xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/DivisionByConstantInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull, Attribute::NoUndef})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() == ISD::AssertZext)
98       Value = Value.getOperand(0);
99     if (Value->getOpcode() != ISD::CopyFromReg)
100       return false;
101     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
102     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
103       return false;
104   }
105   return true;
106 }
107 
108 /// Set CallLoweringInfo attribute flags based on a call instruction
109 /// and called function attributes.
110 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
111                                                      unsigned ArgIdx) {
112   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
113   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
114   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
115   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
116   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
117   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
118   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
119   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
120   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
121   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
122   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
123   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
124   Alignment = Call->getParamStackAlign(ArgIdx);
125   IndirectType = nullptr;
126   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
127          "multiple ABI attributes?");
128   if (IsByVal) {
129     IndirectType = Call->getParamByValType(ArgIdx);
130     if (!Alignment)
131       Alignment = Call->getParamAlign(ArgIdx);
132   }
133   if (IsPreallocated)
134     IndirectType = Call->getParamPreallocatedType(ArgIdx);
135   if (IsInAlloca)
136     IndirectType = Call->getParamInAllocaType(ArgIdx);
137   if (IsSRet)
138     IndirectType = Call->getParamStructRetType(ArgIdx);
139 }
140 
141 /// Generate a libcall taking the given operands as arguments and returning a
142 /// result of type RetVT.
143 std::pair<SDValue, SDValue>
144 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
145                             ArrayRef<SDValue> Ops,
146                             MakeLibCallOptions CallOptions,
147                             const SDLoc &dl,
148                             SDValue InChain) const {
149   if (!InChain)
150     InChain = DAG.getEntryNode();
151 
152   TargetLowering::ArgListTy Args;
153   Args.reserve(Ops.size());
154 
155   TargetLowering::ArgListEntry Entry;
156   for (unsigned i = 0; i < Ops.size(); ++i) {
157     SDValue NewOp = Ops[i];
158     Entry.Node = NewOp;
159     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
160     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
161                                                  CallOptions.IsSExt);
162     Entry.IsZExt = !Entry.IsSExt;
163 
164     if (CallOptions.IsSoften &&
165         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
166       Entry.IsSExt = Entry.IsZExt = false;
167     }
168     Args.push_back(Entry);
169   }
170 
171   if (LC == RTLIB::UNKNOWN_LIBCALL)
172     report_fatal_error("Unsupported library call operation!");
173   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
174                                          getPointerTy(DAG.getDataLayout()));
175 
176   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
177   TargetLowering::CallLoweringInfo CLI(DAG);
178   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
179   bool zeroExtend = !signExtend;
180 
181   if (CallOptions.IsSoften &&
182       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
183     signExtend = zeroExtend = false;
184   }
185 
186   CLI.setDebugLoc(dl)
187       .setChain(InChain)
188       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
189       .setNoReturn(CallOptions.DoesNotReturn)
190       .setDiscardResult(!CallOptions.IsReturnValueUsed)
191       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
192       .setSExtResult(signExtend)
193       .setZExtResult(zeroExtend);
194   return LowerCallTo(CLI);
195 }
196 
197 bool TargetLowering::findOptimalMemOpLowering(
198     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
199     unsigned SrcAS, const AttributeList &FuncAttributes) const {
200   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
201       Op.getSrcAlign() < Op.getDstAlign())
202     return false;
203 
204   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
205 
206   if (VT == MVT::Other) {
207     // Use the largest integer type whose alignment constraints are satisfied.
208     // We only need to check DstAlign here as SrcAlign is always greater or
209     // equal to DstAlign (or zero).
210     VT = MVT::i64;
211     if (Op.isFixedDstAlign())
212       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
213              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
214         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
215     assert(VT.isInteger());
216 
217     // Find the largest legal integer type.
218     MVT LVT = MVT::i64;
219     while (!isTypeLegal(LVT))
220       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
221     assert(LVT.isInteger());
222 
223     // If the type we've chosen is larger than the largest legal integer type
224     // then use that instead.
225     if (VT.bitsGT(LVT))
226       VT = LVT;
227   }
228 
229   unsigned NumMemOps = 0;
230   uint64_t Size = Op.size();
231   while (Size) {
232     unsigned VTSize = VT.getSizeInBits() / 8;
233     while (VTSize > Size) {
234       // For now, only use non-vector load / store's for the left-over pieces.
235       EVT NewVT = VT;
236       unsigned NewVTSize;
237 
238       bool Found = false;
239       if (VT.isVector() || VT.isFloatingPoint()) {
240         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
241         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
242             isSafeMemOpType(NewVT.getSimpleVT()))
243           Found = true;
244         else if (NewVT == MVT::i64 &&
245                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
246                  isSafeMemOpType(MVT::f64)) {
247           // i64 is usually not legal on 32-bit targets, but f64 may be.
248           NewVT = MVT::f64;
249           Found = true;
250         }
251       }
252 
253       if (!Found) {
254         do {
255           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
256           if (NewVT == MVT::i8)
257             break;
258         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
259       }
260       NewVTSize = NewVT.getSizeInBits() / 8;
261 
262       // If the new VT cannot cover all of the remaining bits, then consider
263       // issuing a (or a pair of) unaligned and overlapping load / store.
264       unsigned Fast;
265       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
266           allowsMisalignedMemoryAccesses(
267               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
268               MachineMemOperand::MONone, &Fast) &&
269           Fast)
270         VTSize = Size;
271       else {
272         VT = NewVT;
273         VTSize = NewVTSize;
274       }
275     }
276 
277     if (++NumMemOps > Limit)
278       return false;
279 
280     MemOps.push_back(VT);
281     Size -= VTSize;
282   }
283 
284   return true;
285 }
286 
287 /// Soften the operands of a comparison. This code is shared among BR_CC,
288 /// SELECT_CC, and SETCC handlers.
289 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
290                                          SDValue &NewLHS, SDValue &NewRHS,
291                                          ISD::CondCode &CCCode,
292                                          const SDLoc &dl, const SDValue OldLHS,
293                                          const SDValue OldRHS) const {
294   SDValue Chain;
295   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
296                              OldRHS, Chain);
297 }
298 
299 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
300                                          SDValue &NewLHS, SDValue &NewRHS,
301                                          ISD::CondCode &CCCode,
302                                          const SDLoc &dl, const SDValue OldLHS,
303                                          const SDValue OldRHS,
304                                          SDValue &Chain,
305                                          bool IsSignaling) const {
306   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
307   // not supporting it. We can update this code when libgcc provides such
308   // functions.
309 
310   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
311          && "Unsupported setcc type!");
312 
313   // Expand into one or more soft-fp libcall(s).
314   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
315   bool ShouldInvertCC = false;
316   switch (CCCode) {
317   case ISD::SETEQ:
318   case ISD::SETOEQ:
319     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
320           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
321           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
322     break;
323   case ISD::SETNE:
324   case ISD::SETUNE:
325     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
326           (VT == MVT::f64) ? RTLIB::UNE_F64 :
327           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
328     break;
329   case ISD::SETGE:
330   case ISD::SETOGE:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
332           (VT == MVT::f64) ? RTLIB::OGE_F64 :
333           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
334     break;
335   case ISD::SETLT:
336   case ISD::SETOLT:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
338           (VT == MVT::f64) ? RTLIB::OLT_F64 :
339           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
340     break;
341   case ISD::SETLE:
342   case ISD::SETOLE:
343     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
344           (VT == MVT::f64) ? RTLIB::OLE_F64 :
345           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
346     break;
347   case ISD::SETGT:
348   case ISD::SETOGT:
349     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
350           (VT == MVT::f64) ? RTLIB::OGT_F64 :
351           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
352     break;
353   case ISD::SETO:
354     ShouldInvertCC = true;
355     [[fallthrough]];
356   case ISD::SETUO:
357     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
358           (VT == MVT::f64) ? RTLIB::UO_F64 :
359           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
360     break;
361   case ISD::SETONE:
362     // SETONE = O && UNE
363     ShouldInvertCC = true;
364     [[fallthrough]];
365   case ISD::SETUEQ:
366     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
367           (VT == MVT::f64) ? RTLIB::UO_F64 :
368           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
369     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
370           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
371           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
372     break;
373   default:
374     // Invert CC for unordered comparisons
375     ShouldInvertCC = true;
376     switch (CCCode) {
377     case ISD::SETULT:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
379             (VT == MVT::f64) ? RTLIB::OGE_F64 :
380             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
381       break;
382     case ISD::SETULE:
383       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
384             (VT == MVT::f64) ? RTLIB::OGT_F64 :
385             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
386       break;
387     case ISD::SETUGT:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
389             (VT == MVT::f64) ? RTLIB::OLE_F64 :
390             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
391       break;
392     case ISD::SETUGE:
393       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
394             (VT == MVT::f64) ? RTLIB::OLT_F64 :
395             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
396       break;
397     default: llvm_unreachable("Do not know how to soften this setcc!");
398     }
399   }
400 
401   // Use the target specific return value for comparison lib calls.
402   EVT RetVT = getCmpLibcallReturnType();
403   SDValue Ops[2] = {NewLHS, NewRHS};
404   TargetLowering::MakeLibCallOptions CallOptions;
405   EVT OpsVT[2] = { OldLHS.getValueType(),
406                    OldRHS.getValueType() };
407   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
408   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
409   NewLHS = Call.first;
410   NewRHS = DAG.getConstant(0, dl, RetVT);
411 
412   CCCode = getCmpLibcallCC(LC1);
413   if (ShouldInvertCC) {
414     assert(RetVT.isInteger());
415     CCCode = getSetCCInverse(CCCode, RetVT);
416   }
417 
418   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
419     // Update Chain.
420     Chain = Call.second;
421   } else {
422     EVT SetCCVT =
423         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
424     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
425     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
426     CCCode = getCmpLibcallCC(LC2);
427     if (ShouldInvertCC)
428       CCCode = getSetCCInverse(CCCode, RetVT);
429     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
430     if (Chain)
431       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
432                           Call2.second);
433     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
434                          Tmp.getValueType(), Tmp, NewLHS);
435     NewRHS = SDValue();
436   }
437 }
438 
439 /// Return the entry encoding for a jump table in the current function. The
440 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
441 unsigned TargetLowering::getJumpTableEncoding() const {
442   // In non-pic modes, just use the address of a block.
443   if (!isPositionIndependent())
444     return MachineJumpTableInfo::EK_BlockAddress;
445 
446   // In PIC mode, if the target supports a GPRel32 directive, use it.
447   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
448     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
449 
450   // Otherwise, use a label difference.
451   return MachineJumpTableInfo::EK_LabelDifference32;
452 }
453 
454 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
455                                                  SelectionDAG &DAG) const {
456   // If our PIC model is GP relative, use the global offset table as the base.
457   unsigned JTEncoding = getJumpTableEncoding();
458 
459   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
460       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
461     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
462 
463   return Table;
464 }
465 
466 /// This returns the relocation base for the given PIC jumptable, the same as
467 /// getPICJumpTableRelocBase, but as an MCExpr.
468 const MCExpr *
469 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
470                                              unsigned JTI,MCContext &Ctx) const{
471   // The normal PIC reloc base is the label at the start of the jump table.
472   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
473 }
474 
475 bool
476 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
477   const TargetMachine &TM = getTargetMachine();
478   const GlobalValue *GV = GA->getGlobal();
479 
480   // If the address is not even local to this DSO we will have to load it from
481   // a got and then add the offset.
482   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
483     return false;
484 
485   // If the code is position independent we will have to add a base register.
486   if (isPositionIndependent())
487     return false;
488 
489   // Otherwise we can do it.
490   return true;
491 }
492 
493 //===----------------------------------------------------------------------===//
494 //  Optimization Methods
495 //===----------------------------------------------------------------------===//
496 
497 /// If the specified instruction has a constant integer operand and there are
498 /// bits set in that constant that are not demanded, then clear those bits and
499 /// return true.
500 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
501                                             const APInt &DemandedBits,
502                                             const APInt &DemandedElts,
503                                             TargetLoweringOpt &TLO) const {
504   SDLoc DL(Op);
505   unsigned Opcode = Op.getOpcode();
506 
507   // Early-out if we've ended up calling an undemanded node, leave this to
508   // constant folding.
509   if (DemandedBits.isZero() || DemandedElts.isZero())
510     return false;
511 
512   // Do target-specific constant optimization.
513   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
514     return TLO.New.getNode();
515 
516   // FIXME: ISD::SELECT, ISD::SELECT_CC
517   switch (Opcode) {
518   default:
519     break;
520   case ISD::XOR:
521   case ISD::AND:
522   case ISD::OR: {
523     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
524     if (!Op1C || Op1C->isOpaque())
525       return false;
526 
527     // If this is a 'not' op, don't touch it because that's a canonical form.
528     const APInt &C = Op1C->getAPIntValue();
529     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
530       return false;
531 
532     if (!C.isSubsetOf(DemandedBits)) {
533       EVT VT = Op.getValueType();
534       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
535       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
536       return TLO.CombineTo(Op, NewOp);
537     }
538 
539     break;
540   }
541   }
542 
543   return false;
544 }
545 
546 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
547                                             const APInt &DemandedBits,
548                                             TargetLoweringOpt &TLO) const {
549   EVT VT = Op.getValueType();
550   APInt DemandedElts = VT.isVector()
551                            ? APInt::getAllOnes(VT.getVectorNumElements())
552                            : APInt(1, 1);
553   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
554 }
555 
556 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
557 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
558 /// generalized for targets with other types of implicit widening casts.
559 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
560                                       const APInt &DemandedBits,
561                                       TargetLoweringOpt &TLO) const {
562   assert(Op.getNumOperands() == 2 &&
563          "ShrinkDemandedOp only supports binary operators!");
564   assert(Op.getNode()->getNumValues() == 1 &&
565          "ShrinkDemandedOp only supports nodes with one result!");
566 
567   EVT VT = Op.getValueType();
568   SelectionDAG &DAG = TLO.DAG;
569   SDLoc dl(Op);
570 
571   // Early return, as this function cannot handle vector types.
572   if (VT.isVector())
573     return false;
574 
575   // Don't do this if the node has another user, which may require the
576   // full value.
577   if (!Op.getNode()->hasOneUse())
578     return false;
579 
580   // Search for the smallest integer type with free casts to and from
581   // Op's type. For expedience, just check power-of-2 integer types.
582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
583   unsigned DemandedSize = DemandedBits.getActiveBits();
584   for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
585        SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
586     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
587     if (TLI.isTruncateFree(VT, SmallVT) && TLI.isZExtFree(SmallVT, VT)) {
588       // We found a type with free casts.
589       SDValue X = DAG.getNode(
590           Op.getOpcode(), dl, SmallVT,
591           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
592           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
593       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
594       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
595       return TLO.CombineTo(Op, Z);
596     }
597   }
598   return false;
599 }
600 
601 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
602                                           DAGCombinerInfo &DCI) const {
603   SelectionDAG &DAG = DCI.DAG;
604   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
605                         !DCI.isBeforeLegalizeOps());
606   KnownBits Known;
607 
608   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
609   if (Simplified) {
610     DCI.AddToWorklist(Op.getNode());
611     DCI.CommitTargetLoweringOpt(TLO);
612   }
613   return Simplified;
614 }
615 
616 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
617                                           const APInt &DemandedElts,
618                                           DAGCombinerInfo &DCI) const {
619   SelectionDAG &DAG = DCI.DAG;
620   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
621                         !DCI.isBeforeLegalizeOps());
622   KnownBits Known;
623 
624   bool Simplified =
625       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
626   if (Simplified) {
627     DCI.AddToWorklist(Op.getNode());
628     DCI.CommitTargetLoweringOpt(TLO);
629   }
630   return Simplified;
631 }
632 
633 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
634                                           KnownBits &Known,
635                                           TargetLoweringOpt &TLO,
636                                           unsigned Depth,
637                                           bool AssumeSingleUse) const {
638   EVT VT = Op.getValueType();
639 
640   // Since the number of lanes in a scalable vector is unknown at compile time,
641   // we track one bit which is implicitly broadcast to all lanes.  This means
642   // that all lanes in a scalable vector are considered demanded.
643   APInt DemandedElts = VT.isFixedLengthVector()
644                            ? APInt::getAllOnes(VT.getVectorNumElements())
645                            : APInt(1, 1);
646   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
647                               AssumeSingleUse);
648 }
649 
650 // TODO: Under what circumstances can we create nodes? Constant folding?
651 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
652     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
653     SelectionDAG &DAG, unsigned Depth) const {
654   EVT VT = Op.getValueType();
655 
656   // Limit search depth.
657   if (Depth >= SelectionDAG::MaxRecursionDepth)
658     return SDValue();
659 
660   // Ignore UNDEFs.
661   if (Op.isUndef())
662     return SDValue();
663 
664   // Not demanding any bits/elts from Op.
665   if (DemandedBits == 0 || DemandedElts == 0)
666     return DAG.getUNDEF(VT);
667 
668   bool IsLE = DAG.getDataLayout().isLittleEndian();
669   unsigned NumElts = DemandedElts.getBitWidth();
670   unsigned BitWidth = DemandedBits.getBitWidth();
671   KnownBits LHSKnown, RHSKnown;
672   switch (Op.getOpcode()) {
673   case ISD::BITCAST: {
674     if (VT.isScalableVector())
675       return SDValue();
676 
677     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
678     EVT SrcVT = Src.getValueType();
679     EVT DstVT = Op.getValueType();
680     if (SrcVT == DstVT)
681       return Src;
682 
683     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
684     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
685     if (NumSrcEltBits == NumDstEltBits)
686       if (SDValue V = SimplifyMultipleUseDemandedBits(
687               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
688         return DAG.getBitcast(DstVT, V);
689 
690     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
691       unsigned Scale = NumDstEltBits / NumSrcEltBits;
692       unsigned NumSrcElts = SrcVT.getVectorNumElements();
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != Scale; ++i) {
696         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
697         unsigned BitOffset = EltOffset * NumSrcEltBits;
698         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
699         if (!Sub.isZero()) {
700           DemandedSrcBits |= Sub;
701           for (unsigned j = 0; j != NumElts; ++j)
702             if (DemandedElts[j])
703               DemandedSrcElts.setBit((j * Scale) + i);
704         }
705       }
706 
707       if (SDValue V = SimplifyMultipleUseDemandedBits(
708               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
709         return DAG.getBitcast(DstVT, V);
710     }
711 
712     // TODO - bigendian once we have test coverage.
713     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
714       unsigned Scale = NumSrcEltBits / NumDstEltBits;
715       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
716       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
717       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
718       for (unsigned i = 0; i != NumElts; ++i)
719         if (DemandedElts[i]) {
720           unsigned Offset = (i % Scale) * NumDstEltBits;
721           DemandedSrcBits.insertBits(DemandedBits, Offset);
722           DemandedSrcElts.setBit(i / Scale);
723         }
724 
725       if (SDValue V = SimplifyMultipleUseDemandedBits(
726               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
727         return DAG.getBitcast(DstVT, V);
728     }
729 
730     break;
731   }
732   case ISD::AND: {
733     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
734     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
735 
736     // If all of the demanded bits are known 1 on one side, return the other.
737     // These bits cannot contribute to the result of the 'and' in this
738     // context.
739     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
740       return Op.getOperand(0);
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
742       return Op.getOperand(1);
743     break;
744   }
745   case ISD::OR: {
746     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
747     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
748 
749     // If all of the demanded bits are known zero on one side, return the
750     // other.  These bits cannot contribute to the result of the 'or' in this
751     // context.
752     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
753       return Op.getOperand(0);
754     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
755       return Op.getOperand(1);
756     break;
757   }
758   case ISD::XOR: {
759     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
760     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
761 
762     // If all of the demanded bits are known zero on one side, return the
763     // other.
764     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
765       return Op.getOperand(0);
766     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
767       return Op.getOperand(1);
768     break;
769   }
770   case ISD::SHL: {
771     // If we are only demanding sign bits then we can use the shift source
772     // directly.
773     if (const APInt *MaxSA =
774             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
775       SDValue Op0 = Op.getOperand(0);
776       unsigned ShAmt = MaxSA->getZExtValue();
777       unsigned NumSignBits =
778           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
779       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
780       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
781         return Op0;
782     }
783     break;
784   }
785   case ISD::SETCC: {
786     SDValue Op0 = Op.getOperand(0);
787     SDValue Op1 = Op.getOperand(1);
788     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
789     // If (1) we only need the sign-bit, (2) the setcc operands are the same
790     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
791     // -1, we may be able to bypass the setcc.
792     if (DemandedBits.isSignMask() &&
793         Op0.getScalarValueSizeInBits() == BitWidth &&
794         getBooleanContents(Op0.getValueType()) ==
795             BooleanContent::ZeroOrNegativeOneBooleanContent) {
796       // If we're testing X < 0, then this compare isn't needed - just use X!
797       // FIXME: We're limiting to integer types here, but this should also work
798       // if we don't care about FP signed-zero. The use of SETLT with FP means
799       // that we don't care about NaNs.
800       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
801           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
802         return Op0;
803     }
804     break;
805   }
806   case ISD::SIGN_EXTEND_INREG: {
807     // If none of the extended bits are demanded, eliminate the sextinreg.
808     SDValue Op0 = Op.getOperand(0);
809     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
810     unsigned ExBits = ExVT.getScalarSizeInBits();
811     if (DemandedBits.getActiveBits() <= ExBits &&
812         shouldRemoveRedundantExtend(Op))
813       return Op0;
814     // If the input is already sign extended, just drop the extension.
815     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
816     if (NumSignBits >= (BitWidth - ExBits + 1))
817       return Op0;
818     break;
819   }
820   case ISD::ANY_EXTEND_VECTOR_INREG:
821   case ISD::SIGN_EXTEND_VECTOR_INREG:
822   case ISD::ZERO_EXTEND_VECTOR_INREG: {
823     if (VT.isScalableVector())
824       return SDValue();
825 
826     // If we only want the lowest element and none of extended bits, then we can
827     // return the bitcasted source vector.
828     SDValue Src = Op.getOperand(0);
829     EVT SrcVT = Src.getValueType();
830     EVT DstVT = Op.getValueType();
831     if (IsLE && DemandedElts == 1 &&
832         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
833         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
834       return DAG.getBitcast(DstVT, Src);
835     }
836     break;
837   }
838   case ISD::INSERT_VECTOR_ELT: {
839     if (VT.isScalableVector())
840       return SDValue();
841 
842     // If we don't demand the inserted element, return the base vector.
843     SDValue Vec = Op.getOperand(0);
844     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
845     EVT VecVT = Vec.getValueType();
846     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
847         !DemandedElts[CIdx->getZExtValue()])
848       return Vec;
849     break;
850   }
851   case ISD::INSERT_SUBVECTOR: {
852     if (VT.isScalableVector())
853       return SDValue();
854 
855     SDValue Vec = Op.getOperand(0);
856     SDValue Sub = Op.getOperand(1);
857     uint64_t Idx = Op.getConstantOperandVal(2);
858     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
859     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
860     // If we don't demand the inserted subvector, return the base vector.
861     if (DemandedSubElts == 0)
862       return Vec;
863     break;
864   }
865   case ISD::VECTOR_SHUFFLE: {
866     assert(!VT.isScalableVector());
867     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
868 
869     // If all the demanded elts are from one operand and are inline,
870     // then we can use the operand directly.
871     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
872     for (unsigned i = 0; i != NumElts; ++i) {
873       int M = ShuffleMask[i];
874       if (M < 0 || !DemandedElts[i])
875         continue;
876       AllUndef = false;
877       IdentityLHS &= (M == (int)i);
878       IdentityRHS &= ((M - NumElts) == i);
879     }
880 
881     if (AllUndef)
882       return DAG.getUNDEF(Op.getValueType());
883     if (IdentityLHS)
884       return Op.getOperand(0);
885     if (IdentityRHS)
886       return Op.getOperand(1);
887     break;
888   }
889   default:
890     // TODO: Probably okay to remove after audit; here to reduce change size
891     // in initial enablement patch for scalable vectors
892     if (VT.isScalableVector())
893       return SDValue();
894 
895     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
896       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
897               Op, DemandedBits, DemandedElts, DAG, Depth))
898         return V;
899     break;
900   }
901   return SDValue();
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
905     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
906     unsigned Depth) const {
907   EVT VT = Op.getValueType();
908   // Since the number of lanes in a scalable vector is unknown at compile time,
909   // we track one bit which is implicitly broadcast to all lanes.  This means
910   // that all lanes in a scalable vector are considered demanded.
911   APInt DemandedElts = VT.isFixedLengthVector()
912                            ? APInt::getAllOnes(VT.getVectorNumElements())
913                            : APInt(1, 1);
914   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
915                                          Depth);
916 }
917 
918 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
919     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
920     unsigned Depth) const {
921   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
922   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
923                                          Depth);
924 }
925 
926 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
927 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
928 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
929                                  const TargetLowering &TLI,
930                                  const APInt &DemandedBits,
931                                  const APInt &DemandedElts,
932                                  unsigned Depth) {
933   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
934          "SRL or SRA node is required here!");
935   // Is the right shift using an immediate value of 1?
936   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
937   if (!N1C || !N1C->isOne())
938     return SDValue();
939 
940   // We are looking for an avgfloor
941   // add(ext, ext)
942   // or one of these as a avgceil
943   // add(add(ext, ext), 1)
944   // add(add(ext, 1), ext)
945   // add(ext, add(ext, 1))
946   SDValue Add = Op.getOperand(0);
947   if (Add.getOpcode() != ISD::ADD)
948     return SDValue();
949 
950   SDValue ExtOpA = Add.getOperand(0);
951   SDValue ExtOpB = Add.getOperand(1);
952   SDValue Add2;
953   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
954     ConstantSDNode *ConstOp;
955     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
956         ConstOp->isOne()) {
957       ExtOpA = Op1;
958       ExtOpB = Op3;
959       Add2 = A;
960       return true;
961     }
962     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
963         ConstOp->isOne()) {
964       ExtOpA = Op1;
965       ExtOpB = Op2;
966       Add2 = A;
967       return true;
968     }
969     return false;
970   };
971   bool IsCeil =
972       (ExtOpA.getOpcode() == ISD::ADD &&
973        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
974       (ExtOpB.getOpcode() == ISD::ADD &&
975        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
976 
977   // If the shift is signed (sra):
978   //  - Needs >= 2 sign bit for both operands.
979   //  - Needs >= 2 zero bits.
980   // If the shift is unsigned (srl):
981   //  - Needs >= 1 zero bit for both operands.
982   //  - Needs 1 demanded bit zero and >= 2 sign bits.
983   unsigned ShiftOpc = Op.getOpcode();
984   bool IsSigned = false;
985   unsigned KnownBits;
986   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
987   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
988   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
989   unsigned NumZeroA =
990       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
991   unsigned NumZeroB =
992       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
993   unsigned NumZero = std::min(NumZeroA, NumZeroB);
994 
995   switch (ShiftOpc) {
996   default:
997     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
998   case ISD::SRA: {
999     if (NumZero >= 2 && NumSigned < NumZero) {
1000       IsSigned = false;
1001       KnownBits = NumZero;
1002       break;
1003     }
1004     if (NumSigned >= 1) {
1005       IsSigned = true;
1006       KnownBits = NumSigned;
1007       break;
1008     }
1009     return SDValue();
1010   }
1011   case ISD::SRL: {
1012     if (NumZero >= 1 && NumSigned < NumZero) {
1013       IsSigned = false;
1014       KnownBits = NumZero;
1015       break;
1016     }
1017     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1018       IsSigned = true;
1019       KnownBits = NumSigned;
1020       break;
1021     }
1022     return SDValue();
1023   }
1024   }
1025 
1026   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1027                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1028 
1029   // Find the smallest power-2 type that is legal for this vector size and
1030   // operation, given the original type size and the number of known sign/zero
1031   // bits.
1032   EVT VT = Op.getValueType();
1033   unsigned MinWidth =
1034       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1035   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1036   if (VT.isVector())
1037     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1038   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) {
1039     // If we could not transform, and (both) adds are nuw/nsw, we can use the
1040     // larger type size to do the transform.
1041     if (!TLI.isOperationLegalOrCustom(AVGOpc, VT))
1042       return SDValue();
1043 
1044     if (DAG.computeOverflowForAdd(IsSigned, Add.getOperand(0),
1045                                   Add.getOperand(1)) ==
1046             SelectionDAG::OFK_Never &&
1047         (!Add2 || DAG.computeOverflowForAdd(IsSigned, Add2.getOperand(0),
1048                                             Add2.getOperand(1)) ==
1049                       SelectionDAG::OFK_Never))
1050       NVT = VT;
1051     else
1052       return SDValue();
1053   }
1054 
1055   SDLoc DL(Op);
1056   SDValue ResultAVG =
1057       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1058                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1059   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1060                      ResultAVG);
1061 }
1062 
1063 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1064 /// result of Op are ever used downstream. If we can use this information to
1065 /// simplify Op, create a new simplified DAG node and return true, returning the
1066 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1067 /// return a mask of Known bits for the expression (used to simplify the
1068 /// caller).  The Known bits may only be accurate for those bits in the
1069 /// OriginalDemandedBits and OriginalDemandedElts.
1070 bool TargetLowering::SimplifyDemandedBits(
1071     SDValue Op, const APInt &OriginalDemandedBits,
1072     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1073     unsigned Depth, bool AssumeSingleUse) const {
1074   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1075   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1076          "Mask size mismatches value type size!");
1077 
1078   // Don't know anything.
1079   Known = KnownBits(BitWidth);
1080 
1081   EVT VT = Op.getValueType();
1082   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1083   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1084   assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1085          "Unexpected vector size");
1086 
1087   APInt DemandedBits = OriginalDemandedBits;
1088   APInt DemandedElts = OriginalDemandedElts;
1089   SDLoc dl(Op);
1090   auto &DL = TLO.DAG.getDataLayout();
1091 
1092   // Undef operand.
1093   if (Op.isUndef())
1094     return false;
1095 
1096   // We can't simplify target constants.
1097   if (Op.getOpcode() == ISD::TargetConstant)
1098     return false;
1099 
1100   if (Op.getOpcode() == ISD::Constant) {
1101     // We know all of the bits for a constant!
1102     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1103     return false;
1104   }
1105 
1106   if (Op.getOpcode() == ISD::ConstantFP) {
1107     // We know all of the bits for a floating point constant!
1108     Known = KnownBits::makeConstant(
1109         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1110     return false;
1111   }
1112 
1113   // Other users may use these bits.
1114   bool HasMultiUse = false;
1115   if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1116     if (Depth >= SelectionDAG::MaxRecursionDepth) {
1117       // Limit search depth.
1118       return false;
1119     }
1120     // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1121     DemandedBits = APInt::getAllOnes(BitWidth);
1122     DemandedElts = APInt::getAllOnes(NumElts);
1123     HasMultiUse = true;
1124   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1125     // Not demanding any bits/elts from Op.
1126     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1127   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1128     // Limit search depth.
1129     return false;
1130   }
1131 
1132   KnownBits Known2;
1133   switch (Op.getOpcode()) {
1134   case ISD::SCALAR_TO_VECTOR: {
1135     if (VT.isScalableVector())
1136       return false;
1137     if (!DemandedElts[0])
1138       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1139 
1140     KnownBits SrcKnown;
1141     SDValue Src = Op.getOperand(0);
1142     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1143     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1144     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1145       return true;
1146 
1147     // Upper elements are undef, so only get the knownbits if we just demand
1148     // the bottom element.
1149     if (DemandedElts == 1)
1150       Known = SrcKnown.anyextOrTrunc(BitWidth);
1151     break;
1152   }
1153   case ISD::BUILD_VECTOR:
1154     // Collect the known bits that are shared by every demanded element.
1155     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1156     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1157     return false; // Don't fall through, will infinitely loop.
1158   case ISD::LOAD: {
1159     auto *LD = cast<LoadSDNode>(Op);
1160     if (getTargetConstantFromLoad(LD)) {
1161       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1162       return false; // Don't fall through, will infinitely loop.
1163     }
1164     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1165       // If this is a ZEXTLoad and we are looking at the loaded value.
1166       EVT MemVT = LD->getMemoryVT();
1167       unsigned MemBits = MemVT.getScalarSizeInBits();
1168       Known.Zero.setBitsFrom(MemBits);
1169       return false; // Don't fall through, will infinitely loop.
1170     }
1171     break;
1172   }
1173   case ISD::INSERT_VECTOR_ELT: {
1174     if (VT.isScalableVector())
1175       return false;
1176     SDValue Vec = Op.getOperand(0);
1177     SDValue Scl = Op.getOperand(1);
1178     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1179     EVT VecVT = Vec.getValueType();
1180 
1181     // If index isn't constant, assume we need all vector elements AND the
1182     // inserted element.
1183     APInt DemandedVecElts(DemandedElts);
1184     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1185       unsigned Idx = CIdx->getZExtValue();
1186       DemandedVecElts.clearBit(Idx);
1187 
1188       // Inserted element is not required.
1189       if (!DemandedElts[Idx])
1190         return TLO.CombineTo(Op, Vec);
1191     }
1192 
1193     KnownBits KnownScl;
1194     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1195     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1196     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1197       return true;
1198 
1199     Known = KnownScl.anyextOrTrunc(BitWidth);
1200 
1201     KnownBits KnownVec;
1202     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1203                              Depth + 1))
1204       return true;
1205 
1206     if (!!DemandedVecElts)
1207       Known = Known.intersectWith(KnownVec);
1208 
1209     return false;
1210   }
1211   case ISD::INSERT_SUBVECTOR: {
1212     if (VT.isScalableVector())
1213       return false;
1214     // Demand any elements from the subvector and the remainder from the src its
1215     // inserted into.
1216     SDValue Src = Op.getOperand(0);
1217     SDValue Sub = Op.getOperand(1);
1218     uint64_t Idx = Op.getConstantOperandVal(2);
1219     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1220     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1221     APInt DemandedSrcElts = DemandedElts;
1222     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1223 
1224     KnownBits KnownSub, KnownSrc;
1225     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1226                              Depth + 1))
1227       return true;
1228     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1229                              Depth + 1))
1230       return true;
1231 
1232     Known.Zero.setAllBits();
1233     Known.One.setAllBits();
1234     if (!!DemandedSubElts)
1235       Known = Known.intersectWith(KnownSub);
1236     if (!!DemandedSrcElts)
1237       Known = Known.intersectWith(KnownSrc);
1238 
1239     // Attempt to avoid multi-use src if we don't need anything from it.
1240     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1241         !DemandedSrcElts.isAllOnes()) {
1242       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1243           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1244       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1245           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1246       if (NewSub || NewSrc) {
1247         NewSub = NewSub ? NewSub : Sub;
1248         NewSrc = NewSrc ? NewSrc : Src;
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1250                                         Op.getOperand(2));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::EXTRACT_SUBVECTOR: {
1257     if (VT.isScalableVector())
1258       return false;
1259     // Offset the demanded elts by the subvector index.
1260     SDValue Src = Op.getOperand(0);
1261     if (Src.getValueType().isScalableVector())
1262       break;
1263     uint64_t Idx = Op.getConstantOperandVal(1);
1264     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1265     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1266 
1267     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1268                              Depth + 1))
1269       return true;
1270 
1271     // Attempt to avoid multi-use src if we don't need anything from it.
1272     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1273       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1274           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1275       if (DemandedSrc) {
1276         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1277                                         Op.getOperand(1));
1278         return TLO.CombineTo(Op, NewOp);
1279       }
1280     }
1281     break;
1282   }
1283   case ISD::CONCAT_VECTORS: {
1284     if (VT.isScalableVector())
1285       return false;
1286     Known.Zero.setAllBits();
1287     Known.One.setAllBits();
1288     EVT SubVT = Op.getOperand(0).getValueType();
1289     unsigned NumSubVecs = Op.getNumOperands();
1290     unsigned NumSubElts = SubVT.getVectorNumElements();
1291     for (unsigned i = 0; i != NumSubVecs; ++i) {
1292       APInt DemandedSubElts =
1293           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1294       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1295                                Known2, TLO, Depth + 1))
1296         return true;
1297       // Known bits are shared by every demanded subvector element.
1298       if (!!DemandedSubElts)
1299         Known = Known.intersectWith(Known2);
1300     }
1301     break;
1302   }
1303   case ISD::VECTOR_SHUFFLE: {
1304     assert(!VT.isScalableVector());
1305     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1306 
1307     // Collect demanded elements from shuffle operands..
1308     APInt DemandedLHS, DemandedRHS;
1309     if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1310                                 DemandedRHS))
1311       break;
1312 
1313     if (!!DemandedLHS || !!DemandedRHS) {
1314       SDValue Op0 = Op.getOperand(0);
1315       SDValue Op1 = Op.getOperand(1);
1316 
1317       Known.Zero.setAllBits();
1318       Known.One.setAllBits();
1319       if (!!DemandedLHS) {
1320         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1321                                  Depth + 1))
1322           return true;
1323         Known = Known.intersectWith(Known2);
1324       }
1325       if (!!DemandedRHS) {
1326         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1327                                  Depth + 1))
1328           return true;
1329         Known = Known.intersectWith(Known2);
1330       }
1331 
1332       // Attempt to avoid multi-use ops if we don't need anything from them.
1333       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1334           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1335       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1336           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1337       if (DemandedOp0 || DemandedOp1) {
1338         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1339         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1340         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1341         return TLO.CombineTo(Op, NewOp);
1342       }
1343     }
1344     break;
1345   }
1346   case ISD::AND: {
1347     SDValue Op0 = Op.getOperand(0);
1348     SDValue Op1 = Op.getOperand(1);
1349 
1350     // If the RHS is a constant, check to see if the LHS would be zero without
1351     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1352     // simplify the LHS, here we're using information from the LHS to simplify
1353     // the RHS.
1354     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1355       // Do not increment Depth here; that can cause an infinite loop.
1356       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1357       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1358       if ((LHSKnown.Zero & DemandedBits) ==
1359           (~RHSC->getAPIntValue() & DemandedBits))
1360         return TLO.CombineTo(Op, Op0);
1361 
1362       // If any of the set bits in the RHS are known zero on the LHS, shrink
1363       // the constant.
1364       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1365                                  DemandedElts, TLO))
1366         return true;
1367 
1368       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1369       // constant, but if this 'and' is only clearing bits that were just set by
1370       // the xor, then this 'and' can be eliminated by shrinking the mask of
1371       // the xor. For example, for a 32-bit X:
1372       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1373       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1374           LHSKnown.One == ~RHSC->getAPIntValue()) {
1375         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1376         return TLO.CombineTo(Op, Xor);
1377       }
1378     }
1379 
1380     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1381     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1382     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1383         (Op0.getOperand(0).isUndef() ||
1384          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1385         Op0->hasOneUse()) {
1386       unsigned NumSubElts =
1387           Op0.getOperand(1).getValueType().getVectorNumElements();
1388       unsigned SubIdx = Op0.getConstantOperandVal(2);
1389       APInt DemandedSub =
1390           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1391       KnownBits KnownSubMask =
1392           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1393       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1394         SDValue NewAnd =
1395             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1396         SDValue NewInsert =
1397             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1398                             Op0.getOperand(1), Op0.getOperand(2));
1399         return TLO.CombineTo(Op, NewInsert);
1400       }
1401     }
1402 
1403     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1404                              Depth + 1))
1405       return true;
1406     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1407     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1408                              Known2, TLO, Depth + 1))
1409       return true;
1410     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1411 
1412     // If all of the demanded bits are known one on one side, return the other.
1413     // These bits cannot contribute to the result of the 'and'.
1414     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1415       return TLO.CombineTo(Op, Op0);
1416     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1417       return TLO.CombineTo(Op, Op1);
1418     // If all of the demanded bits in the inputs are known zeros, return zero.
1419     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1420       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1421     // If the RHS is a constant, see if we can simplify it.
1422     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1423                                TLO))
1424       return true;
1425     // If the operation can be done in a smaller type, do so.
1426     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1427       return true;
1428 
1429     // Attempt to avoid multi-use ops if we don't need anything from them.
1430     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1431       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1432           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1433       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1434           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1435       if (DemandedOp0 || DemandedOp1) {
1436         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1437         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1438         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1439         return TLO.CombineTo(Op, NewOp);
1440       }
1441     }
1442 
1443     Known &= Known2;
1444     break;
1445   }
1446   case ISD::OR: {
1447     SDValue Op0 = Op.getOperand(0);
1448     SDValue Op1 = Op.getOperand(1);
1449 
1450     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1451                              Depth + 1))
1452       return true;
1453     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1454     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1455                              Known2, TLO, Depth + 1))
1456       return true;
1457     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1458 
1459     // If all of the demanded bits are known zero on one side, return the other.
1460     // These bits cannot contribute to the result of the 'or'.
1461     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1462       return TLO.CombineTo(Op, Op0);
1463     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1464       return TLO.CombineTo(Op, Op1);
1465     // If the RHS is a constant, see if we can simplify it.
1466     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1467       return true;
1468     // If the operation can be done in a smaller type, do so.
1469     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1470       return true;
1471 
1472     // Attempt to avoid multi-use ops if we don't need anything from them.
1473     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1474       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1475           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1476       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1477           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1478       if (DemandedOp0 || DemandedOp1) {
1479         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1480         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1481         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1482         return TLO.CombineTo(Op, NewOp);
1483       }
1484     }
1485 
1486     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1487     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1488     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1489         Op0->hasOneUse() && Op1->hasOneUse()) {
1490       // Attempt to match all commutations - m_c_Or would've been useful!
1491       for (int I = 0; I != 2; ++I) {
1492         SDValue X = Op.getOperand(I).getOperand(0);
1493         SDValue C1 = Op.getOperand(I).getOperand(1);
1494         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1495         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1496         if (Alt.getOpcode() == ISD::OR) {
1497           for (int J = 0; J != 2; ++J) {
1498             if (X == Alt.getOperand(J)) {
1499               SDValue Y = Alt.getOperand(1 - J);
1500               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1501                                                                {C1, C2})) {
1502                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1503                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1504                 return TLO.CombineTo(
1505                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1506               }
1507             }
1508           }
1509         }
1510       }
1511     }
1512 
1513     Known |= Known2;
1514     break;
1515   }
1516   case ISD::XOR: {
1517     SDValue Op0 = Op.getOperand(0);
1518     SDValue Op1 = Op.getOperand(1);
1519 
1520     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1521                              Depth + 1))
1522       return true;
1523     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1524     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1525                              Depth + 1))
1526       return true;
1527     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1528 
1529     // If all of the demanded bits are known zero on one side, return the other.
1530     // These bits cannot contribute to the result of the 'xor'.
1531     if (DemandedBits.isSubsetOf(Known.Zero))
1532       return TLO.CombineTo(Op, Op0);
1533     if (DemandedBits.isSubsetOf(Known2.Zero))
1534       return TLO.CombineTo(Op, Op1);
1535     // If the operation can be done in a smaller type, do so.
1536     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1537       return true;
1538 
1539     // If all of the unknown bits are known to be zero on one side or the other
1540     // turn this into an *inclusive* or.
1541     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1542     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1543       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1544 
1545     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1546     if (C) {
1547       // If one side is a constant, and all of the set bits in the constant are
1548       // also known set on the other side, turn this into an AND, as we know
1549       // the bits will be cleared.
1550       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1551       // NB: it is okay if more bits are known than are requested
1552       if (C->getAPIntValue() == Known2.One) {
1553         SDValue ANDC =
1554             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1555         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1556       }
1557 
1558       // If the RHS is a constant, see if we can change it. Don't alter a -1
1559       // constant because that's a 'not' op, and that is better for combining
1560       // and codegen.
1561       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1562         // We're flipping all demanded bits. Flip the undemanded bits too.
1563         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1564         return TLO.CombineTo(Op, New);
1565       }
1566 
1567       unsigned Op0Opcode = Op0.getOpcode();
1568       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1569         if (ConstantSDNode *ShiftC =
1570                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1571           // Don't crash on an oversized shift. We can not guarantee that a
1572           // bogus shift has been simplified to undef.
1573           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1574             uint64_t ShiftAmt = ShiftC->getZExtValue();
1575             APInt Ones = APInt::getAllOnes(BitWidth);
1576             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1577                                          : Ones.lshr(ShiftAmt);
1578             const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1579             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1580                 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1581               // If the xor constant is a demanded mask, do a 'not' before the
1582               // shift:
1583               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1584               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1585               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1586               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1587                                                        Op0.getOperand(1)));
1588             }
1589           }
1590         }
1591       }
1592     }
1593 
1594     // If we can't turn this into a 'not', try to shrink the constant.
1595     if (!C || !C->isAllOnes())
1596       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1597         return true;
1598 
1599     // Attempt to avoid multi-use ops if we don't need anything from them.
1600     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1601       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1602           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1603       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1604           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1605       if (DemandedOp0 || DemandedOp1) {
1606         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1607         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1608         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1609         return TLO.CombineTo(Op, NewOp);
1610       }
1611     }
1612 
1613     Known ^= Known2;
1614     break;
1615   }
1616   case ISD::SELECT:
1617     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1618                              Depth + 1))
1619       return true;
1620     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1621                              Depth + 1))
1622       return true;
1623     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1624     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1625 
1626     // If the operands are constants, see if we can simplify them.
1627     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1628       return true;
1629 
1630     // Only known if known in both the LHS and RHS.
1631     Known = Known.intersectWith(Known2);
1632     break;
1633   case ISD::VSELECT:
1634     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1635                              Known, TLO, Depth + 1))
1636       return true;
1637     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1638                              Known2, TLO, Depth + 1))
1639       return true;
1640     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1642 
1643     // Only known if known in both the LHS and RHS.
1644     Known = Known.intersectWith(Known2);
1645     break;
1646   case ISD::SELECT_CC:
1647     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1648                              Depth + 1))
1649       return true;
1650     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1651                              Depth + 1))
1652       return true;
1653     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1654     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1655 
1656     // If the operands are constants, see if we can simplify them.
1657     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1658       return true;
1659 
1660     // Only known if known in both the LHS and RHS.
1661     Known = Known.intersectWith(Known2);
1662     break;
1663   case ISD::SETCC: {
1664     SDValue Op0 = Op.getOperand(0);
1665     SDValue Op1 = Op.getOperand(1);
1666     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1667     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1668     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1669     // -1, we may be able to bypass the setcc.
1670     if (DemandedBits.isSignMask() &&
1671         Op0.getScalarValueSizeInBits() == BitWidth &&
1672         getBooleanContents(Op0.getValueType()) ==
1673             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1674       // If we're testing X < 0, then this compare isn't needed - just use X!
1675       // FIXME: We're limiting to integer types here, but this should also work
1676       // if we don't care about FP signed-zero. The use of SETLT with FP means
1677       // that we don't care about NaNs.
1678       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1679           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1680         return TLO.CombineTo(Op, Op0);
1681 
1682       // TODO: Should we check for other forms of sign-bit comparisons?
1683       // Examples: X <= -1, X >= 0
1684     }
1685     if (getBooleanContents(Op0.getValueType()) ==
1686             TargetLowering::ZeroOrOneBooleanContent &&
1687         BitWidth > 1)
1688       Known.Zero.setBitsFrom(1);
1689     break;
1690   }
1691   case ISD::SHL: {
1692     SDValue Op0 = Op.getOperand(0);
1693     SDValue Op1 = Op.getOperand(1);
1694     EVT ShiftVT = Op1.getValueType();
1695 
1696     if (const APInt *SA =
1697             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1698       unsigned ShAmt = SA->getZExtValue();
1699       if (ShAmt == 0)
1700         return TLO.CombineTo(Op, Op0);
1701 
1702       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1703       // single shift.  We can do this if the bottom bits (which are shifted
1704       // out) are never demanded.
1705       // TODO - support non-uniform vector amounts.
1706       if (Op0.getOpcode() == ISD::SRL) {
1707         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1708           if (const APInt *SA2 =
1709                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1710             unsigned C1 = SA2->getZExtValue();
1711             unsigned Opc = ISD::SHL;
1712             int Diff = ShAmt - C1;
1713             if (Diff < 0) {
1714               Diff = -Diff;
1715               Opc = ISD::SRL;
1716             }
1717             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1718             return TLO.CombineTo(
1719                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1720           }
1721         }
1722       }
1723 
1724       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1725       // are not demanded. This will likely allow the anyext to be folded away.
1726       // TODO - support non-uniform vector amounts.
1727       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1728         SDValue InnerOp = Op0.getOperand(0);
1729         EVT InnerVT = InnerOp.getValueType();
1730         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1731         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1732             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1733           SDValue NarrowShl = TLO.DAG.getNode(
1734               ISD::SHL, dl, InnerVT, InnerOp,
1735               TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1736           return TLO.CombineTo(
1737               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1738         }
1739 
1740         // Repeat the SHL optimization above in cases where an extension
1741         // intervenes: (shl (anyext (shr x, c1)), c2) to
1742         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1743         // aren't demanded (as above) and that the shifted upper c1 bits of
1744         // x aren't demanded.
1745         // TODO - support non-uniform vector amounts.
1746         if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1747             InnerOp.hasOneUse()) {
1748           if (const APInt *SA2 =
1749                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1750             unsigned InnerShAmt = SA2->getZExtValue();
1751             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1752                 DemandedBits.getActiveBits() <=
1753                     (InnerBits - InnerShAmt + ShAmt) &&
1754                 DemandedBits.countr_zero() >= ShAmt) {
1755               SDValue NewSA =
1756                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1757               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1758                                                InnerOp.getOperand(0));
1759               return TLO.CombineTo(
1760                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1761             }
1762           }
1763         }
1764       }
1765 
1766       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1767       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1768                                Depth + 1))
1769         return true;
1770       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1771       Known.Zero <<= ShAmt;
1772       Known.One <<= ShAmt;
1773       // low bits known zero.
1774       Known.Zero.setLowBits(ShAmt);
1775 
1776       // Attempt to avoid multi-use ops if we don't need anything from them.
1777       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1778         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1779             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1780         if (DemandedOp0) {
1781           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1782           return TLO.CombineTo(Op, NewOp);
1783         }
1784       }
1785 
1786       // Try shrinking the operation as long as the shift amount will still be
1787       // in range.
1788       if ((ShAmt < DemandedBits.getActiveBits()) &&
1789           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1790         return true;
1791     } else {
1792       // This is a variable shift, so we can't shift the demand mask by a known
1793       // amount. But if we are not demanding high bits, then we are not
1794       // demanding those bits from the pre-shifted operand either.
1795       if (unsigned CTLZ = DemandedBits.countl_zero()) {
1796         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1797         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1798                                  Depth + 1)) {
1799           SDNodeFlags Flags = Op.getNode()->getFlags();
1800           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1801             // Disable the nsw and nuw flags. We can no longer guarantee that we
1802             // won't wrap after simplification.
1803             Flags.setNoSignedWrap(false);
1804             Flags.setNoUnsignedWrap(false);
1805             Op->setFlags(Flags);
1806           }
1807           return true;
1808         }
1809         Known.resetAll();
1810       }
1811     }
1812 
1813     // If we are only demanding sign bits then we can use the shift source
1814     // directly.
1815     if (const APInt *MaxSA =
1816             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1817       unsigned ShAmt = MaxSA->getZExtValue();
1818       unsigned NumSignBits =
1819           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1820       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1821       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1822         return TLO.CombineTo(Op, Op0);
1823     }
1824     break;
1825   }
1826   case ISD::SRL: {
1827     SDValue Op0 = Op.getOperand(0);
1828     SDValue Op1 = Op.getOperand(1);
1829     EVT ShiftVT = Op1.getValueType();
1830 
1831     // Try to match AVG patterns.
1832     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1833                                         DemandedElts, Depth + 1))
1834       return TLO.CombineTo(Op, AVG);
1835 
1836     if (const APInt *SA =
1837             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1838       unsigned ShAmt = SA->getZExtValue();
1839       if (ShAmt == 0)
1840         return TLO.CombineTo(Op, Op0);
1841 
1842       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1843       // single shift.  We can do this if the top bits (which are shifted out)
1844       // are never demanded.
1845       // TODO - support non-uniform vector amounts.
1846       if (Op0.getOpcode() == ISD::SHL) {
1847         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1848           if (const APInt *SA2 =
1849                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1850             unsigned C1 = SA2->getZExtValue();
1851             unsigned Opc = ISD::SRL;
1852             int Diff = ShAmt - C1;
1853             if (Diff < 0) {
1854               Diff = -Diff;
1855               Opc = ISD::SHL;
1856             }
1857             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1858             return TLO.CombineTo(
1859                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1860           }
1861         }
1862       }
1863 
1864       APInt InDemandedMask = (DemandedBits << ShAmt);
1865 
1866       // If the shift is exact, then it does demand the low bits (and knows that
1867       // they are zero).
1868       if (Op->getFlags().hasExact())
1869         InDemandedMask.setLowBits(ShAmt);
1870 
1871       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1872       // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
1873       if ((BitWidth % 2) == 0 && !VT.isVector() &&
1874           ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
1875            TLO.DAG.MaskedValueIsZero(
1876                Op0, APInt::getHighBitsSet(BitWidth, BitWidth / 2)))) {
1877         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
1878         if (isNarrowingProfitable(VT, HalfVT) &&
1879             isTypeDesirableForOp(ISD::SRL, HalfVT) &&
1880             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1881             (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT))) {
1882           SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1883           SDValue NewShiftAmt = TLO.DAG.getShiftAmountConstant(
1884               ShAmt, HalfVT, dl, TLO.LegalTypes());
1885           SDValue NewShift =
1886               TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
1887           return TLO.CombineTo(
1888               Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
1889         }
1890       }
1891 
1892       // Compute the new bits that are at the top now.
1893       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1894                                Depth + 1))
1895         return true;
1896       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1897       Known.Zero.lshrInPlace(ShAmt);
1898       Known.One.lshrInPlace(ShAmt);
1899       // High bits known zero.
1900       Known.Zero.setHighBits(ShAmt);
1901 
1902       // Attempt to avoid multi-use ops if we don't need anything from them.
1903       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1904         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1905             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1906         if (DemandedOp0) {
1907           SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
1908           return TLO.CombineTo(Op, NewOp);
1909         }
1910       }
1911     } else {
1912       // Use generic knownbits computation as it has support for non-uniform
1913       // shift amounts.
1914       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1915     }
1916     break;
1917   }
1918   case ISD::SRA: {
1919     SDValue Op0 = Op.getOperand(0);
1920     SDValue Op1 = Op.getOperand(1);
1921     EVT ShiftVT = Op1.getValueType();
1922 
1923     // If we only want bits that already match the signbit then we don't need
1924     // to shift.
1925     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
1926     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1927         NumHiDemandedBits)
1928       return TLO.CombineTo(Op, Op0);
1929 
1930     // If this is an arithmetic shift right and only the low-bit is set, we can
1931     // always convert this into a logical shr, even if the shift amount is
1932     // variable.  The low bit of the shift cannot be an input sign bit unless
1933     // the shift amount is >= the size of the datatype, which is undefined.
1934     if (DemandedBits.isOne())
1935       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1936 
1937     // Try to match AVG patterns.
1938     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1939                                         DemandedElts, Depth + 1))
1940       return TLO.CombineTo(Op, AVG);
1941 
1942     if (const APInt *SA =
1943             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1944       unsigned ShAmt = SA->getZExtValue();
1945       if (ShAmt == 0)
1946         return TLO.CombineTo(Op, Op0);
1947 
1948       APInt InDemandedMask = (DemandedBits << ShAmt);
1949 
1950       // If the shift is exact, then it does demand the low bits (and knows that
1951       // they are zero).
1952       if (Op->getFlags().hasExact())
1953         InDemandedMask.setLowBits(ShAmt);
1954 
1955       // If any of the demanded bits are produced by the sign extension, we also
1956       // demand the input sign bit.
1957       if (DemandedBits.countl_zero() < ShAmt)
1958         InDemandedMask.setSignBit();
1959 
1960       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1961                                Depth + 1))
1962         return true;
1963       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1964       Known.Zero.lshrInPlace(ShAmt);
1965       Known.One.lshrInPlace(ShAmt);
1966 
1967       // If the input sign bit is known to be zero, or if none of the top bits
1968       // are demanded, turn this into an unsigned shift right.
1969       if (Known.Zero[BitWidth - ShAmt - 1] ||
1970           DemandedBits.countl_zero() >= ShAmt) {
1971         SDNodeFlags Flags;
1972         Flags.setExact(Op->getFlags().hasExact());
1973         return TLO.CombineTo(
1974             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1975       }
1976 
1977       int Log2 = DemandedBits.exactLogBase2();
1978       if (Log2 >= 0) {
1979         // The bit must come from the sign.
1980         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1981         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1982       }
1983 
1984       if (Known.One[BitWidth - ShAmt - 1])
1985         // New bits are known one.
1986         Known.One.setHighBits(ShAmt);
1987 
1988       // Attempt to avoid multi-use ops if we don't need anything from them.
1989       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1990         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1991             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1992         if (DemandedOp0) {
1993           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1994           return TLO.CombineTo(Op, NewOp);
1995         }
1996       }
1997     }
1998     break;
1999   }
2000   case ISD::FSHL:
2001   case ISD::FSHR: {
2002     SDValue Op0 = Op.getOperand(0);
2003     SDValue Op1 = Op.getOperand(1);
2004     SDValue Op2 = Op.getOperand(2);
2005     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2006 
2007     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2008       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2009 
2010       // For fshl, 0-shift returns the 1st arg.
2011       // For fshr, 0-shift returns the 2nd arg.
2012       if (Amt == 0) {
2013         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2014                                  Known, TLO, Depth + 1))
2015           return true;
2016         break;
2017       }
2018 
2019       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2020       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2021       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2022       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2023       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2024                                Depth + 1))
2025         return true;
2026       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2027                                Depth + 1))
2028         return true;
2029 
2030       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2031       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2032       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2033       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2034       Known = Known.unionWith(Known2);
2035 
2036       // Attempt to avoid multi-use ops if we don't need anything from them.
2037       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2038           !DemandedElts.isAllOnes()) {
2039         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2040             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2041         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2042             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2043         if (DemandedOp0 || DemandedOp1) {
2044           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2045           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2046           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2047                                           DemandedOp1, Op2);
2048           return TLO.CombineTo(Op, NewOp);
2049         }
2050       }
2051     }
2052 
2053     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2054     if (isPowerOf2_32(BitWidth)) {
2055       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2056       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2057                                Known2, TLO, Depth + 1))
2058         return true;
2059     }
2060     break;
2061   }
2062   case ISD::ROTL:
2063   case ISD::ROTR: {
2064     SDValue Op0 = Op.getOperand(0);
2065     SDValue Op1 = Op.getOperand(1);
2066     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2067 
2068     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2069     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2070       return TLO.CombineTo(Op, Op0);
2071 
2072     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2073       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2074       unsigned RevAmt = BitWidth - Amt;
2075 
2076       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2077       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2078       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2079       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2080                                Depth + 1))
2081         return true;
2082 
2083       // rot*(x, 0) --> x
2084       if (Amt == 0)
2085         return TLO.CombineTo(Op, Op0);
2086 
2087       // See if we don't demand either half of the rotated bits.
2088       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2089           DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2090         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2091         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2092       }
2093       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2094           DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2095         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2096         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2097       }
2098     }
2099 
2100     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2101     if (isPowerOf2_32(BitWidth)) {
2102       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2103       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2104                                Depth + 1))
2105         return true;
2106     }
2107     break;
2108   }
2109   case ISD::UMIN: {
2110     // Check if one arg is always less than (or equal) to the other arg.
2111     SDValue Op0 = Op.getOperand(0);
2112     SDValue Op1 = Op.getOperand(1);
2113     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2114     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2115     Known = KnownBits::umin(Known0, Known1);
2116     if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2117       return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2118     if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2119       return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2120     break;
2121   }
2122   case ISD::UMAX: {
2123     // Check if one arg is always greater than (or equal) to the other arg.
2124     SDValue Op0 = Op.getOperand(0);
2125     SDValue Op1 = Op.getOperand(1);
2126     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2127     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2128     Known = KnownBits::umax(Known0, Known1);
2129     if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2130       return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2131     if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2132       return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2133     break;
2134   }
2135   case ISD::BITREVERSE: {
2136     SDValue Src = Op.getOperand(0);
2137     APInt DemandedSrcBits = DemandedBits.reverseBits();
2138     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2139                              Depth + 1))
2140       return true;
2141     Known.One = Known2.One.reverseBits();
2142     Known.Zero = Known2.Zero.reverseBits();
2143     break;
2144   }
2145   case ISD::BSWAP: {
2146     SDValue Src = Op.getOperand(0);
2147 
2148     // If the only bits demanded come from one byte of the bswap result,
2149     // just shift the input byte into position to eliminate the bswap.
2150     unsigned NLZ = DemandedBits.countl_zero();
2151     unsigned NTZ = DemandedBits.countr_zero();
2152 
2153     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2154     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2155     // have 14 leading zeros, round to 8.
2156     NLZ = alignDown(NLZ, 8);
2157     NTZ = alignDown(NTZ, 8);
2158     // If we need exactly one byte, we can do this transformation.
2159     if (BitWidth - NLZ - NTZ == 8) {
2160       // Replace this with either a left or right shift to get the byte into
2161       // the right place.
2162       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2163       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2164         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2165         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2166         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2167         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2168         return TLO.CombineTo(Op, NewOp);
2169       }
2170     }
2171 
2172     APInt DemandedSrcBits = DemandedBits.byteSwap();
2173     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2174                              Depth + 1))
2175       return true;
2176     Known.One = Known2.One.byteSwap();
2177     Known.Zero = Known2.Zero.byteSwap();
2178     break;
2179   }
2180   case ISD::CTPOP: {
2181     // If only 1 bit is demanded, replace with PARITY as long as we're before
2182     // op legalization.
2183     // FIXME: Limit to scalars for now.
2184     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2185       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2186                                                Op.getOperand(0)));
2187 
2188     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2189     break;
2190   }
2191   case ISD::SIGN_EXTEND_INREG: {
2192     SDValue Op0 = Op.getOperand(0);
2193     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2194     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2195 
2196     // If we only care about the highest bit, don't bother shifting right.
2197     if (DemandedBits.isSignMask()) {
2198       unsigned MinSignedBits =
2199           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2200       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2201       // However if the input is already sign extended we expect the sign
2202       // extension to be dropped altogether later and do not simplify.
2203       if (!AlreadySignExtended) {
2204         // Compute the correct shift amount type, which must be getShiftAmountTy
2205         // for scalar types after legalization.
2206         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2207                                                getShiftAmountTy(VT, DL));
2208         return TLO.CombineTo(Op,
2209                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2210       }
2211     }
2212 
2213     // If none of the extended bits are demanded, eliminate the sextinreg.
2214     if (DemandedBits.getActiveBits() <= ExVTBits)
2215       return TLO.CombineTo(Op, Op0);
2216 
2217     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2218 
2219     // Since the sign extended bits are demanded, we know that the sign
2220     // bit is demanded.
2221     InputDemandedBits.setBit(ExVTBits - 1);
2222 
2223     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2224                              Depth + 1))
2225       return true;
2226     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2227 
2228     // If the sign bit of the input is known set or clear, then we know the
2229     // top bits of the result.
2230 
2231     // If the input sign bit is known zero, convert this into a zero extension.
2232     if (Known.Zero[ExVTBits - 1])
2233       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2234 
2235     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2236     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2237       Known.One.setBitsFrom(ExVTBits);
2238       Known.Zero &= Mask;
2239     } else { // Input sign bit unknown
2240       Known.Zero &= Mask;
2241       Known.One &= Mask;
2242     }
2243     break;
2244   }
2245   case ISD::BUILD_PAIR: {
2246     EVT HalfVT = Op.getOperand(0).getValueType();
2247     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2248 
2249     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2250     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2251 
2252     KnownBits KnownLo, KnownHi;
2253 
2254     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2255       return true;
2256 
2257     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2258       return true;
2259 
2260     Known = KnownHi.concat(KnownLo);
2261     break;
2262   }
2263   case ISD::ZERO_EXTEND_VECTOR_INREG:
2264     if (VT.isScalableVector())
2265       return false;
2266     [[fallthrough]];
2267   case ISD::ZERO_EXTEND: {
2268     SDValue Src = Op.getOperand(0);
2269     EVT SrcVT = Src.getValueType();
2270     unsigned InBits = SrcVT.getScalarSizeInBits();
2271     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2272     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2273 
2274     // If none of the top bits are demanded, convert this into an any_extend.
2275     if (DemandedBits.getActiveBits() <= InBits) {
2276       // If we only need the non-extended bits of the bottom element
2277       // then we can just bitcast to the result.
2278       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2279           VT.getSizeInBits() == SrcVT.getSizeInBits())
2280         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2281 
2282       unsigned Opc =
2283           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2284       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2285         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2286     }
2287 
2288     APInt InDemandedBits = DemandedBits.trunc(InBits);
2289     APInt InDemandedElts = DemandedElts.zext(InElts);
2290     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2291                              Depth + 1))
2292       return true;
2293     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2294     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2295     Known = Known.zext(BitWidth);
2296 
2297     // Attempt to avoid multi-use ops if we don't need anything from them.
2298     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2299             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2300       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2301     break;
2302   }
2303   case ISD::SIGN_EXTEND_VECTOR_INREG:
2304     if (VT.isScalableVector())
2305       return false;
2306     [[fallthrough]];
2307   case ISD::SIGN_EXTEND: {
2308     SDValue Src = Op.getOperand(0);
2309     EVT SrcVT = Src.getValueType();
2310     unsigned InBits = SrcVT.getScalarSizeInBits();
2311     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2312     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2313 
2314     // If none of the top bits are demanded, convert this into an any_extend.
2315     if (DemandedBits.getActiveBits() <= InBits) {
2316       // If we only need the non-extended bits of the bottom element
2317       // then we can just bitcast to the result.
2318       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2319           VT.getSizeInBits() == SrcVT.getSizeInBits())
2320         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2321 
2322       unsigned Opc =
2323           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2324       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2325         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2326     }
2327 
2328     APInt InDemandedBits = DemandedBits.trunc(InBits);
2329     APInt InDemandedElts = DemandedElts.zext(InElts);
2330 
2331     // Since some of the sign extended bits are demanded, we know that the sign
2332     // bit is demanded.
2333     InDemandedBits.setBit(InBits - 1);
2334 
2335     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2336                              Depth + 1))
2337       return true;
2338     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2339     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2340 
2341     // If the sign bit is known one, the top bits match.
2342     Known = Known.sext(BitWidth);
2343 
2344     // If the sign bit is known zero, convert this to a zero extend.
2345     if (Known.isNonNegative()) {
2346       unsigned Opc =
2347           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2348       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2349         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2350     }
2351 
2352     // Attempt to avoid multi-use ops if we don't need anything from them.
2353     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2354             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2355       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2356     break;
2357   }
2358   case ISD::ANY_EXTEND_VECTOR_INREG:
2359     if (VT.isScalableVector())
2360       return false;
2361     [[fallthrough]];
2362   case ISD::ANY_EXTEND: {
2363     SDValue Src = Op.getOperand(0);
2364     EVT SrcVT = Src.getValueType();
2365     unsigned InBits = SrcVT.getScalarSizeInBits();
2366     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2367     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2368 
2369     // If we only need the bottom element then we can just bitcast.
2370     // TODO: Handle ANY_EXTEND?
2371     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2372         VT.getSizeInBits() == SrcVT.getSizeInBits())
2373       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2374 
2375     APInt InDemandedBits = DemandedBits.trunc(InBits);
2376     APInt InDemandedElts = DemandedElts.zext(InElts);
2377     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2378                              Depth + 1))
2379       return true;
2380     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2381     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2382     Known = Known.anyext(BitWidth);
2383 
2384     // Attempt to avoid multi-use ops if we don't need anything from them.
2385     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2386             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2387       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2388     break;
2389   }
2390   case ISD::TRUNCATE: {
2391     SDValue Src = Op.getOperand(0);
2392 
2393     // Simplify the input, using demanded bit information, and compute the known
2394     // zero/one bits live out.
2395     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2396     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2397     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2398                              Depth + 1))
2399       return true;
2400     Known = Known.trunc(BitWidth);
2401 
2402     // Attempt to avoid multi-use ops if we don't need anything from them.
2403     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2404             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2405       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2406 
2407     // If the input is only used by this truncate, see if we can shrink it based
2408     // on the known demanded bits.
2409     switch (Src.getOpcode()) {
2410     default:
2411       break;
2412     case ISD::SRL:
2413       // Shrink SRL by a constant if none of the high bits shifted in are
2414       // demanded.
2415       if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2416         // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2417         // undesirable.
2418         break;
2419 
2420       if (Src.getNode()->hasOneUse()) {
2421         const APInt *ShAmtC =
2422             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2423         if (!ShAmtC || ShAmtC->uge(BitWidth))
2424           break;
2425         uint64_t ShVal = ShAmtC->getZExtValue();
2426 
2427         APInt HighBits =
2428             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2429         HighBits.lshrInPlace(ShVal);
2430         HighBits = HighBits.trunc(BitWidth);
2431 
2432         if (!(HighBits & DemandedBits)) {
2433           // None of the shifted in bits are needed.  Add a truncate of the
2434           // shift input, then shift it.
2435           SDValue NewShAmt = TLO.DAG.getConstant(
2436               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2437           SDValue NewTrunc =
2438               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2439           return TLO.CombineTo(
2440               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2441         }
2442       }
2443       break;
2444     }
2445 
2446     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2447     break;
2448   }
2449   case ISD::AssertZext: {
2450     // AssertZext demands all of the high bits, plus any of the low bits
2451     // demanded by its users.
2452     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2453     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2454     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2455                              TLO, Depth + 1))
2456       return true;
2457     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2458 
2459     Known.Zero |= ~InMask;
2460     Known.One &= (~Known.Zero);
2461     break;
2462   }
2463   case ISD::EXTRACT_VECTOR_ELT: {
2464     SDValue Src = Op.getOperand(0);
2465     SDValue Idx = Op.getOperand(1);
2466     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2467     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2468 
2469     if (SrcEltCnt.isScalable())
2470       return false;
2471 
2472     // Demand the bits from every vector element without a constant index.
2473     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2474     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2475     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2476       if (CIdx->getAPIntValue().ult(NumSrcElts))
2477         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2478 
2479     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2480     // anything about the extended bits.
2481     APInt DemandedSrcBits = DemandedBits;
2482     if (BitWidth > EltBitWidth)
2483       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2484 
2485     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2486                              Depth + 1))
2487       return true;
2488 
2489     // Attempt to avoid multi-use ops if we don't need anything from them.
2490     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2491       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2492               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2493         SDValue NewOp =
2494             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2495         return TLO.CombineTo(Op, NewOp);
2496       }
2497     }
2498 
2499     Known = Known2;
2500     if (BitWidth > EltBitWidth)
2501       Known = Known.anyext(BitWidth);
2502     break;
2503   }
2504   case ISD::BITCAST: {
2505     if (VT.isScalableVector())
2506       return false;
2507     SDValue Src = Op.getOperand(0);
2508     EVT SrcVT = Src.getValueType();
2509     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2510 
2511     // If this is an FP->Int bitcast and if the sign bit is the only
2512     // thing demanded, turn this into a FGETSIGN.
2513     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2514         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2515         SrcVT.isFloatingPoint()) {
2516       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2517       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2518       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2519           SrcVT != MVT::f128) {
2520         // Cannot eliminate/lower SHL for f128 yet.
2521         EVT Ty = OpVTLegal ? VT : MVT::i32;
2522         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2523         // place.  We expect the SHL to be eliminated by other optimizations.
2524         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2525         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2526         if (!OpVTLegal && OpVTSizeInBits > 32)
2527           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2528         unsigned ShVal = Op.getValueSizeInBits() - 1;
2529         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2530         return TLO.CombineTo(Op,
2531                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2532       }
2533     }
2534 
2535     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2536     // Demand the elt/bit if any of the original elts/bits are demanded.
2537     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2538       unsigned Scale = BitWidth / NumSrcEltBits;
2539       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2540       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2541       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2542       for (unsigned i = 0; i != Scale; ++i) {
2543         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2544         unsigned BitOffset = EltOffset * NumSrcEltBits;
2545         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2546         if (!Sub.isZero()) {
2547           DemandedSrcBits |= Sub;
2548           for (unsigned j = 0; j != NumElts; ++j)
2549             if (DemandedElts[j])
2550               DemandedSrcElts.setBit((j * Scale) + i);
2551         }
2552       }
2553 
2554       APInt KnownSrcUndef, KnownSrcZero;
2555       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2556                                      KnownSrcZero, TLO, Depth + 1))
2557         return true;
2558 
2559       KnownBits KnownSrcBits;
2560       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2561                                KnownSrcBits, TLO, Depth + 1))
2562         return true;
2563     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2564       // TODO - bigendian once we have test coverage.
2565       unsigned Scale = NumSrcEltBits / BitWidth;
2566       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2567       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2568       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2569       for (unsigned i = 0; i != NumElts; ++i)
2570         if (DemandedElts[i]) {
2571           unsigned Offset = (i % Scale) * BitWidth;
2572           DemandedSrcBits.insertBits(DemandedBits, Offset);
2573           DemandedSrcElts.setBit(i / Scale);
2574         }
2575 
2576       if (SrcVT.isVector()) {
2577         APInt KnownSrcUndef, KnownSrcZero;
2578         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2579                                        KnownSrcZero, TLO, Depth + 1))
2580           return true;
2581       }
2582 
2583       KnownBits KnownSrcBits;
2584       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2585                                KnownSrcBits, TLO, Depth + 1))
2586         return true;
2587 
2588       // Attempt to avoid multi-use ops if we don't need anything from them.
2589       if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2590         if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2591                 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2592           SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2593           return TLO.CombineTo(Op, NewOp);
2594         }
2595       }
2596     }
2597 
2598     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2599     // recursive call where Known may be useful to the caller.
2600     if (Depth > 0) {
2601       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2602       return false;
2603     }
2604     break;
2605   }
2606   case ISD::MUL:
2607     if (DemandedBits.isPowerOf2()) {
2608       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2609       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2610       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2611       unsigned CTZ = DemandedBits.countr_zero();
2612       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2613       if (C && C->getAPIntValue().countr_zero() == CTZ) {
2614         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2615         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2616         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2617         return TLO.CombineTo(Op, Shl);
2618       }
2619     }
2620     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2621     // X * X is odd iff X is odd.
2622     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2623     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2624       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2625       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2626       return TLO.CombineTo(Op, And1);
2627     }
2628     [[fallthrough]];
2629   case ISD::ADD:
2630   case ISD::SUB: {
2631     // Add, Sub, and Mul don't demand any bits in positions beyond that
2632     // of the highest bit demanded of them.
2633     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2634     SDNodeFlags Flags = Op.getNode()->getFlags();
2635     unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2636     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2637     KnownBits KnownOp0, KnownOp1;
2638     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, KnownOp0, TLO,
2639                              Depth + 1) ||
2640         SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2641                              Depth + 1) ||
2642         // See if the operation should be performed at a smaller bit width.
2643         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2644       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2645         // Disable the nsw and nuw flags. We can no longer guarantee that we
2646         // won't wrap after simplification.
2647         Flags.setNoSignedWrap(false);
2648         Flags.setNoUnsignedWrap(false);
2649         Op->setFlags(Flags);
2650       }
2651       return true;
2652     }
2653 
2654     // neg x with only low bit demanded is simply x.
2655     if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2656         isa<ConstantSDNode>(Op0) && cast<ConstantSDNode>(Op0)->isZero())
2657       return TLO.CombineTo(Op, Op1);
2658 
2659     // Attempt to avoid multi-use ops if we don't need anything from them.
2660     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2661       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2662           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2663       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2664           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2665       if (DemandedOp0 || DemandedOp1) {
2666         Flags.setNoSignedWrap(false);
2667         Flags.setNoUnsignedWrap(false);
2668         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2669         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2670         SDValue NewOp =
2671             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2672         return TLO.CombineTo(Op, NewOp);
2673       }
2674     }
2675 
2676     // If we have a constant operand, we may be able to turn it into -1 if we
2677     // do not demand the high bits. This can make the constant smaller to
2678     // encode, allow more general folding, or match specialized instruction
2679     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2680     // is probably not useful (and could be detrimental).
2681     ConstantSDNode *C = isConstOrConstSplat(Op1);
2682     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2683     if (C && !C->isAllOnes() && !C->isOne() &&
2684         (C->getAPIntValue() | HighMask).isAllOnes()) {
2685       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2686       // Disable the nsw and nuw flags. We can no longer guarantee that we
2687       // won't wrap after simplification.
2688       Flags.setNoSignedWrap(false);
2689       Flags.setNoUnsignedWrap(false);
2690       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2691       return TLO.CombineTo(Op, NewOp);
2692     }
2693 
2694     // Match a multiply with a disguised negated-power-of-2 and convert to a
2695     // an equivalent shift-left amount.
2696     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2697     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2698       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2699         return 0;
2700 
2701       // Don't touch opaque constants. Also, ignore zero and power-of-2
2702       // multiplies. Those will get folded later.
2703       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2704       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2705           !MulC->getAPIntValue().isPowerOf2()) {
2706         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2707         if (UnmaskedC.isNegatedPowerOf2())
2708           return (-UnmaskedC).logBase2();
2709       }
2710       return 0;
2711     };
2712 
2713     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2714       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2715       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2716       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2717       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2718       return TLO.CombineTo(Op, Res);
2719     };
2720 
2721     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2722       if (Op.getOpcode() == ISD::ADD) {
2723         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2724         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2725           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2726         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2727         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2728           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2729       }
2730       if (Op.getOpcode() == ISD::SUB) {
2731         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2732         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2733           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2734       }
2735     }
2736 
2737     if (Op.getOpcode() == ISD::MUL) {
2738       Known = KnownBits::mul(KnownOp0, KnownOp1);
2739     } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
2740       Known = KnownBits::computeForAddSub(Op.getOpcode() == ISD::ADD,
2741                                           Flags.hasNoSignedWrap(), KnownOp0,
2742                                           KnownOp1);
2743     }
2744     break;
2745   }
2746   default:
2747     // We also ask the target about intrinsics (which could be specific to it).
2748     if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2749         Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2750       // TODO: Probably okay to remove after audit; here to reduce change size
2751       // in initial enablement patch for scalable vectors
2752       if (Op.getValueType().isScalableVector())
2753         break;
2754       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2755                                             Known, TLO, Depth))
2756         return true;
2757       break;
2758     }
2759 
2760     // Just use computeKnownBits to compute output bits.
2761     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2762     break;
2763   }
2764 
2765   // If we know the value of all of the demanded bits, return this as a
2766   // constant.
2767   if (!isTargetCanonicalConstantNode(Op) &&
2768       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2769     // Avoid folding to a constant if any OpaqueConstant is involved.
2770     const SDNode *N = Op.getNode();
2771     for (SDNode *Op :
2772          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2773       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2774         if (C->isOpaque())
2775           return false;
2776     }
2777     if (VT.isInteger())
2778       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2779     if (VT.isFloatingPoint())
2780       return TLO.CombineTo(
2781           Op,
2782           TLO.DAG.getConstantFP(
2783               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2784   }
2785 
2786   // A multi use 'all demanded elts' simplify failed to find any knownbits.
2787   // Try again just for the original demanded elts.
2788   // Ensure we do this AFTER constant folding above.
2789   if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
2790     Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
2791 
2792   return false;
2793 }
2794 
2795 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2796                                                 const APInt &DemandedElts,
2797                                                 DAGCombinerInfo &DCI) const {
2798   SelectionDAG &DAG = DCI.DAG;
2799   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2800                         !DCI.isBeforeLegalizeOps());
2801 
2802   APInt KnownUndef, KnownZero;
2803   bool Simplified =
2804       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2805   if (Simplified) {
2806     DCI.AddToWorklist(Op.getNode());
2807     DCI.CommitTargetLoweringOpt(TLO);
2808   }
2809 
2810   return Simplified;
2811 }
2812 
2813 /// Given a vector binary operation and known undefined elements for each input
2814 /// operand, compute whether each element of the output is undefined.
2815 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2816                                          const APInt &UndefOp0,
2817                                          const APInt &UndefOp1) {
2818   EVT VT = BO.getValueType();
2819   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2820          "Vector binop only");
2821 
2822   EVT EltVT = VT.getVectorElementType();
2823   unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
2824   assert(UndefOp0.getBitWidth() == NumElts &&
2825          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2826 
2827   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2828                                    const APInt &UndefVals) {
2829     if (UndefVals[Index])
2830       return DAG.getUNDEF(EltVT);
2831 
2832     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2833       // Try hard to make sure that the getNode() call is not creating temporary
2834       // nodes. Ignore opaque integers because they do not constant fold.
2835       SDValue Elt = BV->getOperand(Index);
2836       auto *C = dyn_cast<ConstantSDNode>(Elt);
2837       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2838         return Elt;
2839     }
2840 
2841     return SDValue();
2842   };
2843 
2844   APInt KnownUndef = APInt::getZero(NumElts);
2845   for (unsigned i = 0; i != NumElts; ++i) {
2846     // If both inputs for this element are either constant or undef and match
2847     // the element type, compute the constant/undef result for this element of
2848     // the vector.
2849     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2850     // not handle FP constants. The code within getNode() should be refactored
2851     // to avoid the danger of creating a bogus temporary node here.
2852     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2853     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2854     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2855       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2856         KnownUndef.setBit(i);
2857   }
2858   return KnownUndef;
2859 }
2860 
2861 bool TargetLowering::SimplifyDemandedVectorElts(
2862     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2863     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2864     bool AssumeSingleUse) const {
2865   EVT VT = Op.getValueType();
2866   unsigned Opcode = Op.getOpcode();
2867   APInt DemandedElts = OriginalDemandedElts;
2868   unsigned NumElts = DemandedElts.getBitWidth();
2869   assert(VT.isVector() && "Expected vector op");
2870 
2871   KnownUndef = KnownZero = APInt::getZero(NumElts);
2872 
2873   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2874   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2875     return false;
2876 
2877   // TODO: For now we assume we know nothing about scalable vectors.
2878   if (VT.isScalableVector())
2879     return false;
2880 
2881   assert(VT.getVectorNumElements() == NumElts &&
2882          "Mask size mismatches value type element count!");
2883 
2884   // Undef operand.
2885   if (Op.isUndef()) {
2886     KnownUndef.setAllBits();
2887     return false;
2888   }
2889 
2890   // If Op has other users, assume that all elements are needed.
2891   if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
2892     DemandedElts.setAllBits();
2893 
2894   // Not demanding any elements from Op.
2895   if (DemandedElts == 0) {
2896     KnownUndef.setAllBits();
2897     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2898   }
2899 
2900   // Limit search depth.
2901   if (Depth >= SelectionDAG::MaxRecursionDepth)
2902     return false;
2903 
2904   SDLoc DL(Op);
2905   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2906   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2907 
2908   // Helper for demanding the specified elements and all the bits of both binary
2909   // operands.
2910   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2911     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2912                                                            TLO.DAG, Depth + 1);
2913     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2914                                                            TLO.DAG, Depth + 1);
2915     if (NewOp0 || NewOp1) {
2916       SDValue NewOp = TLO.DAG.getNode(
2917           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2918       return TLO.CombineTo(Op, NewOp);
2919     }
2920     return false;
2921   };
2922 
2923   switch (Opcode) {
2924   case ISD::SCALAR_TO_VECTOR: {
2925     if (!DemandedElts[0]) {
2926       KnownUndef.setAllBits();
2927       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2928     }
2929     SDValue ScalarSrc = Op.getOperand(0);
2930     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2931       SDValue Src = ScalarSrc.getOperand(0);
2932       SDValue Idx = ScalarSrc.getOperand(1);
2933       EVT SrcVT = Src.getValueType();
2934 
2935       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2936 
2937       if (SrcEltCnt.isScalable())
2938         return false;
2939 
2940       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2941       if (isNullConstant(Idx)) {
2942         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2943         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2944         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2945         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2946                                        TLO, Depth + 1))
2947           return true;
2948       }
2949     }
2950     KnownUndef.setHighBits(NumElts - 1);
2951     break;
2952   }
2953   case ISD::BITCAST: {
2954     SDValue Src = Op.getOperand(0);
2955     EVT SrcVT = Src.getValueType();
2956 
2957     // We only handle vectors here.
2958     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2959     if (!SrcVT.isVector())
2960       break;
2961 
2962     // Fast handling of 'identity' bitcasts.
2963     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2964     if (NumSrcElts == NumElts)
2965       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2966                                         KnownZero, TLO, Depth + 1);
2967 
2968     APInt SrcDemandedElts, SrcZero, SrcUndef;
2969 
2970     // Bitcast from 'large element' src vector to 'small element' vector, we
2971     // must demand a source element if any DemandedElt maps to it.
2972     if ((NumElts % NumSrcElts) == 0) {
2973       unsigned Scale = NumElts / NumSrcElts;
2974       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2975       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2976                                      TLO, Depth + 1))
2977         return true;
2978 
2979       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2980       // of the large element.
2981       // TODO - bigendian once we have test coverage.
2982       if (IsLE) {
2983         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2984         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2985         for (unsigned i = 0; i != NumElts; ++i)
2986           if (DemandedElts[i]) {
2987             unsigned Ofs = (i % Scale) * EltSizeInBits;
2988             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2989           }
2990 
2991         KnownBits Known;
2992         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2993                                  TLO, Depth + 1))
2994           return true;
2995 
2996         // The bitcast has split each wide element into a number of
2997         // narrow subelements. We have just computed the Known bits
2998         // for wide elements. See if element splitting results in
2999         // some subelements being zero. Only for demanded elements!
3000         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3001           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3002                    .isAllOnes())
3003             continue;
3004           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3005             unsigned Elt = Scale * SrcElt + SubElt;
3006             if (DemandedElts[Elt])
3007               KnownZero.setBit(Elt);
3008           }
3009         }
3010       }
3011 
3012       // If the src element is zero/undef then all the output elements will be -
3013       // only demanded elements are guaranteed to be correct.
3014       for (unsigned i = 0; i != NumSrcElts; ++i) {
3015         if (SrcDemandedElts[i]) {
3016           if (SrcZero[i])
3017             KnownZero.setBits(i * Scale, (i + 1) * Scale);
3018           if (SrcUndef[i])
3019             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3020         }
3021       }
3022     }
3023 
3024     // Bitcast from 'small element' src vector to 'large element' vector, we
3025     // demand all smaller source elements covered by the larger demanded element
3026     // of this vector.
3027     if ((NumSrcElts % NumElts) == 0) {
3028       unsigned Scale = NumSrcElts / NumElts;
3029       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3030       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3031                                      TLO, Depth + 1))
3032         return true;
3033 
3034       // If all the src elements covering an output element are zero/undef, then
3035       // the output element will be as well, assuming it was demanded.
3036       for (unsigned i = 0; i != NumElts; ++i) {
3037         if (DemandedElts[i]) {
3038           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3039             KnownZero.setBit(i);
3040           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3041             KnownUndef.setBit(i);
3042         }
3043       }
3044     }
3045     break;
3046   }
3047   case ISD::BUILD_VECTOR: {
3048     // Check all elements and simplify any unused elements with UNDEF.
3049     if (!DemandedElts.isAllOnes()) {
3050       // Don't simplify BROADCASTS.
3051       if (llvm::any_of(Op->op_values(),
3052                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3053         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
3054         bool Updated = false;
3055         for (unsigned i = 0; i != NumElts; ++i) {
3056           if (!DemandedElts[i] && !Ops[i].isUndef()) {
3057             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3058             KnownUndef.setBit(i);
3059             Updated = true;
3060           }
3061         }
3062         if (Updated)
3063           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3064       }
3065     }
3066     for (unsigned i = 0; i != NumElts; ++i) {
3067       SDValue SrcOp = Op.getOperand(i);
3068       if (SrcOp.isUndef()) {
3069         KnownUndef.setBit(i);
3070       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3071                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3072         KnownZero.setBit(i);
3073       }
3074     }
3075     break;
3076   }
3077   case ISD::CONCAT_VECTORS: {
3078     EVT SubVT = Op.getOperand(0).getValueType();
3079     unsigned NumSubVecs = Op.getNumOperands();
3080     unsigned NumSubElts = SubVT.getVectorNumElements();
3081     for (unsigned i = 0; i != NumSubVecs; ++i) {
3082       SDValue SubOp = Op.getOperand(i);
3083       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3084       APInt SubUndef, SubZero;
3085       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3086                                      Depth + 1))
3087         return true;
3088       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3089       KnownZero.insertBits(SubZero, i * NumSubElts);
3090     }
3091 
3092     // Attempt to avoid multi-use ops if we don't need anything from them.
3093     if (!DemandedElts.isAllOnes()) {
3094       bool FoundNewSub = false;
3095       SmallVector<SDValue, 2> DemandedSubOps;
3096       for (unsigned i = 0; i != NumSubVecs; ++i) {
3097         SDValue SubOp = Op.getOperand(i);
3098         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3099         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3100             SubOp, SubElts, TLO.DAG, Depth + 1);
3101         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3102         FoundNewSub = NewSubOp ? true : FoundNewSub;
3103       }
3104       if (FoundNewSub) {
3105         SDValue NewOp =
3106             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3107         return TLO.CombineTo(Op, NewOp);
3108       }
3109     }
3110     break;
3111   }
3112   case ISD::INSERT_SUBVECTOR: {
3113     // Demand any elements from the subvector and the remainder from the src its
3114     // inserted into.
3115     SDValue Src = Op.getOperand(0);
3116     SDValue Sub = Op.getOperand(1);
3117     uint64_t Idx = Op.getConstantOperandVal(2);
3118     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3119     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3120     APInt DemandedSrcElts = DemandedElts;
3121     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3122 
3123     APInt SubUndef, SubZero;
3124     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3125                                    Depth + 1))
3126       return true;
3127 
3128     // If none of the src operand elements are demanded, replace it with undef.
3129     if (!DemandedSrcElts && !Src.isUndef())
3130       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3131                                                TLO.DAG.getUNDEF(VT), Sub,
3132                                                Op.getOperand(2)));
3133 
3134     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3135                                    TLO, Depth + 1))
3136       return true;
3137     KnownUndef.insertBits(SubUndef, Idx);
3138     KnownZero.insertBits(SubZero, Idx);
3139 
3140     // Attempt to avoid multi-use ops if we don't need anything from them.
3141     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3142       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3143           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3144       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3145           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3146       if (NewSrc || NewSub) {
3147         NewSrc = NewSrc ? NewSrc : Src;
3148         NewSub = NewSub ? NewSub : Sub;
3149         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3150                                         NewSub, Op.getOperand(2));
3151         return TLO.CombineTo(Op, NewOp);
3152       }
3153     }
3154     break;
3155   }
3156   case ISD::EXTRACT_SUBVECTOR: {
3157     // Offset the demanded elts by the subvector index.
3158     SDValue Src = Op.getOperand(0);
3159     if (Src.getValueType().isScalableVector())
3160       break;
3161     uint64_t Idx = Op.getConstantOperandVal(1);
3162     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3163     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3164 
3165     APInt SrcUndef, SrcZero;
3166     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3167                                    Depth + 1))
3168       return true;
3169     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3170     KnownZero = SrcZero.extractBits(NumElts, Idx);
3171 
3172     // Attempt to avoid multi-use ops if we don't need anything from them.
3173     if (!DemandedElts.isAllOnes()) {
3174       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3175           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3176       if (NewSrc) {
3177         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3178                                         Op.getOperand(1));
3179         return TLO.CombineTo(Op, NewOp);
3180       }
3181     }
3182     break;
3183   }
3184   case ISD::INSERT_VECTOR_ELT: {
3185     SDValue Vec = Op.getOperand(0);
3186     SDValue Scl = Op.getOperand(1);
3187     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3188 
3189     // For a legal, constant insertion index, if we don't need this insertion
3190     // then strip it, else remove it from the demanded elts.
3191     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3192       unsigned Idx = CIdx->getZExtValue();
3193       if (!DemandedElts[Idx])
3194         return TLO.CombineTo(Op, Vec);
3195 
3196       APInt DemandedVecElts(DemandedElts);
3197       DemandedVecElts.clearBit(Idx);
3198       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3199                                      KnownZero, TLO, Depth + 1))
3200         return true;
3201 
3202       KnownUndef.setBitVal(Idx, Scl.isUndef());
3203 
3204       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3205       break;
3206     }
3207 
3208     APInt VecUndef, VecZero;
3209     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3210                                    Depth + 1))
3211       return true;
3212     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3213     break;
3214   }
3215   case ISD::VSELECT: {
3216     SDValue Sel = Op.getOperand(0);
3217     SDValue LHS = Op.getOperand(1);
3218     SDValue RHS = Op.getOperand(2);
3219 
3220     // Try to transform the select condition based on the current demanded
3221     // elements.
3222     APInt UndefSel, UndefZero;
3223     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3224                                    Depth + 1))
3225       return true;
3226 
3227     // See if we can simplify either vselect operand.
3228     APInt DemandedLHS(DemandedElts);
3229     APInt DemandedRHS(DemandedElts);
3230     APInt UndefLHS, ZeroLHS;
3231     APInt UndefRHS, ZeroRHS;
3232     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3233                                    Depth + 1))
3234       return true;
3235     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3236                                    Depth + 1))
3237       return true;
3238 
3239     KnownUndef = UndefLHS & UndefRHS;
3240     KnownZero = ZeroLHS & ZeroRHS;
3241 
3242     // If we know that the selected element is always zero, we don't need the
3243     // select value element.
3244     APInt DemandedSel = DemandedElts & ~KnownZero;
3245     if (DemandedSel != DemandedElts)
3246       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3247                                      Depth + 1))
3248         return true;
3249 
3250     break;
3251   }
3252   case ISD::VECTOR_SHUFFLE: {
3253     SDValue LHS = Op.getOperand(0);
3254     SDValue RHS = Op.getOperand(1);
3255     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3256 
3257     // Collect demanded elements from shuffle operands..
3258     APInt DemandedLHS(NumElts, 0);
3259     APInt DemandedRHS(NumElts, 0);
3260     for (unsigned i = 0; i != NumElts; ++i) {
3261       int M = ShuffleMask[i];
3262       if (M < 0 || !DemandedElts[i])
3263         continue;
3264       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3265       if (M < (int)NumElts)
3266         DemandedLHS.setBit(M);
3267       else
3268         DemandedRHS.setBit(M - NumElts);
3269     }
3270 
3271     // See if we can simplify either shuffle operand.
3272     APInt UndefLHS, ZeroLHS;
3273     APInt UndefRHS, ZeroRHS;
3274     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3275                                    Depth + 1))
3276       return true;
3277     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3278                                    Depth + 1))
3279       return true;
3280 
3281     // Simplify mask using undef elements from LHS/RHS.
3282     bool Updated = false;
3283     bool IdentityLHS = true, IdentityRHS = true;
3284     SmallVector<int, 32> NewMask(ShuffleMask);
3285     for (unsigned i = 0; i != NumElts; ++i) {
3286       int &M = NewMask[i];
3287       if (M < 0)
3288         continue;
3289       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3290           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3291         Updated = true;
3292         M = -1;
3293       }
3294       IdentityLHS &= (M < 0) || (M == (int)i);
3295       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3296     }
3297 
3298     // Update legal shuffle masks based on demanded elements if it won't reduce
3299     // to Identity which can cause premature removal of the shuffle mask.
3300     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3301       SDValue LegalShuffle =
3302           buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3303       if (LegalShuffle)
3304         return TLO.CombineTo(Op, LegalShuffle);
3305     }
3306 
3307     // Propagate undef/zero elements from LHS/RHS.
3308     for (unsigned i = 0; i != NumElts; ++i) {
3309       int M = ShuffleMask[i];
3310       if (M < 0) {
3311         KnownUndef.setBit(i);
3312       } else if (M < (int)NumElts) {
3313         if (UndefLHS[M])
3314           KnownUndef.setBit(i);
3315         if (ZeroLHS[M])
3316           KnownZero.setBit(i);
3317       } else {
3318         if (UndefRHS[M - NumElts])
3319           KnownUndef.setBit(i);
3320         if (ZeroRHS[M - NumElts])
3321           KnownZero.setBit(i);
3322       }
3323     }
3324     break;
3325   }
3326   case ISD::ANY_EXTEND_VECTOR_INREG:
3327   case ISD::SIGN_EXTEND_VECTOR_INREG:
3328   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3329     APInt SrcUndef, SrcZero;
3330     SDValue Src = Op.getOperand(0);
3331     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3332     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3333     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3334                                    Depth + 1))
3335       return true;
3336     KnownZero = SrcZero.zextOrTrunc(NumElts);
3337     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3338 
3339     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3340         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3341         DemandedSrcElts == 1) {
3342       // aext - if we just need the bottom element then we can bitcast.
3343       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3344     }
3345 
3346     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3347       // zext(undef) upper bits are guaranteed to be zero.
3348       if (DemandedElts.isSubsetOf(KnownUndef))
3349         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3350       KnownUndef.clearAllBits();
3351 
3352       // zext - if we just need the bottom element then we can mask:
3353       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3354       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3355           Op->isOnlyUserOf(Src.getNode()) &&
3356           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3357         SDLoc DL(Op);
3358         EVT SrcVT = Src.getValueType();
3359         EVT SrcSVT = SrcVT.getScalarType();
3360         SmallVector<SDValue> MaskElts;
3361         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3362         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3363         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3364         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3365                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3366           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3367           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3368         }
3369       }
3370     }
3371     break;
3372   }
3373 
3374   // TODO: There are more binop opcodes that could be handled here - MIN,
3375   // MAX, saturated math, etc.
3376   case ISD::ADD: {
3377     SDValue Op0 = Op.getOperand(0);
3378     SDValue Op1 = Op.getOperand(1);
3379     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3380       APInt UndefLHS, ZeroLHS;
3381       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3382                                      Depth + 1, /*AssumeSingleUse*/ true))
3383         return true;
3384     }
3385     [[fallthrough]];
3386   }
3387   case ISD::OR:
3388   case ISD::XOR:
3389   case ISD::SUB:
3390   case ISD::FADD:
3391   case ISD::FSUB:
3392   case ISD::FMUL:
3393   case ISD::FDIV:
3394   case ISD::FREM: {
3395     SDValue Op0 = Op.getOperand(0);
3396     SDValue Op1 = Op.getOperand(1);
3397 
3398     APInt UndefRHS, ZeroRHS;
3399     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3400                                    Depth + 1))
3401       return true;
3402     APInt UndefLHS, ZeroLHS;
3403     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3404                                    Depth + 1))
3405       return true;
3406 
3407     KnownZero = ZeroLHS & ZeroRHS;
3408     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3409 
3410     // Attempt to avoid multi-use ops if we don't need anything from them.
3411     // TODO - use KnownUndef to relax the demandedelts?
3412     if (!DemandedElts.isAllOnes())
3413       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3414         return true;
3415     break;
3416   }
3417   case ISD::SHL:
3418   case ISD::SRL:
3419   case ISD::SRA:
3420   case ISD::ROTL:
3421   case ISD::ROTR: {
3422     SDValue Op0 = Op.getOperand(0);
3423     SDValue Op1 = Op.getOperand(1);
3424 
3425     APInt UndefRHS, ZeroRHS;
3426     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3427                                    Depth + 1))
3428       return true;
3429     APInt UndefLHS, ZeroLHS;
3430     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3431                                    Depth + 1))
3432       return true;
3433 
3434     KnownZero = ZeroLHS;
3435     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3436 
3437     // Attempt to avoid multi-use ops if we don't need anything from them.
3438     // TODO - use KnownUndef to relax the demandedelts?
3439     if (!DemandedElts.isAllOnes())
3440       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3441         return true;
3442     break;
3443   }
3444   case ISD::MUL:
3445   case ISD::MULHU:
3446   case ISD::MULHS:
3447   case ISD::AND: {
3448     SDValue Op0 = Op.getOperand(0);
3449     SDValue Op1 = Op.getOperand(1);
3450 
3451     APInt SrcUndef, SrcZero;
3452     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3453                                    Depth + 1))
3454       return true;
3455     // If we know that a demanded element was zero in Op1 we don't need to
3456     // demand it in Op0 - its guaranteed to be zero.
3457     APInt DemandedElts0 = DemandedElts & ~SrcZero;
3458     if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3459                                    TLO, Depth + 1))
3460       return true;
3461 
3462     KnownUndef &= DemandedElts0;
3463     KnownZero &= DemandedElts0;
3464 
3465     // If every element pair has a zero/undef then just fold to zero.
3466     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3467     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3468     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3469       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3470 
3471     // If either side has a zero element, then the result element is zero, even
3472     // if the other is an UNDEF.
3473     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3474     // and then handle 'and' nodes with the rest of the binop opcodes.
3475     KnownZero |= SrcZero;
3476     KnownUndef &= SrcUndef;
3477     KnownUndef &= ~KnownZero;
3478 
3479     // Attempt to avoid multi-use ops if we don't need anything from them.
3480     if (!DemandedElts.isAllOnes())
3481       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3482         return true;
3483     break;
3484   }
3485   case ISD::TRUNCATE:
3486   case ISD::SIGN_EXTEND:
3487   case ISD::ZERO_EXTEND:
3488     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3489                                    KnownZero, TLO, Depth + 1))
3490       return true;
3491 
3492     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3493       // zext(undef) upper bits are guaranteed to be zero.
3494       if (DemandedElts.isSubsetOf(KnownUndef))
3495         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3496       KnownUndef.clearAllBits();
3497     }
3498     break;
3499   default: {
3500     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3501       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3502                                                   KnownZero, TLO, Depth))
3503         return true;
3504     } else {
3505       KnownBits Known;
3506       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3507       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3508                                TLO, Depth, AssumeSingleUse))
3509         return true;
3510     }
3511     break;
3512   }
3513   }
3514   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3515 
3516   // Constant fold all undef cases.
3517   // TODO: Handle zero cases as well.
3518   if (DemandedElts.isSubsetOf(KnownUndef))
3519     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3520 
3521   return false;
3522 }
3523 
3524 /// Determine which of the bits specified in Mask are known to be either zero or
3525 /// one and return them in the Known.
3526 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3527                                                    KnownBits &Known,
3528                                                    const APInt &DemandedElts,
3529                                                    const SelectionDAG &DAG,
3530                                                    unsigned Depth) const {
3531   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3532           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3533           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3534           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3535          "Should use MaskedValueIsZero if you don't know whether Op"
3536          " is a target node!");
3537   Known.resetAll();
3538 }
3539 
3540 void TargetLowering::computeKnownBitsForTargetInstr(
3541     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3542     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3543     unsigned Depth) const {
3544   Known.resetAll();
3545 }
3546 
3547 void TargetLowering::computeKnownBitsForFrameIndex(
3548   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3549   // The low bits are known zero if the pointer is aligned.
3550   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3551 }
3552 
3553 Align TargetLowering::computeKnownAlignForTargetInstr(
3554   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3555   unsigned Depth) const {
3556   return Align(1);
3557 }
3558 
3559 /// This method can be implemented by targets that want to expose additional
3560 /// information about sign bits to the DAG Combiner.
3561 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3562                                                          const APInt &,
3563                                                          const SelectionDAG &,
3564                                                          unsigned Depth) const {
3565   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3566           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3567           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3568           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3569          "Should use ComputeNumSignBits if you don't know whether Op"
3570          " is a target node!");
3571   return 1;
3572 }
3573 
3574 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3575   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3576   const MachineRegisterInfo &MRI, unsigned Depth) const {
3577   return 1;
3578 }
3579 
3580 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3581     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3582     TargetLoweringOpt &TLO, unsigned Depth) const {
3583   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3584           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3585           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3586           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3587          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3588          " is a target node!");
3589   return false;
3590 }
3591 
3592 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3593     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3594     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3595   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3596           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3597           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3598           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3599          "Should use SimplifyDemandedBits if you don't know whether Op"
3600          " is a target node!");
3601   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3602   return false;
3603 }
3604 
3605 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3606     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3607     SelectionDAG &DAG, unsigned Depth) const {
3608   assert(
3609       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3610        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3611        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3612        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3613       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3614       " is a target node!");
3615   return SDValue();
3616 }
3617 
3618 SDValue
3619 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3620                                         SDValue N1, MutableArrayRef<int> Mask,
3621                                         SelectionDAG &DAG) const {
3622   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3623   if (!LegalMask) {
3624     std::swap(N0, N1);
3625     ShuffleVectorSDNode::commuteMask(Mask);
3626     LegalMask = isShuffleMaskLegal(Mask, VT);
3627   }
3628 
3629   if (!LegalMask)
3630     return SDValue();
3631 
3632   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3633 }
3634 
3635 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3636   return nullptr;
3637 }
3638 
3639 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3640     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3641     bool PoisonOnly, unsigned Depth) const {
3642   assert(
3643       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3644        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3645        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3646        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3647       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3648       " is a target node!");
3649   return false;
3650 }
3651 
3652 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3653     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3654     bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3655   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3656           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3657           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3658           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3659          "Should use canCreateUndefOrPoison if you don't know whether Op"
3660          " is a target node!");
3661   // Be conservative and return true.
3662   return true;
3663 }
3664 
3665 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3666                                                   const SelectionDAG &DAG,
3667                                                   bool SNaN,
3668                                                   unsigned Depth) const {
3669   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3670           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3671           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3672           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3673          "Should use isKnownNeverNaN if you don't know whether Op"
3674          " is a target node!");
3675   return false;
3676 }
3677 
3678 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3679                                                const APInt &DemandedElts,
3680                                                APInt &UndefElts,
3681                                                const SelectionDAG &DAG,
3682                                                unsigned Depth) const {
3683   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3684           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3685           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3686           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3687          "Should use isSplatValue if you don't know whether Op"
3688          " is a target node!");
3689   return false;
3690 }
3691 
3692 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3693 // work with truncating build vectors and vectors with elements of less than
3694 // 8 bits.
3695 bool TargetLowering::isConstTrueVal(SDValue N) const {
3696   if (!N)
3697     return false;
3698 
3699   unsigned EltWidth;
3700   APInt CVal;
3701   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3702                                                /*AllowTruncation=*/true)) {
3703     CVal = CN->getAPIntValue();
3704     EltWidth = N.getValueType().getScalarSizeInBits();
3705   } else
3706     return false;
3707 
3708   // If this is a truncating splat, truncate the splat value.
3709   // Otherwise, we may fail to match the expected values below.
3710   if (EltWidth < CVal.getBitWidth())
3711     CVal = CVal.trunc(EltWidth);
3712 
3713   switch (getBooleanContents(N.getValueType())) {
3714   case UndefinedBooleanContent:
3715     return CVal[0];
3716   case ZeroOrOneBooleanContent:
3717     return CVal.isOne();
3718   case ZeroOrNegativeOneBooleanContent:
3719     return CVal.isAllOnes();
3720   }
3721 
3722   llvm_unreachable("Invalid boolean contents");
3723 }
3724 
3725 bool TargetLowering::isConstFalseVal(SDValue N) const {
3726   if (!N)
3727     return false;
3728 
3729   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3730   if (!CN) {
3731     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3732     if (!BV)
3733       return false;
3734 
3735     // Only interested in constant splats, we don't care about undef
3736     // elements in identifying boolean constants and getConstantSplatNode
3737     // returns NULL if all ops are undef;
3738     CN = BV->getConstantSplatNode();
3739     if (!CN)
3740       return false;
3741   }
3742 
3743   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3744     return !CN->getAPIntValue()[0];
3745 
3746   return CN->isZero();
3747 }
3748 
3749 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3750                                        bool SExt) const {
3751   if (VT == MVT::i1)
3752     return N->isOne();
3753 
3754   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3755   switch (Cnt) {
3756   case TargetLowering::ZeroOrOneBooleanContent:
3757     // An extended value of 1 is always true, unless its original type is i1,
3758     // in which case it will be sign extended to -1.
3759     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3760   case TargetLowering::UndefinedBooleanContent:
3761   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3762     return N->isAllOnes() && SExt;
3763   }
3764   llvm_unreachable("Unexpected enumeration.");
3765 }
3766 
3767 /// This helper function of SimplifySetCC tries to optimize the comparison when
3768 /// either operand of the SetCC node is a bitwise-and instruction.
3769 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3770                                          ISD::CondCode Cond, const SDLoc &DL,
3771                                          DAGCombinerInfo &DCI) const {
3772   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3773     std::swap(N0, N1);
3774 
3775   SelectionDAG &DAG = DCI.DAG;
3776   EVT OpVT = N0.getValueType();
3777   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3778       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3779     return SDValue();
3780 
3781   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3782   // iff everything but LSB is known zero:
3783   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3784       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3785        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3786     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3787     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3788     if (DAG.MaskedValueIsZero(N0, UpperBits))
3789       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3790   }
3791 
3792   // Try to eliminate a power-of-2 mask constant by converting to a signbit
3793   // test in a narrow type that we can truncate to with no cost. Examples:
3794   // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
3795   // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
3796   // TODO: This conservatively checks for type legality on the source and
3797   //       destination types. That may inhibit optimizations, but it also
3798   //       allows setcc->shift transforms that may be more beneficial.
3799   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3800   if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
3801       isTypeLegal(OpVT) && N0.hasOneUse()) {
3802     EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
3803                                      AndC->getAPIntValue().getActiveBits());
3804     if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
3805       SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
3806       SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
3807       return DAG.getSetCC(DL, VT, Trunc, Zero,
3808                           Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
3809     }
3810   }
3811 
3812   // Match these patterns in any of their permutations:
3813   // (X & Y) == Y
3814   // (X & Y) != Y
3815   SDValue X, Y;
3816   if (N0.getOperand(0) == N1) {
3817     X = N0.getOperand(1);
3818     Y = N0.getOperand(0);
3819   } else if (N0.getOperand(1) == N1) {
3820     X = N0.getOperand(0);
3821     Y = N0.getOperand(1);
3822   } else {
3823     return SDValue();
3824   }
3825 
3826   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3827   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3828     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3829     // Note that where Y is variable and is known to have at most one bit set
3830     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3831     // equivalent when Y == 0.
3832     assert(OpVT.isInteger());
3833     Cond = ISD::getSetCCInverse(Cond, OpVT);
3834     if (DCI.isBeforeLegalizeOps() ||
3835         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3836       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3837   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3838     // If the target supports an 'and-not' or 'and-complement' logic operation,
3839     // try to use that to make a comparison operation more efficient.
3840     // But don't do this transform if the mask is a single bit because there are
3841     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3842     // 'rlwinm' on PPC).
3843 
3844     // Bail out if the compare operand that we want to turn into a zero is
3845     // already a zero (otherwise, infinite loop).
3846     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3847     if (YConst && YConst->isZero())
3848       return SDValue();
3849 
3850     // Transform this into: ~X & Y == 0.
3851     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3852     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3853     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3854   }
3855 
3856   return SDValue();
3857 }
3858 
3859 /// There are multiple IR patterns that could be checking whether certain
3860 /// truncation of a signed number would be lossy or not. The pattern which is
3861 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3862 /// We are looking for the following pattern: (KeptBits is a constant)
3863 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3864 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3865 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3866 /// We will unfold it into the natural trunc+sext pattern:
3867 ///   ((%x << C) a>> C) dstcond %x
3868 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3869 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3870     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3871     const SDLoc &DL) const {
3872   // We must be comparing with a constant.
3873   ConstantSDNode *C1;
3874   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3875     return SDValue();
3876 
3877   // N0 should be:  add %x, (1 << (KeptBits-1))
3878   if (N0->getOpcode() != ISD::ADD)
3879     return SDValue();
3880 
3881   // And we must be 'add'ing a constant.
3882   ConstantSDNode *C01;
3883   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3884     return SDValue();
3885 
3886   SDValue X = N0->getOperand(0);
3887   EVT XVT = X.getValueType();
3888 
3889   // Validate constants ...
3890 
3891   APInt I1 = C1->getAPIntValue();
3892 
3893   ISD::CondCode NewCond;
3894   if (Cond == ISD::CondCode::SETULT) {
3895     NewCond = ISD::CondCode::SETEQ;
3896   } else if (Cond == ISD::CondCode::SETULE) {
3897     NewCond = ISD::CondCode::SETEQ;
3898     // But need to 'canonicalize' the constant.
3899     I1 += 1;
3900   } else if (Cond == ISD::CondCode::SETUGT) {
3901     NewCond = ISD::CondCode::SETNE;
3902     // But need to 'canonicalize' the constant.
3903     I1 += 1;
3904   } else if (Cond == ISD::CondCode::SETUGE) {
3905     NewCond = ISD::CondCode::SETNE;
3906   } else
3907     return SDValue();
3908 
3909   APInt I01 = C01->getAPIntValue();
3910 
3911   auto checkConstants = [&I1, &I01]() -> bool {
3912     // Both of them must be power-of-two, and the constant from setcc is bigger.
3913     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3914   };
3915 
3916   if (checkConstants()) {
3917     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3918   } else {
3919     // What if we invert constants? (and the target predicate)
3920     I1.negate();
3921     I01.negate();
3922     assert(XVT.isInteger());
3923     NewCond = getSetCCInverse(NewCond, XVT);
3924     if (!checkConstants())
3925       return SDValue();
3926     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3927   }
3928 
3929   // They are power-of-two, so which bit is set?
3930   const unsigned KeptBits = I1.logBase2();
3931   const unsigned KeptBitsMinusOne = I01.logBase2();
3932 
3933   // Magic!
3934   if (KeptBits != (KeptBitsMinusOne + 1))
3935     return SDValue();
3936   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3937 
3938   // We don't want to do this in every single case.
3939   SelectionDAG &DAG = DCI.DAG;
3940   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3941           XVT, KeptBits))
3942     return SDValue();
3943 
3944   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3945   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3946 
3947   // Unfold into:  ((%x << C) a>> C) cond %x
3948   // Where 'cond' will be either 'eq' or 'ne'.
3949   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3950   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3951   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3952   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3953 
3954   return T2;
3955 }
3956 
3957 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3958 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3959     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3960     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3961   assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
3962          "Should be a comparison with 0.");
3963   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3964          "Valid only for [in]equality comparisons.");
3965 
3966   unsigned NewShiftOpcode;
3967   SDValue X, C, Y;
3968 
3969   SelectionDAG &DAG = DCI.DAG;
3970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3971 
3972   // Look for '(C l>>/<< Y)'.
3973   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3974     // The shift should be one-use.
3975     if (!V.hasOneUse())
3976       return false;
3977     unsigned OldShiftOpcode = V.getOpcode();
3978     switch (OldShiftOpcode) {
3979     case ISD::SHL:
3980       NewShiftOpcode = ISD::SRL;
3981       break;
3982     case ISD::SRL:
3983       NewShiftOpcode = ISD::SHL;
3984       break;
3985     default:
3986       return false; // must be a logical shift.
3987     }
3988     // We should be shifting a constant.
3989     // FIXME: best to use isConstantOrConstantVector().
3990     C = V.getOperand(0);
3991     ConstantSDNode *CC =
3992         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3993     if (!CC)
3994       return false;
3995     Y = V.getOperand(1);
3996 
3997     ConstantSDNode *XC =
3998         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3999     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
4000         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4001   };
4002 
4003   // LHS of comparison should be an one-use 'and'.
4004   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4005     return SDValue();
4006 
4007   X = N0.getOperand(0);
4008   SDValue Mask = N0.getOperand(1);
4009 
4010   // 'and' is commutative!
4011   if (!Match(Mask)) {
4012     std::swap(X, Mask);
4013     if (!Match(Mask))
4014       return SDValue();
4015   }
4016 
4017   EVT VT = X.getValueType();
4018 
4019   // Produce:
4020   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4021   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4022   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4023   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4024   return T2;
4025 }
4026 
4027 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4028 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4029 /// handle the commuted versions of these patterns.
4030 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4031                                            ISD::CondCode Cond, const SDLoc &DL,
4032                                            DAGCombinerInfo &DCI) const {
4033   unsigned BOpcode = N0.getOpcode();
4034   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4035          "Unexpected binop");
4036   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4037 
4038   // (X + Y) == X --> Y == 0
4039   // (X - Y) == X --> Y == 0
4040   // (X ^ Y) == X --> Y == 0
4041   SelectionDAG &DAG = DCI.DAG;
4042   EVT OpVT = N0.getValueType();
4043   SDValue X = N0.getOperand(0);
4044   SDValue Y = N0.getOperand(1);
4045   if (X == N1)
4046     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4047 
4048   if (Y != N1)
4049     return SDValue();
4050 
4051   // (X + Y) == Y --> X == 0
4052   // (X ^ Y) == Y --> X == 0
4053   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4054     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4055 
4056   // The shift would not be valid if the operands are boolean (i1).
4057   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4058     return SDValue();
4059 
4060   // (X - Y) == Y --> X == Y << 1
4061   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
4062                                  !DCI.isBeforeLegalize());
4063   SDValue One = DAG.getConstant(1, DL, ShiftVT);
4064   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4065   if (!DCI.isCalledByLegalizer())
4066     DCI.AddToWorklist(YShl1.getNode());
4067   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4068 }
4069 
4070 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4071                                       SDValue N0, const APInt &C1,
4072                                       ISD::CondCode Cond, const SDLoc &dl,
4073                                       SelectionDAG &DAG) {
4074   // Look through truncs that don't change the value of a ctpop.
4075   // FIXME: Add vector support? Need to be careful with setcc result type below.
4076   SDValue CTPOP = N0;
4077   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4078       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4079     CTPOP = N0.getOperand(0);
4080 
4081   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4082     return SDValue();
4083 
4084   EVT CTVT = CTPOP.getValueType();
4085   SDValue CTOp = CTPOP.getOperand(0);
4086 
4087   // Expand a power-of-2-or-zero comparison based on ctpop:
4088   // (ctpop x) u< 2 -> (x & x-1) == 0
4089   // (ctpop x) u> 1 -> (x & x-1) != 0
4090   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4091     // Keep the CTPOP if it is a legal vector op.
4092     if (CTVT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
4093       return SDValue();
4094 
4095     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4096     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4097       return SDValue();
4098     if (C1 == 0 && (Cond == ISD::SETULT))
4099       return SDValue(); // This is handled elsewhere.
4100 
4101     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4102 
4103     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4104     SDValue Result = CTOp;
4105     for (unsigned i = 0; i < Passes; i++) {
4106       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4107       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4108     }
4109     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4110     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4111   }
4112 
4113   // Expand a power-of-2 comparison based on ctpop:
4114   // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
4115   // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
4116   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4117     // Keep the CTPOP if it is legal.
4118     if (TLI.isOperationLegal(ISD::CTPOP, CTVT))
4119       return SDValue();
4120 
4121     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4122     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4123     assert(CTVT.isInteger());
4124     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
4125     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4126     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4127     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4128     // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4129     // check before the emit a potentially unnecessary op.
4130     if (DAG.isKnownNeverZero(CTOp))
4131       return RHS;
4132     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
4133     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
4134     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
4135   }
4136 
4137   return SDValue();
4138 }
4139 
4140 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4141                                    ISD::CondCode Cond, const SDLoc &dl,
4142                                    SelectionDAG &DAG) {
4143   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4144     return SDValue();
4145 
4146   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4147   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4148     return SDValue();
4149 
4150   auto getRotateSource = [](SDValue X) {
4151     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4152       return X.getOperand(0);
4153     return SDValue();
4154   };
4155 
4156   // Peek through a rotated value compared against 0 or -1:
4157   // (rot X, Y) == 0/-1 --> X == 0/-1
4158   // (rot X, Y) != 0/-1 --> X != 0/-1
4159   if (SDValue R = getRotateSource(N0))
4160     return DAG.getSetCC(dl, VT, R, N1, Cond);
4161 
4162   // Peek through an 'or' of a rotated value compared against 0:
4163   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4164   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4165   //
4166   // TODO: Add the 'and' with -1 sibling.
4167   // TODO: Recurse through a series of 'or' ops to find the rotate.
4168   EVT OpVT = N0.getValueType();
4169   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4170     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4171       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4172       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4173     }
4174     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4175       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4176       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4177     }
4178   }
4179 
4180   return SDValue();
4181 }
4182 
4183 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4184                                         ISD::CondCode Cond, const SDLoc &dl,
4185                                         SelectionDAG &DAG) {
4186   // If we are testing for all-bits-clear, we might be able to do that with
4187   // less shifting since bit-order does not matter.
4188   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4189     return SDValue();
4190 
4191   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4192   if (!C1 || !C1->isZero())
4193     return SDValue();
4194 
4195   if (!N0.hasOneUse() ||
4196       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4197     return SDValue();
4198 
4199   unsigned BitWidth = N0.getScalarValueSizeInBits();
4200   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4201   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4202     return SDValue();
4203 
4204   // Canonicalize fshr as fshl to reduce pattern-matching.
4205   unsigned ShAmt = ShAmtC->getZExtValue();
4206   if (N0.getOpcode() == ISD::FSHR)
4207     ShAmt = BitWidth - ShAmt;
4208 
4209   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4210   SDValue X, Y;
4211   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4212     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4213       return false;
4214     if (Or.getOperand(0) == Other) {
4215       X = Or.getOperand(0);
4216       Y = Or.getOperand(1);
4217       return true;
4218     }
4219     if (Or.getOperand(1) == Other) {
4220       X = Or.getOperand(1);
4221       Y = Or.getOperand(0);
4222       return true;
4223     }
4224     return false;
4225   };
4226 
4227   EVT OpVT = N0.getValueType();
4228   EVT ShAmtVT = N0.getOperand(2).getValueType();
4229   SDValue F0 = N0.getOperand(0);
4230   SDValue F1 = N0.getOperand(1);
4231   if (matchOr(F0, F1)) {
4232     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4233     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4234     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4235     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4236     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4237   }
4238   if (matchOr(F1, F0)) {
4239     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4240     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4241     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4242     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4243     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4244   }
4245 
4246   return SDValue();
4247 }
4248 
4249 /// Try to simplify a setcc built with the specified operands and cc. If it is
4250 /// unable to simplify it, return a null SDValue.
4251 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4252                                       ISD::CondCode Cond, bool foldBooleans,
4253                                       DAGCombinerInfo &DCI,
4254                                       const SDLoc &dl) const {
4255   SelectionDAG &DAG = DCI.DAG;
4256   const DataLayout &Layout = DAG.getDataLayout();
4257   EVT OpVT = N0.getValueType();
4258   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4259 
4260   // Constant fold or commute setcc.
4261   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4262     return Fold;
4263 
4264   bool N0ConstOrSplat =
4265       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4266   bool N1ConstOrSplat =
4267       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4268 
4269   // Canonicalize toward having the constant on the RHS.
4270   // TODO: Handle non-splat vector constants. All undef causes trouble.
4271   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4272   // infinite loop here when we encounter one.
4273   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4274   if (N0ConstOrSplat && !N1ConstOrSplat &&
4275       (DCI.isBeforeLegalizeOps() ||
4276        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4277     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4278 
4279   // If we have a subtract with the same 2 non-constant operands as this setcc
4280   // -- but in reverse order -- then try to commute the operands of this setcc
4281   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4282   // instruction on some targets.
4283   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4284       (DCI.isBeforeLegalizeOps() ||
4285        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4286       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4287       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4288     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4289 
4290   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4291     return V;
4292 
4293   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4294     return V;
4295 
4296   if (auto *N1C = isConstOrConstSplat(N1)) {
4297     const APInt &C1 = N1C->getAPIntValue();
4298 
4299     // Optimize some CTPOP cases.
4300     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4301       return V;
4302 
4303     // For equality to 0 of a no-wrap multiply, decompose and test each op:
4304     // X * Y == 0 --> (X == 0) || (Y == 0)
4305     // X * Y != 0 --> (X != 0) && (Y != 0)
4306     // TODO: This bails out if minsize is set, but if the target doesn't have a
4307     //       single instruction multiply for this type, it would likely be
4308     //       smaller to decompose.
4309     if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4310         N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4311         (N0->getFlags().hasNoUnsignedWrap() ||
4312          N0->getFlags().hasNoSignedWrap()) &&
4313         !Attr.hasFnAttr(Attribute::MinSize)) {
4314       SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4315       SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4316       unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4317       return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4318     }
4319 
4320     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4321     // equality comparison, then we're just comparing whether X itself is
4322     // zero.
4323     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4324         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4325         llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
4326       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4327         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4328             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4329           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4330             // (srl (ctlz x), 5) == 0  -> X != 0
4331             // (srl (ctlz x), 5) != 1  -> X != 0
4332             Cond = ISD::SETNE;
4333           } else {
4334             // (srl (ctlz x), 5) != 0  -> X == 0
4335             // (srl (ctlz x), 5) == 1  -> X == 0
4336             Cond = ISD::SETEQ;
4337           }
4338           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4339           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4340                               Cond);
4341         }
4342       }
4343     }
4344   }
4345 
4346   // FIXME: Support vectors.
4347   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4348     const APInt &C1 = N1C->getAPIntValue();
4349 
4350     // (zext x) == C --> x == (trunc C)
4351     // (sext x) == C --> x == (trunc C)
4352     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4353         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4354       unsigned MinBits = N0.getValueSizeInBits();
4355       SDValue PreExt;
4356       bool Signed = false;
4357       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4358         // ZExt
4359         MinBits = N0->getOperand(0).getValueSizeInBits();
4360         PreExt = N0->getOperand(0);
4361       } else if (N0->getOpcode() == ISD::AND) {
4362         // DAGCombine turns costly ZExts into ANDs
4363         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4364           if ((C->getAPIntValue()+1).isPowerOf2()) {
4365             MinBits = C->getAPIntValue().countr_one();
4366             PreExt = N0->getOperand(0);
4367           }
4368       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4369         // SExt
4370         MinBits = N0->getOperand(0).getValueSizeInBits();
4371         PreExt = N0->getOperand(0);
4372         Signed = true;
4373       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4374         // ZEXTLOAD / SEXTLOAD
4375         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4376           MinBits = LN0->getMemoryVT().getSizeInBits();
4377           PreExt = N0;
4378         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4379           Signed = true;
4380           MinBits = LN0->getMemoryVT().getSizeInBits();
4381           PreExt = N0;
4382         }
4383       }
4384 
4385       // Figure out how many bits we need to preserve this constant.
4386       unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4387 
4388       // Make sure we're not losing bits from the constant.
4389       if (MinBits > 0 &&
4390           MinBits < C1.getBitWidth() &&
4391           MinBits >= ReqdBits) {
4392         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4393         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4394           // Will get folded away.
4395           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4396           if (MinBits == 1 && C1 == 1)
4397             // Invert the condition.
4398             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4399                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4400           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4401           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4402         }
4403 
4404         // If truncating the setcc operands is not desirable, we can still
4405         // simplify the expression in some cases:
4406         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4407         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4408         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4409         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4410         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4411         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4412         SDValue TopSetCC = N0->getOperand(0);
4413         unsigned N0Opc = N0->getOpcode();
4414         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4415         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4416             TopSetCC.getOpcode() == ISD::SETCC &&
4417             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4418             (isConstFalseVal(N1) ||
4419              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4420 
4421           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4422                          (!N1C->isZero() && Cond == ISD::SETNE);
4423 
4424           if (!Inverse)
4425             return TopSetCC;
4426 
4427           ISD::CondCode InvCond = ISD::getSetCCInverse(
4428               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4429               TopSetCC.getOperand(0).getValueType());
4430           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4431                                       TopSetCC.getOperand(1),
4432                                       InvCond);
4433         }
4434       }
4435     }
4436 
4437     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4438     // equality or unsigned, and all 1 bits of the const are in the same
4439     // partial word, see if we can shorten the load.
4440     if (DCI.isBeforeLegalize() &&
4441         !ISD::isSignedIntSetCC(Cond) &&
4442         N0.getOpcode() == ISD::AND && C1 == 0 &&
4443         N0.getNode()->hasOneUse() &&
4444         isa<LoadSDNode>(N0.getOperand(0)) &&
4445         N0.getOperand(0).getNode()->hasOneUse() &&
4446         isa<ConstantSDNode>(N0.getOperand(1))) {
4447       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4448       APInt bestMask;
4449       unsigned bestWidth = 0, bestOffset = 0;
4450       if (Lod->isSimple() && Lod->isUnindexed()) {
4451         unsigned origWidth = N0.getValueSizeInBits();
4452         unsigned maskWidth = origWidth;
4453         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4454         // 8 bits, but have to be careful...
4455         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4456           origWidth = Lod->getMemoryVT().getSizeInBits();
4457         const APInt &Mask = N0.getConstantOperandAPInt(1);
4458         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4459           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4460           for (unsigned offset=0; offset<origWidth/width; offset++) {
4461             if (Mask.isSubsetOf(newMask)) {
4462               if (Layout.isLittleEndian())
4463                 bestOffset = (uint64_t)offset * (width/8);
4464               else
4465                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4466               bestMask = Mask.lshr(offset * (width/8) * 8);
4467               bestWidth = width;
4468               break;
4469             }
4470             newMask <<= width;
4471           }
4472         }
4473       }
4474       if (bestWidth) {
4475         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4476         if (newVT.isRound() &&
4477             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4478           SDValue Ptr = Lod->getBasePtr();
4479           if (bestOffset != 0)
4480             Ptr =
4481                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4482           SDValue NewLoad =
4483               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4484                           Lod->getPointerInfo().getWithOffset(bestOffset),
4485                           Lod->getOriginalAlign());
4486           return DAG.getSetCC(dl, VT,
4487                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4488                                       DAG.getConstant(bestMask.trunc(bestWidth),
4489                                                       dl, newVT)),
4490                               DAG.getConstant(0LL, dl, newVT), Cond);
4491         }
4492       }
4493     }
4494 
4495     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4496     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4497       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4498 
4499       // If the comparison constant has bits in the upper part, the
4500       // zero-extended value could never match.
4501       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4502                                               C1.getBitWidth() - InSize))) {
4503         switch (Cond) {
4504         case ISD::SETUGT:
4505         case ISD::SETUGE:
4506         case ISD::SETEQ:
4507           return DAG.getConstant(0, dl, VT);
4508         case ISD::SETULT:
4509         case ISD::SETULE:
4510         case ISD::SETNE:
4511           return DAG.getConstant(1, dl, VT);
4512         case ISD::SETGT:
4513         case ISD::SETGE:
4514           // True if the sign bit of C1 is set.
4515           return DAG.getConstant(C1.isNegative(), dl, VT);
4516         case ISD::SETLT:
4517         case ISD::SETLE:
4518           // True if the sign bit of C1 isn't set.
4519           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4520         default:
4521           break;
4522         }
4523       }
4524 
4525       // Otherwise, we can perform the comparison with the low bits.
4526       switch (Cond) {
4527       case ISD::SETEQ:
4528       case ISD::SETNE:
4529       case ISD::SETUGT:
4530       case ISD::SETUGE:
4531       case ISD::SETULT:
4532       case ISD::SETULE: {
4533         EVT newVT = N0.getOperand(0).getValueType();
4534         if (DCI.isBeforeLegalizeOps() ||
4535             (isOperationLegal(ISD::SETCC, newVT) &&
4536              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4537           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4538           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4539 
4540           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4541                                           NewConst, Cond);
4542           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4543         }
4544         break;
4545       }
4546       default:
4547         break; // todo, be more careful with signed comparisons
4548       }
4549     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4550                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4551                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4552                                       OpVT)) {
4553       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4554       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4555       EVT ExtDstTy = N0.getValueType();
4556       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4557 
4558       // If the constant doesn't fit into the number of bits for the source of
4559       // the sign extension, it is impossible for both sides to be equal.
4560       if (C1.getSignificantBits() > ExtSrcTyBits)
4561         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4562 
4563       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4564              ExtDstTy != ExtSrcTy && "Unexpected types!");
4565       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4566       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4567                                    DAG.getConstant(Imm, dl, ExtDstTy));
4568       if (!DCI.isCalledByLegalizer())
4569         DCI.AddToWorklist(ZextOp.getNode());
4570       // Otherwise, make this a use of a zext.
4571       return DAG.getSetCC(dl, VT, ZextOp,
4572                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4573     } else if ((N1C->isZero() || N1C->isOne()) &&
4574                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4575       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4576       if (N0.getOpcode() == ISD::SETCC &&
4577           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4578           (N0.getValueType() == MVT::i1 ||
4579            getBooleanContents(N0.getOperand(0).getValueType()) ==
4580                        ZeroOrOneBooleanContent)) {
4581         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4582         if (TrueWhenTrue)
4583           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4584         // Invert the condition.
4585         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4586         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4587         if (DCI.isBeforeLegalizeOps() ||
4588             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4589           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4590       }
4591 
4592       if ((N0.getOpcode() == ISD::XOR ||
4593            (N0.getOpcode() == ISD::AND &&
4594             N0.getOperand(0).getOpcode() == ISD::XOR &&
4595             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4596           isOneConstant(N0.getOperand(1))) {
4597         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4598         // can only do this if the top bits are known zero.
4599         unsigned BitWidth = N0.getValueSizeInBits();
4600         if (DAG.MaskedValueIsZero(N0,
4601                                   APInt::getHighBitsSet(BitWidth,
4602                                                         BitWidth-1))) {
4603           // Okay, get the un-inverted input value.
4604           SDValue Val;
4605           if (N0.getOpcode() == ISD::XOR) {
4606             Val = N0.getOperand(0);
4607           } else {
4608             assert(N0.getOpcode() == ISD::AND &&
4609                     N0.getOperand(0).getOpcode() == ISD::XOR);
4610             // ((X^1)&1)^1 -> X & 1
4611             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4612                               N0.getOperand(0).getOperand(0),
4613                               N0.getOperand(1));
4614           }
4615 
4616           return DAG.getSetCC(dl, VT, Val, N1,
4617                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4618         }
4619       } else if (N1C->isOne()) {
4620         SDValue Op0 = N0;
4621         if (Op0.getOpcode() == ISD::TRUNCATE)
4622           Op0 = Op0.getOperand(0);
4623 
4624         if ((Op0.getOpcode() == ISD::XOR) &&
4625             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4626             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4627           SDValue XorLHS = Op0.getOperand(0);
4628           SDValue XorRHS = Op0.getOperand(1);
4629           // Ensure that the input setccs return an i1 type or 0/1 value.
4630           if (Op0.getValueType() == MVT::i1 ||
4631               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4632                       ZeroOrOneBooleanContent &&
4633                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4634                         ZeroOrOneBooleanContent)) {
4635             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4636             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4637             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4638           }
4639         }
4640         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4641           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4642           if (Op0.getValueType().bitsGT(VT))
4643             Op0 = DAG.getNode(ISD::AND, dl, VT,
4644                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4645                           DAG.getConstant(1, dl, VT));
4646           else if (Op0.getValueType().bitsLT(VT))
4647             Op0 = DAG.getNode(ISD::AND, dl, VT,
4648                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4649                         DAG.getConstant(1, dl, VT));
4650 
4651           return DAG.getSetCC(dl, VT, Op0,
4652                               DAG.getConstant(0, dl, Op0.getValueType()),
4653                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4654         }
4655         if (Op0.getOpcode() == ISD::AssertZext &&
4656             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4657           return DAG.getSetCC(dl, VT, Op0,
4658                               DAG.getConstant(0, dl, Op0.getValueType()),
4659                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4660       }
4661     }
4662 
4663     // Given:
4664     //   icmp eq/ne (urem %x, %y), 0
4665     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4666     //   icmp eq/ne %x, 0
4667     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4668         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4669       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4670       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4671       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4672         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4673     }
4674 
4675     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4676     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4677     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4678         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4679         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4680         N1C && N1C->isAllOnes()) {
4681       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4682                           DAG.getConstant(0, dl, OpVT),
4683                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4684     }
4685 
4686     if (SDValue V =
4687             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4688       return V;
4689   }
4690 
4691   // These simplifications apply to splat vectors as well.
4692   // TODO: Handle more splat vector cases.
4693   if (auto *N1C = isConstOrConstSplat(N1)) {
4694     const APInt &C1 = N1C->getAPIntValue();
4695 
4696     APInt MinVal, MaxVal;
4697     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4698     if (ISD::isSignedIntSetCC(Cond)) {
4699       MinVal = APInt::getSignedMinValue(OperandBitSize);
4700       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4701     } else {
4702       MinVal = APInt::getMinValue(OperandBitSize);
4703       MaxVal = APInt::getMaxValue(OperandBitSize);
4704     }
4705 
4706     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4707     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4708       // X >= MIN --> true
4709       if (C1 == MinVal)
4710         return DAG.getBoolConstant(true, dl, VT, OpVT);
4711 
4712       if (!VT.isVector()) { // TODO: Support this for vectors.
4713         // X >= C0 --> X > (C0 - 1)
4714         APInt C = C1 - 1;
4715         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4716         if ((DCI.isBeforeLegalizeOps() ||
4717              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4718             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4719                                   isLegalICmpImmediate(C.getSExtValue())))) {
4720           return DAG.getSetCC(dl, VT, N0,
4721                               DAG.getConstant(C, dl, N1.getValueType()),
4722                               NewCC);
4723         }
4724       }
4725     }
4726 
4727     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4728       // X <= MAX --> true
4729       if (C1 == MaxVal)
4730         return DAG.getBoolConstant(true, dl, VT, OpVT);
4731 
4732       // X <= C0 --> X < (C0 + 1)
4733       if (!VT.isVector()) { // TODO: Support this for vectors.
4734         APInt C = C1 + 1;
4735         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4736         if ((DCI.isBeforeLegalizeOps() ||
4737              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4738             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4739                                   isLegalICmpImmediate(C.getSExtValue())))) {
4740           return DAG.getSetCC(dl, VT, N0,
4741                               DAG.getConstant(C, dl, N1.getValueType()),
4742                               NewCC);
4743         }
4744       }
4745     }
4746 
4747     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4748       if (C1 == MinVal)
4749         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4750 
4751       // TODO: Support this for vectors after legalize ops.
4752       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4753         // Canonicalize setlt X, Max --> setne X, Max
4754         if (C1 == MaxVal)
4755           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4756 
4757         // If we have setult X, 1, turn it into seteq X, 0
4758         if (C1 == MinVal+1)
4759           return DAG.getSetCC(dl, VT, N0,
4760                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4761                               ISD::SETEQ);
4762       }
4763     }
4764 
4765     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4766       if (C1 == MaxVal)
4767         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4768 
4769       // TODO: Support this for vectors after legalize ops.
4770       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4771         // Canonicalize setgt X, Min --> setne X, Min
4772         if (C1 == MinVal)
4773           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4774 
4775         // If we have setugt X, Max-1, turn it into seteq X, Max
4776         if (C1 == MaxVal-1)
4777           return DAG.getSetCC(dl, VT, N0,
4778                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4779                               ISD::SETEQ);
4780       }
4781     }
4782 
4783     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4784       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4785       if (C1.isZero())
4786         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4787                 VT, N0, N1, Cond, DCI, dl))
4788           return CC;
4789 
4790       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4791       // For example, when high 32-bits of i64 X are known clear:
4792       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4793       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4794       bool CmpZero = N1C->isZero();
4795       bool CmpNegOne = N1C->isAllOnes();
4796       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4797         // Match or(lo,shl(hi,bw/2)) pattern.
4798         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4799           unsigned EltBits = V.getScalarValueSizeInBits();
4800           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4801             return false;
4802           SDValue LHS = V.getOperand(0);
4803           SDValue RHS = V.getOperand(1);
4804           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4805           // Unshifted element must have zero upperbits.
4806           if (RHS.getOpcode() == ISD::SHL &&
4807               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4808               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4809               DAG.MaskedValueIsZero(LHS, HiBits)) {
4810             Lo = LHS;
4811             Hi = RHS.getOperand(0);
4812             return true;
4813           }
4814           if (LHS.getOpcode() == ISD::SHL &&
4815               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4816               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4817               DAG.MaskedValueIsZero(RHS, HiBits)) {
4818             Lo = RHS;
4819             Hi = LHS.getOperand(0);
4820             return true;
4821           }
4822           return false;
4823         };
4824 
4825         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4826           unsigned EltBits = N0.getScalarValueSizeInBits();
4827           unsigned HalfBits = EltBits / 2;
4828           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4829           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4830           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4831           SDValue NewN0 =
4832               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4833           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4834           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4835         };
4836 
4837         SDValue Lo, Hi;
4838         if (IsConcat(N0, Lo, Hi))
4839           return MergeConcat(Lo, Hi);
4840 
4841         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4842           SDValue Lo0, Lo1, Hi0, Hi1;
4843           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4844               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4845             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4846                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4847           }
4848         }
4849       }
4850     }
4851 
4852     // If we have "setcc X, C0", check to see if we can shrink the immediate
4853     // by changing cc.
4854     // TODO: Support this for vectors after legalize ops.
4855     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4856       // SETUGT X, SINTMAX  -> SETLT X, 0
4857       // SETUGE X, SINTMIN -> SETLT X, 0
4858       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4859           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4860         return DAG.getSetCC(dl, VT, N0,
4861                             DAG.getConstant(0, dl, N1.getValueType()),
4862                             ISD::SETLT);
4863 
4864       // SETULT X, SINTMIN  -> SETGT X, -1
4865       // SETULE X, SINTMAX  -> SETGT X, -1
4866       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4867           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4868         return DAG.getSetCC(dl, VT, N0,
4869                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4870                             ISD::SETGT);
4871     }
4872   }
4873 
4874   // Back to non-vector simplifications.
4875   // TODO: Can we do these for vector splats?
4876   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4877     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4878     const APInt &C1 = N1C->getAPIntValue();
4879     EVT ShValTy = N0.getValueType();
4880 
4881     // Fold bit comparisons when we can. This will result in an
4882     // incorrect value when boolean false is negative one, unless
4883     // the bitsize is 1 in which case the false value is the same
4884     // in practice regardless of the representation.
4885     if ((VT.getSizeInBits() == 1 ||
4886          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4887         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4888         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4889         N0.getOpcode() == ISD::AND) {
4890       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4891         EVT ShiftTy =
4892             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4893         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4894           // Perform the xform if the AND RHS is a single bit.
4895           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4896           if (AndRHS->getAPIntValue().isPowerOf2() &&
4897               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4898             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4899                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4900                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4901           }
4902         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4903           // (X & 8) == 8  -->  (X & 8) >> 3
4904           // Perform the xform if C1 is a single bit.
4905           unsigned ShCt = C1.logBase2();
4906           if (C1.isPowerOf2() &&
4907               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4908             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4909                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4910                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4911           }
4912         }
4913       }
4914     }
4915 
4916     if (C1.getSignificantBits() <= 64 &&
4917         !isLegalICmpImmediate(C1.getSExtValue())) {
4918       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4919       // (X & -256) == 256 -> (X >> 8) == 1
4920       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4921           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4922         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4923           const APInt &AndRHSC = AndRHS->getAPIntValue();
4924           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4925             unsigned ShiftBits = AndRHSC.countr_zero();
4926             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4927               SDValue Shift =
4928                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4929                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4930               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4931               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4932             }
4933           }
4934         }
4935       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4936                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4937         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4938         // X <  0x100000000 -> (X >> 32) <  1
4939         // X >= 0x100000000 -> (X >> 32) >= 1
4940         // X <= 0x0ffffffff -> (X >> 32) <  1
4941         // X >  0x0ffffffff -> (X >> 32) >= 1
4942         unsigned ShiftBits;
4943         APInt NewC = C1;
4944         ISD::CondCode NewCond = Cond;
4945         if (AdjOne) {
4946           ShiftBits = C1.countr_one();
4947           NewC = NewC + 1;
4948           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4949         } else {
4950           ShiftBits = C1.countr_zero();
4951         }
4952         NewC.lshrInPlace(ShiftBits);
4953         if (ShiftBits && NewC.getSignificantBits() <= 64 &&
4954             isLegalICmpImmediate(NewC.getSExtValue()) &&
4955             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4956           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4957                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4958           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4959           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4960         }
4961       }
4962     }
4963   }
4964 
4965   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4966     auto *CFP = cast<ConstantFPSDNode>(N1);
4967     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4968 
4969     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4970     // constant if knowing that the operand is non-nan is enough.  We prefer to
4971     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4972     // materialize 0.0.
4973     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4974       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4975 
4976     // setcc (fneg x), C -> setcc swap(pred) x, -C
4977     if (N0.getOpcode() == ISD::FNEG) {
4978       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4979       if (DCI.isBeforeLegalizeOps() ||
4980           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4981         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4982         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4983       }
4984     }
4985 
4986     // If the condition is not legal, see if we can find an equivalent one
4987     // which is legal.
4988     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4989       // If the comparison was an awkward floating-point == or != and one of
4990       // the comparison operands is infinity or negative infinity, convert the
4991       // condition to a less-awkward <= or >=.
4992       if (CFP->getValueAPF().isInfinity()) {
4993         bool IsNegInf = CFP->getValueAPF().isNegative();
4994         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4995         switch (Cond) {
4996         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4997         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4998         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4999         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5000         default: break;
5001         }
5002         if (NewCond != ISD::SETCC_INVALID &&
5003             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5004           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5005       }
5006     }
5007   }
5008 
5009   if (N0 == N1) {
5010     // The sext(setcc()) => setcc() optimization relies on the appropriate
5011     // constant being emitted.
5012     assert(!N0.getValueType().isInteger() &&
5013            "Integer types should be handled by FoldSetCC");
5014 
5015     bool EqTrue = ISD::isTrueWhenEqual(Cond);
5016     unsigned UOF = ISD::getUnorderedFlavor(Cond);
5017     if (UOF == 2) // FP operators that are undefined on NaNs.
5018       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5019     if (UOF == unsigned(EqTrue))
5020       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5021     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
5022     // if it is not already.
5023     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5024     if (NewCond != Cond &&
5025         (DCI.isBeforeLegalizeOps() ||
5026                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5027       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5028   }
5029 
5030   // ~X > ~Y --> Y > X
5031   // ~X < ~Y --> Y < X
5032   // ~X < C --> X > ~C
5033   // ~X > C --> X < ~C
5034   if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5035       N0.getValueType().isInteger()) {
5036     if (isBitwiseNot(N0)) {
5037       if (isBitwiseNot(N1))
5038         return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5039 
5040       if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
5041         SDValue Not = DAG.getNOT(dl, N1, OpVT);
5042         return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5043       }
5044     }
5045   }
5046 
5047   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5048       N0.getValueType().isInteger()) {
5049     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5050         N0.getOpcode() == ISD::XOR) {
5051       // Simplify (X+Y) == (X+Z) -->  Y == Z
5052       if (N0.getOpcode() == N1.getOpcode()) {
5053         if (N0.getOperand(0) == N1.getOperand(0))
5054           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5055         if (N0.getOperand(1) == N1.getOperand(1))
5056           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5057         if (isCommutativeBinOp(N0.getOpcode())) {
5058           // If X op Y == Y op X, try other combinations.
5059           if (N0.getOperand(0) == N1.getOperand(1))
5060             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5061                                 Cond);
5062           if (N0.getOperand(1) == N1.getOperand(0))
5063             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5064                                 Cond);
5065         }
5066       }
5067 
5068       // If RHS is a legal immediate value for a compare instruction, we need
5069       // to be careful about increasing register pressure needlessly.
5070       bool LegalRHSImm = false;
5071 
5072       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5073         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5074           // Turn (X+C1) == C2 --> X == C2-C1
5075           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5076             return DAG.getSetCC(
5077                 dl, VT, N0.getOperand(0),
5078                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5079                                 dl, N0.getValueType()),
5080                 Cond);
5081 
5082           // Turn (X^C1) == C2 --> X == C1^C2
5083           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5084             return DAG.getSetCC(
5085                 dl, VT, N0.getOperand(0),
5086                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5087                                 dl, N0.getValueType()),
5088                 Cond);
5089         }
5090 
5091         // Turn (C1-X) == C2 --> X == C1-C2
5092         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5093           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5094             return DAG.getSetCC(
5095                 dl, VT, N0.getOperand(1),
5096                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5097                                 dl, N0.getValueType()),
5098                 Cond);
5099 
5100         // Could RHSC fold directly into a compare?
5101         if (RHSC->getValueType(0).getSizeInBits() <= 64)
5102           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5103       }
5104 
5105       // (X+Y) == X --> Y == 0 and similar folds.
5106       // Don't do this if X is an immediate that can fold into a cmp
5107       // instruction and X+Y has other uses. It could be an induction variable
5108       // chain, and the transform would increase register pressure.
5109       if (!LegalRHSImm || N0.hasOneUse())
5110         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5111           return V;
5112     }
5113 
5114     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5115         N1.getOpcode() == ISD::XOR)
5116       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5117         return V;
5118 
5119     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5120       return V;
5121   }
5122 
5123   // Fold remainder of division by a constant.
5124   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5125       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5126     // When division is cheap or optimizing for minimum size,
5127     // fall through to DIVREM creation by skipping this fold.
5128     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5129       if (N0.getOpcode() == ISD::UREM) {
5130         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5131           return Folded;
5132       } else if (N0.getOpcode() == ISD::SREM) {
5133         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5134           return Folded;
5135       }
5136     }
5137   }
5138 
5139   // Fold away ALL boolean setcc's.
5140   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5141     SDValue Temp;
5142     switch (Cond) {
5143     default: llvm_unreachable("Unknown integer setcc!");
5144     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
5145       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5146       N0 = DAG.getNOT(dl, Temp, OpVT);
5147       if (!DCI.isCalledByLegalizer())
5148         DCI.AddToWorklist(Temp.getNode());
5149       break;
5150     case ISD::SETNE:  // X != Y   -->  (X^Y)
5151       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5152       break;
5153     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5154     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5155       Temp = DAG.getNOT(dl, N0, OpVT);
5156       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5157       if (!DCI.isCalledByLegalizer())
5158         DCI.AddToWorklist(Temp.getNode());
5159       break;
5160     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5161     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5162       Temp = DAG.getNOT(dl, N1, OpVT);
5163       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5164       if (!DCI.isCalledByLegalizer())
5165         DCI.AddToWorklist(Temp.getNode());
5166       break;
5167     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5168     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5169       Temp = DAG.getNOT(dl, N0, OpVT);
5170       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5171       if (!DCI.isCalledByLegalizer())
5172         DCI.AddToWorklist(Temp.getNode());
5173       break;
5174     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5175     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5176       Temp = DAG.getNOT(dl, N1, OpVT);
5177       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5178       break;
5179     }
5180     if (VT.getScalarType() != MVT::i1) {
5181       if (!DCI.isCalledByLegalizer())
5182         DCI.AddToWorklist(N0.getNode());
5183       // FIXME: If running after legalize, we probably can't do this.
5184       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5185       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5186     }
5187     return N0;
5188   }
5189 
5190   // Could not fold it.
5191   return SDValue();
5192 }
5193 
5194 /// Returns true (and the GlobalValue and the offset) if the node is a
5195 /// GlobalAddress + offset.
5196 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5197                                     int64_t &Offset) const {
5198 
5199   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5200 
5201   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5202     GA = GASD->getGlobal();
5203     Offset += GASD->getOffset();
5204     return true;
5205   }
5206 
5207   if (N->getOpcode() == ISD::ADD) {
5208     SDValue N1 = N->getOperand(0);
5209     SDValue N2 = N->getOperand(1);
5210     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5211       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5212         Offset += V->getSExtValue();
5213         return true;
5214       }
5215     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5216       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5217         Offset += V->getSExtValue();
5218         return true;
5219       }
5220     }
5221   }
5222 
5223   return false;
5224 }
5225 
5226 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5227                                           DAGCombinerInfo &DCI) const {
5228   // Default implementation: no optimization.
5229   return SDValue();
5230 }
5231 
5232 //===----------------------------------------------------------------------===//
5233 //  Inline Assembler Implementation Methods
5234 //===----------------------------------------------------------------------===//
5235 
5236 TargetLowering::ConstraintType
5237 TargetLowering::getConstraintType(StringRef Constraint) const {
5238   unsigned S = Constraint.size();
5239 
5240   if (S == 1) {
5241     switch (Constraint[0]) {
5242     default: break;
5243     case 'r':
5244       return C_RegisterClass;
5245     case 'm': // memory
5246     case 'o': // offsetable
5247     case 'V': // not offsetable
5248       return C_Memory;
5249     case 'p': // Address.
5250       return C_Address;
5251     case 'n': // Simple Integer
5252     case 'E': // Floating Point Constant
5253     case 'F': // Floating Point Constant
5254       return C_Immediate;
5255     case 'i': // Simple Integer or Relocatable Constant
5256     case 's': // Relocatable Constant
5257     case 'X': // Allow ANY value.
5258     case 'I': // Target registers.
5259     case 'J':
5260     case 'K':
5261     case 'L':
5262     case 'M':
5263     case 'N':
5264     case 'O':
5265     case 'P':
5266     case '<':
5267     case '>':
5268       return C_Other;
5269     }
5270   }
5271 
5272   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5273     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5274       return C_Memory;
5275     return C_Register;
5276   }
5277   return C_Unknown;
5278 }
5279 
5280 /// Try to replace an X constraint, which matches anything, with another that
5281 /// has more specific requirements based on the type of the corresponding
5282 /// operand.
5283 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5284   if (ConstraintVT.isInteger())
5285     return "r";
5286   if (ConstraintVT.isFloatingPoint())
5287     return "f"; // works for many targets
5288   return nullptr;
5289 }
5290 
5291 SDValue TargetLowering::LowerAsmOutputForConstraint(
5292     SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5293     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5294   return SDValue();
5295 }
5296 
5297 /// Lower the specified operand into the Ops vector.
5298 /// If it is invalid, don't add anything to Ops.
5299 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5300                                                   std::string &Constraint,
5301                                                   std::vector<SDValue> &Ops,
5302                                                   SelectionDAG &DAG) const {
5303 
5304   if (Constraint.length() > 1) return;
5305 
5306   char ConstraintLetter = Constraint[0];
5307   switch (ConstraintLetter) {
5308   default: break;
5309   case 'X':    // Allows any operand
5310   case 'i':    // Simple Integer or Relocatable Constant
5311   case 'n':    // Simple Integer
5312   case 's': {  // Relocatable Constant
5313 
5314     ConstantSDNode *C;
5315     uint64_t Offset = 0;
5316 
5317     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5318     // etc., since getelementpointer is variadic. We can't use
5319     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5320     // while in this case the GA may be furthest from the root node which is
5321     // likely an ISD::ADD.
5322     while (true) {
5323       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5324         // gcc prints these as sign extended.  Sign extend value to 64 bits
5325         // now; without this it would get ZExt'd later in
5326         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5327         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5328         BooleanContent BCont = getBooleanContents(MVT::i64);
5329         ISD::NodeType ExtOpc =
5330             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5331         int64_t ExtVal =
5332             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5333         Ops.push_back(
5334             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5335         return;
5336       }
5337       if (ConstraintLetter != 'n') {
5338         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5339           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5340                                                    GA->getValueType(0),
5341                                                    Offset + GA->getOffset()));
5342           return;
5343         }
5344         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5345           Ops.push_back(DAG.getTargetBlockAddress(
5346               BA->getBlockAddress(), BA->getValueType(0),
5347               Offset + BA->getOffset(), BA->getTargetFlags()));
5348           return;
5349         }
5350         if (isa<BasicBlockSDNode>(Op)) {
5351           Ops.push_back(Op);
5352           return;
5353         }
5354       }
5355       const unsigned OpCode = Op.getOpcode();
5356       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5357         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5358           Op = Op.getOperand(1);
5359         // Subtraction is not commutative.
5360         else if (OpCode == ISD::ADD &&
5361                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5362           Op = Op.getOperand(0);
5363         else
5364           return;
5365         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5366         continue;
5367       }
5368       return;
5369     }
5370     break;
5371   }
5372   }
5373 }
5374 
5375 void TargetLowering::CollectTargetIntrinsicOperands(
5376     const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
5377 }
5378 
5379 std::pair<unsigned, const TargetRegisterClass *>
5380 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5381                                              StringRef Constraint,
5382                                              MVT VT) const {
5383   if (Constraint.empty() || Constraint[0] != '{')
5384     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5385   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5386 
5387   // Remove the braces from around the name.
5388   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5389 
5390   std::pair<unsigned, const TargetRegisterClass *> R =
5391       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5392 
5393   // Figure out which register class contains this reg.
5394   for (const TargetRegisterClass *RC : RI->regclasses()) {
5395     // If none of the value types for this register class are valid, we
5396     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5397     if (!isLegalRC(*RI, *RC))
5398       continue;
5399 
5400     for (const MCPhysReg &PR : *RC) {
5401       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5402         std::pair<unsigned, const TargetRegisterClass *> S =
5403             std::make_pair(PR, RC);
5404 
5405         // If this register class has the requested value type, return it,
5406         // otherwise keep searching and return the first class found
5407         // if no other is found which explicitly has the requested type.
5408         if (RI->isTypeLegalForClass(*RC, VT))
5409           return S;
5410         if (!R.second)
5411           R = S;
5412       }
5413     }
5414   }
5415 
5416   return R;
5417 }
5418 
5419 //===----------------------------------------------------------------------===//
5420 // Constraint Selection.
5421 
5422 /// Return true of this is an input operand that is a matching constraint like
5423 /// "4".
5424 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5425   assert(!ConstraintCode.empty() && "No known constraint!");
5426   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5427 }
5428 
5429 /// If this is an input matching constraint, this method returns the output
5430 /// operand it matches.
5431 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5432   assert(!ConstraintCode.empty() && "No known constraint!");
5433   return atoi(ConstraintCode.c_str());
5434 }
5435 
5436 /// Split up the constraint string from the inline assembly value into the
5437 /// specific constraints and their prefixes, and also tie in the associated
5438 /// operand values.
5439 /// If this returns an empty vector, and if the constraint string itself
5440 /// isn't empty, there was an error parsing.
5441 TargetLowering::AsmOperandInfoVector
5442 TargetLowering::ParseConstraints(const DataLayout &DL,
5443                                  const TargetRegisterInfo *TRI,
5444                                  const CallBase &Call) const {
5445   /// Information about all of the constraints.
5446   AsmOperandInfoVector ConstraintOperands;
5447   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5448   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5449 
5450   // Do a prepass over the constraints, canonicalizing them, and building up the
5451   // ConstraintOperands list.
5452   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5453   unsigned ResNo = 0; // ResNo - The result number of the next output.
5454   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5455 
5456   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5457     ConstraintOperands.emplace_back(std::move(CI));
5458     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5459 
5460     // Update multiple alternative constraint count.
5461     if (OpInfo.multipleAlternatives.size() > maCount)
5462       maCount = OpInfo.multipleAlternatives.size();
5463 
5464     OpInfo.ConstraintVT = MVT::Other;
5465 
5466     // Compute the value type for each operand.
5467     switch (OpInfo.Type) {
5468     case InlineAsm::isOutput:
5469       // Indirect outputs just consume an argument.
5470       if (OpInfo.isIndirect) {
5471         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5472         break;
5473       }
5474 
5475       // The return value of the call is this value.  As such, there is no
5476       // corresponding argument.
5477       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5478       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5479         OpInfo.ConstraintVT =
5480             getSimpleValueType(DL, STy->getElementType(ResNo));
5481       } else {
5482         assert(ResNo == 0 && "Asm only has one result!");
5483         OpInfo.ConstraintVT =
5484             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5485       }
5486       ++ResNo;
5487       break;
5488     case InlineAsm::isInput:
5489       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5490       break;
5491     case InlineAsm::isLabel:
5492       OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5493       ++LabelNo;
5494       continue;
5495     case InlineAsm::isClobber:
5496       // Nothing to do.
5497       break;
5498     }
5499 
5500     if (OpInfo.CallOperandVal) {
5501       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5502       if (OpInfo.isIndirect) {
5503         OpTy = Call.getParamElementType(ArgNo);
5504         assert(OpTy && "Indirect operand must have elementtype attribute");
5505       }
5506 
5507       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5508       if (StructType *STy = dyn_cast<StructType>(OpTy))
5509         if (STy->getNumElements() == 1)
5510           OpTy = STy->getElementType(0);
5511 
5512       // If OpTy is not a single value, it may be a struct/union that we
5513       // can tile with integers.
5514       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5515         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5516         switch (BitSize) {
5517         default: break;
5518         case 1:
5519         case 8:
5520         case 16:
5521         case 32:
5522         case 64:
5523         case 128:
5524           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5525           break;
5526         }
5527       }
5528 
5529       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5530       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5531       ArgNo++;
5532     }
5533   }
5534 
5535   // If we have multiple alternative constraints, select the best alternative.
5536   if (!ConstraintOperands.empty()) {
5537     if (maCount) {
5538       unsigned bestMAIndex = 0;
5539       int bestWeight = -1;
5540       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5541       int weight = -1;
5542       unsigned maIndex;
5543       // Compute the sums of the weights for each alternative, keeping track
5544       // of the best (highest weight) one so far.
5545       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5546         int weightSum = 0;
5547         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5548              cIndex != eIndex; ++cIndex) {
5549           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5550           if (OpInfo.Type == InlineAsm::isClobber)
5551             continue;
5552 
5553           // If this is an output operand with a matching input operand,
5554           // look up the matching input. If their types mismatch, e.g. one
5555           // is an integer, the other is floating point, or their sizes are
5556           // different, flag it as an maCantMatch.
5557           if (OpInfo.hasMatchingInput()) {
5558             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5559             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5560               if ((OpInfo.ConstraintVT.isInteger() !=
5561                    Input.ConstraintVT.isInteger()) ||
5562                   (OpInfo.ConstraintVT.getSizeInBits() !=
5563                    Input.ConstraintVT.getSizeInBits())) {
5564                 weightSum = -1; // Can't match.
5565                 break;
5566               }
5567             }
5568           }
5569           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5570           if (weight == -1) {
5571             weightSum = -1;
5572             break;
5573           }
5574           weightSum += weight;
5575         }
5576         // Update best.
5577         if (weightSum > bestWeight) {
5578           bestWeight = weightSum;
5579           bestMAIndex = maIndex;
5580         }
5581       }
5582 
5583       // Now select chosen alternative in each constraint.
5584       for (AsmOperandInfo &cInfo : ConstraintOperands)
5585         if (cInfo.Type != InlineAsm::isClobber)
5586           cInfo.selectAlternative(bestMAIndex);
5587     }
5588   }
5589 
5590   // Check and hook up tied operands, choose constraint code to use.
5591   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5592        cIndex != eIndex; ++cIndex) {
5593     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5594 
5595     // If this is an output operand with a matching input operand, look up the
5596     // matching input. If their types mismatch, e.g. one is an integer, the
5597     // other is floating point, or their sizes are different, flag it as an
5598     // error.
5599     if (OpInfo.hasMatchingInput()) {
5600       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5601 
5602       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5603         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5604             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5605                                          OpInfo.ConstraintVT);
5606         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5607             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5608                                          Input.ConstraintVT);
5609         if ((OpInfo.ConstraintVT.isInteger() !=
5610              Input.ConstraintVT.isInteger()) ||
5611             (MatchRC.second != InputRC.second)) {
5612           report_fatal_error("Unsupported asm: input constraint"
5613                              " with a matching output constraint of"
5614                              " incompatible type!");
5615         }
5616       }
5617     }
5618   }
5619 
5620   return ConstraintOperands;
5621 }
5622 
5623 /// Return an integer indicating how general CT is.
5624 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5625   switch (CT) {
5626   case TargetLowering::C_Immediate:
5627   case TargetLowering::C_Other:
5628   case TargetLowering::C_Unknown:
5629     return 0;
5630   case TargetLowering::C_Register:
5631     return 1;
5632   case TargetLowering::C_RegisterClass:
5633     return 2;
5634   case TargetLowering::C_Memory:
5635   case TargetLowering::C_Address:
5636     return 3;
5637   }
5638   llvm_unreachable("Invalid constraint type");
5639 }
5640 
5641 /// Examine constraint type and operand type and determine a weight value.
5642 /// This object must already have been set up with the operand type
5643 /// and the current alternative constraint selected.
5644 TargetLowering::ConstraintWeight
5645   TargetLowering::getMultipleConstraintMatchWeight(
5646     AsmOperandInfo &info, int maIndex) const {
5647   InlineAsm::ConstraintCodeVector *rCodes;
5648   if (maIndex >= (int)info.multipleAlternatives.size())
5649     rCodes = &info.Codes;
5650   else
5651     rCodes = &info.multipleAlternatives[maIndex].Codes;
5652   ConstraintWeight BestWeight = CW_Invalid;
5653 
5654   // Loop over the options, keeping track of the most general one.
5655   for (const std::string &rCode : *rCodes) {
5656     ConstraintWeight weight =
5657         getSingleConstraintMatchWeight(info, rCode.c_str());
5658     if (weight > BestWeight)
5659       BestWeight = weight;
5660   }
5661 
5662   return BestWeight;
5663 }
5664 
5665 /// Examine constraint type and operand type and determine a weight value.
5666 /// This object must already have been set up with the operand type
5667 /// and the current alternative constraint selected.
5668 TargetLowering::ConstraintWeight
5669   TargetLowering::getSingleConstraintMatchWeight(
5670     AsmOperandInfo &info, const char *constraint) const {
5671   ConstraintWeight weight = CW_Invalid;
5672   Value *CallOperandVal = info.CallOperandVal;
5673     // If we don't have a value, we can't do a match,
5674     // but allow it at the lowest weight.
5675   if (!CallOperandVal)
5676     return CW_Default;
5677   // Look at the constraint type.
5678   switch (*constraint) {
5679     case 'i': // immediate integer.
5680     case 'n': // immediate integer with a known value.
5681       if (isa<ConstantInt>(CallOperandVal))
5682         weight = CW_Constant;
5683       break;
5684     case 's': // non-explicit intregal immediate.
5685       if (isa<GlobalValue>(CallOperandVal))
5686         weight = CW_Constant;
5687       break;
5688     case 'E': // immediate float if host format.
5689     case 'F': // immediate float.
5690       if (isa<ConstantFP>(CallOperandVal))
5691         weight = CW_Constant;
5692       break;
5693     case '<': // memory operand with autodecrement.
5694     case '>': // memory operand with autoincrement.
5695     case 'm': // memory operand.
5696     case 'o': // offsettable memory operand
5697     case 'V': // non-offsettable memory operand
5698       weight = CW_Memory;
5699       break;
5700     case 'r': // general register.
5701     case 'g': // general register, memory operand or immediate integer.
5702               // note: Clang converts "g" to "imr".
5703       if (CallOperandVal->getType()->isIntegerTy())
5704         weight = CW_Register;
5705       break;
5706     case 'X': // any operand.
5707   default:
5708     weight = CW_Default;
5709     break;
5710   }
5711   return weight;
5712 }
5713 
5714 /// If there are multiple different constraints that we could pick for this
5715 /// operand (e.g. "imr") try to pick the 'best' one.
5716 /// This is somewhat tricky: constraints fall into four classes:
5717 ///    Other         -> immediates and magic values
5718 ///    Register      -> one specific register
5719 ///    RegisterClass -> a group of regs
5720 ///    Memory        -> memory
5721 /// Ideally, we would pick the most specific constraint possible: if we have
5722 /// something that fits into a register, we would pick it.  The problem here
5723 /// is that if we have something that could either be in a register or in
5724 /// memory that use of the register could cause selection of *other*
5725 /// operands to fail: they might only succeed if we pick memory.  Because of
5726 /// this the heuristic we use is:
5727 ///
5728 ///  1) If there is an 'other' constraint, and if the operand is valid for
5729 ///     that constraint, use it.  This makes us take advantage of 'i'
5730 ///     constraints when available.
5731 ///  2) Otherwise, pick the most general constraint present.  This prefers
5732 ///     'm' over 'r', for example.
5733 ///
5734 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5735                              const TargetLowering &TLI,
5736                              SDValue Op, SelectionDAG *DAG) {
5737   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5738   unsigned BestIdx = 0;
5739   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5740   int BestGenerality = -1;
5741 
5742   // Loop over the options, keeping track of the most general one.
5743   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5744     TargetLowering::ConstraintType CType =
5745       TLI.getConstraintType(OpInfo.Codes[i]);
5746 
5747     // Indirect 'other' or 'immediate' constraints are not allowed.
5748     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5749                                CType == TargetLowering::C_Register ||
5750                                CType == TargetLowering::C_RegisterClass))
5751       continue;
5752 
5753     // If this is an 'other' or 'immediate' constraint, see if the operand is
5754     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5755     // the operand is an integer in the range [0..31] we want to use I (saving a
5756     // load of a register), otherwise we must use 'r'.
5757     if ((CType == TargetLowering::C_Other ||
5758          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5759       assert(OpInfo.Codes[i].size() == 1 &&
5760              "Unhandled multi-letter 'other' constraint");
5761       std::vector<SDValue> ResultOps;
5762       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5763                                        ResultOps, *DAG);
5764       if (!ResultOps.empty()) {
5765         BestType = CType;
5766         BestIdx = i;
5767         break;
5768       }
5769     }
5770 
5771     // Things with matching constraints can only be registers, per gcc
5772     // documentation.  This mainly affects "g" constraints.
5773     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5774       continue;
5775 
5776     // This constraint letter is more general than the previous one, use it.
5777     int Generality = getConstraintGenerality(CType);
5778     if (Generality > BestGenerality) {
5779       BestType = CType;
5780       BestIdx = i;
5781       BestGenerality = Generality;
5782     }
5783   }
5784 
5785   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5786   OpInfo.ConstraintType = BestType;
5787 }
5788 
5789 /// Determines the constraint code and constraint type to use for the specific
5790 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5791 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5792                                             SDValue Op,
5793                                             SelectionDAG *DAG) const {
5794   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5795 
5796   // Single-letter constraints ('r') are very common.
5797   if (OpInfo.Codes.size() == 1) {
5798     OpInfo.ConstraintCode = OpInfo.Codes[0];
5799     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5800   } else {
5801     ChooseConstraint(OpInfo, *this, Op, DAG);
5802   }
5803 
5804   // 'X' matches anything.
5805   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5806     // Constants are handled elsewhere.  For Functions, the type here is the
5807     // type of the result, which is not what we want to look at; leave them
5808     // alone.
5809     Value *v = OpInfo.CallOperandVal;
5810     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5811       return;
5812     }
5813 
5814     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5815       OpInfo.ConstraintCode = "i";
5816       return;
5817     }
5818 
5819     // Otherwise, try to resolve it to something we know about by looking at
5820     // the actual operand type.
5821     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5822       OpInfo.ConstraintCode = Repl;
5823       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5824     }
5825   }
5826 }
5827 
5828 /// Given an exact SDIV by a constant, create a multiplication
5829 /// with the multiplicative inverse of the constant.
5830 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5831                               const SDLoc &dl, SelectionDAG &DAG,
5832                               SmallVectorImpl<SDNode *> &Created) {
5833   SDValue Op0 = N->getOperand(0);
5834   SDValue Op1 = N->getOperand(1);
5835   EVT VT = N->getValueType(0);
5836   EVT SVT = VT.getScalarType();
5837   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5838   EVT ShSVT = ShVT.getScalarType();
5839 
5840   bool UseSRA = false;
5841   SmallVector<SDValue, 16> Shifts, Factors;
5842 
5843   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5844     if (C->isZero())
5845       return false;
5846     APInt Divisor = C->getAPIntValue();
5847     unsigned Shift = Divisor.countr_zero();
5848     if (Shift) {
5849       Divisor.ashrInPlace(Shift);
5850       UseSRA = true;
5851     }
5852     // Calculate the multiplicative inverse, using Newton's method.
5853     APInt t;
5854     APInt Factor = Divisor;
5855     while ((t = Divisor * Factor) != 1)
5856       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5857     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5858     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5859     return true;
5860   };
5861 
5862   // Collect all magic values from the build vector.
5863   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5864     return SDValue();
5865 
5866   SDValue Shift, Factor;
5867   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5868     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5869     Factor = DAG.getBuildVector(VT, dl, Factors);
5870   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5871     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5872            "Expected matchUnaryPredicate to return one element for scalable "
5873            "vectors");
5874     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5875     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5876   } else {
5877     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5878     Shift = Shifts[0];
5879     Factor = Factors[0];
5880   }
5881 
5882   SDValue Res = Op0;
5883 
5884   // Shift the value upfront if it is even, so the LSB is one.
5885   if (UseSRA) {
5886     // TODO: For UDIV use SRL instead of SRA.
5887     SDNodeFlags Flags;
5888     Flags.setExact(true);
5889     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5890     Created.push_back(Res.getNode());
5891   }
5892 
5893   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5894 }
5895 
5896 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5897                               SelectionDAG &DAG,
5898                               SmallVectorImpl<SDNode *> &Created) const {
5899   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5900   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5901   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5902     return SDValue(N, 0); // Lower SDIV as SDIV
5903   return SDValue();
5904 }
5905 
5906 SDValue
5907 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5908                               SelectionDAG &DAG,
5909                               SmallVectorImpl<SDNode *> &Created) const {
5910   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5911   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5912   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5913     return SDValue(N, 0); // Lower SREM as SREM
5914   return SDValue();
5915 }
5916 
5917 /// Given an ISD::SDIV node expressing a divide by constant,
5918 /// return a DAG expression to select that will generate the same value by
5919 /// multiplying by a magic number.
5920 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5921 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5922                                   bool IsAfterLegalization,
5923                                   SmallVectorImpl<SDNode *> &Created) const {
5924   SDLoc dl(N);
5925   EVT VT = N->getValueType(0);
5926   EVT SVT = VT.getScalarType();
5927   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5928   EVT ShSVT = ShVT.getScalarType();
5929   unsigned EltBits = VT.getScalarSizeInBits();
5930   EVT MulVT;
5931 
5932   // Check to see if we can do this.
5933   // FIXME: We should be more aggressive here.
5934   if (!isTypeLegal(VT)) {
5935     // Limit this to simple scalars for now.
5936     if (VT.isVector() || !VT.isSimple())
5937       return SDValue();
5938 
5939     // If this type will be promoted to a large enough type with a legal
5940     // multiply operation, we can go ahead and do this transform.
5941     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5942       return SDValue();
5943 
5944     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5945     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5946         !isOperationLegal(ISD::MUL, MulVT))
5947       return SDValue();
5948   }
5949 
5950   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5951   if (N->getFlags().hasExact())
5952     return BuildExactSDIV(*this, N, dl, DAG, Created);
5953 
5954   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5955 
5956   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5957     if (C->isZero())
5958       return false;
5959 
5960     const APInt &Divisor = C->getAPIntValue();
5961     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5962     int NumeratorFactor = 0;
5963     int ShiftMask = -1;
5964 
5965     if (Divisor.isOne() || Divisor.isAllOnes()) {
5966       // If d is +1/-1, we just multiply the numerator by +1/-1.
5967       NumeratorFactor = Divisor.getSExtValue();
5968       magics.Magic = 0;
5969       magics.ShiftAmount = 0;
5970       ShiftMask = 0;
5971     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5972       // If d > 0 and m < 0, add the numerator.
5973       NumeratorFactor = 1;
5974     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5975       // If d < 0 and m > 0, subtract the numerator.
5976       NumeratorFactor = -1;
5977     }
5978 
5979     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5980     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5981     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5982     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5983     return true;
5984   };
5985 
5986   SDValue N0 = N->getOperand(0);
5987   SDValue N1 = N->getOperand(1);
5988 
5989   // Collect the shifts / magic values from each element.
5990   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5991     return SDValue();
5992 
5993   SDValue MagicFactor, Factor, Shift, ShiftMask;
5994   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5995     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5996     Factor = DAG.getBuildVector(VT, dl, Factors);
5997     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5998     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5999   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6000     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6001            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6002            "Expected matchUnaryPredicate to return one element for scalable "
6003            "vectors");
6004     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6005     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6006     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6007     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6008   } else {
6009     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6010     MagicFactor = MagicFactors[0];
6011     Factor = Factors[0];
6012     Shift = Shifts[0];
6013     ShiftMask = ShiftMasks[0];
6014   }
6015 
6016   // Multiply the numerator (operand 0) by the magic value.
6017   // FIXME: We should support doing a MUL in a wider type.
6018   auto GetMULHS = [&](SDValue X, SDValue Y) {
6019     // If the type isn't legal, use a wider mul of the the type calculated
6020     // earlier.
6021     if (!isTypeLegal(VT)) {
6022       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6023       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6024       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6025       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6026                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6027       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6028     }
6029 
6030     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6031       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6032     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6033       SDValue LoHi =
6034           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6035       return SDValue(LoHi.getNode(), 1);
6036     }
6037     // If type twice as wide legal, widen and use a mul plus a shift.
6038     unsigned Size = VT.getScalarSizeInBits();
6039     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6040     if (VT.isVector())
6041       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6042                                 VT.getVectorElementCount());
6043     if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6044       X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6045       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6046       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6047       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6048                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6049       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6050     }
6051     return SDValue();
6052   };
6053 
6054   SDValue Q = GetMULHS(N0, MagicFactor);
6055   if (!Q)
6056     return SDValue();
6057 
6058   Created.push_back(Q.getNode());
6059 
6060   // (Optionally) Add/subtract the numerator using Factor.
6061   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6062   Created.push_back(Factor.getNode());
6063   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6064   Created.push_back(Q.getNode());
6065 
6066   // Shift right algebraic by shift value.
6067   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6068   Created.push_back(Q.getNode());
6069 
6070   // Extract the sign bit, mask it and add it to the quotient.
6071   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6072   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6073   Created.push_back(T.getNode());
6074   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6075   Created.push_back(T.getNode());
6076   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6077 }
6078 
6079 /// Given an ISD::UDIV node expressing a divide by constant,
6080 /// return a DAG expression to select that will generate the same value by
6081 /// multiplying by a magic number.
6082 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6083 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6084                                   bool IsAfterLegalization,
6085                                   SmallVectorImpl<SDNode *> &Created) const {
6086   SDLoc dl(N);
6087   EVT VT = N->getValueType(0);
6088   EVT SVT = VT.getScalarType();
6089   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6090   EVT ShSVT = ShVT.getScalarType();
6091   unsigned EltBits = VT.getScalarSizeInBits();
6092   EVT MulVT;
6093 
6094   // Check to see if we can do this.
6095   // FIXME: We should be more aggressive here.
6096   if (!isTypeLegal(VT)) {
6097     // Limit this to simple scalars for now.
6098     if (VT.isVector() || !VT.isSimple())
6099       return SDValue();
6100 
6101     // If this type will be promoted to a large enough type with a legal
6102     // multiply operation, we can go ahead and do this transform.
6103     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6104       return SDValue();
6105 
6106     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6107     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6108         !isOperationLegal(ISD::MUL, MulVT))
6109       return SDValue();
6110   }
6111 
6112   SDValue N0 = N->getOperand(0);
6113   SDValue N1 = N->getOperand(1);
6114 
6115   // Try to use leading zeros of the dividend to reduce the multiplier and
6116   // avoid expensive fixups.
6117   // TODO: Support vectors.
6118   unsigned LeadingZeros = 0;
6119   if (!VT.isVector() && isa<ConstantSDNode>(N1)) {
6120     assert(!isOneConstant(N1) && "Unexpected divisor");
6121     LeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6122     // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros in
6123     // the dividend exceeds the leading zeros for the divisor.
6124     LeadingZeros = std::min(
6125         LeadingZeros, cast<ConstantSDNode>(N1)->getAPIntValue().countl_zero());
6126   }
6127 
6128   bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6129   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6130 
6131   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6132     if (C->isZero())
6133       return false;
6134     const APInt& Divisor = C->getAPIntValue();
6135 
6136     SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6137 
6138     // Magic algorithm doesn't work for division by 1. We need to emit a select
6139     // at the end.
6140     if (Divisor.isOne()) {
6141       PreShift = PostShift = DAG.getUNDEF(ShSVT);
6142       MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6143     } else {
6144       UnsignedDivisionByConstantInfo magics =
6145           UnsignedDivisionByConstantInfo::get(Divisor, LeadingZeros);
6146 
6147       MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6148 
6149       assert(magics.PreShift < Divisor.getBitWidth() &&
6150              "We shouldn't generate an undefined shift!");
6151       assert(magics.PostShift < Divisor.getBitWidth() &&
6152              "We shouldn't generate an undefined shift!");
6153       assert((!magics.IsAdd || magics.PreShift == 0) &&
6154              "Unexpected pre-shift");
6155       PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6156       PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6157       NPQFactor = DAG.getConstant(
6158           magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6159                        : APInt::getZero(EltBits),
6160           dl, SVT);
6161       UseNPQ |= magics.IsAdd;
6162       UsePreShift |= magics.PreShift != 0;
6163       UsePostShift |= magics.PostShift != 0;
6164     }
6165 
6166     PreShifts.push_back(PreShift);
6167     MagicFactors.push_back(MagicFactor);
6168     NPQFactors.push_back(NPQFactor);
6169     PostShifts.push_back(PostShift);
6170     return true;
6171   };
6172 
6173   // Collect the shifts/magic values from each element.
6174   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6175     return SDValue();
6176 
6177   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6178   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6179     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6180     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6181     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6182     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6183   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6184     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6185            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6186            "Expected matchUnaryPredicate to return one for scalable vectors");
6187     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6188     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6189     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6190     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6191   } else {
6192     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6193     PreShift = PreShifts[0];
6194     MagicFactor = MagicFactors[0];
6195     PostShift = PostShifts[0];
6196   }
6197 
6198   SDValue Q = N0;
6199   if (UsePreShift) {
6200     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6201     Created.push_back(Q.getNode());
6202   }
6203 
6204   // FIXME: We should support doing a MUL in a wider type.
6205   auto GetMULHU = [&](SDValue X, SDValue Y) {
6206     // If the type isn't legal, use a wider mul of the the type calculated
6207     // earlier.
6208     if (!isTypeLegal(VT)) {
6209       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6210       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6211       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6212       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6213                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6214       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6215     }
6216 
6217     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6218       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6219     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6220       SDValue LoHi =
6221           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6222       return SDValue(LoHi.getNode(), 1);
6223     }
6224     // If type twice as wide legal, widen and use a mul plus a shift.
6225     unsigned Size = VT.getScalarSizeInBits();
6226     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6227     if (VT.isVector())
6228       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6229                                 VT.getVectorElementCount());
6230     if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6231       X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6232       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6233       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6234       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6235                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6236       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6237     }
6238     return SDValue(); // No mulhu or equivalent
6239   };
6240 
6241   // Multiply the numerator (operand 0) by the magic value.
6242   Q = GetMULHU(Q, MagicFactor);
6243   if (!Q)
6244     return SDValue();
6245 
6246   Created.push_back(Q.getNode());
6247 
6248   if (UseNPQ) {
6249     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6250     Created.push_back(NPQ.getNode());
6251 
6252     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6253     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6254     if (VT.isVector())
6255       NPQ = GetMULHU(NPQ, NPQFactor);
6256     else
6257       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6258 
6259     Created.push_back(NPQ.getNode());
6260 
6261     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6262     Created.push_back(Q.getNode());
6263   }
6264 
6265   if (UsePostShift) {
6266     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6267     Created.push_back(Q.getNode());
6268   }
6269 
6270   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6271 
6272   SDValue One = DAG.getConstant(1, dl, VT);
6273   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6274   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6275 }
6276 
6277 /// If all values in Values that *don't* match the predicate are same 'splat'
6278 /// value, then replace all values with that splat value.
6279 /// Else, if AlternativeReplacement was provided, then replace all values that
6280 /// do match predicate with AlternativeReplacement value.
6281 static void
6282 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6283                           std::function<bool(SDValue)> Predicate,
6284                           SDValue AlternativeReplacement = SDValue()) {
6285   SDValue Replacement;
6286   // Is there a value for which the Predicate does *NOT* match? What is it?
6287   auto SplatValue = llvm::find_if_not(Values, Predicate);
6288   if (SplatValue != Values.end()) {
6289     // Does Values consist only of SplatValue's and values matching Predicate?
6290     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6291           return Value == *SplatValue || Predicate(Value);
6292         })) // Then we shall replace values matching predicate with SplatValue.
6293       Replacement = *SplatValue;
6294   }
6295   if (!Replacement) {
6296     // Oops, we did not find the "baseline" splat value.
6297     if (!AlternativeReplacement)
6298       return; // Nothing to do.
6299     // Let's replace with provided value then.
6300     Replacement = AlternativeReplacement;
6301   }
6302   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6303 }
6304 
6305 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6306 /// where the divisor is constant and the comparison target is zero,
6307 /// return a DAG expression that will generate the same comparison result
6308 /// using only multiplications, additions and shifts/rotations.
6309 /// Ref: "Hacker's Delight" 10-17.
6310 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6311                                         SDValue CompTargetNode,
6312                                         ISD::CondCode Cond,
6313                                         DAGCombinerInfo &DCI,
6314                                         const SDLoc &DL) const {
6315   SmallVector<SDNode *, 5> Built;
6316   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6317                                          DCI, DL, Built)) {
6318     for (SDNode *N : Built)
6319       DCI.AddToWorklist(N);
6320     return Folded;
6321   }
6322 
6323   return SDValue();
6324 }
6325 
6326 SDValue
6327 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6328                                   SDValue CompTargetNode, ISD::CondCode Cond,
6329                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6330                                   SmallVectorImpl<SDNode *> &Created) const {
6331   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6332   // - D must be constant, with D = D0 * 2^K where D0 is odd
6333   // - P is the multiplicative inverse of D0 modulo 2^W
6334   // - Q = floor(((2^W) - 1) / D)
6335   // where W is the width of the common type of N and D.
6336   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6337          "Only applicable for (in)equality comparisons.");
6338 
6339   SelectionDAG &DAG = DCI.DAG;
6340 
6341   EVT VT = REMNode.getValueType();
6342   EVT SVT = VT.getScalarType();
6343   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6344   EVT ShSVT = ShVT.getScalarType();
6345 
6346   // If MUL is unavailable, we cannot proceed in any case.
6347   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6348     return SDValue();
6349 
6350   bool ComparingWithAllZeros = true;
6351   bool AllComparisonsWithNonZerosAreTautological = true;
6352   bool HadTautologicalLanes = false;
6353   bool AllLanesAreTautological = true;
6354   bool HadEvenDivisor = false;
6355   bool AllDivisorsArePowerOfTwo = true;
6356   bool HadTautologicalInvertedLanes = false;
6357   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6358 
6359   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6360     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6361     if (CDiv->isZero())
6362       return false;
6363 
6364     const APInt &D = CDiv->getAPIntValue();
6365     const APInt &Cmp = CCmp->getAPIntValue();
6366 
6367     ComparingWithAllZeros &= Cmp.isZero();
6368 
6369     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6370     // if C2 is not less than C1, the comparison is always false.
6371     // But we will only be able to produce the comparison that will give the
6372     // opposive tautological answer. So this lane would need to be fixed up.
6373     bool TautologicalInvertedLane = D.ule(Cmp);
6374     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6375 
6376     // If all lanes are tautological (either all divisors are ones, or divisor
6377     // is not greater than the constant we are comparing with),
6378     // we will prefer to avoid the fold.
6379     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6380     HadTautologicalLanes |= TautologicalLane;
6381     AllLanesAreTautological &= TautologicalLane;
6382 
6383     // If we are comparing with non-zero, we need'll need  to subtract said
6384     // comparison value from the LHS. But there is no point in doing that if
6385     // every lane where we are comparing with non-zero is tautological..
6386     if (!Cmp.isZero())
6387       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6388 
6389     // Decompose D into D0 * 2^K
6390     unsigned K = D.countr_zero();
6391     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6392     APInt D0 = D.lshr(K);
6393 
6394     // D is even if it has trailing zeros.
6395     HadEvenDivisor |= (K != 0);
6396     // D is a power-of-two if D0 is one.
6397     // If all divisors are power-of-two, we will prefer to avoid the fold.
6398     AllDivisorsArePowerOfTwo &= D0.isOne();
6399 
6400     // P = inv(D0, 2^W)
6401     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6402     unsigned W = D.getBitWidth();
6403     APInt P = D0.zext(W + 1)
6404                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6405                   .trunc(W);
6406     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6407     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6408 
6409     // Q = floor((2^W - 1) u/ D)
6410     // R = ((2^W - 1) u% D)
6411     APInt Q, R;
6412     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6413 
6414     // If we are comparing with zero, then that comparison constant is okay,
6415     // else it may need to be one less than that.
6416     if (Cmp.ugt(R))
6417       Q -= 1;
6418 
6419     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6420            "We are expecting that K is always less than all-ones for ShSVT");
6421 
6422     // If the lane is tautological the result can be constant-folded.
6423     if (TautologicalLane) {
6424       // Set P and K amount to a bogus values so we can try to splat them.
6425       P = 0;
6426       K = -1;
6427       // And ensure that comparison constant is tautological,
6428       // it will always compare true/false.
6429       Q = -1;
6430     }
6431 
6432     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6433     KAmts.push_back(
6434         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6435     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6436     return true;
6437   };
6438 
6439   SDValue N = REMNode.getOperand(0);
6440   SDValue D = REMNode.getOperand(1);
6441 
6442   // Collect the values from each element.
6443   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6444     return SDValue();
6445 
6446   // If all lanes are tautological, the result can be constant-folded.
6447   if (AllLanesAreTautological)
6448     return SDValue();
6449 
6450   // If this is a urem by a powers-of-two, avoid the fold since it can be
6451   // best implemented as a bit test.
6452   if (AllDivisorsArePowerOfTwo)
6453     return SDValue();
6454 
6455   SDValue PVal, KVal, QVal;
6456   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6457     if (HadTautologicalLanes) {
6458       // Try to turn PAmts into a splat, since we don't care about the values
6459       // that are currently '0'. If we can't, just keep '0'`s.
6460       turnVectorIntoSplatVector(PAmts, isNullConstant);
6461       // Try to turn KAmts into a splat, since we don't care about the values
6462       // that are currently '-1'. If we can't, change them to '0'`s.
6463       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6464                                 DAG.getConstant(0, DL, ShSVT));
6465     }
6466 
6467     PVal = DAG.getBuildVector(VT, DL, PAmts);
6468     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6469     QVal = DAG.getBuildVector(VT, DL, QAmts);
6470   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6471     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6472            "Expected matchBinaryPredicate to return one element for "
6473            "SPLAT_VECTORs");
6474     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6475     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6476     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6477   } else {
6478     PVal = PAmts[0];
6479     KVal = KAmts[0];
6480     QVal = QAmts[0];
6481   }
6482 
6483   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6484     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6485       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6486     assert(CompTargetNode.getValueType() == N.getValueType() &&
6487            "Expecting that the types on LHS and RHS of comparisons match.");
6488     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6489   }
6490 
6491   // (mul N, P)
6492   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6493   Created.push_back(Op0.getNode());
6494 
6495   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6496   // divisors as a performance improvement, since rotating by 0 is a no-op.
6497   if (HadEvenDivisor) {
6498     // We need ROTR to do this.
6499     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6500       return SDValue();
6501     // UREM: (rotr (mul N, P), K)
6502     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6503     Created.push_back(Op0.getNode());
6504   }
6505 
6506   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6507   SDValue NewCC =
6508       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6509                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6510   if (!HadTautologicalInvertedLanes)
6511     return NewCC;
6512 
6513   // If any lanes previously compared always-false, the NewCC will give
6514   // always-true result for them, so we need to fixup those lanes.
6515   // Or the other way around for inequality predicate.
6516   assert(VT.isVector() && "Can/should only get here for vectors.");
6517   Created.push_back(NewCC.getNode());
6518 
6519   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6520   // if C2 is not less than C1, the comparison is always false.
6521   // But we have produced the comparison that will give the
6522   // opposive tautological answer. So these lanes would need to be fixed up.
6523   SDValue TautologicalInvertedChannels =
6524       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6525   Created.push_back(TautologicalInvertedChannels.getNode());
6526 
6527   // NOTE: we avoid letting illegal types through even if we're before legalize
6528   // ops – legalization has a hard time producing good code for this.
6529   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6530     // If we have a vector select, let's replace the comparison results in the
6531     // affected lanes with the correct tautological result.
6532     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6533                                               DL, SETCCVT, SETCCVT);
6534     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6535                        Replacement, NewCC);
6536   }
6537 
6538   // Else, we can just invert the comparison result in the appropriate lanes.
6539   //
6540   // NOTE: see the note above VSELECT above.
6541   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6542     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6543                        TautologicalInvertedChannels);
6544 
6545   return SDValue(); // Don't know how to lower.
6546 }
6547 
6548 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6549 /// where the divisor is constant and the comparison target is zero,
6550 /// return a DAG expression that will generate the same comparison result
6551 /// using only multiplications, additions and shifts/rotations.
6552 /// Ref: "Hacker's Delight" 10-17.
6553 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6554                                         SDValue CompTargetNode,
6555                                         ISD::CondCode Cond,
6556                                         DAGCombinerInfo &DCI,
6557                                         const SDLoc &DL) const {
6558   SmallVector<SDNode *, 7> Built;
6559   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6560                                          DCI, DL, Built)) {
6561     assert(Built.size() <= 7 && "Max size prediction failed.");
6562     for (SDNode *N : Built)
6563       DCI.AddToWorklist(N);
6564     return Folded;
6565   }
6566 
6567   return SDValue();
6568 }
6569 
6570 SDValue
6571 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6572                                   SDValue CompTargetNode, ISD::CondCode Cond,
6573                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6574                                   SmallVectorImpl<SDNode *> &Created) const {
6575   // Fold:
6576   //   (seteq/ne (srem N, D), 0)
6577   // To:
6578   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6579   //
6580   // - D must be constant, with D = D0 * 2^K where D0 is odd
6581   // - P is the multiplicative inverse of D0 modulo 2^W
6582   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6583   // - Q = floor((2 * A) / (2^K))
6584   // where W is the width of the common type of N and D.
6585   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6586          "Only applicable for (in)equality comparisons.");
6587 
6588   SelectionDAG &DAG = DCI.DAG;
6589 
6590   EVT VT = REMNode.getValueType();
6591   EVT SVT = VT.getScalarType();
6592   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6593   EVT ShSVT = ShVT.getScalarType();
6594 
6595   // If we are after ops legalization, and MUL is unavailable, we can not
6596   // proceed.
6597   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6598     return SDValue();
6599 
6600   // TODO: Could support comparing with non-zero too.
6601   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6602   if (!CompTarget || !CompTarget->isZero())
6603     return SDValue();
6604 
6605   bool HadIntMinDivisor = false;
6606   bool HadOneDivisor = false;
6607   bool AllDivisorsAreOnes = true;
6608   bool HadEvenDivisor = false;
6609   bool NeedToApplyOffset = false;
6610   bool AllDivisorsArePowerOfTwo = true;
6611   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6612 
6613   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6614     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6615     if (C->isZero())
6616       return false;
6617 
6618     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6619 
6620     // WARNING: this fold is only valid for positive divisors!
6621     APInt D = C->getAPIntValue();
6622     if (D.isNegative())
6623       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6624 
6625     HadIntMinDivisor |= D.isMinSignedValue();
6626 
6627     // If all divisors are ones, we will prefer to avoid the fold.
6628     HadOneDivisor |= D.isOne();
6629     AllDivisorsAreOnes &= D.isOne();
6630 
6631     // Decompose D into D0 * 2^K
6632     unsigned K = D.countr_zero();
6633     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6634     APInt D0 = D.lshr(K);
6635 
6636     if (!D.isMinSignedValue()) {
6637       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6638       // we don't care about this lane in this fold, we'll special-handle it.
6639       HadEvenDivisor |= (K != 0);
6640     }
6641 
6642     // D is a power-of-two if D0 is one. This includes INT_MIN.
6643     // If all divisors are power-of-two, we will prefer to avoid the fold.
6644     AllDivisorsArePowerOfTwo &= D0.isOne();
6645 
6646     // P = inv(D0, 2^W)
6647     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6648     unsigned W = D.getBitWidth();
6649     APInt P = D0.zext(W + 1)
6650                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6651                   .trunc(W);
6652     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6653     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6654 
6655     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6656     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6657     A.clearLowBits(K);
6658 
6659     if (!D.isMinSignedValue()) {
6660       // If divisor INT_MIN, then we don't care about this lane in this fold,
6661       // we'll special-handle it.
6662       NeedToApplyOffset |= A != 0;
6663     }
6664 
6665     // Q = floor((2 * A) / (2^K))
6666     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6667 
6668     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6669            "We are expecting that A is always less than all-ones for SVT");
6670     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6671            "We are expecting that K is always less than all-ones for ShSVT");
6672 
6673     // If the divisor is 1 the result can be constant-folded. Likewise, we
6674     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6675     if (D.isOne()) {
6676       // Set P, A and K to a bogus values so we can try to splat them.
6677       P = 0;
6678       A = -1;
6679       K = -1;
6680 
6681       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6682       Q = -1;
6683     }
6684 
6685     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6686     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6687     KAmts.push_back(
6688         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6689     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6690     return true;
6691   };
6692 
6693   SDValue N = REMNode.getOperand(0);
6694   SDValue D = REMNode.getOperand(1);
6695 
6696   // Collect the values from each element.
6697   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6698     return SDValue();
6699 
6700   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6701   if (AllDivisorsAreOnes)
6702     return SDValue();
6703 
6704   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6705   // since it can be best implemented as a bit test.
6706   if (AllDivisorsArePowerOfTwo)
6707     return SDValue();
6708 
6709   SDValue PVal, AVal, KVal, QVal;
6710   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6711     if (HadOneDivisor) {
6712       // Try to turn PAmts into a splat, since we don't care about the values
6713       // that are currently '0'. If we can't, just keep '0'`s.
6714       turnVectorIntoSplatVector(PAmts, isNullConstant);
6715       // Try to turn AAmts into a splat, since we don't care about the
6716       // values that are currently '-1'. If we can't, change them to '0'`s.
6717       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6718                                 DAG.getConstant(0, DL, SVT));
6719       // Try to turn KAmts into a splat, since we don't care about the values
6720       // that are currently '-1'. If we can't, change them to '0'`s.
6721       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6722                                 DAG.getConstant(0, DL, ShSVT));
6723     }
6724 
6725     PVal = DAG.getBuildVector(VT, DL, PAmts);
6726     AVal = DAG.getBuildVector(VT, DL, AAmts);
6727     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6728     QVal = DAG.getBuildVector(VT, DL, QAmts);
6729   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6730     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6731            QAmts.size() == 1 &&
6732            "Expected matchUnaryPredicate to return one element for scalable "
6733            "vectors");
6734     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6735     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6736     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6737     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6738   } else {
6739     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6740     PVal = PAmts[0];
6741     AVal = AAmts[0];
6742     KVal = KAmts[0];
6743     QVal = QAmts[0];
6744   }
6745 
6746   // (mul N, P)
6747   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6748   Created.push_back(Op0.getNode());
6749 
6750   if (NeedToApplyOffset) {
6751     // We need ADD to do this.
6752     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6753       return SDValue();
6754 
6755     // (add (mul N, P), A)
6756     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6757     Created.push_back(Op0.getNode());
6758   }
6759 
6760   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6761   // divisors as a performance improvement, since rotating by 0 is a no-op.
6762   if (HadEvenDivisor) {
6763     // We need ROTR to do this.
6764     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6765       return SDValue();
6766     // SREM: (rotr (add (mul N, P), A), K)
6767     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6768     Created.push_back(Op0.getNode());
6769   }
6770 
6771   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6772   SDValue Fold =
6773       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6774                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6775 
6776   // If we didn't have lanes with INT_MIN divisor, then we're done.
6777   if (!HadIntMinDivisor)
6778     return Fold;
6779 
6780   // That fold is only valid for positive divisors. Which effectively means,
6781   // it is invalid for INT_MIN divisors. So if we have such a lane,
6782   // we must fix-up results for said lanes.
6783   assert(VT.isVector() && "Can/should only get here for vectors.");
6784 
6785   // NOTE: we avoid letting illegal types through even if we're before legalize
6786   // ops – legalization has a hard time producing good code for the code that
6787   // follows.
6788   if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
6789       !isOperationLegalOrCustom(ISD::AND, VT) ||
6790       !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
6791       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6792     return SDValue();
6793 
6794   Created.push_back(Fold.getNode());
6795 
6796   SDValue IntMin = DAG.getConstant(
6797       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6798   SDValue IntMax = DAG.getConstant(
6799       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6800   SDValue Zero =
6801       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6802 
6803   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6804   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6805   Created.push_back(DivisorIsIntMin.getNode());
6806 
6807   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6808   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6809   Created.push_back(Masked.getNode());
6810   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6811   Created.push_back(MaskedIsZero.getNode());
6812 
6813   // To produce final result we need to blend 2 vectors: 'SetCC' and
6814   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6815   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6816   // constant-folded, select can get lowered to a shuffle with constant mask.
6817   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6818                                 MaskedIsZero, Fold);
6819 
6820   return Blended;
6821 }
6822 
6823 bool TargetLowering::
6824 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6825   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6826     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6827                                 "be a constant integer");
6828     return true;
6829   }
6830 
6831   return false;
6832 }
6833 
6834 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6835                                          const DenormalMode &Mode) const {
6836   SDLoc DL(Op);
6837   EVT VT = Op.getValueType();
6838   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6839   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6840 
6841   // This is specifically a check for the handling of denormal inputs, not the
6842   // result.
6843   if (Mode.Input == DenormalMode::PreserveSign ||
6844       Mode.Input == DenormalMode::PositiveZero) {
6845     // Test = X == 0.0
6846     return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6847   }
6848 
6849   // Testing it with denormal inputs to avoid wrong estimate.
6850   //
6851   // Test = fabs(X) < SmallestNormal
6852   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6853   APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6854   SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6855   SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6856   return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6857 }
6858 
6859 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6860                                              bool LegalOps, bool OptForSize,
6861                                              NegatibleCost &Cost,
6862                                              unsigned Depth) const {
6863   // fneg is removable even if it has multiple uses.
6864   if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
6865     Cost = NegatibleCost::Cheaper;
6866     return Op.getOperand(0);
6867   }
6868 
6869   // Don't recurse exponentially.
6870   if (Depth > SelectionDAG::MaxRecursionDepth)
6871     return SDValue();
6872 
6873   // Pre-increment recursion depth for use in recursive calls.
6874   ++Depth;
6875   const SDNodeFlags Flags = Op->getFlags();
6876   const TargetOptions &Options = DAG.getTarget().Options;
6877   EVT VT = Op.getValueType();
6878   unsigned Opcode = Op.getOpcode();
6879 
6880   // Don't allow anything with multiple uses unless we know it is free.
6881   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6882     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6883                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6884     if (!IsFreeExtend)
6885       return SDValue();
6886   }
6887 
6888   auto RemoveDeadNode = [&](SDValue N) {
6889     if (N && N.getNode()->use_empty())
6890       DAG.RemoveDeadNode(N.getNode());
6891   };
6892 
6893   SDLoc DL(Op);
6894 
6895   // Because getNegatedExpression can delete nodes we need a handle to keep
6896   // temporary nodes alive in case the recursion manages to create an identical
6897   // node.
6898   std::list<HandleSDNode> Handles;
6899 
6900   switch (Opcode) {
6901   case ISD::ConstantFP: {
6902     // Don't invert constant FP values after legalization unless the target says
6903     // the negated constant is legal.
6904     bool IsOpLegal =
6905         isOperationLegal(ISD::ConstantFP, VT) ||
6906         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6907                      OptForSize);
6908 
6909     if (LegalOps && !IsOpLegal)
6910       break;
6911 
6912     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6913     V.changeSign();
6914     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6915 
6916     // If we already have the use of the negated floating constant, it is free
6917     // to negate it even it has multiple uses.
6918     if (!Op.hasOneUse() && CFP.use_empty())
6919       break;
6920     Cost = NegatibleCost::Neutral;
6921     return CFP;
6922   }
6923   case ISD::BUILD_VECTOR: {
6924     // Only permit BUILD_VECTOR of constants.
6925     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6926           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6927         }))
6928       break;
6929 
6930     bool IsOpLegal =
6931         (isOperationLegal(ISD::ConstantFP, VT) &&
6932          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6933         llvm::all_of(Op->op_values(), [&](SDValue N) {
6934           return N.isUndef() ||
6935                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6936                               OptForSize);
6937         });
6938 
6939     if (LegalOps && !IsOpLegal)
6940       break;
6941 
6942     SmallVector<SDValue, 4> Ops;
6943     for (SDValue C : Op->op_values()) {
6944       if (C.isUndef()) {
6945         Ops.push_back(C);
6946         continue;
6947       }
6948       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6949       V.changeSign();
6950       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6951     }
6952     Cost = NegatibleCost::Neutral;
6953     return DAG.getBuildVector(VT, DL, Ops);
6954   }
6955   case ISD::FADD: {
6956     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6957       break;
6958 
6959     // After operation legalization, it might not be legal to create new FSUBs.
6960     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6961       break;
6962     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6963 
6964     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6965     NegatibleCost CostX = NegatibleCost::Expensive;
6966     SDValue NegX =
6967         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6968     // Prevent this node from being deleted by the next call.
6969     if (NegX)
6970       Handles.emplace_back(NegX);
6971 
6972     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6973     NegatibleCost CostY = NegatibleCost::Expensive;
6974     SDValue NegY =
6975         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6976 
6977     // We're done with the handles.
6978     Handles.clear();
6979 
6980     // Negate the X if its cost is less or equal than Y.
6981     if (NegX && (CostX <= CostY)) {
6982       Cost = CostX;
6983       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6984       if (NegY != N)
6985         RemoveDeadNode(NegY);
6986       return N;
6987     }
6988 
6989     // Negate the Y if it is not expensive.
6990     if (NegY) {
6991       Cost = CostY;
6992       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6993       if (NegX != N)
6994         RemoveDeadNode(NegX);
6995       return N;
6996     }
6997     break;
6998   }
6999   case ISD::FSUB: {
7000     // We can't turn -(A-B) into B-A when we honor signed zeros.
7001     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7002       break;
7003 
7004     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7005     // fold (fneg (fsub 0, Y)) -> Y
7006     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7007       if (C->isZero()) {
7008         Cost = NegatibleCost::Cheaper;
7009         return Y;
7010       }
7011 
7012     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7013     Cost = NegatibleCost::Neutral;
7014     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7015   }
7016   case ISD::FMUL:
7017   case ISD::FDIV: {
7018     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7019 
7020     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7021     NegatibleCost CostX = NegatibleCost::Expensive;
7022     SDValue NegX =
7023         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7024     // Prevent this node from being deleted by the next call.
7025     if (NegX)
7026       Handles.emplace_back(NegX);
7027 
7028     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7029     NegatibleCost CostY = NegatibleCost::Expensive;
7030     SDValue NegY =
7031         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7032 
7033     // We're done with the handles.
7034     Handles.clear();
7035 
7036     // Negate the X if its cost is less or equal than Y.
7037     if (NegX && (CostX <= CostY)) {
7038       Cost = CostX;
7039       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7040       if (NegY != N)
7041         RemoveDeadNode(NegY);
7042       return N;
7043     }
7044 
7045     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7046     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7047       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7048         break;
7049 
7050     // Negate the Y if it is not expensive.
7051     if (NegY) {
7052       Cost = CostY;
7053       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7054       if (NegX != N)
7055         RemoveDeadNode(NegX);
7056       return N;
7057     }
7058     break;
7059   }
7060   case ISD::FMA:
7061   case ISD::FMAD: {
7062     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7063       break;
7064 
7065     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7066     NegatibleCost CostZ = NegatibleCost::Expensive;
7067     SDValue NegZ =
7068         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7069     // Give up if fail to negate the Z.
7070     if (!NegZ)
7071       break;
7072 
7073     // Prevent this node from being deleted by the next two calls.
7074     Handles.emplace_back(NegZ);
7075 
7076     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7077     NegatibleCost CostX = NegatibleCost::Expensive;
7078     SDValue NegX =
7079         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7080     // Prevent this node from being deleted by the next call.
7081     if (NegX)
7082       Handles.emplace_back(NegX);
7083 
7084     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7085     NegatibleCost CostY = NegatibleCost::Expensive;
7086     SDValue NegY =
7087         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7088 
7089     // We're done with the handles.
7090     Handles.clear();
7091 
7092     // Negate the X if its cost is less or equal than Y.
7093     if (NegX && (CostX <= CostY)) {
7094       Cost = std::min(CostX, CostZ);
7095       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7096       if (NegY != N)
7097         RemoveDeadNode(NegY);
7098       return N;
7099     }
7100 
7101     // Negate the Y if it is not expensive.
7102     if (NegY) {
7103       Cost = std::min(CostY, CostZ);
7104       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7105       if (NegX != N)
7106         RemoveDeadNode(NegX);
7107       return N;
7108     }
7109     break;
7110   }
7111 
7112   case ISD::FP_EXTEND:
7113   case ISD::FSIN:
7114     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7115                                             OptForSize, Cost, Depth))
7116       return DAG.getNode(Opcode, DL, VT, NegV);
7117     break;
7118   case ISD::FP_ROUND:
7119     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7120                                             OptForSize, Cost, Depth))
7121       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7122     break;
7123   case ISD::SELECT:
7124   case ISD::VSELECT: {
7125     // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7126     // iff at least one cost is cheaper and the other is neutral/cheaper
7127     SDValue LHS = Op.getOperand(1);
7128     NegatibleCost CostLHS = NegatibleCost::Expensive;
7129     SDValue NegLHS =
7130         getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7131     if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7132       RemoveDeadNode(NegLHS);
7133       break;
7134     }
7135 
7136     // Prevent this node from being deleted by the next call.
7137     Handles.emplace_back(NegLHS);
7138 
7139     SDValue RHS = Op.getOperand(2);
7140     NegatibleCost CostRHS = NegatibleCost::Expensive;
7141     SDValue NegRHS =
7142         getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7143 
7144     // We're done with the handles.
7145     Handles.clear();
7146 
7147     if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7148         (CostLHS != NegatibleCost::Cheaper &&
7149          CostRHS != NegatibleCost::Cheaper)) {
7150       RemoveDeadNode(NegLHS);
7151       RemoveDeadNode(NegRHS);
7152       break;
7153     }
7154 
7155     Cost = std::min(CostLHS, CostRHS);
7156     return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7157   }
7158   }
7159 
7160   return SDValue();
7161 }
7162 
7163 //===----------------------------------------------------------------------===//
7164 // Legalization Utilities
7165 //===----------------------------------------------------------------------===//
7166 
7167 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7168                                     SDValue LHS, SDValue RHS,
7169                                     SmallVectorImpl<SDValue> &Result,
7170                                     EVT HiLoVT, SelectionDAG &DAG,
7171                                     MulExpansionKind Kind, SDValue LL,
7172                                     SDValue LH, SDValue RL, SDValue RH) const {
7173   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7174          Opcode == ISD::SMUL_LOHI);
7175 
7176   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7177                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7178   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7179                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7180   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7181                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7182   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7183                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7184 
7185   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7186     return false;
7187 
7188   unsigned OuterBitSize = VT.getScalarSizeInBits();
7189   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7190 
7191   // LL, LH, RL, and RH must be either all NULL or all set to a value.
7192   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7193          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7194 
7195   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7196   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7197                           bool Signed) -> bool {
7198     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7199       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7200       Hi = SDValue(Lo.getNode(), 1);
7201       return true;
7202     }
7203     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7204       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7205       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7206       return true;
7207     }
7208     return false;
7209   };
7210 
7211   SDValue Lo, Hi;
7212 
7213   if (!LL.getNode() && !RL.getNode() &&
7214       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7215     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7216     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7217   }
7218 
7219   if (!LL.getNode())
7220     return false;
7221 
7222   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7223   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7224       DAG.MaskedValueIsZero(RHS, HighMask)) {
7225     // The inputs are both zero-extended.
7226     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7227       Result.push_back(Lo);
7228       Result.push_back(Hi);
7229       if (Opcode != ISD::MUL) {
7230         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7231         Result.push_back(Zero);
7232         Result.push_back(Zero);
7233       }
7234       return true;
7235     }
7236   }
7237 
7238   if (!VT.isVector() && Opcode == ISD::MUL &&
7239       DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7240       DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7241     // The input values are both sign-extended.
7242     // TODO non-MUL case?
7243     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7244       Result.push_back(Lo);
7245       Result.push_back(Hi);
7246       return true;
7247     }
7248   }
7249 
7250   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7251   SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7252 
7253   if (!LH.getNode() && !RH.getNode() &&
7254       isOperationLegalOrCustom(ISD::SRL, VT) &&
7255       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7256     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7257     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7258     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7259     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7260   }
7261 
7262   if (!LH.getNode())
7263     return false;
7264 
7265   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7266     return false;
7267 
7268   Result.push_back(Lo);
7269 
7270   if (Opcode == ISD::MUL) {
7271     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7272     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7273     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7274     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7275     Result.push_back(Hi);
7276     return true;
7277   }
7278 
7279   // Compute the full width result.
7280   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7281     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7282     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7283     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7284     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7285   };
7286 
7287   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7288   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7289     return false;
7290 
7291   // This is effectively the add part of a multiply-add of half-sized operands,
7292   // so it cannot overflow.
7293   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7294 
7295   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7296     return false;
7297 
7298   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7299   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7300 
7301   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7302                   isOperationLegalOrCustom(ISD::ADDE, VT));
7303   if (UseGlue)
7304     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7305                        Merge(Lo, Hi));
7306   else
7307     Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7308                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7309 
7310   SDValue Carry = Next.getValue(1);
7311   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7312   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7313 
7314   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7315     return false;
7316 
7317   if (UseGlue)
7318     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7319                      Carry);
7320   else
7321     Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7322                      Zero, Carry);
7323 
7324   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7325 
7326   if (Opcode == ISD::SMUL_LOHI) {
7327     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7328                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7329     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7330 
7331     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7332                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7333     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7334   }
7335 
7336   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7337   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7338   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7339   return true;
7340 }
7341 
7342 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7343                                SelectionDAG &DAG, MulExpansionKind Kind,
7344                                SDValue LL, SDValue LH, SDValue RL,
7345                                SDValue RH) const {
7346   SmallVector<SDValue, 2> Result;
7347   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7348                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7349                            DAG, Kind, LL, LH, RL, RH);
7350   if (Ok) {
7351     assert(Result.size() == 2);
7352     Lo = Result[0];
7353     Hi = Result[1];
7354   }
7355   return Ok;
7356 }
7357 
7358 // Optimize unsigned division or remainder by constants for types twice as large
7359 // as a legal VT.
7360 //
7361 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7362 // can be computed
7363 // as:
7364 //   Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7365 //   Remainder = Sum % Constant
7366 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7367 //
7368 // For division, we can compute the remainder using the algorithm described
7369 // above, subtract it from the dividend to get an exact multiple of Constant.
7370 // Then multiply that extact multiply by the multiplicative inverse modulo
7371 // (1 << (BitWidth / 2)) to get the quotient.
7372 
7373 // If Constant is even, we can shift right the dividend and the divisor by the
7374 // number of trailing zeros in Constant before applying the remainder algorithm.
7375 // If we're after the quotient, we can subtract this value from the shifted
7376 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7377 // If we want the remainder, we shift the value left by the number of trailing
7378 // zeros and add the bits that were shifted out of the dividend.
7379 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7380                                             SmallVectorImpl<SDValue> &Result,
7381                                             EVT HiLoVT, SelectionDAG &DAG,
7382                                             SDValue LL, SDValue LH) const {
7383   unsigned Opcode = N->getOpcode();
7384   EVT VT = N->getValueType(0);
7385 
7386   // TODO: Support signed division/remainder.
7387   if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7388     return false;
7389   assert(
7390       (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7391       "Unexpected opcode");
7392 
7393   auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7394   if (!CN)
7395     return false;
7396 
7397   APInt Divisor = CN->getAPIntValue();
7398   unsigned BitWidth = Divisor.getBitWidth();
7399   unsigned HBitWidth = BitWidth / 2;
7400   assert(VT.getScalarSizeInBits() == BitWidth &&
7401          HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7402 
7403   // Divisor needs to less than (1 << HBitWidth).
7404   APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7405   if (Divisor.uge(HalfMaxPlus1))
7406     return false;
7407 
7408   // We depend on the UREM by constant optimization in DAGCombiner that requires
7409   // high multiply.
7410   if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7411       !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7412     return false;
7413 
7414   // Don't expand if optimizing for size.
7415   if (DAG.shouldOptForSize())
7416     return false;
7417 
7418   // Early out for 0 or 1 divisors.
7419   if (Divisor.ule(1))
7420     return false;
7421 
7422   // If the divisor is even, shift it until it becomes odd.
7423   unsigned TrailingZeros = 0;
7424   if (!Divisor[0]) {
7425     TrailingZeros = Divisor.countr_zero();
7426     Divisor.lshrInPlace(TrailingZeros);
7427   }
7428 
7429   SDLoc dl(N);
7430   SDValue Sum;
7431   SDValue PartialRem;
7432 
7433   // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7434   // then add in the carry.
7435   // TODO: If we can't split it in half, we might be able to split into 3 or
7436   // more pieces using a smaller bit width.
7437   if (HalfMaxPlus1.urem(Divisor).isOne()) {
7438     assert(!LL == !LH && "Expected both input halves or no input halves!");
7439     if (!LL)
7440       std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
7441 
7442     // Shift the input by the number of TrailingZeros in the divisor. The
7443     // shifted out bits will be added to the remainder later.
7444     if (TrailingZeros) {
7445       // Save the shifted off bits if we need the remainder.
7446       if (Opcode != ISD::UDIV) {
7447         APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7448         PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7449                                  DAG.getConstant(Mask, dl, HiLoVT));
7450       }
7451 
7452       LL = DAG.getNode(
7453           ISD::OR, dl, HiLoVT,
7454           DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7455                       DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7456           DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7457                       DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7458                                                  HiLoVT, dl)));
7459       LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7460                        DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7461     }
7462 
7463     // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
7464     EVT SetCCType =
7465         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7466     if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
7467       SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7468       Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7469       Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
7470                         DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7471     } else {
7472       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7473       SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7474       // If the boolean for the target is 0 or 1, we can add the setcc result
7475       // directly.
7476       if (getBooleanContents(HiLoVT) ==
7477           TargetLoweringBase::ZeroOrOneBooleanContent)
7478         Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7479       else
7480         Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7481                               DAG.getConstant(0, dl, HiLoVT));
7482       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7483     }
7484   }
7485 
7486   // If we didn't find a sum, we can't do the expansion.
7487   if (!Sum)
7488     return false;
7489 
7490   // Perform a HiLoVT urem on the Sum using truncated divisor.
7491   SDValue RemL =
7492       DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7493                   DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7494   SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7495 
7496   if (Opcode != ISD::UREM) {
7497     // Subtract the remainder from the shifted dividend.
7498     SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7499     SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7500 
7501     Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7502 
7503     // Multiply by the multiplicative inverse of the divisor modulo
7504     // (1 << BitWidth).
7505     APInt Mod = APInt::getSignedMinValue(BitWidth + 1);
7506     APInt MulFactor = Divisor.zext(BitWidth + 1);
7507     MulFactor = MulFactor.multiplicativeInverse(Mod);
7508     MulFactor = MulFactor.trunc(BitWidth);
7509 
7510     SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7511                                    DAG.getConstant(MulFactor, dl, VT));
7512 
7513     // Split the quotient into low and high parts.
7514     SDValue QuotL, QuotH;
7515     std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7516     Result.push_back(QuotL);
7517     Result.push_back(QuotH);
7518   }
7519 
7520   if (Opcode != ISD::UDIV) {
7521     // If we shifted the input, shift the remainder left and add the bits we
7522     // shifted off the input.
7523     if (TrailingZeros) {
7524       APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7525       RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7526                          DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7527       RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7528     }
7529     Result.push_back(RemL);
7530     Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7531   }
7532 
7533   return true;
7534 }
7535 
7536 // Check that (every element of) Z is undef or not an exact multiple of BW.
7537 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7538   return ISD::matchUnaryPredicate(
7539       Z,
7540       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7541       true);
7542 }
7543 
7544 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7545   EVT VT = Node->getValueType(0);
7546   SDValue ShX, ShY;
7547   SDValue ShAmt, InvShAmt;
7548   SDValue X = Node->getOperand(0);
7549   SDValue Y = Node->getOperand(1);
7550   SDValue Z = Node->getOperand(2);
7551   SDValue Mask = Node->getOperand(3);
7552   SDValue VL = Node->getOperand(4);
7553 
7554   unsigned BW = VT.getScalarSizeInBits();
7555   bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7556   SDLoc DL(SDValue(Node, 0));
7557 
7558   EVT ShVT = Z.getValueType();
7559   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7560     // fshl: X << C | Y >> (BW - C)
7561     // fshr: X << (BW - C) | Y >> C
7562     // where C = Z % BW is not zero
7563     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7564     ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7565     InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7566     ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
7567                       VL);
7568     ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
7569                       VL);
7570   } else {
7571     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7572     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7573     SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
7574     if (isPowerOf2_32(BW)) {
7575       // Z % BW -> Z & (BW - 1)
7576       ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
7577       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7578       SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
7579                                  DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
7580       InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
7581     } else {
7582       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7583       ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7584       InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
7585     }
7586 
7587     SDValue One = DAG.getConstant(1, DL, ShVT);
7588     if (IsFSHL) {
7589       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
7590       SDValue ShY1 = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, One, Mask, VL);
7591       ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, ShY1, InvShAmt, Mask, VL);
7592     } else {
7593       SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
7594       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
7595       ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, ShAmt, Mask, VL);
7596     }
7597   }
7598   return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
7599 }
7600 
7601 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7602                                           SelectionDAG &DAG) const {
7603   if (Node->isVPOpcode())
7604     return expandVPFunnelShift(Node, DAG);
7605 
7606   EVT VT = Node->getValueType(0);
7607 
7608   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7609                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7610                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7611                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7612     return SDValue();
7613 
7614   SDValue X = Node->getOperand(0);
7615   SDValue Y = Node->getOperand(1);
7616   SDValue Z = Node->getOperand(2);
7617 
7618   unsigned BW = VT.getScalarSizeInBits();
7619   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7620   SDLoc DL(SDValue(Node, 0));
7621 
7622   EVT ShVT = Z.getValueType();
7623 
7624   // If a funnel shift in the other direction is more supported, use it.
7625   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7626   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7627       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7628     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7629       // fshl X, Y, Z -> fshr X, Y, -Z
7630       // fshr X, Y, Z -> fshl X, Y, -Z
7631       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7632       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7633     } else {
7634       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7635       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7636       SDValue One = DAG.getConstant(1, DL, ShVT);
7637       if (IsFSHL) {
7638         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7639         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7640       } else {
7641         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7642         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7643       }
7644       Z = DAG.getNOT(DL, Z, ShVT);
7645     }
7646     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7647   }
7648 
7649   SDValue ShX, ShY;
7650   SDValue ShAmt, InvShAmt;
7651   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7652     // fshl: X << C | Y >> (BW - C)
7653     // fshr: X << (BW - C) | Y >> C
7654     // where C = Z % BW is not zero
7655     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7656     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7657     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7658     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7659     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7660   } else {
7661     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7662     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7663     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7664     if (isPowerOf2_32(BW)) {
7665       // Z % BW -> Z & (BW - 1)
7666       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7667       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7668       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7669     } else {
7670       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7671       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7672       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7673     }
7674 
7675     SDValue One = DAG.getConstant(1, DL, ShVT);
7676     if (IsFSHL) {
7677       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7678       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7679       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7680     } else {
7681       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7682       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7683       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7684     }
7685   }
7686   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7687 }
7688 
7689 // TODO: Merge with expandFunnelShift.
7690 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7691                                   SelectionDAG &DAG) const {
7692   EVT VT = Node->getValueType(0);
7693   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7694   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7695   SDValue Op0 = Node->getOperand(0);
7696   SDValue Op1 = Node->getOperand(1);
7697   SDLoc DL(SDValue(Node, 0));
7698 
7699   EVT ShVT = Op1.getValueType();
7700   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7701 
7702   // If a rotate in the other direction is more supported, use it.
7703   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7704   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7705       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7706     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7707     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7708   }
7709 
7710   if (!AllowVectorOps && VT.isVector() &&
7711       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7712        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7713        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7714        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7715        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7716     return SDValue();
7717 
7718   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7719   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7720   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7721   SDValue ShVal;
7722   SDValue HsVal;
7723   if (isPowerOf2_32(EltSizeInBits)) {
7724     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7725     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7726     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7727     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7728     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7729     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7730     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7731   } else {
7732     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7733     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7734     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7735     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7736     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7737     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7738     SDValue One = DAG.getConstant(1, DL, ShVT);
7739     HsVal =
7740         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7741   }
7742   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7743 }
7744 
7745 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7746                                       SelectionDAG &DAG) const {
7747   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7748   EVT VT = Node->getValueType(0);
7749   unsigned VTBits = VT.getScalarSizeInBits();
7750   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7751 
7752   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7753   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7754   SDValue ShOpLo = Node->getOperand(0);
7755   SDValue ShOpHi = Node->getOperand(1);
7756   SDValue ShAmt = Node->getOperand(2);
7757   EVT ShAmtVT = ShAmt.getValueType();
7758   EVT ShAmtCCVT =
7759       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7760   SDLoc dl(Node);
7761 
7762   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7763   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7764   // away during isel.
7765   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7766                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7767   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7768                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7769                        : DAG.getConstant(0, dl, VT);
7770 
7771   SDValue Tmp2, Tmp3;
7772   if (IsSHL) {
7773     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7774     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7775   } else {
7776     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7777     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7778   }
7779 
7780   // If the shift amount is larger or equal than the width of a part we don't
7781   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7782   // values for large shift amounts.
7783   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7784                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7785   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7786                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7787 
7788   if (IsSHL) {
7789     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7790     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7791   } else {
7792     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7793     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7794   }
7795 }
7796 
7797 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7798                                       SelectionDAG &DAG) const {
7799   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7800   SDValue Src = Node->getOperand(OpNo);
7801   EVT SrcVT = Src.getValueType();
7802   EVT DstVT = Node->getValueType(0);
7803   SDLoc dl(SDValue(Node, 0));
7804 
7805   // FIXME: Only f32 to i64 conversions are supported.
7806   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7807     return false;
7808 
7809   if (Node->isStrictFPOpcode())
7810     // When a NaN is converted to an integer a trap is allowed. We can't
7811     // use this expansion here because it would eliminate that trap. Other
7812     // traps are also allowed and cannot be eliminated. See
7813     // IEEE 754-2008 sec 5.8.
7814     return false;
7815 
7816   // Expand f32 -> i64 conversion
7817   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7818   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7819   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7820   EVT IntVT = SrcVT.changeTypeToInteger();
7821   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7822 
7823   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7824   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7825   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7826   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7827   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7828   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7829 
7830   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7831 
7832   SDValue ExponentBits = DAG.getNode(
7833       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7834       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7835   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7836 
7837   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7838                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7839                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7840   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7841 
7842   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7843                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7844                           DAG.getConstant(0x00800000, dl, IntVT));
7845 
7846   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7847 
7848   R = DAG.getSelectCC(
7849       dl, Exponent, ExponentLoBit,
7850       DAG.getNode(ISD::SHL, dl, DstVT, R,
7851                   DAG.getZExtOrTrunc(
7852                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7853                       dl, IntShVT)),
7854       DAG.getNode(ISD::SRL, dl, DstVT, R,
7855                   DAG.getZExtOrTrunc(
7856                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7857                       dl, IntShVT)),
7858       ISD::SETGT);
7859 
7860   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7861                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7862 
7863   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7864                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7865   return true;
7866 }
7867 
7868 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7869                                       SDValue &Chain,
7870                                       SelectionDAG &DAG) const {
7871   SDLoc dl(SDValue(Node, 0));
7872   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7873   SDValue Src = Node->getOperand(OpNo);
7874 
7875   EVT SrcVT = Src.getValueType();
7876   EVT DstVT = Node->getValueType(0);
7877   EVT SetCCVT =
7878       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7879   EVT DstSetCCVT =
7880       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7881 
7882   // Only expand vector types if we have the appropriate vector bit operations.
7883   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7884                                                    ISD::FP_TO_SINT;
7885   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7886                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7887     return false;
7888 
7889   // If the maximum float value is smaller then the signed integer range,
7890   // the destination signmask can't be represented by the float, so we can
7891   // just use FP_TO_SINT directly.
7892   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7893   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7894   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7895   if (APFloat::opOverflow &
7896       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7897     if (Node->isStrictFPOpcode()) {
7898       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7899                            { Node->getOperand(0), Src });
7900       Chain = Result.getValue(1);
7901     } else
7902       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7903     return true;
7904   }
7905 
7906   // Don't expand it if there isn't cheap fsub instruction.
7907   if (!isOperationLegalOrCustom(
7908           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7909     return false;
7910 
7911   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7912   SDValue Sel;
7913 
7914   if (Node->isStrictFPOpcode()) {
7915     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7916                        Node->getOperand(0), /*IsSignaling*/ true);
7917     Chain = Sel.getValue(1);
7918   } else {
7919     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7920   }
7921 
7922   bool Strict = Node->isStrictFPOpcode() ||
7923                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7924 
7925   if (Strict) {
7926     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7927     // signmask then offset (the result of which should be fully representable).
7928     // Sel = Src < 0x8000000000000000
7929     // FltOfs = select Sel, 0, 0x8000000000000000
7930     // IntOfs = select Sel, 0, 0x8000000000000000
7931     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7932 
7933     // TODO: Should any fast-math-flags be set for the FSUB?
7934     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7935                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7936     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7937     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7938                                    DAG.getConstant(0, dl, DstVT),
7939                                    DAG.getConstant(SignMask, dl, DstVT));
7940     SDValue SInt;
7941     if (Node->isStrictFPOpcode()) {
7942       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7943                                 { Chain, Src, FltOfs });
7944       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7945                          { Val.getValue(1), Val });
7946       Chain = SInt.getValue(1);
7947     } else {
7948       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7949       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7950     }
7951     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7952   } else {
7953     // Expand based on maximum range of FP_TO_SINT:
7954     // True = fp_to_sint(Src)
7955     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7956     // Result = select (Src < 0x8000000000000000), True, False
7957 
7958     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7959     // TODO: Should any fast-math-flags be set for the FSUB?
7960     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7961                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7962     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7963                         DAG.getConstant(SignMask, dl, DstVT));
7964     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7965     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7966   }
7967   return true;
7968 }
7969 
7970 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7971                                       SDValue &Chain,
7972                                       SelectionDAG &DAG) const {
7973   // This transform is not correct for converting 0 when rounding mode is set
7974   // to round toward negative infinity which will produce -0.0. So disable under
7975   // strictfp.
7976   if (Node->isStrictFPOpcode())
7977     return false;
7978 
7979   SDValue Src = Node->getOperand(0);
7980   EVT SrcVT = Src.getValueType();
7981   EVT DstVT = Node->getValueType(0);
7982 
7983   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7984     return false;
7985 
7986   // Only expand vector types if we have the appropriate vector bit operations.
7987   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7988                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7989                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7990                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7991                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7992     return false;
7993 
7994   SDLoc dl(SDValue(Node, 0));
7995   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7996 
7997   // Implementation of unsigned i64 to f64 following the algorithm in
7998   // __floatundidf in compiler_rt.  This implementation performs rounding
7999   // correctly in all rounding modes with the exception of converting 0
8000   // when rounding toward negative infinity. In that case the fsub will produce
8001   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
8002   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8003   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8004       llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8005   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8006   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8007   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
8008 
8009   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8010   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8011   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8012   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8013   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8014   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8015   SDValue HiSub =
8016       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8017   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8018   return true;
8019 }
8020 
8021 SDValue
8022 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
8023                                                SelectionDAG &DAG) const {
8024   unsigned Opcode = Node->getOpcode();
8025   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8026           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8027          "Wrong opcode");
8028 
8029   if (Node->getFlags().hasNoNaNs()) {
8030     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8031     SDValue Op1 = Node->getOperand(0);
8032     SDValue Op2 = Node->getOperand(1);
8033     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
8034     // Copy FMF flags, but always set the no-signed-zeros flag
8035     // as this is implied by the FMINNUM/FMAXNUM semantics.
8036     SDNodeFlags Flags = Node->getFlags();
8037     Flags.setNoSignedZeros(true);
8038     SelCC->setFlags(Flags);
8039     return SelCC;
8040   }
8041 
8042   return SDValue();
8043 }
8044 
8045 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
8046                                               SelectionDAG &DAG) const {
8047   SDLoc dl(Node);
8048   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
8049     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8050   EVT VT = Node->getValueType(0);
8051 
8052   if (VT.isScalableVector())
8053     report_fatal_error(
8054         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8055 
8056   if (isOperationLegalOrCustom(NewOp, VT)) {
8057     SDValue Quiet0 = Node->getOperand(0);
8058     SDValue Quiet1 = Node->getOperand(1);
8059 
8060     if (!Node->getFlags().hasNoNaNs()) {
8061       // Insert canonicalizes if it's possible we need to quiet to get correct
8062       // sNaN behavior.
8063       if (!DAG.isKnownNeverSNaN(Quiet0)) {
8064         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8065                              Node->getFlags());
8066       }
8067       if (!DAG.isKnownNeverSNaN(Quiet1)) {
8068         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8069                              Node->getFlags());
8070       }
8071     }
8072 
8073     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8074   }
8075 
8076   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8077   // instead if there are no NaNs and there can't be an incompatible zero
8078   // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8079   if ((Node->getFlags().hasNoNaNs() ||
8080        (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8081         DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8082       (Node->getFlags().hasNoSignedZeros() ||
8083        DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8084        DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8085     unsigned IEEE2018Op =
8086         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8087     if (isOperationLegalOrCustom(IEEE2018Op, VT))
8088       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8089                          Node->getOperand(1), Node->getFlags());
8090   }
8091 
8092   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8093     return SelCC;
8094 
8095   return SDValue();
8096 }
8097 
8098 /// Returns a true value if if this FPClassTest can be performed with an ordered
8099 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8100 /// std::nullopt if it cannot be performed as a compare with 0.
8101 static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8102                                            const fltSemantics &Semantics,
8103                                            const MachineFunction &MF) {
8104   FPClassTest OrderedMask = Test & ~fcNan;
8105   FPClassTest NanTest = Test & fcNan;
8106   bool IsOrdered = NanTest == fcNone;
8107   bool IsUnordered = NanTest == fcNan;
8108 
8109   // Skip cases that are testing for only a qnan or snan.
8110   if (!IsOrdered && !IsUnordered)
8111     return std::nullopt;
8112 
8113   if (OrderedMask == fcZero &&
8114       MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8115     return IsOrdered;
8116   if (OrderedMask == (fcZero | fcSubnormal) &&
8117       MF.getDenormalMode(Semantics).inputsAreZero())
8118     return IsOrdered;
8119   return std::nullopt;
8120 }
8121 
8122 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8123                                          FPClassTest Test, SDNodeFlags Flags,
8124                                          const SDLoc &DL,
8125                                          SelectionDAG &DAG) const {
8126   EVT OperandVT = Op.getValueType();
8127   assert(OperandVT.isFloatingPoint());
8128 
8129   // Degenerated cases.
8130   if (Test == fcNone)
8131     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8132   if ((Test & fcAllFlags) == fcAllFlags)
8133     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8134 
8135   // PPC double double is a pair of doubles, of which the higher part determines
8136   // the value class.
8137   if (OperandVT == MVT::ppcf128) {
8138     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8139                      DAG.getConstant(1, DL, MVT::i32));
8140     OperandVT = MVT::f64;
8141   }
8142 
8143   // Some checks may be represented as inversion of simpler check, for example
8144   // "inf|normal|subnormal|zero" => !"nan".
8145   bool IsInverted = false;
8146   if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) {
8147     IsInverted = true;
8148     Test = InvertedCheck;
8149   }
8150 
8151   // Floating-point type properties.
8152   EVT ScalarFloatVT = OperandVT.getScalarType();
8153   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8154   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8155   bool IsF80 = (ScalarFloatVT == MVT::f80);
8156 
8157   // Some checks can be implemented using float comparisons, if floating point
8158   // exceptions are ignored.
8159   if (Flags.hasNoFPExcept() &&
8160       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8161     ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ;
8162     ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ;
8163 
8164     if (std::optional<bool> IsCmp0 =
8165             isFCmpEqualZero(Test, Semantics, DAG.getMachineFunction());
8166         IsCmp0 && (isCondCodeLegalOrCustom(
8167                       *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8168                       OperandVT.getScalarType().getSimpleVT()))) {
8169 
8170       // If denormals could be implicitly treated as 0, this is not equivalent
8171       // to a compare with 0 since it will also be true for denormals.
8172       return DAG.getSetCC(DL, ResultVT, Op,
8173                           DAG.getConstantFP(0.0, DL, OperandVT),
8174                           *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8175     }
8176 
8177     if (Test == fcNan &&
8178         isCondCodeLegalOrCustom(IsInverted ? ISD::SETO : ISD::SETUO,
8179                                 OperandVT.getScalarType().getSimpleVT())) {
8180       return DAG.getSetCC(DL, ResultVT, Op, Op,
8181                           IsInverted ? ISD::SETO : ISD::SETUO);
8182     }
8183 
8184     if (Test == fcInf &&
8185         isCondCodeLegalOrCustom(IsInverted ? ISD::SETUNE : ISD::SETOEQ,
8186                                 OperandVT.getScalarType().getSimpleVT()) &&
8187         isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType())) {
8188       // isinf(x) --> fabs(x) == inf
8189       SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8190       SDValue Inf =
8191           DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8192       return DAG.getSetCC(DL, ResultVT, Abs, Inf,
8193                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
8194     }
8195   }
8196 
8197   // In the general case use integer operations.
8198   unsigned BitSize = OperandVT.getScalarSizeInBits();
8199   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8200   if (OperandVT.isVector())
8201     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8202                              OperandVT.getVectorElementCount());
8203   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8204 
8205   // Various masks.
8206   APInt SignBit = APInt::getSignMask(BitSize);
8207   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
8208   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8209   const unsigned ExplicitIntBitInF80 = 63;
8210   APInt ExpMask = Inf;
8211   if (IsF80)
8212     ExpMask.clearBit(ExplicitIntBitInF80);
8213   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8214   APInt QNaNBitMask =
8215       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8216   APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
8217 
8218   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8219   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8220   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8221   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8222   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8223   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8224 
8225   SDValue Res;
8226   const auto appendResult = [&](SDValue PartialRes) {
8227     if (PartialRes) {
8228       if (Res)
8229         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8230       else
8231         Res = PartialRes;
8232     }
8233   };
8234 
8235   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8236   const auto getIntBitIsSet = [&]() -> SDValue {
8237     if (!IntBitIsSetV) {
8238       APInt IntBitMask(BitSize, 0);
8239       IntBitMask.setBit(ExplicitIntBitInF80);
8240       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8241       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8242       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8243     }
8244     return IntBitIsSetV;
8245   };
8246 
8247   // Split the value into sign bit and absolute value.
8248   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8249   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8250                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
8251 
8252   // Tests that involve more than one class should be processed first.
8253   SDValue PartialRes;
8254 
8255   if (IsF80)
8256     ; // Detect finite numbers of f80 by checking individual classes because
8257       // they have different settings of the explicit integer bit.
8258   else if ((Test & fcFinite) == fcFinite) {
8259     // finite(V) ==> abs(V) < exp_mask
8260     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8261     Test &= ~fcFinite;
8262   } else if ((Test & fcFinite) == fcPosFinite) {
8263     // finite(V) && V > 0 ==> V < exp_mask
8264     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8265     Test &= ~fcPosFinite;
8266   } else if ((Test & fcFinite) == fcNegFinite) {
8267     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8268     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8269     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8270     Test &= ~fcNegFinite;
8271   }
8272   appendResult(PartialRes);
8273 
8274   if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
8275     // fcZero | fcSubnormal => test all exponent bits are 0
8276     // TODO: Handle sign bit specific cases
8277     if (PartialCheck == (fcZero | fcSubnormal)) {
8278       SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
8279       SDValue ExpIsZero =
8280           DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8281       appendResult(ExpIsZero);
8282       Test &= ~PartialCheck & fcAllFlags;
8283     }
8284   }
8285 
8286   // Check for individual classes.
8287 
8288   if (unsigned PartialCheck = Test & fcZero) {
8289     if (PartialCheck == fcPosZero)
8290       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8291     else if (PartialCheck == fcZero)
8292       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8293     else // ISD::fcNegZero
8294       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8295     appendResult(PartialRes);
8296   }
8297 
8298   if (unsigned PartialCheck = Test & fcSubnormal) {
8299     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8300     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8301     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8302     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8303     SDValue VMinusOneV =
8304         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8305     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8306     if (PartialCheck == fcNegSubnormal)
8307       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8308     appendResult(PartialRes);
8309   }
8310 
8311   if (unsigned PartialCheck = Test & fcInf) {
8312     if (PartialCheck == fcPosInf)
8313       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
8314     else if (PartialCheck == fcInf)
8315       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
8316     else { // ISD::fcNegInf
8317       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
8318       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
8319       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
8320     }
8321     appendResult(PartialRes);
8322   }
8323 
8324   if (unsigned PartialCheck = Test & fcNan) {
8325     APInt InfWithQnanBit = Inf | QNaNBitMask;
8326     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
8327     if (PartialCheck == fcNan) {
8328       // isnan(V) ==> abs(V) > int(inf)
8329       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8330       if (IsF80) {
8331         // Recognize unsupported values as NaNs for compatibility with glibc.
8332         // In them (exp(V)==0) == int_bit.
8333         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
8334         SDValue ExpIsZero =
8335             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8336         SDValue IsPseudo =
8337             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
8338         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
8339       }
8340     } else if (PartialCheck == fcQNan) {
8341       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
8342       PartialRes =
8343           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
8344     } else { // ISD::fcSNan
8345       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
8346       //                    abs(V) < (unsigned(Inf) | quiet_bit)
8347       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8348       SDValue IsNotQnan =
8349           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
8350       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
8351     }
8352     appendResult(PartialRes);
8353   }
8354 
8355   if (unsigned PartialCheck = Test & fcNormal) {
8356     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
8357     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
8358     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
8359     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
8360     APInt ExpLimit = ExpMask - ExpLSB;
8361     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
8362     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
8363     if (PartialCheck == fcNegNormal)
8364       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8365     else if (PartialCheck == fcPosNormal) {
8366       SDValue PosSignV =
8367           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
8368       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
8369     }
8370     if (IsF80)
8371       PartialRes =
8372           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
8373     appendResult(PartialRes);
8374   }
8375 
8376   if (!Res)
8377     return DAG.getConstant(IsInverted, DL, ResultVT);
8378   if (IsInverted)
8379     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
8380   return Res;
8381 }
8382 
8383 // Only expand vector types if we have the appropriate vector bit operations.
8384 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
8385   assert(VT.isVector() && "Expected vector type");
8386   unsigned Len = VT.getScalarSizeInBits();
8387   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
8388          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
8389          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
8390          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
8391          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
8392 }
8393 
8394 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
8395   SDLoc dl(Node);
8396   EVT VT = Node->getValueType(0);
8397   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8398   SDValue Op = Node->getOperand(0);
8399   unsigned Len = VT.getScalarSizeInBits();
8400   assert(VT.isInteger() && "CTPOP not implemented for this type.");
8401 
8402   // TODO: Add support for irregular type lengths.
8403   if (!(Len <= 128 && Len % 8 == 0))
8404     return SDValue();
8405 
8406   // Only expand vector types if we have the appropriate vector bit operations.
8407   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
8408     return SDValue();
8409 
8410   // This is the "best" algorithm from
8411   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
8412   SDValue Mask55 =
8413       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
8414   SDValue Mask33 =
8415       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
8416   SDValue Mask0F =
8417       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
8418 
8419   // v = v - ((v >> 1) & 0x55555555...)
8420   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
8421                    DAG.getNode(ISD::AND, dl, VT,
8422                                DAG.getNode(ISD::SRL, dl, VT, Op,
8423                                            DAG.getConstant(1, dl, ShVT)),
8424                                Mask55));
8425   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
8426   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
8427                    DAG.getNode(ISD::AND, dl, VT,
8428                                DAG.getNode(ISD::SRL, dl, VT, Op,
8429                                            DAG.getConstant(2, dl, ShVT)),
8430                                Mask33));
8431   // v = (v + (v >> 4)) & 0x0F0F0F0F...
8432   Op = DAG.getNode(ISD::AND, dl, VT,
8433                    DAG.getNode(ISD::ADD, dl, VT, Op,
8434                                DAG.getNode(ISD::SRL, dl, VT, Op,
8435                                            DAG.getConstant(4, dl, ShVT))),
8436                    Mask0F);
8437 
8438   if (Len <= 8)
8439     return Op;
8440 
8441   // Avoid the multiply if we only have 2 bytes to add.
8442   // TODO: Only doing this for scalars because vectors weren't as obviously
8443   // improved.
8444   if (Len == 16 && !VT.isVector()) {
8445     // v = (v + (v >> 8)) & 0x00FF;
8446     return DAG.getNode(ISD::AND, dl, VT,
8447                      DAG.getNode(ISD::ADD, dl, VT, Op,
8448                                  DAG.getNode(ISD::SRL, dl, VT, Op,
8449                                              DAG.getConstant(8, dl, ShVT))),
8450                      DAG.getConstant(0xFF, dl, VT));
8451   }
8452 
8453   // v = (v * 0x01010101...) >> (Len - 8)
8454   SDValue Mask01 =
8455       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
8456   return DAG.getNode(ISD::SRL, dl, VT,
8457                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
8458                      DAG.getConstant(Len - 8, dl, ShVT));
8459 }
8460 
8461 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
8462   SDLoc dl(Node);
8463   EVT VT = Node->getValueType(0);
8464   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8465   SDValue Op = Node->getOperand(0);
8466   SDValue Mask = Node->getOperand(1);
8467   SDValue VL = Node->getOperand(2);
8468   unsigned Len = VT.getScalarSizeInBits();
8469   assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
8470 
8471   // TODO: Add support for irregular type lengths.
8472   if (!(Len <= 128 && Len % 8 == 0))
8473     return SDValue();
8474 
8475   // This is same algorithm of expandCTPOP from
8476   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
8477   SDValue Mask55 =
8478       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
8479   SDValue Mask33 =
8480       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
8481   SDValue Mask0F =
8482       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
8483 
8484   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
8485 
8486   // v = v - ((v >> 1) & 0x55555555...)
8487   Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
8488                      DAG.getNode(ISD::VP_LSHR, dl, VT, Op,
8489                                  DAG.getConstant(1, dl, ShVT), Mask, VL),
8490                      Mask55, Mask, VL);
8491   Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
8492 
8493   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
8494   Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
8495   Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
8496                      DAG.getNode(ISD::VP_LSHR, dl, VT, Op,
8497                                  DAG.getConstant(2, dl, ShVT), Mask, VL),
8498                      Mask33, Mask, VL);
8499   Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
8500 
8501   // v = (v + (v >> 4)) & 0x0F0F0F0F...
8502   Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
8503                      Mask, VL),
8504   Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
8505   Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
8506 
8507   if (Len <= 8)
8508     return Op;
8509 
8510   // v = (v * 0x01010101...) >> (Len - 8)
8511   SDValue Mask01 =
8512       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
8513   return DAG.getNode(ISD::VP_LSHR, dl, VT,
8514                      DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL),
8515                      DAG.getConstant(Len - 8, dl, ShVT), Mask, VL);
8516 }
8517 
8518 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
8519   SDLoc dl(Node);
8520   EVT VT = Node->getValueType(0);
8521   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8522   SDValue Op = Node->getOperand(0);
8523   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
8524 
8525   // If the non-ZERO_UNDEF version is supported we can use that instead.
8526   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
8527       isOperationLegalOrCustom(ISD::CTLZ, VT))
8528     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
8529 
8530   // If the ZERO_UNDEF version is supported use that and handle the zero case.
8531   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
8532     EVT SetCCVT =
8533         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8534     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
8535     SDValue Zero = DAG.getConstant(0, dl, VT);
8536     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
8537     return DAG.getSelect(dl, VT, SrcIsZero,
8538                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
8539   }
8540 
8541   // Only expand vector types if we have the appropriate vector bit operations.
8542   // This includes the operations needed to expand CTPOP if it isn't supported.
8543   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
8544                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
8545                          !canExpandVectorCTPOP(*this, VT)) ||
8546                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
8547                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
8548     return SDValue();
8549 
8550   // for now, we do this:
8551   // x = x | (x >> 1);
8552   // x = x | (x >> 2);
8553   // ...
8554   // x = x | (x >>16);
8555   // x = x | (x >>32); // for 64-bit input
8556   // return popcount(~x);
8557   //
8558   // Ref: "Hacker's Delight" by Henry Warren
8559   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
8560     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
8561     Op = DAG.getNode(ISD::OR, dl, VT, Op,
8562                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
8563   }
8564   Op = DAG.getNOT(dl, Op, VT);
8565   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
8566 }
8567 
8568 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
8569   SDLoc dl(Node);
8570   EVT VT = Node->getValueType(0);
8571   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8572   SDValue Op = Node->getOperand(0);
8573   SDValue Mask = Node->getOperand(1);
8574   SDValue VL = Node->getOperand(2);
8575   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
8576 
8577   // do this:
8578   // x = x | (x >> 1);
8579   // x = x | (x >> 2);
8580   // ...
8581   // x = x | (x >>16);
8582   // x = x | (x >>32); // for 64-bit input
8583   // return popcount(~x);
8584   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
8585     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
8586     Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
8587                      DAG.getNode(ISD::VP_LSHR, dl, VT, Op, Tmp, Mask, VL), Mask,
8588                      VL);
8589   }
8590   Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask,
8591                    VL);
8592   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
8593 }
8594 
8595 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
8596                                         const SDLoc &DL, EVT VT, SDValue Op,
8597                                         unsigned BitWidth) const {
8598   if (BitWidth != 32 && BitWidth != 64)
8599     return SDValue();
8600   APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
8601                                   : APInt(64, 0x0218A392CD3D5DBFULL);
8602   const DataLayout &TD = DAG.getDataLayout();
8603   MachinePointerInfo PtrInfo =
8604       MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
8605   unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
8606   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
8607   SDValue Lookup = DAG.getNode(
8608       ISD::SRL, DL, VT,
8609       DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
8610                   DAG.getConstant(DeBruijn, DL, VT)),
8611       DAG.getConstant(ShiftAmt, DL, VT));
8612   Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
8613 
8614   SmallVector<uint8_t> Table(BitWidth, 0);
8615   for (unsigned i = 0; i < BitWidth; i++) {
8616     APInt Shl = DeBruijn.shl(i);
8617     APInt Lshr = Shl.lshr(ShiftAmt);
8618     Table[Lshr.getZExtValue()] = i;
8619   }
8620 
8621   // Create a ConstantArray in Constant Pool
8622   auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
8623   SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
8624                                       TD.getPrefTypeAlign(CA->getType()));
8625   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
8626                                    DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
8627                                    PtrInfo, MVT::i8);
8628   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
8629     return ExtLoad;
8630 
8631   EVT SetCCVT =
8632       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8633   SDValue Zero = DAG.getConstant(0, DL, VT);
8634   SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
8635   return DAG.getSelect(DL, VT, SrcIsZero,
8636                        DAG.getConstant(BitWidth, DL, VT), ExtLoad);
8637 }
8638 
8639 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
8640   SDLoc dl(Node);
8641   EVT VT = Node->getValueType(0);
8642   SDValue Op = Node->getOperand(0);
8643   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
8644 
8645   // If the non-ZERO_UNDEF version is supported we can use that instead.
8646   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
8647       isOperationLegalOrCustom(ISD::CTTZ, VT))
8648     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
8649 
8650   // If the ZERO_UNDEF version is supported use that and handle the zero case.
8651   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
8652     EVT SetCCVT =
8653         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8654     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
8655     SDValue Zero = DAG.getConstant(0, dl, VT);
8656     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
8657     return DAG.getSelect(dl, VT, SrcIsZero,
8658                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
8659   }
8660 
8661   // Only expand vector types if we have the appropriate vector bit operations.
8662   // This includes the operations needed to expand CTPOP if it isn't supported.
8663   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
8664                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
8665                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
8666                          !canExpandVectorCTPOP(*this, VT)) ||
8667                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
8668                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
8669                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8670     return SDValue();
8671 
8672   // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
8673   if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
8674       !isOperationLegal(ISD::CTLZ, VT))
8675     if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
8676       return V;
8677 
8678   // for now, we use: { return popcount(~x & (x - 1)); }
8679   // unless the target has ctlz but not ctpop, in which case we use:
8680   // { return 32 - nlz(~x & (x-1)); }
8681   // Ref: "Hacker's Delight" by Henry Warren
8682   SDValue Tmp = DAG.getNode(
8683       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
8684       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
8685 
8686   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
8687   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
8688     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
8689                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
8690   }
8691 
8692   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
8693 }
8694 
8695 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
8696   SDValue Op = Node->getOperand(0);
8697   SDValue Mask = Node->getOperand(1);
8698   SDValue VL = Node->getOperand(2);
8699   SDLoc dl(Node);
8700   EVT VT = Node->getValueType(0);
8701 
8702   // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
8703   SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
8704                             DAG.getConstant(-1, dl, VT), Mask, VL);
8705   SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
8706                                  DAG.getConstant(1, dl, VT), Mask, VL);
8707   SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
8708   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
8709 }
8710 
8711 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
8712                                   bool IsNegative) const {
8713   SDLoc dl(N);
8714   EVT VT = N->getValueType(0);
8715   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8716   SDValue Op = N->getOperand(0);
8717 
8718   // abs(x) -> smax(x,sub(0,x))
8719   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8720       isOperationLegal(ISD::SMAX, VT)) {
8721     SDValue Zero = DAG.getConstant(0, dl, VT);
8722     return DAG.getNode(ISD::SMAX, dl, VT, Op,
8723                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8724   }
8725 
8726   // abs(x) -> umin(x,sub(0,x))
8727   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8728       isOperationLegal(ISD::UMIN, VT)) {
8729     SDValue Zero = DAG.getConstant(0, dl, VT);
8730     Op = DAG.getFreeze(Op);
8731     return DAG.getNode(ISD::UMIN, dl, VT, Op,
8732                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8733   }
8734 
8735   // 0 - abs(x) -> smin(x, sub(0,x))
8736   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
8737       isOperationLegal(ISD::SMIN, VT)) {
8738     Op = DAG.getFreeze(Op);
8739     SDValue Zero = DAG.getConstant(0, dl, VT);
8740     return DAG.getNode(ISD::SMIN, dl, VT, Op,
8741                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8742   }
8743 
8744   // Only expand vector types if we have the appropriate vector operations.
8745   if (VT.isVector() &&
8746       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
8747        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
8748        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
8749        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8750     return SDValue();
8751 
8752   Op = DAG.getFreeze(Op);
8753   SDValue Shift =
8754       DAG.getNode(ISD::SRA, dl, VT, Op,
8755                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
8756   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
8757 
8758   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
8759   if (!IsNegative)
8760     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
8761 
8762   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
8763   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
8764 }
8765 
8766 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
8767   SDLoc dl(N);
8768   EVT VT = N->getValueType(0);
8769   SDValue LHS = DAG.getFreeze(N->getOperand(0));
8770   SDValue RHS = DAG.getFreeze(N->getOperand(1));
8771   bool IsSigned = N->getOpcode() == ISD::ABDS;
8772 
8773   // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
8774   // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
8775   unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
8776   unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
8777   if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
8778     SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
8779     SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
8780     return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
8781   }
8782 
8783   // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
8784   if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
8785     return DAG.getNode(ISD::OR, dl, VT,
8786                        DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
8787                        DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
8788 
8789   // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
8790   // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
8791   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8792   ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
8793   SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
8794   return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
8795                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
8796 }
8797 
8798 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
8799   SDLoc dl(N);
8800   EVT VT = N->getValueType(0);
8801   SDValue Op = N->getOperand(0);
8802 
8803   if (!VT.isSimple())
8804     return SDValue();
8805 
8806   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8807   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8808   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8809   default:
8810     return SDValue();
8811   case MVT::i16:
8812     // Use a rotate by 8. This can be further expanded if necessary.
8813     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8814   case MVT::i32:
8815     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8816     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
8817                        DAG.getConstant(0xFF00, dl, VT));
8818     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
8819     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8820     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8821     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8822     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8823     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8824     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8825   case MVT::i64:
8826     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8827     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
8828                        DAG.getConstant(255ULL<<8, dl, VT));
8829     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
8830     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
8831                        DAG.getConstant(255ULL<<16, dl, VT));
8832     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
8833     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
8834                        DAG.getConstant(255ULL<<24, dl, VT));
8835     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
8836     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8837     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8838                        DAG.getConstant(255ULL<<24, dl, VT));
8839     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8840     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8841                        DAG.getConstant(255ULL<<16, dl, VT));
8842     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8843     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8844                        DAG.getConstant(255ULL<<8, dl, VT));
8845     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8846     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8847     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8848     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8849     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8850     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8851     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8852     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8853   }
8854 }
8855 
8856 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
8857   SDLoc dl(N);
8858   EVT VT = N->getValueType(0);
8859   SDValue Op = N->getOperand(0);
8860   SDValue Mask = N->getOperand(1);
8861   SDValue EVL = N->getOperand(2);
8862 
8863   if (!VT.isSimple())
8864     return SDValue();
8865 
8866   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8867   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8868   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8869   default:
8870     return SDValue();
8871   case MVT::i16:
8872     Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
8873                        Mask, EVL);
8874     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
8875                        Mask, EVL);
8876     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
8877   case MVT::i32:
8878     Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
8879                        Mask, EVL);
8880     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
8881                        Mask, EVL);
8882     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
8883                        Mask, EVL);
8884     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
8885                        Mask, EVL);
8886     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
8887                        DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
8888     Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
8889                        Mask, EVL);
8890     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
8891     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
8892     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
8893   case MVT::i64:
8894     Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
8895                        Mask, EVL);
8896     Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
8897                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
8898     Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
8899                        Mask, EVL);
8900     Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
8901                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
8902     Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
8903                        Mask, EVL);
8904     Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
8905                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
8906     Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
8907                        Mask, EVL);
8908     Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
8909                        Mask, EVL);
8910     Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
8911                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
8912     Tmp3 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
8913                        Mask, EVL);
8914     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
8915                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
8916     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
8917                        Mask, EVL);
8918     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
8919                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
8920     Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
8921                        Mask, EVL);
8922     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
8923     Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
8924     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
8925     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
8926     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
8927     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
8928     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
8929   }
8930 }
8931 
8932 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8933   SDLoc dl(N);
8934   EVT VT = N->getValueType(0);
8935   SDValue Op = N->getOperand(0);
8936   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8937   unsigned Sz = VT.getScalarSizeInBits();
8938 
8939   SDValue Tmp, Tmp2, Tmp3;
8940 
8941   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8942   // and finally the i1 pairs.
8943   // TODO: We can easily support i4/i2 legal types if any target ever does.
8944   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8945     // Create the masks - repeating the pattern every byte.
8946     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8947     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8948     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8949 
8950     // BSWAP if the type is wider than a single byte.
8951     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8952 
8953     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8954     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8955     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8956     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8957     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8958     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8959 
8960     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8961     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8962     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8963     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8964     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8965     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8966 
8967     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8968     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8969     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8970     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8971     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8972     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8973     return Tmp;
8974   }
8975 
8976   Tmp = DAG.getConstant(0, dl, VT);
8977   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8978     if (I < J)
8979       Tmp2 =
8980           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8981     else
8982       Tmp2 =
8983           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8984 
8985     APInt Shift = APInt::getOneBitSet(Sz, J);
8986     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8987     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8988   }
8989 
8990   return Tmp;
8991 }
8992 
8993 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8994   assert(N->getOpcode() == ISD::VP_BITREVERSE);
8995 
8996   SDLoc dl(N);
8997   EVT VT = N->getValueType(0);
8998   SDValue Op = N->getOperand(0);
8999   SDValue Mask = N->getOperand(1);
9000   SDValue EVL = N->getOperand(2);
9001   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9002   unsigned Sz = VT.getScalarSizeInBits();
9003 
9004   SDValue Tmp, Tmp2, Tmp3;
9005 
9006   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9007   // and finally the i1 pairs.
9008   // TODO: We can easily support i4/i2 legal types if any target ever does.
9009   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9010     // Create the masks - repeating the pattern every byte.
9011     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9012     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9013     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9014 
9015     // BSWAP if the type is wider than a single byte.
9016     Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
9017 
9018     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9019     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
9020                        Mask, EVL);
9021     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9022                        DAG.getConstant(Mask4, dl, VT), Mask, EVL);
9023     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
9024                        Mask, EVL);
9025     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
9026                        Mask, EVL);
9027     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9028 
9029     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9030     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
9031                        Mask, EVL);
9032     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9033                        DAG.getConstant(Mask2, dl, VT), Mask, EVL);
9034     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
9035                        Mask, EVL);
9036     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
9037                        Mask, EVL);
9038     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9039 
9040     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9041     Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
9042                        Mask, EVL);
9043     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9044                        DAG.getConstant(Mask1, dl, VT), Mask, EVL);
9045     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
9046                        Mask, EVL);
9047     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
9048                        Mask, EVL);
9049     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9050     return Tmp;
9051   }
9052   return SDValue();
9053 }
9054 
9055 std::pair<SDValue, SDValue>
9056 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
9057                                     SelectionDAG &DAG) const {
9058   SDLoc SL(LD);
9059   SDValue Chain = LD->getChain();
9060   SDValue BasePTR = LD->getBasePtr();
9061   EVT SrcVT = LD->getMemoryVT();
9062   EVT DstVT = LD->getValueType(0);
9063   ISD::LoadExtType ExtType = LD->getExtensionType();
9064 
9065   if (SrcVT.isScalableVector())
9066     report_fatal_error("Cannot scalarize scalable vector loads");
9067 
9068   unsigned NumElem = SrcVT.getVectorNumElements();
9069 
9070   EVT SrcEltVT = SrcVT.getScalarType();
9071   EVT DstEltVT = DstVT.getScalarType();
9072 
9073   // A vector must always be stored in memory as-is, i.e. without any padding
9074   // between the elements, since various code depend on it, e.g. in the
9075   // handling of a bitcast of a vector type to int, which may be done with a
9076   // vector store followed by an integer load. A vector that does not have
9077   // elements that are byte-sized must therefore be stored as an integer
9078   // built out of the extracted vector elements.
9079   if (!SrcEltVT.isByteSized()) {
9080     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
9081     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
9082 
9083     unsigned NumSrcBits = SrcVT.getSizeInBits();
9084     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
9085 
9086     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
9087     SDValue SrcEltBitMask = DAG.getConstant(
9088         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
9089 
9090     // Load the whole vector and avoid masking off the top bits as it makes
9091     // the codegen worse.
9092     SDValue Load =
9093         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
9094                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9095                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9096 
9097     SmallVector<SDValue, 8> Vals;
9098     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9099       unsigned ShiftIntoIdx =
9100           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9101       SDValue ShiftAmount =
9102           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
9103                                      LoadVT, SL, /*LegalTypes=*/false);
9104       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
9105       SDValue Elt =
9106           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
9107       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
9108 
9109       if (ExtType != ISD::NON_EXTLOAD) {
9110         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
9111         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
9112       }
9113 
9114       Vals.push_back(Scalar);
9115     }
9116 
9117     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9118     return std::make_pair(Value, Load.getValue(1));
9119   }
9120 
9121   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
9122   assert(SrcEltVT.isByteSized());
9123 
9124   SmallVector<SDValue, 8> Vals;
9125   SmallVector<SDValue, 8> LoadChains;
9126 
9127   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9128     SDValue ScalarLoad =
9129         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9130                        LD->getPointerInfo().getWithOffset(Idx * Stride),
9131                        SrcEltVT, LD->getOriginalAlign(),
9132                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9133 
9134     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
9135 
9136     Vals.push_back(ScalarLoad.getValue(0));
9137     LoadChains.push_back(ScalarLoad.getValue(1));
9138   }
9139 
9140   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
9141   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9142 
9143   return std::make_pair(Value, NewChain);
9144 }
9145 
9146 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
9147                                              SelectionDAG &DAG) const {
9148   SDLoc SL(ST);
9149 
9150   SDValue Chain = ST->getChain();
9151   SDValue BasePtr = ST->getBasePtr();
9152   SDValue Value = ST->getValue();
9153   EVT StVT = ST->getMemoryVT();
9154 
9155   if (StVT.isScalableVector())
9156     report_fatal_error("Cannot scalarize scalable vector stores");
9157 
9158   // The type of the data we want to save
9159   EVT RegVT = Value.getValueType();
9160   EVT RegSclVT = RegVT.getScalarType();
9161 
9162   // The type of data as saved in memory.
9163   EVT MemSclVT = StVT.getScalarType();
9164 
9165   unsigned NumElem = StVT.getVectorNumElements();
9166 
9167   // A vector must always be stored in memory as-is, i.e. without any padding
9168   // between the elements, since various code depend on it, e.g. in the
9169   // handling of a bitcast of a vector type to int, which may be done with a
9170   // vector store followed by an integer load. A vector that does not have
9171   // elements that are byte-sized must therefore be stored as an integer
9172   // built out of the extracted vector elements.
9173   if (!MemSclVT.isByteSized()) {
9174     unsigned NumBits = StVT.getSizeInBits();
9175     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
9176 
9177     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
9178 
9179     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9180       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
9181                                 DAG.getVectorIdxConstant(Idx, SL));
9182       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
9183       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
9184       unsigned ShiftIntoIdx =
9185           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9186       SDValue ShiftAmount =
9187           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
9188       SDValue ShiftedElt =
9189           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
9190       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
9191     }
9192 
9193     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
9194                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
9195                         ST->getAAInfo());
9196   }
9197 
9198   // Store Stride in bytes
9199   unsigned Stride = MemSclVT.getSizeInBits() / 8;
9200   assert(Stride && "Zero stride!");
9201   // Extract each of the elements from the original vector and save them into
9202   // memory individually.
9203   SmallVector<SDValue, 8> Stores;
9204   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9205     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
9206                               DAG.getVectorIdxConstant(Idx, SL));
9207 
9208     SDValue Ptr =
9209         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
9210 
9211     // This scalar TruncStore may be illegal, but we legalize it later.
9212     SDValue Store = DAG.getTruncStore(
9213         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
9214         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
9215         ST->getAAInfo());
9216 
9217     Stores.push_back(Store);
9218   }
9219 
9220   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
9221 }
9222 
9223 std::pair<SDValue, SDValue>
9224 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
9225   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
9226          "unaligned indexed loads not implemented!");
9227   SDValue Chain = LD->getChain();
9228   SDValue Ptr = LD->getBasePtr();
9229   EVT VT = LD->getValueType(0);
9230   EVT LoadedVT = LD->getMemoryVT();
9231   SDLoc dl(LD);
9232   auto &MF = DAG.getMachineFunction();
9233 
9234   if (VT.isFloatingPoint() || VT.isVector()) {
9235     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
9236     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
9237       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
9238           LoadedVT.isVector()) {
9239         // Scalarize the load and let the individual components be handled.
9240         return scalarizeVectorLoad(LD, DAG);
9241       }
9242 
9243       // Expand to a (misaligned) integer load of the same size,
9244       // then bitconvert to floating point or vector.
9245       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
9246                                     LD->getMemOperand());
9247       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
9248       if (LoadedVT != VT)
9249         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
9250                              ISD::ANY_EXTEND, dl, VT, Result);
9251 
9252       return std::make_pair(Result, newLoad.getValue(1));
9253     }
9254 
9255     // Copy the value to a (aligned) stack slot using (unaligned) integer
9256     // loads and stores, then do a (aligned) load from the stack slot.
9257     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
9258     unsigned LoadedBytes = LoadedVT.getStoreSize();
9259     unsigned RegBytes = RegVT.getSizeInBits() / 8;
9260     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
9261 
9262     // Make sure the stack slot is also aligned for the register type.
9263     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
9264     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
9265     SmallVector<SDValue, 8> Stores;
9266     SDValue StackPtr = StackBase;
9267     unsigned Offset = 0;
9268 
9269     EVT PtrVT = Ptr.getValueType();
9270     EVT StackPtrVT = StackPtr.getValueType();
9271 
9272     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
9273     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
9274 
9275     // Do all but one copies using the full register width.
9276     for (unsigned i = 1; i < NumRegs; i++) {
9277       // Load one integer register's worth from the original location.
9278       SDValue Load = DAG.getLoad(
9279           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
9280           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
9281           LD->getAAInfo());
9282       // Follow the load with a store to the stack slot.  Remember the store.
9283       Stores.push_back(DAG.getStore(
9284           Load.getValue(1), dl, Load, StackPtr,
9285           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
9286       // Increment the pointers.
9287       Offset += RegBytes;
9288 
9289       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
9290       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
9291     }
9292 
9293     // The last copy may be partial.  Do an extending load.
9294     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
9295                                   8 * (LoadedBytes - Offset));
9296     SDValue Load =
9297         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
9298                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
9299                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
9300                        LD->getAAInfo());
9301     // Follow the load with a store to the stack slot.  Remember the store.
9302     // On big-endian machines this requires a truncating store to ensure
9303     // that the bits end up in the right place.
9304     Stores.push_back(DAG.getTruncStore(
9305         Load.getValue(1), dl, Load, StackPtr,
9306         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
9307 
9308     // The order of the stores doesn't matter - say it with a TokenFactor.
9309     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9310 
9311     // Finally, perform the original load only redirected to the stack slot.
9312     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
9313                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
9314                           LoadedVT);
9315 
9316     // Callers expect a MERGE_VALUES node.
9317     return std::make_pair(Load, TF);
9318   }
9319 
9320   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
9321          "Unaligned load of unsupported type.");
9322 
9323   // Compute the new VT that is half the size of the old one.  This is an
9324   // integer MVT.
9325   unsigned NumBits = LoadedVT.getSizeInBits();
9326   EVT NewLoadedVT;
9327   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
9328   NumBits >>= 1;
9329 
9330   Align Alignment = LD->getOriginalAlign();
9331   unsigned IncrementSize = NumBits / 8;
9332   ISD::LoadExtType HiExtType = LD->getExtensionType();
9333 
9334   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
9335   if (HiExtType == ISD::NON_EXTLOAD)
9336     HiExtType = ISD::ZEXTLOAD;
9337 
9338   // Load the value in two parts
9339   SDValue Lo, Hi;
9340   if (DAG.getDataLayout().isLittleEndian()) {
9341     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
9342                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9343                         LD->getAAInfo());
9344 
9345     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
9346     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
9347                         LD->getPointerInfo().getWithOffset(IncrementSize),
9348                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9349                         LD->getAAInfo());
9350   } else {
9351     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
9352                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9353                         LD->getAAInfo());
9354 
9355     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
9356     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
9357                         LD->getPointerInfo().getWithOffset(IncrementSize),
9358                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9359                         LD->getAAInfo());
9360   }
9361 
9362   // aggregate the two parts
9363   SDValue ShiftAmount =
9364       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
9365                                                     DAG.getDataLayout()));
9366   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
9367   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
9368 
9369   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
9370                              Hi.getValue(1));
9371 
9372   return std::make_pair(Result, TF);
9373 }
9374 
9375 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
9376                                              SelectionDAG &DAG) const {
9377   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
9378          "unaligned indexed stores not implemented!");
9379   SDValue Chain = ST->getChain();
9380   SDValue Ptr = ST->getBasePtr();
9381   SDValue Val = ST->getValue();
9382   EVT VT = Val.getValueType();
9383   Align Alignment = ST->getOriginalAlign();
9384   auto &MF = DAG.getMachineFunction();
9385   EVT StoreMemVT = ST->getMemoryVT();
9386 
9387   SDLoc dl(ST);
9388   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
9389     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
9390     if (isTypeLegal(intVT)) {
9391       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
9392           StoreMemVT.isVector()) {
9393         // Scalarize the store and let the individual components be handled.
9394         SDValue Result = scalarizeVectorStore(ST, DAG);
9395         return Result;
9396       }
9397       // Expand to a bitconvert of the value to the integer type of the
9398       // same size, then a (misaligned) int store.
9399       // FIXME: Does not handle truncating floating point stores!
9400       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
9401       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
9402                             Alignment, ST->getMemOperand()->getFlags());
9403       return Result;
9404     }
9405     // Do a (aligned) store to a stack slot, then copy from the stack slot
9406     // to the final destination using (unaligned) integer loads and stores.
9407     MVT RegVT = getRegisterType(
9408         *DAG.getContext(),
9409         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
9410     EVT PtrVT = Ptr.getValueType();
9411     unsigned StoredBytes = StoreMemVT.getStoreSize();
9412     unsigned RegBytes = RegVT.getSizeInBits() / 8;
9413     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
9414 
9415     // Make sure the stack slot is also aligned for the register type.
9416     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
9417     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9418 
9419     // Perform the original store, only redirected to the stack slot.
9420     SDValue Store = DAG.getTruncStore(
9421         Chain, dl, Val, StackPtr,
9422         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
9423 
9424     EVT StackPtrVT = StackPtr.getValueType();
9425 
9426     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
9427     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
9428     SmallVector<SDValue, 8> Stores;
9429     unsigned Offset = 0;
9430 
9431     // Do all but one copies using the full register width.
9432     for (unsigned i = 1; i < NumRegs; i++) {
9433       // Load one integer register's worth from the stack slot.
9434       SDValue Load = DAG.getLoad(
9435           RegVT, dl, Store, StackPtr,
9436           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
9437       // Store it to the final location.  Remember the store.
9438       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
9439                                     ST->getPointerInfo().getWithOffset(Offset),
9440                                     ST->getOriginalAlign(),
9441                                     ST->getMemOperand()->getFlags()));
9442       // Increment the pointers.
9443       Offset += RegBytes;
9444       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
9445       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
9446     }
9447 
9448     // The last store may be partial.  Do a truncating store.  On big-endian
9449     // machines this requires an extending load from the stack slot to ensure
9450     // that the bits are in the right place.
9451     EVT LoadMemVT =
9452         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
9453 
9454     // Load from the stack slot.
9455     SDValue Load = DAG.getExtLoad(
9456         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
9457         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
9458 
9459     Stores.push_back(
9460         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
9461                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
9462                           ST->getOriginalAlign(),
9463                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
9464     // The order of the stores doesn't matter - say it with a TokenFactor.
9465     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9466     return Result;
9467   }
9468 
9469   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
9470          "Unaligned store of unknown type.");
9471   // Get the half-size VT
9472   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
9473   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
9474   unsigned IncrementSize = NumBits / 8;
9475 
9476   // Divide the stored value in two parts.
9477   SDValue ShiftAmount = DAG.getConstant(
9478       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
9479   SDValue Lo = Val;
9480   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
9481 
9482   // Store the two parts
9483   SDValue Store1, Store2;
9484   Store1 = DAG.getTruncStore(Chain, dl,
9485                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
9486                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
9487                              ST->getMemOperand()->getFlags());
9488 
9489   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
9490   Store2 = DAG.getTruncStore(
9491       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
9492       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
9493       ST->getMemOperand()->getFlags(), ST->getAAInfo());
9494 
9495   SDValue Result =
9496       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
9497   return Result;
9498 }
9499 
9500 SDValue
9501 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
9502                                        const SDLoc &DL, EVT DataVT,
9503                                        SelectionDAG &DAG,
9504                                        bool IsCompressedMemory) const {
9505   SDValue Increment;
9506   EVT AddrVT = Addr.getValueType();
9507   EVT MaskVT = Mask.getValueType();
9508   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
9509          "Incompatible types of Data and Mask");
9510   if (IsCompressedMemory) {
9511     if (DataVT.isScalableVector())
9512       report_fatal_error(
9513           "Cannot currently handle compressed memory with scalable vectors");
9514     // Incrementing the pointer according to number of '1's in the mask.
9515     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
9516     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
9517     if (MaskIntVT.getSizeInBits() < 32) {
9518       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
9519       MaskIntVT = MVT::i32;
9520     }
9521 
9522     // Count '1's with POPCNT.
9523     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
9524     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
9525     // Scale is an element size in bytes.
9526     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
9527                                     AddrVT);
9528     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
9529   } else if (DataVT.isScalableVector()) {
9530     Increment = DAG.getVScale(DL, AddrVT,
9531                               APInt(AddrVT.getFixedSizeInBits(),
9532                                     DataVT.getStoreSize().getKnownMinValue()));
9533   } else
9534     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
9535 
9536   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
9537 }
9538 
9539 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
9540                                        EVT VecVT, const SDLoc &dl,
9541                                        ElementCount SubEC) {
9542   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
9543          "Cannot index a scalable vector within a fixed-width vector");
9544 
9545   unsigned NElts = VecVT.getVectorMinNumElements();
9546   unsigned NumSubElts = SubEC.getKnownMinValue();
9547   EVT IdxVT = Idx.getValueType();
9548 
9549   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
9550     // If this is a constant index and we know the value plus the number of the
9551     // elements in the subvector minus one is less than the minimum number of
9552     // elements then it's safe to return Idx.
9553     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
9554       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
9555         return Idx;
9556     SDValue VS =
9557         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
9558     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
9559     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
9560                               DAG.getConstant(NumSubElts, dl, IdxVT));
9561     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
9562   }
9563   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
9564     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
9565     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
9566                        DAG.getConstant(Imm, dl, IdxVT));
9567   }
9568   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
9569   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
9570                      DAG.getConstant(MaxIndex, dl, IdxVT));
9571 }
9572 
9573 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
9574                                                 SDValue VecPtr, EVT VecVT,
9575                                                 SDValue Index) const {
9576   return getVectorSubVecPointer(
9577       DAG, VecPtr, VecVT,
9578       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
9579       Index);
9580 }
9581 
9582 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
9583                                                SDValue VecPtr, EVT VecVT,
9584                                                EVT SubVecVT,
9585                                                SDValue Index) const {
9586   SDLoc dl(Index);
9587   // Make sure the index type is big enough to compute in.
9588   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
9589 
9590   EVT EltVT = VecVT.getVectorElementType();
9591 
9592   // Calculate the element offset and add it to the pointer.
9593   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
9594   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
9595          "Converting bits to bytes lost precision");
9596   assert(SubVecVT.getVectorElementType() == EltVT &&
9597          "Sub-vector must be a vector with matching element type");
9598   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
9599                                   SubVecVT.getVectorElementCount());
9600 
9601   EVT IdxVT = Index.getValueType();
9602   if (SubVecVT.isScalableVector())
9603     Index =
9604         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
9605                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
9606 
9607   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
9608                       DAG.getConstant(EltSize, dl, IdxVT));
9609   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
9610 }
9611 
9612 //===----------------------------------------------------------------------===//
9613 // Implementation of Emulated TLS Model
9614 //===----------------------------------------------------------------------===//
9615 
9616 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
9617                                                 SelectionDAG &DAG) const {
9618   // Access to address of TLS varialbe xyz is lowered to a function call:
9619   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
9620   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9621   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
9622   SDLoc dl(GA);
9623 
9624   ArgListTy Args;
9625   ArgListEntry Entry;
9626   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
9627   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
9628   StringRef EmuTlsVarName(NameString);
9629   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
9630   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
9631   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
9632   Entry.Ty = VoidPtrType;
9633   Args.push_back(Entry);
9634 
9635   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
9636 
9637   TargetLowering::CallLoweringInfo CLI(DAG);
9638   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
9639   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
9640   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9641 
9642   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
9643   // At last for X86 targets, maybe good for other targets too?
9644   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9645   MFI.setAdjustsStack(true); // Is this only for X86 target?
9646   MFI.setHasCalls(true);
9647 
9648   assert((GA->getOffset() == 0) &&
9649          "Emulated TLS must have zero offset in GlobalAddressSDNode");
9650   return CallResult.first;
9651 }
9652 
9653 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
9654                                                 SelectionDAG &DAG) const {
9655   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
9656   if (!isCtlzFast())
9657     return SDValue();
9658   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9659   SDLoc dl(Op);
9660   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9661     if (C->isZero() && CC == ISD::SETEQ) {
9662       EVT VT = Op.getOperand(0).getValueType();
9663       SDValue Zext = Op.getOperand(0);
9664       if (VT.bitsLT(MVT::i32)) {
9665         VT = MVT::i32;
9666         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
9667       }
9668       unsigned Log2b = Log2_32(VT.getSizeInBits());
9669       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
9670       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
9671                                 DAG.getConstant(Log2b, dl, MVT::i32));
9672       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
9673     }
9674   }
9675   return SDValue();
9676 }
9677 
9678 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
9679   SDValue Op0 = Node->getOperand(0);
9680   SDValue Op1 = Node->getOperand(1);
9681   EVT VT = Op0.getValueType();
9682   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9683   unsigned Opcode = Node->getOpcode();
9684   SDLoc DL(Node);
9685 
9686   // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
9687   if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
9688       getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9689     Op0 = DAG.getFreeze(Op0);
9690     SDValue Zero = DAG.getConstant(0, DL, VT);
9691     return DAG.getNode(ISD::SUB, DL, VT, Op0,
9692                        DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
9693   }
9694 
9695   // umin(x,y) -> sub(x,usubsat(x,y))
9696   // TODO: Missing freeze(Op0)?
9697   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
9698       isOperationLegal(ISD::USUBSAT, VT)) {
9699     return DAG.getNode(ISD::SUB, DL, VT, Op0,
9700                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
9701   }
9702 
9703   // umax(x,y) -> add(x,usubsat(y,x))
9704   // TODO: Missing freeze(Op0)?
9705   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
9706       isOperationLegal(ISD::USUBSAT, VT)) {
9707     return DAG.getNode(ISD::ADD, DL, VT, Op0,
9708                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
9709   }
9710 
9711   // FIXME: Should really try to split the vector in case it's legal on a
9712   // subvector.
9713   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9714     return DAG.UnrollVectorOp(Node);
9715 
9716   // Attempt to find an existing SETCC node that we can reuse.
9717   // TODO: Do we need a generic doesSETCCNodeExist?
9718   // TODO: Missing freeze(Op0)/freeze(Op1)?
9719   auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
9720                          ISD::CondCode PrefCommuteCC,
9721                          ISD::CondCode AltCommuteCC) {
9722     SDVTList BoolVTList = DAG.getVTList(BoolVT);
9723     for (ISD::CondCode CC : {PrefCC, AltCC}) {
9724       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
9725                             {Op0, Op1, DAG.getCondCode(CC)})) {
9726         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
9727         return DAG.getSelect(DL, VT, Cond, Op0, Op1);
9728       }
9729     }
9730     for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
9731       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
9732                             {Op0, Op1, DAG.getCondCode(CC)})) {
9733         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
9734         return DAG.getSelect(DL, VT, Cond, Op1, Op0);
9735       }
9736     }
9737     SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
9738     return DAG.getSelect(DL, VT, Cond, Op0, Op1);
9739   };
9740 
9741   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
9742   //                      -> Y = (A < B) ? B : A
9743   //                      -> Y = (A >= B) ? A : B
9744   //                      -> Y = (A <= B) ? B : A
9745   switch (Opcode) {
9746   case ISD::SMAX:
9747     return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
9748   case ISD::SMIN:
9749     return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
9750   case ISD::UMAX:
9751     return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
9752   case ISD::UMIN:
9753     return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
9754   }
9755 
9756   llvm_unreachable("How did we get here?");
9757 }
9758 
9759 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
9760   unsigned Opcode = Node->getOpcode();
9761   SDValue LHS = Node->getOperand(0);
9762   SDValue RHS = Node->getOperand(1);
9763   EVT VT = LHS.getValueType();
9764   SDLoc dl(Node);
9765 
9766   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
9767   assert(VT.isInteger() && "Expected operands to be integers");
9768 
9769   // usub.sat(a, b) -> umax(a, b) - b
9770   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
9771     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
9772     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
9773   }
9774 
9775   // uadd.sat(a, b) -> umin(a, ~b) + b
9776   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
9777     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
9778     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
9779     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
9780   }
9781 
9782   unsigned OverflowOp;
9783   switch (Opcode) {
9784   case ISD::SADDSAT:
9785     OverflowOp = ISD::SADDO;
9786     break;
9787   case ISD::UADDSAT:
9788     OverflowOp = ISD::UADDO;
9789     break;
9790   case ISD::SSUBSAT:
9791     OverflowOp = ISD::SSUBO;
9792     break;
9793   case ISD::USUBSAT:
9794     OverflowOp = ISD::USUBO;
9795     break;
9796   default:
9797     llvm_unreachable("Expected method to receive signed or unsigned saturation "
9798                      "addition or subtraction node.");
9799   }
9800 
9801   // FIXME: Should really try to split the vector in case it's legal on a
9802   // subvector.
9803   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9804     return DAG.UnrollVectorOp(Node);
9805 
9806   unsigned BitWidth = LHS.getScalarValueSizeInBits();
9807   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9808   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9809   SDValue SumDiff = Result.getValue(0);
9810   SDValue Overflow = Result.getValue(1);
9811   SDValue Zero = DAG.getConstant(0, dl, VT);
9812   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
9813 
9814   if (Opcode == ISD::UADDSAT) {
9815     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9816       // (LHS + RHS) | OverflowMask
9817       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
9818       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
9819     }
9820     // Overflow ? 0xffff.... : (LHS + RHS)
9821     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
9822   }
9823 
9824   if (Opcode == ISD::USUBSAT) {
9825     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9826       // (LHS - RHS) & ~OverflowMask
9827       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
9828       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
9829       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
9830     }
9831     // Overflow ? 0 : (LHS - RHS)
9832     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
9833   }
9834 
9835   if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
9836     APInt MinVal = APInt::getSignedMinValue(BitWidth);
9837     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
9838 
9839     KnownBits KnownLHS = DAG.computeKnownBits(LHS);
9840     KnownBits KnownRHS = DAG.computeKnownBits(RHS);
9841 
9842     // If either of the operand signs are known, then they are guaranteed to
9843     // only saturate in one direction. If non-negative they will saturate
9844     // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
9845     //
9846     // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
9847     // sign of 'y' has to be flipped.
9848 
9849     bool LHSIsNonNegative = KnownLHS.isNonNegative();
9850     bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
9851                                                    : KnownRHS.isNegative();
9852     if (LHSIsNonNegative || RHSIsNonNegative) {
9853       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9854       return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
9855     }
9856 
9857     bool LHSIsNegative = KnownLHS.isNegative();
9858     bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
9859                                                 : KnownRHS.isNonNegative();
9860     if (LHSIsNegative || RHSIsNegative) {
9861       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
9862       return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
9863     }
9864   }
9865 
9866   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
9867   APInt MinVal = APInt::getSignedMinValue(BitWidth);
9868   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
9869   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
9870                               DAG.getConstant(BitWidth - 1, dl, VT));
9871   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
9872   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
9873 }
9874 
9875 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
9876   unsigned Opcode = Node->getOpcode();
9877   bool IsSigned = Opcode == ISD::SSHLSAT;
9878   SDValue LHS = Node->getOperand(0);
9879   SDValue RHS = Node->getOperand(1);
9880   EVT VT = LHS.getValueType();
9881   SDLoc dl(Node);
9882 
9883   assert((Node->getOpcode() == ISD::SSHLSAT ||
9884           Node->getOpcode() == ISD::USHLSAT) &&
9885           "Expected a SHLSAT opcode");
9886   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
9887   assert(VT.isInteger() && "Expected operands to be integers");
9888 
9889   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9890     return DAG.UnrollVectorOp(Node);
9891 
9892   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
9893 
9894   unsigned BW = VT.getScalarSizeInBits();
9895   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9896   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
9897   SDValue Orig =
9898       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
9899 
9900   SDValue SatVal;
9901   if (IsSigned) {
9902     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
9903     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
9904     SDValue Cond =
9905         DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
9906     SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
9907   } else {
9908     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
9909   }
9910   SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
9911   return DAG.getSelect(dl, VT, Cond, SatVal, Result);
9912 }
9913 
9914 SDValue
9915 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
9916   assert((Node->getOpcode() == ISD::SMULFIX ||
9917           Node->getOpcode() == ISD::UMULFIX ||
9918           Node->getOpcode() == ISD::SMULFIXSAT ||
9919           Node->getOpcode() == ISD::UMULFIXSAT) &&
9920          "Expected a fixed point multiplication opcode");
9921 
9922   SDLoc dl(Node);
9923   SDValue LHS = Node->getOperand(0);
9924   SDValue RHS = Node->getOperand(1);
9925   EVT VT = LHS.getValueType();
9926   unsigned Scale = Node->getConstantOperandVal(2);
9927   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
9928                      Node->getOpcode() == ISD::UMULFIXSAT);
9929   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
9930                  Node->getOpcode() == ISD::SMULFIXSAT);
9931   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9932   unsigned VTSize = VT.getScalarSizeInBits();
9933 
9934   if (!Scale) {
9935     // [us]mul.fix(a, b, 0) -> mul(a, b)
9936     if (!Saturating) {
9937       if (isOperationLegalOrCustom(ISD::MUL, VT))
9938         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9939     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
9940       SDValue Result =
9941           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9942       SDValue Product = Result.getValue(0);
9943       SDValue Overflow = Result.getValue(1);
9944       SDValue Zero = DAG.getConstant(0, dl, VT);
9945 
9946       APInt MinVal = APInt::getSignedMinValue(VTSize);
9947       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
9948       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
9949       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9950       // Xor the inputs, if resulting sign bit is 0 the product will be
9951       // positive, else negative.
9952       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9953       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
9954       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
9955       return DAG.getSelect(dl, VT, Overflow, Result, Product);
9956     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
9957       SDValue Result =
9958           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9959       SDValue Product = Result.getValue(0);
9960       SDValue Overflow = Result.getValue(1);
9961 
9962       APInt MaxVal = APInt::getMaxValue(VTSize);
9963       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9964       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
9965     }
9966   }
9967 
9968   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
9969          "Expected scale to be less than the number of bits if signed or at "
9970          "most the number of bits if unsigned.");
9971   assert(LHS.getValueType() == RHS.getValueType() &&
9972          "Expected both operands to be the same type");
9973 
9974   // Get the upper and lower bits of the result.
9975   SDValue Lo, Hi;
9976   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
9977   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
9978   if (isOperationLegalOrCustom(LoHiOp, VT)) {
9979     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
9980     Lo = Result.getValue(0);
9981     Hi = Result.getValue(1);
9982   } else if (isOperationLegalOrCustom(HiOp, VT)) {
9983     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9984     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
9985   } else if (VT.isVector()) {
9986     return SDValue();
9987   } else {
9988     report_fatal_error("Unable to expand fixed point multiplication.");
9989   }
9990 
9991   if (Scale == VTSize)
9992     // Result is just the top half since we'd be shifting by the width of the
9993     // operand. Overflow impossible so this works for both UMULFIX and
9994     // UMULFIXSAT.
9995     return Hi;
9996 
9997   // The result will need to be shifted right by the scale since both operands
9998   // are scaled. The result is given to us in 2 halves, so we only want part of
9999   // both in the result.
10000   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
10001   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
10002                                DAG.getConstant(Scale, dl, ShiftTy));
10003   if (!Saturating)
10004     return Result;
10005 
10006   if (!Signed) {
10007     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
10008     // widened multiplication) aren't all zeroes.
10009 
10010     // Saturate to max if ((Hi >> Scale) != 0),
10011     // which is the same as if (Hi > ((1 << Scale) - 1))
10012     APInt MaxVal = APInt::getMaxValue(VTSize);
10013     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
10014                                       dl, VT);
10015     Result = DAG.getSelectCC(dl, Hi, LowMask,
10016                              DAG.getConstant(MaxVal, dl, VT), Result,
10017                              ISD::SETUGT);
10018 
10019     return Result;
10020   }
10021 
10022   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
10023   // widened multiplication) aren't all ones or all zeroes.
10024 
10025   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
10026   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
10027 
10028   if (Scale == 0) {
10029     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
10030                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
10031     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
10032     // Saturated to SatMin if wide product is negative, and SatMax if wide
10033     // product is positive ...
10034     SDValue Zero = DAG.getConstant(0, dl, VT);
10035     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
10036                                                ISD::SETLT);
10037     // ... but only if we overflowed.
10038     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
10039   }
10040 
10041   //  We handled Scale==0 above so all the bits to examine is in Hi.
10042 
10043   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
10044   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
10045   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
10046                                     dl, VT);
10047   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
10048   // Saturate to min if (Hi >> (Scale - 1)) < -1),
10049   // which is the same as if (HI < (-1 << (Scale - 1))
10050   SDValue HighMask =
10051       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
10052                       dl, VT);
10053   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
10054   return Result;
10055 }
10056 
10057 SDValue
10058 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
10059                                     SDValue LHS, SDValue RHS,
10060                                     unsigned Scale, SelectionDAG &DAG) const {
10061   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
10062           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
10063          "Expected a fixed point division opcode");
10064 
10065   EVT VT = LHS.getValueType();
10066   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
10067   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
10068   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10069 
10070   // If there is enough room in the type to upscale the LHS or downscale the
10071   // RHS before the division, we can perform it in this type without having to
10072   // resize. For signed operations, the LHS headroom is the number of
10073   // redundant sign bits, and for unsigned ones it is the number of zeroes.
10074   // The headroom for the RHS is the number of trailing zeroes.
10075   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
10076                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
10077   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
10078 
10079   // For signed saturating operations, we need to be able to detect true integer
10080   // division overflow; that is, when you have MIN / -EPS. However, this
10081   // is undefined behavior and if we emit divisions that could take such
10082   // values it may cause undesired behavior (arithmetic exceptions on x86, for
10083   // example).
10084   // Avoid this by requiring an extra bit so that we never get this case.
10085   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
10086   // signed saturating division, we need to emit a whopping 32-bit division.
10087   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
10088     return SDValue();
10089 
10090   unsigned LHSShift = std::min(LHSLead, Scale);
10091   unsigned RHSShift = Scale - LHSShift;
10092 
10093   // At this point, we know that if we shift the LHS up by LHSShift and the
10094   // RHS down by RHSShift, we can emit a regular division with a final scaling
10095   // factor of Scale.
10096 
10097   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
10098   if (LHSShift)
10099     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
10100                       DAG.getConstant(LHSShift, dl, ShiftTy));
10101   if (RHSShift)
10102     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
10103                       DAG.getConstant(RHSShift, dl, ShiftTy));
10104 
10105   SDValue Quot;
10106   if (Signed) {
10107     // For signed operations, if the resulting quotient is negative and the
10108     // remainder is nonzero, subtract 1 from the quotient to round towards
10109     // negative infinity.
10110     SDValue Rem;
10111     // FIXME: Ideally we would always produce an SDIVREM here, but if the
10112     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
10113     // we couldn't just form a libcall, but the type legalizer doesn't do it.
10114     if (isTypeLegal(VT) &&
10115         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
10116       Quot = DAG.getNode(ISD::SDIVREM, dl,
10117                          DAG.getVTList(VT, VT),
10118                          LHS, RHS);
10119       Rem = Quot.getValue(1);
10120       Quot = Quot.getValue(0);
10121     } else {
10122       Quot = DAG.getNode(ISD::SDIV, dl, VT,
10123                          LHS, RHS);
10124       Rem = DAG.getNode(ISD::SREM, dl, VT,
10125                         LHS, RHS);
10126     }
10127     SDValue Zero = DAG.getConstant(0, dl, VT);
10128     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
10129     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
10130     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
10131     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
10132     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
10133                                DAG.getConstant(1, dl, VT));
10134     Quot = DAG.getSelect(dl, VT,
10135                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
10136                          Sub1, Quot);
10137   } else
10138     Quot = DAG.getNode(ISD::UDIV, dl, VT,
10139                        LHS, RHS);
10140 
10141   return Quot;
10142 }
10143 
10144 void TargetLowering::expandUADDSUBO(
10145     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
10146   SDLoc dl(Node);
10147   SDValue LHS = Node->getOperand(0);
10148   SDValue RHS = Node->getOperand(1);
10149   bool IsAdd = Node->getOpcode() == ISD::UADDO;
10150 
10151   // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
10152   unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
10153   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
10154     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
10155     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
10156                                     { LHS, RHS, CarryIn });
10157     Result = SDValue(NodeCarry.getNode(), 0);
10158     Overflow = SDValue(NodeCarry.getNode(), 1);
10159     return;
10160   }
10161 
10162   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
10163                             LHS.getValueType(), LHS, RHS);
10164 
10165   EVT ResultType = Node->getValueType(1);
10166   EVT SetCCType = getSetCCResultType(
10167       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
10168   SDValue SetCC;
10169   if (IsAdd && isOneConstant(RHS)) {
10170     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
10171     // the live range of X. We assume comparing with 0 is cheap.
10172     // The general case (X + C) < C is not necessarily beneficial. Although we
10173     // reduce the live range of X, we may introduce the materialization of
10174     // constant C.
10175     SetCC =
10176         DAG.getSetCC(dl, SetCCType, Result,
10177                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
10178   } else if (IsAdd && isAllOnesConstant(RHS)) {
10179     // Special case: uaddo X, -1 overflows if X != 0.
10180     SetCC =
10181         DAG.getSetCC(dl, SetCCType, LHS,
10182                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
10183   } else {
10184     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
10185     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
10186   }
10187   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
10188 }
10189 
10190 void TargetLowering::expandSADDSUBO(
10191     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
10192   SDLoc dl(Node);
10193   SDValue LHS = Node->getOperand(0);
10194   SDValue RHS = Node->getOperand(1);
10195   bool IsAdd = Node->getOpcode() == ISD::SADDO;
10196 
10197   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
10198                             LHS.getValueType(), LHS, RHS);
10199 
10200   EVT ResultType = Node->getValueType(1);
10201   EVT OType = getSetCCResultType(
10202       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
10203 
10204   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
10205   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
10206   if (isOperationLegal(OpcSat, LHS.getValueType())) {
10207     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
10208     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
10209     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
10210     return;
10211   }
10212 
10213   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
10214 
10215   // For an addition, the result should be less than one of the operands (LHS)
10216   // if and only if the other operand (RHS) is negative, otherwise there will
10217   // be overflow.
10218   // For a subtraction, the result should be less than one of the operands
10219   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
10220   // otherwise there will be overflow.
10221   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
10222   SDValue ConditionRHS =
10223       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
10224 
10225   Overflow = DAG.getBoolExtOrTrunc(
10226       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
10227       ResultType, ResultType);
10228 }
10229 
10230 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
10231                                 SDValue &Overflow, SelectionDAG &DAG) const {
10232   SDLoc dl(Node);
10233   EVT VT = Node->getValueType(0);
10234   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10235   SDValue LHS = Node->getOperand(0);
10236   SDValue RHS = Node->getOperand(1);
10237   bool isSigned = Node->getOpcode() == ISD::SMULO;
10238 
10239   // For power-of-two multiplications we can use a simpler shift expansion.
10240   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
10241     const APInt &C = RHSC->getAPIntValue();
10242     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
10243     if (C.isPowerOf2()) {
10244       // smulo(x, signed_min) is same as umulo(x, signed_min).
10245       bool UseArithShift = isSigned && !C.isMinSignedValue();
10246       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
10247       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
10248       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
10249       Overflow = DAG.getSetCC(dl, SetCCVT,
10250           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
10251                       dl, VT, Result, ShiftAmt),
10252           LHS, ISD::SETNE);
10253       return true;
10254     }
10255   }
10256 
10257   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
10258   if (VT.isVector())
10259     WideVT =
10260         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
10261 
10262   SDValue BottomHalf;
10263   SDValue TopHalf;
10264   static const unsigned Ops[2][3] =
10265       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
10266         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
10267   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
10268     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10269     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
10270   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
10271     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
10272                              RHS);
10273     TopHalf = BottomHalf.getValue(1);
10274   } else if (isTypeLegal(WideVT)) {
10275     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
10276     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
10277     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
10278     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
10279     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
10280         getShiftAmountTy(WideVT, DAG.getDataLayout()));
10281     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
10282                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
10283   } else {
10284     if (VT.isVector())
10285       return false;
10286 
10287     // We can fall back to a libcall with an illegal type for the MUL if we
10288     // have a libcall big enough.
10289     // Also, we can fall back to a division in some cases, but that's a big
10290     // performance hit in the general case.
10291     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10292     if (WideVT == MVT::i16)
10293       LC = RTLIB::MUL_I16;
10294     else if (WideVT == MVT::i32)
10295       LC = RTLIB::MUL_I32;
10296     else if (WideVT == MVT::i64)
10297       LC = RTLIB::MUL_I64;
10298     else if (WideVT == MVT::i128)
10299       LC = RTLIB::MUL_I128;
10300     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
10301 
10302     SDValue HiLHS;
10303     SDValue HiRHS;
10304     if (isSigned) {
10305       // The high part is obtained by SRA'ing all but one of the bits of low
10306       // part.
10307       unsigned LoSize = VT.getFixedSizeInBits();
10308       HiLHS =
10309           DAG.getNode(ISD::SRA, dl, VT, LHS,
10310                       DAG.getConstant(LoSize - 1, dl,
10311                                       getPointerTy(DAG.getDataLayout())));
10312       HiRHS =
10313           DAG.getNode(ISD::SRA, dl, VT, RHS,
10314                       DAG.getConstant(LoSize - 1, dl,
10315                                       getPointerTy(DAG.getDataLayout())));
10316     } else {
10317         HiLHS = DAG.getConstant(0, dl, VT);
10318         HiRHS = DAG.getConstant(0, dl, VT);
10319     }
10320 
10321     // Here we're passing the 2 arguments explicitly as 4 arguments that are
10322     // pre-lowered to the correct types. This all depends upon WideVT not
10323     // being a legal type for the architecture and thus has to be split to
10324     // two arguments.
10325     SDValue Ret;
10326     TargetLowering::MakeLibCallOptions CallOptions;
10327     CallOptions.setSExt(isSigned);
10328     CallOptions.setIsPostTypeLegalization(true);
10329     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10330       // Halves of WideVT are packed into registers in different order
10331       // depending on platform endianness. This is usually handled by
10332       // the C calling convention, but we can't defer to it in
10333       // the legalizer.
10334       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
10335       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10336     } else {
10337       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
10338       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10339     }
10340     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10341            "Ret value is a collection of constituent nodes holding result.");
10342     if (DAG.getDataLayout().isLittleEndian()) {
10343       // Same as above.
10344       BottomHalf = Ret.getOperand(0);
10345       TopHalf = Ret.getOperand(1);
10346     } else {
10347       BottomHalf = Ret.getOperand(1);
10348       TopHalf = Ret.getOperand(0);
10349     }
10350   }
10351 
10352   Result = BottomHalf;
10353   if (isSigned) {
10354     SDValue ShiftAmt = DAG.getConstant(
10355         VT.getScalarSizeInBits() - 1, dl,
10356         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
10357     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
10358     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
10359   } else {
10360     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
10361                             DAG.getConstant(0, dl, VT), ISD::SETNE);
10362   }
10363 
10364   // Truncate the result if SetCC returns a larger type than needed.
10365   EVT RType = Node->getValueType(1);
10366   if (RType.bitsLT(Overflow.getValueType()))
10367     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
10368 
10369   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
10370          "Unexpected result type for S/UMULO legalization");
10371   return true;
10372 }
10373 
10374 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
10375   SDLoc dl(Node);
10376   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
10377   SDValue Op = Node->getOperand(0);
10378   EVT VT = Op.getValueType();
10379 
10380   if (VT.isScalableVector())
10381     report_fatal_error(
10382         "Expanding reductions for scalable vectors is undefined.");
10383 
10384   // Try to use a shuffle reduction for power of two vectors.
10385   if (VT.isPow2VectorType()) {
10386     while (VT.getVectorNumElements() > 1) {
10387       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
10388       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
10389         break;
10390 
10391       SDValue Lo, Hi;
10392       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
10393       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
10394       VT = HalfVT;
10395     }
10396   }
10397 
10398   EVT EltVT = VT.getVectorElementType();
10399   unsigned NumElts = VT.getVectorNumElements();
10400 
10401   SmallVector<SDValue, 8> Ops;
10402   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
10403 
10404   SDValue Res = Ops[0];
10405   for (unsigned i = 1; i < NumElts; i++)
10406     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
10407 
10408   // Result type may be wider than element type.
10409   if (EltVT != Node->getValueType(0))
10410     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
10411   return Res;
10412 }
10413 
10414 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
10415   SDLoc dl(Node);
10416   SDValue AccOp = Node->getOperand(0);
10417   SDValue VecOp = Node->getOperand(1);
10418   SDNodeFlags Flags = Node->getFlags();
10419 
10420   EVT VT = VecOp.getValueType();
10421   EVT EltVT = VT.getVectorElementType();
10422 
10423   if (VT.isScalableVector())
10424     report_fatal_error(
10425         "Expanding reductions for scalable vectors is undefined.");
10426 
10427   unsigned NumElts = VT.getVectorNumElements();
10428 
10429   SmallVector<SDValue, 8> Ops;
10430   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
10431 
10432   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
10433 
10434   SDValue Res = AccOp;
10435   for (unsigned i = 0; i < NumElts; i++)
10436     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
10437 
10438   return Res;
10439 }
10440 
10441 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
10442                                SelectionDAG &DAG) const {
10443   EVT VT = Node->getValueType(0);
10444   SDLoc dl(Node);
10445   bool isSigned = Node->getOpcode() == ISD::SREM;
10446   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
10447   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
10448   SDValue Dividend = Node->getOperand(0);
10449   SDValue Divisor = Node->getOperand(1);
10450   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
10451     SDVTList VTs = DAG.getVTList(VT, VT);
10452     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
10453     return true;
10454   }
10455   if (isOperationLegalOrCustom(DivOpc, VT)) {
10456     // X % Y -> X-X/Y*Y
10457     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
10458     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
10459     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
10460     return true;
10461   }
10462   return false;
10463 }
10464 
10465 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
10466                                             SelectionDAG &DAG) const {
10467   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
10468   SDLoc dl(SDValue(Node, 0));
10469   SDValue Src = Node->getOperand(0);
10470 
10471   // DstVT is the result type, while SatVT is the size to which we saturate
10472   EVT SrcVT = Src.getValueType();
10473   EVT DstVT = Node->getValueType(0);
10474 
10475   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10476   unsigned SatWidth = SatVT.getScalarSizeInBits();
10477   unsigned DstWidth = DstVT.getScalarSizeInBits();
10478   assert(SatWidth <= DstWidth &&
10479          "Expected saturation width smaller than result width");
10480 
10481   // Determine minimum and maximum integer values and their corresponding
10482   // floating-point values.
10483   APInt MinInt, MaxInt;
10484   if (IsSigned) {
10485     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
10486     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
10487   } else {
10488     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
10489     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
10490   }
10491 
10492   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
10493   // libcall emission cannot handle this. Large result types will fail.
10494   if (SrcVT == MVT::f16) {
10495     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
10496     SrcVT = Src.getValueType();
10497   }
10498 
10499   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
10500   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
10501 
10502   APFloat::opStatus MinStatus =
10503       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
10504   APFloat::opStatus MaxStatus =
10505       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
10506   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
10507                              !(MaxStatus & APFloat::opStatus::opInexact);
10508 
10509   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
10510   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
10511 
10512   // If the integer bounds are exactly representable as floats and min/max are
10513   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
10514   // of comparisons and selects.
10515   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
10516                      isOperationLegal(ISD::FMAXNUM, SrcVT);
10517   if (AreExactFloatBounds && MinMaxLegal) {
10518     SDValue Clamped = Src;
10519 
10520     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
10521     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
10522     // Clamp by MaxFloat from above. NaN cannot occur.
10523     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
10524     // Convert clamped value to integer.
10525     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
10526                                   dl, DstVT, Clamped);
10527 
10528     // In the unsigned case we're done, because we mapped NaN to MinFloat,
10529     // which will cast to zero.
10530     if (!IsSigned)
10531       return FpToInt;
10532 
10533     // Otherwise, select 0 if Src is NaN.
10534     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
10535     EVT SetCCVT =
10536         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
10537     SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
10538     return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
10539   }
10540 
10541   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
10542   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
10543 
10544   // Result of direct conversion. The assumption here is that the operation is
10545   // non-trapping and it's fine to apply it to an out-of-range value if we
10546   // select it away later.
10547   SDValue FpToInt =
10548       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
10549 
10550   SDValue Select = FpToInt;
10551 
10552   EVT SetCCVT =
10553       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
10554 
10555   // If Src ULT MinFloat, select MinInt. In particular, this also selects
10556   // MinInt if Src is NaN.
10557   SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
10558   Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
10559   // If Src OGT MaxFloat, select MaxInt.
10560   SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
10561   Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
10562 
10563   // In the unsigned case we are done, because we mapped NaN to MinInt, which
10564   // is already zero.
10565   if (!IsSigned)
10566     return Select;
10567 
10568   // Otherwise, select 0 if Src is NaN.
10569   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
10570   SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
10571   return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
10572 }
10573 
10574 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
10575                                            SelectionDAG &DAG) const {
10576   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
10577   assert(Node->getValueType(0).isScalableVector() &&
10578          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
10579 
10580   EVT VT = Node->getValueType(0);
10581   SDValue V1 = Node->getOperand(0);
10582   SDValue V2 = Node->getOperand(1);
10583   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
10584   SDLoc DL(Node);
10585 
10586   // Expand through memory thusly:
10587   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
10588   //  Store V1, Ptr
10589   //  Store V2, Ptr + sizeof(V1)
10590   //  If (Imm < 0)
10591   //    TrailingElts = -Imm
10592   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
10593   //  else
10594   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
10595   //  Res = Load Ptr
10596 
10597   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
10598 
10599   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
10600                                VT.getVectorElementCount() * 2);
10601   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
10602   EVT PtrVT = StackPtr.getValueType();
10603   auto &MF = DAG.getMachineFunction();
10604   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10605   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
10606 
10607   // Store the lo part of CONCAT_VECTORS(V1, V2)
10608   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
10609   // Store the hi part of CONCAT_VECTORS(V1, V2)
10610   SDValue OffsetToV2 = DAG.getVScale(
10611       DL, PtrVT,
10612       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
10613   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
10614   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
10615 
10616   if (Imm >= 0) {
10617     // Load back the required element. getVectorElementPointer takes care of
10618     // clamping the index if it's out-of-bounds.
10619     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
10620     // Load the spliced result
10621     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
10622                        MachinePointerInfo::getUnknownStack(MF));
10623   }
10624 
10625   uint64_t TrailingElts = -Imm;
10626 
10627   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
10628   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
10629   SDValue TrailingBytes =
10630       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
10631 
10632   if (TrailingElts > VT.getVectorMinNumElements()) {
10633     SDValue VLBytes =
10634         DAG.getVScale(DL, PtrVT,
10635                       APInt(PtrVT.getFixedSizeInBits(),
10636                             VT.getStoreSize().getKnownMinValue()));
10637     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
10638   }
10639 
10640   // Calculate the start address of the spliced result.
10641   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
10642 
10643   // Load the spliced result
10644   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
10645                      MachinePointerInfo::getUnknownStack(MF));
10646 }
10647 
10648 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
10649                                            SDValue &LHS, SDValue &RHS,
10650                                            SDValue &CC, SDValue Mask,
10651                                            SDValue EVL, bool &NeedInvert,
10652                                            const SDLoc &dl, SDValue &Chain,
10653                                            bool IsSignaling) const {
10654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10655   MVT OpVT = LHS.getSimpleValueType();
10656   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
10657   NeedInvert = false;
10658   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
10659   bool IsNonVP = !EVL;
10660   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
10661   default:
10662     llvm_unreachable("Unknown condition code action!");
10663   case TargetLowering::Legal:
10664     // Nothing to do.
10665     break;
10666   case TargetLowering::Expand: {
10667     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
10668     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
10669       std::swap(LHS, RHS);
10670       CC = DAG.getCondCode(InvCC);
10671       return true;
10672     }
10673     // Swapping operands didn't work. Try inverting the condition.
10674     bool NeedSwap = false;
10675     InvCC = getSetCCInverse(CCCode, OpVT);
10676     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
10677       // If inverting the condition is not enough, try swapping operands
10678       // on top of it.
10679       InvCC = ISD::getSetCCSwappedOperands(InvCC);
10680       NeedSwap = true;
10681     }
10682     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
10683       CC = DAG.getCondCode(InvCC);
10684       NeedInvert = true;
10685       if (NeedSwap)
10686         std::swap(LHS, RHS);
10687       return true;
10688     }
10689 
10690     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
10691     unsigned Opc = 0;
10692     switch (CCCode) {
10693     default:
10694       llvm_unreachable("Don't know how to expand this condition!");
10695     case ISD::SETUO:
10696       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
10697         CC1 = ISD::SETUNE;
10698         CC2 = ISD::SETUNE;
10699         Opc = ISD::OR;
10700         break;
10701       }
10702       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
10703              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
10704       NeedInvert = true;
10705       [[fallthrough]];
10706     case ISD::SETO:
10707       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
10708              "If SETO is expanded, SETOEQ must be legal!");
10709       CC1 = ISD::SETOEQ;
10710       CC2 = ISD::SETOEQ;
10711       Opc = ISD::AND;
10712       break;
10713     case ISD::SETONE:
10714     case ISD::SETUEQ:
10715       // If the SETUO or SETO CC isn't legal, we might be able to use
10716       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
10717       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
10718       // the operands.
10719       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
10720       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
10721           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
10722            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
10723         CC1 = ISD::SETOGT;
10724         CC2 = ISD::SETOLT;
10725         Opc = ISD::OR;
10726         NeedInvert = ((unsigned)CCCode & 0x8U);
10727         break;
10728       }
10729       [[fallthrough]];
10730     case ISD::SETOEQ:
10731     case ISD::SETOGT:
10732     case ISD::SETOGE:
10733     case ISD::SETOLT:
10734     case ISD::SETOLE:
10735     case ISD::SETUNE:
10736     case ISD::SETUGT:
10737     case ISD::SETUGE:
10738     case ISD::SETULT:
10739     case ISD::SETULE:
10740       // If we are floating point, assign and break, otherwise fall through.
10741       if (!OpVT.isInteger()) {
10742         // We can use the 4th bit to tell if we are the unordered
10743         // or ordered version of the opcode.
10744         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
10745         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
10746         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
10747         break;
10748       }
10749       // Fallthrough if we are unsigned integer.
10750       [[fallthrough]];
10751     case ISD::SETLE:
10752     case ISD::SETGT:
10753     case ISD::SETGE:
10754     case ISD::SETLT:
10755     case ISD::SETNE:
10756     case ISD::SETEQ:
10757       // If all combinations of inverting the condition and swapping operands
10758       // didn't work then we have no means to expand the condition.
10759       llvm_unreachable("Don't know how to expand this condition!");
10760     }
10761 
10762     SDValue SetCC1, SetCC2;
10763     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
10764       // If we aren't the ordered or unorder operation,
10765       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
10766       if (IsNonVP) {
10767         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
10768         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
10769       } else {
10770         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
10771         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
10772       }
10773     } else {
10774       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
10775       if (IsNonVP) {
10776         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
10777         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
10778       } else {
10779         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
10780         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
10781       }
10782     }
10783     if (Chain)
10784       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
10785                           SetCC2.getValue(1));
10786     if (IsNonVP)
10787       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
10788     else {
10789       // Transform the binary opcode to the VP equivalent.
10790       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
10791       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
10792       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
10793     }
10794     RHS = SDValue();
10795     CC = SDValue();
10796     return true;
10797   }
10798   }
10799   return false;
10800 }
10801