1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 487 const APInt &DemandedBits, 488 const APInt &DemandedElts, 489 TargetLoweringOpt &TLO) const { 490 SDLoc DL(Op); 491 unsigned Opcode = Op.getOpcode(); 492 493 // Do target-specific constant optimization. 494 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 495 return TLO.New.getNode(); 496 497 // FIXME: ISD::SELECT, ISD::SELECT_CC 498 switch (Opcode) { 499 default: 500 break; 501 case ISD::XOR: 502 case ISD::AND: 503 case ISD::OR: { 504 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 505 if (!Op1C) 506 return false; 507 508 // If this is a 'not' op, don't touch it because that's a canonical form. 509 const APInt &C = Op1C->getAPIntValue(); 510 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 511 return false; 512 513 if (!C.isSubsetOf(DemandedBits)) { 514 EVT VT = Op.getValueType(); 515 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 516 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 517 return TLO.CombineTo(Op, NewOp); 518 } 519 520 break; 521 } 522 } 523 524 return false; 525 } 526 527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 528 const APInt &DemandedBits, 529 TargetLoweringOpt &TLO) const { 530 EVT VT = Op.getValueType(); 531 APInt DemandedElts = VT.isVector() 532 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 533 : APInt(1, 1); 534 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 535 } 536 537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 539 /// generalized for targets with other types of implicit widening casts. 540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 541 const APInt &Demanded, 542 TargetLoweringOpt &TLO) const { 543 assert(Op.getNumOperands() == 2 && 544 "ShrinkDemandedOp only supports binary operators!"); 545 assert(Op.getNode()->getNumValues() == 1 && 546 "ShrinkDemandedOp only supports nodes with one result!"); 547 548 SelectionDAG &DAG = TLO.DAG; 549 SDLoc dl(Op); 550 551 // Early return, as this function cannot handle vector types. 552 if (Op.getValueType().isVector()) 553 return false; 554 555 // Don't do this if the node has another user, which may require the 556 // full value. 557 if (!Op.getNode()->hasOneUse()) 558 return false; 559 560 // Search for the smallest integer type with free casts to and from 561 // Op's type. For expedience, just check power-of-2 integer types. 562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 563 unsigned DemandedSize = Demanded.getActiveBits(); 564 unsigned SmallVTBits = DemandedSize; 565 if (!isPowerOf2_32(SmallVTBits)) 566 SmallVTBits = NextPowerOf2(SmallVTBits); 567 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 568 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 569 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 570 TLI.isZExtFree(SmallVT, Op.getValueType())) { 571 // We found a type with free casts. 572 SDValue X = DAG.getNode( 573 Op.getOpcode(), dl, SmallVT, 574 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 575 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 576 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 577 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 578 return TLO.CombineTo(Op, Z); 579 } 580 } 581 return false; 582 } 583 584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 585 DAGCombinerInfo &DCI) const { 586 SelectionDAG &DAG = DCI.DAG; 587 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 588 !DCI.isBeforeLegalizeOps()); 589 KnownBits Known; 590 591 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 592 if (Simplified) { 593 DCI.AddToWorklist(Op.getNode()); 594 DCI.CommitTargetLoweringOpt(TLO); 595 } 596 return Simplified; 597 } 598 599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 600 KnownBits &Known, 601 TargetLoweringOpt &TLO, 602 unsigned Depth, 603 bool AssumeSingleUse) const { 604 EVT VT = Op.getValueType(); 605 606 // TODO: We can probably do more work on calculating the known bits and 607 // simplifying the operations for scalable vectors, but for now we just 608 // bail out. 609 if (VT.isScalableVector()) { 610 // Pretend we don't know anything for now. 611 Known = KnownBits(DemandedBits.getBitWidth()); 612 return false; 613 } 614 615 APInt DemandedElts = VT.isVector() 616 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 617 : APInt(1, 1); 618 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 619 AssumeSingleUse); 620 } 621 622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 623 // TODO: Under what circumstances can we create nodes? Constant folding? 624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 625 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 626 SelectionDAG &DAG, unsigned Depth) const { 627 // Limit search depth. 628 if (Depth >= SelectionDAG::MaxRecursionDepth) 629 return SDValue(); 630 631 // Ignore UNDEFs. 632 if (Op.isUndef()) 633 return SDValue(); 634 635 // Not demanding any bits/elts from Op. 636 if (DemandedBits == 0 || DemandedElts == 0) 637 return DAG.getUNDEF(Op.getValueType()); 638 639 unsigned NumElts = DemandedElts.getBitWidth(); 640 unsigned BitWidth = DemandedBits.getBitWidth(); 641 KnownBits LHSKnown, RHSKnown; 642 switch (Op.getOpcode()) { 643 case ISD::BITCAST: { 644 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 645 EVT SrcVT = Src.getValueType(); 646 EVT DstVT = Op.getValueType(); 647 if (SrcVT == DstVT) 648 return Src; 649 650 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 651 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 652 if (NumSrcEltBits == NumDstEltBits) 653 if (SDValue V = SimplifyMultipleUseDemandedBits( 654 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 655 return DAG.getBitcast(DstVT, V); 656 657 // TODO - bigendian once we have test coverage. 658 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumDstEltBits / NumSrcEltBits; 661 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != Scale; ++i) { 665 unsigned Offset = i * NumSrcEltBits; 666 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 667 if (!Sub.isNullValue()) { 668 DemandedSrcBits |= Sub; 669 for (unsigned j = 0; j != NumElts; ++j) 670 if (DemandedElts[j]) 671 DemandedSrcElts.setBit((j * Scale) + i); 672 } 673 } 674 675 if (SDValue V = SimplifyMultipleUseDemandedBits( 676 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 677 return DAG.getBitcast(DstVT, V); 678 } 679 680 // TODO - bigendian once we have test coverage. 681 if ((NumSrcEltBits % NumDstEltBits) == 0 && 682 DAG.getDataLayout().isLittleEndian()) { 683 unsigned Scale = NumSrcEltBits / NumDstEltBits; 684 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 685 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 686 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 687 for (unsigned i = 0; i != NumElts; ++i) 688 if (DemandedElts[i]) { 689 unsigned Offset = (i % Scale) * NumDstEltBits; 690 DemandedSrcBits.insertBits(DemandedBits, Offset); 691 DemandedSrcElts.setBit(i / Scale); 692 } 693 694 if (SDValue V = SimplifyMultipleUseDemandedBits( 695 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 696 return DAG.getBitcast(DstVT, V); 697 } 698 699 break; 700 } 701 case ISD::AND: { 702 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 703 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 704 705 // If all of the demanded bits are known 1 on one side, return the other. 706 // These bits cannot contribute to the result of the 'and' in this 707 // context. 708 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 709 return Op.getOperand(0); 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 711 return Op.getOperand(1); 712 break; 713 } 714 case ISD::OR: { 715 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 716 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 717 718 // If all of the demanded bits are known zero on one side, return the 719 // other. These bits cannot contribute to the result of the 'or' in this 720 // context. 721 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 722 return Op.getOperand(0); 723 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 724 return Op.getOperand(1); 725 break; 726 } 727 case ISD::XOR: { 728 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 729 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 730 731 // If all of the demanded bits are known zero on one side, return the 732 // other. 733 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::SHL: { 740 // If we are only demanding sign bits then we can use the shift source 741 // directly. 742 if (const APInt *MaxSA = 743 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 744 SDValue Op0 = Op.getOperand(0); 745 unsigned ShAmt = MaxSA->getZExtValue(); 746 unsigned NumSignBits = 747 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 748 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 749 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 750 return Op0; 751 } 752 break; 753 } 754 case ISD::SETCC: { 755 SDValue Op0 = Op.getOperand(0); 756 SDValue Op1 = Op.getOperand(1); 757 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 758 // If (1) we only need the sign-bit, (2) the setcc operands are the same 759 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 760 // -1, we may be able to bypass the setcc. 761 if (DemandedBits.isSignMask() && 762 Op0.getScalarValueSizeInBits() == BitWidth && 763 getBooleanContents(Op0.getValueType()) == 764 BooleanContent::ZeroOrNegativeOneBooleanContent) { 765 // If we're testing X < 0, then this compare isn't needed - just use X! 766 // FIXME: We're limiting to integer types here, but this should also work 767 // if we don't care about FP signed-zero. The use of SETLT with FP means 768 // that we don't care about NaNs. 769 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 770 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 771 return Op0; 772 } 773 break; 774 } 775 case ISD::SIGN_EXTEND_INREG: { 776 // If none of the extended bits are demanded, eliminate the sextinreg. 777 SDValue Op0 = Op.getOperand(0); 778 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 779 unsigned ExBits = ExVT.getScalarSizeInBits(); 780 if (DemandedBits.getActiveBits() <= ExBits) 781 return Op0; 782 // If the input is already sign extended, just drop the extension. 783 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 784 if (NumSignBits >= (BitWidth - ExBits + 1)) 785 return Op0; 786 break; 787 } 788 case ISD::ANY_EXTEND_VECTOR_INREG: 789 case ISD::SIGN_EXTEND_VECTOR_INREG: 790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 791 // If we only want the lowest element and none of extended bits, then we can 792 // return the bitcasted source vector. 793 SDValue Src = Op.getOperand(0); 794 EVT SrcVT = Src.getValueType(); 795 EVT DstVT = Op.getValueType(); 796 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 797 DAG.getDataLayout().isLittleEndian() && 798 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 799 return DAG.getBitcast(DstVT, Src); 800 } 801 break; 802 } 803 case ISD::INSERT_VECTOR_ELT: { 804 // If we don't demand the inserted element, return the base vector. 805 SDValue Vec = Op.getOperand(0); 806 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 807 EVT VecVT = Vec.getValueType(); 808 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 809 !DemandedElts[CIdx->getZExtValue()]) 810 return Vec; 811 break; 812 } 813 case ISD::INSERT_SUBVECTOR: { 814 // If we don't demand the inserted subvector, return the base vector. 815 SDValue Vec = Op.getOperand(0); 816 SDValue Sub = Op.getOperand(1); 817 uint64_t Idx = Op.getConstantOperandVal(2); 818 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 819 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 820 return Vec; 821 break; 822 } 823 case ISD::VECTOR_SHUFFLE: { 824 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 825 826 // If all the demanded elts are from one operand and are inline, 827 // then we can use the operand directly. 828 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 829 for (unsigned i = 0; i != NumElts; ++i) { 830 int M = ShuffleMask[i]; 831 if (M < 0 || !DemandedElts[i]) 832 continue; 833 AllUndef = false; 834 IdentityLHS &= (M == (int)i); 835 IdentityRHS &= ((M - NumElts) == i); 836 } 837 838 if (AllUndef) 839 return DAG.getUNDEF(Op.getValueType()); 840 if (IdentityLHS) 841 return Op.getOperand(0); 842 if (IdentityRHS) 843 return Op.getOperand(1); 844 break; 845 } 846 default: 847 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 848 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 849 Op, DemandedBits, DemandedElts, DAG, Depth)) 850 return V; 851 break; 852 } 853 return SDValue(); 854 } 855 856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 857 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 858 unsigned Depth) const { 859 EVT VT = Op.getValueType(); 860 APInt DemandedElts = VT.isVector() 861 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 862 : APInt(1, 1); 863 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 864 Depth); 865 } 866 867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 868 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 869 unsigned Depth) const { 870 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 876 /// result of Op are ever used downstream. If we can use this information to 877 /// simplify Op, create a new simplified DAG node and return true, returning the 878 /// original and new nodes in Old and New. Otherwise, analyze the expression and 879 /// return a mask of Known bits for the expression (used to simplify the 880 /// caller). The Known bits may only be accurate for those bits in the 881 /// OriginalDemandedBits and OriginalDemandedElts. 882 bool TargetLowering::SimplifyDemandedBits( 883 SDValue Op, const APInt &OriginalDemandedBits, 884 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 885 unsigned Depth, bool AssumeSingleUse) const { 886 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 887 assert(Op.getScalarValueSizeInBits() == BitWidth && 888 "Mask size mismatches value type size!"); 889 890 // Don't know anything. 891 Known = KnownBits(BitWidth); 892 893 // TODO: We can probably do more work on calculating the known bits and 894 // simplifying the operations for scalable vectors, but for now we just 895 // bail out. 896 if (Op.getValueType().isScalableVector()) 897 return false; 898 899 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 900 assert((!Op.getValueType().isVector() || 901 NumElts == Op.getValueType().getVectorNumElements()) && 902 "Unexpected vector size"); 903 904 APInt DemandedBits = OriginalDemandedBits; 905 APInt DemandedElts = OriginalDemandedElts; 906 SDLoc dl(Op); 907 auto &DL = TLO.DAG.getDataLayout(); 908 909 // Undef operand. 910 if (Op.isUndef()) 911 return false; 912 913 if (Op.getOpcode() == ISD::Constant) { 914 // We know all of the bits for a constant! 915 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 916 Known.Zero = ~Known.One; 917 return false; 918 } 919 920 // Other users may use these bits. 921 EVT VT = Op.getValueType(); 922 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 923 if (Depth != 0) { 924 // If not at the root, Just compute the Known bits to 925 // simplify things downstream. 926 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 927 return false; 928 } 929 // If this is the root being simplified, allow it to have multiple uses, 930 // just set the DemandedBits/Elts to all bits. 931 DemandedBits = APInt::getAllOnesValue(BitWidth); 932 DemandedElts = APInt::getAllOnesValue(NumElts); 933 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 934 // Not demanding any bits/elts from Op. 935 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 936 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 937 // Limit search depth. 938 return false; 939 } 940 941 KnownBits Known2; 942 switch (Op.getOpcode()) { 943 case ISD::TargetConstant: 944 llvm_unreachable("Can't simplify this node"); 945 case ISD::SCALAR_TO_VECTOR: { 946 if (!DemandedElts[0]) 947 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 948 949 KnownBits SrcKnown; 950 SDValue Src = Op.getOperand(0); 951 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 952 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 953 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 954 return true; 955 956 // Upper elements are undef, so only get the knownbits if we just demand 957 // the bottom element. 958 if (DemandedElts == 1) 959 Known = SrcKnown.anyextOrTrunc(BitWidth); 960 break; 961 } 962 case ISD::BUILD_VECTOR: 963 // Collect the known bits that are shared by every demanded element. 964 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 965 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 966 return false; // Don't fall through, will infinitely loop. 967 case ISD::LOAD: { 968 LoadSDNode *LD = cast<LoadSDNode>(Op); 969 if (getTargetConstantFromLoad(LD)) { 970 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 971 return false; // Don't fall through, will infinitely loop. 972 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 973 // If this is a ZEXTLoad and we are looking at the loaded value. 974 EVT MemVT = LD->getMemoryVT(); 975 unsigned MemBits = MemVT.getScalarSizeInBits(); 976 Known.Zero.setBitsFrom(MemBits); 977 return false; // Don't fall through, will infinitely loop. 978 } 979 break; 980 } 981 case ISD::INSERT_VECTOR_ELT: { 982 SDValue Vec = Op.getOperand(0); 983 SDValue Scl = Op.getOperand(1); 984 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 985 EVT VecVT = Vec.getValueType(); 986 987 // If index isn't constant, assume we need all vector elements AND the 988 // inserted element. 989 APInt DemandedVecElts(DemandedElts); 990 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 991 unsigned Idx = CIdx->getZExtValue(); 992 DemandedVecElts.clearBit(Idx); 993 994 // Inserted element is not required. 995 if (!DemandedElts[Idx]) 996 return TLO.CombineTo(Op, Vec); 997 } 998 999 KnownBits KnownScl; 1000 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1001 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1002 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1003 return true; 1004 1005 Known = KnownScl.anyextOrTrunc(BitWidth); 1006 1007 KnownBits KnownVec; 1008 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1009 Depth + 1)) 1010 return true; 1011 1012 if (!!DemandedVecElts) { 1013 Known.One &= KnownVec.One; 1014 Known.Zero &= KnownVec.Zero; 1015 } 1016 1017 return false; 1018 } 1019 case ISD::INSERT_SUBVECTOR: { 1020 // Demand any elements from the subvector and the remainder from the src its 1021 // inserted into. 1022 SDValue Src = Op.getOperand(0); 1023 SDValue Sub = Op.getOperand(1); 1024 uint64_t Idx = Op.getConstantOperandVal(2); 1025 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1026 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1027 APInt DemandedSrcElts = DemandedElts; 1028 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1029 1030 KnownBits KnownSub, KnownSrc; 1031 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1032 Depth + 1)) 1033 return true; 1034 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1035 Depth + 1)) 1036 return true; 1037 1038 Known.Zero.setAllBits(); 1039 Known.One.setAllBits(); 1040 if (!!DemandedSubElts) { 1041 Known.One &= KnownSub.One; 1042 Known.Zero &= KnownSub.Zero; 1043 } 1044 if (!!DemandedSrcElts) { 1045 Known.One &= KnownSrc.One; 1046 Known.Zero &= KnownSrc.Zero; 1047 } 1048 1049 // Attempt to avoid multi-use src if we don't need anything from it. 1050 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1051 !DemandedSrcElts.isAllOnesValue()) { 1052 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1053 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1054 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1055 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1056 if (NewSub || NewSrc) { 1057 NewSub = NewSub ? NewSub : Sub; 1058 NewSrc = NewSrc ? NewSrc : Src; 1059 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1060 Op.getOperand(2)); 1061 return TLO.CombineTo(Op, NewOp); 1062 } 1063 } 1064 break; 1065 } 1066 case ISD::EXTRACT_SUBVECTOR: { 1067 // Offset the demanded elts by the subvector index. 1068 SDValue Src = Op.getOperand(0); 1069 if (Src.getValueType().isScalableVector()) 1070 break; 1071 uint64_t Idx = Op.getConstantOperandVal(1); 1072 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1073 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1074 1075 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1076 Depth + 1)) 1077 return true; 1078 1079 // Attempt to avoid multi-use src if we don't need anything from it. 1080 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1081 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1082 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1083 if (DemandedSrc) { 1084 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1085 Op.getOperand(1)); 1086 return TLO.CombineTo(Op, NewOp); 1087 } 1088 } 1089 break; 1090 } 1091 case ISD::CONCAT_VECTORS: { 1092 Known.Zero.setAllBits(); 1093 Known.One.setAllBits(); 1094 EVT SubVT = Op.getOperand(0).getValueType(); 1095 unsigned NumSubVecs = Op.getNumOperands(); 1096 unsigned NumSubElts = SubVT.getVectorNumElements(); 1097 for (unsigned i = 0; i != NumSubVecs; ++i) { 1098 APInt DemandedSubElts = 1099 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1100 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1101 Known2, TLO, Depth + 1)) 1102 return true; 1103 // Known bits are shared by every demanded subvector element. 1104 if (!!DemandedSubElts) { 1105 Known.One &= Known2.One; 1106 Known.Zero &= Known2.Zero; 1107 } 1108 } 1109 break; 1110 } 1111 case ISD::VECTOR_SHUFFLE: { 1112 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1113 1114 // Collect demanded elements from shuffle operands.. 1115 APInt DemandedLHS(NumElts, 0); 1116 APInt DemandedRHS(NumElts, 0); 1117 for (unsigned i = 0; i != NumElts; ++i) { 1118 if (!DemandedElts[i]) 1119 continue; 1120 int M = ShuffleMask[i]; 1121 if (M < 0) { 1122 // For UNDEF elements, we don't know anything about the common state of 1123 // the shuffle result. 1124 DemandedLHS.clearAllBits(); 1125 DemandedRHS.clearAllBits(); 1126 break; 1127 } 1128 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1129 if (M < (int)NumElts) 1130 DemandedLHS.setBit(M); 1131 else 1132 DemandedRHS.setBit(M - NumElts); 1133 } 1134 1135 if (!!DemandedLHS || !!DemandedRHS) { 1136 SDValue Op0 = Op.getOperand(0); 1137 SDValue Op1 = Op.getOperand(1); 1138 1139 Known.Zero.setAllBits(); 1140 Known.One.setAllBits(); 1141 if (!!DemandedLHS) { 1142 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1143 Depth + 1)) 1144 return true; 1145 Known.One &= Known2.One; 1146 Known.Zero &= Known2.Zero; 1147 } 1148 if (!!DemandedRHS) { 1149 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known.One &= Known2.One; 1153 Known.Zero &= Known2.Zero; 1154 } 1155 1156 // Attempt to avoid multi-use ops if we don't need anything from them. 1157 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1158 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1159 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1160 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1161 if (DemandedOp0 || DemandedOp1) { 1162 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1163 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1164 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1165 return TLO.CombineTo(Op, NewOp); 1166 } 1167 } 1168 break; 1169 } 1170 case ISD::AND: { 1171 SDValue Op0 = Op.getOperand(0); 1172 SDValue Op1 = Op.getOperand(1); 1173 1174 // If the RHS is a constant, check to see if the LHS would be zero without 1175 // using the bits from the RHS. Below, we use knowledge about the RHS to 1176 // simplify the LHS, here we're using information from the LHS to simplify 1177 // the RHS. 1178 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1179 // Do not increment Depth here; that can cause an infinite loop. 1180 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1181 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1182 if ((LHSKnown.Zero & DemandedBits) == 1183 (~RHSC->getAPIntValue() & DemandedBits)) 1184 return TLO.CombineTo(Op, Op0); 1185 1186 // If any of the set bits in the RHS are known zero on the LHS, shrink 1187 // the constant. 1188 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1189 DemandedElts, TLO)) 1190 return true; 1191 1192 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1193 // constant, but if this 'and' is only clearing bits that were just set by 1194 // the xor, then this 'and' can be eliminated by shrinking the mask of 1195 // the xor. For example, for a 32-bit X: 1196 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1197 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1198 LHSKnown.One == ~RHSC->getAPIntValue()) { 1199 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1200 return TLO.CombineTo(Op, Xor); 1201 } 1202 } 1203 1204 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1205 Depth + 1)) 1206 return true; 1207 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1208 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1209 Known2, TLO, Depth + 1)) 1210 return true; 1211 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1212 1213 // Attempt to avoid multi-use ops if we don't need anything from them. 1214 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1215 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1216 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1217 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1218 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1219 if (DemandedOp0 || DemandedOp1) { 1220 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1221 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1223 return TLO.CombineTo(Op, NewOp); 1224 } 1225 } 1226 1227 // If all of the demanded bits are known one on one side, return the other. 1228 // These bits cannot contribute to the result of the 'and'. 1229 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1230 return TLO.CombineTo(Op, Op0); 1231 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1232 return TLO.CombineTo(Op, Op1); 1233 // If all of the demanded bits in the inputs are known zeros, return zero. 1234 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1235 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1236 // If the RHS is a constant, see if we can simplify it. 1237 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1238 TLO)) 1239 return true; 1240 // If the operation can be done in a smaller type, do so. 1241 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1242 return true; 1243 1244 Known &= Known2; 1245 break; 1246 } 1247 case ISD::OR: { 1248 SDValue Op0 = Op.getOperand(0); 1249 SDValue Op1 = Op.getOperand(1); 1250 1251 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1252 Depth + 1)) 1253 return true; 1254 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1255 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1256 Known2, TLO, Depth + 1)) 1257 return true; 1258 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1259 1260 // Attempt to avoid multi-use ops if we don't need anything from them. 1261 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1262 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1263 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1264 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1265 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1266 if (DemandedOp0 || DemandedOp1) { 1267 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1268 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1269 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1270 return TLO.CombineTo(Op, NewOp); 1271 } 1272 } 1273 1274 // If all of the demanded bits are known zero on one side, return the other. 1275 // These bits cannot contribute to the result of the 'or'. 1276 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1277 return TLO.CombineTo(Op, Op0); 1278 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1279 return TLO.CombineTo(Op, Op1); 1280 // If the RHS is a constant, see if we can simplify it. 1281 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1282 return true; 1283 // If the operation can be done in a smaller type, do so. 1284 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1285 return true; 1286 1287 Known |= Known2; 1288 break; 1289 } 1290 case ISD::XOR: { 1291 SDValue Op0 = Op.getOperand(0); 1292 SDValue Op1 = Op.getOperand(1); 1293 1294 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1295 Depth + 1)) 1296 return true; 1297 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1298 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1299 Depth + 1)) 1300 return true; 1301 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1302 1303 // Attempt to avoid multi-use ops if we don't need anything from them. 1304 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1305 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1306 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1307 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1308 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1309 if (DemandedOp0 || DemandedOp1) { 1310 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1311 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1312 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1313 return TLO.CombineTo(Op, NewOp); 1314 } 1315 } 1316 1317 // If all of the demanded bits are known zero on one side, return the other. 1318 // These bits cannot contribute to the result of the 'xor'. 1319 if (DemandedBits.isSubsetOf(Known.Zero)) 1320 return TLO.CombineTo(Op, Op0); 1321 if (DemandedBits.isSubsetOf(Known2.Zero)) 1322 return TLO.CombineTo(Op, Op1); 1323 // If the operation can be done in a smaller type, do so. 1324 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1325 return true; 1326 1327 // If all of the unknown bits are known to be zero on one side or the other 1328 // (but not both) turn this into an *inclusive* or. 1329 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1330 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1331 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1332 1333 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1334 if (C) { 1335 // If one side is a constant, and all of the known set bits on the other 1336 // side are also set in the constant, turn this into an AND, as we know 1337 // the bits will be cleared. 1338 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1339 // NB: it is okay if more bits are known than are requested 1340 if (C->getAPIntValue() == Known2.One) { 1341 SDValue ANDC = 1342 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1343 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1344 } 1345 1346 // If the RHS is a constant, see if we can change it. Don't alter a -1 1347 // constant because that's a 'not' op, and that is better for combining 1348 // and codegen. 1349 if (!C->isAllOnesValue() && 1350 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1351 // We're flipping all demanded bits. Flip the undemanded bits too. 1352 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1353 return TLO.CombineTo(Op, New); 1354 } 1355 } 1356 1357 // If we can't turn this into a 'not', try to shrink the constant. 1358 if (!C || !C->isAllOnesValue()) 1359 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1360 return true; 1361 1362 Known ^= Known2; 1363 break; 1364 } 1365 case ISD::SELECT: 1366 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1367 Depth + 1)) 1368 return true; 1369 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1370 Depth + 1)) 1371 return true; 1372 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1373 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1374 1375 // If the operands are constants, see if we can simplify them. 1376 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1377 return true; 1378 1379 // Only known if known in both the LHS and RHS. 1380 Known.One &= Known2.One; 1381 Known.Zero &= Known2.Zero; 1382 break; 1383 case ISD::SELECT_CC: 1384 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1385 Depth + 1)) 1386 return true; 1387 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1388 Depth + 1)) 1389 return true; 1390 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1391 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1392 1393 // If the operands are constants, see if we can simplify them. 1394 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1395 return true; 1396 1397 // Only known if known in both the LHS and RHS. 1398 Known.One &= Known2.One; 1399 Known.Zero &= Known2.Zero; 1400 break; 1401 case ISD::SETCC: { 1402 SDValue Op0 = Op.getOperand(0); 1403 SDValue Op1 = Op.getOperand(1); 1404 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1405 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1406 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1407 // -1, we may be able to bypass the setcc. 1408 if (DemandedBits.isSignMask() && 1409 Op0.getScalarValueSizeInBits() == BitWidth && 1410 getBooleanContents(Op0.getValueType()) == 1411 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1412 // If we're testing X < 0, then this compare isn't needed - just use X! 1413 // FIXME: We're limiting to integer types here, but this should also work 1414 // if we don't care about FP signed-zero. The use of SETLT with FP means 1415 // that we don't care about NaNs. 1416 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1417 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1418 return TLO.CombineTo(Op, Op0); 1419 1420 // TODO: Should we check for other forms of sign-bit comparisons? 1421 // Examples: X <= -1, X >= 0 1422 } 1423 if (getBooleanContents(Op0.getValueType()) == 1424 TargetLowering::ZeroOrOneBooleanContent && 1425 BitWidth > 1) 1426 Known.Zero.setBitsFrom(1); 1427 break; 1428 } 1429 case ISD::SHL: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 EVT ShiftVT = Op1.getValueType(); 1433 1434 if (const APInt *SA = 1435 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1436 unsigned ShAmt = SA->getZExtValue(); 1437 if (ShAmt == 0) 1438 return TLO.CombineTo(Op, Op0); 1439 1440 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1441 // single shift. We can do this if the bottom bits (which are shifted 1442 // out) are never demanded. 1443 // TODO - support non-uniform vector amounts. 1444 if (Op0.getOpcode() == ISD::SRL) { 1445 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1446 if (const APInt *SA2 = 1447 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1448 unsigned C1 = SA2->getZExtValue(); 1449 unsigned Opc = ISD::SHL; 1450 int Diff = ShAmt - C1; 1451 if (Diff < 0) { 1452 Diff = -Diff; 1453 Opc = ISD::SRL; 1454 } 1455 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1456 return TLO.CombineTo( 1457 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1458 } 1459 } 1460 } 1461 1462 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1463 // are not demanded. This will likely allow the anyext to be folded away. 1464 // TODO - support non-uniform vector amounts. 1465 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1466 SDValue InnerOp = Op0.getOperand(0); 1467 EVT InnerVT = InnerOp.getValueType(); 1468 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1469 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1470 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1471 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1472 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1473 ShTy = InnerVT; 1474 SDValue NarrowShl = 1475 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1476 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1477 return TLO.CombineTo( 1478 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1479 } 1480 1481 // Repeat the SHL optimization above in cases where an extension 1482 // intervenes: (shl (anyext (shr x, c1)), c2) to 1483 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1484 // aren't demanded (as above) and that the shifted upper c1 bits of 1485 // x aren't demanded. 1486 // TODO - support non-uniform vector amounts. 1487 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1488 InnerOp.hasOneUse()) { 1489 if (const APInt *SA2 = 1490 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1491 unsigned InnerShAmt = SA2->getZExtValue(); 1492 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1493 DemandedBits.getActiveBits() <= 1494 (InnerBits - InnerShAmt + ShAmt) && 1495 DemandedBits.countTrailingZeros() >= ShAmt) { 1496 SDValue NewSA = 1497 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1498 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1499 InnerOp.getOperand(0)); 1500 return TLO.CombineTo( 1501 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1502 } 1503 } 1504 } 1505 } 1506 1507 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1508 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1509 Depth + 1)) 1510 return true; 1511 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1512 Known.Zero <<= ShAmt; 1513 Known.One <<= ShAmt; 1514 // low bits known zero. 1515 Known.Zero.setLowBits(ShAmt); 1516 1517 // Try shrinking the operation as long as the shift amount will still be 1518 // in range. 1519 if ((ShAmt < DemandedBits.getActiveBits()) && 1520 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1521 return true; 1522 } 1523 1524 // If we are only demanding sign bits then we can use the shift source 1525 // directly. 1526 if (const APInt *MaxSA = 1527 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1528 unsigned ShAmt = MaxSA->getZExtValue(); 1529 unsigned NumSignBits = 1530 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1531 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1532 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1533 return TLO.CombineTo(Op, Op0); 1534 } 1535 break; 1536 } 1537 case ISD::SRL: { 1538 SDValue Op0 = Op.getOperand(0); 1539 SDValue Op1 = Op.getOperand(1); 1540 EVT ShiftVT = Op1.getValueType(); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1549 // single shift. We can do this if the top bits (which are shifted out) 1550 // are never demanded. 1551 // TODO - support non-uniform vector amounts. 1552 if (Op0.getOpcode() == ISD::SHL) { 1553 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1554 if (const APInt *SA2 = 1555 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1556 unsigned C1 = SA2->getZExtValue(); 1557 unsigned Opc = ISD::SRL; 1558 int Diff = ShAmt - C1; 1559 if (Diff < 0) { 1560 Diff = -Diff; 1561 Opc = ISD::SHL; 1562 } 1563 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1564 return TLO.CombineTo( 1565 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1566 } 1567 } 1568 } 1569 1570 APInt InDemandedMask = (DemandedBits << ShAmt); 1571 1572 // If the shift is exact, then it does demand the low bits (and knows that 1573 // they are zero). 1574 if (Op->getFlags().hasExact()) 1575 InDemandedMask.setLowBits(ShAmt); 1576 1577 // Compute the new bits that are at the top now. 1578 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1579 Depth + 1)) 1580 return true; 1581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1582 Known.Zero.lshrInPlace(ShAmt); 1583 Known.One.lshrInPlace(ShAmt); 1584 // High bits known zero. 1585 Known.Zero.setHighBits(ShAmt); 1586 } 1587 break; 1588 } 1589 case ISD::SRA: { 1590 SDValue Op0 = Op.getOperand(0); 1591 SDValue Op1 = Op.getOperand(1); 1592 EVT ShiftVT = Op1.getValueType(); 1593 1594 // If we only want bits that already match the signbit then we don't need 1595 // to shift. 1596 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1597 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1598 NumHiDemandedBits) 1599 return TLO.CombineTo(Op, Op0); 1600 1601 // If this is an arithmetic shift right and only the low-bit is set, we can 1602 // always convert this into a logical shr, even if the shift amount is 1603 // variable. The low bit of the shift cannot be an input sign bit unless 1604 // the shift amount is >= the size of the datatype, which is undefined. 1605 if (DemandedBits.isOneValue()) 1606 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1607 1608 if (const APInt *SA = 1609 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1610 unsigned ShAmt = SA->getZExtValue(); 1611 if (ShAmt == 0) 1612 return TLO.CombineTo(Op, Op0); 1613 1614 APInt InDemandedMask = (DemandedBits << ShAmt); 1615 1616 // If the shift is exact, then it does demand the low bits (and knows that 1617 // they are zero). 1618 if (Op->getFlags().hasExact()) 1619 InDemandedMask.setLowBits(ShAmt); 1620 1621 // If any of the demanded bits are produced by the sign extension, we also 1622 // demand the input sign bit. 1623 if (DemandedBits.countLeadingZeros() < ShAmt) 1624 InDemandedMask.setSignBit(); 1625 1626 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1630 Known.Zero.lshrInPlace(ShAmt); 1631 Known.One.lshrInPlace(ShAmt); 1632 1633 // If the input sign bit is known to be zero, or if none of the top bits 1634 // are demanded, turn this into an unsigned shift right. 1635 if (Known.Zero[BitWidth - ShAmt - 1] || 1636 DemandedBits.countLeadingZeros() >= ShAmt) { 1637 SDNodeFlags Flags; 1638 Flags.setExact(Op->getFlags().hasExact()); 1639 return TLO.CombineTo( 1640 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1641 } 1642 1643 int Log2 = DemandedBits.exactLogBase2(); 1644 if (Log2 >= 0) { 1645 // The bit must come from the sign. 1646 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1647 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1648 } 1649 1650 if (Known.One[BitWidth - ShAmt - 1]) 1651 // New bits are known one. 1652 Known.One.setHighBits(ShAmt); 1653 1654 // Attempt to avoid multi-use ops if we don't need anything from them. 1655 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1656 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1657 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1658 if (DemandedOp0) { 1659 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1660 return TLO.CombineTo(Op, NewOp); 1661 } 1662 } 1663 } 1664 break; 1665 } 1666 case ISD::FSHL: 1667 case ISD::FSHR: { 1668 SDValue Op0 = Op.getOperand(0); 1669 SDValue Op1 = Op.getOperand(1); 1670 SDValue Op2 = Op.getOperand(2); 1671 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1672 1673 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1674 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1675 1676 // For fshl, 0-shift returns the 1st arg. 1677 // For fshr, 0-shift returns the 2nd arg. 1678 if (Amt == 0) { 1679 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1680 Known, TLO, Depth + 1)) 1681 return true; 1682 break; 1683 } 1684 1685 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1686 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1687 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1688 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1689 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1690 Depth + 1)) 1691 return true; 1692 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1693 Depth + 1)) 1694 return true; 1695 1696 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1697 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1698 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1699 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1700 Known.One |= Known2.One; 1701 Known.Zero |= Known2.Zero; 1702 } 1703 1704 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1705 if (isPowerOf2_32(BitWidth)) { 1706 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1707 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1708 Known2, TLO, Depth + 1)) 1709 return true; 1710 } 1711 break; 1712 } 1713 case ISD::ROTL: 1714 case ISD::ROTR: { 1715 SDValue Op0 = Op.getOperand(0); 1716 SDValue Op1 = Op.getOperand(1); 1717 1718 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1719 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1720 return TLO.CombineTo(Op, Op0); 1721 1722 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1723 if (isPowerOf2_32(BitWidth)) { 1724 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1725 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1726 Depth + 1)) 1727 return true; 1728 } 1729 break; 1730 } 1731 case ISD::BITREVERSE: { 1732 SDValue Src = Op.getOperand(0); 1733 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1734 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1735 Depth + 1)) 1736 return true; 1737 Known.One = Known2.One.reverseBits(); 1738 Known.Zero = Known2.Zero.reverseBits(); 1739 break; 1740 } 1741 case ISD::BSWAP: { 1742 SDValue Src = Op.getOperand(0); 1743 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1744 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1745 Depth + 1)) 1746 return true; 1747 Known.One = Known2.One.byteSwap(); 1748 Known.Zero = Known2.Zero.byteSwap(); 1749 break; 1750 } 1751 case ISD::SIGN_EXTEND_INREG: { 1752 SDValue Op0 = Op.getOperand(0); 1753 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1754 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1755 1756 // If we only care about the highest bit, don't bother shifting right. 1757 if (DemandedBits.isSignMask()) { 1758 unsigned NumSignBits = 1759 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1760 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1761 // However if the input is already sign extended we expect the sign 1762 // extension to be dropped altogether later and do not simplify. 1763 if (!AlreadySignExtended) { 1764 // Compute the correct shift amount type, which must be getShiftAmountTy 1765 // for scalar types after legalization. 1766 EVT ShiftAmtTy = VT; 1767 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1768 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1769 1770 SDValue ShiftAmt = 1771 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1772 return TLO.CombineTo(Op, 1773 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1774 } 1775 } 1776 1777 // If none of the extended bits are demanded, eliminate the sextinreg. 1778 if (DemandedBits.getActiveBits() <= ExVTBits) 1779 return TLO.CombineTo(Op, Op0); 1780 1781 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1782 1783 // Since the sign extended bits are demanded, we know that the sign 1784 // bit is demanded. 1785 InputDemandedBits.setBit(ExVTBits - 1); 1786 1787 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1788 return true; 1789 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1790 1791 // If the sign bit of the input is known set or clear, then we know the 1792 // top bits of the result. 1793 1794 // If the input sign bit is known zero, convert this into a zero extension. 1795 if (Known.Zero[ExVTBits - 1]) 1796 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1797 1798 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1799 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1800 Known.One.setBitsFrom(ExVTBits); 1801 Known.Zero &= Mask; 1802 } else { // Input sign bit unknown 1803 Known.Zero &= Mask; 1804 Known.One &= Mask; 1805 } 1806 break; 1807 } 1808 case ISD::BUILD_PAIR: { 1809 EVT HalfVT = Op.getOperand(0).getValueType(); 1810 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1811 1812 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1813 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1814 1815 KnownBits KnownLo, KnownHi; 1816 1817 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1818 return true; 1819 1820 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1821 return true; 1822 1823 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1824 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1825 1826 Known.One = KnownLo.One.zext(BitWidth) | 1827 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1828 break; 1829 } 1830 case ISD::ZERO_EXTEND: 1831 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1832 SDValue Src = Op.getOperand(0); 1833 EVT SrcVT = Src.getValueType(); 1834 unsigned InBits = SrcVT.getScalarSizeInBits(); 1835 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1836 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1837 1838 // If none of the top bits are demanded, convert this into an any_extend. 1839 if (DemandedBits.getActiveBits() <= InBits) { 1840 // If we only need the non-extended bits of the bottom element 1841 // then we can just bitcast to the result. 1842 if (IsVecInReg && DemandedElts == 1 && 1843 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1844 TLO.DAG.getDataLayout().isLittleEndian()) 1845 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1846 1847 unsigned Opc = 1848 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1849 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1850 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1851 } 1852 1853 APInt InDemandedBits = DemandedBits.trunc(InBits); 1854 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1855 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1856 Depth + 1)) 1857 return true; 1858 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1859 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1860 Known = Known.zext(BitWidth); 1861 break; 1862 } 1863 case ISD::SIGN_EXTEND: 1864 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1865 SDValue Src = Op.getOperand(0); 1866 EVT SrcVT = Src.getValueType(); 1867 unsigned InBits = SrcVT.getScalarSizeInBits(); 1868 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1869 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1870 1871 // If none of the top bits are demanded, convert this into an any_extend. 1872 if (DemandedBits.getActiveBits() <= InBits) { 1873 // If we only need the non-extended bits of the bottom element 1874 // then we can just bitcast to the result. 1875 if (IsVecInReg && DemandedElts == 1 && 1876 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1877 TLO.DAG.getDataLayout().isLittleEndian()) 1878 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1879 1880 unsigned Opc = 1881 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1882 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1883 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1884 } 1885 1886 APInt InDemandedBits = DemandedBits.trunc(InBits); 1887 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1888 1889 // Since some of the sign extended bits are demanded, we know that the sign 1890 // bit is demanded. 1891 InDemandedBits.setBit(InBits - 1); 1892 1893 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1894 Depth + 1)) 1895 return true; 1896 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1897 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1898 1899 // If the sign bit is known one, the top bits match. 1900 Known = Known.sext(BitWidth); 1901 1902 // If the sign bit is known zero, convert this to a zero extend. 1903 if (Known.isNonNegative()) { 1904 unsigned Opc = 1905 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1906 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1907 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1908 } 1909 break; 1910 } 1911 case ISD::ANY_EXTEND: 1912 case ISD::ANY_EXTEND_VECTOR_INREG: { 1913 SDValue Src = Op.getOperand(0); 1914 EVT SrcVT = Src.getValueType(); 1915 unsigned InBits = SrcVT.getScalarSizeInBits(); 1916 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1917 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1918 1919 // If we only need the bottom element then we can just bitcast. 1920 // TODO: Handle ANY_EXTEND? 1921 if (IsVecInReg && DemandedElts == 1 && 1922 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1923 TLO.DAG.getDataLayout().isLittleEndian()) 1924 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1925 1926 APInt InDemandedBits = DemandedBits.trunc(InBits); 1927 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1928 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1929 Depth + 1)) 1930 return true; 1931 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1932 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1933 Known = Known.anyext(BitWidth); 1934 1935 // Attempt to avoid multi-use ops if we don't need anything from them. 1936 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1937 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1938 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1939 break; 1940 } 1941 case ISD::TRUNCATE: { 1942 SDValue Src = Op.getOperand(0); 1943 1944 // Simplify the input, using demanded bit information, and compute the known 1945 // zero/one bits live out. 1946 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1947 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1948 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1949 return true; 1950 Known = Known.trunc(BitWidth); 1951 1952 // Attempt to avoid multi-use ops if we don't need anything from them. 1953 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1954 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1955 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1956 1957 // If the input is only used by this truncate, see if we can shrink it based 1958 // on the known demanded bits. 1959 if (Src.getNode()->hasOneUse()) { 1960 switch (Src.getOpcode()) { 1961 default: 1962 break; 1963 case ISD::SRL: 1964 // Shrink SRL by a constant if none of the high bits shifted in are 1965 // demanded. 1966 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1967 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1968 // undesirable. 1969 break; 1970 1971 SDValue ShAmt = Src.getOperand(1); 1972 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1973 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1974 break; 1975 uint64_t ShVal = ShAmtC->getZExtValue(); 1976 1977 APInt HighBits = 1978 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1979 HighBits.lshrInPlace(ShVal); 1980 HighBits = HighBits.trunc(BitWidth); 1981 1982 if (!(HighBits & DemandedBits)) { 1983 // None of the shifted in bits are needed. Add a truncate of the 1984 // shift input, then shift it. 1985 if (TLO.LegalTypes()) 1986 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1987 SDValue NewTrunc = 1988 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1989 return TLO.CombineTo( 1990 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1991 } 1992 break; 1993 } 1994 } 1995 1996 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1997 break; 1998 } 1999 case ISD::AssertZext: { 2000 // AssertZext demands all of the high bits, plus any of the low bits 2001 // demanded by its users. 2002 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2003 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2004 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2005 TLO, Depth + 1)) 2006 return true; 2007 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2008 2009 Known.Zero |= ~InMask; 2010 break; 2011 } 2012 case ISD::EXTRACT_VECTOR_ELT: { 2013 SDValue Src = Op.getOperand(0); 2014 SDValue Idx = Op.getOperand(1); 2015 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2016 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2017 2018 // Demand the bits from every vector element without a constant index. 2019 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2020 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2021 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2022 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2023 2024 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2025 // anything about the extended bits. 2026 APInt DemandedSrcBits = DemandedBits; 2027 if (BitWidth > EltBitWidth) 2028 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2029 2030 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2031 Depth + 1)) 2032 return true; 2033 2034 // Attempt to avoid multi-use ops if we don't need anything from them. 2035 if (!DemandedSrcBits.isAllOnesValue() || 2036 !DemandedSrcElts.isAllOnesValue()) { 2037 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2038 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2039 SDValue NewOp = 2040 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2041 return TLO.CombineTo(Op, NewOp); 2042 } 2043 } 2044 2045 Known = Known2; 2046 if (BitWidth > EltBitWidth) 2047 Known = Known.anyext(BitWidth); 2048 break; 2049 } 2050 case ISD::BITCAST: { 2051 SDValue Src = Op.getOperand(0); 2052 EVT SrcVT = Src.getValueType(); 2053 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2054 2055 // If this is an FP->Int bitcast and if the sign bit is the only 2056 // thing demanded, turn this into a FGETSIGN. 2057 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2058 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2059 SrcVT.isFloatingPoint()) { 2060 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2061 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2062 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2063 SrcVT != MVT::f128) { 2064 // Cannot eliminate/lower SHL for f128 yet. 2065 EVT Ty = OpVTLegal ? VT : MVT::i32; 2066 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2067 // place. We expect the SHL to be eliminated by other optimizations. 2068 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2069 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2070 if (!OpVTLegal && OpVTSizeInBits > 32) 2071 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2072 unsigned ShVal = Op.getValueSizeInBits() - 1; 2073 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2074 return TLO.CombineTo(Op, 2075 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2076 } 2077 } 2078 2079 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2080 // Demand the elt/bit if any of the original elts/bits are demanded. 2081 // TODO - bigendian once we have test coverage. 2082 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2083 TLO.DAG.getDataLayout().isLittleEndian()) { 2084 unsigned Scale = BitWidth / NumSrcEltBits; 2085 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2086 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2087 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2088 for (unsigned i = 0; i != Scale; ++i) { 2089 unsigned Offset = i * NumSrcEltBits; 2090 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2091 if (!Sub.isNullValue()) { 2092 DemandedSrcBits |= Sub; 2093 for (unsigned j = 0; j != NumElts; ++j) 2094 if (DemandedElts[j]) 2095 DemandedSrcElts.setBit((j * Scale) + i); 2096 } 2097 } 2098 2099 APInt KnownSrcUndef, KnownSrcZero; 2100 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2101 KnownSrcZero, TLO, Depth + 1)) 2102 return true; 2103 2104 KnownBits KnownSrcBits; 2105 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2106 KnownSrcBits, TLO, Depth + 1)) 2107 return true; 2108 } else if ((NumSrcEltBits % BitWidth) == 0 && 2109 TLO.DAG.getDataLayout().isLittleEndian()) { 2110 unsigned Scale = NumSrcEltBits / BitWidth; 2111 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2112 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2113 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2114 for (unsigned i = 0; i != NumElts; ++i) 2115 if (DemandedElts[i]) { 2116 unsigned Offset = (i % Scale) * BitWidth; 2117 DemandedSrcBits.insertBits(DemandedBits, Offset); 2118 DemandedSrcElts.setBit(i / Scale); 2119 } 2120 2121 if (SrcVT.isVector()) { 2122 APInt KnownSrcUndef, KnownSrcZero; 2123 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2124 KnownSrcZero, TLO, Depth + 1)) 2125 return true; 2126 } 2127 2128 KnownBits KnownSrcBits; 2129 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2130 KnownSrcBits, TLO, Depth + 1)) 2131 return true; 2132 } 2133 2134 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2135 // recursive call where Known may be useful to the caller. 2136 if (Depth > 0) { 2137 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2138 return false; 2139 } 2140 break; 2141 } 2142 case ISD::ADD: 2143 case ISD::MUL: 2144 case ISD::SUB: { 2145 // Add, Sub, and Mul don't demand any bits in positions beyond that 2146 // of the highest bit demanded of them. 2147 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2148 SDNodeFlags Flags = Op.getNode()->getFlags(); 2149 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2150 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2151 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2152 Depth + 1) || 2153 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2154 Depth + 1) || 2155 // See if the operation should be performed at a smaller bit width. 2156 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2157 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2158 // Disable the nsw and nuw flags. We can no longer guarantee that we 2159 // won't wrap after simplification. 2160 Flags.setNoSignedWrap(false); 2161 Flags.setNoUnsignedWrap(false); 2162 SDValue NewOp = 2163 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2164 return TLO.CombineTo(Op, NewOp); 2165 } 2166 return true; 2167 } 2168 2169 // Attempt to avoid multi-use ops if we don't need anything from them. 2170 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2172 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2174 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2175 if (DemandedOp0 || DemandedOp1) { 2176 Flags.setNoSignedWrap(false); 2177 Flags.setNoUnsignedWrap(false); 2178 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2179 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2180 SDValue NewOp = 2181 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2182 return TLO.CombineTo(Op, NewOp); 2183 } 2184 } 2185 2186 // If we have a constant operand, we may be able to turn it into -1 if we 2187 // do not demand the high bits. This can make the constant smaller to 2188 // encode, allow more general folding, or match specialized instruction 2189 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2190 // is probably not useful (and could be detrimental). 2191 ConstantSDNode *C = isConstOrConstSplat(Op1); 2192 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2193 if (C && !C->isAllOnesValue() && !C->isOne() && 2194 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2195 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2196 // Disable the nsw and nuw flags. We can no longer guarantee that we 2197 // won't wrap after simplification. 2198 Flags.setNoSignedWrap(false); 2199 Flags.setNoUnsignedWrap(false); 2200 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2201 return TLO.CombineTo(Op, NewOp); 2202 } 2203 2204 LLVM_FALLTHROUGH; 2205 } 2206 default: 2207 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2208 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2209 Known, TLO, Depth)) 2210 return true; 2211 break; 2212 } 2213 2214 // Just use computeKnownBits to compute output bits. 2215 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2216 break; 2217 } 2218 2219 // If we know the value of all of the demanded bits, return this as a 2220 // constant. 2221 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2222 // Avoid folding to a constant if any OpaqueConstant is involved. 2223 const SDNode *N = Op.getNode(); 2224 for (SDNodeIterator I = SDNodeIterator::begin(N), 2225 E = SDNodeIterator::end(N); 2226 I != E; ++I) { 2227 SDNode *Op = *I; 2228 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2229 if (C->isOpaque()) 2230 return false; 2231 } 2232 // TODO: Handle float bits as well. 2233 if (VT.isInteger()) 2234 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2235 } 2236 2237 return false; 2238 } 2239 2240 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2241 const APInt &DemandedElts, 2242 APInt &KnownUndef, 2243 APInt &KnownZero, 2244 DAGCombinerInfo &DCI) const { 2245 SelectionDAG &DAG = DCI.DAG; 2246 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2247 !DCI.isBeforeLegalizeOps()); 2248 2249 bool Simplified = 2250 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2251 if (Simplified) { 2252 DCI.AddToWorklist(Op.getNode()); 2253 DCI.CommitTargetLoweringOpt(TLO); 2254 } 2255 2256 return Simplified; 2257 } 2258 2259 /// Given a vector binary operation and known undefined elements for each input 2260 /// operand, compute whether each element of the output is undefined. 2261 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2262 const APInt &UndefOp0, 2263 const APInt &UndefOp1) { 2264 EVT VT = BO.getValueType(); 2265 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2266 "Vector binop only"); 2267 2268 EVT EltVT = VT.getVectorElementType(); 2269 unsigned NumElts = VT.getVectorNumElements(); 2270 assert(UndefOp0.getBitWidth() == NumElts && 2271 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2272 2273 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2274 const APInt &UndefVals) { 2275 if (UndefVals[Index]) 2276 return DAG.getUNDEF(EltVT); 2277 2278 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2279 // Try hard to make sure that the getNode() call is not creating temporary 2280 // nodes. Ignore opaque integers because they do not constant fold. 2281 SDValue Elt = BV->getOperand(Index); 2282 auto *C = dyn_cast<ConstantSDNode>(Elt); 2283 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2284 return Elt; 2285 } 2286 2287 return SDValue(); 2288 }; 2289 2290 APInt KnownUndef = APInt::getNullValue(NumElts); 2291 for (unsigned i = 0; i != NumElts; ++i) { 2292 // If both inputs for this element are either constant or undef and match 2293 // the element type, compute the constant/undef result for this element of 2294 // the vector. 2295 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2296 // not handle FP constants. The code within getNode() should be refactored 2297 // to avoid the danger of creating a bogus temporary node here. 2298 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2299 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2300 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2301 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2302 KnownUndef.setBit(i); 2303 } 2304 return KnownUndef; 2305 } 2306 2307 bool TargetLowering::SimplifyDemandedVectorElts( 2308 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2309 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2310 bool AssumeSingleUse) const { 2311 EVT VT = Op.getValueType(); 2312 unsigned Opcode = Op.getOpcode(); 2313 APInt DemandedElts = OriginalDemandedElts; 2314 unsigned NumElts = DemandedElts.getBitWidth(); 2315 assert(VT.isVector() && "Expected vector op"); 2316 2317 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2318 2319 // TODO: For now we assume we know nothing about scalable vectors. 2320 if (VT.isScalableVector()) 2321 return false; 2322 2323 assert(VT.getVectorNumElements() == NumElts && 2324 "Mask size mismatches value type element count!"); 2325 2326 // Undef operand. 2327 if (Op.isUndef()) { 2328 KnownUndef.setAllBits(); 2329 return false; 2330 } 2331 2332 // If Op has other users, assume that all elements are needed. 2333 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2334 DemandedElts.setAllBits(); 2335 2336 // Not demanding any elements from Op. 2337 if (DemandedElts == 0) { 2338 KnownUndef.setAllBits(); 2339 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2340 } 2341 2342 // Limit search depth. 2343 if (Depth >= SelectionDAG::MaxRecursionDepth) 2344 return false; 2345 2346 SDLoc DL(Op); 2347 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2348 2349 // Helper for demanding the specified elements and all the bits of both binary 2350 // operands. 2351 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2352 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2353 TLO.DAG, Depth + 1); 2354 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2355 TLO.DAG, Depth + 1); 2356 if (NewOp0 || NewOp1) { 2357 SDValue NewOp = TLO.DAG.getNode( 2358 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2359 return TLO.CombineTo(Op, NewOp); 2360 } 2361 return false; 2362 }; 2363 2364 switch (Opcode) { 2365 case ISD::SCALAR_TO_VECTOR: { 2366 if (!DemandedElts[0]) { 2367 KnownUndef.setAllBits(); 2368 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2369 } 2370 KnownUndef.setHighBits(NumElts - 1); 2371 break; 2372 } 2373 case ISD::BITCAST: { 2374 SDValue Src = Op.getOperand(0); 2375 EVT SrcVT = Src.getValueType(); 2376 2377 // We only handle vectors here. 2378 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2379 if (!SrcVT.isVector()) 2380 break; 2381 2382 // Fast handling of 'identity' bitcasts. 2383 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2384 if (NumSrcElts == NumElts) 2385 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2386 KnownZero, TLO, Depth + 1); 2387 2388 APInt SrcZero, SrcUndef; 2389 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2390 2391 // Bitcast from 'large element' src vector to 'small element' vector, we 2392 // must demand a source element if any DemandedElt maps to it. 2393 if ((NumElts % NumSrcElts) == 0) { 2394 unsigned Scale = NumElts / NumSrcElts; 2395 for (unsigned i = 0; i != NumElts; ++i) 2396 if (DemandedElts[i]) 2397 SrcDemandedElts.setBit(i / Scale); 2398 2399 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2400 TLO, Depth + 1)) 2401 return true; 2402 2403 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2404 // of the large element. 2405 // TODO - bigendian once we have test coverage. 2406 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2407 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2408 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2409 for (unsigned i = 0; i != NumElts; ++i) 2410 if (DemandedElts[i]) { 2411 unsigned Ofs = (i % Scale) * EltSizeInBits; 2412 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2413 } 2414 2415 KnownBits Known; 2416 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2417 TLO, Depth + 1)) 2418 return true; 2419 } 2420 2421 // If the src element is zero/undef then all the output elements will be - 2422 // only demanded elements are guaranteed to be correct. 2423 for (unsigned i = 0; i != NumSrcElts; ++i) { 2424 if (SrcDemandedElts[i]) { 2425 if (SrcZero[i]) 2426 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2427 if (SrcUndef[i]) 2428 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2429 } 2430 } 2431 } 2432 2433 // Bitcast from 'small element' src vector to 'large element' vector, we 2434 // demand all smaller source elements covered by the larger demanded element 2435 // of this vector. 2436 if ((NumSrcElts % NumElts) == 0) { 2437 unsigned Scale = NumSrcElts / NumElts; 2438 for (unsigned i = 0; i != NumElts; ++i) 2439 if (DemandedElts[i]) 2440 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2441 2442 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2443 TLO, Depth + 1)) 2444 return true; 2445 2446 // If all the src elements covering an output element are zero/undef, then 2447 // the output element will be as well, assuming it was demanded. 2448 for (unsigned i = 0; i != NumElts; ++i) { 2449 if (DemandedElts[i]) { 2450 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2451 KnownZero.setBit(i); 2452 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2453 KnownUndef.setBit(i); 2454 } 2455 } 2456 } 2457 break; 2458 } 2459 case ISD::BUILD_VECTOR: { 2460 // Check all elements and simplify any unused elements with UNDEF. 2461 if (!DemandedElts.isAllOnesValue()) { 2462 // Don't simplify BROADCASTS. 2463 if (llvm::any_of(Op->op_values(), 2464 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2465 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2466 bool Updated = false; 2467 for (unsigned i = 0; i != NumElts; ++i) { 2468 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2469 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2470 KnownUndef.setBit(i); 2471 Updated = true; 2472 } 2473 } 2474 if (Updated) 2475 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2476 } 2477 } 2478 for (unsigned i = 0; i != NumElts; ++i) { 2479 SDValue SrcOp = Op.getOperand(i); 2480 if (SrcOp.isUndef()) { 2481 KnownUndef.setBit(i); 2482 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2483 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2484 KnownZero.setBit(i); 2485 } 2486 } 2487 break; 2488 } 2489 case ISD::CONCAT_VECTORS: { 2490 EVT SubVT = Op.getOperand(0).getValueType(); 2491 unsigned NumSubVecs = Op.getNumOperands(); 2492 unsigned NumSubElts = SubVT.getVectorNumElements(); 2493 for (unsigned i = 0; i != NumSubVecs; ++i) { 2494 SDValue SubOp = Op.getOperand(i); 2495 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2496 APInt SubUndef, SubZero; 2497 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2498 Depth + 1)) 2499 return true; 2500 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2501 KnownZero.insertBits(SubZero, i * NumSubElts); 2502 } 2503 break; 2504 } 2505 case ISD::INSERT_SUBVECTOR: { 2506 // Demand any elements from the subvector and the remainder from the src its 2507 // inserted into. 2508 SDValue Src = Op.getOperand(0); 2509 SDValue Sub = Op.getOperand(1); 2510 uint64_t Idx = Op.getConstantOperandVal(2); 2511 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2512 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2513 APInt DemandedSrcElts = DemandedElts; 2514 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2515 2516 APInt SubUndef, SubZero; 2517 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2518 Depth + 1)) 2519 return true; 2520 2521 // If none of the src operand elements are demanded, replace it with undef. 2522 if (!DemandedSrcElts && !Src.isUndef()) 2523 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2524 TLO.DAG.getUNDEF(VT), Sub, 2525 Op.getOperand(2))); 2526 2527 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2528 TLO, Depth + 1)) 2529 return true; 2530 KnownUndef.insertBits(SubUndef, Idx); 2531 KnownZero.insertBits(SubZero, Idx); 2532 2533 // Attempt to avoid multi-use ops if we don't need anything from them. 2534 if (!DemandedSrcElts.isAllOnesValue() || 2535 !DemandedSubElts.isAllOnesValue()) { 2536 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2537 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2538 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2539 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2540 if (NewSrc || NewSub) { 2541 NewSrc = NewSrc ? NewSrc : Src; 2542 NewSub = NewSub ? NewSub : Sub; 2543 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2544 NewSub, Op.getOperand(2)); 2545 return TLO.CombineTo(Op, NewOp); 2546 } 2547 } 2548 break; 2549 } 2550 case ISD::EXTRACT_SUBVECTOR: { 2551 // Offset the demanded elts by the subvector index. 2552 SDValue Src = Op.getOperand(0); 2553 if (Src.getValueType().isScalableVector()) 2554 break; 2555 uint64_t Idx = Op.getConstantOperandVal(1); 2556 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2557 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2558 2559 APInt SrcUndef, SrcZero; 2560 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2561 Depth + 1)) 2562 return true; 2563 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2564 KnownZero = SrcZero.extractBits(NumElts, Idx); 2565 2566 // Attempt to avoid multi-use ops if we don't need anything from them. 2567 if (!DemandedElts.isAllOnesValue()) { 2568 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2569 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2570 if (NewSrc) { 2571 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2572 Op.getOperand(1)); 2573 return TLO.CombineTo(Op, NewOp); 2574 } 2575 } 2576 break; 2577 } 2578 case ISD::INSERT_VECTOR_ELT: { 2579 SDValue Vec = Op.getOperand(0); 2580 SDValue Scl = Op.getOperand(1); 2581 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2582 2583 // For a legal, constant insertion index, if we don't need this insertion 2584 // then strip it, else remove it from the demanded elts. 2585 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2586 unsigned Idx = CIdx->getZExtValue(); 2587 if (!DemandedElts[Idx]) 2588 return TLO.CombineTo(Op, Vec); 2589 2590 APInt DemandedVecElts(DemandedElts); 2591 DemandedVecElts.clearBit(Idx); 2592 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2593 KnownZero, TLO, Depth + 1)) 2594 return true; 2595 2596 KnownUndef.clearBit(Idx); 2597 if (Scl.isUndef()) 2598 KnownUndef.setBit(Idx); 2599 2600 KnownZero.clearBit(Idx); 2601 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2602 KnownZero.setBit(Idx); 2603 break; 2604 } 2605 2606 APInt VecUndef, VecZero; 2607 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2608 Depth + 1)) 2609 return true; 2610 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2611 break; 2612 } 2613 case ISD::VSELECT: { 2614 // Try to transform the select condition based on the current demanded 2615 // elements. 2616 // TODO: If a condition element is undef, we can choose from one arm of the 2617 // select (and if one arm is undef, then we can propagate that to the 2618 // result). 2619 // TODO - add support for constant vselect masks (see IR version of this). 2620 APInt UnusedUndef, UnusedZero; 2621 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2622 UnusedZero, TLO, Depth + 1)) 2623 return true; 2624 2625 // See if we can simplify either vselect operand. 2626 APInt DemandedLHS(DemandedElts); 2627 APInt DemandedRHS(DemandedElts); 2628 APInt UndefLHS, ZeroLHS; 2629 APInt UndefRHS, ZeroRHS; 2630 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2631 ZeroLHS, TLO, Depth + 1)) 2632 return true; 2633 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2634 ZeroRHS, TLO, Depth + 1)) 2635 return true; 2636 2637 KnownUndef = UndefLHS & UndefRHS; 2638 KnownZero = ZeroLHS & ZeroRHS; 2639 break; 2640 } 2641 case ISD::VECTOR_SHUFFLE: { 2642 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2643 2644 // Collect demanded elements from shuffle operands.. 2645 APInt DemandedLHS(NumElts, 0); 2646 APInt DemandedRHS(NumElts, 0); 2647 for (unsigned i = 0; i != NumElts; ++i) { 2648 int M = ShuffleMask[i]; 2649 if (M < 0 || !DemandedElts[i]) 2650 continue; 2651 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2652 if (M < (int)NumElts) 2653 DemandedLHS.setBit(M); 2654 else 2655 DemandedRHS.setBit(M - NumElts); 2656 } 2657 2658 // See if we can simplify either shuffle operand. 2659 APInt UndefLHS, ZeroLHS; 2660 APInt UndefRHS, ZeroRHS; 2661 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2662 ZeroLHS, TLO, Depth + 1)) 2663 return true; 2664 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2665 ZeroRHS, TLO, Depth + 1)) 2666 return true; 2667 2668 // Simplify mask using undef elements from LHS/RHS. 2669 bool Updated = false; 2670 bool IdentityLHS = true, IdentityRHS = true; 2671 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2672 for (unsigned i = 0; i != NumElts; ++i) { 2673 int &M = NewMask[i]; 2674 if (M < 0) 2675 continue; 2676 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2677 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2678 Updated = true; 2679 M = -1; 2680 } 2681 IdentityLHS &= (M < 0) || (M == (int)i); 2682 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2683 } 2684 2685 // Update legal shuffle masks based on demanded elements if it won't reduce 2686 // to Identity which can cause premature removal of the shuffle mask. 2687 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2688 SDValue LegalShuffle = 2689 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2690 NewMask, TLO.DAG); 2691 if (LegalShuffle) 2692 return TLO.CombineTo(Op, LegalShuffle); 2693 } 2694 2695 // Propagate undef/zero elements from LHS/RHS. 2696 for (unsigned i = 0; i != NumElts; ++i) { 2697 int M = ShuffleMask[i]; 2698 if (M < 0) { 2699 KnownUndef.setBit(i); 2700 } else if (M < (int)NumElts) { 2701 if (UndefLHS[M]) 2702 KnownUndef.setBit(i); 2703 if (ZeroLHS[M]) 2704 KnownZero.setBit(i); 2705 } else { 2706 if (UndefRHS[M - NumElts]) 2707 KnownUndef.setBit(i); 2708 if (ZeroRHS[M - NumElts]) 2709 KnownZero.setBit(i); 2710 } 2711 } 2712 break; 2713 } 2714 case ISD::ANY_EXTEND_VECTOR_INREG: 2715 case ISD::SIGN_EXTEND_VECTOR_INREG: 2716 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2717 APInt SrcUndef, SrcZero; 2718 SDValue Src = Op.getOperand(0); 2719 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2720 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2721 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2722 Depth + 1)) 2723 return true; 2724 KnownZero = SrcZero.zextOrTrunc(NumElts); 2725 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2726 2727 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2728 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2729 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2730 // aext - if we just need the bottom element then we can bitcast. 2731 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2732 } 2733 2734 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2735 // zext(undef) upper bits are guaranteed to be zero. 2736 if (DemandedElts.isSubsetOf(KnownUndef)) 2737 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2738 KnownUndef.clearAllBits(); 2739 } 2740 break; 2741 } 2742 2743 // TODO: There are more binop opcodes that could be handled here - MIN, 2744 // MAX, saturated math, etc. 2745 case ISD::OR: 2746 case ISD::XOR: 2747 case ISD::ADD: 2748 case ISD::SUB: 2749 case ISD::FADD: 2750 case ISD::FSUB: 2751 case ISD::FMUL: 2752 case ISD::FDIV: 2753 case ISD::FREM: { 2754 SDValue Op0 = Op.getOperand(0); 2755 SDValue Op1 = Op.getOperand(1); 2756 2757 APInt UndefRHS, ZeroRHS; 2758 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2759 Depth + 1)) 2760 return true; 2761 APInt UndefLHS, ZeroLHS; 2762 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2763 Depth + 1)) 2764 return true; 2765 2766 KnownZero = ZeroLHS & ZeroRHS; 2767 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2768 2769 // Attempt to avoid multi-use ops if we don't need anything from them. 2770 // TODO - use KnownUndef to relax the demandedelts? 2771 if (!DemandedElts.isAllOnesValue()) 2772 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2773 return true; 2774 break; 2775 } 2776 case ISD::SHL: 2777 case ISD::SRL: 2778 case ISD::SRA: 2779 case ISD::ROTL: 2780 case ISD::ROTR: { 2781 SDValue Op0 = Op.getOperand(0); 2782 SDValue Op1 = Op.getOperand(1); 2783 2784 APInt UndefRHS, ZeroRHS; 2785 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2786 Depth + 1)) 2787 return true; 2788 APInt UndefLHS, ZeroLHS; 2789 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2790 Depth + 1)) 2791 return true; 2792 2793 KnownZero = ZeroLHS; 2794 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2795 2796 // Attempt to avoid multi-use ops if we don't need anything from them. 2797 // TODO - use KnownUndef to relax the demandedelts? 2798 if (!DemandedElts.isAllOnesValue()) 2799 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2800 return true; 2801 break; 2802 } 2803 case ISD::MUL: 2804 case ISD::AND: { 2805 SDValue Op0 = Op.getOperand(0); 2806 SDValue Op1 = Op.getOperand(1); 2807 2808 APInt SrcUndef, SrcZero; 2809 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2810 Depth + 1)) 2811 return true; 2812 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2813 TLO, Depth + 1)) 2814 return true; 2815 2816 // If either side has a zero element, then the result element is zero, even 2817 // if the other is an UNDEF. 2818 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2819 // and then handle 'and' nodes with the rest of the binop opcodes. 2820 KnownZero |= SrcZero; 2821 KnownUndef &= SrcUndef; 2822 KnownUndef &= ~KnownZero; 2823 2824 // Attempt to avoid multi-use ops if we don't need anything from them. 2825 // TODO - use KnownUndef to relax the demandedelts? 2826 if (!DemandedElts.isAllOnesValue()) 2827 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2828 return true; 2829 break; 2830 } 2831 case ISD::TRUNCATE: 2832 case ISD::SIGN_EXTEND: 2833 case ISD::ZERO_EXTEND: 2834 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2835 KnownZero, TLO, Depth + 1)) 2836 return true; 2837 2838 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2839 // zext(undef) upper bits are guaranteed to be zero. 2840 if (DemandedElts.isSubsetOf(KnownUndef)) 2841 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2842 KnownUndef.clearAllBits(); 2843 } 2844 break; 2845 default: { 2846 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2847 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2848 KnownZero, TLO, Depth)) 2849 return true; 2850 } else { 2851 KnownBits Known; 2852 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2853 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2854 TLO, Depth, AssumeSingleUse)) 2855 return true; 2856 } 2857 break; 2858 } 2859 } 2860 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2861 2862 // Constant fold all undef cases. 2863 // TODO: Handle zero cases as well. 2864 if (DemandedElts.isSubsetOf(KnownUndef)) 2865 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2866 2867 return false; 2868 } 2869 2870 /// Determine which of the bits specified in Mask are known to be either zero or 2871 /// one and return them in the Known. 2872 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2873 KnownBits &Known, 2874 const APInt &DemandedElts, 2875 const SelectionDAG &DAG, 2876 unsigned Depth) const { 2877 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2878 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2879 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2880 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2881 "Should use MaskedValueIsZero if you don't know whether Op" 2882 " is a target node!"); 2883 Known.resetAll(); 2884 } 2885 2886 void TargetLowering::computeKnownBitsForTargetInstr( 2887 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2888 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2889 unsigned Depth) const { 2890 Known.resetAll(); 2891 } 2892 2893 void TargetLowering::computeKnownBitsForFrameIndex( 2894 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2895 // The low bits are known zero if the pointer is aligned. 2896 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2897 } 2898 2899 Align TargetLowering::computeKnownAlignForTargetInstr( 2900 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2901 unsigned Depth) const { 2902 return Align(1); 2903 } 2904 2905 /// This method can be implemented by targets that want to expose additional 2906 /// information about sign bits to the DAG Combiner. 2907 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2908 const APInt &, 2909 const SelectionDAG &, 2910 unsigned Depth) const { 2911 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2912 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2913 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2914 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2915 "Should use ComputeNumSignBits if you don't know whether Op" 2916 " is a target node!"); 2917 return 1; 2918 } 2919 2920 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2921 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2922 const MachineRegisterInfo &MRI, unsigned Depth) const { 2923 return 1; 2924 } 2925 2926 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2927 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2928 TargetLoweringOpt &TLO, unsigned Depth) const { 2929 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2930 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2931 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2932 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2933 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2934 " is a target node!"); 2935 return false; 2936 } 2937 2938 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2939 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2940 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2941 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2942 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2943 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2944 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2945 "Should use SimplifyDemandedBits if you don't know whether Op" 2946 " is a target node!"); 2947 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2948 return false; 2949 } 2950 2951 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2952 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2953 SelectionDAG &DAG, unsigned Depth) const { 2954 assert( 2955 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2956 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2957 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2958 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2959 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2960 " is a target node!"); 2961 return SDValue(); 2962 } 2963 2964 SDValue 2965 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2966 SDValue N1, MutableArrayRef<int> Mask, 2967 SelectionDAG &DAG) const { 2968 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2969 if (!LegalMask) { 2970 std::swap(N0, N1); 2971 ShuffleVectorSDNode::commuteMask(Mask); 2972 LegalMask = isShuffleMaskLegal(Mask, VT); 2973 } 2974 2975 if (!LegalMask) 2976 return SDValue(); 2977 2978 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2979 } 2980 2981 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2982 return nullptr; 2983 } 2984 2985 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2986 const SelectionDAG &DAG, 2987 bool SNaN, 2988 unsigned Depth) const { 2989 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2990 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2991 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2992 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2993 "Should use isKnownNeverNaN if you don't know whether Op" 2994 " is a target node!"); 2995 return false; 2996 } 2997 2998 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2999 // work with truncating build vectors and vectors with elements of less than 3000 // 8 bits. 3001 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3002 if (!N) 3003 return false; 3004 3005 APInt CVal; 3006 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3007 CVal = CN->getAPIntValue(); 3008 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3009 auto *CN = BV->getConstantSplatNode(); 3010 if (!CN) 3011 return false; 3012 3013 // If this is a truncating build vector, truncate the splat value. 3014 // Otherwise, we may fail to match the expected values below. 3015 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3016 CVal = CN->getAPIntValue(); 3017 if (BVEltWidth < CVal.getBitWidth()) 3018 CVal = CVal.trunc(BVEltWidth); 3019 } else { 3020 return false; 3021 } 3022 3023 switch (getBooleanContents(N->getValueType(0))) { 3024 case UndefinedBooleanContent: 3025 return CVal[0]; 3026 case ZeroOrOneBooleanContent: 3027 return CVal.isOneValue(); 3028 case ZeroOrNegativeOneBooleanContent: 3029 return CVal.isAllOnesValue(); 3030 } 3031 3032 llvm_unreachable("Invalid boolean contents"); 3033 } 3034 3035 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3036 if (!N) 3037 return false; 3038 3039 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3040 if (!CN) { 3041 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3042 if (!BV) 3043 return false; 3044 3045 // Only interested in constant splats, we don't care about undef 3046 // elements in identifying boolean constants and getConstantSplatNode 3047 // returns NULL if all ops are undef; 3048 CN = BV->getConstantSplatNode(); 3049 if (!CN) 3050 return false; 3051 } 3052 3053 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3054 return !CN->getAPIntValue()[0]; 3055 3056 return CN->isNullValue(); 3057 } 3058 3059 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3060 bool SExt) const { 3061 if (VT == MVT::i1) 3062 return N->isOne(); 3063 3064 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3065 switch (Cnt) { 3066 case TargetLowering::ZeroOrOneBooleanContent: 3067 // An extended value of 1 is always true, unless its original type is i1, 3068 // in which case it will be sign extended to -1. 3069 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3070 case TargetLowering::UndefinedBooleanContent: 3071 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3072 return N->isAllOnesValue() && SExt; 3073 } 3074 llvm_unreachable("Unexpected enumeration."); 3075 } 3076 3077 /// This helper function of SimplifySetCC tries to optimize the comparison when 3078 /// either operand of the SetCC node is a bitwise-and instruction. 3079 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3080 ISD::CondCode Cond, const SDLoc &DL, 3081 DAGCombinerInfo &DCI) const { 3082 // Match these patterns in any of their permutations: 3083 // (X & Y) == Y 3084 // (X & Y) != Y 3085 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3086 std::swap(N0, N1); 3087 3088 EVT OpVT = N0.getValueType(); 3089 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3090 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3091 return SDValue(); 3092 3093 SDValue X, Y; 3094 if (N0.getOperand(0) == N1) { 3095 X = N0.getOperand(1); 3096 Y = N0.getOperand(0); 3097 } else if (N0.getOperand(1) == N1) { 3098 X = N0.getOperand(0); 3099 Y = N0.getOperand(1); 3100 } else { 3101 return SDValue(); 3102 } 3103 3104 SelectionDAG &DAG = DCI.DAG; 3105 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3106 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3107 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3108 // Note that where Y is variable and is known to have at most one bit set 3109 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3110 // equivalent when Y == 0. 3111 assert(OpVT.isInteger()); 3112 Cond = ISD::getSetCCInverse(Cond, OpVT); 3113 if (DCI.isBeforeLegalizeOps() || 3114 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3115 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3116 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3117 // If the target supports an 'and-not' or 'and-complement' logic operation, 3118 // try to use that to make a comparison operation more efficient. 3119 // But don't do this transform if the mask is a single bit because there are 3120 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3121 // 'rlwinm' on PPC). 3122 3123 // Bail out if the compare operand that we want to turn into a zero is 3124 // already a zero (otherwise, infinite loop). 3125 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3126 if (YConst && YConst->isNullValue()) 3127 return SDValue(); 3128 3129 // Transform this into: ~X & Y == 0. 3130 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3131 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3132 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3133 } 3134 3135 return SDValue(); 3136 } 3137 3138 /// There are multiple IR patterns that could be checking whether certain 3139 /// truncation of a signed number would be lossy or not. The pattern which is 3140 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3141 /// We are looking for the following pattern: (KeptBits is a constant) 3142 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3143 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3144 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3145 /// We will unfold it into the natural trunc+sext pattern: 3146 /// ((%x << C) a>> C) dstcond %x 3147 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3148 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3149 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3150 const SDLoc &DL) const { 3151 // We must be comparing with a constant. 3152 ConstantSDNode *C1; 3153 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3154 return SDValue(); 3155 3156 // N0 should be: add %x, (1 << (KeptBits-1)) 3157 if (N0->getOpcode() != ISD::ADD) 3158 return SDValue(); 3159 3160 // And we must be 'add'ing a constant. 3161 ConstantSDNode *C01; 3162 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3163 return SDValue(); 3164 3165 SDValue X = N0->getOperand(0); 3166 EVT XVT = X.getValueType(); 3167 3168 // Validate constants ... 3169 3170 APInt I1 = C1->getAPIntValue(); 3171 3172 ISD::CondCode NewCond; 3173 if (Cond == ISD::CondCode::SETULT) { 3174 NewCond = ISD::CondCode::SETEQ; 3175 } else if (Cond == ISD::CondCode::SETULE) { 3176 NewCond = ISD::CondCode::SETEQ; 3177 // But need to 'canonicalize' the constant. 3178 I1 += 1; 3179 } else if (Cond == ISD::CondCode::SETUGT) { 3180 NewCond = ISD::CondCode::SETNE; 3181 // But need to 'canonicalize' the constant. 3182 I1 += 1; 3183 } else if (Cond == ISD::CondCode::SETUGE) { 3184 NewCond = ISD::CondCode::SETNE; 3185 } else 3186 return SDValue(); 3187 3188 APInt I01 = C01->getAPIntValue(); 3189 3190 auto checkConstants = [&I1, &I01]() -> bool { 3191 // Both of them must be power-of-two, and the constant from setcc is bigger. 3192 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3193 }; 3194 3195 if (checkConstants()) { 3196 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3197 } else { 3198 // What if we invert constants? (and the target predicate) 3199 I1.negate(); 3200 I01.negate(); 3201 assert(XVT.isInteger()); 3202 NewCond = getSetCCInverse(NewCond, XVT); 3203 if (!checkConstants()) 3204 return SDValue(); 3205 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3206 } 3207 3208 // They are power-of-two, so which bit is set? 3209 const unsigned KeptBits = I1.logBase2(); 3210 const unsigned KeptBitsMinusOne = I01.logBase2(); 3211 3212 // Magic! 3213 if (KeptBits != (KeptBitsMinusOne + 1)) 3214 return SDValue(); 3215 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3216 3217 // We don't want to do this in every single case. 3218 SelectionDAG &DAG = DCI.DAG; 3219 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3220 XVT, KeptBits)) 3221 return SDValue(); 3222 3223 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3224 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3225 3226 // Unfold into: ((%x << C) a>> C) cond %x 3227 // Where 'cond' will be either 'eq' or 'ne'. 3228 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3229 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3230 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3231 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3232 3233 return T2; 3234 } 3235 3236 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3237 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3238 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3239 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3240 assert(isConstOrConstSplat(N1C) && 3241 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3242 "Should be a comparison with 0."); 3243 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3244 "Valid only for [in]equality comparisons."); 3245 3246 unsigned NewShiftOpcode; 3247 SDValue X, C, Y; 3248 3249 SelectionDAG &DAG = DCI.DAG; 3250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3251 3252 // Look for '(C l>>/<< Y)'. 3253 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3254 // The shift should be one-use. 3255 if (!V.hasOneUse()) 3256 return false; 3257 unsigned OldShiftOpcode = V.getOpcode(); 3258 switch (OldShiftOpcode) { 3259 case ISD::SHL: 3260 NewShiftOpcode = ISD::SRL; 3261 break; 3262 case ISD::SRL: 3263 NewShiftOpcode = ISD::SHL; 3264 break; 3265 default: 3266 return false; // must be a logical shift. 3267 } 3268 // We should be shifting a constant. 3269 // FIXME: best to use isConstantOrConstantVector(). 3270 C = V.getOperand(0); 3271 ConstantSDNode *CC = 3272 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3273 if (!CC) 3274 return false; 3275 Y = V.getOperand(1); 3276 3277 ConstantSDNode *XC = 3278 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3279 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3280 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3281 }; 3282 3283 // LHS of comparison should be an one-use 'and'. 3284 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3285 return SDValue(); 3286 3287 X = N0.getOperand(0); 3288 SDValue Mask = N0.getOperand(1); 3289 3290 // 'and' is commutative! 3291 if (!Match(Mask)) { 3292 std::swap(X, Mask); 3293 if (!Match(Mask)) 3294 return SDValue(); 3295 } 3296 3297 EVT VT = X.getValueType(); 3298 3299 // Produce: 3300 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3301 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3302 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3303 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3304 return T2; 3305 } 3306 3307 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3308 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3309 /// handle the commuted versions of these patterns. 3310 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3311 ISD::CondCode Cond, const SDLoc &DL, 3312 DAGCombinerInfo &DCI) const { 3313 unsigned BOpcode = N0.getOpcode(); 3314 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3315 "Unexpected binop"); 3316 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3317 3318 // (X + Y) == X --> Y == 0 3319 // (X - Y) == X --> Y == 0 3320 // (X ^ Y) == X --> Y == 0 3321 SelectionDAG &DAG = DCI.DAG; 3322 EVT OpVT = N0.getValueType(); 3323 SDValue X = N0.getOperand(0); 3324 SDValue Y = N0.getOperand(1); 3325 if (X == N1) 3326 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3327 3328 if (Y != N1) 3329 return SDValue(); 3330 3331 // (X + Y) == Y --> X == 0 3332 // (X ^ Y) == Y --> X == 0 3333 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3334 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3335 3336 // The shift would not be valid if the operands are boolean (i1). 3337 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3338 return SDValue(); 3339 3340 // (X - Y) == Y --> X == Y << 1 3341 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3342 !DCI.isBeforeLegalize()); 3343 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3344 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3345 if (!DCI.isCalledByLegalizer()) 3346 DCI.AddToWorklist(YShl1.getNode()); 3347 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3348 } 3349 3350 /// Try to simplify a setcc built with the specified operands and cc. If it is 3351 /// unable to simplify it, return a null SDValue. 3352 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3353 ISD::CondCode Cond, bool foldBooleans, 3354 DAGCombinerInfo &DCI, 3355 const SDLoc &dl) const { 3356 SelectionDAG &DAG = DCI.DAG; 3357 const DataLayout &Layout = DAG.getDataLayout(); 3358 EVT OpVT = N0.getValueType(); 3359 3360 // Constant fold or commute setcc. 3361 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3362 return Fold; 3363 3364 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3365 // TODO: Handle non-splat vector constants. All undef causes trouble. 3366 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3367 if (isConstOrConstSplat(N0) && 3368 (DCI.isBeforeLegalizeOps() || 3369 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3370 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3371 3372 // If we have a subtract with the same 2 non-constant operands as this setcc 3373 // -- but in reverse order -- then try to commute the operands of this setcc 3374 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3375 // instruction on some targets. 3376 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3377 (DCI.isBeforeLegalizeOps() || 3378 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3379 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3380 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3381 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3382 3383 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3384 const APInt &C1 = N1C->getAPIntValue(); 3385 3386 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3387 // equality comparison, then we're just comparing whether X itself is 3388 // zero. 3389 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3390 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3391 N0.getOperand(1).getOpcode() == ISD::Constant) { 3392 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3393 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3394 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3395 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3396 // (srl (ctlz x), 5) == 0 -> X != 0 3397 // (srl (ctlz x), 5) != 1 -> X != 0 3398 Cond = ISD::SETNE; 3399 } else { 3400 // (srl (ctlz x), 5) != 0 -> X == 0 3401 // (srl (ctlz x), 5) == 1 -> X == 0 3402 Cond = ISD::SETEQ; 3403 } 3404 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3405 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3406 Zero, Cond); 3407 } 3408 } 3409 3410 SDValue CTPOP = N0; 3411 // Look through truncs that don't change the value of a ctpop. 3412 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3413 CTPOP = N0.getOperand(0); 3414 3415 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3416 (N0 == CTPOP || 3417 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3418 EVT CTVT = CTPOP.getValueType(); 3419 SDValue CTOp = CTPOP.getOperand(0); 3420 3421 // (ctpop x) u< 2 -> (x & x-1) == 0 3422 // (ctpop x) u> 1 -> (x & x-1) != 0 3423 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3424 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3425 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3426 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3427 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3428 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3429 } 3430 3431 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3432 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3433 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3434 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3435 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3436 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3437 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3438 assert(CTVT.isInteger()); 3439 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3440 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3441 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3442 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3443 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3444 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3445 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3446 } 3447 } 3448 3449 // (zext x) == C --> x == (trunc C) 3450 // (sext x) == C --> x == (trunc C) 3451 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3452 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3453 unsigned MinBits = N0.getValueSizeInBits(); 3454 SDValue PreExt; 3455 bool Signed = false; 3456 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3457 // ZExt 3458 MinBits = N0->getOperand(0).getValueSizeInBits(); 3459 PreExt = N0->getOperand(0); 3460 } else if (N0->getOpcode() == ISD::AND) { 3461 // DAGCombine turns costly ZExts into ANDs 3462 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3463 if ((C->getAPIntValue()+1).isPowerOf2()) { 3464 MinBits = C->getAPIntValue().countTrailingOnes(); 3465 PreExt = N0->getOperand(0); 3466 } 3467 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3468 // SExt 3469 MinBits = N0->getOperand(0).getValueSizeInBits(); 3470 PreExt = N0->getOperand(0); 3471 Signed = true; 3472 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3473 // ZEXTLOAD / SEXTLOAD 3474 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3475 MinBits = LN0->getMemoryVT().getSizeInBits(); 3476 PreExt = N0; 3477 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3478 Signed = true; 3479 MinBits = LN0->getMemoryVT().getSizeInBits(); 3480 PreExt = N0; 3481 } 3482 } 3483 3484 // Figure out how many bits we need to preserve this constant. 3485 unsigned ReqdBits = Signed ? 3486 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3487 C1.getActiveBits(); 3488 3489 // Make sure we're not losing bits from the constant. 3490 if (MinBits > 0 && 3491 MinBits < C1.getBitWidth() && 3492 MinBits >= ReqdBits) { 3493 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3494 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3495 // Will get folded away. 3496 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3497 if (MinBits == 1 && C1 == 1) 3498 // Invert the condition. 3499 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3500 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3501 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3502 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3503 } 3504 3505 // If truncating the setcc operands is not desirable, we can still 3506 // simplify the expression in some cases: 3507 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3508 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3509 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3510 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3511 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3512 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3513 SDValue TopSetCC = N0->getOperand(0); 3514 unsigned N0Opc = N0->getOpcode(); 3515 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3516 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3517 TopSetCC.getOpcode() == ISD::SETCC && 3518 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3519 (isConstFalseVal(N1C) || 3520 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3521 3522 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3523 (!N1C->isNullValue() && Cond == ISD::SETNE); 3524 3525 if (!Inverse) 3526 return TopSetCC; 3527 3528 ISD::CondCode InvCond = ISD::getSetCCInverse( 3529 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3530 TopSetCC.getOperand(0).getValueType()); 3531 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3532 TopSetCC.getOperand(1), 3533 InvCond); 3534 } 3535 } 3536 } 3537 3538 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3539 // equality or unsigned, and all 1 bits of the const are in the same 3540 // partial word, see if we can shorten the load. 3541 if (DCI.isBeforeLegalize() && 3542 !ISD::isSignedIntSetCC(Cond) && 3543 N0.getOpcode() == ISD::AND && C1 == 0 && 3544 N0.getNode()->hasOneUse() && 3545 isa<LoadSDNode>(N0.getOperand(0)) && 3546 N0.getOperand(0).getNode()->hasOneUse() && 3547 isa<ConstantSDNode>(N0.getOperand(1))) { 3548 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3549 APInt bestMask; 3550 unsigned bestWidth = 0, bestOffset = 0; 3551 if (Lod->isSimple() && Lod->isUnindexed()) { 3552 unsigned origWidth = N0.getValueSizeInBits(); 3553 unsigned maskWidth = origWidth; 3554 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3555 // 8 bits, but have to be careful... 3556 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3557 origWidth = Lod->getMemoryVT().getSizeInBits(); 3558 const APInt &Mask = N0.getConstantOperandAPInt(1); 3559 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3560 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3561 for (unsigned offset=0; offset<origWidth/width; offset++) { 3562 if (Mask.isSubsetOf(newMask)) { 3563 if (Layout.isLittleEndian()) 3564 bestOffset = (uint64_t)offset * (width/8); 3565 else 3566 bestOffset = (origWidth/width - offset - 1) * (width/8); 3567 bestMask = Mask.lshr(offset * (width/8) * 8); 3568 bestWidth = width; 3569 break; 3570 } 3571 newMask <<= width; 3572 } 3573 } 3574 } 3575 if (bestWidth) { 3576 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3577 if (newVT.isRound() && 3578 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3579 SDValue Ptr = Lod->getBasePtr(); 3580 if (bestOffset != 0) 3581 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3582 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3583 SDValue NewLoad = DAG.getLoad( 3584 newVT, dl, Lod->getChain(), Ptr, 3585 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3586 return DAG.getSetCC(dl, VT, 3587 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3588 DAG.getConstant(bestMask.trunc(bestWidth), 3589 dl, newVT)), 3590 DAG.getConstant(0LL, dl, newVT), Cond); 3591 } 3592 } 3593 } 3594 3595 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3596 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3597 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3598 3599 // If the comparison constant has bits in the upper part, the 3600 // zero-extended value could never match. 3601 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3602 C1.getBitWidth() - InSize))) { 3603 switch (Cond) { 3604 case ISD::SETUGT: 3605 case ISD::SETUGE: 3606 case ISD::SETEQ: 3607 return DAG.getConstant(0, dl, VT); 3608 case ISD::SETULT: 3609 case ISD::SETULE: 3610 case ISD::SETNE: 3611 return DAG.getConstant(1, dl, VT); 3612 case ISD::SETGT: 3613 case ISD::SETGE: 3614 // True if the sign bit of C1 is set. 3615 return DAG.getConstant(C1.isNegative(), dl, VT); 3616 case ISD::SETLT: 3617 case ISD::SETLE: 3618 // True if the sign bit of C1 isn't set. 3619 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3620 default: 3621 break; 3622 } 3623 } 3624 3625 // Otherwise, we can perform the comparison with the low bits. 3626 switch (Cond) { 3627 case ISD::SETEQ: 3628 case ISD::SETNE: 3629 case ISD::SETUGT: 3630 case ISD::SETUGE: 3631 case ISD::SETULT: 3632 case ISD::SETULE: { 3633 EVT newVT = N0.getOperand(0).getValueType(); 3634 if (DCI.isBeforeLegalizeOps() || 3635 (isOperationLegal(ISD::SETCC, newVT) && 3636 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3637 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3638 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3639 3640 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3641 NewConst, Cond); 3642 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3643 } 3644 break; 3645 } 3646 default: 3647 break; // todo, be more careful with signed comparisons 3648 } 3649 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3650 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3651 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3652 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3653 EVT ExtDstTy = N0.getValueType(); 3654 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3655 3656 // If the constant doesn't fit into the number of bits for the source of 3657 // the sign extension, it is impossible for both sides to be equal. 3658 if (C1.getMinSignedBits() > ExtSrcTyBits) 3659 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3660 3661 SDValue ZextOp; 3662 EVT Op0Ty = N0.getOperand(0).getValueType(); 3663 if (Op0Ty == ExtSrcTy) { 3664 ZextOp = N0.getOperand(0); 3665 } else { 3666 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3667 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3668 DAG.getConstant(Imm, dl, Op0Ty)); 3669 } 3670 if (!DCI.isCalledByLegalizer()) 3671 DCI.AddToWorklist(ZextOp.getNode()); 3672 // Otherwise, make this a use of a zext. 3673 return DAG.getSetCC(dl, VT, ZextOp, 3674 DAG.getConstant(C1 & APInt::getLowBitsSet( 3675 ExtDstTyBits, 3676 ExtSrcTyBits), 3677 dl, ExtDstTy), 3678 Cond); 3679 } else if ((N1C->isNullValue() || N1C->isOne()) && 3680 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3681 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3682 if (N0.getOpcode() == ISD::SETCC && 3683 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3684 (N0.getValueType() == MVT::i1 || 3685 getBooleanContents(N0.getOperand(0).getValueType()) == 3686 ZeroOrOneBooleanContent)) { 3687 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3688 if (TrueWhenTrue) 3689 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3690 // Invert the condition. 3691 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3692 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3693 if (DCI.isBeforeLegalizeOps() || 3694 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3695 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3696 } 3697 3698 if ((N0.getOpcode() == ISD::XOR || 3699 (N0.getOpcode() == ISD::AND && 3700 N0.getOperand(0).getOpcode() == ISD::XOR && 3701 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3702 isa<ConstantSDNode>(N0.getOperand(1)) && 3703 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3704 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3705 // can only do this if the top bits are known zero. 3706 unsigned BitWidth = N0.getValueSizeInBits(); 3707 if (DAG.MaskedValueIsZero(N0, 3708 APInt::getHighBitsSet(BitWidth, 3709 BitWidth-1))) { 3710 // Okay, get the un-inverted input value. 3711 SDValue Val; 3712 if (N0.getOpcode() == ISD::XOR) { 3713 Val = N0.getOperand(0); 3714 } else { 3715 assert(N0.getOpcode() == ISD::AND && 3716 N0.getOperand(0).getOpcode() == ISD::XOR); 3717 // ((X^1)&1)^1 -> X & 1 3718 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3719 N0.getOperand(0).getOperand(0), 3720 N0.getOperand(1)); 3721 } 3722 3723 return DAG.getSetCC(dl, VT, Val, N1, 3724 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3725 } 3726 } else if (N1C->isOne()) { 3727 SDValue Op0 = N0; 3728 if (Op0.getOpcode() == ISD::TRUNCATE) 3729 Op0 = Op0.getOperand(0); 3730 3731 if ((Op0.getOpcode() == ISD::XOR) && 3732 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3733 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3734 SDValue XorLHS = Op0.getOperand(0); 3735 SDValue XorRHS = Op0.getOperand(1); 3736 // Ensure that the input setccs return an i1 type or 0/1 value. 3737 if (Op0.getValueType() == MVT::i1 || 3738 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3739 ZeroOrOneBooleanContent && 3740 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3741 ZeroOrOneBooleanContent)) { 3742 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3743 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3744 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3745 } 3746 } 3747 if (Op0.getOpcode() == ISD::AND && 3748 isa<ConstantSDNode>(Op0.getOperand(1)) && 3749 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3750 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3751 if (Op0.getValueType().bitsGT(VT)) 3752 Op0 = DAG.getNode(ISD::AND, dl, VT, 3753 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3754 DAG.getConstant(1, dl, VT)); 3755 else if (Op0.getValueType().bitsLT(VT)) 3756 Op0 = DAG.getNode(ISD::AND, dl, VT, 3757 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3758 DAG.getConstant(1, dl, VT)); 3759 3760 return DAG.getSetCC(dl, VT, Op0, 3761 DAG.getConstant(0, dl, Op0.getValueType()), 3762 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3763 } 3764 if (Op0.getOpcode() == ISD::AssertZext && 3765 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3766 return DAG.getSetCC(dl, VT, Op0, 3767 DAG.getConstant(0, dl, Op0.getValueType()), 3768 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3769 } 3770 } 3771 3772 // Given: 3773 // icmp eq/ne (urem %x, %y), 0 3774 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3775 // icmp eq/ne %x, 0 3776 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3777 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3778 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3779 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3780 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3781 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3782 } 3783 3784 if (SDValue V = 3785 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3786 return V; 3787 } 3788 3789 // These simplifications apply to splat vectors as well. 3790 // TODO: Handle more splat vector cases. 3791 if (auto *N1C = isConstOrConstSplat(N1)) { 3792 const APInt &C1 = N1C->getAPIntValue(); 3793 3794 APInt MinVal, MaxVal; 3795 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3796 if (ISD::isSignedIntSetCC(Cond)) { 3797 MinVal = APInt::getSignedMinValue(OperandBitSize); 3798 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3799 } else { 3800 MinVal = APInt::getMinValue(OperandBitSize); 3801 MaxVal = APInt::getMaxValue(OperandBitSize); 3802 } 3803 3804 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3805 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3806 // X >= MIN --> true 3807 if (C1 == MinVal) 3808 return DAG.getBoolConstant(true, dl, VT, OpVT); 3809 3810 if (!VT.isVector()) { // TODO: Support this for vectors. 3811 // X >= C0 --> X > (C0 - 1) 3812 APInt C = C1 - 1; 3813 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3814 if ((DCI.isBeforeLegalizeOps() || 3815 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3816 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3817 isLegalICmpImmediate(C.getSExtValue())))) { 3818 return DAG.getSetCC(dl, VT, N0, 3819 DAG.getConstant(C, dl, N1.getValueType()), 3820 NewCC); 3821 } 3822 } 3823 } 3824 3825 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3826 // X <= MAX --> true 3827 if (C1 == MaxVal) 3828 return DAG.getBoolConstant(true, dl, VT, OpVT); 3829 3830 // X <= C0 --> X < (C0 + 1) 3831 if (!VT.isVector()) { // TODO: Support this for vectors. 3832 APInt C = C1 + 1; 3833 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3834 if ((DCI.isBeforeLegalizeOps() || 3835 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3836 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3837 isLegalICmpImmediate(C.getSExtValue())))) { 3838 return DAG.getSetCC(dl, VT, N0, 3839 DAG.getConstant(C, dl, N1.getValueType()), 3840 NewCC); 3841 } 3842 } 3843 } 3844 3845 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3846 if (C1 == MinVal) 3847 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3848 3849 // TODO: Support this for vectors after legalize ops. 3850 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3851 // Canonicalize setlt X, Max --> setne X, Max 3852 if (C1 == MaxVal) 3853 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3854 3855 // If we have setult X, 1, turn it into seteq X, 0 3856 if (C1 == MinVal+1) 3857 return DAG.getSetCC(dl, VT, N0, 3858 DAG.getConstant(MinVal, dl, N0.getValueType()), 3859 ISD::SETEQ); 3860 } 3861 } 3862 3863 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3864 if (C1 == MaxVal) 3865 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3866 3867 // TODO: Support this for vectors after legalize ops. 3868 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3869 // Canonicalize setgt X, Min --> setne X, Min 3870 if (C1 == MinVal) 3871 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3872 3873 // If we have setugt X, Max-1, turn it into seteq X, Max 3874 if (C1 == MaxVal-1) 3875 return DAG.getSetCC(dl, VT, N0, 3876 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3877 ISD::SETEQ); 3878 } 3879 } 3880 3881 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3882 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3883 if (C1.isNullValue()) 3884 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3885 VT, N0, N1, Cond, DCI, dl)) 3886 return CC; 3887 } 3888 3889 // If we have "setcc X, C0", check to see if we can shrink the immediate 3890 // by changing cc. 3891 // TODO: Support this for vectors after legalize ops. 3892 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3893 // SETUGT X, SINTMAX -> SETLT X, 0 3894 if (Cond == ISD::SETUGT && 3895 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3896 return DAG.getSetCC(dl, VT, N0, 3897 DAG.getConstant(0, dl, N1.getValueType()), 3898 ISD::SETLT); 3899 3900 // SETULT X, SINTMIN -> SETGT X, -1 3901 if (Cond == ISD::SETULT && 3902 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3903 SDValue ConstMinusOne = 3904 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3905 N1.getValueType()); 3906 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3907 } 3908 } 3909 } 3910 3911 // Back to non-vector simplifications. 3912 // TODO: Can we do these for vector splats? 3913 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3915 const APInt &C1 = N1C->getAPIntValue(); 3916 EVT ShValTy = N0.getValueType(); 3917 3918 // Fold bit comparisons when we can. 3919 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3920 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3921 N0.getOpcode() == ISD::AND) { 3922 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3923 EVT ShiftTy = 3924 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3925 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3926 // Perform the xform if the AND RHS is a single bit. 3927 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3928 if (AndRHS->getAPIntValue().isPowerOf2() && 3929 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3930 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3931 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3932 DAG.getConstant(ShCt, dl, ShiftTy))); 3933 } 3934 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3935 // (X & 8) == 8 --> (X & 8) >> 3 3936 // Perform the xform if C1 is a single bit. 3937 unsigned ShCt = C1.logBase2(); 3938 if (C1.isPowerOf2() && 3939 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3940 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3941 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3942 DAG.getConstant(ShCt, dl, ShiftTy))); 3943 } 3944 } 3945 } 3946 } 3947 3948 if (C1.getMinSignedBits() <= 64 && 3949 !isLegalICmpImmediate(C1.getSExtValue())) { 3950 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3951 // (X & -256) == 256 -> (X >> 8) == 1 3952 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3953 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3954 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3955 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3956 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3957 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3958 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3959 SDValue Shift = 3960 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3961 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3962 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3963 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3964 } 3965 } 3966 } 3967 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3968 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3969 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3970 // X < 0x100000000 -> (X >> 32) < 1 3971 // X >= 0x100000000 -> (X >> 32) >= 1 3972 // X <= 0x0ffffffff -> (X >> 32) < 1 3973 // X > 0x0ffffffff -> (X >> 32) >= 1 3974 unsigned ShiftBits; 3975 APInt NewC = C1; 3976 ISD::CondCode NewCond = Cond; 3977 if (AdjOne) { 3978 ShiftBits = C1.countTrailingOnes(); 3979 NewC = NewC + 1; 3980 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3981 } else { 3982 ShiftBits = C1.countTrailingZeros(); 3983 } 3984 NewC.lshrInPlace(ShiftBits); 3985 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3986 isLegalICmpImmediate(NewC.getSExtValue()) && 3987 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3988 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3989 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3990 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3991 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3992 } 3993 } 3994 } 3995 } 3996 3997 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3998 auto *CFP = cast<ConstantFPSDNode>(N1); 3999 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4000 4001 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4002 // constant if knowing that the operand is non-nan is enough. We prefer to 4003 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4004 // materialize 0.0. 4005 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4006 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4007 4008 // setcc (fneg x), C -> setcc swap(pred) x, -C 4009 if (N0.getOpcode() == ISD::FNEG) { 4010 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4011 if (DCI.isBeforeLegalizeOps() || 4012 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4013 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4014 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4015 } 4016 } 4017 4018 // If the condition is not legal, see if we can find an equivalent one 4019 // which is legal. 4020 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4021 // If the comparison was an awkward floating-point == or != and one of 4022 // the comparison operands is infinity or negative infinity, convert the 4023 // condition to a less-awkward <= or >=. 4024 if (CFP->getValueAPF().isInfinity()) { 4025 bool IsNegInf = CFP->getValueAPF().isNegative(); 4026 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4027 switch (Cond) { 4028 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4029 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4030 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4031 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4032 default: break; 4033 } 4034 if (NewCond != ISD::SETCC_INVALID && 4035 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4036 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4037 } 4038 } 4039 } 4040 4041 if (N0 == N1) { 4042 // The sext(setcc()) => setcc() optimization relies on the appropriate 4043 // constant being emitted. 4044 assert(!N0.getValueType().isInteger() && 4045 "Integer types should be handled by FoldSetCC"); 4046 4047 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4048 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4049 if (UOF == 2) // FP operators that are undefined on NaNs. 4050 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4051 if (UOF == unsigned(EqTrue)) 4052 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4053 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4054 // if it is not already. 4055 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4056 if (NewCond != Cond && 4057 (DCI.isBeforeLegalizeOps() || 4058 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4059 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4060 } 4061 4062 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4063 N0.getValueType().isInteger()) { 4064 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4065 N0.getOpcode() == ISD::XOR) { 4066 // Simplify (X+Y) == (X+Z) --> Y == Z 4067 if (N0.getOpcode() == N1.getOpcode()) { 4068 if (N0.getOperand(0) == N1.getOperand(0)) 4069 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4070 if (N0.getOperand(1) == N1.getOperand(1)) 4071 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4072 if (isCommutativeBinOp(N0.getOpcode())) { 4073 // If X op Y == Y op X, try other combinations. 4074 if (N0.getOperand(0) == N1.getOperand(1)) 4075 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4076 Cond); 4077 if (N0.getOperand(1) == N1.getOperand(0)) 4078 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4079 Cond); 4080 } 4081 } 4082 4083 // If RHS is a legal immediate value for a compare instruction, we need 4084 // to be careful about increasing register pressure needlessly. 4085 bool LegalRHSImm = false; 4086 4087 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4088 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4089 // Turn (X+C1) == C2 --> X == C2-C1 4090 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4091 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4092 DAG.getConstant(RHSC->getAPIntValue()- 4093 LHSR->getAPIntValue(), 4094 dl, N0.getValueType()), Cond); 4095 } 4096 4097 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4098 if (N0.getOpcode() == ISD::XOR) 4099 // If we know that all of the inverted bits are zero, don't bother 4100 // performing the inversion. 4101 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4102 return 4103 DAG.getSetCC(dl, VT, N0.getOperand(0), 4104 DAG.getConstant(LHSR->getAPIntValue() ^ 4105 RHSC->getAPIntValue(), 4106 dl, N0.getValueType()), 4107 Cond); 4108 } 4109 4110 // Turn (C1-X) == C2 --> X == C1-C2 4111 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4112 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4113 return 4114 DAG.getSetCC(dl, VT, N0.getOperand(1), 4115 DAG.getConstant(SUBC->getAPIntValue() - 4116 RHSC->getAPIntValue(), 4117 dl, N0.getValueType()), 4118 Cond); 4119 } 4120 } 4121 4122 // Could RHSC fold directly into a compare? 4123 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4124 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4125 } 4126 4127 // (X+Y) == X --> Y == 0 and similar folds. 4128 // Don't do this if X is an immediate that can fold into a cmp 4129 // instruction and X+Y has other uses. It could be an induction variable 4130 // chain, and the transform would increase register pressure. 4131 if (!LegalRHSImm || N0.hasOneUse()) 4132 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4133 return V; 4134 } 4135 4136 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4137 N1.getOpcode() == ISD::XOR) 4138 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4139 return V; 4140 4141 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4142 return V; 4143 } 4144 4145 // Fold remainder of division by a constant. 4146 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4147 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4148 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4149 4150 // When division is cheap or optimizing for minimum size, 4151 // fall through to DIVREM creation by skipping this fold. 4152 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4153 if (N0.getOpcode() == ISD::UREM) { 4154 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4155 return Folded; 4156 } else if (N0.getOpcode() == ISD::SREM) { 4157 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4158 return Folded; 4159 } 4160 } 4161 } 4162 4163 // Fold away ALL boolean setcc's. 4164 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4165 SDValue Temp; 4166 switch (Cond) { 4167 default: llvm_unreachable("Unknown integer setcc!"); 4168 case ISD::SETEQ: // X == Y -> ~(X^Y) 4169 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4170 N0 = DAG.getNOT(dl, Temp, OpVT); 4171 if (!DCI.isCalledByLegalizer()) 4172 DCI.AddToWorklist(Temp.getNode()); 4173 break; 4174 case ISD::SETNE: // X != Y --> (X^Y) 4175 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4176 break; 4177 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4178 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4179 Temp = DAG.getNOT(dl, N0, OpVT); 4180 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4181 if (!DCI.isCalledByLegalizer()) 4182 DCI.AddToWorklist(Temp.getNode()); 4183 break; 4184 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4185 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4186 Temp = DAG.getNOT(dl, N1, OpVT); 4187 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4188 if (!DCI.isCalledByLegalizer()) 4189 DCI.AddToWorklist(Temp.getNode()); 4190 break; 4191 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4192 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4193 Temp = DAG.getNOT(dl, N0, OpVT); 4194 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4195 if (!DCI.isCalledByLegalizer()) 4196 DCI.AddToWorklist(Temp.getNode()); 4197 break; 4198 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4199 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4200 Temp = DAG.getNOT(dl, N1, OpVT); 4201 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4202 break; 4203 } 4204 if (VT.getScalarType() != MVT::i1) { 4205 if (!DCI.isCalledByLegalizer()) 4206 DCI.AddToWorklist(N0.getNode()); 4207 // FIXME: If running after legalize, we probably can't do this. 4208 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4209 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4210 } 4211 return N0; 4212 } 4213 4214 // Could not fold it. 4215 return SDValue(); 4216 } 4217 4218 /// Returns true (and the GlobalValue and the offset) if the node is a 4219 /// GlobalAddress + offset. 4220 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4221 int64_t &Offset) const { 4222 4223 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4224 4225 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4226 GA = GASD->getGlobal(); 4227 Offset += GASD->getOffset(); 4228 return true; 4229 } 4230 4231 if (N->getOpcode() == ISD::ADD) { 4232 SDValue N1 = N->getOperand(0); 4233 SDValue N2 = N->getOperand(1); 4234 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4235 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4236 Offset += V->getSExtValue(); 4237 return true; 4238 } 4239 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4240 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4241 Offset += V->getSExtValue(); 4242 return true; 4243 } 4244 } 4245 } 4246 4247 return false; 4248 } 4249 4250 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4251 DAGCombinerInfo &DCI) const { 4252 // Default implementation: no optimization. 4253 return SDValue(); 4254 } 4255 4256 //===----------------------------------------------------------------------===// 4257 // Inline Assembler Implementation Methods 4258 //===----------------------------------------------------------------------===// 4259 4260 TargetLowering::ConstraintType 4261 TargetLowering::getConstraintType(StringRef Constraint) const { 4262 unsigned S = Constraint.size(); 4263 4264 if (S == 1) { 4265 switch (Constraint[0]) { 4266 default: break; 4267 case 'r': 4268 return C_RegisterClass; 4269 case 'm': // memory 4270 case 'o': // offsetable 4271 case 'V': // not offsetable 4272 return C_Memory; 4273 case 'n': // Simple Integer 4274 case 'E': // Floating Point Constant 4275 case 'F': // Floating Point Constant 4276 return C_Immediate; 4277 case 'i': // Simple Integer or Relocatable Constant 4278 case 's': // Relocatable Constant 4279 case 'p': // Address. 4280 case 'X': // Allow ANY value. 4281 case 'I': // Target registers. 4282 case 'J': 4283 case 'K': 4284 case 'L': 4285 case 'M': 4286 case 'N': 4287 case 'O': 4288 case 'P': 4289 case '<': 4290 case '>': 4291 return C_Other; 4292 } 4293 } 4294 4295 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4296 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4297 return C_Memory; 4298 return C_Register; 4299 } 4300 return C_Unknown; 4301 } 4302 4303 /// Try to replace an X constraint, which matches anything, with another that 4304 /// has more specific requirements based on the type of the corresponding 4305 /// operand. 4306 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4307 if (ConstraintVT.isInteger()) 4308 return "r"; 4309 if (ConstraintVT.isFloatingPoint()) 4310 return "f"; // works for many targets 4311 return nullptr; 4312 } 4313 4314 SDValue TargetLowering::LowerAsmOutputForConstraint( 4315 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4316 SelectionDAG &DAG) const { 4317 return SDValue(); 4318 } 4319 4320 /// Lower the specified operand into the Ops vector. 4321 /// If it is invalid, don't add anything to Ops. 4322 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4323 std::string &Constraint, 4324 std::vector<SDValue> &Ops, 4325 SelectionDAG &DAG) const { 4326 4327 if (Constraint.length() > 1) return; 4328 4329 char ConstraintLetter = Constraint[0]; 4330 switch (ConstraintLetter) { 4331 default: break; 4332 case 'X': // Allows any operand; labels (basic block) use this. 4333 if (Op.getOpcode() == ISD::BasicBlock || 4334 Op.getOpcode() == ISD::TargetBlockAddress) { 4335 Ops.push_back(Op); 4336 return; 4337 } 4338 LLVM_FALLTHROUGH; 4339 case 'i': // Simple Integer or Relocatable Constant 4340 case 'n': // Simple Integer 4341 case 's': { // Relocatable Constant 4342 4343 GlobalAddressSDNode *GA; 4344 ConstantSDNode *C; 4345 BlockAddressSDNode *BA; 4346 uint64_t Offset = 0; 4347 4348 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4349 // etc., since getelementpointer is variadic. We can't use 4350 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4351 // while in this case the GA may be furthest from the root node which is 4352 // likely an ISD::ADD. 4353 while (1) { 4354 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4355 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4356 GA->getValueType(0), 4357 Offset + GA->getOffset())); 4358 return; 4359 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4360 ConstraintLetter != 's') { 4361 // gcc prints these as sign extended. Sign extend value to 64 bits 4362 // now; without this it would get ZExt'd later in 4363 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4364 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4365 BooleanContent BCont = getBooleanContents(MVT::i64); 4366 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4367 : ISD::SIGN_EXTEND; 4368 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4369 : C->getSExtValue(); 4370 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4371 SDLoc(C), MVT::i64)); 4372 return; 4373 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4374 ConstraintLetter != 'n') { 4375 Ops.push_back(DAG.getTargetBlockAddress( 4376 BA->getBlockAddress(), BA->getValueType(0), 4377 Offset + BA->getOffset(), BA->getTargetFlags())); 4378 return; 4379 } else { 4380 const unsigned OpCode = Op.getOpcode(); 4381 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4382 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4383 Op = Op.getOperand(1); 4384 // Subtraction is not commutative. 4385 else if (OpCode == ISD::ADD && 4386 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4387 Op = Op.getOperand(0); 4388 else 4389 return; 4390 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4391 continue; 4392 } 4393 } 4394 return; 4395 } 4396 break; 4397 } 4398 } 4399 } 4400 4401 std::pair<unsigned, const TargetRegisterClass *> 4402 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4403 StringRef Constraint, 4404 MVT VT) const { 4405 if (Constraint.empty() || Constraint[0] != '{') 4406 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4407 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4408 4409 // Remove the braces from around the name. 4410 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4411 4412 std::pair<unsigned, const TargetRegisterClass *> R = 4413 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4414 4415 // Figure out which register class contains this reg. 4416 for (const TargetRegisterClass *RC : RI->regclasses()) { 4417 // If none of the value types for this register class are valid, we 4418 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4419 if (!isLegalRC(*RI, *RC)) 4420 continue; 4421 4422 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4423 I != E; ++I) { 4424 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4425 std::pair<unsigned, const TargetRegisterClass *> S = 4426 std::make_pair(*I, RC); 4427 4428 // If this register class has the requested value type, return it, 4429 // otherwise keep searching and return the first class found 4430 // if no other is found which explicitly has the requested type. 4431 if (RI->isTypeLegalForClass(*RC, VT)) 4432 return S; 4433 if (!R.second) 4434 R = S; 4435 } 4436 } 4437 } 4438 4439 return R; 4440 } 4441 4442 //===----------------------------------------------------------------------===// 4443 // Constraint Selection. 4444 4445 /// Return true of this is an input operand that is a matching constraint like 4446 /// "4". 4447 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4448 assert(!ConstraintCode.empty() && "No known constraint!"); 4449 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4450 } 4451 4452 /// If this is an input matching constraint, this method returns the output 4453 /// operand it matches. 4454 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4455 assert(!ConstraintCode.empty() && "No known constraint!"); 4456 return atoi(ConstraintCode.c_str()); 4457 } 4458 4459 /// Split up the constraint string from the inline assembly value into the 4460 /// specific constraints and their prefixes, and also tie in the associated 4461 /// operand values. 4462 /// If this returns an empty vector, and if the constraint string itself 4463 /// isn't empty, there was an error parsing. 4464 TargetLowering::AsmOperandInfoVector 4465 TargetLowering::ParseConstraints(const DataLayout &DL, 4466 const TargetRegisterInfo *TRI, 4467 const CallBase &Call) const { 4468 /// Information about all of the constraints. 4469 AsmOperandInfoVector ConstraintOperands; 4470 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4471 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4472 4473 // Do a prepass over the constraints, canonicalizing them, and building up the 4474 // ConstraintOperands list. 4475 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4476 unsigned ResNo = 0; // ResNo - The result number of the next output. 4477 4478 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4479 ConstraintOperands.emplace_back(std::move(CI)); 4480 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4481 4482 // Update multiple alternative constraint count. 4483 if (OpInfo.multipleAlternatives.size() > maCount) 4484 maCount = OpInfo.multipleAlternatives.size(); 4485 4486 OpInfo.ConstraintVT = MVT::Other; 4487 4488 // Compute the value type for each operand. 4489 switch (OpInfo.Type) { 4490 case InlineAsm::isOutput: 4491 // Indirect outputs just consume an argument. 4492 if (OpInfo.isIndirect) { 4493 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4494 break; 4495 } 4496 4497 // The return value of the call is this value. As such, there is no 4498 // corresponding argument. 4499 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4500 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4501 OpInfo.ConstraintVT = 4502 getSimpleValueType(DL, STy->getElementType(ResNo)); 4503 } else { 4504 assert(ResNo == 0 && "Asm only has one result!"); 4505 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4506 } 4507 ++ResNo; 4508 break; 4509 case InlineAsm::isInput: 4510 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4511 break; 4512 case InlineAsm::isClobber: 4513 // Nothing to do. 4514 break; 4515 } 4516 4517 if (OpInfo.CallOperandVal) { 4518 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4519 if (OpInfo.isIndirect) { 4520 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4521 if (!PtrTy) 4522 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4523 OpTy = PtrTy->getElementType(); 4524 } 4525 4526 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4527 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4528 if (STy->getNumElements() == 1) 4529 OpTy = STy->getElementType(0); 4530 4531 // If OpTy is not a single value, it may be a struct/union that we 4532 // can tile with integers. 4533 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4534 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4535 switch (BitSize) { 4536 default: break; 4537 case 1: 4538 case 8: 4539 case 16: 4540 case 32: 4541 case 64: 4542 case 128: 4543 OpInfo.ConstraintVT = 4544 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4545 break; 4546 } 4547 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4548 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4549 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4550 } else { 4551 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4552 } 4553 } 4554 } 4555 4556 // If we have multiple alternative constraints, select the best alternative. 4557 if (!ConstraintOperands.empty()) { 4558 if (maCount) { 4559 unsigned bestMAIndex = 0; 4560 int bestWeight = -1; 4561 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4562 int weight = -1; 4563 unsigned maIndex; 4564 // Compute the sums of the weights for each alternative, keeping track 4565 // of the best (highest weight) one so far. 4566 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4567 int weightSum = 0; 4568 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4569 cIndex != eIndex; ++cIndex) { 4570 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4571 if (OpInfo.Type == InlineAsm::isClobber) 4572 continue; 4573 4574 // If this is an output operand with a matching input operand, 4575 // look up the matching input. If their types mismatch, e.g. one 4576 // is an integer, the other is floating point, or their sizes are 4577 // different, flag it as an maCantMatch. 4578 if (OpInfo.hasMatchingInput()) { 4579 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4580 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4581 if ((OpInfo.ConstraintVT.isInteger() != 4582 Input.ConstraintVT.isInteger()) || 4583 (OpInfo.ConstraintVT.getSizeInBits() != 4584 Input.ConstraintVT.getSizeInBits())) { 4585 weightSum = -1; // Can't match. 4586 break; 4587 } 4588 } 4589 } 4590 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4591 if (weight == -1) { 4592 weightSum = -1; 4593 break; 4594 } 4595 weightSum += weight; 4596 } 4597 // Update best. 4598 if (weightSum > bestWeight) { 4599 bestWeight = weightSum; 4600 bestMAIndex = maIndex; 4601 } 4602 } 4603 4604 // Now select chosen alternative in each constraint. 4605 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4606 cIndex != eIndex; ++cIndex) { 4607 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4608 if (cInfo.Type == InlineAsm::isClobber) 4609 continue; 4610 cInfo.selectAlternative(bestMAIndex); 4611 } 4612 } 4613 } 4614 4615 // Check and hook up tied operands, choose constraint code to use. 4616 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4617 cIndex != eIndex; ++cIndex) { 4618 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4619 4620 // If this is an output operand with a matching input operand, look up the 4621 // matching input. If their types mismatch, e.g. one is an integer, the 4622 // other is floating point, or their sizes are different, flag it as an 4623 // error. 4624 if (OpInfo.hasMatchingInput()) { 4625 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4626 4627 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4628 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4629 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4630 OpInfo.ConstraintVT); 4631 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4632 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4633 Input.ConstraintVT); 4634 if ((OpInfo.ConstraintVT.isInteger() != 4635 Input.ConstraintVT.isInteger()) || 4636 (MatchRC.second != InputRC.second)) { 4637 report_fatal_error("Unsupported asm: input constraint" 4638 " with a matching output constraint of" 4639 " incompatible type!"); 4640 } 4641 } 4642 } 4643 } 4644 4645 return ConstraintOperands; 4646 } 4647 4648 /// Return an integer indicating how general CT is. 4649 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4650 switch (CT) { 4651 case TargetLowering::C_Immediate: 4652 case TargetLowering::C_Other: 4653 case TargetLowering::C_Unknown: 4654 return 0; 4655 case TargetLowering::C_Register: 4656 return 1; 4657 case TargetLowering::C_RegisterClass: 4658 return 2; 4659 case TargetLowering::C_Memory: 4660 return 3; 4661 } 4662 llvm_unreachable("Invalid constraint type"); 4663 } 4664 4665 /// Examine constraint type and operand type and determine a weight value. 4666 /// This object must already have been set up with the operand type 4667 /// and the current alternative constraint selected. 4668 TargetLowering::ConstraintWeight 4669 TargetLowering::getMultipleConstraintMatchWeight( 4670 AsmOperandInfo &info, int maIndex) const { 4671 InlineAsm::ConstraintCodeVector *rCodes; 4672 if (maIndex >= (int)info.multipleAlternatives.size()) 4673 rCodes = &info.Codes; 4674 else 4675 rCodes = &info.multipleAlternatives[maIndex].Codes; 4676 ConstraintWeight BestWeight = CW_Invalid; 4677 4678 // Loop over the options, keeping track of the most general one. 4679 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4680 ConstraintWeight weight = 4681 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4682 if (weight > BestWeight) 4683 BestWeight = weight; 4684 } 4685 4686 return BestWeight; 4687 } 4688 4689 /// Examine constraint type and operand type and determine a weight value. 4690 /// This object must already have been set up with the operand type 4691 /// and the current alternative constraint selected. 4692 TargetLowering::ConstraintWeight 4693 TargetLowering::getSingleConstraintMatchWeight( 4694 AsmOperandInfo &info, const char *constraint) const { 4695 ConstraintWeight weight = CW_Invalid; 4696 Value *CallOperandVal = info.CallOperandVal; 4697 // If we don't have a value, we can't do a match, 4698 // but allow it at the lowest weight. 4699 if (!CallOperandVal) 4700 return CW_Default; 4701 // Look at the constraint type. 4702 switch (*constraint) { 4703 case 'i': // immediate integer. 4704 case 'n': // immediate integer with a known value. 4705 if (isa<ConstantInt>(CallOperandVal)) 4706 weight = CW_Constant; 4707 break; 4708 case 's': // non-explicit intregal immediate. 4709 if (isa<GlobalValue>(CallOperandVal)) 4710 weight = CW_Constant; 4711 break; 4712 case 'E': // immediate float if host format. 4713 case 'F': // immediate float. 4714 if (isa<ConstantFP>(CallOperandVal)) 4715 weight = CW_Constant; 4716 break; 4717 case '<': // memory operand with autodecrement. 4718 case '>': // memory operand with autoincrement. 4719 case 'm': // memory operand. 4720 case 'o': // offsettable memory operand 4721 case 'V': // non-offsettable memory operand 4722 weight = CW_Memory; 4723 break; 4724 case 'r': // general register. 4725 case 'g': // general register, memory operand or immediate integer. 4726 // note: Clang converts "g" to "imr". 4727 if (CallOperandVal->getType()->isIntegerTy()) 4728 weight = CW_Register; 4729 break; 4730 case 'X': // any operand. 4731 default: 4732 weight = CW_Default; 4733 break; 4734 } 4735 return weight; 4736 } 4737 4738 /// If there are multiple different constraints that we could pick for this 4739 /// operand (e.g. "imr") try to pick the 'best' one. 4740 /// This is somewhat tricky: constraints fall into four classes: 4741 /// Other -> immediates and magic values 4742 /// Register -> one specific register 4743 /// RegisterClass -> a group of regs 4744 /// Memory -> memory 4745 /// Ideally, we would pick the most specific constraint possible: if we have 4746 /// something that fits into a register, we would pick it. The problem here 4747 /// is that if we have something that could either be in a register or in 4748 /// memory that use of the register could cause selection of *other* 4749 /// operands to fail: they might only succeed if we pick memory. Because of 4750 /// this the heuristic we use is: 4751 /// 4752 /// 1) If there is an 'other' constraint, and if the operand is valid for 4753 /// that constraint, use it. This makes us take advantage of 'i' 4754 /// constraints when available. 4755 /// 2) Otherwise, pick the most general constraint present. This prefers 4756 /// 'm' over 'r', for example. 4757 /// 4758 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4759 const TargetLowering &TLI, 4760 SDValue Op, SelectionDAG *DAG) { 4761 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4762 unsigned BestIdx = 0; 4763 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4764 int BestGenerality = -1; 4765 4766 // Loop over the options, keeping track of the most general one. 4767 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4768 TargetLowering::ConstraintType CType = 4769 TLI.getConstraintType(OpInfo.Codes[i]); 4770 4771 // Indirect 'other' or 'immediate' constraints are not allowed. 4772 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4773 CType == TargetLowering::C_Register || 4774 CType == TargetLowering::C_RegisterClass)) 4775 continue; 4776 4777 // If this is an 'other' or 'immediate' constraint, see if the operand is 4778 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4779 // the operand is an integer in the range [0..31] we want to use I (saving a 4780 // load of a register), otherwise we must use 'r'. 4781 if ((CType == TargetLowering::C_Other || 4782 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4783 assert(OpInfo.Codes[i].size() == 1 && 4784 "Unhandled multi-letter 'other' constraint"); 4785 std::vector<SDValue> ResultOps; 4786 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4787 ResultOps, *DAG); 4788 if (!ResultOps.empty()) { 4789 BestType = CType; 4790 BestIdx = i; 4791 break; 4792 } 4793 } 4794 4795 // Things with matching constraints can only be registers, per gcc 4796 // documentation. This mainly affects "g" constraints. 4797 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4798 continue; 4799 4800 // This constraint letter is more general than the previous one, use it. 4801 int Generality = getConstraintGenerality(CType); 4802 if (Generality > BestGenerality) { 4803 BestType = CType; 4804 BestIdx = i; 4805 BestGenerality = Generality; 4806 } 4807 } 4808 4809 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4810 OpInfo.ConstraintType = BestType; 4811 } 4812 4813 /// Determines the constraint code and constraint type to use for the specific 4814 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4815 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4816 SDValue Op, 4817 SelectionDAG *DAG) const { 4818 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4819 4820 // Single-letter constraints ('r') are very common. 4821 if (OpInfo.Codes.size() == 1) { 4822 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4823 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4824 } else { 4825 ChooseConstraint(OpInfo, *this, Op, DAG); 4826 } 4827 4828 // 'X' matches anything. 4829 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4830 // Labels and constants are handled elsewhere ('X' is the only thing 4831 // that matches labels). For Functions, the type here is the type of 4832 // the result, which is not what we want to look at; leave them alone. 4833 Value *v = OpInfo.CallOperandVal; 4834 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4835 OpInfo.CallOperandVal = v; 4836 return; 4837 } 4838 4839 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4840 return; 4841 4842 // Otherwise, try to resolve it to something we know about by looking at 4843 // the actual operand type. 4844 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4845 OpInfo.ConstraintCode = Repl; 4846 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4847 } 4848 } 4849 } 4850 4851 /// Given an exact SDIV by a constant, create a multiplication 4852 /// with the multiplicative inverse of the constant. 4853 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4854 const SDLoc &dl, SelectionDAG &DAG, 4855 SmallVectorImpl<SDNode *> &Created) { 4856 SDValue Op0 = N->getOperand(0); 4857 SDValue Op1 = N->getOperand(1); 4858 EVT VT = N->getValueType(0); 4859 EVT SVT = VT.getScalarType(); 4860 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4861 EVT ShSVT = ShVT.getScalarType(); 4862 4863 bool UseSRA = false; 4864 SmallVector<SDValue, 16> Shifts, Factors; 4865 4866 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4867 if (C->isNullValue()) 4868 return false; 4869 APInt Divisor = C->getAPIntValue(); 4870 unsigned Shift = Divisor.countTrailingZeros(); 4871 if (Shift) { 4872 Divisor.ashrInPlace(Shift); 4873 UseSRA = true; 4874 } 4875 // Calculate the multiplicative inverse, using Newton's method. 4876 APInt t; 4877 APInt Factor = Divisor; 4878 while ((t = Divisor * Factor) != 1) 4879 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4880 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4881 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4882 return true; 4883 }; 4884 4885 // Collect all magic values from the build vector. 4886 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4887 return SDValue(); 4888 4889 SDValue Shift, Factor; 4890 if (VT.isVector()) { 4891 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4892 Factor = DAG.getBuildVector(VT, dl, Factors); 4893 } else { 4894 Shift = Shifts[0]; 4895 Factor = Factors[0]; 4896 } 4897 4898 SDValue Res = Op0; 4899 4900 // Shift the value upfront if it is even, so the LSB is one. 4901 if (UseSRA) { 4902 // TODO: For UDIV use SRL instead of SRA. 4903 SDNodeFlags Flags; 4904 Flags.setExact(true); 4905 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4906 Created.push_back(Res.getNode()); 4907 } 4908 4909 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4910 } 4911 4912 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4913 SelectionDAG &DAG, 4914 SmallVectorImpl<SDNode *> &Created) const { 4915 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4916 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4917 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4918 return SDValue(N, 0); // Lower SDIV as SDIV 4919 return SDValue(); 4920 } 4921 4922 /// Given an ISD::SDIV node expressing a divide by constant, 4923 /// return a DAG expression to select that will generate the same value by 4924 /// multiplying by a magic number. 4925 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4926 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4927 bool IsAfterLegalization, 4928 SmallVectorImpl<SDNode *> &Created) const { 4929 SDLoc dl(N); 4930 EVT VT = N->getValueType(0); 4931 EVT SVT = VT.getScalarType(); 4932 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4933 EVT ShSVT = ShVT.getScalarType(); 4934 unsigned EltBits = VT.getScalarSizeInBits(); 4935 4936 // Check to see if we can do this. 4937 // FIXME: We should be more aggressive here. 4938 if (!isTypeLegal(VT)) 4939 return SDValue(); 4940 4941 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4942 if (N->getFlags().hasExact()) 4943 return BuildExactSDIV(*this, N, dl, DAG, Created); 4944 4945 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4946 4947 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4948 if (C->isNullValue()) 4949 return false; 4950 4951 const APInt &Divisor = C->getAPIntValue(); 4952 APInt::ms magics = Divisor.magic(); 4953 int NumeratorFactor = 0; 4954 int ShiftMask = -1; 4955 4956 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4957 // If d is +1/-1, we just multiply the numerator by +1/-1. 4958 NumeratorFactor = Divisor.getSExtValue(); 4959 magics.m = 0; 4960 magics.s = 0; 4961 ShiftMask = 0; 4962 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4963 // If d > 0 and m < 0, add the numerator. 4964 NumeratorFactor = 1; 4965 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4966 // If d < 0 and m > 0, subtract the numerator. 4967 NumeratorFactor = -1; 4968 } 4969 4970 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4971 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4972 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4973 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4974 return true; 4975 }; 4976 4977 SDValue N0 = N->getOperand(0); 4978 SDValue N1 = N->getOperand(1); 4979 4980 // Collect the shifts / magic values from each element. 4981 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4982 return SDValue(); 4983 4984 SDValue MagicFactor, Factor, Shift, ShiftMask; 4985 if (VT.isVector()) { 4986 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4987 Factor = DAG.getBuildVector(VT, dl, Factors); 4988 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4989 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4990 } else { 4991 MagicFactor = MagicFactors[0]; 4992 Factor = Factors[0]; 4993 Shift = Shifts[0]; 4994 ShiftMask = ShiftMasks[0]; 4995 } 4996 4997 // Multiply the numerator (operand 0) by the magic value. 4998 // FIXME: We should support doing a MUL in a wider type. 4999 SDValue Q; 5000 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 5001 : isOperationLegalOrCustom(ISD::MULHS, VT)) 5002 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 5003 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 5004 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 5005 SDValue LoHi = 5006 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 5007 Q = SDValue(LoHi.getNode(), 1); 5008 } else 5009 return SDValue(); // No mulhs or equivalent. 5010 Created.push_back(Q.getNode()); 5011 5012 // (Optionally) Add/subtract the numerator using Factor. 5013 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5014 Created.push_back(Factor.getNode()); 5015 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5016 Created.push_back(Q.getNode()); 5017 5018 // Shift right algebraic by shift value. 5019 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5020 Created.push_back(Q.getNode()); 5021 5022 // Extract the sign bit, mask it and add it to the quotient. 5023 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5024 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5025 Created.push_back(T.getNode()); 5026 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5027 Created.push_back(T.getNode()); 5028 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5029 } 5030 5031 /// Given an ISD::UDIV node expressing a divide by constant, 5032 /// return a DAG expression to select that will generate the same value by 5033 /// multiplying by a magic number. 5034 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5035 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5036 bool IsAfterLegalization, 5037 SmallVectorImpl<SDNode *> &Created) const { 5038 SDLoc dl(N); 5039 EVT VT = N->getValueType(0); 5040 EVT SVT = VT.getScalarType(); 5041 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5042 EVT ShSVT = ShVT.getScalarType(); 5043 unsigned EltBits = VT.getScalarSizeInBits(); 5044 5045 // Check to see if we can do this. 5046 // FIXME: We should be more aggressive here. 5047 if (!isTypeLegal(VT)) 5048 return SDValue(); 5049 5050 bool UseNPQ = false; 5051 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5052 5053 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5054 if (C->isNullValue()) 5055 return false; 5056 // FIXME: We should use a narrower constant when the upper 5057 // bits are known to be zero. 5058 APInt Divisor = C->getAPIntValue(); 5059 APInt::mu magics = Divisor.magicu(); 5060 unsigned PreShift = 0, PostShift = 0; 5061 5062 // If the divisor is even, we can avoid using the expensive fixup by 5063 // shifting the divided value upfront. 5064 if (magics.a != 0 && !Divisor[0]) { 5065 PreShift = Divisor.countTrailingZeros(); 5066 // Get magic number for the shifted divisor. 5067 magics = Divisor.lshr(PreShift).magicu(PreShift); 5068 assert(magics.a == 0 && "Should use cheap fixup now"); 5069 } 5070 5071 APInt Magic = magics.m; 5072 5073 unsigned SelNPQ; 5074 if (magics.a == 0 || Divisor.isOneValue()) { 5075 assert(magics.s < Divisor.getBitWidth() && 5076 "We shouldn't generate an undefined shift!"); 5077 PostShift = magics.s; 5078 SelNPQ = false; 5079 } else { 5080 PostShift = magics.s - 1; 5081 SelNPQ = true; 5082 } 5083 5084 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5085 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5086 NPQFactors.push_back( 5087 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5088 : APInt::getNullValue(EltBits), 5089 dl, SVT)); 5090 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5091 UseNPQ |= SelNPQ; 5092 return true; 5093 }; 5094 5095 SDValue N0 = N->getOperand(0); 5096 SDValue N1 = N->getOperand(1); 5097 5098 // Collect the shifts/magic values from each element. 5099 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5100 return SDValue(); 5101 5102 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5103 if (VT.isVector()) { 5104 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5105 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5106 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5107 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5108 } else { 5109 PreShift = PreShifts[0]; 5110 MagicFactor = MagicFactors[0]; 5111 PostShift = PostShifts[0]; 5112 } 5113 5114 SDValue Q = N0; 5115 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5116 Created.push_back(Q.getNode()); 5117 5118 // FIXME: We should support doing a MUL in a wider type. 5119 auto GetMULHU = [&](SDValue X, SDValue Y) { 5120 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5121 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5122 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5123 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5124 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5125 SDValue LoHi = 5126 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5127 return SDValue(LoHi.getNode(), 1); 5128 } 5129 return SDValue(); // No mulhu or equivalent 5130 }; 5131 5132 // Multiply the numerator (operand 0) by the magic value. 5133 Q = GetMULHU(Q, MagicFactor); 5134 if (!Q) 5135 return SDValue(); 5136 5137 Created.push_back(Q.getNode()); 5138 5139 if (UseNPQ) { 5140 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5141 Created.push_back(NPQ.getNode()); 5142 5143 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5144 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5145 if (VT.isVector()) 5146 NPQ = GetMULHU(NPQ, NPQFactor); 5147 else 5148 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5149 5150 Created.push_back(NPQ.getNode()); 5151 5152 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5153 Created.push_back(Q.getNode()); 5154 } 5155 5156 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5157 Created.push_back(Q.getNode()); 5158 5159 SDValue One = DAG.getConstant(1, dl, VT); 5160 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5161 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5162 } 5163 5164 /// If all values in Values that *don't* match the predicate are same 'splat' 5165 /// value, then replace all values with that splat value. 5166 /// Else, if AlternativeReplacement was provided, then replace all values that 5167 /// do match predicate with AlternativeReplacement value. 5168 static void 5169 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5170 std::function<bool(SDValue)> Predicate, 5171 SDValue AlternativeReplacement = SDValue()) { 5172 SDValue Replacement; 5173 // Is there a value for which the Predicate does *NOT* match? What is it? 5174 auto SplatValue = llvm::find_if_not(Values, Predicate); 5175 if (SplatValue != Values.end()) { 5176 // Does Values consist only of SplatValue's and values matching Predicate? 5177 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5178 return Value == *SplatValue || Predicate(Value); 5179 })) // Then we shall replace values matching predicate with SplatValue. 5180 Replacement = *SplatValue; 5181 } 5182 if (!Replacement) { 5183 // Oops, we did not find the "baseline" splat value. 5184 if (!AlternativeReplacement) 5185 return; // Nothing to do. 5186 // Let's replace with provided value then. 5187 Replacement = AlternativeReplacement; 5188 } 5189 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5190 } 5191 5192 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5193 /// where the divisor is constant and the comparison target is zero, 5194 /// return a DAG expression that will generate the same comparison result 5195 /// using only multiplications, additions and shifts/rotations. 5196 /// Ref: "Hacker's Delight" 10-17. 5197 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5198 SDValue CompTargetNode, 5199 ISD::CondCode Cond, 5200 DAGCombinerInfo &DCI, 5201 const SDLoc &DL) const { 5202 SmallVector<SDNode *, 5> Built; 5203 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5204 DCI, DL, Built)) { 5205 for (SDNode *N : Built) 5206 DCI.AddToWorklist(N); 5207 return Folded; 5208 } 5209 5210 return SDValue(); 5211 } 5212 5213 SDValue 5214 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5215 SDValue CompTargetNode, ISD::CondCode Cond, 5216 DAGCombinerInfo &DCI, const SDLoc &DL, 5217 SmallVectorImpl<SDNode *> &Created) const { 5218 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5219 // - D must be constant, with D = D0 * 2^K where D0 is odd 5220 // - P is the multiplicative inverse of D0 modulo 2^W 5221 // - Q = floor(((2^W) - 1) / D) 5222 // where W is the width of the common type of N and D. 5223 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5224 "Only applicable for (in)equality comparisons."); 5225 5226 SelectionDAG &DAG = DCI.DAG; 5227 5228 EVT VT = REMNode.getValueType(); 5229 EVT SVT = VT.getScalarType(); 5230 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5231 EVT ShSVT = ShVT.getScalarType(); 5232 5233 // If MUL is unavailable, we cannot proceed in any case. 5234 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5235 return SDValue(); 5236 5237 bool ComparingWithAllZeros = true; 5238 bool AllComparisonsWithNonZerosAreTautological = true; 5239 bool HadTautologicalLanes = false; 5240 bool AllLanesAreTautological = true; 5241 bool HadEvenDivisor = false; 5242 bool AllDivisorsArePowerOfTwo = true; 5243 bool HadTautologicalInvertedLanes = false; 5244 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5245 5246 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5247 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5248 if (CDiv->isNullValue()) 5249 return false; 5250 5251 const APInt &D = CDiv->getAPIntValue(); 5252 const APInt &Cmp = CCmp->getAPIntValue(); 5253 5254 ComparingWithAllZeros &= Cmp.isNullValue(); 5255 5256 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5257 // if C2 is not less than C1, the comparison is always false. 5258 // But we will only be able to produce the comparison that will give the 5259 // opposive tautological answer. So this lane would need to be fixed up. 5260 bool TautologicalInvertedLane = D.ule(Cmp); 5261 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5262 5263 // If all lanes are tautological (either all divisors are ones, or divisor 5264 // is not greater than the constant we are comparing with), 5265 // we will prefer to avoid the fold. 5266 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5267 HadTautologicalLanes |= TautologicalLane; 5268 AllLanesAreTautological &= TautologicalLane; 5269 5270 // If we are comparing with non-zero, we need'll need to subtract said 5271 // comparison value from the LHS. But there is no point in doing that if 5272 // every lane where we are comparing with non-zero is tautological.. 5273 if (!Cmp.isNullValue()) 5274 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5275 5276 // Decompose D into D0 * 2^K 5277 unsigned K = D.countTrailingZeros(); 5278 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5279 APInt D0 = D.lshr(K); 5280 5281 // D is even if it has trailing zeros. 5282 HadEvenDivisor |= (K != 0); 5283 // D is a power-of-two if D0 is one. 5284 // If all divisors are power-of-two, we will prefer to avoid the fold. 5285 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5286 5287 // P = inv(D0, 2^W) 5288 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5289 unsigned W = D.getBitWidth(); 5290 APInt P = D0.zext(W + 1) 5291 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5292 .trunc(W); 5293 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5294 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5295 5296 // Q = floor((2^W - 1) u/ D) 5297 // R = ((2^W - 1) u% D) 5298 APInt Q, R; 5299 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5300 5301 // If we are comparing with zero, then that comparison constant is okay, 5302 // else it may need to be one less than that. 5303 if (Cmp.ugt(R)) 5304 Q -= 1; 5305 5306 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5307 "We are expecting that K is always less than all-ones for ShSVT"); 5308 5309 // If the lane is tautological the result can be constant-folded. 5310 if (TautologicalLane) { 5311 // Set P and K amount to a bogus values so we can try to splat them. 5312 P = 0; 5313 K = -1; 5314 // And ensure that comparison constant is tautological, 5315 // it will always compare true/false. 5316 Q = -1; 5317 } 5318 5319 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5320 KAmts.push_back( 5321 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5322 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5323 return true; 5324 }; 5325 5326 SDValue N = REMNode.getOperand(0); 5327 SDValue D = REMNode.getOperand(1); 5328 5329 // Collect the values from each element. 5330 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5331 return SDValue(); 5332 5333 // If all lanes are tautological, the result can be constant-folded. 5334 if (AllLanesAreTautological) 5335 return SDValue(); 5336 5337 // If this is a urem by a powers-of-two, avoid the fold since it can be 5338 // best implemented as a bit test. 5339 if (AllDivisorsArePowerOfTwo) 5340 return SDValue(); 5341 5342 SDValue PVal, KVal, QVal; 5343 if (VT.isVector()) { 5344 if (HadTautologicalLanes) { 5345 // Try to turn PAmts into a splat, since we don't care about the values 5346 // that are currently '0'. If we can't, just keep '0'`s. 5347 turnVectorIntoSplatVector(PAmts, isNullConstant); 5348 // Try to turn KAmts into a splat, since we don't care about the values 5349 // that are currently '-1'. If we can't, change them to '0'`s. 5350 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5351 DAG.getConstant(0, DL, ShSVT)); 5352 } 5353 5354 PVal = DAG.getBuildVector(VT, DL, PAmts); 5355 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5356 QVal = DAG.getBuildVector(VT, DL, QAmts); 5357 } else { 5358 PVal = PAmts[0]; 5359 KVal = KAmts[0]; 5360 QVal = QAmts[0]; 5361 } 5362 5363 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5364 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5365 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5366 assert(CompTargetNode.getValueType() == N.getValueType() && 5367 "Expecting that the types on LHS and RHS of comparisons match."); 5368 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5369 } 5370 5371 // (mul N, P) 5372 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5373 Created.push_back(Op0.getNode()); 5374 5375 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5376 // divisors as a performance improvement, since rotating by 0 is a no-op. 5377 if (HadEvenDivisor) { 5378 // We need ROTR to do this. 5379 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5380 return SDValue(); 5381 SDNodeFlags Flags; 5382 Flags.setExact(true); 5383 // UREM: (rotr (mul N, P), K) 5384 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5385 Created.push_back(Op0.getNode()); 5386 } 5387 5388 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5389 SDValue NewCC = 5390 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5391 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5392 if (!HadTautologicalInvertedLanes) 5393 return NewCC; 5394 5395 // If any lanes previously compared always-false, the NewCC will give 5396 // always-true result for them, so we need to fixup those lanes. 5397 // Or the other way around for inequality predicate. 5398 assert(VT.isVector() && "Can/should only get here for vectors."); 5399 Created.push_back(NewCC.getNode()); 5400 5401 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5402 // if C2 is not less than C1, the comparison is always false. 5403 // But we have produced the comparison that will give the 5404 // opposive tautological answer. So these lanes would need to be fixed up. 5405 SDValue TautologicalInvertedChannels = 5406 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5407 Created.push_back(TautologicalInvertedChannels.getNode()); 5408 5409 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5410 // If we have a vector select, let's replace the comparison results in the 5411 // affected lanes with the correct tautological result. 5412 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5413 DL, SETCCVT, SETCCVT); 5414 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5415 Replacement, NewCC); 5416 } 5417 5418 // Else, we can just invert the comparison result in the appropriate lanes. 5419 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5420 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5421 TautologicalInvertedChannels); 5422 5423 return SDValue(); // Don't know how to lower. 5424 } 5425 5426 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5427 /// where the divisor is constant and the comparison target is zero, 5428 /// return a DAG expression that will generate the same comparison result 5429 /// using only multiplications, additions and shifts/rotations. 5430 /// Ref: "Hacker's Delight" 10-17. 5431 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5432 SDValue CompTargetNode, 5433 ISD::CondCode Cond, 5434 DAGCombinerInfo &DCI, 5435 const SDLoc &DL) const { 5436 SmallVector<SDNode *, 7> Built; 5437 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5438 DCI, DL, Built)) { 5439 assert(Built.size() <= 7 && "Max size prediction failed."); 5440 for (SDNode *N : Built) 5441 DCI.AddToWorklist(N); 5442 return Folded; 5443 } 5444 5445 return SDValue(); 5446 } 5447 5448 SDValue 5449 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5450 SDValue CompTargetNode, ISD::CondCode Cond, 5451 DAGCombinerInfo &DCI, const SDLoc &DL, 5452 SmallVectorImpl<SDNode *> &Created) const { 5453 // Fold: 5454 // (seteq/ne (srem N, D), 0) 5455 // To: 5456 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5457 // 5458 // - D must be constant, with D = D0 * 2^K where D0 is odd 5459 // - P is the multiplicative inverse of D0 modulo 2^W 5460 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5461 // - Q = floor((2 * A) / (2^K)) 5462 // where W is the width of the common type of N and D. 5463 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5464 "Only applicable for (in)equality comparisons."); 5465 5466 SelectionDAG &DAG = DCI.DAG; 5467 5468 EVT VT = REMNode.getValueType(); 5469 EVT SVT = VT.getScalarType(); 5470 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5471 EVT ShSVT = ShVT.getScalarType(); 5472 5473 // If MUL is unavailable, we cannot proceed in any case. 5474 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5475 return SDValue(); 5476 5477 // TODO: Could support comparing with non-zero too. 5478 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5479 if (!CompTarget || !CompTarget->isNullValue()) 5480 return SDValue(); 5481 5482 bool HadIntMinDivisor = false; 5483 bool HadOneDivisor = false; 5484 bool AllDivisorsAreOnes = true; 5485 bool HadEvenDivisor = false; 5486 bool NeedToApplyOffset = false; 5487 bool AllDivisorsArePowerOfTwo = true; 5488 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5489 5490 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5491 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5492 if (C->isNullValue()) 5493 return false; 5494 5495 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5496 5497 // WARNING: this fold is only valid for positive divisors! 5498 APInt D = C->getAPIntValue(); 5499 if (D.isNegative()) 5500 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5501 5502 HadIntMinDivisor |= D.isMinSignedValue(); 5503 5504 // If all divisors are ones, we will prefer to avoid the fold. 5505 HadOneDivisor |= D.isOneValue(); 5506 AllDivisorsAreOnes &= D.isOneValue(); 5507 5508 // Decompose D into D0 * 2^K 5509 unsigned K = D.countTrailingZeros(); 5510 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5511 APInt D0 = D.lshr(K); 5512 5513 if (!D.isMinSignedValue()) { 5514 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5515 // we don't care about this lane in this fold, we'll special-handle it. 5516 HadEvenDivisor |= (K != 0); 5517 } 5518 5519 // D is a power-of-two if D0 is one. This includes INT_MIN. 5520 // If all divisors are power-of-two, we will prefer to avoid the fold. 5521 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5522 5523 // P = inv(D0, 2^W) 5524 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5525 unsigned W = D.getBitWidth(); 5526 APInt P = D0.zext(W + 1) 5527 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5528 .trunc(W); 5529 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5530 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5531 5532 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5533 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5534 A.clearLowBits(K); 5535 5536 if (!D.isMinSignedValue()) { 5537 // If divisor INT_MIN, then we don't care about this lane in this fold, 5538 // we'll special-handle it. 5539 NeedToApplyOffset |= A != 0; 5540 } 5541 5542 // Q = floor((2 * A) / (2^K)) 5543 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5544 5545 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5546 "We are expecting that A is always less than all-ones for SVT"); 5547 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5548 "We are expecting that K is always less than all-ones for ShSVT"); 5549 5550 // If the divisor is 1 the result can be constant-folded. Likewise, we 5551 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5552 if (D.isOneValue()) { 5553 // Set P, A and K to a bogus values so we can try to splat them. 5554 P = 0; 5555 A = -1; 5556 K = -1; 5557 5558 // x ?% 1 == 0 <--> true <--> x u<= -1 5559 Q = -1; 5560 } 5561 5562 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5563 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5564 KAmts.push_back( 5565 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5566 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5567 return true; 5568 }; 5569 5570 SDValue N = REMNode.getOperand(0); 5571 SDValue D = REMNode.getOperand(1); 5572 5573 // Collect the values from each element. 5574 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5575 return SDValue(); 5576 5577 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5578 if (AllDivisorsAreOnes) 5579 return SDValue(); 5580 5581 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5582 // since it can be best implemented as a bit test. 5583 if (AllDivisorsArePowerOfTwo) 5584 return SDValue(); 5585 5586 SDValue PVal, AVal, KVal, QVal; 5587 if (VT.isVector()) { 5588 if (HadOneDivisor) { 5589 // Try to turn PAmts into a splat, since we don't care about the values 5590 // that are currently '0'. If we can't, just keep '0'`s. 5591 turnVectorIntoSplatVector(PAmts, isNullConstant); 5592 // Try to turn AAmts into a splat, since we don't care about the 5593 // values that are currently '-1'. If we can't, change them to '0'`s. 5594 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5595 DAG.getConstant(0, DL, SVT)); 5596 // Try to turn KAmts into a splat, since we don't care about the values 5597 // that are currently '-1'. If we can't, change them to '0'`s. 5598 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5599 DAG.getConstant(0, DL, ShSVT)); 5600 } 5601 5602 PVal = DAG.getBuildVector(VT, DL, PAmts); 5603 AVal = DAG.getBuildVector(VT, DL, AAmts); 5604 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5605 QVal = DAG.getBuildVector(VT, DL, QAmts); 5606 } else { 5607 PVal = PAmts[0]; 5608 AVal = AAmts[0]; 5609 KVal = KAmts[0]; 5610 QVal = QAmts[0]; 5611 } 5612 5613 // (mul N, P) 5614 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5615 Created.push_back(Op0.getNode()); 5616 5617 if (NeedToApplyOffset) { 5618 // We need ADD to do this. 5619 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5620 return SDValue(); 5621 5622 // (add (mul N, P), A) 5623 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5624 Created.push_back(Op0.getNode()); 5625 } 5626 5627 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5628 // divisors as a performance improvement, since rotating by 0 is a no-op. 5629 if (HadEvenDivisor) { 5630 // We need ROTR to do this. 5631 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5632 return SDValue(); 5633 SDNodeFlags Flags; 5634 Flags.setExact(true); 5635 // SREM: (rotr (add (mul N, P), A), K) 5636 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5637 Created.push_back(Op0.getNode()); 5638 } 5639 5640 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5641 SDValue Fold = 5642 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5643 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5644 5645 // If we didn't have lanes with INT_MIN divisor, then we're done. 5646 if (!HadIntMinDivisor) 5647 return Fold; 5648 5649 // That fold is only valid for positive divisors. Which effectively means, 5650 // it is invalid for INT_MIN divisors. So if we have such a lane, 5651 // we must fix-up results for said lanes. 5652 assert(VT.isVector() && "Can/should only get here for vectors."); 5653 5654 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5655 !isOperationLegalOrCustom(ISD::AND, VT) || 5656 !isOperationLegalOrCustom(Cond, VT) || 5657 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5658 return SDValue(); 5659 5660 Created.push_back(Fold.getNode()); 5661 5662 SDValue IntMin = DAG.getConstant( 5663 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5664 SDValue IntMax = DAG.getConstant( 5665 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5666 SDValue Zero = 5667 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5668 5669 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5670 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5671 Created.push_back(DivisorIsIntMin.getNode()); 5672 5673 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5674 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5675 Created.push_back(Masked.getNode()); 5676 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5677 Created.push_back(MaskedIsZero.getNode()); 5678 5679 // To produce final result we need to blend 2 vectors: 'SetCC' and 5680 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5681 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5682 // constant-folded, select can get lowered to a shuffle with constant mask. 5683 SDValue Blended = 5684 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5685 5686 return Blended; 5687 } 5688 5689 bool TargetLowering:: 5690 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5691 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5692 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5693 "be a constant integer"); 5694 return true; 5695 } 5696 5697 return false; 5698 } 5699 5700 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5701 bool LegalOps, bool OptForSize, 5702 NegatibleCost &Cost, 5703 unsigned Depth) const { 5704 // fneg is removable even if it has multiple uses. 5705 if (Op.getOpcode() == ISD::FNEG) { 5706 Cost = NegatibleCost::Cheaper; 5707 return Op.getOperand(0); 5708 } 5709 5710 // Don't recurse exponentially. 5711 if (Depth > SelectionDAG::MaxRecursionDepth) 5712 return SDValue(); 5713 5714 // Pre-increment recursion depth for use in recursive calls. 5715 ++Depth; 5716 const SDNodeFlags Flags = Op->getFlags(); 5717 const TargetOptions &Options = DAG.getTarget().Options; 5718 EVT VT = Op.getValueType(); 5719 unsigned Opcode = Op.getOpcode(); 5720 5721 // Don't allow anything with multiple uses unless we know it is free. 5722 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5723 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5724 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5725 if (!IsFreeExtend) 5726 return SDValue(); 5727 } 5728 5729 auto RemoveDeadNode = [&](SDValue N) { 5730 if (N && N.getNode()->use_empty()) 5731 DAG.RemoveDeadNode(N.getNode()); 5732 }; 5733 5734 SDLoc DL(Op); 5735 5736 switch (Opcode) { 5737 case ISD::ConstantFP: { 5738 // Don't invert constant FP values after legalization unless the target says 5739 // the negated constant is legal. 5740 bool IsOpLegal = 5741 isOperationLegal(ISD::ConstantFP, VT) || 5742 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5743 OptForSize); 5744 5745 if (LegalOps && !IsOpLegal) 5746 break; 5747 5748 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5749 V.changeSign(); 5750 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5751 5752 // If we already have the use of the negated floating constant, it is free 5753 // to negate it even it has multiple uses. 5754 if (!Op.hasOneUse() && CFP.use_empty()) { 5755 RemoveDeadNode(CFP); 5756 break; 5757 } 5758 Cost = NegatibleCost::Neutral; 5759 return CFP; 5760 } 5761 case ISD::BUILD_VECTOR: { 5762 // Only permit BUILD_VECTOR of constants. 5763 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5764 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5765 })) 5766 break; 5767 5768 bool IsOpLegal = 5769 (isOperationLegal(ISD::ConstantFP, VT) && 5770 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5771 llvm::all_of(Op->op_values(), [&](SDValue N) { 5772 return N.isUndef() || 5773 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5774 OptForSize); 5775 }); 5776 5777 if (LegalOps && !IsOpLegal) 5778 break; 5779 5780 SmallVector<SDValue, 4> Ops; 5781 for (SDValue C : Op->op_values()) { 5782 if (C.isUndef()) { 5783 Ops.push_back(C); 5784 continue; 5785 } 5786 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5787 V.changeSign(); 5788 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5789 } 5790 Cost = NegatibleCost::Neutral; 5791 return DAG.getBuildVector(VT, DL, Ops); 5792 } 5793 case ISD::FADD: { 5794 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5795 break; 5796 5797 // After operation legalization, it might not be legal to create new FSUBs. 5798 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5799 break; 5800 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5801 5802 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5803 NegatibleCost CostX = NegatibleCost::Expensive; 5804 SDValue NegX = 5805 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5806 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5807 NegatibleCost CostY = NegatibleCost::Expensive; 5808 SDValue NegY = 5809 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5810 5811 // Negate the X if its cost is less or equal than Y. 5812 if (NegX && (CostX <= CostY)) { 5813 Cost = CostX; 5814 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5815 if (NegY != N) 5816 RemoveDeadNode(NegY); 5817 return N; 5818 } 5819 5820 // Negate the Y if it is not expensive. 5821 if (NegY) { 5822 Cost = CostY; 5823 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5824 if (NegX != N) 5825 RemoveDeadNode(NegX); 5826 return N; 5827 } 5828 break; 5829 } 5830 case ISD::FSUB: { 5831 // We can't turn -(A-B) into B-A when we honor signed zeros. 5832 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5833 break; 5834 5835 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5836 // fold (fneg (fsub 0, Y)) -> Y 5837 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5838 if (C->isZero()) { 5839 Cost = NegatibleCost::Cheaper; 5840 return Y; 5841 } 5842 5843 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5844 Cost = NegatibleCost::Neutral; 5845 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5846 } 5847 case ISD::FMUL: 5848 case ISD::FDIV: { 5849 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5850 5851 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5852 NegatibleCost CostX = NegatibleCost::Expensive; 5853 SDValue NegX = 5854 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5855 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5856 NegatibleCost CostY = NegatibleCost::Expensive; 5857 SDValue NegY = 5858 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5859 5860 // Negate the X if its cost is less or equal than Y. 5861 if (NegX && (CostX <= CostY)) { 5862 Cost = CostX; 5863 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 5864 if (NegY != N) 5865 RemoveDeadNode(NegY); 5866 return N; 5867 } 5868 5869 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5870 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5871 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5872 break; 5873 5874 // Negate the Y if it is not expensive. 5875 if (NegY) { 5876 Cost = CostY; 5877 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 5878 if (NegX != N) 5879 RemoveDeadNode(NegX); 5880 return N; 5881 } 5882 break; 5883 } 5884 case ISD::FMA: 5885 case ISD::FMAD: { 5886 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5887 break; 5888 5889 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5890 NegatibleCost CostZ = NegatibleCost::Expensive; 5891 SDValue NegZ = 5892 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 5893 // Give up if fail to negate the Z. 5894 if (!NegZ) 5895 break; 5896 5897 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5898 NegatibleCost CostX = NegatibleCost::Expensive; 5899 SDValue NegX = 5900 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5901 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5902 NegatibleCost CostY = NegatibleCost::Expensive; 5903 SDValue NegY = 5904 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5905 5906 // Negate the X if its cost is less or equal than Y. 5907 if (NegX && (CostX <= CostY)) { 5908 Cost = std::min(CostX, CostZ); 5909 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5910 if (NegY != N) 5911 RemoveDeadNode(NegY); 5912 return N; 5913 } 5914 5915 // Negate the Y if it is not expensive. 5916 if (NegY) { 5917 Cost = std::min(CostY, CostZ); 5918 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5919 if (NegX != N) 5920 RemoveDeadNode(NegX); 5921 return N; 5922 } 5923 break; 5924 } 5925 5926 case ISD::FP_EXTEND: 5927 case ISD::FSIN: 5928 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5929 OptForSize, Cost, Depth)) 5930 return DAG.getNode(Opcode, DL, VT, NegV); 5931 break; 5932 case ISD::FP_ROUND: 5933 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5934 OptForSize, Cost, Depth)) 5935 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 5936 break; 5937 } 5938 5939 return SDValue(); 5940 } 5941 5942 //===----------------------------------------------------------------------===// 5943 // Legalization Utilities 5944 //===----------------------------------------------------------------------===// 5945 5946 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5947 SDValue LHS, SDValue RHS, 5948 SmallVectorImpl<SDValue> &Result, 5949 EVT HiLoVT, SelectionDAG &DAG, 5950 MulExpansionKind Kind, SDValue LL, 5951 SDValue LH, SDValue RL, SDValue RH) const { 5952 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5953 Opcode == ISD::SMUL_LOHI); 5954 5955 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5956 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5957 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5958 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5959 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5960 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5961 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5962 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5963 5964 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5965 return false; 5966 5967 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5968 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5969 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5970 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5971 5972 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5973 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5974 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5975 5976 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5977 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5978 bool Signed) -> bool { 5979 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5980 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5981 Hi = SDValue(Lo.getNode(), 1); 5982 return true; 5983 } 5984 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5985 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5986 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5987 return true; 5988 } 5989 return false; 5990 }; 5991 5992 SDValue Lo, Hi; 5993 5994 if (!LL.getNode() && !RL.getNode() && 5995 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5996 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5997 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5998 } 5999 6000 if (!LL.getNode()) 6001 return false; 6002 6003 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6004 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6005 DAG.MaskedValueIsZero(RHS, HighMask)) { 6006 // The inputs are both zero-extended. 6007 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6008 Result.push_back(Lo); 6009 Result.push_back(Hi); 6010 if (Opcode != ISD::MUL) { 6011 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6012 Result.push_back(Zero); 6013 Result.push_back(Zero); 6014 } 6015 return true; 6016 } 6017 } 6018 6019 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 6020 RHSSB > InnerBitSize) { 6021 // The input values are both sign-extended. 6022 // TODO non-MUL case? 6023 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6024 Result.push_back(Lo); 6025 Result.push_back(Hi); 6026 return true; 6027 } 6028 } 6029 6030 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6031 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6032 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6033 // FIXME getShiftAmountTy does not always return a sensible result when VT 6034 // is an illegal type, and so the type may be too small to fit the shift 6035 // amount. Override it with i32. The shift will have to be legalized. 6036 ShiftAmountTy = MVT::i32; 6037 } 6038 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6039 6040 if (!LH.getNode() && !RH.getNode() && 6041 isOperationLegalOrCustom(ISD::SRL, VT) && 6042 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6043 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6044 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6045 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6046 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6047 } 6048 6049 if (!LH.getNode()) 6050 return false; 6051 6052 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6053 return false; 6054 6055 Result.push_back(Lo); 6056 6057 if (Opcode == ISD::MUL) { 6058 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6059 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6060 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6061 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6062 Result.push_back(Hi); 6063 return true; 6064 } 6065 6066 // Compute the full width result. 6067 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6068 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6069 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6070 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6071 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6072 }; 6073 6074 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6075 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6076 return false; 6077 6078 // This is effectively the add part of a multiply-add of half-sized operands, 6079 // so it cannot overflow. 6080 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6081 6082 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6083 return false; 6084 6085 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6086 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6087 6088 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6089 isOperationLegalOrCustom(ISD::ADDE, VT)); 6090 if (UseGlue) 6091 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6092 Merge(Lo, Hi)); 6093 else 6094 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6095 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6096 6097 SDValue Carry = Next.getValue(1); 6098 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6099 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6100 6101 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6102 return false; 6103 6104 if (UseGlue) 6105 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6106 Carry); 6107 else 6108 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6109 Zero, Carry); 6110 6111 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6112 6113 if (Opcode == ISD::SMUL_LOHI) { 6114 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6115 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6116 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6117 6118 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6119 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6120 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6121 } 6122 6123 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6124 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6125 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6126 return true; 6127 } 6128 6129 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6130 SelectionDAG &DAG, MulExpansionKind Kind, 6131 SDValue LL, SDValue LH, SDValue RL, 6132 SDValue RH) const { 6133 SmallVector<SDValue, 2> Result; 6134 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6135 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6136 DAG, Kind, LL, LH, RL, RH); 6137 if (Ok) { 6138 assert(Result.size() == 2); 6139 Lo = Result[0]; 6140 Hi = Result[1]; 6141 } 6142 return Ok; 6143 } 6144 6145 // Check that (every element of) Z is undef or not an exact multiple of BW. 6146 static bool isNonZeroModBitWidth(SDValue Z, unsigned BW) { 6147 return ISD::matchUnaryPredicate( 6148 Z, 6149 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6150 true); 6151 } 6152 6153 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6154 SelectionDAG &DAG) const { 6155 EVT VT = Node->getValueType(0); 6156 6157 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6158 !isOperationLegalOrCustom(ISD::SRL, VT) || 6159 !isOperationLegalOrCustom(ISD::SUB, VT) || 6160 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6161 return false; 6162 6163 SDValue X = Node->getOperand(0); 6164 SDValue Y = Node->getOperand(1); 6165 SDValue Z = Node->getOperand(2); 6166 6167 unsigned BW = VT.getScalarSizeInBits(); 6168 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6169 SDLoc DL(SDValue(Node, 0)); 6170 6171 EVT ShVT = Z.getValueType(); 6172 6173 SDValue ShX, ShY; 6174 SDValue ShAmt, InvShAmt; 6175 if (isNonZeroModBitWidth(Z, BW)) { 6176 // fshl: X << C | Y >> (BW - C) 6177 // fshr: X << (BW - C) | Y >> C 6178 // where C = Z % BW is not zero 6179 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6180 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6181 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6182 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6183 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6184 } else { 6185 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6186 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6187 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6188 if (isPowerOf2_32(BW)) { 6189 // Z % BW -> Z & (BW - 1) 6190 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6191 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6192 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6193 } else { 6194 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6195 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6196 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6197 } 6198 6199 SDValue One = DAG.getConstant(1, DL, ShVT); 6200 if (IsFSHL) { 6201 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6202 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6203 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6204 } else { 6205 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6206 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6207 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6208 } 6209 } 6210 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6211 return true; 6212 } 6213 6214 // TODO: Merge with expandFunnelShift. 6215 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6216 SelectionDAG &DAG) const { 6217 EVT VT = Node->getValueType(0); 6218 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6219 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6220 SDValue Op0 = Node->getOperand(0); 6221 SDValue Op1 = Node->getOperand(1); 6222 SDLoc DL(SDValue(Node, 0)); 6223 6224 EVT ShVT = Op1.getValueType(); 6225 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6226 6227 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6228 "Expecting the type bitwidth to be a power of 2"); 6229 6230 // If a rotate in the other direction is supported, use it. 6231 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6232 if (isOperationLegalOrCustom(RevRot, VT)) { 6233 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6234 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6235 return true; 6236 } 6237 6238 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6239 !isOperationLegalOrCustom(ISD::SRL, VT) || 6240 !isOperationLegalOrCustom(ISD::SUB, VT) || 6241 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6242 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6243 return false; 6244 6245 // Otherwise, 6246 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and -c, w-1))) 6247 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and -c, w-1))) 6248 // 6249 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6250 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6251 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6252 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6253 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6254 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6255 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6256 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6257 return true; 6258 } 6259 6260 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6261 SelectionDAG &DAG) const { 6262 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6263 SDValue Src = Node->getOperand(OpNo); 6264 EVT SrcVT = Src.getValueType(); 6265 EVT DstVT = Node->getValueType(0); 6266 SDLoc dl(SDValue(Node, 0)); 6267 6268 // FIXME: Only f32 to i64 conversions are supported. 6269 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6270 return false; 6271 6272 if (Node->isStrictFPOpcode()) 6273 // When a NaN is converted to an integer a trap is allowed. We can't 6274 // use this expansion here because it would eliminate that trap. Other 6275 // traps are also allowed and cannot be eliminated. See 6276 // IEEE 754-2008 sec 5.8. 6277 return false; 6278 6279 // Expand f32 -> i64 conversion 6280 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6281 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6282 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6283 EVT IntVT = SrcVT.changeTypeToInteger(); 6284 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6285 6286 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6287 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6288 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6289 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6290 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6291 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6292 6293 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6294 6295 SDValue ExponentBits = DAG.getNode( 6296 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6297 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6298 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6299 6300 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6301 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6302 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6303 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6304 6305 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6306 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6307 DAG.getConstant(0x00800000, dl, IntVT)); 6308 6309 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6310 6311 R = DAG.getSelectCC( 6312 dl, Exponent, ExponentLoBit, 6313 DAG.getNode(ISD::SHL, dl, DstVT, R, 6314 DAG.getZExtOrTrunc( 6315 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6316 dl, IntShVT)), 6317 DAG.getNode(ISD::SRL, dl, DstVT, R, 6318 DAG.getZExtOrTrunc( 6319 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6320 dl, IntShVT)), 6321 ISD::SETGT); 6322 6323 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6324 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6325 6326 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6327 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6328 return true; 6329 } 6330 6331 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6332 SDValue &Chain, 6333 SelectionDAG &DAG) const { 6334 SDLoc dl(SDValue(Node, 0)); 6335 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6336 SDValue Src = Node->getOperand(OpNo); 6337 6338 EVT SrcVT = Src.getValueType(); 6339 EVT DstVT = Node->getValueType(0); 6340 EVT SetCCVT = 6341 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6342 EVT DstSetCCVT = 6343 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6344 6345 // Only expand vector types if we have the appropriate vector bit operations. 6346 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6347 ISD::FP_TO_SINT; 6348 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6349 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6350 return false; 6351 6352 // If the maximum float value is smaller then the signed integer range, 6353 // the destination signmask can't be represented by the float, so we can 6354 // just use FP_TO_SINT directly. 6355 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6356 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6357 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6358 if (APFloat::opOverflow & 6359 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6360 if (Node->isStrictFPOpcode()) { 6361 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6362 { Node->getOperand(0), Src }); 6363 Chain = Result.getValue(1); 6364 } else 6365 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6366 return true; 6367 } 6368 6369 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6370 SDValue Sel; 6371 6372 if (Node->isStrictFPOpcode()) { 6373 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6374 Node->getOperand(0), /*IsSignaling*/ true); 6375 Chain = Sel.getValue(1); 6376 } else { 6377 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6378 } 6379 6380 bool Strict = Node->isStrictFPOpcode() || 6381 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6382 6383 if (Strict) { 6384 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6385 // signmask then offset (the result of which should be fully representable). 6386 // Sel = Src < 0x8000000000000000 6387 // FltOfs = select Sel, 0, 0x8000000000000000 6388 // IntOfs = select Sel, 0, 0x8000000000000000 6389 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6390 6391 // TODO: Should any fast-math-flags be set for the FSUB? 6392 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6393 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6394 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6395 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6396 DAG.getConstant(0, dl, DstVT), 6397 DAG.getConstant(SignMask, dl, DstVT)); 6398 SDValue SInt; 6399 if (Node->isStrictFPOpcode()) { 6400 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6401 { Chain, Src, FltOfs }); 6402 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6403 { Val.getValue(1), Val }); 6404 Chain = SInt.getValue(1); 6405 } else { 6406 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6407 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6408 } 6409 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6410 } else { 6411 // Expand based on maximum range of FP_TO_SINT: 6412 // True = fp_to_sint(Src) 6413 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6414 // Result = select (Src < 0x8000000000000000), True, False 6415 6416 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6417 // TODO: Should any fast-math-flags be set for the FSUB? 6418 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6419 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6420 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6421 DAG.getConstant(SignMask, dl, DstVT)); 6422 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6423 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6424 } 6425 return true; 6426 } 6427 6428 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6429 SDValue &Chain, 6430 SelectionDAG &DAG) const { 6431 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6432 SDValue Src = Node->getOperand(OpNo); 6433 EVT SrcVT = Src.getValueType(); 6434 EVT DstVT = Node->getValueType(0); 6435 6436 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6437 return false; 6438 6439 // Only expand vector types if we have the appropriate vector bit operations. 6440 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6441 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6442 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6443 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6444 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6445 return false; 6446 6447 SDLoc dl(SDValue(Node, 0)); 6448 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6449 6450 // Implementation of unsigned i64 to f64 following the algorithm in 6451 // __floatundidf in compiler_rt. This implementation has the advantage 6452 // of performing rounding correctly, both in the default rounding mode 6453 // and in all alternate rounding modes. 6454 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6455 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6456 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6457 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6458 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6459 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6460 6461 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6462 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6463 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6464 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6465 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6466 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6467 if (Node->isStrictFPOpcode()) { 6468 SDValue HiSub = 6469 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6470 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6471 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6472 {HiSub.getValue(1), LoFlt, HiSub}); 6473 Chain = Result.getValue(1); 6474 } else { 6475 SDValue HiSub = 6476 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6477 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6478 } 6479 return true; 6480 } 6481 6482 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6483 SelectionDAG &DAG) const { 6484 SDLoc dl(Node); 6485 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6486 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6487 EVT VT = Node->getValueType(0); 6488 if (isOperationLegalOrCustom(NewOp, VT)) { 6489 SDValue Quiet0 = Node->getOperand(0); 6490 SDValue Quiet1 = Node->getOperand(1); 6491 6492 if (!Node->getFlags().hasNoNaNs()) { 6493 // Insert canonicalizes if it's possible we need to quiet to get correct 6494 // sNaN behavior. 6495 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6496 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6497 Node->getFlags()); 6498 } 6499 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6500 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6501 Node->getFlags()); 6502 } 6503 } 6504 6505 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6506 } 6507 6508 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6509 // instead if there are no NaNs. 6510 if (Node->getFlags().hasNoNaNs()) { 6511 unsigned IEEE2018Op = 6512 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6513 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6514 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6515 Node->getOperand(1), Node->getFlags()); 6516 } 6517 } 6518 6519 // If none of the above worked, but there are no NaNs, then expand to 6520 // a compare/select sequence. This is required for correctness since 6521 // InstCombine might have canonicalized a fcmp+select sequence to a 6522 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6523 // expansion to libcall, we might introduce a link-time dependency 6524 // on libm into a file that originally did not have one. 6525 if (Node->getFlags().hasNoNaNs()) { 6526 ISD::CondCode Pred = 6527 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6528 SDValue Op1 = Node->getOperand(0); 6529 SDValue Op2 = Node->getOperand(1); 6530 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6531 // Copy FMF flags, but always set the no-signed-zeros flag 6532 // as this is implied by the FMINNUM/FMAXNUM semantics. 6533 SDNodeFlags Flags = Node->getFlags(); 6534 Flags.setNoSignedZeros(true); 6535 SelCC->setFlags(Flags); 6536 return SelCC; 6537 } 6538 6539 return SDValue(); 6540 } 6541 6542 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6543 SelectionDAG &DAG) const { 6544 SDLoc dl(Node); 6545 EVT VT = Node->getValueType(0); 6546 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6547 SDValue Op = Node->getOperand(0); 6548 unsigned Len = VT.getScalarSizeInBits(); 6549 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6550 6551 // TODO: Add support for irregular type lengths. 6552 if (!(Len <= 128 && Len % 8 == 0)) 6553 return false; 6554 6555 // Only expand vector types if we have the appropriate vector bit operations. 6556 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6557 !isOperationLegalOrCustom(ISD::SUB, VT) || 6558 !isOperationLegalOrCustom(ISD::SRL, VT) || 6559 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6560 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6561 return false; 6562 6563 // This is the "best" algorithm from 6564 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6565 SDValue Mask55 = 6566 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6567 SDValue Mask33 = 6568 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6569 SDValue Mask0F = 6570 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6571 SDValue Mask01 = 6572 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6573 6574 // v = v - ((v >> 1) & 0x55555555...) 6575 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6576 DAG.getNode(ISD::AND, dl, VT, 6577 DAG.getNode(ISD::SRL, dl, VT, Op, 6578 DAG.getConstant(1, dl, ShVT)), 6579 Mask55)); 6580 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6581 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6582 DAG.getNode(ISD::AND, dl, VT, 6583 DAG.getNode(ISD::SRL, dl, VT, Op, 6584 DAG.getConstant(2, dl, ShVT)), 6585 Mask33)); 6586 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6587 Op = DAG.getNode(ISD::AND, dl, VT, 6588 DAG.getNode(ISD::ADD, dl, VT, Op, 6589 DAG.getNode(ISD::SRL, dl, VT, Op, 6590 DAG.getConstant(4, dl, ShVT))), 6591 Mask0F); 6592 // v = (v * 0x01010101...) >> (Len - 8) 6593 if (Len > 8) 6594 Op = 6595 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6596 DAG.getConstant(Len - 8, dl, ShVT)); 6597 6598 Result = Op; 6599 return true; 6600 } 6601 6602 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6603 SelectionDAG &DAG) const { 6604 SDLoc dl(Node); 6605 EVT VT = Node->getValueType(0); 6606 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6607 SDValue Op = Node->getOperand(0); 6608 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6609 6610 // If the non-ZERO_UNDEF version is supported we can use that instead. 6611 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6612 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6613 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6614 return true; 6615 } 6616 6617 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6618 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6619 EVT SetCCVT = 6620 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6621 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6622 SDValue Zero = DAG.getConstant(0, dl, VT); 6623 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6624 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6625 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6626 return true; 6627 } 6628 6629 // Only expand vector types if we have the appropriate vector bit operations. 6630 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6631 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6632 !isOperationLegalOrCustom(ISD::SRL, VT) || 6633 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6634 return false; 6635 6636 // for now, we do this: 6637 // x = x | (x >> 1); 6638 // x = x | (x >> 2); 6639 // ... 6640 // x = x | (x >>16); 6641 // x = x | (x >>32); // for 64-bit input 6642 // return popcount(~x); 6643 // 6644 // Ref: "Hacker's Delight" by Henry Warren 6645 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6646 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6647 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6648 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6649 } 6650 Op = DAG.getNOT(dl, Op, VT); 6651 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6652 return true; 6653 } 6654 6655 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6656 SelectionDAG &DAG) const { 6657 SDLoc dl(Node); 6658 EVT VT = Node->getValueType(0); 6659 SDValue Op = Node->getOperand(0); 6660 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6661 6662 // If the non-ZERO_UNDEF version is supported we can use that instead. 6663 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6664 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6665 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6666 return true; 6667 } 6668 6669 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6670 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6671 EVT SetCCVT = 6672 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6673 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6674 SDValue Zero = DAG.getConstant(0, dl, VT); 6675 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6676 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6677 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6678 return true; 6679 } 6680 6681 // Only expand vector types if we have the appropriate vector bit operations. 6682 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6683 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6684 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6685 !isOperationLegalOrCustom(ISD::SUB, VT) || 6686 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6687 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6688 return false; 6689 6690 // for now, we use: { return popcount(~x & (x - 1)); } 6691 // unless the target has ctlz but not ctpop, in which case we use: 6692 // { return 32 - nlz(~x & (x-1)); } 6693 // Ref: "Hacker's Delight" by Henry Warren 6694 SDValue Tmp = DAG.getNode( 6695 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6696 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6697 6698 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6699 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6700 Result = 6701 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6702 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6703 return true; 6704 } 6705 6706 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6707 return true; 6708 } 6709 6710 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6711 SelectionDAG &DAG) const { 6712 SDLoc dl(N); 6713 EVT VT = N->getValueType(0); 6714 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6715 SDValue Op = N->getOperand(0); 6716 6717 // Only expand vector types if we have the appropriate vector operations. 6718 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6719 !isOperationLegalOrCustom(ISD::ADD, VT) || 6720 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6721 return false; 6722 6723 SDValue Shift = 6724 DAG.getNode(ISD::SRA, dl, VT, Op, 6725 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6726 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6727 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6728 return true; 6729 } 6730 6731 std::pair<SDValue, SDValue> 6732 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6733 SelectionDAG &DAG) const { 6734 SDLoc SL(LD); 6735 SDValue Chain = LD->getChain(); 6736 SDValue BasePTR = LD->getBasePtr(); 6737 EVT SrcVT = LD->getMemoryVT(); 6738 EVT DstVT = LD->getValueType(0); 6739 ISD::LoadExtType ExtType = LD->getExtensionType(); 6740 6741 unsigned NumElem = SrcVT.getVectorNumElements(); 6742 6743 EVT SrcEltVT = SrcVT.getScalarType(); 6744 EVT DstEltVT = DstVT.getScalarType(); 6745 6746 // A vector must always be stored in memory as-is, i.e. without any padding 6747 // between the elements, since various code depend on it, e.g. in the 6748 // handling of a bitcast of a vector type to int, which may be done with a 6749 // vector store followed by an integer load. A vector that does not have 6750 // elements that are byte-sized must therefore be stored as an integer 6751 // built out of the extracted vector elements. 6752 if (!SrcEltVT.isByteSized()) { 6753 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6754 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6755 6756 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6757 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6758 6759 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6760 SDValue SrcEltBitMask = DAG.getConstant( 6761 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6762 6763 // Load the whole vector and avoid masking off the top bits as it makes 6764 // the codegen worse. 6765 SDValue Load = 6766 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6767 LD->getPointerInfo(), SrcIntVT, LD->getAlignment(), 6768 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6769 6770 SmallVector<SDValue, 8> Vals; 6771 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6772 unsigned ShiftIntoIdx = 6773 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6774 SDValue ShiftAmount = 6775 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6776 LoadVT, SL, /*LegalTypes=*/false); 6777 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6778 SDValue Elt = 6779 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6780 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6781 6782 if (ExtType != ISD::NON_EXTLOAD) { 6783 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6784 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6785 } 6786 6787 Vals.push_back(Scalar); 6788 } 6789 6790 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6791 return std::make_pair(Value, Load.getValue(1)); 6792 } 6793 6794 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6795 assert(SrcEltVT.isByteSized()); 6796 6797 SmallVector<SDValue, 8> Vals; 6798 SmallVector<SDValue, 8> LoadChains; 6799 6800 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6801 SDValue ScalarLoad = 6802 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6803 LD->getPointerInfo().getWithOffset(Idx * Stride), 6804 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6805 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6806 6807 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6808 6809 Vals.push_back(ScalarLoad.getValue(0)); 6810 LoadChains.push_back(ScalarLoad.getValue(1)); 6811 } 6812 6813 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6814 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6815 6816 return std::make_pair(Value, NewChain); 6817 } 6818 6819 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6820 SelectionDAG &DAG) const { 6821 SDLoc SL(ST); 6822 6823 SDValue Chain = ST->getChain(); 6824 SDValue BasePtr = ST->getBasePtr(); 6825 SDValue Value = ST->getValue(); 6826 EVT StVT = ST->getMemoryVT(); 6827 6828 // The type of the data we want to save 6829 EVT RegVT = Value.getValueType(); 6830 EVT RegSclVT = RegVT.getScalarType(); 6831 6832 // The type of data as saved in memory. 6833 EVT MemSclVT = StVT.getScalarType(); 6834 6835 unsigned NumElem = StVT.getVectorNumElements(); 6836 6837 // A vector must always be stored in memory as-is, i.e. without any padding 6838 // between the elements, since various code depend on it, e.g. in the 6839 // handling of a bitcast of a vector type to int, which may be done with a 6840 // vector store followed by an integer load. A vector that does not have 6841 // elements that are byte-sized must therefore be stored as an integer 6842 // built out of the extracted vector elements. 6843 if (!MemSclVT.isByteSized()) { 6844 unsigned NumBits = StVT.getSizeInBits(); 6845 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6846 6847 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6848 6849 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6850 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6851 DAG.getVectorIdxConstant(Idx, SL)); 6852 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6853 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6854 unsigned ShiftIntoIdx = 6855 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6856 SDValue ShiftAmount = 6857 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6858 SDValue ShiftedElt = 6859 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6860 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6861 } 6862 6863 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6864 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6865 ST->getAAInfo()); 6866 } 6867 6868 // Store Stride in bytes 6869 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6870 assert(Stride && "Zero stride!"); 6871 // Extract each of the elements from the original vector and save them into 6872 // memory individually. 6873 SmallVector<SDValue, 8> Stores; 6874 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6875 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6876 DAG.getVectorIdxConstant(Idx, SL)); 6877 6878 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6879 6880 // This scalar TruncStore may be illegal, but we legalize it later. 6881 SDValue Store = DAG.getTruncStore( 6882 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6883 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6884 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6885 6886 Stores.push_back(Store); 6887 } 6888 6889 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6890 } 6891 6892 std::pair<SDValue, SDValue> 6893 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6894 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6895 "unaligned indexed loads not implemented!"); 6896 SDValue Chain = LD->getChain(); 6897 SDValue Ptr = LD->getBasePtr(); 6898 EVT VT = LD->getValueType(0); 6899 EVT LoadedVT = LD->getMemoryVT(); 6900 SDLoc dl(LD); 6901 auto &MF = DAG.getMachineFunction(); 6902 6903 if (VT.isFloatingPoint() || VT.isVector()) { 6904 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6905 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6906 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6907 LoadedVT.isVector()) { 6908 // Scalarize the load and let the individual components be handled. 6909 return scalarizeVectorLoad(LD, DAG); 6910 } 6911 6912 // Expand to a (misaligned) integer load of the same size, 6913 // then bitconvert to floating point or vector. 6914 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6915 LD->getMemOperand()); 6916 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6917 if (LoadedVT != VT) 6918 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6919 ISD::ANY_EXTEND, dl, VT, Result); 6920 6921 return std::make_pair(Result, newLoad.getValue(1)); 6922 } 6923 6924 // Copy the value to a (aligned) stack slot using (unaligned) integer 6925 // loads and stores, then do a (aligned) load from the stack slot. 6926 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6927 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6928 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6929 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6930 6931 // Make sure the stack slot is also aligned for the register type. 6932 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6933 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6934 SmallVector<SDValue, 8> Stores; 6935 SDValue StackPtr = StackBase; 6936 unsigned Offset = 0; 6937 6938 EVT PtrVT = Ptr.getValueType(); 6939 EVT StackPtrVT = StackPtr.getValueType(); 6940 6941 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6942 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6943 6944 // Do all but one copies using the full register width. 6945 for (unsigned i = 1; i < NumRegs; i++) { 6946 // Load one integer register's worth from the original location. 6947 SDValue Load = DAG.getLoad( 6948 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6949 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6950 LD->getAAInfo()); 6951 // Follow the load with a store to the stack slot. Remember the store. 6952 Stores.push_back(DAG.getStore( 6953 Load.getValue(1), dl, Load, StackPtr, 6954 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6955 // Increment the pointers. 6956 Offset += RegBytes; 6957 6958 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6959 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6960 } 6961 6962 // The last copy may be partial. Do an extending load. 6963 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6964 8 * (LoadedBytes - Offset)); 6965 SDValue Load = 6966 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6967 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6968 MinAlign(LD->getAlignment(), Offset), 6969 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6970 // Follow the load with a store to the stack slot. Remember the store. 6971 // On big-endian machines this requires a truncating store to ensure 6972 // that the bits end up in the right place. 6973 Stores.push_back(DAG.getTruncStore( 6974 Load.getValue(1), dl, Load, StackPtr, 6975 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6976 6977 // The order of the stores doesn't matter - say it with a TokenFactor. 6978 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6979 6980 // Finally, perform the original load only redirected to the stack slot. 6981 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6982 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6983 LoadedVT); 6984 6985 // Callers expect a MERGE_VALUES node. 6986 return std::make_pair(Load, TF); 6987 } 6988 6989 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6990 "Unaligned load of unsupported type."); 6991 6992 // Compute the new VT that is half the size of the old one. This is an 6993 // integer MVT. 6994 unsigned NumBits = LoadedVT.getSizeInBits(); 6995 EVT NewLoadedVT; 6996 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6997 NumBits >>= 1; 6998 6999 unsigned Alignment = LD->getAlignment(); 7000 unsigned IncrementSize = NumBits / 8; 7001 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7002 7003 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7004 if (HiExtType == ISD::NON_EXTLOAD) 7005 HiExtType = ISD::ZEXTLOAD; 7006 7007 // Load the value in two parts 7008 SDValue Lo, Hi; 7009 if (DAG.getDataLayout().isLittleEndian()) { 7010 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7011 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7012 LD->getAAInfo()); 7013 7014 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7015 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7016 LD->getPointerInfo().getWithOffset(IncrementSize), 7017 NewLoadedVT, MinAlign(Alignment, IncrementSize), 7018 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7019 } else { 7020 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7021 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7022 LD->getAAInfo()); 7023 7024 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7025 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7026 LD->getPointerInfo().getWithOffset(IncrementSize), 7027 NewLoadedVT, MinAlign(Alignment, IncrementSize), 7028 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7029 } 7030 7031 // aggregate the two parts 7032 SDValue ShiftAmount = 7033 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7034 DAG.getDataLayout())); 7035 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7036 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7037 7038 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7039 Hi.getValue(1)); 7040 7041 return std::make_pair(Result, TF); 7042 } 7043 7044 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7045 SelectionDAG &DAG) const { 7046 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7047 "unaligned indexed stores not implemented!"); 7048 SDValue Chain = ST->getChain(); 7049 SDValue Ptr = ST->getBasePtr(); 7050 SDValue Val = ST->getValue(); 7051 EVT VT = Val.getValueType(); 7052 int Alignment = ST->getAlignment(); 7053 auto &MF = DAG.getMachineFunction(); 7054 EVT StoreMemVT = ST->getMemoryVT(); 7055 7056 SDLoc dl(ST); 7057 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7058 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7059 if (isTypeLegal(intVT)) { 7060 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7061 StoreMemVT.isVector()) { 7062 // Scalarize the store and let the individual components be handled. 7063 SDValue Result = scalarizeVectorStore(ST, DAG); 7064 return Result; 7065 } 7066 // Expand to a bitconvert of the value to the integer type of the 7067 // same size, then a (misaligned) int store. 7068 // FIXME: Does not handle truncating floating point stores! 7069 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7070 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7071 Alignment, ST->getMemOperand()->getFlags()); 7072 return Result; 7073 } 7074 // Do a (aligned) store to a stack slot, then copy from the stack slot 7075 // to the final destination using (unaligned) integer loads and stores. 7076 MVT RegVT = getRegisterType( 7077 *DAG.getContext(), 7078 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7079 EVT PtrVT = Ptr.getValueType(); 7080 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7081 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7082 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7083 7084 // Make sure the stack slot is also aligned for the register type. 7085 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7086 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7087 7088 // Perform the original store, only redirected to the stack slot. 7089 SDValue Store = DAG.getTruncStore( 7090 Chain, dl, Val, StackPtr, 7091 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7092 7093 EVT StackPtrVT = StackPtr.getValueType(); 7094 7095 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7096 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7097 SmallVector<SDValue, 8> Stores; 7098 unsigned Offset = 0; 7099 7100 // Do all but one copies using the full register width. 7101 for (unsigned i = 1; i < NumRegs; i++) { 7102 // Load one integer register's worth from the stack slot. 7103 SDValue Load = DAG.getLoad( 7104 RegVT, dl, Store, StackPtr, 7105 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7106 // Store it to the final location. Remember the store. 7107 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7108 ST->getPointerInfo().getWithOffset(Offset), 7109 MinAlign(ST->getAlignment(), Offset), 7110 ST->getMemOperand()->getFlags())); 7111 // Increment the pointers. 7112 Offset += RegBytes; 7113 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7114 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7115 } 7116 7117 // The last store may be partial. Do a truncating store. On big-endian 7118 // machines this requires an extending load from the stack slot to ensure 7119 // that the bits are in the right place. 7120 EVT LoadMemVT = 7121 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7122 7123 // Load from the stack slot. 7124 SDValue Load = DAG.getExtLoad( 7125 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7126 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7127 7128 Stores.push_back( 7129 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7130 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7131 MinAlign(ST->getAlignment(), Offset), 7132 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7133 // The order of the stores doesn't matter - say it with a TokenFactor. 7134 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7135 return Result; 7136 } 7137 7138 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7139 "Unaligned store of unknown type."); 7140 // Get the half-size VT 7141 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7142 int NumBits = NewStoredVT.getSizeInBits(); 7143 int IncrementSize = NumBits / 8; 7144 7145 // Divide the stored value in two parts. 7146 SDValue ShiftAmount = DAG.getConstant( 7147 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7148 SDValue Lo = Val; 7149 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7150 7151 // Store the two parts 7152 SDValue Store1, Store2; 7153 Store1 = DAG.getTruncStore(Chain, dl, 7154 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7155 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7156 ST->getMemOperand()->getFlags()); 7157 7158 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7159 Alignment = MinAlign(Alignment, IncrementSize); 7160 Store2 = DAG.getTruncStore( 7161 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7162 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7163 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7164 7165 SDValue Result = 7166 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7167 return Result; 7168 } 7169 7170 SDValue 7171 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7172 const SDLoc &DL, EVT DataVT, 7173 SelectionDAG &DAG, 7174 bool IsCompressedMemory) const { 7175 SDValue Increment; 7176 EVT AddrVT = Addr.getValueType(); 7177 EVT MaskVT = Mask.getValueType(); 7178 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7179 "Incompatible types of Data and Mask"); 7180 if (IsCompressedMemory) { 7181 // Incrementing the pointer according to number of '1's in the mask. 7182 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7183 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7184 if (MaskIntVT.getSizeInBits() < 32) { 7185 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7186 MaskIntVT = MVT::i32; 7187 } 7188 7189 // Count '1's with POPCNT. 7190 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7191 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7192 // Scale is an element size in bytes. 7193 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7194 AddrVT); 7195 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7196 } else 7197 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7198 7199 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7200 } 7201 7202 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7203 SDValue Idx, 7204 EVT VecVT, 7205 const SDLoc &dl) { 7206 if (isa<ConstantSDNode>(Idx)) 7207 return Idx; 7208 7209 EVT IdxVT = Idx.getValueType(); 7210 unsigned NElts = VecVT.getVectorNumElements(); 7211 if (isPowerOf2_32(NElts)) { 7212 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7213 Log2_32(NElts)); 7214 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7215 DAG.getConstant(Imm, dl, IdxVT)); 7216 } 7217 7218 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7219 DAG.getConstant(NElts - 1, dl, IdxVT)); 7220 } 7221 7222 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7223 SDValue VecPtr, EVT VecVT, 7224 SDValue Index) const { 7225 SDLoc dl(Index); 7226 // Make sure the index type is big enough to compute in. 7227 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7228 7229 EVT EltVT = VecVT.getVectorElementType(); 7230 7231 // Calculate the element offset and add it to the pointer. 7232 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7233 assert(EltSize * 8 == EltVT.getSizeInBits() && 7234 "Converting bits to bytes lost precision"); 7235 7236 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7237 7238 EVT IdxVT = Index.getValueType(); 7239 7240 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7241 DAG.getConstant(EltSize, dl, IdxVT)); 7242 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7243 } 7244 7245 //===----------------------------------------------------------------------===// 7246 // Implementation of Emulated TLS Model 7247 //===----------------------------------------------------------------------===// 7248 7249 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7250 SelectionDAG &DAG) const { 7251 // Access to address of TLS varialbe xyz is lowered to a function call: 7252 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7253 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7254 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7255 SDLoc dl(GA); 7256 7257 ArgListTy Args; 7258 ArgListEntry Entry; 7259 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7260 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7261 StringRef EmuTlsVarName(NameString); 7262 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7263 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7264 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7265 Entry.Ty = VoidPtrType; 7266 Args.push_back(Entry); 7267 7268 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7269 7270 TargetLowering::CallLoweringInfo CLI(DAG); 7271 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7272 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7273 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7274 7275 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7276 // At last for X86 targets, maybe good for other targets too? 7277 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7278 MFI.setAdjustsStack(true); // Is this only for X86 target? 7279 MFI.setHasCalls(true); 7280 7281 assert((GA->getOffset() == 0) && 7282 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7283 return CallResult.first; 7284 } 7285 7286 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7287 SelectionDAG &DAG) const { 7288 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7289 if (!isCtlzFast()) 7290 return SDValue(); 7291 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7292 SDLoc dl(Op); 7293 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7294 if (C->isNullValue() && CC == ISD::SETEQ) { 7295 EVT VT = Op.getOperand(0).getValueType(); 7296 SDValue Zext = Op.getOperand(0); 7297 if (VT.bitsLT(MVT::i32)) { 7298 VT = MVT::i32; 7299 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7300 } 7301 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7302 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7303 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7304 DAG.getConstant(Log2b, dl, MVT::i32)); 7305 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7306 } 7307 } 7308 return SDValue(); 7309 } 7310 7311 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7312 unsigned Opcode = Node->getOpcode(); 7313 SDValue LHS = Node->getOperand(0); 7314 SDValue RHS = Node->getOperand(1); 7315 EVT VT = LHS.getValueType(); 7316 SDLoc dl(Node); 7317 7318 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7319 assert(VT.isInteger() && "Expected operands to be integers"); 7320 7321 // usub.sat(a, b) -> umax(a, b) - b 7322 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7323 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7324 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7325 } 7326 7327 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7328 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7329 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7330 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7331 } 7332 7333 unsigned OverflowOp; 7334 switch (Opcode) { 7335 case ISD::SADDSAT: 7336 OverflowOp = ISD::SADDO; 7337 break; 7338 case ISD::UADDSAT: 7339 OverflowOp = ISD::UADDO; 7340 break; 7341 case ISD::SSUBSAT: 7342 OverflowOp = ISD::SSUBO; 7343 break; 7344 case ISD::USUBSAT: 7345 OverflowOp = ISD::USUBO; 7346 break; 7347 default: 7348 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7349 "addition or subtraction node."); 7350 } 7351 7352 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7353 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7354 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7355 LHS, RHS); 7356 SDValue SumDiff = Result.getValue(0); 7357 SDValue Overflow = Result.getValue(1); 7358 SDValue Zero = DAG.getConstant(0, dl, VT); 7359 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7360 7361 if (Opcode == ISD::UADDSAT) { 7362 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7363 // (LHS + RHS) | OverflowMask 7364 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7365 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7366 } 7367 // Overflow ? 0xffff.... : (LHS + RHS) 7368 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7369 } else if (Opcode == ISD::USUBSAT) { 7370 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7371 // (LHS - RHS) & ~OverflowMask 7372 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7373 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7374 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7375 } 7376 // Overflow ? 0 : (LHS - RHS) 7377 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7378 } else { 7379 // SatMax -> Overflow && SumDiff < 0 7380 // SatMin -> Overflow && SumDiff >= 0 7381 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7382 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7383 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7384 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7385 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7386 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7387 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7388 } 7389 } 7390 7391 SDValue 7392 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7393 assert((Node->getOpcode() == ISD::SMULFIX || 7394 Node->getOpcode() == ISD::UMULFIX || 7395 Node->getOpcode() == ISD::SMULFIXSAT || 7396 Node->getOpcode() == ISD::UMULFIXSAT) && 7397 "Expected a fixed point multiplication opcode"); 7398 7399 SDLoc dl(Node); 7400 SDValue LHS = Node->getOperand(0); 7401 SDValue RHS = Node->getOperand(1); 7402 EVT VT = LHS.getValueType(); 7403 unsigned Scale = Node->getConstantOperandVal(2); 7404 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7405 Node->getOpcode() == ISD::UMULFIXSAT); 7406 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7407 Node->getOpcode() == ISD::SMULFIXSAT); 7408 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7409 unsigned VTSize = VT.getScalarSizeInBits(); 7410 7411 if (!Scale) { 7412 // [us]mul.fix(a, b, 0) -> mul(a, b) 7413 if (!Saturating) { 7414 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7415 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7416 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7417 SDValue Result = 7418 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7419 SDValue Product = Result.getValue(0); 7420 SDValue Overflow = Result.getValue(1); 7421 SDValue Zero = DAG.getConstant(0, dl, VT); 7422 7423 APInt MinVal = APInt::getSignedMinValue(VTSize); 7424 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7425 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7426 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7427 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7428 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7429 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7430 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7431 SDValue Result = 7432 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7433 SDValue Product = Result.getValue(0); 7434 SDValue Overflow = Result.getValue(1); 7435 7436 APInt MaxVal = APInt::getMaxValue(VTSize); 7437 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7438 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7439 } 7440 } 7441 7442 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7443 "Expected scale to be less than the number of bits if signed or at " 7444 "most the number of bits if unsigned."); 7445 assert(LHS.getValueType() == RHS.getValueType() && 7446 "Expected both operands to be the same type"); 7447 7448 // Get the upper and lower bits of the result. 7449 SDValue Lo, Hi; 7450 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7451 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7452 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7453 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7454 Lo = Result.getValue(0); 7455 Hi = Result.getValue(1); 7456 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7457 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7458 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7459 } else if (VT.isVector()) { 7460 return SDValue(); 7461 } else { 7462 report_fatal_error("Unable to expand fixed point multiplication."); 7463 } 7464 7465 if (Scale == VTSize) 7466 // Result is just the top half since we'd be shifting by the width of the 7467 // operand. Overflow impossible so this works for both UMULFIX and 7468 // UMULFIXSAT. 7469 return Hi; 7470 7471 // The result will need to be shifted right by the scale since both operands 7472 // are scaled. The result is given to us in 2 halves, so we only want part of 7473 // both in the result. 7474 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7475 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7476 DAG.getConstant(Scale, dl, ShiftTy)); 7477 if (!Saturating) 7478 return Result; 7479 7480 if (!Signed) { 7481 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7482 // widened multiplication) aren't all zeroes. 7483 7484 // Saturate to max if ((Hi >> Scale) != 0), 7485 // which is the same as if (Hi > ((1 << Scale) - 1)) 7486 APInt MaxVal = APInt::getMaxValue(VTSize); 7487 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7488 dl, VT); 7489 Result = DAG.getSelectCC(dl, Hi, LowMask, 7490 DAG.getConstant(MaxVal, dl, VT), Result, 7491 ISD::SETUGT); 7492 7493 return Result; 7494 } 7495 7496 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7497 // widened multiplication) aren't all ones or all zeroes. 7498 7499 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7500 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7501 7502 if (Scale == 0) { 7503 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7504 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7505 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7506 // Saturated to SatMin if wide product is negative, and SatMax if wide 7507 // product is positive ... 7508 SDValue Zero = DAG.getConstant(0, dl, VT); 7509 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7510 ISD::SETLT); 7511 // ... but only if we overflowed. 7512 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7513 } 7514 7515 // We handled Scale==0 above so all the bits to examine is in Hi. 7516 7517 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7518 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7519 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7520 dl, VT); 7521 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7522 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7523 // which is the same as if (HI < (-1 << (Scale - 1)) 7524 SDValue HighMask = 7525 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7526 dl, VT); 7527 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7528 return Result; 7529 } 7530 7531 SDValue 7532 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7533 SDValue LHS, SDValue RHS, 7534 unsigned Scale, SelectionDAG &DAG) const { 7535 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7536 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7537 "Expected a fixed point division opcode"); 7538 7539 EVT VT = LHS.getValueType(); 7540 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7541 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7542 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7543 7544 // If there is enough room in the type to upscale the LHS or downscale the 7545 // RHS before the division, we can perform it in this type without having to 7546 // resize. For signed operations, the LHS headroom is the number of 7547 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7548 // The headroom for the RHS is the number of trailing zeroes. 7549 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7550 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7551 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7552 7553 // For signed saturating operations, we need to be able to detect true integer 7554 // division overflow; that is, when you have MIN / -EPS. However, this 7555 // is undefined behavior and if we emit divisions that could take such 7556 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7557 // example). 7558 // Avoid this by requiring an extra bit so that we never get this case. 7559 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7560 // signed saturating division, we need to emit a whopping 32-bit division. 7561 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7562 return SDValue(); 7563 7564 unsigned LHSShift = std::min(LHSLead, Scale); 7565 unsigned RHSShift = Scale - LHSShift; 7566 7567 // At this point, we know that if we shift the LHS up by LHSShift and the 7568 // RHS down by RHSShift, we can emit a regular division with a final scaling 7569 // factor of Scale. 7570 7571 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7572 if (LHSShift) 7573 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7574 DAG.getConstant(LHSShift, dl, ShiftTy)); 7575 if (RHSShift) 7576 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7577 DAG.getConstant(RHSShift, dl, ShiftTy)); 7578 7579 SDValue Quot; 7580 if (Signed) { 7581 // For signed operations, if the resulting quotient is negative and the 7582 // remainder is nonzero, subtract 1 from the quotient to round towards 7583 // negative infinity. 7584 SDValue Rem; 7585 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7586 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7587 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7588 if (isTypeLegal(VT) && 7589 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7590 Quot = DAG.getNode(ISD::SDIVREM, dl, 7591 DAG.getVTList(VT, VT), 7592 LHS, RHS); 7593 Rem = Quot.getValue(1); 7594 Quot = Quot.getValue(0); 7595 } else { 7596 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7597 LHS, RHS); 7598 Rem = DAG.getNode(ISD::SREM, dl, VT, 7599 LHS, RHS); 7600 } 7601 SDValue Zero = DAG.getConstant(0, dl, VT); 7602 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7603 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7604 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7605 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7606 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7607 DAG.getConstant(1, dl, VT)); 7608 Quot = DAG.getSelect(dl, VT, 7609 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7610 Sub1, Quot); 7611 } else 7612 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7613 LHS, RHS); 7614 7615 return Quot; 7616 } 7617 7618 void TargetLowering::expandUADDSUBO( 7619 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7620 SDLoc dl(Node); 7621 SDValue LHS = Node->getOperand(0); 7622 SDValue RHS = Node->getOperand(1); 7623 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7624 7625 // If ADD/SUBCARRY is legal, use that instead. 7626 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7627 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7628 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7629 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7630 { LHS, RHS, CarryIn }); 7631 Result = SDValue(NodeCarry.getNode(), 0); 7632 Overflow = SDValue(NodeCarry.getNode(), 1); 7633 return; 7634 } 7635 7636 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7637 LHS.getValueType(), LHS, RHS); 7638 7639 EVT ResultType = Node->getValueType(1); 7640 EVT SetCCType = getSetCCResultType( 7641 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7642 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7643 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7644 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7645 } 7646 7647 void TargetLowering::expandSADDSUBO( 7648 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7649 SDLoc dl(Node); 7650 SDValue LHS = Node->getOperand(0); 7651 SDValue RHS = Node->getOperand(1); 7652 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7653 7654 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7655 LHS.getValueType(), LHS, RHS); 7656 7657 EVT ResultType = Node->getValueType(1); 7658 EVT OType = getSetCCResultType( 7659 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7660 7661 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7662 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7663 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7664 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7665 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7666 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7667 return; 7668 } 7669 7670 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7671 7672 // For an addition, the result should be less than one of the operands (LHS) 7673 // if and only if the other operand (RHS) is negative, otherwise there will 7674 // be overflow. 7675 // For a subtraction, the result should be less than one of the operands 7676 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7677 // otherwise there will be overflow. 7678 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7679 SDValue ConditionRHS = 7680 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7681 7682 Overflow = DAG.getBoolExtOrTrunc( 7683 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7684 ResultType, ResultType); 7685 } 7686 7687 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7688 SDValue &Overflow, SelectionDAG &DAG) const { 7689 SDLoc dl(Node); 7690 EVT VT = Node->getValueType(0); 7691 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7692 SDValue LHS = Node->getOperand(0); 7693 SDValue RHS = Node->getOperand(1); 7694 bool isSigned = Node->getOpcode() == ISD::SMULO; 7695 7696 // For power-of-two multiplications we can use a simpler shift expansion. 7697 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7698 const APInt &C = RHSC->getAPIntValue(); 7699 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7700 if (C.isPowerOf2()) { 7701 // smulo(x, signed_min) is same as umulo(x, signed_min). 7702 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7703 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7704 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7705 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7706 Overflow = DAG.getSetCC(dl, SetCCVT, 7707 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7708 dl, VT, Result, ShiftAmt), 7709 LHS, ISD::SETNE); 7710 return true; 7711 } 7712 } 7713 7714 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7715 if (VT.isVector()) 7716 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7717 VT.getVectorNumElements()); 7718 7719 SDValue BottomHalf; 7720 SDValue TopHalf; 7721 static const unsigned Ops[2][3] = 7722 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7723 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7724 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7725 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7726 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7727 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7728 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7729 RHS); 7730 TopHalf = BottomHalf.getValue(1); 7731 } else if (isTypeLegal(WideVT)) { 7732 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7733 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7734 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7735 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7736 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7737 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7738 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7739 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7740 } else { 7741 if (VT.isVector()) 7742 return false; 7743 7744 // We can fall back to a libcall with an illegal type for the MUL if we 7745 // have a libcall big enough. 7746 // Also, we can fall back to a division in some cases, but that's a big 7747 // performance hit in the general case. 7748 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7749 if (WideVT == MVT::i16) 7750 LC = RTLIB::MUL_I16; 7751 else if (WideVT == MVT::i32) 7752 LC = RTLIB::MUL_I32; 7753 else if (WideVT == MVT::i64) 7754 LC = RTLIB::MUL_I64; 7755 else if (WideVT == MVT::i128) 7756 LC = RTLIB::MUL_I128; 7757 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7758 7759 SDValue HiLHS; 7760 SDValue HiRHS; 7761 if (isSigned) { 7762 // The high part is obtained by SRA'ing all but one of the bits of low 7763 // part. 7764 unsigned LoSize = VT.getSizeInBits(); 7765 HiLHS = 7766 DAG.getNode(ISD::SRA, dl, VT, LHS, 7767 DAG.getConstant(LoSize - 1, dl, 7768 getPointerTy(DAG.getDataLayout()))); 7769 HiRHS = 7770 DAG.getNode(ISD::SRA, dl, VT, RHS, 7771 DAG.getConstant(LoSize - 1, dl, 7772 getPointerTy(DAG.getDataLayout()))); 7773 } else { 7774 HiLHS = DAG.getConstant(0, dl, VT); 7775 HiRHS = DAG.getConstant(0, dl, VT); 7776 } 7777 7778 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7779 // pre-lowered to the correct types. This all depends upon WideVT not 7780 // being a legal type for the architecture and thus has to be split to 7781 // two arguments. 7782 SDValue Ret; 7783 TargetLowering::MakeLibCallOptions CallOptions; 7784 CallOptions.setSExt(isSigned); 7785 CallOptions.setIsPostTypeLegalization(true); 7786 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7787 // Halves of WideVT are packed into registers in different order 7788 // depending on platform endianness. This is usually handled by 7789 // the C calling convention, but we can't defer to it in 7790 // the legalizer. 7791 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7792 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7793 } else { 7794 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7795 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7796 } 7797 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7798 "Ret value is a collection of constituent nodes holding result."); 7799 if (DAG.getDataLayout().isLittleEndian()) { 7800 // Same as above. 7801 BottomHalf = Ret.getOperand(0); 7802 TopHalf = Ret.getOperand(1); 7803 } else { 7804 BottomHalf = Ret.getOperand(1); 7805 TopHalf = Ret.getOperand(0); 7806 } 7807 } 7808 7809 Result = BottomHalf; 7810 if (isSigned) { 7811 SDValue ShiftAmt = DAG.getConstant( 7812 VT.getScalarSizeInBits() - 1, dl, 7813 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7814 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7815 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7816 } else { 7817 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7818 DAG.getConstant(0, dl, VT), ISD::SETNE); 7819 } 7820 7821 // Truncate the result if SetCC returns a larger type than needed. 7822 EVT RType = Node->getValueType(1); 7823 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7824 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7825 7826 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7827 "Unexpected result type for S/UMULO legalization"); 7828 return true; 7829 } 7830 7831 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7832 SDLoc dl(Node); 7833 bool NoNaN = Node->getFlags().hasNoNaNs(); 7834 unsigned BaseOpcode = 0; 7835 switch (Node->getOpcode()) { 7836 default: llvm_unreachable("Expected VECREDUCE opcode"); 7837 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7838 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7839 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7840 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7841 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7842 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7843 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7844 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7845 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7846 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7847 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7848 case ISD::VECREDUCE_FMAX: 7849 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7850 break; 7851 case ISD::VECREDUCE_FMIN: 7852 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7853 break; 7854 } 7855 7856 SDValue Op = Node->getOperand(0); 7857 EVT VT = Op.getValueType(); 7858 7859 // Try to use a shuffle reduction for power of two vectors. 7860 if (VT.isPow2VectorType()) { 7861 while (VT.getVectorNumElements() > 1) { 7862 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7863 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7864 break; 7865 7866 SDValue Lo, Hi; 7867 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7868 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7869 VT = HalfVT; 7870 } 7871 } 7872 7873 EVT EltVT = VT.getVectorElementType(); 7874 unsigned NumElts = VT.getVectorNumElements(); 7875 7876 SmallVector<SDValue, 8> Ops; 7877 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7878 7879 SDValue Res = Ops[0]; 7880 for (unsigned i = 1; i < NumElts; i++) 7881 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7882 7883 // Result type may be wider than element type. 7884 if (EltVT != Node->getValueType(0)) 7885 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7886 return Res; 7887 } 7888 7889 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 7890 SelectionDAG &DAG) const { 7891 EVT VT = Node->getValueType(0); 7892 SDLoc dl(Node); 7893 bool isSigned = Node->getOpcode() == ISD::SREM; 7894 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 7895 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 7896 SDValue Dividend = Node->getOperand(0); 7897 SDValue Divisor = Node->getOperand(1); 7898 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 7899 SDVTList VTs = DAG.getVTList(VT, VT); 7900 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 7901 return true; 7902 } else if (isOperationLegalOrCustom(DivOpc, VT)) { 7903 // X % Y -> X-X/Y*Y 7904 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 7905 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 7906 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 7907 return true; 7908 } 7909 return false; 7910 } 7911