts;
3074     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3075 
3076     APInt SubUndef, SubZero;
3077     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3078                                    Depth + 1))
3079       return true;
3080 
3081     // If none of the src operand elements are demanded, replace it with undef.
3082     if (!DemandedSrcElts && !Src.isUndef())
3083       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3084                                                TLO.DAG.getUNDEF(VT), Sub,
3085                                                Op.getOperand(2)));
3086 
3087     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3088                                    TLO, Depth + 1))
3089       return true;
3090     KnownUndef.insertBits(SubUndef, Idx);
3091     KnownZero.insertBits(SubZero, Idx);
3092 
3093     // Attempt to avoid multi-use ops if we don't need anything from them.
3094     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3095       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3096           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3097       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3098           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3099       if (NewSrc || NewSub) {
3100         NewSrc = NewSrc ? NewSrc : Src;
3101         NewSub = NewSub ? NewSub : Sub;
3102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3103                                         NewSub, Op.getOperand(2));
3104         return TLO.CombineTo(Op, NewOp);
3105       }
3106     }
3107     break;
3108   }
3109   case ISD::EXTRACT_SUBVECTOR: {
3110     // Offset the demanded elts by the subvector index.
3111     SDValue Src = Op.getOperand(0);
3112     if (Src.getValueType().isScalableVector())
3113       break;
3114     uint64_t Idx = Op.getConstantOperandVal(1);
3115     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3116     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3117 
3118     APInt SrcUndef, SrcZero;
3119     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3120                                    Depth + 1))
3121       return true;
3122     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3123     KnownZero = SrcZero.extractBits(NumElts, Idx);
3124 
3125     // Attempt to avoid multi-use ops if we don't need anything from them.
3126     if (!DemandedElts.isAllOnes()) {
3127       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3128           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3129       if (NewSrc) {
3130         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3131                                         Op.getOperand(1));
3132         return TLO.CombineTo(Op, NewOp);
3133       }
3134     }
3135     break;
3136   }
3137   case ISD::INSERT_VECTOR_ELT: {
3138     SDValue Vec = Op.getOperand(0);
3139     SDValue Scl = Op.getOperand(1);
3140     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3141 
3142     // For a legal, constant insertion index, if we don't need this insertion
3143     // then strip it, else remove it from the demanded elts.
3144     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3145       unsigned Idx = CIdx->getZExtValue();
3146       if (!DemandedElts[Idx])
3147         return TLO.CombineTo(Op, Vec);
3148 
3149       APInt DemandedVecElts(DemandedElts);
3150       DemandedVecElts.clearBit(Idx);
3151       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3152                                      KnownZero, TLO, Depth + 1))
3153         return true;
3154 
3155       KnownUndef.setBitVal(Idx, Scl.isUndef());
3156 
3157       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3158       break;
3159     }
3160 
3161     APInt VecUndef, VecZero;
3162     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3163                                    Depth + 1))
3164       return true;
3165     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3166     break;
3167   }
3168   case ISD::VSELECT: {
3169     SDValue Sel = Op.getOperand(0);
3170     SDValue LHS = Op.getOperand(1);
3171     SDValue RHS = Op.getOperand(2);
3172 
3173     // Try to transform the select condition based on the current demanded
3174     // elements.
3175     APInt UndefSel, UndefZero;
3176     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3177                                    Depth + 1))
3178       return true;
3179 
3180     // See if we can simplify either vselect operand.
3181     APInt DemandedLHS(DemandedElts);
3182     APInt DemandedRHS(DemandedElts);
3183     APInt UndefLHS, ZeroLHS;
3184     APInt UndefRHS, ZeroRHS;
3185     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3186                                    Depth + 1))
3187       return true;
3188     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3189                                    Depth + 1))
3190       return true;
3191 
3192     KnownUndef = UndefLHS & UndefRHS;
3193     KnownZero = ZeroLHS & ZeroRHS;
3194 
3195     // If we know that the selected element is always zero, we don't need the
3196     // select value element.
3197     APInt DemandedSel = DemandedElts & ~KnownZero;
3198     if (DemandedSel != DemandedElts)
3199       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3200                                      Depth + 1))
3201         return true;
3202 
3203     break;
3204   }
3205   case ISD::VECTOR_SHUFFLE: {
3206     SDValue LHS = Op.getOperand(0);
3207     SDValue RHS = Op.getOperand(1);
3208     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3209 
3210     // Collect demanded elements from shuffle operands..
3211     APInt DemandedLHS(NumElts, 0);
3212     APInt DemandedRHS(NumElts, 0);
3213     for (unsigned i = 0; i != NumElts; ++i) {
3214       int M = ShuffleMask[i];
3215       if (M < 0 || !DemandedElts[i])
3216         continue;
3217       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3218       if (M < (int)NumElts)
3219         DemandedLHS.setBit(M);
3220       else
3221         DemandedRHS.setBit(M - NumElts);
3222     }
3223 
3224     // See if we can simplify either shuffle operand.
3225     APInt UndefLHS, ZeroLHS;
3226     APInt UndefRHS, ZeroRHS;
3227     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3228                                    Depth + 1))
3229       return true;
3230     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3231                                    Depth + 1))
3232       return true;
3233 
3234     // Simplify mask using undef elements from LHS/RHS.
3235     bool Updated = false;
3236     bool IdentityLHS = true, IdentityRHS = true;
3237     SmallVector<int, 32> NewMask(ShuffleMask);
3238     for (unsigned i = 0; i != NumElts; ++i) {
3239       int &M = NewMask[i];
3240       if (M < 0)
3241         continue;
3242       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3243           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3244         Updated = true;
3245         M = -1;
3246       }
3247       IdentityLHS &= (M < 0) || (M == (int)i);
3248       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3249     }
3250 
3251     // Update legal shuffle masks based on demanded elements if it won't reduce
3252     // to Identity which can cause premature removal of the shuffle mask.
3253     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3254       SDValue LegalShuffle =
3255           buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3256       if (LegalShuffle)
3257         return TLO.CombineTo(Op, LegalShuffle);
3258     }
3259 
3260     // Propagate undef/zero elements from LHS/RHS.
3261     for (unsigned i = 0; i != NumElts; ++i) {
3262       int M = ShuffleMask[i];
3263       if (M < 0) {
3264         KnownUndef.setBit(i);
3265       } else if (M < (int)NumElts) {
3266         if (UndefLHS[M])
3267           KnownUndef.setBit(i);
3268         if (ZeroLHS[M])
3269           KnownZero.setBit(i);
3270       } else {
3271         if (UndefRHS[M - NumElts])
3272           KnownUndef.setBit(i);
3273         if (ZeroRHS[M - NumElts])
3274           KnownZero.setBit(i);
3275       }
3276     }
3277     break;
3278   }
3279   case ISD::ANY_EXTEND_VECTOR_INREG:
3280   case ISD::SIGN_EXTEND_VECTOR_INREG:
3281   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3282     APInt SrcUndef, SrcZero;
3283     SDValue Src = Op.getOperand(0);
3284     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3285     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3286     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3287                                    Depth + 1))
3288       return true;
3289     KnownZero = SrcZero.zextOrTrunc(NumElts);
3290     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3291 
3292     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3293         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3294         DemandedSrcElts == 1) {
3295       // aext - if we just need the bottom element then we can bitcast.
3296       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3297     }
3298 
3299     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3300       // zext(undef) upper bits are guaranteed to be zero.
3301       if (DemandedElts.isSubsetOf(KnownUndef))
3302         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3303       KnownUndef.clearAllBits();
3304 
3305       // zext - if we just need the bottom element then we can mask:
3306       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3307       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3308           Op->isOnlyUserOf(Src.getNode()) &&
3309           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3310         SDLoc DL(Op);
3311         EVT SrcVT = Src.getValueType();
3312         EVT SrcSVT = SrcVT.getScalarType();
3313         SmallVector<SDValue> MaskElts;
3314         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3315         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3316         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3317         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3318                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3319           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3320           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3321         }
3322       }
3323     }
3324     break;
3325   }
3326 
3327   // TODO: There are more binop opcodes that could be handled here - MIN,
3328   // MAX, saturated math, etc.
3329   case ISD::ADD: {
3330     SDValue Op0 = Op.getOperand(0);
3331     SDValue Op1 = Op.getOperand(1);
3332     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3333       APInt UndefLHS, ZeroLHS;
3334       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3335                                      Depth + 1, /*AssumeSingleUse*/ true))
3336         return true;
3337     }
3338     [[fallthrough]];
3339   }
3340   case ISD::OR:
3341   case ISD::XOR:
3342   case ISD::SUB:
3343   case ISD::FADD:
3344   case ISD::FSUB:
3345   case ISD::FMUL:
3346   case ISD::FDIV:
3347   case ISD::FREM: {
3348     SDValue Op0 = Op.getOperand(0);
3349     SDValue Op1 = Op.getOperand(1);
3350 
3351     APInt UndefRHS, ZeroRHS;
3352     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3353                                    Depth + 1))
3354       return true;
3355     APInt UndefLHS, ZeroLHS;
3356     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3357                                    Depth + 1))
3358       return true;
3359 
3360     KnownZero = ZeroLHS & ZeroRHS;
3361     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3362 
3363     // Attempt to avoid multi-use ops if we don't need anything from them.
3364     // TODO - use KnownUndef to relax the demandedelts?
3365     if (!DemandedElts.isAllOnes())
3366       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3367         return true;
3368     break;
3369   }
3370   case ISD::SHL:
3371   case ISD::SRL:
3372   case ISD::SRA:
3373   case ISD::ROTL:
3374   case ISD::ROTR: {
3375     SDValue Op0 = Op.getOperand(0);
3376     SDValue Op1 = Op.getOperand(1);
3377 
3378     APInt UndefRHS, ZeroRHS;
3379     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3380                                    Depth + 1))
3381       return true;
3382     APInt UndefLHS, ZeroLHS;
3383     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3384                                    Depth + 1))
3385       return true;
3386 
3387     KnownZero = ZeroLHS;
3388     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3389 
3390     // Attempt to avoid multi-use ops if we don't need anything from them.
3391     // TODO - use KnownUndef to relax the demandedelts?
3392     if (!DemandedElts.isAllOnes())
3393       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3394         return true;
3395     break;
3396   }
3397   case ISD::MUL:
3398   case ISD::MULHU:
3399   case ISD::MULHS:
3400   case ISD::AND: {
3401     SDValue Op0 = Op.getOperand(0);
3402     SDValue Op1 = Op.getOperand(1);
3403 
3404     APInt SrcUndef, SrcZero;
3405     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3406                                    Depth + 1))
3407       return true;
3408     // If we know that a demanded element was zero in Op1 we don't need to
3409     // demand it in Op0 - its guaranteed to be zero.
3410     APInt DemandedElts0 = DemandedElts & ~SrcZero;
3411     if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3412                                    TLO, Depth + 1))
3413       return true;
3414 
3415     KnownUndef &= DemandedElts0;
3416     KnownZero &= DemandedElts0;
3417 
3418     // If every element pair has a zero/undef then just fold to zero.
3419     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3420     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3421     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3422       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3423 
3424     // If either side has a zero element, then the result element is zero, even
3425     // if the other is an UNDEF.
3426     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3427     // and then handle 'and' nodes with the rest of the binop opcodes.
3428     KnownZero |= SrcZero;
3429     KnownUndef &= SrcUndef;
3430     KnownUndef &= ~KnownZero;
3431 
3432     // Attempt to avoid multi-use ops if we don't need anything from them.
3433     if (!DemandedElts.isAllOnes())
3434       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3435         return true;
3436     break;
3437   }
3438   case ISD::TRUNCATE:
3439   case ISD::SIGN_EXTEND:
3440   case ISD::ZERO_EXTEND:
3441     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3442                                    KnownZero, TLO, Depth + 1))
3443       return true;
3444 
3445     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3446       // zext(undef) upper bits are guaranteed to be zero.
3447       if (DemandedElts.isSubsetOf(KnownUndef))
3448         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3449       KnownUndef.clearAllBits();
3450     }
3451     break;
3452   default: {
3453     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3454       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3455                                                   KnownZero, TLO, Depth))
3456         return true;
3457     } else {
3458       KnownBits Known;
3459       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3460       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3461                                TLO, Depth, AssumeSingleUse))
3462         return true;
3463     }
3464     break;
3465   }
3466   }
3467   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3468 
3469   // Constant fold all undef cases.
3470   // TODO: Handle zero cases as well.
3471   if (DemandedElts.isSubsetOf(KnownUndef))
3472     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3473 
3474   return false;
3475 }
3476 
3477 /// Determine which of the bits specified in Mask are known to be either zero or
3478 /// one and return them in the Known.
3479 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3480                                                    KnownBits &Known,
3481                                                    const APInt &DemandedElts,
3482                                                    const SelectionDAG &DAG,
3483                                                    unsigned Depth) const {
3484   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3485           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3486           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3487           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3488          "Should use MaskedValueIsZero if you don't know whether Op"
3489          " is a target node!");
3490   Known.resetAll();
3491 }
3492 
3493 void TargetLowering::computeKnownBitsForTargetInstr(
3494     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3495     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3496     unsigned Depth) const {
3497   Known.resetAll();
3498 }
3499 
3500 void TargetLowering::computeKnownBitsForFrameIndex(
3501   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3502   // The low bits are known zero if the pointer is aligned.
3503   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3504 }
3505 
3506 Align TargetLowering::computeKnownAlignForTargetInstr(
3507   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3508   unsigned Depth) const {
3509   return Align(1);
3510 }
3511 
3512 /// This method can be implemented by targets that want to expose additional
3513 /// information about sign bits to the DAG Combiner.
3514 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3515                                                          const APInt &,
3516                                                          const SelectionDAG &,
3517                                                          unsigned Depth) const {
3518   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3519           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3520           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3521           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3522          "Should use ComputeNumSignBits if you don't know whether Op"
3523          " is a target node!");
3524   return 1;
3525 }
3526 
3527 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3528   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3529   const MachineRegisterInfo &MRI, unsigned Depth) const {
3530   return 1;
3531 }
3532 
3533 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3534     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3535     TargetLoweringOpt &TLO, unsigned Depth) const {
3536   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3537           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3538           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3539           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3540          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3541          " is a target node!");
3542   return false;
3543 }
3544 
3545 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3546     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3547     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3548   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3549           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3550           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3551           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3552          "Should use SimplifyDemandedBits if you don't know whether Op"
3553          " is a target node!");
3554   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3555   return false;
3556 }
3557 
3558 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3559     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3560     SelectionDAG &DAG, unsigned Depth) const {
3561   assert(
3562       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3563        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3564        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3565        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3566       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3567       " is a target node!");
3568   return SDValue();
3569 }
3570 
3571 SDValue
3572 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3573                                         SDValue N1, MutableArrayRef<int> Mask,
3574                                         SelectionDAG &DAG) const {
3575   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3576   if (!LegalMask) {
3577     std::swap(N0, N1);
3578     ShuffleVectorSDNode::commuteMask(Mask);
3579     LegalMask = isShuffleMaskLegal(Mask, VT);
3580   }
3581 
3582   if (!LegalMask)
3583     return SDValue();
3584 
3585   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3586 }
3587 
3588 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3589   return nullptr;
3590 }
3591 
3592 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3593     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3594     bool PoisonOnly, unsigned Depth) const {
3595   assert(
3596       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3597        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3598        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3599        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3600       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3601       " is a target node!");
3602   return false;
3603 }
3604 
3605 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3606     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3607     bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3608   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3609           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3610           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3611           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3612          "Should use canCreateUndefOrPoison if you don't know whether Op"
3613          " is a target node!");
3614   // Be conservative and return true.
3615   return true;
3616 }
3617 
3618 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3619                                                   const SelectionDAG &DAG,
3620                                                   bool SNaN,
3621                                                   unsigned Depth) const {
3622   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3623           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3624           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3625           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3626          "Should use isKnownNeverNaN if you don't know whether Op"
3627          " is a target node!");
3628   return false;
3629 }
3630 
3631 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3632                                                const APInt &DemandedElts,
3633                                                APInt &UndefElts,
3634                                                const SelectionDAG &DAG,
3635                                                unsigned Depth) const {
3636   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3637           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3638           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3639           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3640          "Should use isSplatValue if you don't know whether Op"
3641          " is a target node!");
3642   return false;
3643 }
3644 
3645 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3646 // work with truncating build vectors and vectors with elements of less than
3647 // 8 bits.
3648 bool TargetLowering::isConstTrueVal(SDValue N) const {
3649   if (!N)
3650     return false;
3651 
3652   unsigned EltWidth;
3653   APInt CVal;
3654   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3655                                                /*AllowTruncation=*/true)) {
3656     CVal = CN->getAPIntValue();
3657     EltWidth = N.getValueType().getScalarSizeInBits();
3658   } else
3659     return false;
3660 
3661   // If this is a truncating splat, truncate the splat value.
3662   // Otherwise, we may fail to match the expected values below.
3663   if (EltWidth < CVal.getBitWidth())
3664     CVal = CVal.trunc(EltWidth);
3665 
3666   switch (getBooleanContents(N.getValueType())) {
3667   case UndefinedBooleanContent:
3668     return CVal[0];
3669   case ZeroOrOneBooleanContent:
3670     return CVal.isOne();
3671   case ZeroOrNegativeOneBooleanContent:
3672     return CVal.isAllOnes();
3673   }
3674 
3675   llvm_unreachable("Invalid boolean contents");
3676 }
3677 
3678 bool TargetLowering::isConstFalseVal(SDValue N) const {
3679   if (!N)
3680     return false;
3681 
3682   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3683   if (!CN) {
3684     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3685     if (!BV)
3686       return false;
3687 
3688     // Only interested in constant splats, we don't care about undef
3689     // elements in identifying boolean constants and getConstantSplatNode
3690     // returns NULL if all ops are undef;
3691     CN = BV->getConstantSplatNode();
3692     if (!CN)
3693       return false;
3694   }
3695 
3696   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3697     return !CN->getAPIntValue()[0];
3698 
3699   return CN->isZero();
3700 }
3701 
3702 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3703                                        bool SExt) const {
3704   if (VT == MVT::i1)
3705     return N->isOne();
3706 
3707   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3708   switch (Cnt) {
3709   case TargetLowering::ZeroOrOneBooleanContent:
3710     // An extended value of 1 is always true, unless its original type is i1,
3711     // in which case it will be sign extended to -1.
3712     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3713   case TargetLowering::UndefinedBooleanContent:
3714   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3715     return N->isAllOnes() && SExt;
3716   }
3717   llvm_unreachable("Unexpected enumeration.");
3718 }
3719 
3720 /// This helper function of SimplifySetCC tries to optimize the comparison when
3721 /// either operand of the SetCC node is a bitwise-and instruction.
3722 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3723                                          ISD::CondCode Cond, const SDLoc &DL,
3724                                          DAGCombinerInfo &DCI) const {
3725   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3726     std::swap(N0, N1);
3727 
3728   SelectionDAG &DAG = DCI.DAG;
3729   EVT OpVT = N0.getValueType();
3730   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3731       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3732     return SDValue();
3733 
3734   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3735   // iff everything but LSB is known zero:
3736   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3737       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3738        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3739     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3740     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3741     if (DAG.MaskedValueIsZero(N0, UpperBits))
3742       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3743   }
3744 
3745   // Try to eliminate a power-of-2 mask constant by converting to a signbit
3746   // test in a narrow type that we can truncate to with no cost. Examples:
3747   // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
3748   // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
3749   // TODO: This conservatively checks for type legality on the source and
3750   //       destination types. That may inhibit optimizations, but it also
3751   //       allows setcc->shift transforms that may be more beneficial.
3752   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3753   if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
3754       isTypeLegal(OpVT) && N0.hasOneUse()) {
3755     EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
3756                                      AndC->getAPIntValue().getActiveBits());
3757     if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
3758       SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
3759       SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
3760       return DAG.getSetCC(DL, VT, Trunc, Zero,
3761                           Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
3762     }
3763   }
3764 
3765   // Match these patterns in any of their permutations:
3766   // (X & Y) == Y
3767   // (X & Y) != Y
3768   SDValue X, Y;
3769   if (N0.getOperand(0) == N1) {
3770     X = N0.getOperand(1);
3771     Y = N0.getOperand(0);
3772   } else if (N0.getOperand(1) == N1) {
3773     X = N0.getOperand(0);
3774     Y = N0.getOperand(1);
3775   } else {
3776     return SDValue();
3777   }
3778 
3779   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3780   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3781     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3782     // Note that where Y is variable and is known to have at most one bit set
3783     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3784     // equivalent when Y == 0.
3785     assert(OpVT.isInteger());
3786     Cond = ISD::getSetCCInverse(Cond, OpVT);
3787     if (DCI.isBeforeLegalizeOps() ||
3788         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3789       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3790   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3791     // If the target supports an 'and-not' or 'and-complement' logic operation,
3792     // try to use that to make a comparison operation more efficient.
3793     // But don't do this transform if the mask is a single bit because there are
3794     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3795     // 'rlwinm' on PPC).
3796 
3797     // Bail out if the compare operand that we want to turn into a zero is
3798     // already a zero (otherwise, infinite loop).
3799     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3800     if (YConst && YConst->isZero())
3801       return SDValue();
3802 
3803     // Transform this into: ~X & Y == 0.
3804     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3805     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3806     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3807   }
3808 
3809   return SDValue();
3810 }
3811 
3812 /// There are multiple IR patterns that could be checking whether certain
3813 /// truncation of a signed number would be lossy or not. The pattern which is
3814 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3815 /// We are looking for the following pattern: (KeptBits is a constant)
3816 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3817 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3818 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3819 /// We will unfold it into the natural trunc+sext pattern:
3820 ///   ((%x << C) a>> C) dstcond %x
3821 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3822 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3823     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3824     const SDLoc &DL) const {
3825   // We must be comparing with a constant.
3826   ConstantSDNode *C1;
3827   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3828     return SDValue();
3829 
3830   // N0 should be:  add %x, (1 << (KeptBits-1))
3831   if (N0->getOpcode() != ISD::ADD)
3832     return SDValue();
3833 
3834   // And we must be 'add'ing a constant.
3835   ConstantSDNode *C01;
3836   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3837     return SDValue();
3838 
3839   SDValue X = N0->getOperand(0);
3840   EVT XVT = X.getValueType();
3841 
3842   // Validate constants ...
3843 
3844   APInt I1 = C1->getAPIntValue();
3845 
3846   ISD::CondCode NewCond;
3847   if (Cond == ISD::CondCode::SETULT) {
3848     NewCond = ISD::CondCode::SETEQ;
3849   } else if (Cond == ISD::CondCode::SETULE) {
3850     NewCond = ISD::CondCode::SETEQ;
3851     // But need to 'canonicalize' the constant.
3852     I1 += 1;
3853   } else if (Cond == ISD::CondCode::SETUGT) {
3854     NewCond = ISD::CondCode::SETNE;
3855     // But need to 'canonicalize' the constant.
3856     I1 += 1;
3857   } else if (Cond == ISD::CondCode::SETUGE) {
3858     NewCond = ISD::CondCode::SETNE;
3859   } else
3860     return SDValue();
3861 
3862   APInt I01 = C01->getAPIntValue();
3863 
3864   auto checkConstants = [&I1, &I01]() -> bool {
3865     // Both of them must be power-of-two, and the constant from setcc is bigger.
3866     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3867   };
3868 
3869   if (checkConstants()) {
3870     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3871   } else {
3872     // What if we invert constants? (and the target predicate)
3873     I1.negate();
3874     I01.negate();
3875     assert(XVT.isInteger());
3876     NewCond = getSetCCInverse(NewCond, XVT);
3877     if (!checkConstants())
3878       return SDValue();
3879     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3880   }
3881 
3882   // They are power-of-two, so which bit is set?
3883   const unsigned KeptBits = I1.logBase2();
3884   const unsigned KeptBitsMinusOne = I01.logBase2();
3885 
3886   // Magic!
3887   if (KeptBits != (KeptBitsMinusOne + 1))
3888     return SDValue();
3889   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3890 
3891   // We don't want to do this in every single case.
3892   SelectionDAG &DAG = DCI.DAG;
3893   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3894           XVT, KeptBits))
3895     return SDValue();
3896 
3897   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3898   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3899 
3900   // Unfold into:  ((%x << C) a>> C) cond %x
3901   // Where 'cond' will be either 'eq' or 'ne'.
3902   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3903   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3904   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3905   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3906 
3907   return T2;
3908 }
3909 
3910 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3911 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3912     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3913     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3914   assert(isConstOrConstSplat(N1C) &&
3915          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3916          "Should be a comparison with 0.");
3917   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3918          "Valid only for [in]equality comparisons.");
3919 
3920   unsigned NewShiftOpcode;
3921   SDValue X, C, Y;
3922 
3923   SelectionDAG &DAG = DCI.DAG;
3924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3925 
3926   // Look for '(C l>>/<< Y)'.
3927   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3928     // The shift should be one-use.
3929     if (!V.hasOneUse())
3930       return false;
3931     unsigned OldShiftOpcode = V.getOpcode();
3932     switch (OldShiftOpcode) {
3933     case ISD::SHL:
3934       NewShiftOpcode = ISD::SRL;
3935       break;
3936     case ISD::SRL:
3937       NewShiftOpcode = ISD::SHL;
3938       break;
3939     default:
3940       return false; // must be a logical shift.
3941     }
3942     // We should be shifting a constant.
3943     // FIXME: best to use isConstantOrConstantVector().
3944     C = V.getOperand(0);
3945     ConstantSDNode *CC =
3946         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3947     if (!CC)
3948       return false;
3949     Y = V.getOperand(1);
3950 
3951     ConstantSDNode *XC =
3952         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3953     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3954         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3955   };
3956 
3957   // LHS of comparison should be an one-use 'and'.
3958   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3959     return SDValue();
3960 
3961   X = N0.getOperand(0);
3962   SDValue Mask = N0.getOperand(1);
3963 
3964   // 'and' is commutative!
3965   if (!Match(Mask)) {
3966     std::swap(X, Mask);
3967     if (!Match(Mask))
3968       return SDValue();
3969   }
3970 
3971   EVT VT = X.getValueType();
3972 
3973   // Produce:
3974   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3975   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3976   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3977   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3978   return T2;
3979 }
3980 
3981 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3982 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3983 /// handle the commuted versions of these patterns.
3984 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3985                                            ISD::CondCode Cond, const SDLoc &DL,
3986                                            DAGCombinerInfo &DCI) const {
3987   unsigned BOpcode = N0.getOpcode();
3988   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3989          "Unexpected binop");
3990   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3991 
3992   // (X + Y) == X --> Y == 0
3993   // (X - Y) == X --> Y == 0
3994   // (X ^ Y) == X --> Y == 0
3995   SelectionDAG &DAG = DCI.DAG;
3996   EVT OpVT = N0.getValueType();
3997   SDValue X = N0.getOperand(0);
3998   SDValue Y = N0.getOperand(1);
3999   if (X == N1)
4000     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4001 
4002   if (Y != N1)
4003     return SDValue();
4004 
4005   // (X + Y) == Y --> X == 0
4006   // (X ^ Y) == Y --> X == 0
4007   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4008     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4009 
4010   // The shift would not be valid if the operands are boolean (i1).
4011   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4012     return SDValue();
4013 
4014   // (X - Y) == Y --> X == Y << 1
4015   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
4016                                  !DCI.isBeforeLegalize());
4017   SDValue One = DAG.getConstant(1, DL, ShiftVT);
4018   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4019   if (!DCI.isCalledByLegalizer())
4020     DCI.AddToWorklist(YShl1.getNode());
4021   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4022 }
4023 
4024 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4025                                       SDValue N0, const APInt &C1,
4026                                       ISD::CondCode Cond, const SDLoc &dl,
4027                                       SelectionDAG &DAG) {
4028   // Look through truncs that don't change the value of a ctpop.
4029   // FIXME: Add vector support? Need to be careful with setcc result type below.
4030   SDValue CTPOP = N0;
4031   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4032       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4033     CTPOP = N0.getOperand(0);
4034 
4035   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4036     return SDValue();
4037 
4038   EVT CTVT = CTPOP.getValueType();
4039   SDValue CTOp = CTPOP.getOperand(0);
4040 
4041   // Expand a power-of-2-or-zero comparison based on ctpop:
4042   // (ctpop x) u< 2 -> (x & x-1) == 0
4043   // (ctpop x) u> 1 -> (x & x-1) != 0
4044   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4045     // Keep the CTPOP if it is a legal vector op.
4046     if (CTVT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
4047       return SDValue();
4048 
4049     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4050     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4051       return SDValue();
4052     if (C1 == 0 && (Cond == ISD::SETULT))
4053       return SDValue(); // This is handled elsewhere.
4054 
4055     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4056 
4057     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4058     SDValue Result = CTOp;
4059     for (unsigned i = 0; i < Passes; i++) {
4060       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4061       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4062     }
4063     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4064     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4065   }
4066 
4067   // Expand a power-of-2 comparison based on ctpop:
4068   // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
4069   // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
4070   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4071     // Keep the CTPOP if it is legal.
4072     if (TLI.isOperationLegal(ISD::CTPOP, CTVT))
4073       return SDValue();
4074 
4075     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4076     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4077     assert(CTVT.isInteger());
4078     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
4079     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4080     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4081     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
4082     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4083     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
4084     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
4085   }
4086 
4087   return SDValue();
4088 }
4089 
4090 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4091                                    ISD::CondCode Cond, const SDLoc &dl,
4092                                    SelectionDAG &DAG) {
4093   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4094     return SDValue();
4095 
4096   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4097   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4098     return SDValue();
4099 
4100   auto getRotateSource = [](SDValue X) {
4101     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4102       return X.getOperand(0);
4103     return SDValue();
4104   };
4105 
4106   // Peek through a rotated value compared against 0 or -1:
4107   // (rot X, Y) == 0/-1 --> X == 0/-1
4108   // (rot X, Y) != 0/-1 --> X != 0/-1
4109   if (SDValue R = getRotateSource(N0))
4110     return DAG.getSetCC(dl, VT, R, N1, Cond);
4111 
4112   // Peek through an 'or' of a rotated value compared against 0:
4113   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4114   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4115   //
4116   // TODO: Add the 'and' with -1 sibling.
4117   // TODO: Recurse through a series of 'or' ops to find the rotate.
4118   EVT OpVT = N0.getValueType();
4119   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4120     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4121       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4122       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4123     }
4124     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4125       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4126       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4127     }
4128   }
4129 
4130   return SDValue();
4131 }
4132 
4133 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4134                                         ISD::CondCode Cond, const SDLoc &dl,
4135                                         SelectionDAG &DAG) {
4136   // If we are testing for all-bits-clear, we might be able to do that with
4137   // less shifting since bit-order does not matter.
4138   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4139     return SDValue();
4140 
4141   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4142   if (!C1 || !C1->isZero())
4143     return SDValue();
4144 
4145   if (!N0.hasOneUse() ||
4146       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4147     return SDValue();
4148 
4149   unsigned BitWidth = N0.getScalarValueSizeInBits();
4150   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4151   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4152     return SDValue();
4153 
4154   // Canonicalize fshr as fshl to reduce pattern-matching.
4155   unsigned ShAmt = ShAmtC->getZExtValue();
4156   if (N0.getOpcode() == ISD::FSHR)
4157     ShAmt = BitWidth - ShAmt;
4158 
4159   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4160   SDValue X, Y;
4161   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4162     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4163       return false;
4164     if (Or.getOperand(0) == Other) {
4165       X = Or.getOperand(0);
4166       Y = Or.getOperand(1);
4167       return true;
4168     }
4169     if (Or.getOperand(1) == Other) {
4170       X = Or.getOperand(1);
4171       Y = Or.getOperand(0);
4172       return true;
4173     }
4174     return false;
4175   };
4176 
4177   EVT OpVT = N0.getValueType();
4178   EVT ShAmtVT = N0.getOperand(2).getValueType();
4179   SDValue F0 = N0.getOperand(0);
4180   SDValue F1 = N0.getOperand(1);
4181   if (matchOr(F0, F1)) {
4182     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4183     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4184     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4185     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4186     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4187   }
4188   if (matchOr(F1, F0)) {
4189     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4190     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4191     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4192     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4193     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4194   }
4195 
4196   return SDValue();
4197 }
4198 
4199 /// Try to simplify a setcc built with the specified operands and cc. If it is
4200 /// unable to simplify it, return a null SDValue.
4201 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4202                                       ISD::CondCode Cond, bool foldBooleans,
4203                                       DAGCombinerInfo &DCI,
4204                                       const SDLoc &dl) const {
4205   SelectionDAG &DAG = DCI.DAG;
4206   const DataLayout &Layout = DAG.getDataLayout();
4207   EVT OpVT = N0.getValueType();
4208   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4209 
4210   // Constant fold or commute setcc.
4211   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4212     return Fold;
4213 
4214   bool N0ConstOrSplat =
4215       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4216   bool N1ConstOrSplat =
4217       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4218 
4219   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4220   // TODO: Handle non-splat vector constants. All undef causes trouble.
4221   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4222   // infinite loop here when we encounter one.
4223   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4224   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4225       (DCI.isBeforeLegalizeOps() ||
4226        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4227     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4228 
4229   // If we have a subtract with the same 2 non-constant operands as this setcc
4230   // -- but in reverse order -- then try to commute the operands of this setcc
4231   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4232   // instruction on some targets.
4233   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4234       (DCI.isBeforeLegalizeOps() ||
4235        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4236       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4237       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4238     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4239 
4240   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4241     return V;
4242 
4243   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4244     return V;
4245 
4246   if (auto *N1C = isConstOrConstSplat(N1)) {
4247     const APInt &C1 = N1C->getAPIntValue();
4248 
4249     // Optimize some CTPOP cases.
4250     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4251       return V;
4252 
4253     // For equality to 0 of a no-wrap multiply, decompose and test each op:
4254     // X * Y == 0 --> (X == 0) || (Y == 0)
4255     // X * Y != 0 --> (X != 0) && (Y != 0)
4256     // TODO: This bails out if minsize is set, but if the target doesn't have a
4257     //       single instruction multiply for this type, it would likely be
4258     //       smaller to decompose.
4259     if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4260         N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4261         (N0->getFlags().hasNoUnsignedWrap() ||
4262          N0->getFlags().hasNoSignedWrap()) &&
4263         !Attr.hasFnAttr(Attribute::MinSize)) {
4264       SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4265       SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4266       unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4267       return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4268     }
4269 
4270     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4271     // equality comparison, then we're just comparing whether X itself is
4272     // zero.
4273     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4274         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4275         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4276       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4277         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4278             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4279           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4280             // (srl (ctlz x), 5) == 0  -> X != 0
4281             // (srl (ctlz x), 5) != 1  -> X != 0
4282             Cond = ISD::SETNE;
4283           } else {
4284             // (srl (ctlz x), 5) != 0  -> X == 0
4285             // (srl (ctlz x), 5) == 1  -> X == 0
4286             Cond = ISD::SETEQ;
4287           }
4288           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4289           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4290                               Cond);
4291         }
4292       }
4293     }
4294   }
4295 
4296   // FIXME: Support vectors.
4297   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4298     const APInt &C1 = N1C->getAPIntValue();
4299 
4300     // (zext x) == C --> x == (trunc C)
4301     // (sext x) == C --> x == (trunc C)
4302     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4303         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4304       unsigned MinBits = N0.getValueSizeInBits();
4305       SDValue PreExt;
4306       bool Signed = false;
4307       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4308         // ZExt
4309         MinBits = N0->getOperand(0).getValueSizeInBits();
4310         PreExt = N0->getOperand(0);
4311       } else if (N0->getOpcode() == ISD::AND) {
4312         // DAGCombine turns costly ZExts into ANDs
4313         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4314           if ((C->getAPIntValue()+1).isPowerOf2()) {
4315             MinBits = C->getAPIntValue().countTrailingOnes();
4316             PreExt = N0->getOperand(0);
4317           }
4318       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4319         // SExt
4320         MinBits = N0->getOperand(0).getValueSizeInBits();
4321         PreExt = N0->getOperand(0);
4322         Signed = true;
4323       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4324         // ZEXTLOAD / SEXTLOAD
4325         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4326           MinBits = LN0->getMemoryVT().getSizeInBits();
4327           PreExt = N0;
4328         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4329           Signed = true;
4330           MinBits = LN0->getMemoryVT().getSizeInBits();
4331           PreExt = N0;
4332         }
4333       }
4334 
4335       // Figure out how many bits we need to preserve this constant.
4336       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4337 
4338       // Make sure we're not losing bits from the constant.
4339       if (MinBits > 0 &&
4340           MinBits < C1.getBitWidth() &&
4341           MinBits >= ReqdBits) {
4342         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4343         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4344           // Will get folded away.
4345           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4346           if (MinBits == 1 && C1 == 1)
4347             // Invert the condition.
4348             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4349                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4350           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4351           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4352         }
4353 
4354         // If truncating the setcc operands is not desirable, we can still
4355         // simplify the expression in some cases:
4356         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4357         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4358         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4359         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4360         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4361         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4362         SDValue TopSetCC = N0->getOperand(0);
4363         unsigned N0Opc = N0->getOpcode();
4364         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4365         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4366             TopSetCC.getOpcode() == ISD::SETCC &&
4367             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4368             (isConstFalseVal(N1) ||
4369              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4370 
4371           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4372                          (!N1C->isZero() && Cond == ISD::SETNE);
4373 
4374           if (!Inverse)
4375             return TopSetCC;
4376 
4377           ISD::CondCode InvCond = ISD::getSetCCInverse(
4378               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4379               TopSetCC.getOperand(0).getValueType());
4380           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4381                                       TopSetCC.getOperand(1),
4382                                       InvCond);
4383         }
4384       }
4385     }
4386 
4387     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4388     // equality or unsigned, and all 1 bits of the const are in the same
4389     // partial word, see if we can shorten the load.
4390     if (DCI.isBeforeLegalize() &&
4391         !ISD::isSignedIntSetCC(Cond) &&
4392         N0.getOpcode() == ISD::AND && C1 == 0 &&
4393         N0.getNode()->hasOneUse() &&
4394         isa<LoadSDNode>(N0.getOperand(0)) &&
4395         N0.getOperand(0).getNode()->hasOneUse() &&
4396         isa<ConstantSDNode>(N0.getOperand(1))) {
4397       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4398       APInt bestMask;
4399       unsigned bestWidth = 0, bestOffset = 0;
4400       if (Lod->isSimple() && Lod->isUnindexed()) {
4401         unsigned origWidth = N0.getValueSizeInBits();
4402         unsigned maskWidth = origWidth;
4403         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4404         // 8 bits, but have to be careful...
4405         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4406           origWidth = Lod->getMemoryVT().getSizeInBits();
4407         const APInt &Mask = N0.getConstantOperandAPInt(1);
4408         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4409           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4410           for (unsigned offset=0; offset<origWidth/width; offset++) {
4411             if (Mask.isSubsetOf(newMask)) {
4412               if (Layout.isLittleEndian())
4413                 bestOffset = (uint64_t)offset * (width/8);
4414               else
4415                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4416               bestMask = Mask.lshr(offset * (width/8) * 8);
4417               bestWidth = width;
4418               break;
4419             }
4420             newMask <<= width;
4421           }
4422         }
4423       }
4424       if (bestWidth) {
4425         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4426         if (newVT.isRound() &&
4427             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4428           SDValue Ptr = Lod->getBasePtr();
4429           if (bestOffset != 0)
4430             Ptr =
4431                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4432           SDValue NewLoad =
4433               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4434                           Lod->getPointerInfo().getWithOffset(bestOffset),
4435                           Lod->getOriginalAlign());
4436           return DAG.getSetCC(dl, VT,
4437                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4438                                       DAG.getConstant(bestMask.trunc(bestWidth),
4439                                                       dl, newVT)),
4440                               DAG.getConstant(0LL, dl, newVT), Cond);
4441         }
4442       }
4443     }
4444 
4445     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4446     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4447       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4448 
4449       // If the comparison constant has bits in the upper part, the
4450       // zero-extended value could never match.
4451       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4452                                               C1.getBitWidth() - InSize))) {
4453         switch (Cond) {
4454         case ISD::SETUGT:
4455         case ISD::SETUGE:
4456         case ISD::SETEQ:
4457           return DAG.getConstant(0, dl, VT);
4458         case ISD::SETULT:
4459         case ISD::SETULE:
4460         case ISD::SETNE:
4461           return DAG.getConstant(1, dl, VT);
4462         case ISD::SETGT:
4463         case ISD::SETGE:
4464           // True if the sign bit of C1 is set.
4465           return DAG.getConstant(C1.isNegative(), dl, VT);
4466         case ISD::SETLT:
4467         case ISD::SETLE:
4468           // True if the sign bit of C1 isn't set.
4469           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4470         default:
4471           break;
4472         }
4473       }
4474 
4475       // Otherwise, we can perform the comparison with the low bits.
4476       switch (Cond) {
4477       case ISD::SETEQ:
4478       case ISD::SETNE:
4479       case ISD::SETUGT:
4480       case ISD::SETUGE:
4481       case ISD::SETULT:
4482       case ISD::SETULE: {
4483         EVT newVT = N0.getOperand(0).getValueType();
4484         if (DCI.isBeforeLegalizeOps() ||
4485             (isOperationLegal(ISD::SETCC, newVT) &&
4486              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4487           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4488           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4489 
4490           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4491                                           NewConst, Cond);
4492           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4493         }
4494         break;
4495       }
4496       default:
4497         break; // todo, be more careful with signed comparisons
4498       }
4499     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4500                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4501                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4502                                       OpVT)) {
4503       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4504       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4505       EVT ExtDstTy = N0.getValueType();
4506       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4507 
4508       // If the constant doesn't fit into the number of bits for the source of
4509       // the sign extension, it is impossible for both sides to be equal.
4510       if (C1.getMinSignedBits() > ExtSrcTyBits)
4511         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4512 
4513       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4514              ExtDstTy != ExtSrcTy && "Unexpected types!");
4515       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4516       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4517                                    DAG.getConstant(Imm, dl, ExtDstTy));
4518       if (!DCI.isCalledByLegalizer())
4519         DCI.AddToWorklist(ZextOp.getNode());
4520       // Otherwise, make this a use of a zext.
4521       return DAG.getSetCC(dl, VT, ZextOp,
4522                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4523     } else if ((N1C->isZero() || N1C->isOne()) &&
4524                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4525       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4526       if (N0.getOpcode() == ISD::SETCC &&
4527           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4528           (N0.getValueType() == MVT::i1 ||
4529            getBooleanContents(N0.getOperand(0).getValueType()) ==
4530                        ZeroOrOneBooleanContent)) {
4531         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4532         if (TrueWhenTrue)
4533           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4534         // Invert the condition.
4535         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4536         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4537         if (DCI.isBeforeLegalizeOps() ||
4538             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4539           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4540       }
4541 
4542       if ((N0.getOpcode() == ISD::XOR ||
4543            (N0.getOpcode() == ISD::AND &&
4544             N0.getOperand(0).getOpcode() == ISD::XOR &&
4545             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4546           isOneConstant(N0.getOperand(1))) {
4547         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4548         // can only do this if the top bits are known zero.
4549         unsigned BitWidth = N0.getValueSizeInBits();
4550         if (DAG.MaskedValueIsZero(N0,
4551                                   APInt::getHighBitsSet(BitWidth,
4552                                                         BitWidth-1))) {
4553           // Okay, get the un-inverted input value.
4554           SDValue Val;
4555           if (N0.getOpcode() == ISD::XOR) {
4556             Val = N0.getOperand(0);
4557           } else {
4558             assert(N0.getOpcode() == ISD::AND &&
4559                     N0.getOperand(0).getOpcode() == ISD::XOR);
4560             // ((X^1)&1)^1 -> X & 1
4561             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4562                               N0.getOperand(0).getOperand(0),
4563                               N0.getOperand(1));
4564           }
4565 
4566           return DAG.getSetCC(dl, VT, Val, N1,
4567                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4568         }
4569       } else if (N1C->isOne()) {
4570         SDValue Op0 = N0;
4571         if (Op0.getOpcode() == ISD::TRUNCATE)
4572           Op0 = Op0.getOperand(0);
4573 
4574         if ((Op0.getOpcode() == ISD::XOR) &&
4575             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4576             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4577           SDValue XorLHS = Op0.getOperand(0);
4578           SDValue XorRHS = Op0.getOperand(1);
4579           // Ensure that the input setccs return an i1 type or 0/1 value.
4580           if (Op0.getValueType() == MVT::i1 ||
4581               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4582                       ZeroOrOneBooleanContent &&
4583                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4584                         ZeroOrOneBooleanContent)) {
4585             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4586             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4587             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4588           }
4589         }
4590         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4591           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4592           if (Op0.getValueType().bitsGT(VT))
4593             Op0 = DAG.getNode(ISD::AND, dl, VT,
4594                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4595                           DAG.getConstant(1, dl, VT));
4596           else if (Op0.getValueType().bitsLT(VT))
4597             Op0 = DAG.getNode(ISD::AND, dl, VT,
4598                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4599                         DAG.getConstant(1, dl, VT));
4600 
4601           return DAG.getSetCC(dl, VT, Op0,
4602                               DAG.getConstant(0, dl, Op0.getValueType()),
4603                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4604         }
4605         if (Op0.getOpcode() == ISD::AssertZext &&
4606             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4607           return DAG.getSetCC(dl, VT, Op0,
4608                               DAG.getConstant(0, dl, Op0.getValueType()),
4609                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4610       }
4611     }
4612 
4613     // Given:
4614     //   icmp eq/ne (urem %x, %y), 0
4615     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4616     //   icmp eq/ne %x, 0
4617     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4618         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4619       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4620       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4621       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4622         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4623     }
4624 
4625     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4626     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4627     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4628         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4629         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4630         N1C && N1C->isAllOnes()) {
4631       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4632                           DAG.getConstant(0, dl, OpVT),
4633                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4634     }
4635 
4636     if (SDValue V =
4637             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4638       return V;
4639   }
4640 
4641   // These simplifications apply to splat vectors as well.
4642   // TODO: Handle more splat vector cases.
4643   if (auto *N1C = isConstOrConstSplat(N1)) {
4644     const APInt &C1 = N1C->getAPIntValue();
4645 
4646     APInt MinVal, MaxVal;
4647     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4648     if (ISD::isSignedIntSetCC(Cond)) {
4649       MinVal = APInt::getSignedMinValue(OperandBitSize);
4650       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4651     } else {
4652       MinVal = APInt::getMinValue(OperandBitSize);
4653       MaxVal = APInt::getMaxValue(OperandBitSize);
4654     }
4655 
4656     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4657     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4658       // X >= MIN --> true
4659       if (C1 == MinVal)
4660         return DAG.getBoolConstant(true, dl, VT, OpVT);
4661 
4662       if (!VT.isVector()) { // TODO: Support this for vectors.
4663         // X >= C0 --> X > (C0 - 1)
4664         APInt C = C1 - 1;
4665         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4666         if ((DCI.isBeforeLegalizeOps() ||
4667              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4668             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4669                                   isLegalICmpImmediate(C.getSExtValue())))) {
4670           return DAG.getSetCC(dl, VT, N0,
4671                               DAG.getConstant(C, dl, N1.getValueType()),
4672                               NewCC);
4673         }
4674       }
4675     }
4676 
4677     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4678       // X <= MAX --> true
4679       if (C1 == MaxVal)
4680         return DAG.getBoolConstant(true, dl, VT, OpVT);
4681 
4682       // X <= C0 --> X < (C0 + 1)
4683       if (!VT.isVector()) { // TODO: Support this for vectors.
4684         APInt C = C1 + 1;
4685         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4686         if ((DCI.isBeforeLegalizeOps() ||
4687              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4688             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4689                                   isLegalICmpImmediate(C.getSExtValue())))) {
4690           return DAG.getSetCC(dl, VT, N0,
4691                               DAG.getConstant(C, dl, N1.getValueType()),
4692                               NewCC);
4693         }
4694       }
4695     }
4696 
4697     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4698       if (C1 == MinVal)
4699         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4700 
4701       // TODO: Support this for vectors after legalize ops.
4702       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4703         // Canonicalize setlt X, Max --> setne X, Max
4704         if (C1 == MaxVal)
4705           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4706 
4707         // If we have setult X, 1, turn it into seteq X, 0
4708         if (C1 == MinVal+1)
4709           return DAG.getSetCC(dl, VT, N0,
4710                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4711                               ISD::SETEQ);
4712       }
4713     }
4714 
4715     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4716       if (C1 == MaxVal)
4717         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4718 
4719       // TODO: Support this for vectors after legalize ops.
4720       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4721         // Canonicalize setgt X, Min --> setne X, Min
4722         if (C1 == MinVal)
4723           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4724 
4725         // If we have setugt X, Max-1, turn it into seteq X, Max
4726         if (C1 == MaxVal-1)
4727           return DAG.getSetCC(dl, VT, N0,
4728                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4729                               ISD::SETEQ);
4730       }
4731     }
4732 
4733     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4734       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4735       if (C1.isZero())
4736         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4737                 VT, N0, N1, Cond, DCI, dl))
4738           return CC;
4739 
4740       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4741       // For example, when high 32-bits of i64 X are known clear:
4742       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4743       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4744       bool CmpZero = N1C->getAPIntValue().isZero();
4745       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4746       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4747         // Match or(lo,shl(hi,bw/2)) pattern.
4748         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4749           unsigned EltBits = V.getScalarValueSizeInBits();
4750           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4751             return false;
4752           SDValue LHS = V.getOperand(0);
4753           SDValue RHS = V.getOperand(1);
4754           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4755           // Unshifted element must have zero upperbits.
4756           if (RHS.getOpcode() == ISD::SHL &&
4757               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4758               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4759               DAG.MaskedValueIsZero(LHS, HiBits)) {
4760             Lo = LHS;
4761             Hi = RHS.getOperand(0);
4762             return true;
4763           }
4764           if (LHS.getOpcode() == ISD::SHL &&
4765               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4766               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4767               DAG.MaskedValueIsZero(RHS, HiBits)) {
4768             Lo = RHS;
4769             Hi = LHS.getOperand(0);
4770             return true;
4771           }
4772           return false;
4773         };
4774 
4775         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4776           unsigned EltBits = N0.getScalarValueSizeInBits();
4777           unsigned HalfBits = EltBits / 2;
4778           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4779           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4780           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4781           SDValue NewN0 =
4782               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4783           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4784           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4785         };
4786 
4787         SDValue Lo, Hi;
4788         if (IsConcat(N0, Lo, Hi))
4789           return MergeConcat(Lo, Hi);
4790 
4791         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4792           SDValue Lo0, Lo1, Hi0, Hi1;
4793           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4794               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4795             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4796                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4797           }
4798         }
4799       }
4800     }
4801 
4802     // If we have "setcc X, C0", check to see if we can shrink the immediate
4803     // by changing cc.
4804     // TODO: Support this for vectors after legalize ops.
4805     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4806       // SETUGT X, SINTMAX  -> SETLT X, 0
4807       // SETUGE X, SINTMIN -> SETLT X, 0
4808       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4809           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4810         return DAG.getSetCC(dl, VT, N0,
4811                             DAG.getConstant(0, dl, N1.getValueType()),
4812                             ISD::SETLT);
4813 
4814       // SETULT X, SINTMIN  -> SETGT X, -1
4815       // SETULE X, SINTMAX  -> SETGT X, -1
4816       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4817           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4818         return DAG.getSetCC(dl, VT, N0,
4819                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4820                             ISD::SETGT);
4821     }
4822   }
4823 
4824   // Back to non-vector simplifications.
4825   // TODO: Can we do these for vector splats?
4826   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4827     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4828     const APInt &C1 = N1C->getAPIntValue();
4829     EVT ShValTy = N0.getValueType();
4830 
4831     // Fold bit comparisons when we can. This will result in an
4832     // incorrect value when boolean false is negative one, unless
4833     // the bitsize is 1 in which case the false value is the same
4834     // in practice regardless of the representation.
4835     if ((VT.getSizeInBits() == 1 ||
4836          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4837         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4838         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4839         N0.getOpcode() == ISD::AND) {
4840       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4841         EVT ShiftTy =
4842             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4843         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4844           // Perform the xform if the AND RHS is a single bit.
4845           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4846           if (AndRHS->getAPIntValue().isPowerOf2() &&
4847               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4848             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4849                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4850                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4851           }
4852         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4853           // (X & 8) == 8  -->  (X & 8) >> 3
4854           // Perform the xform if C1 is a single bit.
4855           unsigned ShCt = C1.logBase2();
4856           if (C1.isPowerOf2() &&
4857               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4858             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4859                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4860                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4861           }
4862         }
4863       }
4864     }
4865 
4866     if (C1.getMinSignedBits() <= 64 &&
4867         !isLegalICmpImmediate(C1.getSExtValue())) {
4868       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4869       // (X & -256) == 256 -> (X >> 8) == 1
4870       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4871           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4872         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4873           const APInt &AndRHSC = AndRHS->getAPIntValue();
4874           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4875             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4876             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4877               SDValue Shift =
4878                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4879                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4880               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4881               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4882             }
4883           }
4884         }
4885       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4886                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4887         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4888         // X <  0x100000000 -> (X >> 32) <  1
4889         // X >= 0x100000000 -> (X >> 32) >= 1
4890         // X <= 0x0ffffffff -> (X >> 32) <  1
4891         // X >  0x0ffffffff -> (X >> 32) >= 1
4892         unsigned ShiftBits;
4893         APInt NewC = C1;
4894         ISD::CondCode NewCond = Cond;
4895         if (AdjOne) {
4896           ShiftBits = C1.countTrailingOnes();
4897           NewC = NewC + 1;
4898           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4899         } else {
4900           ShiftBits = C1.countTrailingZeros();
4901         }
4902         NewC.lshrInPlace(ShiftBits);
4903         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4904             isLegalICmpImmediate(NewC.getSExtValue()) &&
4905             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4906           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4907                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4908           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4909           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4910         }
4911       }
4912     }
4913   }
4914 
4915   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4916     auto *CFP = cast<ConstantFPSDNode>(N1);
4917     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4918 
4919     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4920     // constant if knowing that the operand is non-nan is enough.  We prefer to
4921     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4922     // materialize 0.0.
4923     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4924       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4925 
4926     // setcc (fneg x), C -> setcc swap(pred) x, -C
4927     if (N0.getOpcode() == ISD::FNEG) {
4928       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4929       if (DCI.isBeforeLegalizeOps() ||
4930           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4931         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4932         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4933       }
4934     }
4935 
4936     // If the condition is not legal, see if we can find an equivalent one
4937     // which is legal.
4938     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4939       // If the comparison was an awkward floating-point == or != and one of
4940       // the comparison operands is infinity or negative infinity, convert the
4941       // condition to a less-awkward <= or >=.
4942       if (CFP->getValueAPF().isInfinity()) {
4943         bool IsNegInf = CFP->getValueAPF().isNegative();
4944         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4945         switch (Cond) {
4946         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4947         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4948         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4949         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4950         default: break;
4951         }
4952         if (NewCond != ISD::SETCC_INVALID &&
4953             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4954           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4955       }
4956     }
4957   }
4958 
4959   if (N0 == N1) {
4960     // The sext(setcc()) => setcc() optimization relies on the appropriate
4961     // constant being emitted.
4962     assert(!N0.getValueType().isInteger() &&
4963            "Integer types should be handled by FoldSetCC");
4964 
4965     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4966     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4967     if (UOF == 2) // FP operators that are undefined on NaNs.
4968       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4969     if (UOF == unsigned(EqTrue))
4970       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4971     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4972     // if it is not already.
4973     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4974     if (NewCond != Cond &&
4975         (DCI.isBeforeLegalizeOps() ||
4976                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4977       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4978   }
4979 
4980   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4981       N0.getValueType().isInteger()) {
4982     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4983         N0.getOpcode() == ISD::XOR) {
4984       // Simplify (X+Y) == (X+Z) -->  Y == Z
4985       if (N0.getOpcode() == N1.getOpcode()) {
4986         if (N0.getOperand(0) == N1.getOperand(0))
4987           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4988         if (N0.getOperand(1) == N1.getOperand(1))
4989           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4990         if (isCommutativeBinOp(N0.getOpcode())) {
4991           // If X op Y == Y op X, try other combinations.
4992           if (N0.getOperand(0) == N1.getOperand(1))
4993             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4994                                 Cond);
4995           if (N0.getOperand(1) == N1.getOperand(0))
4996             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4997                                 Cond);
4998         }
4999       }
5000 
5001       // If RHS is a legal immediate value for a compare instruction, we need
5002       // to be careful about increasing register pressure needlessly.
5003       bool LegalRHSImm = false;
5004 
5005       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5006         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5007           // Turn (X+C1) == C2 --> X == C2-C1
5008           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5009             return DAG.getSetCC(
5010                 dl, VT, N0.getOperand(0),
5011                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5012                                 dl, N0.getValueType()),
5013                 Cond);
5014 
5015           // Turn (X^C1) == C2 --> X == C1^C2
5016           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5017             return DAG.getSetCC(
5018                 dl, VT, N0.getOperand(0),
5019                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5020                                 dl, N0.getValueType()),
5021                 Cond);
5022         }
5023 
5024         // Turn (C1-X) == C2 --> X == C1-C2
5025         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5026           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5027             return DAG.getSetCC(
5028                 dl, VT, N0.getOperand(1),
5029                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5030                                 dl, N0.getValueType()),
5031                 Cond);
5032 
5033         // Could RHSC fold directly into a compare?
5034         if (RHSC->getValueType(0).getSizeInBits() <= 64)
5035           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5036       }
5037 
5038       // (X+Y) == X --> Y == 0 and similar folds.
5039       // Don't do this if X is an immediate that can fold into a cmp
5040       // instruction and X+Y has other uses. It could be an induction variable
5041       // chain, and the transform would increase register pressure.
5042       if (!LegalRHSImm || N0.hasOneUse())
5043         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5044           return V;
5045     }
5046 
5047     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5048         N1.getOpcode() == ISD::XOR)
5049       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5050         return V;
5051 
5052     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5053       return V;
5054   }
5055 
5056   // Fold remainder of division by a constant.
5057   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5058       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5059     // When division is cheap or optimizing for minimum size,
5060     // fall through to DIVREM creation by skipping this fold.
5061     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5062       if (N0.getOpcode() == ISD::UREM) {
5063         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5064           return Folded;
5065       } else if (N0.getOpcode() == ISD::SREM) {
5066         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5067           return Folded;
5068       }
5069     }
5070   }
5071 
5072   // Fold away ALL boolean setcc's.
5073   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5074     SDValue Temp;
5075     switch (Cond) {
5076     default: llvm_unreachable("Unknown integer setcc!");
5077     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
5078       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5079       N0 = DAG.getNOT(dl, Temp, OpVT);
5080       if (!DCI.isCalledByLegalizer())
5081         DCI.AddToWorklist(Temp.getNode());
5082       break;
5083     case ISD::SETNE:  // X != Y   -->  (X^Y)
5084       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5085       break;
5086     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5087     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5088       Temp = DAG.getNOT(dl, N0, OpVT);
5089       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5090       if (!DCI.isCalledByLegalizer())
5091         DCI.AddToWorklist(Temp.getNode());
5092       break;
5093     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5094     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5095       Temp = DAG.getNOT(dl, N1, OpVT);
5096       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5097       if (!DCI.isCalledByLegalizer())
5098         DCI.AddToWorklist(Temp.getNode());
5099       break;
5100     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5101     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5102       Temp = DAG.getNOT(dl, N0, OpVT);
5103       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5104       if (!DCI.isCalledByLegalizer())
5105         DCI.AddToWorklist(Temp.getNode());
5106       break;
5107     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5108     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5109       Temp = DAG.getNOT(dl, N1, OpVT);
5110       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5111       break;
5112     }
5113     if (VT.getScalarType() != MVT::i1) {
5114       if (!DCI.isCalledByLegalizer())
5115         DCI.AddToWorklist(N0.getNode());
5116       // FIXME: If running after legalize, we probably can't do this.
5117       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5118       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5119     }
5120     return N0;
5121   }
5122 
5123   // Could not fold it.
5124   return SDValue();
5125 }
5126 
5127 /// Returns true (and the GlobalValue and the offset) if the node is a
5128 /// GlobalAddress + offset.
5129 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5130                                     int64_t &Offset) const {
5131 
5132   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5133 
5134   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5135     GA = GASD->getGlobal();
5136     Offset += GASD->getOffset();
5137     return true;
5138   }
5139 
5140   if (N->getOpcode() == ISD::ADD) {
5141     SDValue N1 = N->getOperand(0);
5142     SDValue N2 = N->getOperand(1);
5143     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5144       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5145         Offset += V->getSExtValue();
5146         return true;
5147       }
5148     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5149       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5150         Offset += V->getSExtValue();
5151         return true;
5152       }
5153     }
5154   }
5155 
5156   return false;
5157 }
5158 
5159 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5160                                           DAGCombinerInfo &DCI) const {
5161   // Default implementation: no optimization.
5162   return SDValue();
5163 }
5164 
5165 //===----------------------------------------------------------------------===//
5166 //  Inline Assembler Implementation Methods
5167 //===----------------------------------------------------------------------===//
5168 
5169 TargetLowering::ConstraintType
5170 TargetLowering::getConstraintType(StringRef Constraint) const {
5171   unsigned S = Constraint.size();
5172 
5173   if (S == 1) {
5174     switch (Constraint[0]) {
5175     default: break;
5176     case 'r':
5177       return C_RegisterClass;
5178     case 'm': // memory
5179     case 'o': // offsetable
5180     case 'V': // not offsetable
5181       return C_Memory;
5182     case 'p': // Address.
5183       return C_Address;
5184     case 'n': // Simple Integer
5185     case 'E': // Floating Point Constant
5186     case 'F': // Floating Point Constant
5187       return C_Immediate;
5188     case 'i': // Simple Integer or Relocatable Constant
5189     case 's': // Relocatable Constant
5190     case 'X': // Allow ANY value.
5191     case 'I': // Target registers.
5192     case 'J':
5193     case 'K':
5194     case 'L':
5195     case 'M':
5196     case 'N':
5197     case 'O':
5198     case 'P':
5199     case '<':
5200     case '>':
5201       return C_Other;
5202     }
5203   }
5204 
5205   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5206     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5207       return C_Memory;
5208     return C_Register;
5209   }
5210   return C_Unknown;
5211 }
5212 
5213 /// Try to replace an X constraint, which matches anything, with another that
5214 /// has more specific requirements based on the type of the corresponding
5215 /// operand.
5216 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5217   if (ConstraintVT.isInteger())
5218     return "r";
5219   if (ConstraintVT.isFloatingPoint())
5220     return "f"; // works for many targets
5221   return nullptr;
5222 }
5223 
5224 SDValue TargetLowering::LowerAsmOutputForConstraint(
5225     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5226     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5227   return SDValue();
5228 }
5229 
5230 /// Lower the specified operand into the Ops vector.
5231 /// If it is invalid, don't add anything to Ops.
5232 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5233                                                   std::string &Constraint,
5234                                                   std::vector<SDValue> &Ops,
5235                                                   SelectionDAG &DAG) const {
5236 
5237   if (Constraint.length() > 1) return;
5238 
5239   char ConstraintLetter = Constraint[0];
5240   switch (ConstraintLetter) {
5241   default: break;
5242   case 'X':    // Allows any operand
5243   case 'i':    // Simple Integer or Relocatable Constant
5244   case 'n':    // Simple Integer
5245   case 's': {  // Relocatable Constant
5246 
5247     ConstantSDNode *C;
5248     uint64_t Offset = 0;
5249 
5250     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5251     // etc., since getelementpointer is variadic. We can't use
5252     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5253     // while in this case the GA may be furthest from the root node which is
5254     // likely an ISD::ADD.
5255     while (true) {
5256       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5257         // gcc prints these as sign extended.  Sign extend value to 64 bits
5258         // now; without this it would get ZExt'd later in
5259         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5260         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5261         BooleanContent BCont = getBooleanContents(MVT::i64);
5262         ISD::NodeType ExtOpc =
5263             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5264         int64_t ExtVal =
5265             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5266         Ops.push_back(
5267             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5268         return;
5269       }
5270       if (ConstraintLetter != 'n') {
5271         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5272           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5273                                                    GA->getValueType(0),
5274                                                    Offset + GA->getOffset()));
5275           return;
5276         }
5277         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5278           Ops.push_back(DAG.getTargetBlockAddress(
5279               BA->getBlockAddress(), BA->getValueType(0),
5280               Offset + BA->getOffset(), BA->getTargetFlags()));
5281           return;
5282         }
5283         if (isa<BasicBlockSDNode>(Op)) {
5284           Ops.push_back(Op);
5285           return;
5286         }
5287       }
5288       const unsigned OpCode = Op.getOpcode();
5289       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5290         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5291           Op = Op.getOperand(1);
5292         // Subtraction is not commutative.
5293         else if (OpCode == ISD::ADD &&
5294                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5295           Op = Op.getOperand(0);
5296         else
5297           return;
5298         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5299         continue;
5300       }
5301       return;
5302     }
5303     break;
5304   }
5305   }
5306 }
5307 
5308 void TargetLowering::CollectTargetIntrinsicOperands(const CallInst &I,
5309                                            SmallVectorImpl<SDValue> &Ops,
5310                                            SelectionDAG &DAG) const {
5311   return;
5312 }
5313 
5314 std::pair<unsigned, const TargetRegisterClass *>
5315 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5316                                              StringRef Constraint,
5317                                              MVT VT) const {
5318   if (Constraint.empty() || Constraint[0] != '{')
5319     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5320   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5321 
5322   // Remove the braces from around the name.
5323   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5324 
5325   std::pair<unsigned, const TargetRegisterClass *> R =
5326       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5327 
5328   // Figure out which register class contains this reg.
5329   for (const TargetRegisterClass *RC : RI->regclasses()) {
5330     // If none of the value types for this register class are valid, we
5331     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5332     if (!isLegalRC(*RI, *RC))
5333       continue;
5334 
5335     for (const MCPhysReg &PR : *RC) {
5336       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5337         std::pair<unsigned, const TargetRegisterClass *> S =
5338             std::make_pair(PR, RC);
5339 
5340         // If this register class has the requested value type, return it,
5341         // otherwise keep searching and return the first class found
5342         // if no other is found which explicitly has the requested type.
5343         if (RI->isTypeLegalForClass(*RC, VT))
5344           return S;
5345         if (!R.second)
5346           R = S;
5347       }
5348     }
5349   }
5350 
5351   return R;
5352 }
5353 
5354 //===----------------------------------------------------------------------===//
5355 // Constraint Selection.
5356 
5357 /// Return true of this is an input operand that is a matching constraint like
5358 /// "4".
5359 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5360   assert(!ConstraintCode.empty() && "No known constraint!");
5361   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5362 }
5363 
5364 /// If this is an input matching constraint, this method returns the output
5365 /// operand it matches.
5366 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5367   assert(!ConstraintCode.empty() && "No known constraint!");
5368   return atoi(ConstraintCode.c_str());
5369 }
5370 
5371 /// Split up the constraint string from the inline assembly value into the
5372 /// specific constraints and their prefixes, and also tie in the associated
5373 /// operand values.
5374 /// If this returns an empty vector, and if the constraint string itself
5375 /// isn't empty, there was an error parsing.
5376 TargetLowering::AsmOperandInfoVector
5377 TargetLowering::ParseConstraints(const DataLayout &DL,
5378                                  const TargetRegisterInfo *TRI,
5379                                  const CallBase &Call) const {
5380   /// Information about all of the constraints.
5381   AsmOperandInfoVector ConstraintOperands;
5382   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5383   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5384 
5385   // Do a prepass over the constraints, canonicalizing them, and building up the
5386   // ConstraintOperands list.
5387   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5388   unsigned ResNo = 0; // ResNo - The result number of the next output.
5389   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5390 
5391   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5392     ConstraintOperands.emplace_back(std::move(CI));
5393     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5394 
5395     // Update multiple alternative constraint count.
5396     if (OpInfo.multipleAlternatives.size() > maCount)
5397       maCount = OpInfo.multipleAlternatives.size();
5398 
5399     OpInfo.ConstraintVT = MVT::Other;
5400 
5401     // Compute the value type for each operand.
5402     switch (OpInfo.Type) {
5403     case InlineAsm::isOutput:
5404       // Indirect outputs just consume an argument.
5405       if (OpInfo.isIndirect) {
5406         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5407         break;
5408       }
5409 
5410       // The return value of the call is this value.  As such, there is no
5411       // corresponding argument.
5412       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5413       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5414         OpInfo.ConstraintVT =
5415             getSimpleValueType(DL, STy->getElementType(ResNo));
5416       } else {
5417         assert(ResNo == 0 && "Asm only has one result!");
5418         OpInfo.ConstraintVT =
5419             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5420       }
5421       ++ResNo;
5422       break;
5423     case InlineAsm::isInput:
5424       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5425       break;
5426     case InlineAsm::isLabel:
5427       OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5428       ++LabelNo;
5429       continue;
5430     case InlineAsm::isClobber:
5431       // Nothing to do.
5432       break;
5433     }
5434 
5435     if (OpInfo.CallOperandVal) {
5436       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5437       if (OpInfo.isIndirect) {
5438         OpTy = Call.getParamElementType(ArgNo);
5439         assert(OpTy && "Indirect operand must have elementtype attribute");
5440       }
5441 
5442       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5443       if (StructType *STy = dyn_cast<StructType>(OpTy))
5444         if (STy->getNumElements() == 1)
5445           OpTy = STy->getElementType(0);
5446 
5447       // If OpTy is not a single value, it may be a struct/union that we
5448       // can tile with integers.
5449       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5450         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5451         switch (BitSize) {
5452         default: break;
5453         case 1:
5454         case 8:
5455         case 16:
5456         case 32:
5457         case 64:
5458         case 128:
5459           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5460           break;
5461         }
5462       }
5463 
5464       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5465       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5466       ArgNo++;
5467     }
5468   }
5469 
5470   // If we have multiple alternative constraints, select the best alternative.
5471   if (!ConstraintOperands.empty()) {
5472     if (maCount) {
5473       unsigned bestMAIndex = 0;
5474       int bestWeight = -1;
5475       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5476       int weight = -1;
5477       unsigned maIndex;
5478       // Compute the sums of the weights for each alternative, keeping track
5479       // of the best (highest weight) one so far.
5480       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5481         int weightSum = 0;
5482         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5483              cIndex != eIndex; ++cIndex) {
5484           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5485           if (OpInfo.Type == InlineAsm::isClobber)
5486             continue;
5487 
5488           // If this is an output operand with a matching input operand,
5489           // look up the matching input. If their types mismatch, e.g. one
5490           // is an integer, the other is floating point, or their sizes are
5491           // different, flag it as an maCantMatch.
5492           if (OpInfo.hasMatchingInput()) {
5493             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5494             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5495               if ((OpInfo.ConstraintVT.isInteger() !=
5496                    Input.ConstraintVT.isInteger()) ||
5497                   (OpInfo.ConstraintVT.getSizeInBits() !=
5498                    Input.ConstraintVT.getSizeInBits())) {
5499                 weightSum = -1; // Can't match.
5500                 break;
5501               }
5502             }
5503           }
5504           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5505           if (weight == -1) {
5506             weightSum = -1;
5507             break;
5508           }
5509           weightSum += weight;
5510         }
5511         // Update best.
5512         if (weightSum > bestWeight) {
5513           bestWeight = weightSum;
5514           bestMAIndex = maIndex;
5515         }
5516       }
5517 
5518       // Now select chosen alternative in each constraint.
5519       for (AsmOperandInfo &cInfo : ConstraintOperands)
5520         if (cInfo.Type != InlineAsm::isClobber)
5521           cInfo.selectAlternative(bestMAIndex);
5522     }
5523   }
5524 
5525   // Check and hook up tied operands, choose constraint code to use.
5526   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5527        cIndex != eIndex; ++cIndex) {
5528     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5529 
5530     // If this is an output operand with a matching input operand, look up the
5531     // matching input. If their types mismatch, e.g. one is an integer, the
5532     // other is floating point, or their sizes are different, flag it as an
5533     // error.
5534     if (OpInfo.hasMatchingInput()) {
5535       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5536 
5537       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5538         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5539             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5540                                          OpInfo.ConstraintVT);
5541         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5542             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5543                                          Input.ConstraintVT);
5544         if ((OpInfo.ConstraintVT.isInteger() !=
5545              Input.ConstraintVT.isInteger()) ||
5546             (MatchRC.second != InputRC.second)) {
5547           report_fatal_error("Unsupported asm: input constraint"
5548                              " with a matching output constraint of"
5549                              " incompatible type!");
5550         }
5551       }
5552     }
5553   }
5554 
5555   return ConstraintOperands;
5556 }
5557 
5558 /// Return an integer indicating how general CT is.
5559 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5560   switch (CT) {
5561   case TargetLowering::C_Immediate:
5562   case TargetLowering::C_Other:
5563   case TargetLowering::C_Unknown:
5564     return 0;
5565   case TargetLowering::C_Register:
5566     return 1;
5567   case TargetLowering::C_RegisterClass:
5568     return 2;
5569   case TargetLowering::C_Memory:
5570   case TargetLowering::C_Address:
5571     return 3;
5572   }
5573   llvm_unreachable("Invalid constraint type");
5574 }
5575 
5576 /// Examine constraint type and operand type and determine a weight value.
5577 /// This object must already have been set up with the operand type
5578 /// and the current alternative constraint selected.
5579 TargetLowering::ConstraintWeight
5580   TargetLowering::getMultipleConstraintMatchWeight(
5581     AsmOperandInfo &info, int maIndex) const {
5582   InlineAsm::ConstraintCodeVector *rCodes;
5583   if (maIndex >= (int)info.multipleAlternatives.size())
5584     rCodes = &info.Codes;
5585   else
5586     rCodes = &info.multipleAlternatives[maIndex].Codes;
5587   ConstraintWeight BestWeight = CW_Invalid;
5588 
5589   // Loop over the options, keeping track of the most general one.
5590   for (const std::string &rCode : *rCodes) {
5591     ConstraintWeight weight =
5592         getSingleConstraintMatchWeight(info, rCode.c_str());
5593     if (weight > BestWeight)
5594       BestWeight = weight;
5595   }
5596 
5597   return BestWeight;
5598 }
5599 
5600 /// Examine constraint type and operand type and determine a weight value.
5601 /// This object must already have been set up with the operand type
5602 /// and the current alternative constraint selected.
5603 TargetLowering::ConstraintWeight
5604   TargetLowering::getSingleConstraintMatchWeight(
5605     AsmOperandInfo &info, const char *constraint) const {
5606   ConstraintWeight weight = CW_Invalid;
5607   Value *CallOperandVal = info.CallOperandVal;
5608     // If we don't have a value, we can't do a match,
5609     // but allow it at the lowest weight.
5610   if (!CallOperandVal)
5611     return CW_Default;
5612   // Look at the constraint type.
5613   switch (*constraint) {
5614     case 'i': // immediate integer.
5615     case 'n': // immediate integer with a known value.
5616       if (isa<ConstantInt>(CallOperandVal))
5617         weight = CW_Constant;
5618       break;
5619     case 's': // non-explicit intregal immediate.
5620       if (isa<GlobalValue>(CallOperandVal))
5621         weight = CW_Constant;
5622       break;
5623     case 'E': // immediate float if host format.
5624     case 'F': // immediate float.
5625       if (isa<ConstantFP>(CallOperandVal))
5626         weight = CW_Constant;
5627       break;
5628     case '<': // memory operand with autodecrement.
5629     case '>': // memory operand with autoincrement.
5630     case 'm': // memory operand.
5631     case 'o': // offsettable memory operand
5632     case 'V': // non-offsettable memory operand
5633       weight = CW_Memory;
5634       break;
5635     case 'r': // general register.
5636     case 'g': // general register, memory operand or immediate integer.
5637               // note: Clang converts "g" to "imr".
5638       if (CallOperandVal->getType()->isIntegerTy())
5639         weight = CW_Register;
5640       break;
5641     case 'X': // any operand.
5642   default:
5643     weight = CW_Default;
5644     break;
5645   }
5646   return weight;
5647 }
5648 
5649 /// If there are multiple different constraints that we could pick for this
5650 /// operand (e.g. "imr") try to pick the 'best' one.
5651 /// This is somewhat tricky: constraints fall into four classes:
5652 ///    Other         -> immediates and magic values
5653 ///    Register      -> one specific register
5654 ///    RegisterClass -> a group of regs
5655 ///    Memory        -> memory
5656 /// Ideally, we would pick the most specific constraint possible: if we have
5657 /// something that fits into a register, we would pick it.  The problem here
5658 /// is that if we have something that could either be in a register or in
5659 /// memory that use of the register could cause selection of *other*
5660 /// operands to fail: they might only succeed if we pick memory.  Because of
5661 /// this the heuristic we use is:
5662 ///
5663 ///  1) If there is an 'other' constraint, and if the operand is valid for
5664 ///     that constraint, use it.  This makes us take advantage of 'i'
5665 ///     constraints when available.
5666 ///  2) Otherwise, pick the most general constraint present.  This prefers
5667 ///     'm' over 'r', for example.
5668 ///
5669 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5670                              const TargetLowering &TLI,
5671                              SDValue Op, SelectionDAG *DAG) {
5672   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5673   unsigned BestIdx = 0;
5674   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5675   int BestGenerality = -1;
5676 
5677   // Loop over the options, keeping track of the most general one.
5678   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5679     TargetLowering::ConstraintType CType =
5680       TLI.getConstraintType(OpInfo.Codes[i]);
5681 
5682     // Indirect 'other' or 'immediate' constraints are not allowed.
5683     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5684                                CType == TargetLowering::C_Register ||
5685                                CType == TargetLowering::C_RegisterClass))
5686       continue;
5687 
5688     // If this is an 'other' or 'immediate' constraint, see if the operand is
5689     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5690     // the operand is an integer in the range [0..31] we want to use I (saving a
5691     // load of a register), otherwise we must use 'r'.
5692     if ((CType == TargetLowering::C_Other ||
5693          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5694       assert(OpInfo.Codes[i].size() == 1 &&
5695              "Unhandled multi-letter 'other' constraint");
5696       std::vector<SDValue> ResultOps;
5697       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5698                                        ResultOps, *DAG);
5699       if (!ResultOps.empty()) {
5700         BestType = CType;
5701         BestIdx = i;
5702         break;
5703       }
5704     }
5705 
5706     // Things with matching constraints can only be registers, per gcc
5707     // documentation.  This mainly affects "g" constraints.
5708     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5709       continue;
5710 
5711     // This constraint letter is more general than the previous one, use it.
5712     int Generality = getConstraintGenerality(CType);
5713     if (Generality > BestGenerality) {
5714       BestType = CType;
5715       BestIdx = i;
5716       BestGenerality = Generality;
5717     }
5718   }
5719 
5720   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5721   OpInfo.ConstraintType = BestType;
5722 }
5723 
5724 /// Determines the constraint code and constraint type to use for the specific
5725 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5726 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5727                                             SDValue Op,
5728                                             SelectionDAG *DAG) const {
5729   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5730 
5731   // Single-letter constraints ('r') are very common.
5732   if (OpInfo.Codes.size() == 1) {
5733     OpInfo.ConstraintCode = OpInfo.Codes[0];
5734     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5735   } else {
5736     ChooseConstraint(OpInfo, *this, Op, DAG);
5737   }
5738 
5739   // 'X' matches anything.
5740   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5741     // Constants are handled elsewhere.  For Functions, the type here is the
5742     // type of the result, which is not what we want to look at; leave them
5743     // alone.
5744     Value *v = OpInfo.CallOperandVal;
5745     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5746       return;
5747     }
5748 
5749     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5750       OpInfo.ConstraintCode = "i";
5751       return;
5752     }
5753 
5754     // Otherwise, try to resolve it to something we know about by looking at
5755     // the actual operand type.
5756     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5757       OpInfo.ConstraintCode = Repl;
5758       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5759     }
5760   }
5761 }
5762 
5763 /// Given an exact SDIV by a constant, create a multiplication
5764 /// with the multiplicative inverse of the constant.
5765 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5766                               const SDLoc &dl, SelectionDAG &DAG,
5767                               SmallVectorImpl<SDNode *> &Created) {
5768   SDValue Op0 = N->getOperand(0);
5769   SDValue Op1 = N->getOperand(1);
5770   EVT VT = N->getValueType(0);
5771   EVT SVT = VT.getScalarType();
5772   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5773   EVT ShSVT = ShVT.getScalarType();
5774 
5775   bool UseSRA = false;
5776   SmallVector<SDValue, 16> Shifts, Factors;
5777 
5778   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5779     if (C->isZero())
5780       return false;
5781     APInt Divisor = C->getAPIntValue();
5782     unsigned Shift = Divisor.countTrailingZeros();
5783     if (Shift) {
5784       Divisor.ashrInPlace(Shift);
5785       UseSRA = true;
5786     }
5787     // Calculate the multiplicative inverse, using Newton's method.
5788     APInt t;
5789     APInt Factor = Divisor;
5790     while ((t = Divisor * Factor) != 1)
5791       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5792     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5793     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5794     return true;
5795   };
5796 
5797   // Collect all magic values from the build vector.
5798   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5799     return SDValue();
5800 
5801   SDValue Shift, Factor;
5802   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5803     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5804     Factor = DAG.getBuildVector(VT, dl, Factors);
5805   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5806     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5807            "Expected matchUnaryPredicate to return one element for scalable "
5808            "vectors");
5809     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5810     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5811   } else {
5812     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5813     Shift = Shifts[0];
5814     Factor = Factors[0];
5815   }
5816 
5817   SDValue Res = Op0;
5818 
5819   // Shift the value upfront if it is even, so the LSB is one.
5820   if (UseSRA) {
5821     // TODO: For UDIV use SRL instead of SRA.
5822     SDNodeFlags Flags;
5823     Flags.setExact(true);
5824     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5825     Created.push_back(Res.getNode());
5826   }
5827 
5828   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5829 }
5830 
5831 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5832                               SelectionDAG &DAG,
5833                               SmallVectorImpl<SDNode *> &Created) const {
5834   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5835   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5836   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5837     return SDValue(N, 0); // Lower SDIV as SDIV
5838   return SDValue();
5839 }
5840 
5841 SDValue
5842 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5843                               SelectionDAG &DAG,
5844                               SmallVectorImpl<SDNode *> &Created) const {
5845   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5846   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5847   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5848     return SDValue(N, 0); // Lower SREM as SREM
5849   return SDValue();
5850 }
5851 
5852 /// Given an ISD::SDIV node expressing a divide by constant,
5853 /// return a DAG expression to select that will generate the same value by
5854 /// multiplying by a magic number.
5855 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5856 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5857                                   bool IsAfterLegalization,
5858                                   SmallVectorImpl<SDNode *> &Created) const {
5859   SDLoc dl(N);
5860   EVT VT = N->getValueType(0);
5861   EVT SVT = VT.getScalarType();
5862   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5863   EVT ShSVT = ShVT.getScalarType();
5864   unsigned EltBits = VT.getScalarSizeInBits();
5865   EVT MulVT;
5866 
5867   // Check to see if we can do this.
5868   // FIXME: We should be more aggressive here.
5869   if (!isTypeLegal(VT)) {
5870     // Limit this to simple scalars for now.
5871     if (VT.isVector() || !VT.isSimple())
5872       return SDValue();
5873 
5874     // If this type will be promoted to a large enough type with a legal
5875     // multiply operation, we can go ahead and do this transform.
5876     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5877       return SDValue();
5878 
5879     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5880     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5881         !isOperationLegal(ISD::MUL, MulVT))
5882       return SDValue();
5883   }
5884 
5885   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5886   if (N->getFlags().hasExact())
5887     return BuildExactSDIV(*this, N, dl, DAG, Created);
5888 
5889   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5890 
5891   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5892     if (C->isZero())
5893       return false;
5894 
5895     const APInt &Divisor = C->getAPIntValue();
5896     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5897     int NumeratorFactor = 0;
5898     int ShiftMask = -1;
5899 
5900     if (Divisor.isOne() || Divisor.isAllOnes()) {
5901       // If d is +1/-1, we just multiply the numerator by +1/-1.
5902       NumeratorFactor = Divisor.getSExtValue();
5903       magics.Magic = 0;
5904       magics.ShiftAmount = 0;
5905       ShiftMask = 0;
5906     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5907       // If d > 0 and m < 0, add the numerator.
5908       NumeratorFactor = 1;
5909     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5910       // If d < 0 and m > 0, subtract the numerator.
5911       NumeratorFactor = -1;
5912     }
5913 
5914     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5915     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5916     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5917     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5918     return true;
5919   };
5920 
5921   SDValue N0 = N->getOperand(0);
5922   SDValue N1 = N->getOperand(1);
5923 
5924   // Collect the shifts / magic values from each element.
5925   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5926     return SDValue();
5927 
5928   SDValue MagicFactor, Factor, Shift, ShiftMask;
5929   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5930     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5931     Factor = DAG.getBuildVector(VT, dl, Factors);
5932     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5933     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5934   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5935     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5936            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5937            "Expected matchUnaryPredicate to return one element for scalable "
5938            "vectors");
5939     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5940     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5941     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5942     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5943   } else {
5944     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5945     MagicFactor = MagicFactors[0];
5946     Factor = Factors[0];
5947     Shift = Shifts[0];
5948     ShiftMask = ShiftMasks[0];
5949   }
5950 
5951   // Multiply the numerator (operand 0) by the magic value.
5952   // FIXME: We should support doing a MUL in a wider type.
5953   auto GetMULHS = [&](SDValue X, SDValue Y) {
5954     // If the type isn't legal, use a wider mul of the the type calculated
5955     // earlier.
5956     if (!isTypeLegal(VT)) {
5957       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5958       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5959       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5960       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5961                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5962       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5963     }
5964 
5965     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5966       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5967     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5968       SDValue LoHi =
5969           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5970       return SDValue(LoHi.getNode(), 1);
5971     }
5972     return SDValue();
5973   };
5974 
5975   SDValue Q = GetMULHS(N0, MagicFactor);
5976   if (!Q)
5977     return SDValue();
5978 
5979   Created.push_back(Q.getNode());
5980 
5981   // (Optionally) Add/subtract the numerator using Factor.
5982   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5983   Created.push_back(Factor.getNode());
5984   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5985   Created.push_back(Q.getNode());
5986 
5987   // Shift right algebraic by shift value.
5988   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5989   Created.push_back(Q.getNode());
5990 
5991   // Extract the sign bit, mask it and add it to the quotient.
5992   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5993   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5994   Created.push_back(T.getNode());
5995   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5996   Created.push_back(T.getNode());
5997   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5998 }
5999 
6000 /// Given an ISD::UDIV node expressing a divide by constant,
6001 /// return a DAG expression to select that will generate the same value by
6002 /// multiplying by a magic number.
6003 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6004 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6005                                   bool IsAfterLegalization,
6006                                   SmallVectorImpl<SDNode *> &Created) const {
6007   SDLoc dl(N);
6008   EVT VT = N->getValueType(0);
6009   EVT SVT = VT.getScalarType();
6010   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6011   EVT ShSVT = ShVT.getScalarType();
6012   unsigned EltBits = VT.getScalarSizeInBits();
6013   EVT MulVT;
6014 
6015   // Check to see if we can do this.
6016   // FIXME: We should be more aggressive here.
6017   if (!isTypeLegal(VT)) {
6018     // Limit this to simple scalars for now.
6019     if (VT.isVector() || !VT.isSimple())
6020       return SDValue();
6021 
6022     // If this type will be promoted to a large enough type with a legal
6023     // multiply operation, we can go ahead and do this transform.
6024     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6025       return SDValue();
6026 
6027     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6028     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6029         !isOperationLegal(ISD::MUL, MulVT))
6030       return SDValue();
6031   }
6032 
6033   SDValue N0 = N->getOperand(0);
6034   SDValue N1 = N->getOperand(1);
6035 
6036   // Try to use leading zeros of the dividend to reduce the multiplier and
6037   // avoid expensive fixups.
6038   // TODO: Support vectors.
6039   unsigned LeadingZeros = 0;
6040   if (!VT.isVector() && isa<ConstantSDNode>(N1)) {
6041     assert(!isOneConstant(N1) && "Unexpected divisor");
6042     LeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6043     // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros in
6044     // the dividend exceeds the leading zeros for the divisor.
6045     LeadingZeros =
6046         std::min(LeadingZeros,
6047                  cast<ConstantSDNode>(N1)->getAPIntValue().countLeadingZeros());
6048   }
6049 
6050   bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6051   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6052 
6053   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6054     if (C->isZero())
6055       return false;
6056     const APInt& Divisor = C->getAPIntValue();
6057 
6058     SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6059 
6060     // Magic algorithm doesn't work for division by 1. We need to emit a select
6061     // at the end.
6062     if (Divisor.isOne()) {
6063       PreShift = PostShift = DAG.getUNDEF(ShSVT);
6064       MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6065     } else {
6066       UnsignedDivisionByConstantInfo magics =
6067           UnsignedDivisionByConstantInfo::get(Divisor, LeadingZeros);
6068 
6069       MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6070 
6071       assert(magics.PreShift < Divisor.getBitWidth() &&
6072              "We shouldn't generate an undefined shift!");
6073       assert(magics.PostShift < Divisor.getBitWidth() &&
6074              "We shouldn't generate an undefined shift!");
6075       assert((!magics.IsAdd || magics.PreShift == 0) &&
6076              "Unexpected pre-shift");
6077       PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6078       PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6079       NPQFactor = DAG.getConstant(
6080           magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6081                        : APInt::getZero(EltBits),
6082           dl, SVT);
6083       UseNPQ |= magics.IsAdd;
6084       UsePreShift |= magics.PreShift != 0;
6085       UsePostShift |= magics.PostShift != 0;
6086     }
6087 
6088     PreShifts.push_back(PreShift);
6089     MagicFactors.push_back(MagicFactor);
6090     NPQFactors.push_back(NPQFactor);
6091     PostShifts.push_back(PostShift);
6092     return true;
6093   };
6094 
6095   // Collect the shifts/magic values from each element.
6096   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6097     return SDValue();
6098 
6099   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6100   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6101     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6102     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6103     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6104     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6105   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6106     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6107            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6108            "Expected matchUnaryPredicate to return one for scalable vectors");
6109     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6110     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6111     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6112     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6113   } else {
6114     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6115     PreShift = PreShifts[0];
6116     MagicFactor = MagicFactors[0];
6117     PostShift = PostShifts[0];
6118   }
6119 
6120   SDValue Q = N0;
6121   if (UsePreShift) {
6122     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6123     Created.push_back(Q.getNode());
6124   }
6125 
6126   // FIXME: We should support doing a MUL in a wider type.
6127   auto GetMULHU = [&](SDValue X, SDValue Y) {
6128     // If the type isn't legal, use a wider mul of the the type calculated
6129     // earlier.
6130     if (!isTypeLegal(VT)) {
6131       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6132       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6133       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6134       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6135                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6136       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6137     }
6138 
6139     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6140       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6141     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6142       SDValue LoHi =
6143           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6144       return SDValue(LoHi.getNode(), 1);
6145     }
6146     return SDValue(); // No mulhu or equivalent
6147   };
6148 
6149   // Multiply the numerator (operand 0) by the magic value.
6150   Q = GetMULHU(Q, MagicFactor);
6151   if (!Q)
6152     return SDValue();
6153 
6154   Created.push_back(Q.getNode());
6155 
6156   if (UseNPQ) {
6157     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6158     Created.push_back(NPQ.getNode());
6159 
6160     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6161     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6162     if (VT.isVector())
6163       NPQ = GetMULHU(NPQ, NPQFactor);
6164     else
6165       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6166 
6167     Created.push_back(NPQ.getNode());
6168 
6169     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6170     Created.push_back(Q.getNode());
6171   }
6172 
6173   if (UsePostShift) {
6174     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6175     Created.push_back(Q.getNode());
6176   }
6177 
6178   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6179 
6180   SDValue One = DAG.getConstant(1, dl, VT);
6181   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6182   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6183 }
6184 
6185 /// If all values in Values that *don't* match the predicate are same 'splat'
6186 /// value, then replace all values with that splat value.
6187 /// Else, if AlternativeReplacement was provided, then replace all values that
6188 /// do match predicate with AlternativeReplacement value.
6189 static void
6190 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6191                           std::function<bool(SDValue)> Predicate,
6192                           SDValue AlternativeReplacement = SDValue()) {
6193   SDValue Replacement;
6194   // Is there a value for which the Predicate does *NOT* match? What is it?
6195   auto SplatValue = llvm::find_if_not(Values, Predicate);
6196   if (SplatValue != Values.end()) {
6197     // Does Values consist only of SplatValue's and values matching Predicate?
6198     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6199           return Value == *SplatValue || Predicate(Value);
6200         })) // Then we shall replace values matching predicate with SplatValue.
6201       Replacement = *SplatValue;
6202   }
6203   if (!Replacement) {
6204     // Oops, we did not find the "baseline" splat value.
6205     if (!AlternativeReplacement)
6206       return; // Nothing to do.
6207     // Let's replace with provided value then.
6208     Replacement = AlternativeReplacement;
6209   }
6210   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6211 }
6212 
6213 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6214 /// where the divisor is constant and the comparison target is zero,
6215 /// return a DAG expression that will generate the same comparison result
6216 /// using only multiplications, additions and shifts/rotations.
6217 /// Ref: "Hacker's Delight" 10-17.
6218 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6219                                         SDValue CompTargetNode,
6220                                         ISD::CondCode Cond,
6221                                         DAGCombinerInfo &DCI,
6222                                         const SDLoc &DL) const {
6223   SmallVector<SDNode *, 5> Built;
6224   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6225                                          DCI, DL, Built)) {
6226     for (SDNode *N : Built)
6227       DCI.AddToWorklist(N);
6228     return Folded;
6229   }
6230 
6231   return SDValue();
6232 }
6233 
6234 SDValue
6235 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6236                                   SDValue CompTargetNode, ISD::CondCode Cond,
6237                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6238                                   SmallVectorImpl<SDNode *> &Created) const {
6239   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6240   // - D must be constant, with D = D0 * 2^K where D0 is odd
6241   // - P is the multiplicative inverse of D0 modulo 2^W
6242   // - Q = floor(((2^W) - 1) / D)
6243   // where W is the width of the common type of N and D.
6244   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6245          "Only applicable for (in)equality comparisons.");
6246 
6247   SelectionDAG &DAG = DCI.DAG;
6248 
6249   EVT VT = REMNode.getValueType();
6250   EVT SVT = VT.getScalarType();
6251   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6252   EVT ShSVT = ShVT.getScalarType();
6253 
6254   // If MUL is unavailable, we cannot proceed in any case.
6255   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6256     return SDValue();
6257 
6258   bool ComparingWithAllZeros = true;
6259   bool AllComparisonsWithNonZerosAreTautological = true;
6260   bool HadTautologicalLanes = false;
6261   bool AllLanesAreTautological = true;
6262   bool HadEvenDivisor = false;
6263   bool AllDivisorsArePowerOfTwo = true;
6264   bool HadTautologicalInvertedLanes = false;
6265   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6266 
6267   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6268     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6269     if (CDiv->isZero())
6270       return false;
6271 
6272     const APInt &D = CDiv->getAPIntValue();
6273     const APInt &Cmp = CCmp->getAPIntValue();
6274 
6275     ComparingWithAllZeros &= Cmp.isZero();
6276 
6277     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6278     // if C2 is not less than C1, the comparison is always false.
6279     // But we will only be able to produce the comparison that will give the
6280     // opposive tautological answer. So this lane would need to be fixed up.
6281     bool TautologicalInvertedLane = D.ule(Cmp);
6282     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6283 
6284     // If all lanes are tautological (either all divisors are ones, or divisor
6285     // is not greater than the constant we are comparing with),
6286     // we will prefer to avoid the fold.
6287     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6288     HadTautologicalLanes |= TautologicalLane;
6289     AllLanesAreTautological &= TautologicalLane;
6290 
6291     // If we are comparing with non-zero, we need'll need  to subtract said
6292     // comparison value from the LHS. But there is no point in doing that if
6293     // every lane where we are comparing with non-zero is tautological..
6294     if (!Cmp.isZero())
6295       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6296 
6297     // Decompose D into D0 * 2^K
6298     unsigned K = D.countTrailingZeros();
6299     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6300     APInt D0 = D.lshr(K);
6301 
6302     // D is even if it has trailing zeros.
6303     HadEvenDivisor |= (K != 0);
6304     // D is a power-of-two if D0 is one.
6305     // If all divisors are power-of-two, we will prefer to avoid the fold.
6306     AllDivisorsArePowerOfTwo &= D0.isOne();
6307 
6308     // P = inv(D0, 2^W)
6309     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6310     unsigned W = D.getBitWidth();
6311     APInt P = D0.zext(W + 1)
6312                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6313                   .trunc(W);
6314     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6315     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6316 
6317     // Q = floor((2^W - 1) u/ D)
6318     // R = ((2^W - 1) u% D)
6319     APInt Q, R;
6320     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6321 
6322     // If we are comparing with zero, then that comparison constant is okay,
6323     // else it may need to be one less than that.
6324     if (Cmp.ugt(R))
6325       Q -= 1;
6326 
6327     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6328            "We are expecting that K is always less than all-ones for ShSVT");
6329 
6330     // If the lane is tautological the result can be constant-folded.
6331     if (TautologicalLane) {
6332       // Set P and K amount to a bogus values so we can try to splat them.
6333       P = 0;
6334       K = -1;
6335       // And ensure that comparison constant is tautological,
6336       // it will always compare true/false.
6337       Q = -1;
6338     }
6339 
6340     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6341     KAmts.push_back(
6342         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6343     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6344     return true;
6345   };
6346 
6347   SDValue N = REMNode.getOperand(0);
6348   SDValue D = REMNode.getOperand(1);
6349 
6350   // Collect the values from each element.
6351   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6352     return SDValue();
6353 
6354   // If all lanes are tautological, the result can be constant-folded.
6355   if (AllLanesAreTautological)
6356     return SDValue();
6357 
6358   // If this is a urem by a powers-of-two, avoid the fold since it can be
6359   // best implemented as a bit test.
6360   if (AllDivisorsArePowerOfTwo)
6361     return SDValue();
6362 
6363   SDValue PVal, KVal, QVal;
6364   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6365     if (HadTautologicalLanes) {
6366       // Try to turn PAmts into a splat, since we don't care about the values
6367       // that are currently '0'. If we can't, just keep '0'`s.
6368       turnVectorIntoSplatVector(PAmts, isNullConstant);
6369       // Try to turn KAmts into a splat, since we don't care about the values
6370       // that are currently '-1'. If we can't, change them to '0'`s.
6371       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6372                                 DAG.getConstant(0, DL, ShSVT));
6373     }
6374 
6375     PVal = DAG.getBuildVector(VT, DL, PAmts);
6376     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6377     QVal = DAG.getBuildVector(VT, DL, QAmts);
6378   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6379     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6380            "Expected matchBinaryPredicate to return one element for "
6381            "SPLAT_VECTORs");
6382     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6383     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6384     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6385   } else {
6386     PVal = PAmts[0];
6387     KVal = KAmts[0];
6388     QVal = QAmts[0];
6389   }
6390 
6391   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6392     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6393       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6394     assert(CompTargetNode.getValueType() == N.getValueType() &&
6395            "Expecting that the types on LHS and RHS of comparisons match.");
6396     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6397   }
6398 
6399   // (mul N, P)
6400   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6401   Created.push_back(Op0.getNode());
6402 
6403   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6404   // divisors as a performance improvement, since rotating by 0 is a no-op.
6405   if (HadEvenDivisor) {
6406     // We need ROTR to do this.
6407     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6408       return SDValue();
6409     // UREM: (rotr (mul N, P), K)
6410     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6411     Created.push_back(Op0.getNode());
6412   }
6413 
6414   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6415   SDValue NewCC =
6416       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6417                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6418   if (!HadTautologicalInvertedLanes)
6419     return NewCC;
6420 
6421   // If any lanes previously compared always-false, the NewCC will give
6422   // always-true result for them, so we need to fixup those lanes.
6423   // Or the other way around for inequality predicate.
6424   assert(VT.isVector() && "Can/should only get here for vectors.");
6425   Created.push_back(NewCC.getNode());
6426 
6427   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6428   // if C2 is not less than C1, the comparison is always false.
6429   // But we have produced the comparison that will give the
6430   // opposive tautological answer. So these lanes would need to be fixed up.
6431   SDValue TautologicalInvertedChannels =
6432       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6433   Created.push_back(TautologicalInvertedChannels.getNode());
6434 
6435   // NOTE: we avoid letting illegal types through even if we're before legalize
6436   // ops – legalization has a hard time producing good code for this.
6437   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6438     // If we have a vector select, let's replace the comparison results in the
6439     // affected lanes with the correct tautological result.
6440     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6441                                               DL, SETCCVT, SETCCVT);
6442     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6443                        Replacement, NewCC);
6444   }
6445 
6446   // Else, we can just invert the comparison result in the appropriate lanes.
6447   //
6448   // NOTE: see the note above VSELECT above.
6449   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6450     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6451                        TautologicalInvertedChannels);
6452 
6453   return SDValue(); // Don't know how to lower.
6454 }
6455 
6456 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6457 /// where the divisor is constant and the comparison target is zero,
6458 /// return a DAG expression that will generate the same comparison result
6459 /// using only multiplications, additions and shifts/rotations.
6460 /// Ref: "Hacker's Delight" 10-17.
6461 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6462                                         SDValue CompTargetNode,
6463                                         ISD::CondCode Cond,
6464                                         DAGCombinerInfo &DCI,
6465                                         const SDLoc &DL) const {
6466   SmallVector<SDNode *, 7> Built;
6467   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6468                                          DCI, DL, Built)) {
6469     assert(Built.size() <= 7 && "Max size prediction failed.");
6470     for (SDNode *N : Built)
6471       DCI.AddToWorklist(N);
6472     return Folded;
6473   }
6474 
6475   return SDValue();
6476 }
6477 
6478 SDValue
6479 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6480                                   SDValue CompTargetNode, ISD::CondCode Cond,
6481                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6482                                   SmallVectorImpl<SDNode *> &Created) const {
6483   // Fold:
6484   //   (seteq/ne (srem N, D), 0)
6485   // To:
6486   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6487   //
6488   // - D must be constant, with D = D0 * 2^K where D0 is odd
6489   // - P is the multiplicative inverse of D0 modulo 2^W
6490   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6491   // - Q = floor((2 * A) / (2^K))
6492   // where W is the width of the common type of N and D.
6493   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6494          "Only applicable for (in)equality comparisons.");
6495 
6496   SelectionDAG &DAG = DCI.DAG;
6497 
6498   EVT VT = REMNode.getValueType();
6499   EVT SVT = VT.getScalarType();
6500   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6501   EVT ShSVT = ShVT.getScalarType();
6502 
6503   // If we are after ops legalization, and MUL is unavailable, we can not
6504   // proceed.
6505   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6506     return SDValue();
6507 
6508   // TODO: Could support comparing with non-zero too.
6509   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6510   if (!CompTarget || !CompTarget->isZero())
6511     return SDValue();
6512 
6513   bool HadIntMinDivisor = false;
6514   bool HadOneDivisor = false;
6515   bool AllDivisorsAreOnes = true;
6516   bool HadEvenDivisor = false;
6517   bool NeedToApplyOffset = false;
6518   bool AllDivisorsArePowerOfTwo = true;
6519   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6520 
6521   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6522     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6523     if (C->isZero())
6524       return false;
6525 
6526     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6527 
6528     // WARNING: this fold is only valid for positive divisors!
6529     APInt D = C->getAPIntValue();
6530     if (D.isNegative())
6531       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6532 
6533     HadIntMinDivisor |= D.isMinSignedValue();
6534 
6535     // If all divisors are ones, we will prefer to avoid the fold.
6536     HadOneDivisor |= D.isOne();
6537     AllDivisorsAreOnes &= D.isOne();
6538 
6539     // Decompose D into D0 * 2^K
6540     unsigned K = D.countTrailingZeros();
6541     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6542     APInt D0 = D.lshr(K);
6543 
6544     if (!D.isMinSignedValue()) {
6545       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6546       // we don't care about this lane in this fold, we'll special-handle it.
6547       HadEvenDivisor |= (K != 0);
6548     }
6549 
6550     // D is a power-of-two if D0 is one. This includes INT_MIN.
6551     // If all divisors are power-of-two, we will prefer to avoid the fold.
6552     AllDivisorsArePowerOfTwo &= D0.isOne();
6553 
6554     // P = inv(D0, 2^W)
6555     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6556     unsigned W = D.getBitWidth();
6557     APInt P = D0.zext(W + 1)
6558                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6559                   .trunc(W);
6560     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6561     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6562 
6563     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6564     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6565     A.clearLowBits(K);
6566 
6567     if (!D.isMinSignedValue()) {
6568       // If divisor INT_MIN, then we don't care about this lane in this fold,
6569       // we'll special-handle it.
6570       NeedToApplyOffset |= A != 0;
6571     }
6572 
6573     // Q = floor((2 * A) / (2^K))
6574     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6575 
6576     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6577            "We are expecting that A is always less than all-ones for SVT");
6578     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6579            "We are expecting that K is always less than all-ones for ShSVT");
6580 
6581     // If the divisor is 1 the result can be constant-folded. Likewise, we
6582     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6583     if (D.isOne()) {
6584       // Set P, A and K to a bogus values so we can try to splat them.
6585       P = 0;
6586       A = -1;
6587       K = -1;
6588 
6589       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6590       Q = -1;
6591     }
6592 
6593     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6594     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6595     KAmts.push_back(
6596         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6597     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6598     return true;
6599   };
6600 
6601   SDValue N = REMNode.getOperand(0);
6602   SDValue D = REMNode.getOperand(1);
6603 
6604   // Collect the values from each element.
6605   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6606     return SDValue();
6607 
6608   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6609   if (AllDivisorsAreOnes)
6610     return SDValue();
6611 
6612   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6613   // since it can be best implemented as a bit test.
6614   if (AllDivisorsArePowerOfTwo)
6615     return SDValue();
6616 
6617   SDValue PVal, AVal, KVal, QVal;
6618   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6619     if (HadOneDivisor) {
6620       // Try to turn PAmts into a splat, since we don't care about the values
6621       // that are currently '0'. If we can't, just keep '0'`s.
6622       turnVectorIntoSplatVector(PAmts, isNullConstant);
6623       // Try to turn AAmts into a splat, since we don't care about the
6624       // values that are currently '-1'. If we can't, change them to '0'`s.
6625       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6626                                 DAG.getConstant(0, DL, SVT));
6627       // Try to turn KAmts into a splat, since we don't care about the values
6628       // that are currently '-1'. If we can't, change them to '0'`s.
6629       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6630                                 DAG.getConstant(0, DL, ShSVT));
6631     }
6632 
6633     PVal = DAG.getBuildVector(VT, DL, PAmts);
6634     AVal = DAG.getBuildVector(VT, DL, AAmts);
6635     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6636     QVal = DAG.getBuildVector(VT, DL, QAmts);
6637   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6638     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6639            QAmts.size() == 1 &&
6640            "Expected matchUnaryPredicate to return one element for scalable "
6641            "vectors");
6642     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6643     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6644     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6645     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6646   } else {
6647     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6648     PVal = PAmts[0];
6649     AVal = AAmts[0];
6650     KVal = KAmts[0];
6651     QVal = QAmts[0];
6652   }
6653 
6654   // (mul N, P)
6655   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6656   Created.push_back(Op0.getNode());
6657 
6658   if (NeedToApplyOffset) {
6659     // We need ADD to do this.
6660     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6661       return SDValue();
6662 
6663     // (add (mul N, P), A)
6664     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6665     Created.push_back(Op0.getNode());
6666   }
6667 
6668   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6669   // divisors as a performance improvement, since rotating by 0 is a no-op.
6670   if (HadEvenDivisor) {
6671     // We need ROTR to do this.
6672     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6673       return SDValue();
6674     // SREM: (rotr (add (mul N, P), A), K)
6675     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6676     Created.push_back(Op0.getNode());
6677   }
6678 
6679   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6680   SDValue Fold =
6681       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6682                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6683 
6684   // If we didn't have lanes with INT_MIN divisor, then we're done.
6685   if (!HadIntMinDivisor)
6686     return Fold;
6687 
6688   // That fold is only valid for positive divisors. Which effectively means,
6689   // it is invalid for INT_MIN divisors. So if we have such a lane,
6690   // we must fix-up results for said lanes.
6691   assert(VT.isVector() && "Can/should only get here for vectors.");
6692 
6693   // NOTE: we avoid letting illegal types through even if we're before legalize
6694   // ops – legalization has a hard time producing good code for the code that
6695   // follows.
6696   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6697       !isOperationLegalOrCustom(ISD::AND, VT) ||
6698       !isOperationLegalOrCustom(Cond, VT) ||
6699       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6700     return SDValue();
6701 
6702   Created.push_back(Fold.getNode());
6703 
6704   SDValue IntMin = DAG.getConstant(
6705       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6706   SDValue IntMax = DAG.getConstant(
6707       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6708   SDValue Zero =
6709       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6710 
6711   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6712   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6713   Created.push_back(DivisorIsIntMin.getNode());
6714 
6715   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6716   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6717   Created.push_back(Masked.getNode());
6718   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6719   Created.push_back(MaskedIsZero.getNode());
6720 
6721   // To produce final result we need to blend 2 vectors: 'SetCC' and
6722   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6723   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6724   // constant-folded, select can get lowered to a shuffle with constant mask.
6725   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6726                                 MaskedIsZero, Fold);
6727 
6728   return Blended;
6729 }
6730 
6731 bool TargetLowering::
6732 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6733   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6734     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6735                                 "be a constant integer");
6736     return true;
6737   }
6738 
6739   return false;
6740 }
6741 
6742 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6743                                          const DenormalMode &Mode) const {
6744   SDLoc DL(Op);
6745   EVT VT = Op.getValueType();
6746   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6747   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6748   // Testing it with denormal inputs to avoid wrong estimate.
6749   if (Mode.Input == DenormalMode::IEEE) {
6750     // This is specifically a check for the handling of denormal inputs,
6751     // not the result.
6752 
6753     // Test = fabs(X) < SmallestNormal
6754     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6755     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6756     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6757     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6758     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6759   }
6760   // Test = X == 0.0
6761   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6762 }
6763 
6764 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6765                                              bool LegalOps, bool OptForSize,
6766                                              NegatibleCost &Cost,
6767                                              unsigned Depth) const {
6768   // fneg is removable even if it has multiple uses.
6769   if (Op.getOpcode() == ISD::FNEG) {
6770     Cost = NegatibleCost::Cheaper;
6771     return Op.getOperand(0);
6772   }
6773 
6774   // Don't recurse exponentially.
6775   if (Depth > SelectionDAG::MaxRecursionDepth)
6776     return SDValue();
6777 
6778   // Pre-increment recursion depth for use in recursive calls.
6779   ++Depth;
6780   const SDNodeFlags Flags = Op->getFlags();
6781   const TargetOptions &Options = DAG.getTarget().Options;
6782   EVT VT = Op.getValueType();
6783   unsigned Opcode = Op.getOpcode();
6784 
6785   // Don't allow anything with multiple uses unless we know it is free.
6786   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6787     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6788                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6789     if (!IsFreeExtend)
6790       return SDValue();
6791   }
6792 
6793   auto RemoveDeadNode = [&](SDValue N) {
6794     if (N && N.getNode()->use_empty())
6795       DAG.RemoveDeadNode(N.getNode());
6796   };
6797 
6798   SDLoc DL(Op);
6799 
6800   // Because getNegatedExpression can delete nodes we need a handle to keep
6801   // temporary nodes alive in case the recursion manages to create an identical
6802   // node.
6803   std::list<HandleSDNode> Handles;
6804 
6805   switch (Opcode) {
6806   case ISD::ConstantFP: {
6807     // Don't invert constant FP values after legalization unless the target says
6808     // the negated constant is legal.
6809     bool IsOpLegal =
6810         isOperationLegal(ISD::ConstantFP, VT) ||
6811         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6812                      OptForSize);
6813 
6814     if (LegalOps && !IsOpLegal)
6815       break;
6816 
6817     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6818     V.changeSign();
6819     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6820 
6821     // If we already have the use of the negated floating constant, it is free
6822     // to negate it even it has multiple uses.
6823     if (!Op.hasOneUse() && CFP.use_empty())
6824       break;
6825     Cost = NegatibleCost::Neutral;
6826     return CFP;
6827   }
6828   case ISD::BUILD_VECTOR: {
6829     // Only permit BUILD_VECTOR of constants.
6830     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6831           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6832         }))
6833       break;
6834 
6835     bool IsOpLegal =
6836         (isOperationLegal(ISD::ConstantFP, VT) &&
6837          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6838         llvm::all_of(Op->op_values(), [&](SDValue N) {
6839           return N.isUndef() ||
6840                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6841                               OptForSize);
6842         });
6843 
6844     if (LegalOps && !IsOpLegal)
6845       break;
6846 
6847     SmallVector<SDValue, 4> Ops;
6848     for (SDValue C : Op->op_values()) {
6849       if (C.isUndef()) {
6850         Ops.push_back(C);
6851         continue;
6852       }
6853       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6854       V.changeSign();
6855       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6856     }
6857     Cost = NegatibleCost::Neutral;
6858     return DAG.getBuildVector(VT, DL, Ops);
6859   }
6860   case ISD::FADD: {
6861     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6862       break;
6863 
6864     // After operation legalization, it might not be legal to create new FSUBs.
6865     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6866       break;
6867     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6868 
6869     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6870     NegatibleCost CostX = NegatibleCost::Expensive;
6871     SDValue NegX =
6872         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6873     // Prevent this node from being deleted by the next call.
6874     if (NegX)
6875       Handles.emplace_back(NegX);
6876 
6877     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6878     NegatibleCost CostY = NegatibleCost::Expensive;
6879     SDValue NegY =
6880         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6881 
6882     // We're done with the handles.
6883     Handles.clear();
6884 
6885     // Negate the X if its cost is less or equal than Y.
6886     if (NegX && (CostX <= CostY)) {
6887       Cost = CostX;
6888       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6889       if (NegY != N)
6890         RemoveDeadNode(NegY);
6891       return N;
6892     }
6893 
6894     // Negate the Y if it is not expensive.
6895     if (NegY) {
6896       Cost = CostY;
6897       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6898       if (NegX != N)
6899         RemoveDeadNode(NegX);
6900       return N;
6901     }
6902     break;
6903   }
6904   case ISD::FSUB: {
6905     // We can't turn -(A-B) into B-A when we honor signed zeros.
6906     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6907       break;
6908 
6909     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6910     // fold (fneg (fsub 0, Y)) -> Y
6911     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6912       if (C->isZero()) {
6913         Cost = NegatibleCost::Cheaper;
6914         return Y;
6915       }
6916 
6917     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6918     Cost = NegatibleCost::Neutral;
6919     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6920   }
6921   case ISD::FMUL:
6922   case ISD::FDIV: {
6923     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6924 
6925     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6926     NegatibleCost CostX = NegatibleCost::Expensive;
6927     SDValue NegX =
6928         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6929     // Prevent this node from being deleted by the next call.
6930     if (NegX)
6931       Handles.emplace_back(NegX);
6932 
6933     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6934     NegatibleCost CostY = NegatibleCost::Expensive;
6935     SDValue NegY =
6936         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6937 
6938     // We're done with the handles.
6939     Handles.clear();
6940 
6941     // Negate the X if its cost is less or equal than Y.
6942     if (NegX && (CostX <= CostY)) {
6943       Cost = CostX;
6944       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6945       if (NegY != N)
6946         RemoveDeadNode(NegY);
6947       return N;
6948     }
6949 
6950     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6951     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6952       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6953         break;
6954 
6955     // Negate the Y if it is not expensive.
6956     if (NegY) {
6957       Cost = CostY;
6958       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6959       if (NegX != N)
6960         RemoveDeadNode(NegX);
6961       return N;
6962     }
6963     break;
6964   }
6965   case ISD::FMA:
6966   case ISD::FMAD: {
6967     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6968       break;
6969 
6970     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6971     NegatibleCost CostZ = NegatibleCost::Expensive;
6972     SDValue NegZ =
6973         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6974     // Give up if fail to negate the Z.
6975     if (!NegZ)
6976       break;
6977 
6978     // Prevent this node from being deleted by the next two calls.
6979     Handles.emplace_back(NegZ);
6980 
6981     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6982     NegatibleCost CostX = NegatibleCost::Expensive;
6983     SDValue NegX =
6984         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6985     // Prevent this node from being deleted by the next call.
6986     if (NegX)
6987       Handles.emplace_back(NegX);
6988 
6989     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6990     NegatibleCost CostY = NegatibleCost::Expensive;
6991     SDValue NegY =
6992         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6993 
6994     // We're done with the handles.
6995     Handles.clear();
6996 
6997     // Negate the X if its cost is less or equal than Y.
6998     if (NegX && (CostX <= CostY)) {
6999       Cost = std::min(CostX, CostZ);
7000       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7001       if (NegY != N)
7002         RemoveDeadNode(NegY);
7003       return N;
7004     }
7005 
7006     // Negate the Y if it is not expensive.
7007     if (NegY) {
7008       Cost = std::min(CostY, CostZ);
7009       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7010       if (NegX != N)
7011         RemoveDeadNode(NegX);
7012       return N;
7013     }
7014     break;
7015   }
7016 
7017   case ISD::FP_EXTEND:
7018   case ISD::FSIN:
7019     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7020                                             OptForSize, Cost, Depth))
7021       return DAG.getNode(Opcode, DL, VT, NegV);
7022     break;
7023   case ISD::FP_ROUND:
7024     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7025                                             OptForSize, Cost, Depth))
7026       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7027     break;
7028   case ISD::SELECT:
7029   case ISD::VSELECT: {
7030     // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7031     // iff at least one cost is cheaper and the other is neutral/cheaper
7032     SDValue LHS = Op.getOperand(1);
7033     NegatibleCost CostLHS = NegatibleCost::Expensive;
7034     SDValue NegLHS =
7035         getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7036     if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7037       RemoveDeadNode(NegLHS);
7038       break;
7039     }
7040 
7041     // Prevent this node from being deleted by the next call.
7042     Handles.emplace_back(NegLHS);
7043 
7044     SDValue RHS = Op.getOperand(2);
7045     NegatibleCost CostRHS = NegatibleCost::Expensive;
7046     SDValue NegRHS =
7047         getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7048 
7049     // We're done with the handles.
7050     Handles.clear();
7051 
7052     if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7053         (CostLHS != NegatibleCost::Cheaper &&
7054          CostRHS != NegatibleCost::Cheaper)) {
7055       RemoveDeadNode(NegLHS);
7056       RemoveDeadNode(NegRHS);
7057       break;
7058     }
7059 
7060     Cost = std::min(CostLHS, CostRHS);
7061     return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7062   }
7063   }
7064 
7065   return SDValue();
7066 }
7067 
7068 //===----------------------------------------------------------------------===//
7069 // Legalization Utilities
7070 //===----------------------------------------------------------------------===//
7071 
7072 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7073                                     SDValue LHS, SDValue RHS,
7074                                     SmallVectorImpl<SDValue> &Result,
7075                                     EVT HiLoVT, SelectionDAG &DAG,
7076                                     MulExpansionKind Kind, SDValue LL,
7077                                     SDValue LH, SDValue RL, SDValue RH) const {
7078   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7079          Opcode == ISD::SMUL_LOHI);
7080 
7081   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7082                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7083   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7084                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7085   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7086                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7087   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7088                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7089 
7090   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7091     return false;
7092 
7093   unsigned OuterBitSize = VT.getScalarSizeInBits();
7094   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7095 
7096   // LL, LH, RL, and RH must be either all NULL or all set to a value.
7097   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7098          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7099 
7100   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7101   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7102                           bool Signed) -> bool {
7103     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7104       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7105       Hi = SDValue(Lo.getNode(), 1);
7106       return true;
7107     }
7108     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7109       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7110       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7111       return true;
7112     }
7113     return false;
7114   };
7115 
7116   SDValue Lo, Hi;
7117 
7118   if (!LL.getNode() && !RL.getNode() &&
7119       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7120     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7121     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7122   }
7123 
7124   if (!LL.getNode())
7125     return false;
7126 
7127   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7128   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7129       DAG.MaskedValueIsZero(RHS, HighMask)) {
7130     // The inputs are both zero-extended.
7131     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7132       Result.push_back(Lo);
7133       Result.push_back(Hi);
7134       if (Opcode != ISD::MUL) {
7135         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7136         Result.push_back(Zero);
7137         Result.push_back(Zero);
7138       }
7139       return true;
7140     }
7141   }
7142 
7143   if (!VT.isVector() && Opcode == ISD::MUL &&
7144       DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7145       DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7146     // The input values are both sign-extended.
7147     // TODO non-MUL case?
7148     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7149       Result.push_back(Lo);
7150       Result.push_back(Hi);
7151       return true;
7152     }
7153   }
7154 
7155   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7156   SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7157 
7158   if (!LH.getNode() && !RH.getNode() &&
7159       isOperationLegalOrCustom(ISD::SRL, VT) &&
7160       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7161     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7162     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7163     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7164     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7165   }
7166 
7167   if (!LH.getNode())
7168     return false;
7169 
7170   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7171     return false;
7172 
7173   Result.push_back(Lo);
7174 
7175   if (Opcode == ISD::MUL) {
7176     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7177     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7178     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7179     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7180     Result.push_back(Hi);
7181     return true;
7182   }
7183 
7184   // Compute the full width result.
7185   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7186     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7187     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7188     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7189     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7190   };
7191 
7192   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7193   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7194     return false;
7195 
7196   // This is effectively the add part of a multiply-add of half-sized operands,
7197   // so it cannot overflow.
7198   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7199 
7200   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7201     return false;
7202 
7203   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7204   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7205 
7206   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7207                   isOperationLegalOrCustom(ISD::ADDE, VT));
7208   if (UseGlue)
7209     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7210                        Merge(Lo, Hi));
7211   else
7212     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
7213                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7214 
7215   SDValue Carry = Next.getValue(1);
7216   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7217   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7218 
7219   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7220     return false;
7221 
7222   if (UseGlue)
7223     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7224                      Carry);
7225   else
7226     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7227                      Zero, Carry);
7228 
7229   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7230 
7231   if (Opcode == ISD::SMUL_LOHI) {
7232     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7233                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7234     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7235 
7236     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7237                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7238     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7239   }
7240 
7241   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7242   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7243   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7244   return true;
7245 }
7246 
7247 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7248                                SelectionDAG &DAG, MulExpansionKind Kind,
7249                                SDValue LL, SDValue LH, SDValue RL,
7250                                SDValue RH) const {
7251   SmallVector<SDValue, 2> Result;
7252   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7253                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7254                            DAG, Kind, LL, LH, RL, RH);
7255   if (Ok) {
7256     assert(Result.size() == 2);
7257     Lo = Result[0];
7258     Hi = Result[1];
7259   }
7260   return Ok;
7261 }
7262 
7263 // Optimize unsigned division or remainder by constants for types twice as large
7264 // as a legal VT.
7265 //
7266 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7267 // can be computed
7268 // as:
7269 //   Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7270 //   Remainder = Sum % Constant
7271 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7272 //
7273 // For division, we can compute the remainder using the algorithm described
7274 // above, subtract it from the dividend to get an exact multiple of Constant.
7275 // Then multiply that extact multiply by the multiplicative inverse modulo
7276 // (1 << (BitWidth / 2)) to get the quotient.
7277 
7278 // If Constant is even, we can shift right the dividend and the divisor by the
7279 // number of trailing zeros in Constant before applying the remainder algorithm.
7280 // If we're after the quotient, we can subtract this value from the shifted
7281 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7282 // If we want the remainder, we shift the value left by the number of trailing
7283 // zeros and add the bits that were shifted out of the dividend.
7284 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7285                                             SmallVectorImpl<SDValue> &Result,
7286                                             EVT HiLoVT, SelectionDAG &DAG,
7287                                             SDValue LL, SDValue LH) const {
7288   unsigned Opcode = N->getOpcode();
7289   EVT VT = N->getValueType(0);
7290 
7291   // TODO: Support signed division/remainder.
7292   if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7293     return false;
7294   assert(
7295       (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7296       "Unexpected opcode");
7297 
7298   auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7299   if (!CN)
7300     return false;
7301 
7302   APInt Divisor = CN->getAPIntValue();
7303   unsigned BitWidth = Divisor.getBitWidth();
7304   unsigned HBitWidth = BitWidth / 2;
7305   assert(VT.getScalarSizeInBits() == BitWidth &&
7306          HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7307 
7308   // Divisor needs to less than (1 << HBitWidth).
7309   APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7310   if (Divisor.uge(HalfMaxPlus1))
7311     return false;
7312 
7313   // We depend on the UREM by constant optimization in DAGCombiner that requires
7314   // high multiply.
7315   if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7316       !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7317     return false;
7318 
7319   // Don't expand if optimizing for size.
7320   if (DAG.shouldOptForSize())
7321     return false;
7322 
7323   // Early out for 0 or 1 divisors.
7324   if (Divisor.ule(1))
7325     return false;
7326 
7327   // If the divisor is even, shift it until it becomes odd.
7328   unsigned TrailingZeros = 0;
7329   if (!Divisor[0]) {
7330     TrailingZeros = Divisor.countTrailingZeros();
7331     Divisor.lshrInPlace(TrailingZeros);
7332   }
7333 
7334   SDLoc dl(N);
7335   SDValue Sum;
7336   SDValue PartialRem;
7337 
7338   // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7339   // then add in the carry.
7340   // TODO: If we can't split it in half, we might be able to split into 3 or
7341   // more pieces using a smaller bit width.
7342   if (HalfMaxPlus1.urem(Divisor).isOneValue()) {
7343     assert(!LL == !LH && "Expected both input halves or no input halves!");
7344     if (!LL) {
7345       LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, N->getOperand(0),
7346                        DAG.getIntPtrConstant(0, dl));
7347       LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, N->getOperand(0),
7348                        DAG.getIntPtrConstant(1, dl));
7349     }
7350 
7351     // Shift the input by the number of TrailingZeros in the divisor. The
7352     // shifted out bits will be added to the remainder later.
7353     if (TrailingZeros) {
7354       // Save the shifted off bits if we need the remainder.
7355       if (Opcode != ISD::UDIV) {
7356         APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7357         PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7358                                  DAG.getConstant(Mask, dl, HiLoVT));
7359       }
7360 
7361       LL = DAG.getNode(
7362           ISD::OR, dl, HiLoVT,
7363           DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7364                       DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7365           DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7366                       DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7367                                                  HiLoVT, dl)));
7368       LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7369                        DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7370     }
7371 
7372     // Use addcarry if we can, otherwise use a compare to detect overflow.
7373     EVT SetCCType =
7374         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7375     if (isOperationLegalOrCustom(ISD::ADDCARRY, HiLoVT)) {
7376       SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7377       Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7378       Sum = DAG.getNode(ISD::ADDCARRY, dl, VTList, Sum,
7379                         DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7380     } else {
7381       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7382       SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7383       // If the boolean for the target is 0 or 1, we can add the setcc result
7384       // directly.
7385       if (getBooleanContents(HiLoVT) ==
7386           TargetLoweringBase::ZeroOrOneBooleanContent)
7387         Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7388       else
7389         Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7390                               DAG.getConstant(0, dl, HiLoVT));
7391       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7392     }
7393   }
7394 
7395   // If we didn't find a sum, we can't do the expansion.
7396   if (!Sum)
7397     return false;
7398 
7399   // Perform a HiLoVT urem on the Sum using truncated divisor.
7400   SDValue RemL =
7401       DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7402                   DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7403   SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7404 
7405   if (Opcode != ISD::UREM) {
7406     // Subtract the remainder from the shifted dividend.
7407     SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7408     SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7409 
7410     Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7411 
7412     // Multiply by the multiplicative inverse of the divisor modulo
7413     // (1 << BitWidth).
7414     APInt Mod = APInt::getSignedMinValue(BitWidth + 1);
7415     APInt MulFactor = Divisor.zext(BitWidth + 1);
7416     MulFactor = MulFactor.multiplicativeInverse(Mod);
7417     MulFactor = MulFactor.trunc(BitWidth);
7418 
7419     SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7420                                    DAG.getConstant(MulFactor, dl, VT));
7421 
7422     // Split the quotient into low and high parts.
7423     SDValue QuotL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, Quotient,
7424                                 DAG.getIntPtrConstant(0, dl));
7425     SDValue QuotH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, Quotient,
7426                                 DAG.getIntPtrConstant(1, dl));
7427     Result.push_back(QuotL);
7428     Result.push_back(QuotH);
7429   }
7430 
7431   if (Opcode != ISD::UDIV) {
7432     // If we shifted the input, shift the remainder left and add the bits we
7433     // shifted off the input.
7434     if (TrailingZeros) {
7435       APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7436       RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7437                          DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7438       RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7439     }
7440     Result.push_back(RemL);
7441     Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7442   }
7443 
7444   return true;
7445 }
7446 
7447 // Check that (every element of) Z is undef or not an exact multiple of BW.
7448 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7449   return ISD::matchUnaryPredicate(
7450       Z,
7451       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7452       true);
7453 }
7454 
7455 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7456   EVT VT = Node->getValueType(0);
7457   SDValue ShX, ShY;
7458   SDValue ShAmt, InvShAmt;
7459   SDValue X = Node->getOperand(0);
7460   SDValue Y = Node->getOperand(1);
7461   SDValue Z = Node->getOperand(2);
7462   SDValue Mask = Node->getOperand(3);
7463   SDValue VL = Node->getOperand(4);
7464 
7465   unsigned BW = VT.getScalarSizeInBits();
7466   bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7467   SDLoc DL(SDValue(Node, 0));
7468 
7469   EVT ShVT = Z.getValueType();
7470   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7471     // fshl: X << C | Y >> (BW - C)
7472     // fshr: X << (BW - C) | Y >> C
7473     // where C = Z % BW is not zero
7474     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7475     ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7476     InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7477     ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
7478                       VL);
7479     ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
7480                       VL);
7481   } else {
7482     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7483     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7484     SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
7485     if (isPowerOf2_32(BW)) {
7486       // Z % BW -> Z & (BW - 1)
7487       ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
7488       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7489       SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
7490                                  DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
7491       InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
7492     } else {
7493       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7494       ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7495       InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
7496     }
7497 
7498     SDValue One = DAG.getConstant(1, DL, ShVT);
7499     if (IsFSHL) {
7500       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
7501       SDValue ShY1 = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, One, Mask, VL);
7502       ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, ShY1, InvShAmt, Mask, VL);
7503     } else {
7504       SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
7505       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
7506       ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, ShAmt, Mask, VL);
7507     }
7508   }
7509   return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
7510 }
7511 
7512 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7513                                           SelectionDAG &DAG) const {
7514   if (Node->isVPOpcode())
7515     return expandVPFunnelShift(Node, DAG);
7516 
7517   EVT VT = Node->getValueType(0);
7518 
7519   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7520                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7521                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7522                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7523     return SDValue();
7524 
7525   SDValue X = Node->getOperand(0);
7526   SDValue Y = Node->getOperand(1);
7527   SDValue Z = Node->getOperand(2);
7528 
7529   unsigned BW = VT.getScalarSizeInBits();
7530   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7531   SDLoc DL(SDValue(Node, 0));
7532 
7533   EVT ShVT = Z.getValueType();
7534 
7535   // If a funnel shift in the other direction is more supported, use it.
7536   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7537   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7538       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7539     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7540       // fshl X, Y, Z -> fshr X, Y, -Z
7541       // fshr X, Y, Z -> fshl X, Y, -Z
7542       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7543       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7544     } else {
7545       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7546       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7547       SDValue One = DAG.getConstant(1, DL, ShVT);
7548       if (IsFSHL) {
7549         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7550         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7551       } else {
7552         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7553         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7554       }
7555       Z = DAG.getNOT(DL, Z, ShVT);
7556     }
7557     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7558   }
7559 
7560   SDValue ShX, ShY;
7561   SDValue ShAmt, InvShAmt;
7562   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7563     // fshl: X << C | Y >> (BW - C)
7564     // fshr: X << (BW - C) | Y >> C
7565     // where C = Z % BW is not zero
7566     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7567     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7568     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7569     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7570     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7571   } else {
7572     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7573     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7574     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7575     if (isPowerOf2_32(BW)) {
7576       // Z % BW -> Z & (BW - 1)
7577       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7578       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7579       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7580     } else {
7581       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7582       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7583       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7584     }
7585 
7586     SDValue One = DAG.getConstant(1, DL, ShVT);
7587     if (IsFSHL) {
7588       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7589       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7590       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7591     } else {
7592       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7593       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7594       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7595     }
7596   }
7597   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7598 }
7599 
7600 // TODO: Merge with expandFunnelShift.
7601 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7602                                   SelectionDAG &DAG) const {
7603   EVT VT = Node->getValueType(0);
7604   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7605   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7606   SDValue Op0 = Node->getOperand(0);
7607   SDValue Op1 = Node->getOperand(1);
7608   SDLoc DL(SDValue(Node, 0));
7609 
7610   EVT ShVT = Op1.getValueType();
7611   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7612 
7613   // If a rotate in the other direction is more supported, use it.
7614   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7615   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7616       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7617     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7618     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7619   }
7620 
7621   if (!AllowVectorOps && VT.isVector() &&
7622       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7623        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7624        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7625        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7626        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7627     return SDValue();
7628 
7629   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7630   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7631   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7632   SDValue ShVal;
7633   SDValue HsVal;
7634   if (isPowerOf2_32(EltSizeInBits)) {
7635     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7636     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7637     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7638     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7639     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7640     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7641     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7642   } else {
7643     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7644     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7645     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7646     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7647     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7648     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7649     SDValue One = DAG.getConstant(1, DL, ShVT);
7650     HsVal =
7651         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7652   }
7653   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7654 }
7655 
7656 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7657                                       SelectionDAG &DAG) const {
7658   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7659   EVT VT = Node->getValueType(0);
7660   unsigned VTBits = VT.getScalarSizeInBits();
7661   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7662 
7663   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7664   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7665   SDValue ShOpLo = Node->getOperand(0);
7666   SDValue ShOpHi = Node->getOperand(1);
7667   SDValue ShAmt = Node->getOperand(2);
7668   EVT ShAmtVT = ShAmt.getValueType();
7669   EVT ShAmtCCVT =
7670       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7671   SDLoc dl(Node);
7672 
7673   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7674   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7675   // away during isel.
7676   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7677                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7678   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7679                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7680                        : DAG.getConstant(0, dl, VT);
7681 
7682   SDValue Tmp2, Tmp3;
7683   if (IsSHL) {
7684     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7685     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7686   } else {
7687     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7688     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7689   }
7690 
7691   // If the shift amount is larger or equal than the width of a part we don't
7692   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7693   // values for large shift amounts.
7694   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7695                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7696   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7697                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7698 
7699   if (IsSHL) {
7700     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7701     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7702   } else {
7703     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7704     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7705   }
7706 }
7707 
7708 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7709                                       SelectionDAG &DAG) const {
7710   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7711   SDValue Src = Node->getOperand(OpNo);
7712   EVT SrcVT = Src.getValueType();
7713   EVT DstVT = Node->getValueType(0);
7714   SDLoc dl(SDValue(Node, 0));
7715 
7716   // FIXME: Only f32 to i64 conversions are supported.
7717   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7718     return false;
7719 
7720   if (Node->isStrictFPOpcode())
7721     // When a NaN is converted to an integer a trap is allowed. We can't
7722     // use this expansion here because it would eliminate that trap. Other
7723     // traps are also allowed and cannot be eliminated. See
7724     // IEEE 754-2008 sec 5.8.
7725     return false;
7726 
7727   // Expand f32 -> i64 conversion
7728   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7729   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7730   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7731   EVT IntVT = SrcVT.changeTypeToInteger();
7732   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7733 
7734   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7735   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7736   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7737   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7738   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7739   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7740 
7741   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7742 
7743   SDValue ExponentBits = DAG.getNode(
7744       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7745       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7746   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7747 
7748   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7749                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7750                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7751   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7752 
7753   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7754                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7755                           DAG.getConstant(0x00800000, dl, IntVT));
7756 
7757   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7758 
7759   R = DAG.getSelectCC(
7760       dl, Exponent, ExponentLoBit,
7761       DAG.getNode(ISD::SHL, dl, DstVT, R,
7762                   DAG.getZExtOrTrunc(
7763                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7764                       dl, IntShVT)),
7765       DAG.getNode(ISD::SRL, dl, DstVT, R,
7766                   DAG.getZExtOrTrunc(
7767                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7768                       dl, IntShVT)),
7769       ISD::SETGT);
7770 
7771   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7772                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7773 
7774   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7775                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7776   return true;
7777 }
7778 
7779 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7780                                       SDValue &Chain,
7781                                       SelectionDAG &DAG) const {
7782   SDLoc dl(SDValue(Node, 0));
7783   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7784   SDValue Src = Node->getOperand(OpNo);
7785 
7786   EVT SrcVT = Src.getValueType();
7787   EVT DstVT = Node->getValueType(0);
7788   EVT SetCCVT =
7789       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7790   EVT DstSetCCVT =
7791       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7792 
7793   // Only expand vector types if we have the appropriate vector bit operations.
7794   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7795                                                    ISD::FP_TO_SINT;
7796   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7797                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7798     return false;
7799 
7800   // If the maximum float value is smaller then the signed integer range,
7801   // the destination signmask can't be represented by the float, so we can
7802   // just use FP_TO_SINT directly.
7803   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7804   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7805   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7806   if (APFloat::opOverflow &
7807       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7808     if (Node->isStrictFPOpcode()) {
7809       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7810                            { Node->getOperand(0), Src });
7811       Chain = Result.getValue(1);
7812     } else
7813       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7814     return true;
7815   }
7816 
7817   // Don't expand it if there isn't cheap fsub instruction.
7818   if (!isOperationLegalOrCustom(
7819           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7820     return false;
7821 
7822   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7823   SDValue Sel;
7824 
7825   if (Node->isStrictFPOpcode()) {
7826     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7827                        Node->getOperand(0), /*IsSignaling*/ true);
7828     Chain = Sel.getValue(1);
7829   } else {
7830     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7831   }
7832 
7833   bool Strict = Node->isStrictFPOpcode() ||
7834                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7835 
7836   if (Strict) {
7837     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7838     // signmask then offset (the result of which should be fully representable).
7839     // Sel = Src < 0x8000000000000000
7840     // FltOfs = select Sel, 0, 0x8000000000000000
7841     // IntOfs = select Sel, 0, 0x8000000000000000
7842     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7843 
7844     // TODO: Should any fast-math-flags be set for the FSUB?
7845     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7846                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7847     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7848     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7849                                    DAG.getConstant(0, dl, DstVT),
7850                                    DAG.getConstant(SignMask, dl, DstVT));
7851     SDValue SInt;
7852     if (Node->isStrictFPOpcode()) {
7853       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7854                                 { Chain, Src, FltOfs });
7855       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7856                          { Val.getValue(1), Val });
7857       Chain = SInt.getValue(1);
7858     } else {
7859       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7860       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7861     }
7862     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7863   } else {
7864     // Expand based on maximum range of FP_TO_SINT:
7865     // True = fp_to_sint(Src)
7866     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7867     // Result = select (Src < 0x8000000000000000), True, False
7868 
7869     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7870     // TODO: Should any fast-math-flags be set for the FSUB?
7871     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7872                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7873     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7874                         DAG.getConstant(SignMask, dl, DstVT));
7875     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7876     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7877   }
7878   return true;
7879 }
7880 
7881 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7882                                       SDValue &Chain,
7883                                       SelectionDAG &DAG) const {
7884   // This transform is not correct for converting 0 when rounding mode is set
7885   // to round toward negative infinity which will produce -0.0. So disable under
7886   // strictfp.
7887   if (Node->isStrictFPOpcode())
7888     return false;
7889 
7890   SDValue Src = Node->getOperand(0);
7891   EVT SrcVT = Src.getValueType();
7892   EVT DstVT = Node->getValueType(0);
7893 
7894   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7895     return false;
7896 
7897   // Only expand vector types if we have the appropriate vector bit operations.
7898   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7899                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7900                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7901                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7902                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7903     return false;
7904 
7905   SDLoc dl(SDValue(Node, 0));
7906   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7907 
7908   // Implementation of unsigned i64 to f64 following the algorithm in
7909   // __floatundidf in compiler_rt.  This implementation performs rounding
7910   // correctly in all rounding modes with the exception of converting 0
7911   // when rounding toward negative infinity. In that case the fsub will produce
7912   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7913   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7914   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7915       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7916   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7917   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7918   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7919 
7920   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7921   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7922   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7923   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7924   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7925   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7926   SDValue HiSub =
7927       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7928   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7929   return true;
7930 }
7931 
7932 SDValue
7933 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7934                                                SelectionDAG &DAG) const {
7935   unsigned Opcode = Node->getOpcode();
7936   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7937           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7938          "Wrong opcode");
7939 
7940   if (Node->getFlags().hasNoNaNs()) {
7941     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7942     SDValue Op1 = Node->getOperand(0);
7943     SDValue Op2 = Node->getOperand(1);
7944     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7945     // Copy FMF flags, but always set the no-signed-zeros flag
7946     // as this is implied by the FMINNUM/FMAXNUM semantics.
7947     SDNodeFlags Flags = Node->getFlags();
7948     Flags.setNoSignedZeros(true);
7949     SelCC->setFlags(Flags);
7950     return SelCC;
7951   }
7952 
7953   return SDValue();
7954 }
7955 
7956 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7957                                               SelectionDAG &DAG) const {
7958   SDLoc dl(Node);
7959   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7960     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7961   EVT VT = Node->getValueType(0);
7962 
7963   if (VT.isScalableVector())
7964     report_fatal_error(
7965         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7966 
7967   if (isOperationLegalOrCustom(NewOp, VT)) {
7968     SDValue Quiet0 = Node->getOperand(0);
7969     SDValue Quiet1 = Node->getOperand(1);
7970 
7971     if (!Node->getFlags().hasNoNaNs()) {
7972       // Insert canonicalizes if it's possible we need to quiet to get correct
7973       // sNaN behavior.
7974       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7975         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7976                              Node->getFlags());
7977       }
7978       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7979         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7980                              Node->getFlags());
7981       }
7982     }
7983 
7984     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7985   }
7986 
7987   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7988   // instead if there are no NaNs.
7989   if (Node->getFlags().hasNoNaNs()) {
7990     unsigned IEEE2018Op =
7991         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7992     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7993       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7994                          Node->getOperand(1), Node->getFlags());
7995     }
7996   }
7997 
7998   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7999     return SelCC;
8000 
8001   return SDValue();
8002 }
8003 
8004 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8005                                          unsigned Test, SDNodeFlags Flags,
8006                                          const SDLoc &DL,
8007                                          SelectionDAG &DAG) const {
8008   EVT OperandVT = Op.getValueType();
8009   assert(OperandVT.isFloatingPoint());
8010 
8011   // Degenerated cases.
8012   if (Test == 0)
8013     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8014   if ((Test & fcAllFlags) == fcAllFlags)
8015     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8016 
8017   // PPC double double is a pair of doubles, of which the higher part determines
8018   // the value class.
8019   if (OperandVT == MVT::ppcf128) {
8020     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8021                      DAG.getConstant(1, DL, MVT::i32));
8022     OperandVT = MVT::f64;
8023   }
8024 
8025   // Some checks may be represented as inversion of simpler check, for example
8026   // "inf|normal|subnormal|zero" => !"nan".
8027   bool IsInverted = false;
8028   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
8029     IsInverted = true;
8030     Test = InvertedCheck;
8031   }
8032 
8033   // Floating-point type properties.
8034   EVT ScalarFloatVT = OperandVT.getScalarType();
8035   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8036   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8037   bool IsF80 = (ScalarFloatVT == MVT::f80);
8038 
8039   // Some checks can be implemented using float comparisons, if floating point
8040   // exceptions are ignored.
8041   if (Flags.hasNoFPExcept() &&
8042       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8043     if (Test == fcZero)
8044       return DAG.getSetCC(DL, ResultVT, Op,
8045                           DAG.getConstantFP(0.0, DL, OperandVT),
8046                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
8047     if (Test == fcNan)
8048       return DAG.getSetCC(DL, ResultVT, Op, Op,
8049                           IsInverted ? ISD::SETO : ISD::SETUO);
8050   }
8051 
8052   // In the general case use integer operations.
8053   unsigned BitSize = OperandVT.getScalarSizeInBits();
8054   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8055   if (OperandVT.isVector())
8056     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8057                              OperandVT.getVectorElementCount());
8058   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8059 
8060   // Various masks.
8061   APInt SignBit = APInt::getSignMask(BitSize);
8062   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
8063   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8064   const unsigned ExplicitIntBitInF80 = 63;
8065   APInt ExpMask = Inf;
8066   if (IsF80)
8067     ExpMask.clearBit(ExplicitIntBitInF80);
8068   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8069   APInt QNaNBitMask =
8070       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8071   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
8072 
8073   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8074   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8075   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8076   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8077   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8078   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8079 
8080   SDValue Res;
8081   const auto appendResult = [&](SDValue PartialRes) {
8082     if (PartialRes) {
8083       if (Res)
8084         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8085       else
8086         Res = PartialRes;
8087     }
8088   };
8089 
8090   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8091   const auto getIntBitIsSet = [&]() -> SDValue {
8092     if (!IntBitIsSetV) {
8093       APInt IntBitMask(BitSize, 0);
8094       IntBitMask.setBit(ExplicitIntBitInF80);
8095       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8096       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8097       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8098     }
8099     return IntBitIsSetV;
8100   };
8101 
8102   // Split the value into sign bit and absolute value.
8103   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8104   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8105                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
8106 
8107   // Tests that involve more than one class should be processed first.
8108   SDValue PartialRes;
8109 
8110   if (IsF80)
8111     ; // Detect finite numbers of f80 by checking individual classes because
8112       // they have different settings of the explicit integer bit.
8113   else if ((Test & fcFinite) == fcFinite) {
8114     // finite(V) ==> abs(V) < exp_mask
8115     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8116     Test &= ~fcFinite;
8117   } else if ((Test & fcFinite) == fcPosFinite) {
8118     // finite(V) && V > 0 ==> V < exp_mask
8119     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8120     Test &= ~fcPosFinite;
8121   } else if ((Test & fcFinite) == fcNegFinite) {
8122     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8123     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8124     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8125     Test &= ~fcNegFinite;
8126   }
8127   appendResult(PartialRes);
8128 
8129   // Check for individual classes.
8130 
8131   if (unsigned PartialCheck = Test & fcZero) {
8132     if (PartialCheck == fcPosZero)
8133       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8134     else if (PartialCheck == fcZero)
8135       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8136     else // ISD::fcNegZero
8137       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8138     appendResult(PartialRes);
8139   }
8140 
8141   if (unsigned PartialCheck = Test & fcInf) {
8142     if (PartialCheck == fcPosInf)
8143       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
8144     else if (PartialCheck == fcInf)
8145       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
8146     else { // ISD::fcNegInf
8147       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
8148       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
8149       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
8150     }
8151     appendResult(PartialRes);
8152   }
8153 
8154   if (unsigned PartialCheck = Test & fcNan) {
8155     APInt InfWithQnanBit = Inf | QNaNBitMask;
8156     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
8157     if (PartialCheck == fcNan) {
8158       // isnan(V) ==> abs(V) > int(inf)
8159       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8160       if (IsF80) {
8161         // Recognize unsupported values as NaNs for compatibility with glibc.
8162         // In them (exp(V)==0) == int_bit.
8163         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
8164         SDValue ExpIsZero =
8165             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8166         SDValue IsPseudo =
8167             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
8168         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
8169       }
8170     } else if (PartialCheck == fcQNan) {
8171       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
8172       PartialRes =
8173           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
8174     } else { // ISD::fcSNan
8175       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
8176       //                    abs(V) < (unsigned(Inf) | quiet_bit)
8177       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8178       SDValue IsNotQnan =
8179           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
8180       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
8181     }
8182     appendResult(PartialRes);
8183   }
8184 
8185   if (unsigned PartialCheck = Test & fcSubnormal) {
8186     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8187     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8188     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8189     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8190     SDValue VMinusOneV =
8191         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8192     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8193     if (PartialCheck == fcNegSubnormal)
8194       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8195     appendResult(PartialRes);
8196   }
8197 
8198   if (unsigned PartialCheck = Test & fcNormal) {
8199     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
8200     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
8201     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
8202     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
8203     APInt ExpLimit = ExpMask - ExpLSB;
8204     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
8205     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
8206     if (PartialCheck == fcNegNormal)
8207       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8208     else if (PartialCheck == fcPosNormal) {
8209       SDValue PosSignV =
8210           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
8211       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
8212     }
8213     if (IsF80)
8214       PartialRes =
8215           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
8216     appendResult(PartialRes);
8217   }
8218 
8219   if (!Res)
8220     return DAG.getConstant(IsInverted, DL, ResultVT);
8221   if (IsInverted)
8222     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
8223   return Res;
8224 }
8225 
8226 // Only expand vector types if we have the appropriate vector bit operations.
8227 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
8228   assert(VT.isVector() && "Expected vector type");
8229   unsigned Len = VT.getScalarSizeInBits();
8230   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
8231          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
8232          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
8233          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
8234          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
8235 }
8236 
8237 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
8238   SDLoc dl(Node);
8239   EVT VT = Node->getValueType(0);
8240   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8241   SDValue Op = Node->getOperand(0);
8242   unsigned Len = VT.getScalarSizeInBits();
8243   assert(VT.isInteger() && "CTPOP not implemented for this type.");
8244 
8245   // TODO: Add support for irregular type lengths.
8246   if (!(Len <= 128 && Len % 8 == 0))
8247     return SDValue();
8248 
8249   // Only expand vector types if we have the appropriate vector bit operations.
8250   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
8251     return SDValue();
8252 
8253   // This is the "best" algorithm from
8254   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
8255   SDValue Mask55 =
8256       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
8257   SDValue Mask33 =
8258       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
8259   SDValue Mask0F =
8260       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
8261 
8262   // v = v - ((v >> 1) & 0x55555555...)
8263   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
8264                    DAG.getNode(ISD::AND, dl, VT,
8265                                DAG.getNode(ISD::SRL, dl, VT, Op,
8266                                            DAG.getConstant(1, dl, ShVT)),
8267                                Mask55));
8268   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
8269   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
8270                    DAG.getNode(ISD::AND, dl, VT,
8271                                DAG.getNode(ISD::SRL, dl, VT, Op,
8272                                            DAG.getConstant(2, dl, ShVT)),
8273                                Mask33));
8274   // v = (v + (v >> 4)) & 0x0F0F0F0F...
8275   Op = DAG.getNode(ISD::AND, dl, VT,
8276                    DAG.getNode(ISD::ADD, dl, VT, Op,
8277                                DAG.getNode(ISD::SRL, dl, VT, Op,
8278                                            DAG.getConstant(4, dl, ShVT))),
8279                    Mask0F);
8280 
8281   if (Len <= 8)
8282     return Op;
8283 
8284   // Avoid the multiply if we only have 2 bytes to add.
8285   // TODO: Only doing this for scalars because vectors weren't as obviously
8286   // improved.
8287   if (Len == 16 && !VT.isVector()) {
8288     // v = (v + (v >> 8)) & 0x00FF;
8289     return DAG.getNode(ISD::AND, dl, VT,
8290                      DAG.getNode(ISD::ADD, dl, VT, Op,
8291                                  DAG.getNode(ISD::SRL, dl, VT, Op,
8292                                              DAG.getConstant(8, dl, ShVT))),
8293                      DAG.getConstant(0xFF, dl, VT));
8294   }
8295 
8296   // v = (v * 0x01010101...) >> (Len - 8)
8297   SDValue Mask01 =
8298       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
8299   return DAG.getNode(ISD::SRL, dl, VT,
8300                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
8301                      DAG.getConstant(Len - 8, dl, ShVT));
8302 }
8303 
8304 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
8305   SDLoc dl(Node);
8306   EVT VT = Node->getValueType(0);
8307   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8308   SDValue Op = Node->getOperand(0);
8309   SDValue Mask = Node->getOperand(1);
8310   SDValue VL = Node->getOperand(2);
8311   unsigned Len = VT.getScalarSizeInBits();
8312   assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
8313 
8314   // TODO: Add support for irregular type lengths.
8315   if (!(Len <= 128 && Len % 8 == 0))
8316     return SDValue();
8317 
8318   // This is same algorithm of expandCTPOP from
8319   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
8320   SDValue Mask55 =
8321       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
8322   SDValue Mask33 =
8323       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
8324   SDValue Mask0F =
8325       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
8326 
8327   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
8328 
8329   // v = v - ((v >> 1) & 0x55555555...)
8330   Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
8331                      DAG.getNode(ISD::VP_LSHR, dl, VT, Op,
8332                                  DAG.getConstant(1, dl, ShVT), Mask, VL),
8333                      Mask55, Mask, VL);
8334   Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
8335 
8336   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
8337   Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
8338   Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
8339                      DAG.getNode(ISD::VP_LSHR, dl, VT, Op,
8340                                  DAG.getConstant(2, dl, ShVT), Mask, VL),
8341                      Mask33, Mask, VL);
8342   Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
8343 
8344   // v = (v + (v >> 4)) & 0x0F0F0F0F...
8345   Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
8346                      Mask, VL),
8347   Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
8348   Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
8349 
8350   if (Len <= 8)
8351     return Op;
8352 
8353   // v = (v * 0x01010101...) >> (Len - 8)
8354   SDValue Mask01 =
8355       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
8356   return DAG.getNode(ISD::VP_LSHR, dl, VT,
8357                      DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL),
8358                      DAG.getConstant(Len - 8, dl, ShVT), Mask, VL);
8359 }
8360 
8361 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
8362   SDLoc dl(Node);
8363   EVT VT = Node->getValueType(0);
8364   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8365   SDValue Op = Node->getOperand(0);
8366   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
8367 
8368   // If the non-ZERO_UNDEF version is supported we can use that instead.
8369   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
8370       isOperationLegalOrCustom(ISD::CTLZ, VT))
8371     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
8372 
8373   // If the ZERO_UNDEF version is supported use that and handle the zero case.
8374   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
8375     EVT SetCCVT =
8376         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8377     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
8378     SDValue Zero = DAG.getConstant(0, dl, VT);
8379     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
8380     return DAG.getSelect(dl, VT, SrcIsZero,
8381                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
8382   }
8383 
8384   // Only expand vector types if we have the appropriate vector bit operations.
8385   // This includes the operations needed to expand CTPOP if it isn't supported.
8386   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
8387                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
8388                          !canExpandVectorCTPOP(*this, VT)) ||
8389                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
8390                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
8391     return SDValue();
8392 
8393   // for now, we do this:
8394   // x = x | (x >> 1);
8395   // x = x | (x >> 2);
8396   // ...
8397   // x = x | (x >>16);
8398   // x = x | (x >>32); // for 64-bit input
8399   // return popcount(~x);
8400   //
8401   // Ref: "Hacker's Delight" by Henry Warren
8402   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
8403     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
8404     Op = DAG.getNode(ISD::OR, dl, VT, Op,
8405                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
8406   }
8407   Op = DAG.getNOT(dl, Op, VT);
8408   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
8409 }
8410 
8411 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
8412   SDLoc dl(Node);
8413   EVT VT = Node->getValueType(0);
8414   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8415   SDValue Op = Node->getOperand(0);
8416   SDValue Mask = Node->getOperand(1);
8417   SDValue VL = Node->getOperand(2);
8418   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
8419 
8420   // do this:
8421   // x = x | (x >> 1);
8422   // x = x | (x >> 2);
8423   // ...
8424   // x = x | (x >>16);
8425   // x = x | (x >>32); // for 64-bit input
8426   // return popcount(~x);
8427   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
8428     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
8429     Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
8430                      DAG.getNode(ISD::VP_LSHR, dl, VT, Op, Tmp, Mask, VL), Mask,
8431                      VL);
8432   }
8433   Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask,
8434                    VL);
8435   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
8436 }
8437 
8438 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
8439                                         const SDLoc &DL, EVT VT, SDValue Op,
8440                                         unsigned BitWidth) const {
8441   if (BitWidth != 32 && BitWidth != 64)
8442     return SDValue();
8443   APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
8444                                   : APInt(64, 0x0218A392CD3D5DBFULL);
8445   const DataLayout &TD = DAG.getDataLayout();
8446   MachinePointerInfo PtrInfo =
8447       MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
8448   unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
8449   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
8450   SDValue Lookup = DAG.getNode(
8451       ISD::SRL, DL, VT,
8452       DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
8453                   DAG.getConstant(DeBruijn, DL, VT)),
8454       DAG.getConstant(ShiftAmt, DL, VT));
8455   Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
8456 
8457   SmallVector<uint8_t> Table(BitWidth, 0);
8458   for (unsigned i = 0; i < BitWidth; i++) {
8459     APInt Shl = DeBruijn.shl(i);
8460     APInt Lshr = Shl.lshr(ShiftAmt);
8461     Table[Lshr.getZExtValue()] = i;
8462   }
8463 
8464   // Create a ConstantArray in Constant Pool
8465   auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
8466   SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
8467                                       TD.getPrefTypeAlign(CA->getType()));
8468   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
8469                                    DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
8470                                    PtrInfo, MVT::i8);
8471   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
8472     return ExtLoad;
8473 
8474   EVT SetCCVT =
8475       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8476   SDValue Zero = DAG.getConstant(0, DL, VT);
8477   SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
8478   return DAG.getSelect(DL, VT, SrcIsZero,
8479                        DAG.getConstant(BitWidth, DL, VT), ExtLoad);
8480 }
8481 
8482 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
8483   SDLoc dl(Node);
8484   EVT VT = Node->getValueType(0);
8485   SDValue Op = Node->getOperand(0);
8486   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
8487 
8488   // If the non-ZERO_UNDEF version is supported we can use that instead.
8489   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
8490       isOperationLegalOrCustom(ISD::CTTZ, VT))
8491     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
8492 
8493   // If the ZERO_UNDEF version is supported use that and handle the zero case.
8494   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
8495     EVT SetCCVT =
8496         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8497     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
8498     SDValue Zero = DAG.getConstant(0, dl, VT);
8499     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
8500     return DAG.getSelect(dl, VT, SrcIsZero,
8501                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
8502   }
8503 
8504   // Only expand vector types if we have the appropriate vector bit operations.
8505   // This includes the operations needed to expand CTPOP if it isn't supported.
8506   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
8507                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
8508                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
8509                          !canExpandVectorCTPOP(*this, VT)) ||
8510                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
8511                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
8512                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8513     return SDValue();
8514 
8515   // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
8516   if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
8517       !isOperationLegal(ISD::CTLZ, VT))
8518     if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
8519       return V;
8520 
8521   // for now, we use: { return popcount(~x & (x - 1)); }
8522   // unless the target has ctlz but not ctpop, in which case we use:
8523   // { return 32 - nlz(~x & (x-1)); }
8524   // Ref: "Hacker's Delight" by Henry Warren
8525   SDValue Tmp = DAG.getNode(
8526       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
8527       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
8528 
8529   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
8530   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
8531     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
8532                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
8533   }
8534 
8535   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
8536 }
8537 
8538 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
8539   SDValue Op = Node->getOperand(0);
8540   SDValue Mask = Node->getOperand(1);
8541   SDValue VL = Node->getOperand(2);
8542   SDLoc dl(Node);
8543   EVT VT = Node->getValueType(0);
8544 
8545   // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
8546   SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
8547                             DAG.getConstant(-1, dl, VT), Mask, VL);
8548   SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
8549                                  DAG.getConstant(1, dl, VT), Mask, VL);
8550   SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
8551   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
8552 }
8553 
8554 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
8555                                   bool IsNegative) const {
8556   SDLoc dl(N);
8557   EVT VT = N->getValueType(0);
8558   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8559   SDValue Op = N->getOperand(0);
8560 
8561   // abs(x) -> smax(x,sub(0,x))
8562   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8563       isOperationLegal(ISD::SMAX, VT)) {
8564     SDValue Zero = DAG.getConstant(0, dl, VT);
8565     return DAG.getNode(ISD::SMAX, dl, VT, Op,
8566                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8567   }
8568 
8569   // abs(x) -> umin(x,sub(0,x))
8570   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8571       isOperationLegal(ISD::UMIN, VT)) {
8572     SDValue Zero = DAG.getConstant(0, dl, VT);
8573     Op = DAG.getFreeze(Op);
8574     return DAG.getNode(ISD::UMIN, dl, VT, Op,
8575                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8576   }
8577 
8578   // 0 - abs(x) -> smin(x, sub(0,x))
8579   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
8580       isOperationLegal(ISD::SMIN, VT)) {
8581     Op = DAG.getFreeze(Op);
8582     SDValue Zero = DAG.getConstant(0, dl, VT);
8583     return DAG.getNode(ISD::SMIN, dl, VT, Op,
8584                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8585   }
8586 
8587   // Only expand vector types if we have the appropriate vector operations.
8588   if (VT.isVector() &&
8589       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
8590        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
8591        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
8592        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8593     return SDValue();
8594 
8595   Op = DAG.getFreeze(Op);
8596   SDValue Shift =
8597       DAG.getNode(ISD::SRA, dl, VT, Op,
8598                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
8599   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
8600 
8601   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
8602   if (!IsNegative)
8603     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
8604 
8605   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
8606   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
8607 }
8608 
8609 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
8610   SDLoc dl(N);
8611   EVT VT = N->getValueType(0);
8612   SDValue Op = N->getOperand(0);
8613 
8614   if (!VT.isSimple())
8615     return SDValue();
8616 
8617   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8618   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8619   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8620   default:
8621     return SDValue();
8622   case MVT::i16:
8623     // Use a rotate by 8. This can be further expanded if necessary.
8624     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8625   case MVT::i32:
8626     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8627     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
8628                        DAG.getConstant(0xFF00, dl, VT));
8629     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
8630     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8631     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8632     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8633     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8634     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8635     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8636   case MVT::i64:
8637     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8638     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
8639                        DAG.getConstant(255ULL<<8, dl, VT));
8640     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
8641     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
8642                        DAG.getConstant(255ULL<<16, dl, VT));
8643     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
8644     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
8645                        DAG.getConstant(255ULL<<24, dl, VT));
8646     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
8647     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8648     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8649                        DAG.getConstant(255ULL<<24, dl, VT));
8650     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8651     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8652                        DAG.getConstant(255ULL<<16, dl, VT));
8653     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8654     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8655                        DAG.getConstant(255ULL<<8, dl, VT));
8656     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8657     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8658     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8659     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8660     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8661     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8662     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8663     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8664   }
8665 }
8666 
8667 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
8668   SDLoc dl(N);
8669   EVT VT = N->getValueType(0);
8670   SDValue Op = N->getOperand(0);
8671   SDValue Mask = N->getOperand(1);
8672   SDValue EVL = N->getOperand(2);
8673 
8674   if (!VT.isSimple())
8675     return SDValue();
8676 
8677   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8678   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8679   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8680   default:
8681     return SDValue();
8682   case MVT::i16:
8683     Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
8684                        Mask, EVL);
8685     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
8686                        Mask, EVL);
8687     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
8688   case MVT::i32:
8689     Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
8690                        Mask, EVL);
8691     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
8692                        Mask, EVL);
8693     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
8694                        Mask, EVL);
8695     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
8696                        Mask, EVL);
8697     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
8698                        DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
8699     Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
8700                        Mask, EVL);
8701     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
8702     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
8703     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
8704   case MVT::i64:
8705     Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
8706                        Mask, EVL);
8707     Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
8708                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
8709     Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
8710                        Mask, EVL);
8711     Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
8712                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
8713     Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
8714                        Mask, EVL);
8715     Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
8716                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
8717     Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
8718                        Mask, EVL);
8719     Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
8720                        Mask, EVL);
8721     Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
8722                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
8723     Tmp3 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
8724                        Mask, EVL);
8725     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
8726                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
8727     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
8728                        Mask, EVL);
8729     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
8730                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
8731     Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
8732                        Mask, EVL);
8733     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
8734     Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
8735     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
8736     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
8737     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
8738     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
8739     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
8740   }
8741 }
8742 
8743 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8744   SDLoc dl(N);
8745   EVT VT = N->getValueType(0);
8746   SDValue Op = N->getOperand(0);
8747   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8748   unsigned Sz = VT.getScalarSizeInBits();
8749 
8750   SDValue Tmp, Tmp2, Tmp3;
8751 
8752   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8753   // and finally the i1 pairs.
8754   // TODO: We can easily support i4/i2 legal types if any target ever does.
8755   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8756     // Create the masks - repeating the pattern every byte.
8757     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8758     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8759     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8760 
8761     // BSWAP if the type is wider than a single byte.
8762     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8763 
8764     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8765     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8766     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8767     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8768     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8769     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8770 
8771     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8772     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8773     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8774     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8775     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8776     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8777 
8778     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8779     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8780     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8781     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8782     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8783     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8784     return Tmp;
8785   }
8786 
8787   Tmp = DAG.getConstant(0, dl, VT);
8788   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8789     if (I < J)
8790       Tmp2 =
8791           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8792     else
8793       Tmp2 =
8794           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8795 
8796     APInt Shift(Sz, 1);
8797     Shift <<= J;
8798     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8799     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8800   }
8801 
8802   return Tmp;
8803 }
8804 
8805 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8806   assert(N->getOpcode() == ISD::VP_BITREVERSE);
8807 
8808   SDLoc dl(N);
8809   EVT VT = N->getValueType(0);
8810   SDValue Op = N->getOperand(0);
8811   SDValue Mask = N->getOperand(1);
8812   SDValue EVL = N->getOperand(2);
8813   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8814   unsigned Sz = VT.getScalarSizeInBits();
8815 
8816   SDValue Tmp, Tmp2, Tmp3;
8817 
8818   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8819   // and finally the i1 pairs.
8820   // TODO: We can easily support i4/i2 legal types if any target ever does.
8821   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8822     // Create the masks - repeating the pattern every byte.
8823     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8824     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8825     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8826 
8827     // BSWAP if the type is wider than a single byte.
8828     Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
8829 
8830     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8831     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
8832                        Mask, EVL);
8833     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
8834                        DAG.getConstant(Mask4, dl, VT), Mask, EVL);
8835     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
8836                        Mask, EVL);
8837     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
8838                        Mask, EVL);
8839     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
8840 
8841     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8842     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
8843                        Mask, EVL);
8844     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
8845                        DAG.getConstant(Mask2, dl, VT), Mask, EVL);
8846     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
8847                        Mask, EVL);
8848     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
8849                        Mask, EVL);
8850     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
8851 
8852     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8853     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
8854                        Mask, EVL);
8855     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
8856                        DAG.getConstant(Mask1, dl, VT), Mask, EVL);
8857     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
8858                        Mask, EVL);
8859     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
8860                        Mask, EVL);
8861     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
8862     return Tmp;
8863   }
8864   return SDValue();
8865 }
8866 
8867 std::pair<SDValue, SDValue>
8868 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8869                                     SelectionDAG &DAG) const {
8870   SDLoc SL(LD);
8871   SDValue Chain = LD->getChain();
8872   SDValue BasePTR = LD->getBasePtr();
8873   EVT SrcVT = LD->getMemoryVT();
8874   EVT DstVT = LD->getValueType(0);
8875   ISD::LoadExtType ExtType = LD->getExtensionType();
8876 
8877   if (SrcVT.isScalableVector())
8878     report_fatal_error("Cannot scalarize scalable vector loads");
8879 
8880   unsigned NumElem = SrcVT.getVectorNumElements();
8881 
8882   EVT SrcEltVT = SrcVT.getScalarType();
8883   EVT DstEltVT = DstVT.getScalarType();
8884 
8885   // A vector must always be stored in memory as-is, i.e. without any padding
8886   // between the elements, since various code depend on it, e.g. in the
8887   // handling of a bitcast of a vector type to int, which may be done with a
8888   // vector store followed by an integer load. A vector that does not have
8889   // elements that are byte-sized must therefore be stored as an integer
8890   // built out of the extracted vector elements.
8891   if (!SrcEltVT.isByteSized()) {
8892     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8893     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8894 
8895     unsigned NumSrcBits = SrcVT.getSizeInBits();
8896     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8897 
8898     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8899     SDValue SrcEltBitMask = DAG.getConstant(
8900         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8901 
8902     // Load the whole vector and avoid masking off the top bits as it makes
8903     // the codegen worse.
8904     SDValue Load =
8905         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8906                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8907                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8908 
8909     SmallVector<SDValue, 8> Vals;
8910     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8911       unsigned ShiftIntoIdx =
8912           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8913       SDValue ShiftAmount =
8914           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8915                                      LoadVT, SL, /*LegalTypes=*/false);
8916       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8917       SDValue Elt =
8918           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8919       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8920 
8921       if (ExtType != ISD::NON_EXTLOAD) {
8922         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8923         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8924       }
8925 
8926       Vals.push_back(Scalar);
8927     }
8928 
8929     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8930     return std::make_pair(Value, Load.getValue(1));
8931   }
8932 
8933   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8934   assert(SrcEltVT.isByteSized());
8935 
8936   SmallVector<SDValue, 8> Vals;
8937   SmallVector<SDValue, 8> LoadChains;
8938 
8939   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8940     SDValue ScalarLoad =
8941         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8942                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8943                        SrcEltVT, LD->getOriginalAlign(),
8944                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8945 
8946     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8947 
8948     Vals.push_back(ScalarLoad.getValue(0));
8949     LoadChains.push_back(ScalarLoad.getValue(1));
8950   }
8951 
8952   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8953   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8954 
8955   return std::make_pair(Value, NewChain);
8956 }
8957 
8958 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8959                                              SelectionDAG &DAG) const {
8960   SDLoc SL(ST);
8961 
8962   SDValue Chain = ST->getChain();
8963   SDValue BasePtr = ST->getBasePtr();
8964   SDValue Value = ST->getValue();
8965   EVT StVT = ST->getMemoryVT();
8966 
8967   if (StVT.isScalableVector())
8968     report_fatal_error("Cannot scalarize scalable vector stores");
8969 
8970   // The type of the data we want to save
8971   EVT RegVT = Value.getValueType();
8972   EVT RegSclVT = RegVT.getScalarType();
8973 
8974   // The type of data as saved in memory.
8975   EVT MemSclVT = StVT.getScalarType();
8976 
8977   unsigned NumElem = StVT.getVectorNumElements();
8978 
8979   // A vector must always be stored in memory as-is, i.e. without any padding
8980   // between the elements, since various code depend on it, e.g. in the
8981   // handling of a bitcast of a vector type to int, which may be done with a
8982   // vector store followed by an integer load. A vector that does not have
8983   // elements that are byte-sized must therefore be stored as an integer
8984   // built out of the extracted vector elements.
8985   if (!MemSclVT.isByteSized()) {
8986     unsigned NumBits = StVT.getSizeInBits();
8987     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8988 
8989     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8990 
8991     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8992       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8993                                 DAG.getVectorIdxConstant(Idx, SL));
8994       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8995       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8996       unsigned ShiftIntoIdx =
8997           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8998       SDValue ShiftAmount =
8999           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
9000       SDValue ShiftedElt =
9001           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
9002       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
9003     }
9004 
9005     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
9006                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
9007                         ST->getAAInfo());
9008   }
9009 
9010   // Store Stride in bytes
9011   unsigned Stride = MemSclVT.getSizeInBits() / 8;
9012   assert(Stride && "Zero stride!");
9013   // Extract each of the elements from the original vector and save them into
9014   // memory individually.
9015   SmallVector<SDValue, 8> Stores;
9016   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9017     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
9018                               DAG.getVectorIdxConstant(Idx, SL));
9019 
9020     SDValue Ptr =
9021         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
9022 
9023     // This scalar TruncStore may be illegal, but we legalize it later.
9024     SDValue Store = DAG.getTruncStore(
9025         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
9026         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
9027         ST->getAAInfo());
9028 
9029     Stores.push_back(Store);
9030   }
9031 
9032   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
9033 }
9034 
9035 std::pair<SDValue, SDValue>
9036 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
9037   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
9038          "unaligned indexed loads not implemented!");
9039   SDValue Chain = LD->getChain();
9040   SDValue Ptr = LD->getBasePtr();
9041   EVT VT = LD->getValueType(0);
9042   EVT LoadedVT = LD->getMemoryVT();
9043   SDLoc dl(LD);
9044   auto &MF = DAG.getMachineFunction();
9045 
9046   if (VT.isFloatingPoint() || VT.isVector()) {
9047     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
9048     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
9049       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
9050           LoadedVT.isVector()) {
9051         // Scalarize the load and let the individual components be handled.
9052         return scalarizeVectorLoad(LD, DAG);
9053       }
9054 
9055       // Expand to a (misaligned) integer load of the same size,
9056       // then bitconvert to floating point or vector.
9057       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
9058                                     LD->getMemOperand());
9059       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
9060       if (LoadedVT != VT)
9061         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
9062                              ISD::ANY_EXTEND, dl, VT, Result);
9063 
9064       return std::make_pair(Result, newLoad.getValue(1));
9065     }
9066 
9067     // Copy the value to a (aligned) stack slot using (unaligned) integer
9068     // loads and stores, then do a (aligned) load from the stack slot.
9069     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
9070     unsigned LoadedBytes = LoadedVT.getStoreSize();
9071     unsigned RegBytes = RegVT.getSizeInBits() / 8;
9072     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
9073 
9074     // Make sure the stack slot is also aligned for the register type.
9075     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
9076     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
9077     SmallVector<SDValue, 8> Stores;
9078     SDValue StackPtr = StackBase;
9079     unsigned Offset = 0;
9080 
9081     EVT PtrVT = Ptr.getValueType();
9082     EVT StackPtrVT = StackPtr.getValueType();
9083 
9084     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
9085     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
9086 
9087     // Do all but one copies using the full register width.
9088     for (unsigned i = 1; i < NumRegs; i++) {
9089       // Load one integer register's worth from the original location.
9090       SDValue Load = DAG.getLoad(
9091           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
9092           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
9093           LD->getAAInfo());
9094       // Follow the load with a store to the stack slot.  Remember the store.
9095       Stores.push_back(DAG.getStore(
9096           Load.getValue(1), dl, Load, StackPtr,
9097           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
9098       // Increment the pointers.
9099       Offset += RegBytes;
9100 
9101       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
9102       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
9103     }
9104 
9105     // The last copy may be partial.  Do an extending load.
9106     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
9107                                   8 * (LoadedBytes - Offset));
9108     SDValue Load =
9109         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
9110                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
9111                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
9112                        LD->getAAInfo());
9113     // Follow the load with a store to the stack slot.  Remember the store.
9114     // On big-endian machines this requires a truncating store to ensure
9115     // that the bits end up in the right place.
9116     Stores.push_back(DAG.getTruncStore(
9117         Load.getValue(1), dl, Load, StackPtr,
9118         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
9119 
9120     // The order of the stores doesn't matter - say it with a TokenFactor.
9121     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9122 
9123     // Finally, perform the original load only redirected to the stack slot.
9124     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
9125                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
9126                           LoadedVT);
9127 
9128     // Callers expect a MERGE_VALUES node.
9129     return std::make_pair(Load, TF);
9130   }
9131 
9132   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
9133          "Unaligned load of unsupported type.");
9134 
9135   // Compute the new VT that is half the size of the old one.  This is an
9136   // integer MVT.
9137   unsigned NumBits = LoadedVT.getSizeInBits();
9138   EVT NewLoadedVT;
9139   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
9140   NumBits >>= 1;
9141 
9142   Align Alignment = LD->getOriginalAlign();
9143   unsigned IncrementSize = NumBits / 8;
9144   ISD::LoadExtType HiExtType = LD->getExtensionType();
9145 
9146   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
9147   if (HiExtType == ISD::NON_EXTLOAD)
9148     HiExtType = ISD::ZEXTLOAD;
9149 
9150   // Load the value in two parts
9151   SDValue Lo, Hi;
9152   if (DAG.getDataLayout().isLittleEndian()) {
9153     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
9154                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9155                         LD->getAAInfo());
9156 
9157     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
9158     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
9159                         LD->getPointerInfo().getWithOffset(IncrementSize),
9160                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9161                         LD->getAAInfo());
9162   } else {
9163     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
9164                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9165                         LD->getAAInfo());
9166 
9167     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
9168     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
9169                         LD->getPointerInfo().getWithOffset(IncrementSize),
9170                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9171                         LD->getAAInfo());
9172   }
9173 
9174   // aggregate the two parts
9175   SDValue ShiftAmount =
9176       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
9177                                                     DAG.getDataLayout()));
9178   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
9179   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
9180 
9181   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
9182                              Hi.getValue(1));
9183 
9184   return std::make_pair(Result, TF);
9185 }
9186 
9187 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
9188                                              SelectionDAG &DAG) const {
9189   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
9190          "unaligned indexed stores not implemented!");
9191   SDValue Chain = ST->getChain();
9192   SDValue Ptr = ST->getBasePtr();
9193   SDValue Val = ST->getValue();
9194   EVT VT = Val.getValueType();
9195   Align Alignment = ST->getOriginalAlign();
9196   auto &MF = DAG.getMachineFunction();
9197   EVT StoreMemVT = ST->getMemoryVT();
9198 
9199   SDLoc dl(ST);
9200   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
9201     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
9202     if (isTypeLegal(intVT)) {
9203       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
9204           StoreMemVT.isVector()) {
9205         // Scalarize the store and let the individual components be handled.
9206         SDValue Result = scalarizeVectorStore(ST, DAG);
9207         return Result;
9208       }
9209       // Expand to a bitconvert of the value to the integer type of the
9210       // same size, then a (misaligned) int store.
9211       // FIXME: Does not handle truncating floating point stores!
9212       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
9213       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
9214                             Alignment, ST->getMemOperand()->getFlags());
9215       return Result;
9216     }
9217     // Do a (aligned) store to a stack slot, then copy from the stack slot
9218     // to the final destination using (unaligned) integer loads and stores.
9219     MVT RegVT = getRegisterType(
9220         *DAG.getContext(),
9221         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
9222     EVT PtrVT = Ptr.getValueType();
9223     unsigned StoredBytes = StoreMemVT.getStoreSize();
9224     unsigned RegBytes = RegVT.getSizeInBits() / 8;
9225     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
9226 
9227     // Make sure the stack slot is also aligned for the register type.
9228     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
9229     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9230 
9231     // Perform the original store, only redirected to the stack slot.
9232     SDValue Store = DAG.getTruncStore(
9233         Chain, dl, Val, StackPtr,
9234         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
9235 
9236     EVT StackPtrVT = StackPtr.getValueType();
9237 
9238     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
9239     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
9240     SmallVector<SDValue, 8> Stores;
9241     unsigned Offset = 0;
9242 
9243     // Do all but one copies using the full register width.
9244     for (unsigned i = 1; i < NumRegs; i++) {
9245       // Load one integer register's worth from the stack slot.
9246       SDValue Load = DAG.getLoad(
9247           RegVT, dl, Store, StackPtr,
9248           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
9249       // Store it to the final location.  Remember the store.
9250       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
9251                                     ST->getPointerInfo().getWithOffset(Offset),
9252                                     ST->getOriginalAlign(),
9253                                     ST->getMemOperand()->getFlags()));
9254       // Increment the pointers.
9255       Offset += RegBytes;
9256       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
9257       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
9258     }
9259 
9260     // The last store may be partial.  Do a truncating store.  On big-endian
9261     // machines this requires an extending load from the stack slot to ensure
9262     // that the bits are in the right place.
9263     EVT LoadMemVT =
9264         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
9265 
9266     // Load from the stack slot.
9267     SDValue Load = DAG.getExtLoad(
9268         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
9269         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
9270 
9271     Stores.push_back(
9272         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
9273                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
9274                           ST->getOriginalAlign(),
9275                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
9276     // The order of the stores doesn't matter - say it with a TokenFactor.
9277     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9278     return Result;
9279   }
9280 
9281   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
9282          "Unaligned store of unknown type.");
9283   // Get the half-size VT
9284   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
9285   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
9286   unsigned IncrementSize = NumBits / 8;
9287 
9288   // Divide the stored value in two parts.
9289   SDValue ShiftAmount = DAG.getConstant(
9290       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
9291   SDValue Lo = Val;
9292   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
9293 
9294   // Store the two parts
9295   SDValue Store1, Store2;
9296   Store1 = DAG.getTruncStore(Chain, dl,
9297                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
9298                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
9299                              ST->getMemOperand()->getFlags());
9300 
9301   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
9302   Store2 = DAG.getTruncStore(
9303       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
9304       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
9305       ST->getMemOperand()->getFlags(), ST->getAAInfo());
9306 
9307   SDValue Result =
9308       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
9309   return Result;
9310 }
9311 
9312 SDValue
9313 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
9314                                        const SDLoc &DL, EVT DataVT,
9315                                        SelectionDAG &DAG,
9316                                        bool IsCompressedMemory) const {
9317   SDValue Increment;
9318   EVT AddrVT = Addr.getValueType();
9319   EVT MaskVT = Mask.getValueType();
9320   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
9321          "Incompatible types of Data and Mask");
9322   if (IsCompressedMemory) {
9323     if (DataVT.isScalableVector())
9324       report_fatal_error(
9325           "Cannot currently handle compressed memory with scalable vectors");
9326     // Incrementing the pointer according to number of '1's in the mask.
9327     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
9328     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
9329     if (MaskIntVT.getSizeInBits() < 32) {
9330       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
9331       MaskIntVT = MVT::i32;
9332     }
9333 
9334     // Count '1's with POPCNT.
9335     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
9336     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
9337     // Scale is an element size in bytes.
9338     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
9339                                     AddrVT);
9340     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
9341   } else if (DataVT.isScalableVector()) {
9342     Increment = DAG.getVScale(DL, AddrVT,
9343                               APInt(AddrVT.getFixedSizeInBits(),
9344                                     DataVT.getStoreSize().getKnownMinValue()));
9345   } else
9346     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
9347 
9348   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
9349 }
9350 
9351 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
9352                                        EVT VecVT, const SDLoc &dl,
9353                                        ElementCount SubEC) {
9354   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
9355          "Cannot index a scalable vector within a fixed-width vector");
9356 
9357   unsigned NElts = VecVT.getVectorMinNumElements();
9358   unsigned NumSubElts = SubEC.getKnownMinValue();
9359   EVT IdxVT = Idx.getValueType();
9360 
9361   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
9362     // If this is a constant index and we know the value plus the number of the
9363     // elements in the subvector minus one is less than the minimum number of
9364     // elements then it's safe to return Idx.
9365     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
9366       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
9367         return Idx;
9368     SDValue VS =
9369         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
9370     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
9371     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
9372                               DAG.getConstant(NumSubElts, dl, IdxVT));
9373     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
9374   }
9375   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
9376     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
9377     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
9378                        DAG.getConstant(Imm, dl, IdxVT));
9379   }
9380   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
9381   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
9382                      DAG.getConstant(MaxIndex, dl, IdxVT));
9383 }
9384 
9385 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
9386                                                 SDValue VecPtr, EVT VecVT,
9387                                                 SDValue Index) const {
9388   return getVectorSubVecPointer(
9389       DAG, VecPtr, VecVT,
9390       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
9391       Index);
9392 }
9393 
9394 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
9395                                                SDValue VecPtr, EVT VecVT,
9396                                                EVT SubVecVT,
9397                                                SDValue Index) const {
9398   SDLoc dl(Index);
9399   // Make sure the index type is big enough to compute in.
9400   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
9401 
9402   EVT EltVT = VecVT.getVectorElementType();
9403 
9404   // Calculate the element offset and add it to the pointer.
9405   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
9406   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
9407          "Converting bits to bytes lost precision");
9408   assert(SubVecVT.getVectorElementType() == EltVT &&
9409          "Sub-vector must be a vector with matching element type");
9410   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
9411                                   SubVecVT.getVectorElementCount());
9412 
9413   EVT IdxVT = Index.getValueType();
9414   if (SubVecVT.isScalableVector())
9415     Index =
9416         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
9417                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
9418 
9419   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
9420                       DAG.getConstant(EltSize, dl, IdxVT));
9421   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
9422 }
9423 
9424 //===----------------------------------------------------------------------===//
9425 // Implementation of Emulated TLS Model
9426 //===----------------------------------------------------------------------===//
9427 
9428 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
9429                                                 SelectionDAG &DAG) const {
9430   // Access to address of TLS varialbe xyz is lowered to a function call:
9431   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
9432   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9433   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
9434   SDLoc dl(GA);
9435 
9436   ArgListTy Args;
9437   ArgListEntry Entry;
9438   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
9439   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
9440   StringRef EmuTlsVarName(NameString);
9441   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
9442   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
9443   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
9444   Entry.Ty = VoidPtrType;
9445   Args.push_back(Entry);
9446 
9447   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
9448 
9449   TargetLowering::CallLoweringInfo CLI(DAG);
9450   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
9451   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
9452   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9453 
9454   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
9455   // At last for X86 targets, maybe good for other targets too?
9456   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9457   MFI.setAdjustsStack(true); // Is this only for X86 target?
9458   MFI.setHasCalls(true);
9459 
9460   assert((GA->getOffset() == 0) &&
9461          "Emulated TLS must have zero offset in GlobalAddressSDNode");
9462   return CallResult.first;
9463 }
9464 
9465 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
9466                                                 SelectionDAG &DAG) const {
9467   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
9468   if (!isCtlzFast())
9469     return SDValue();
9470   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9471   SDLoc dl(Op);
9472   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9473     if (C->isZero() && CC == ISD::SETEQ) {
9474       EVT VT = Op.getOperand(0).getValueType();
9475       SDValue Zext = Op.getOperand(0);
9476       if (VT.bitsLT(MVT::i32)) {
9477         VT = MVT::i32;
9478         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
9479       }
9480       unsigned Log2b = Log2_32(VT.getSizeInBits());
9481       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
9482       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
9483                                 DAG.getConstant(Log2b, dl, MVT::i32));
9484       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
9485     }
9486   }
9487   return SDValue();
9488 }
9489 
9490 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
9491   SDValue Op0 = Node->getOperand(0);
9492   SDValue Op1 = Node->getOperand(1);
9493   EVT VT = Op0.getValueType();
9494   unsigned Opcode = Node->getOpcode();
9495   SDLoc DL(Node);
9496 
9497   // umin(x,y) -> sub(x,usubsat(x,y))
9498   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
9499       isOperationLegal(ISD::USUBSAT, VT)) {
9500     return DAG.getNode(ISD::SUB, DL, VT, Op0,
9501                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
9502   }
9503 
9504   // umax(x,y) -> add(x,usubsat(y,x))
9505   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
9506       isOperationLegal(ISD::USUBSAT, VT)) {
9507     return DAG.getNode(ISD::ADD, DL, VT, Op0,
9508                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
9509   }
9510 
9511   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
9512   ISD::CondCode CC;
9513   switch (Opcode) {
9514   default: llvm_unreachable("How did we get here?");
9515   case ISD::SMAX: CC = ISD::SETGT; break;
9516   case ISD::SMIN: CC = ISD::SETLT; break;
9517   case ISD::UMAX: CC = ISD::SETUGT; break;
9518   case ISD::UMIN: CC = ISD::SETULT; break;
9519   }
9520 
9521   // FIXME: Should really try to split the vector in case it's legal on a
9522   // subvector.
9523   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9524     return DAG.UnrollVectorOp(Node);
9525 
9526   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9527   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
9528   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
9529 }
9530 
9531 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
9532   unsigned Opcode = Node->getOpcode();
9533   SDValue LHS = Node->getOperand(0);
9534   SDValue RHS = Node->getOperand(1);
9535   EVT VT = LHS.getValueType();
9536   SDLoc dl(Node);
9537 
9538   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
9539   assert(VT.isInteger() && "Expected operands to be integers");
9540 
9541   // usub.sat(a, b) -> umax(a, b) - b
9542   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
9543     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
9544     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
9545   }
9546 
9547   // uadd.sat(a, b) -> umin(a, ~b) + b
9548   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
9549     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
9550     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
9551     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
9552   }
9553 
9554   unsigned OverflowOp;
9555   switch (Opcode) {
9556   case ISD::SADDSAT:
9557     OverflowOp = ISD::SADDO;
9558     break;
9559   case ISD::UADDSAT:
9560     OverflowOp = ISD::UADDO;
9561     break;
9562   case ISD::SSUBSAT:
9563     OverflowOp = ISD::SSUBO;
9564     break;
9565   case ISD::USUBSAT:
9566     OverflowOp = ISD::USUBO;
9567     break;
9568   default:
9569     llvm_unreachable("Expected method to receive signed or unsigned saturation "
9570                      "addition or subtraction node.");
9571   }
9572 
9573   // FIXME: Should really try to split the vector in case it's legal on a
9574   // subvector.
9575   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9576     return DAG.UnrollVectorOp(Node);
9577 
9578   unsigned BitWidth = LHS.getScalarValueSizeInBits();
9579   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9580   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9581   SDValue SumDiff = Result.getValue(0);
9582   SDValue Overflow = Result.getValue(1);
9583   SDValue Zero = DAG.getConstant(0, dl, VT);
9584   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
9585 
9586   if (Opcode == ISD::UADDSAT) {
9587     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9588       // (LHS + RHS) | OverflowMask
9589       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
9590       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
9591     }
9592     // Overflow ? 0xffff.... : (LHS + RHS)
9593     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
9594   }
9595 
9596   if (Opcode == ISD::USUBSAT) {
9597     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9598       // (LHS - RHS) & ~OverflowMask
9599       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
9600       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
9601       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
9602     }
9603     // Overflow ? 0 : (LHS - RHS)
9604     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
9605   }
9606 
9607   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
9608   APInt MinVal = APInt::getSignedMinValue(BitWidth);
9609   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
9610   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
9611                               DAG.getConstant(BitWidth - 1, dl, VT));
9612   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
9613   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
9614 }
9615 
9616 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
9617   unsigned Opcode = Node->getOpcode();
9618   bool IsSigned = Opcode == ISD::SSHLSAT;
9619   SDValue LHS = Node->getOperand(0);
9620   SDValue RHS = Node->getOperand(1);
9621   EVT VT = LHS.getValueType();
9622   SDLoc dl(Node);
9623 
9624   assert((Node->getOpcode() == ISD::SSHLSAT ||
9625           Node->getOpcode() == ISD::USHLSAT) &&
9626           "Expected a SHLSAT opcode");
9627   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
9628   assert(VT.isInteger() && "Expected operands to be integers");
9629 
9630   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9631     return DAG.UnrollVectorOp(Node);
9632 
9633   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
9634 
9635   unsigned BW = VT.getScalarSizeInBits();
9636   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9637   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
9638   SDValue Orig =
9639       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
9640 
9641   SDValue SatVal;
9642   if (IsSigned) {
9643     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
9644     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
9645     SDValue Cond =
9646         DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
9647     SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
9648   } else {
9649     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
9650   }
9651   SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
9652   return DAG.getSelect(dl, VT, Cond, SatVal, Result);
9653 }
9654 
9655 SDValue
9656 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
9657   assert((Node->getOpcode() == ISD::SMULFIX ||
9658           Node->getOpcode() == ISD::UMULFIX ||
9659           Node->getOpcode() == ISD::SMULFIXSAT ||
9660           Node->getOpcode() == ISD::UMULFIXSAT) &&
9661          "Expected a fixed point multiplication opcode");
9662 
9663   SDLoc dl(Node);
9664   SDValue LHS = Node->getOperand(0);
9665   SDValue RHS = Node->getOperand(1);
9666   EVT VT = LHS.getValueType();
9667   unsigned Scale = Node->getConstantOperandVal(2);
9668   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
9669                      Node->getOpcode() == ISD::UMULFIXSAT);
9670   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
9671                  Node->getOpcode() == ISD::SMULFIXSAT);
9672   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9673   unsigned VTSize = VT.getScalarSizeInBits();
9674 
9675   if (!Scale) {
9676     // [us]mul.fix(a, b, 0) -> mul(a, b)
9677     if (!Saturating) {
9678       if (isOperationLegalOrCustom(ISD::MUL, VT))
9679         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9680     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
9681       SDValue Result =
9682           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9683       SDValue Product = Result.getValue(0);
9684       SDValue Overflow = Result.getValue(1);
9685       SDValue Zero = DAG.getConstant(0, dl, VT);
9686 
9687       APInt MinVal = APInt::getSignedMinValue(VTSize);
9688       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
9689       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
9690       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9691       // Xor the inputs, if resulting sign bit is 0 the product will be
9692       // positive, else negative.
9693       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9694       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
9695       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
9696       return DAG.getSelect(dl, VT, Overflow, Result, Product);
9697     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
9698       SDValue Result =
9699           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9700       SDValue Product = Result.getValue(0);
9701       SDValue Overflow = Result.getValue(1);
9702 
9703       APInt MaxVal = APInt::getMaxValue(VTSize);
9704       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9705       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
9706     }
9707   }
9708 
9709   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
9710          "Expected scale to be less than the number of bits if signed or at "
9711          "most the number of bits if unsigned.");
9712   assert(LHS.getValueType() == RHS.getValueType() &&
9713          "Expected both operands to be the same type");
9714 
9715   // Get the upper and lower bits of the result.
9716   SDValue Lo, Hi;
9717   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
9718   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
9719   if (isOperationLegalOrCustom(LoHiOp, VT)) {
9720     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
9721     Lo = Result.getValue(0);
9722     Hi = Result.getValue(1);
9723   } else if (isOperationLegalOrCustom(HiOp, VT)) {
9724     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9725     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
9726   } else if (VT.isVector()) {
9727     return SDValue();
9728   } else {
9729     report_fatal_error("Unable to expand fixed point multiplication.");
9730   }
9731 
9732   if (Scale == VTSize)
9733     // Result is just the top half since we'd be shifting by the width of the
9734     // operand. Overflow impossible so this works for both UMULFIX and
9735     // UMULFIXSAT.
9736     return Hi;
9737 
9738   // The result will need to be shifted right by the scale since both operands
9739   // are scaled. The result is given to us in 2 halves, so we only want part of
9740   // both in the result.
9741   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9742   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
9743                                DAG.getConstant(Scale, dl, ShiftTy));
9744   if (!Saturating)
9745     return Result;
9746 
9747   if (!Signed) {
9748     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
9749     // widened multiplication) aren't all zeroes.
9750 
9751     // Saturate to max if ((Hi >> Scale) != 0),
9752     // which is the same as if (Hi > ((1 << Scale) - 1))
9753     APInt MaxVal = APInt::getMaxValue(VTSize);
9754     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
9755                                       dl, VT);
9756     Result = DAG.getSelectCC(dl, Hi, LowMask,
9757                              DAG.getConstant(MaxVal, dl, VT), Result,
9758                              ISD::SETUGT);
9759 
9760     return Result;
9761   }
9762 
9763   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
9764   // widened multiplication) aren't all ones or all zeroes.
9765 
9766   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
9767   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
9768 
9769   if (Scale == 0) {
9770     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
9771                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
9772     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
9773     // Saturated to SatMin if wide product is negative, and SatMax if wide
9774     // product is positive ...
9775     SDValue Zero = DAG.getConstant(0, dl, VT);
9776     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
9777                                                ISD::SETLT);
9778     // ... but only if we overflowed.
9779     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9780   }
9781 
9782   //  We handled Scale==0 above so all the bits to examine is in Hi.
9783 
9784   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9785   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9786   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9787                                     dl, VT);
9788   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9789   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9790   // which is the same as if (HI < (-1 << (Scale - 1))
9791   SDValue HighMask =
9792       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9793                       dl, VT);
9794   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9795   return Result;
9796 }
9797 
9798 SDValue
9799 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9800                                     SDValue LHS, SDValue RHS,
9801                                     unsigned Scale, SelectionDAG &DAG) const {
9802   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9803           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9804          "Expected a fixed point division opcode");
9805 
9806   EVT VT = LHS.getValueType();
9807   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9808   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9809   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9810 
9811   // If there is enough room in the type to upscale the LHS or downscale the
9812   // RHS before the division, we can perform it in this type without having to
9813   // resize. For signed operations, the LHS headroom is the number of
9814   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9815   // The headroom for the RHS is the number of trailing zeroes.
9816   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9817                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9818   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9819 
9820   // For signed saturating operations, we need to be able to detect true integer
9821   // division overflow; that is, when you have MIN / -EPS. However, this
9822   // is undefined behavior and if we emit divisions that could take such
9823   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9824   // example).
9825   // Avoid this by requiring an extra bit so that we never get this case.
9826   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9827   // signed saturating division, we need to emit a whopping 32-bit division.
9828   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9829     return SDValue();
9830 
9831   unsigned LHSShift = std::min(LHSLead, Scale);
9832   unsigned RHSShift = Scale - LHSShift;
9833 
9834   // At this point, we know that if we shift the LHS up by LHSShift and the
9835   // RHS down by RHSShift, we can emit a regular division with a final scaling
9836   // factor of Scale.
9837 
9838   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9839   if (LHSShift)
9840     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9841                       DAG.getConstant(LHSShift, dl, ShiftTy));
9842   if (RHSShift)
9843     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9844                       DAG.getConstant(RHSShift, dl, ShiftTy));
9845 
9846   SDValue Quot;
9847   if (Signed) {
9848     // For signed operations, if the resulting quotient is negative and the
9849     // remainder is nonzero, subtract 1 from the quotient to round towards
9850     // negative infinity.
9851     SDValue Rem;
9852     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9853     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9854     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9855     if (isTypeLegal(VT) &&
9856         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9857       Quot = DAG.getNode(ISD::SDIVREM, dl,
9858                          DAG.getVTList(VT, VT),
9859                          LHS, RHS);
9860       Rem = Quot.getValue(1);
9861       Quot = Quot.getValue(0);
9862     } else {
9863       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9864                          LHS, RHS);
9865       Rem = DAG.getNode(ISD::SREM, dl, VT,
9866                         LHS, RHS);
9867     }
9868     SDValue Zero = DAG.getConstant(0, dl, VT);
9869     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9870     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9871     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9872     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9873     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9874                                DAG.getConstant(1, dl, VT));
9875     Quot = DAG.getSelect(dl, VT,
9876                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9877                          Sub1, Quot);
9878   } else
9879     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9880                        LHS, RHS);
9881 
9882   return Quot;
9883 }
9884 
9885 void TargetLowering::expandUADDSUBO(
9886     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9887   SDLoc dl(Node);
9888   SDValue LHS = Node->getOperand(0);
9889   SDValue RHS = Node->getOperand(1);
9890   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9891 
9892   // If ADD/SUBCARRY is legal, use that instead.
9893   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9894   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9895     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9896     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9897                                     { LHS, RHS, CarryIn });
9898     Result = SDValue(NodeCarry.getNode(), 0);
9899     Overflow = SDValue(NodeCarry.getNode(), 1);
9900     return;
9901   }
9902 
9903   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9904                             LHS.getValueType(), LHS, RHS);
9905 
9906   EVT ResultType = Node->getValueType(1);
9907   EVT SetCCType = getSetCCResultType(
9908       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9909   SDValue SetCC;
9910   if (IsAdd && isOneConstant(RHS)) {
9911     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9912     // the live range of X. We assume comparing with 0 is cheap.
9913     // The general case (X + C) < C is not necessarily beneficial. Although we
9914     // reduce the live range of X, we may introduce the materialization of
9915     // constant C.
9916     SetCC =
9917         DAG.getSetCC(dl, SetCCType, Result,
9918                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9919   } else {
9920     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9921     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9922   }
9923   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9924 }
9925 
9926 void TargetLowering::expandSADDSUBO(
9927     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9928   SDLoc dl(Node);
9929   SDValue LHS = Node->getOperand(0);
9930   SDValue RHS = Node->getOperand(1);
9931   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9932 
9933   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9934                             LHS.getValueType(), LHS, RHS);
9935 
9936   EVT ResultType = Node->getValueType(1);
9937   EVT OType = getSetCCResultType(
9938       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9939 
9940   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9941   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9942   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9943     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9944     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9945     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9946     return;
9947   }
9948 
9949   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9950 
9951   // For an addition, the result should be less than one of the operands (LHS)
9952   // if and only if the other operand (RHS) is negative, otherwise there will
9953   // be overflow.
9954   // For a subtraction, the result should be less than one of the operands
9955   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9956   // otherwise there will be overflow.
9957   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9958   SDValue ConditionRHS =
9959       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9960 
9961   Overflow = DAG.getBoolExtOrTrunc(
9962       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9963       ResultType, ResultType);
9964 }
9965 
9966 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9967                                 SDValue &Overflow, SelectionDAG &DAG) const {
9968   SDLoc dl(Node);
9969   EVT VT = Node->getValueType(0);
9970   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9971   SDValue LHS = Node->getOperand(0);
9972   SDValue RHS = Node->getOperand(1);
9973   bool isSigned = Node->getOpcode() == ISD::SMULO;
9974 
9975   // For power-of-two multiplications we can use a simpler shift expansion.
9976   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9977     const APInt &C = RHSC->getAPIntValue();
9978     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9979     if (C.isPowerOf2()) {
9980       // smulo(x, signed_min) is same as umulo(x, signed_min).
9981       bool UseArithShift = isSigned && !C.isMinSignedValue();
9982       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9983       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9984       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9985       Overflow = DAG.getSetCC(dl, SetCCVT,
9986           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9987                       dl, VT, Result, ShiftAmt),
9988           LHS, ISD::SETNE);
9989       return true;
9990     }
9991   }
9992 
9993   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9994   if (VT.isVector())
9995     WideVT =
9996         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9997 
9998   SDValue BottomHalf;
9999   SDValue TopHalf;
10000   static const unsigned Ops[2][3] =
10001       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
10002         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
10003   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
10004     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10005     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
10006   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
10007     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
10008                              RHS);
10009     TopHalf = BottomHalf.getValue(1);
10010   } else if (isTypeLegal(WideVT)) {
10011     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
10012     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
10013     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
10014     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
10015     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
10016         getShiftAmountTy(WideVT, DAG.getDataLayout()));
10017     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
10018                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
10019   } else {
10020     if (VT.isVector())
10021       return false;
10022 
10023     // We can fall back to a libcall with an illegal type for the MUL if we
10024     // have a libcall big enough.
10025     // Also, we can fall back to a division in some cases, but that's a big
10026     // performance hit in the general case.
10027     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10028     if (WideVT == MVT::i16)
10029       LC = RTLIB::MUL_I16;
10030     else if (WideVT == MVT::i32)
10031       LC = RTLIB::MUL_I32;
10032     else if (WideVT == MVT::i64)
10033       LC = RTLIB::MUL_I64;
10034     else if (WideVT == MVT::i128)
10035       LC = RTLIB::MUL_I128;
10036     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
10037 
10038     SDValue HiLHS;
10039     SDValue HiRHS;
10040     if (isSigned) {
10041       // The high part is obtained by SRA'ing all but one of the bits of low
10042       // part.
10043       unsigned LoSize = VT.getFixedSizeInBits();
10044       HiLHS =
10045           DAG.getNode(ISD::SRA, dl, VT, LHS,
10046                       DAG.getConstant(LoSize - 1, dl,
10047                                       getPointerTy(DAG.getDataLayout())));
10048       HiRHS =
10049           DAG.getNode(ISD::SRA, dl, VT, RHS,
10050                       DAG.getConstant(LoSize - 1, dl,
10051                                       getPointerTy(DAG.getDataLayout())));
10052     } else {
10053         HiLHS = DAG.getConstant(0, dl, VT);
10054         HiRHS = DAG.getConstant(0, dl, VT);
10055     }
10056 
10057     // Here we're passing the 2 arguments explicitly as 4 arguments that are
10058     // pre-lowered to the correct types. This all depends upon WideVT not
10059     // being a legal type for the architecture and thus has to be split to
10060     // two arguments.
10061     SDValue Ret;
10062     TargetLowering::MakeLibCallOptions CallOptions;
10063     CallOptions.setSExt(isSigned);
10064     CallOptions.setIsPostTypeLegalization(true);
10065     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10066       // Halves of WideVT are packed into registers in different order
10067       // depending on platform endianness. This is usually handled by
10068       // the C calling convention, but we can't defer to it in
10069       // the legalizer.
10070       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
10071       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10072     } else {
10073       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
10074       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10075     }
10076     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10077            "Ret value is a collection of constituent nodes holding result.");
10078     if (DAG.getDataLayout().isLittleEndian()) {
10079       // Same as above.
10080       BottomHalf = Ret.getOperand(0);
10081       TopHalf = Ret.getOperand(1);
10082     } else {
10083       BottomHalf = Ret.getOperand(1);
10084       TopHalf = Ret.getOperand(0);
10085     }
10086   }
10087 
10088   Result = BottomHalf;
10089   if (isSigned) {
10090     SDValue ShiftAmt = DAG.getConstant(
10091         VT.getScalarSizeInBits() - 1, dl,
10092         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
10093     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
10094     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
10095   } else {
10096     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
10097                             DAG.getConstant(0, dl, VT), ISD::SETNE);
10098   }
10099 
10100   // Truncate the result if SetCC returns a larger type than needed.
10101   EVT RType = Node->getValueType(1);
10102   if (RType.bitsLT(Overflow.getValueType()))
10103     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
10104 
10105   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
10106          "Unexpected result type for S/UMULO legalization");
10107   return true;
10108 }
10109 
10110 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
10111   SDLoc dl(Node);
10112   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
10113   SDValue Op = Node->getOperand(0);
10114   EVT VT = Op.getValueType();
10115 
10116   if (VT.isScalableVector())
10117     report_fatal_error(
10118         "Expanding reductions for scalable vectors is undefined.");
10119 
10120   // Try to use a shuffle reduction for power of two vectors.
10121   if (VT.isPow2VectorType()) {
10122     while (VT.getVectorNumElements() > 1) {
10123       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
10124       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
10125         break;
10126 
10127       SDValue Lo, Hi;
10128       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
10129       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
10130       VT = HalfVT;
10131     }
10132   }
10133 
10134   EVT EltVT = VT.getVectorElementType();
10135   unsigned NumElts = VT.getVectorNumElements();
10136 
10137   SmallVector<SDValue, 8> Ops;
10138   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
10139 
10140   SDValue Res = Ops[0];
10141   for (unsigned i = 1; i < NumElts; i++)
10142     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
10143 
10144   // Result type may be wider than element type.
10145   if (EltVT != Node->getValueType(0))
10146     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
10147   return Res;
10148 }
10149 
10150 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
10151   SDLoc dl(Node);
10152   SDValue AccOp = Node->getOperand(0);
10153   SDValue VecOp = Node->getOperand(1);
10154   SDNodeFlags Flags = Node->getFlags();
10155 
10156   EVT VT = VecOp.getValueType();
10157   EVT EltVT = VT.getVectorElementType();
10158 
10159   if (VT.isScalableVector())
10160     report_fatal_error(
10161         "Expanding reductions for scalable vectors is undefined.");
10162 
10163   unsigned NumElts = VT.getVectorNumElements();
10164 
10165   SmallVector<SDValue, 8> Ops;
10166   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
10167 
10168   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
10169 
10170   SDValue Res = AccOp;
10171   for (unsigned i = 0; i < NumElts; i++)
10172     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
10173 
10174   return Res;
10175 }
10176 
10177 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
10178                                SelectionDAG &DAG) const {
10179   EVT VT = Node->getValueType(0);
10180   SDLoc dl(Node);
10181   bool isSigned = Node->getOpcode() == ISD::SREM;
10182   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
10183   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
10184   SDValue Dividend = Node->getOperand(0);
10185   SDValue Divisor = Node->getOperand(1);
10186   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
10187     SDVTList VTs = DAG.getVTList(VT, VT);
10188     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
10189     return true;
10190   }
10191   if (isOperationLegalOrCustom(DivOpc, VT)) {
10192     // X % Y -> X-X/Y*Y
10193     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
10194     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
10195     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
10196     return true;
10197   }
10198   return false;
10199 }
10200 
10201 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
10202                                             SelectionDAG &DAG) const {
10203   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
10204   SDLoc dl(SDValue(Node, 0));
10205   SDValue Src = Node->getOperand(0);
10206 
10207   // DstVT is the result type, while SatVT is the size to which we saturate
10208   EVT SrcVT = Src.getValueType();
10209   EVT DstVT = Node->getValueType(0);
10210 
10211   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10212   unsigned SatWidth = SatVT.getScalarSizeInBits();
10213   unsigned DstWidth = DstVT.getScalarSizeInBits();
10214   assert(SatWidth <= DstWidth &&
10215          "Expected saturation width smaller than result width");
10216 
10217   // Determine minimum and maximum integer values and their corresponding
10218   // floating-point values.
10219   APInt MinInt, MaxInt;
10220   if (IsSigned) {
10221     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
10222     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
10223   } else {
10224     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
10225     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
10226   }
10227 
10228   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
10229   // libcall emission cannot handle this. Large result types will fail.
10230   if (SrcVT == MVT::f16) {
10231     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
10232     SrcVT = Src.getValueType();
10233   }
10234 
10235   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
10236   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
10237 
10238   APFloat::opStatus MinStatus =
10239       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
10240   APFloat::opStatus MaxStatus =
10241       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
10242   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
10243                              !(MaxStatus & APFloat::opStatus::opInexact);
10244 
10245   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
10246   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
10247 
10248   // If the integer bounds are exactly representable as floats and min/max are
10249   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
10250   // of comparisons and selects.
10251   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
10252                      isOperationLegal(ISD::FMAXNUM, SrcVT);
10253   if (AreExactFloatBounds && MinMaxLegal) {
10254     SDValue Clamped = Src;
10255 
10256     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
10257     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
10258     // Clamp by MaxFloat from above. NaN cannot occur.
10259     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
10260     // Convert clamped value to integer.
10261     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
10262                                   dl, DstVT, Clamped);
10263 
10264     // In the unsigned case we're done, because we mapped NaN to MinFloat,
10265     // which will cast to zero.
10266     if (!IsSigned)
10267       return FpToInt;
10268 
10269     // Otherwise, select 0 if Src is NaN.
10270     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
10271     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
10272                            ISD::CondCode::SETUO);
10273   }
10274 
10275   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
10276   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
10277 
10278   // Result of direct conversion. The assumption here is that the operation is
10279   // non-trapping and it's fine to apply it to an out-of-range value if we
10280   // select it away later.
10281   SDValue FpToInt =
10282       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
10283 
10284   SDValue Select = FpToInt;
10285 
10286   // If Src ULT MinFloat, select MinInt. In particular, this also selects
10287   // MinInt if Src is NaN.
10288   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
10289                            ISD::CondCode::SETULT);
10290   // If Src OGT MaxFloat, select MaxInt.
10291   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
10292                            ISD::CondCode::SETOGT);
10293 
10294   // In the unsigned case we are done, because we mapped NaN to MinInt, which
10295   // is already zero.
10296   if (!IsSigned)
10297     return Select;
10298 
10299   // Otherwise, select 0 if Src is NaN.
10300   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
10301   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
10302 }
10303 
10304 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
10305                                            SelectionDAG &DAG) const {
10306   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
10307   assert(Node->getValueType(0).isScalableVector() &&
10308          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
10309 
10310   EVT VT = Node->getValueType(0);
10311   SDValue V1 = Node->getOperand(0);
10312   SDValue V2 = Node->getOperand(1);
10313   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
10314   SDLoc DL(Node);
10315 
10316   // Expand through memory thusly:
10317   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
10318   //  Store V1, Ptr
10319   //  Store V2, Ptr + sizeof(V1)
10320   //  If (Imm < 0)
10321   //    TrailingElts = -Imm
10322   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
10323   //  else
10324   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
10325   //  Res = Load Ptr
10326 
10327   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
10328 
10329   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
10330                                VT.getVectorElementCount() * 2);
10331   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
10332   EVT PtrVT = StackPtr.getValueType();
10333   auto &MF = DAG.getMachineFunction();
10334   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10335   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
10336 
10337   // Store the lo part of CONCAT_VECTORS(V1, V2)
10338   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
10339   // Store the hi part of CONCAT_VECTORS(V1, V2)
10340   SDValue OffsetToV2 = DAG.getVScale(
10341       DL, PtrVT,
10342       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
10343   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
10344   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
10345 
10346   if (Imm >= 0) {
10347     // Load back the required element. getVectorElementPointer takes care of
10348     // clamping the index if it's out-of-bounds.
10349     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
10350     // Load the spliced result
10351     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
10352                        MachinePointerInfo::getUnknownStack(MF));
10353   }
10354 
10355   uint64_t TrailingElts = -Imm;
10356 
10357   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
10358   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
10359   SDValue TrailingBytes =
10360       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
10361 
10362   if (TrailingElts > VT.getVectorMinNumElements()) {
10363     SDValue VLBytes =
10364         DAG.getVScale(DL, PtrVT,
10365                       APInt(PtrVT.getFixedSizeInBits(),
10366                             VT.getStoreSize().getKnownMinValue()));
10367     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
10368   }
10369 
10370   // Calculate the start address of the spliced result.
10371   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
10372 
10373   // Load the spliced result
10374   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
10375                      MachinePointerInfo::getUnknownStack(MF));
10376 }
10377 
10378 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
10379                                            SDValue &LHS, SDValue &RHS,
10380                                            SDValue &CC, SDValue Mask,
10381                                            SDValue EVL, bool &NeedInvert,
10382                                            const SDLoc &dl, SDValue &Chain,
10383                                            bool IsSignaling) const {
10384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10385   MVT OpVT = LHS.getSimpleValueType();
10386   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
10387   NeedInvert = false;
10388   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
10389   bool IsNonVP = !EVL;
10390   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
10391   default:
10392     llvm_unreachable("Unknown condition code action!");
10393   case TargetLowering::Legal:
10394     // Nothing to do.
10395     break;
10396   case TargetLowering::Expand: {
10397     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
10398     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
10399       std::swap(LHS, RHS);
10400       CC = DAG.getCondCode(InvCC);
10401       return true;
10402     }
10403     // Swapping operands didn't work. Try inverting the condition.
10404     bool NeedSwap = false;
10405     InvCC = getSetCCInverse(CCCode, OpVT);
10406     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
10407       // If inverting the condition is not enough, try swapping operands
10408       // on top of it.
10409       InvCC = ISD::getSetCCSwappedOperands(InvCC);
10410       NeedSwap = true;
10411     }
10412     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
10413       CC = DAG.getCondCode(InvCC);
10414       NeedInvert = true;
10415       if (NeedSwap)
10416         std::swap(LHS, RHS);
10417       return true;
10418     }
10419 
10420     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
10421     unsigned Opc = 0;
10422     switch (CCCode) {
10423     default:
10424       llvm_unreachable("Don't know how to expand this condition!");
10425     case ISD::SETUO:
10426       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
10427         CC1 = ISD::SETUNE;
10428         CC2 = ISD::SETUNE;
10429         Opc = ISD::OR;
10430         break;
10431       }
10432       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
10433              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
10434       NeedInvert = true;
10435       [[fallthrough]];
10436     case ISD::SETO:
10437       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
10438              "If SETO is expanded, SETOEQ must be legal!");
10439       CC1 = ISD::SETOEQ;
10440       CC2 = ISD::SETOEQ;
10441       Opc = ISD::AND;
10442       break;
10443     case ISD::SETONE:
10444     case ISD::SETUEQ:
10445       // If the SETUO or SETO CC isn't legal, we might be able to use
10446       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
10447       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
10448       // the operands.
10449       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
10450       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
10451           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
10452            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
10453         CC1 = ISD::SETOGT;
10454         CC2 = ISD::SETOLT;
10455         Opc = ISD::OR;
10456         NeedInvert = ((unsigned)CCCode & 0x8U);
10457         break;
10458       }
10459       [[fallthrough]];
10460     case ISD::SETOEQ:
10461     case ISD::SETOGT:
10462     case ISD::SETOGE:
10463     case ISD::SETOLT:
10464     case ISD::SETOLE:
10465     case ISD::SETUNE:
10466     case ISD::SETUGT:
10467     case ISD::SETUGE:
10468     case ISD::SETULT:
10469     case ISD::SETULE:
10470       // If we are floating point, assign and break, otherwise fall through.
10471       if (!OpVT.isInteger()) {
10472         // We can use the 4th bit to tell if we are the unordered
10473         // or ordered version of the opcode.
10474         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
10475         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
10476         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
10477         break;
10478       }
10479       // Fallthrough if we are unsigned integer.
10480       [[fallthrough]];
10481     case ISD::SETLE:
10482     case ISD::SETGT:
10483     case ISD::SETGE:
10484     case ISD::SETLT:
10485     case ISD::SETNE:
10486     case ISD::SETEQ:
10487       // If all combinations of inverting the condition and swapping operands
10488       // didn't work then we have no means to expand the condition.
10489       llvm_unreachable("Don't know how to expand this condition!");
10490     }
10491 
10492     SDValue SetCC1, SetCC2;
10493     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
10494       // If we aren't the ordered or unorder operation,
10495       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
10496       if (IsNonVP) {
10497         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
10498         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
10499       } else {
10500         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
10501         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
10502       }
10503     } else {
10504       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
10505       if (IsNonVP) {
10506         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
10507         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
10508       } else {
10509         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
10510         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
10511       }
10512     }
10513     if (Chain)
10514       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
10515                           SetCC2.getValue(1));
10516     if (IsNonVP)
10517       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
10518     else {
10519       // Transform the binary opcode to the VP equivalent.
10520       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
10521       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
10522       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
10523     }
10524     RHS = SDValue();
10525     CC = SDValue();
10526     return true;
10527   }
10528   }
10529   return false;
10530 }
10531