1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool 180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 181 unsigned Limit, uint64_t Size, 182 unsigned DstAlign, unsigned SrcAlign, 183 bool IsMemset, 184 bool ZeroMemset, 185 bool MemcpyStrSrc, 186 bool AllowOverlap, 187 unsigned DstAS, unsigned SrcAS, 188 const AttributeList &FuncAttributes) const { 189 // If 'SrcAlign' is zero, that means the memory operation does not need to 190 // load the value, i.e. memset or memcpy from constant string. Otherwise, 191 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 192 // is the specified alignment of the memory operation. If it is zero, that 193 // means it's possible to change the alignment of the destination. 194 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 195 // not need to be loaded. 196 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 200 IsMemset, ZeroMemset, MemcpyStrSrc, 201 FuncAttributes); 202 203 if (VT == MVT::Other) { 204 // Use the largest integer type whose alignment constraints are satisfied. 205 // We only need to check DstAlign here as SrcAlign is always greater or 206 // equal to DstAlign (or zero). 207 VT = MVT::i64; 208 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 209 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 210 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 211 assert(VT.isInteger()); 212 213 // Find the largest legal integer type. 214 MVT LVT = MVT::i64; 215 while (!isTypeLegal(LVT)) 216 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 217 assert(LVT.isInteger()); 218 219 // If the type we've chosen is larger than the largest legal integer type 220 // then use that instead. 221 if (VT.bitsGT(LVT)) 222 VT = LVT; 223 } 224 225 unsigned NumMemOps = 0; 226 while (Size != 0) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && AllowOverlap && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETO: 348 ShouldInvertCC = true; 349 LLVM_FALLTHROUGH; 350 case ISD::SETUO: 351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 352 (VT == MVT::f64) ? RTLIB::UO_F64 : 353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 354 break; 355 case ISD::SETONE: 356 // SETONE = O && UNE 357 ShouldInvertCC = true; 358 LLVM_FALLTHROUGH; 359 case ISD::SETUEQ: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 364 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 365 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 366 break; 367 default: 368 // Invert CC for unordered comparisons 369 ShouldInvertCC = true; 370 switch (CCCode) { 371 case ISD::SETULT: 372 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 373 (VT == MVT::f64) ? RTLIB::OGE_F64 : 374 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 375 break; 376 case ISD::SETULE: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 378 (VT == MVT::f64) ? RTLIB::OGT_F64 : 379 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 380 break; 381 case ISD::SETUGT: 382 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 383 (VT == MVT::f64) ? RTLIB::OLE_F64 : 384 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 385 break; 386 case ISD::SETUGE: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 388 (VT == MVT::f64) ? RTLIB::OLT_F64 : 389 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 390 break; 391 default: llvm_unreachable("Do not know how to soften this setcc!"); 392 } 393 } 394 395 // Use the target specific return value for comparions lib calls. 396 EVT RetVT = getCmpLibcallReturnType(); 397 SDValue Ops[2] = {NewLHS, NewRHS}; 398 TargetLowering::MakeLibCallOptions CallOptions; 399 EVT OpsVT[2] = { OldLHS.getValueType(), 400 OldRHS.getValueType() }; 401 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 402 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 403 NewLHS = Call.first; 404 NewRHS = DAG.getConstant(0, dl, RetVT); 405 406 CCCode = getCmpLibcallCC(LC1); 407 if (ShouldInvertCC) { 408 assert(RetVT.isInteger()); 409 CCCode = getSetCCInverse(CCCode, RetVT); 410 } 411 412 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 413 // Update Chain. 414 Chain = Call.second; 415 } else { 416 EVT SetCCVT = 417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 418 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 419 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 420 CCCode = getCmpLibcallCC(LC2); 421 if (ShouldInvertCC) 422 CCCode = getSetCCInverse(CCCode, RetVT); 423 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 424 if (Chain) 425 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 426 Call2.second); 427 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 428 Tmp.getValueType(), Tmp, NewLHS); 429 NewRHS = SDValue(); 430 } 431 } 432 433 /// Return the entry encoding for a jump table in the current function. The 434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 435 unsigned TargetLowering::getJumpTableEncoding() const { 436 // In non-pic modes, just use the address of a block. 437 if (!isPositionIndependent()) 438 return MachineJumpTableInfo::EK_BlockAddress; 439 440 // In PIC mode, if the target supports a GPRel32 directive, use it. 441 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 442 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 443 444 // Otherwise, use a label difference. 445 return MachineJumpTableInfo::EK_LabelDifference32; 446 } 447 448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 449 SelectionDAG &DAG) const { 450 // If our PIC model is GP relative, use the global offset table as the base. 451 unsigned JTEncoding = getJumpTableEncoding(); 452 453 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 454 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 455 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 456 457 return Table; 458 } 459 460 /// This returns the relocation base for the given PIC jumptable, the same as 461 /// getPICJumpTableRelocBase, but as an MCExpr. 462 const MCExpr * 463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 464 unsigned JTI,MCContext &Ctx) const{ 465 // The normal PIC reloc base is the label at the start of the jump table. 466 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 467 } 468 469 bool 470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 471 const TargetMachine &TM = getTargetMachine(); 472 const GlobalValue *GV = GA->getGlobal(); 473 474 // If the address is not even local to this DSO we will have to load it from 475 // a got and then add the offset. 476 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 477 return false; 478 479 // If the code is position independent we will have to add a base register. 480 if (isPositionIndependent()) 481 return false; 482 483 // Otherwise we can do it. 484 return true; 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Optimization Methods 489 //===----------------------------------------------------------------------===// 490 491 /// If the specified instruction has a constant integer operand and there are 492 /// bits set in that constant that are not demanded, then clear those bits and 493 /// return true. 494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 495 TargetLoweringOpt &TLO) const { 496 SDLoc DL(Op); 497 unsigned Opcode = Op.getOpcode(); 498 499 // Do target-specific constant optimization. 500 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 501 return TLO.New.getNode(); 502 503 // FIXME: ISD::SELECT, ISD::SELECT_CC 504 switch (Opcode) { 505 default: 506 break; 507 case ISD::XOR: 508 case ISD::AND: 509 case ISD::OR: { 510 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 511 if (!Op1C) 512 return false; 513 514 // If this is a 'not' op, don't touch it because that's a canonical form. 515 const APInt &C = Op1C->getAPIntValue(); 516 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 517 return false; 518 519 if (!C.isSubsetOf(Demanded)) { 520 EVT VT = Op.getValueType(); 521 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 522 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 523 return TLO.CombineTo(Op, NewOp); 524 } 525 526 break; 527 } 528 } 529 530 return false; 531 } 532 533 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 534 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 535 /// generalized for targets with other types of implicit widening casts. 536 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 537 const APInt &Demanded, 538 TargetLoweringOpt &TLO) const { 539 assert(Op.getNumOperands() == 2 && 540 "ShrinkDemandedOp only supports binary operators!"); 541 assert(Op.getNode()->getNumValues() == 1 && 542 "ShrinkDemandedOp only supports nodes with one result!"); 543 544 SelectionDAG &DAG = TLO.DAG; 545 SDLoc dl(Op); 546 547 // Early return, as this function cannot handle vector types. 548 if (Op.getValueType().isVector()) 549 return false; 550 551 // Don't do this if the node has another user, which may require the 552 // full value. 553 if (!Op.getNode()->hasOneUse()) 554 return false; 555 556 // Search for the smallest integer type with free casts to and from 557 // Op's type. For expedience, just check power-of-2 integer types. 558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 559 unsigned DemandedSize = Demanded.getActiveBits(); 560 unsigned SmallVTBits = DemandedSize; 561 if (!isPowerOf2_32(SmallVTBits)) 562 SmallVTBits = NextPowerOf2(SmallVTBits); 563 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 564 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 565 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 566 TLI.isZExtFree(SmallVT, Op.getValueType())) { 567 // We found a type with free casts. 568 SDValue X = DAG.getNode( 569 Op.getOpcode(), dl, SmallVT, 570 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 571 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 572 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 573 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 574 return TLO.CombineTo(Op, Z); 575 } 576 } 577 return false; 578 } 579 580 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 581 DAGCombinerInfo &DCI) const { 582 SelectionDAG &DAG = DCI.DAG; 583 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 584 !DCI.isBeforeLegalizeOps()); 585 KnownBits Known; 586 587 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 588 if (Simplified) { 589 DCI.AddToWorklist(Op.getNode()); 590 DCI.CommitTargetLoweringOpt(TLO); 591 } 592 return Simplified; 593 } 594 595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 596 KnownBits &Known, 597 TargetLoweringOpt &TLO, 598 unsigned Depth, 599 bool AssumeSingleUse) const { 600 EVT VT = Op.getValueType(); 601 APInt DemandedElts = VT.isVector() 602 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 603 : APInt(1, 1); 604 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 605 AssumeSingleUse); 606 } 607 608 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 609 // TODO: Under what circumstances can we create nodes? Constant folding? 610 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 611 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 612 SelectionDAG &DAG, unsigned Depth) const { 613 // Limit search depth. 614 if (Depth >= SelectionDAG::MaxRecursionDepth) 615 return SDValue(); 616 617 // Ignore UNDEFs. 618 if (Op.isUndef()) 619 return SDValue(); 620 621 // Not demanding any bits/elts from Op. 622 if (DemandedBits == 0 || DemandedElts == 0) 623 return DAG.getUNDEF(Op.getValueType()); 624 625 unsigned NumElts = DemandedElts.getBitWidth(); 626 KnownBits LHSKnown, RHSKnown; 627 switch (Op.getOpcode()) { 628 case ISD::BITCAST: { 629 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 630 EVT SrcVT = Src.getValueType(); 631 EVT DstVT = Op.getValueType(); 632 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 633 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 634 635 if (NumSrcEltBits == NumDstEltBits) 636 if (SDValue V = SimplifyMultipleUseDemandedBits( 637 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 638 return DAG.getBitcast(DstVT, V); 639 640 // TODO - bigendian once we have test coverage. 641 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 642 DAG.getDataLayout().isLittleEndian()) { 643 unsigned Scale = NumDstEltBits / NumSrcEltBits; 644 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 645 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 646 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 647 for (unsigned i = 0; i != Scale; ++i) { 648 unsigned Offset = i * NumSrcEltBits; 649 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 650 if (!Sub.isNullValue()) { 651 DemandedSrcBits |= Sub; 652 for (unsigned j = 0; j != NumElts; ++j) 653 if (DemandedElts[j]) 654 DemandedSrcElts.setBit((j * Scale) + i); 655 } 656 } 657 658 if (SDValue V = SimplifyMultipleUseDemandedBits( 659 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 660 return DAG.getBitcast(DstVT, V); 661 } 662 663 // TODO - bigendian once we have test coverage. 664 if ((NumSrcEltBits % NumDstEltBits) == 0 && 665 DAG.getDataLayout().isLittleEndian()) { 666 unsigned Scale = NumSrcEltBits / NumDstEltBits; 667 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 668 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 669 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 670 for (unsigned i = 0; i != NumElts; ++i) 671 if (DemandedElts[i]) { 672 unsigned Offset = (i % Scale) * NumDstEltBits; 673 DemandedSrcBits.insertBits(DemandedBits, Offset); 674 DemandedSrcElts.setBit(i / Scale); 675 } 676 677 if (SDValue V = SimplifyMultipleUseDemandedBits( 678 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 679 return DAG.getBitcast(DstVT, V); 680 } 681 682 break; 683 } 684 case ISD::AND: { 685 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 686 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 687 688 // If all of the demanded bits are known 1 on one side, return the other. 689 // These bits cannot contribute to the result of the 'and' in this 690 // context. 691 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 692 return Op.getOperand(0); 693 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 694 return Op.getOperand(1); 695 break; 696 } 697 case ISD::OR: { 698 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 699 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 700 701 // If all of the demanded bits are known zero on one side, return the 702 // other. These bits cannot contribute to the result of the 'or' in this 703 // context. 704 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::XOR: { 711 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 712 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 713 714 // If all of the demanded bits are known zero on one side, return the 715 // other. 716 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::SETCC: { 723 SDValue Op0 = Op.getOperand(0); 724 SDValue Op1 = Op.getOperand(1); 725 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 726 // If (1) we only need the sign-bit, (2) the setcc operands are the same 727 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 728 // -1, we may be able to bypass the setcc. 729 if (DemandedBits.isSignMask() && 730 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 731 getBooleanContents(Op0.getValueType()) == 732 BooleanContent::ZeroOrNegativeOneBooleanContent) { 733 // If we're testing X < 0, then this compare isn't needed - just use X! 734 // FIXME: We're limiting to integer types here, but this should also work 735 // if we don't care about FP signed-zero. The use of SETLT with FP means 736 // that we don't care about NaNs. 737 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 738 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 739 return Op0; 740 } 741 break; 742 } 743 case ISD::SIGN_EXTEND_INREG: { 744 // If none of the extended bits are demanded, eliminate the sextinreg. 745 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 746 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 747 return Op.getOperand(0); 748 break; 749 } 750 case ISD::INSERT_VECTOR_ELT: { 751 // If we don't demand the inserted element, return the base vector. 752 SDValue Vec = Op.getOperand(0); 753 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 754 EVT VecVT = Vec.getValueType(); 755 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 756 !DemandedElts[CIdx->getZExtValue()]) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 794 /// result of Op are ever used downstream. If we can use this information to 795 /// simplify Op, create a new simplified DAG node and return true, returning the 796 /// original and new nodes in Old and New. Otherwise, analyze the expression and 797 /// return a mask of Known bits for the expression (used to simplify the 798 /// caller). The Known bits may only be accurate for those bits in the 799 /// OriginalDemandedBits and OriginalDemandedElts. 800 bool TargetLowering::SimplifyDemandedBits( 801 SDValue Op, const APInt &OriginalDemandedBits, 802 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 803 unsigned Depth, bool AssumeSingleUse) const { 804 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 805 assert(Op.getScalarValueSizeInBits() == BitWidth && 806 "Mask size mismatches value type size!"); 807 808 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 809 assert((!Op.getValueType().isVector() || 810 NumElts == Op.getValueType().getVectorNumElements()) && 811 "Unexpected vector size"); 812 813 APInt DemandedBits = OriginalDemandedBits; 814 APInt DemandedElts = OriginalDemandedElts; 815 SDLoc dl(Op); 816 auto &DL = TLO.DAG.getDataLayout(); 817 818 // Don't know anything. 819 Known = KnownBits(BitWidth); 820 821 // Undef operand. 822 if (Op.isUndef()) 823 return false; 824 825 if (Op.getOpcode() == ISD::Constant) { 826 // We know all of the bits for a constant! 827 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 828 Known.Zero = ~Known.One; 829 return false; 830 } 831 832 // Other users may use these bits. 833 EVT VT = Op.getValueType(); 834 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 835 if (Depth != 0) { 836 // If not at the root, Just compute the Known bits to 837 // simplify things downstream. 838 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 839 return false; 840 } 841 // If this is the root being simplified, allow it to have multiple uses, 842 // just set the DemandedBits/Elts to all bits. 843 DemandedBits = APInt::getAllOnesValue(BitWidth); 844 DemandedElts = APInt::getAllOnesValue(NumElts); 845 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 846 // Not demanding any bits/elts from Op. 847 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 848 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 849 // Limit search depth. 850 return false; 851 } 852 853 KnownBits Known2, KnownOut; 854 switch (Op.getOpcode()) { 855 case ISD::TargetConstant: 856 llvm_unreachable("Can't simplify this node"); 857 case ISD::SCALAR_TO_VECTOR: { 858 if (!DemandedElts[0]) 859 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 860 861 KnownBits SrcKnown; 862 SDValue Src = Op.getOperand(0); 863 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 864 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 865 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 866 return true; 867 Known = SrcKnown.zextOrTrunc(BitWidth, false); 868 break; 869 } 870 case ISD::BUILD_VECTOR: 871 // Collect the known bits that are shared by every demanded element. 872 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 873 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 874 return false; // Don't fall through, will infinitely loop. 875 case ISD::LOAD: { 876 LoadSDNode *LD = cast<LoadSDNode>(Op); 877 if (getTargetConstantFromLoad(LD)) { 878 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 879 return false; // Don't fall through, will infinitely loop. 880 } 881 break; 882 } 883 case ISD::INSERT_VECTOR_ELT: { 884 SDValue Vec = Op.getOperand(0); 885 SDValue Scl = Op.getOperand(1); 886 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 887 EVT VecVT = Vec.getValueType(); 888 889 // If index isn't constant, assume we need all vector elements AND the 890 // inserted element. 891 APInt DemandedVecElts(DemandedElts); 892 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 893 unsigned Idx = CIdx->getZExtValue(); 894 DemandedVecElts.clearBit(Idx); 895 896 // Inserted element is not required. 897 if (!DemandedElts[Idx]) 898 return TLO.CombineTo(Op, Vec); 899 } 900 901 KnownBits KnownScl; 902 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 903 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 904 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 905 return true; 906 907 Known = KnownScl.zextOrTrunc(BitWidth, false); 908 909 KnownBits KnownVec; 910 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 911 Depth + 1)) 912 return true; 913 914 if (!!DemandedVecElts) { 915 Known.One &= KnownVec.One; 916 Known.Zero &= KnownVec.Zero; 917 } 918 919 return false; 920 } 921 case ISD::INSERT_SUBVECTOR: { 922 SDValue Base = Op.getOperand(0); 923 SDValue Sub = Op.getOperand(1); 924 EVT SubVT = Sub.getValueType(); 925 unsigned NumSubElts = SubVT.getVectorNumElements(); 926 927 // If index isn't constant, assume we need the original demanded base 928 // elements and ALL the inserted subvector elements. 929 APInt BaseElts = DemandedElts; 930 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 931 if (isa<ConstantSDNode>(Op.getOperand(2))) { 932 const APInt &Idx = Op.getConstantOperandAPInt(2); 933 if (Idx.ule(NumElts - NumSubElts)) { 934 unsigned SubIdx = Idx.getZExtValue(); 935 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 936 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 937 } 938 } 939 940 KnownBits KnownSub, KnownBase; 941 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 942 Depth + 1)) 943 return true; 944 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 945 Depth + 1)) 946 return true; 947 948 Known.Zero.setAllBits(); 949 Known.One.setAllBits(); 950 if (!!SubElts) { 951 Known.One &= KnownSub.One; 952 Known.Zero &= KnownSub.Zero; 953 } 954 if (!!BaseElts) { 955 Known.One &= KnownBase.One; 956 Known.Zero &= KnownBase.Zero; 957 } 958 break; 959 } 960 case ISD::EXTRACT_SUBVECTOR: { 961 // If index isn't constant, assume we need all the source vector elements. 962 SDValue Src = Op.getOperand(0); 963 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 964 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 965 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 966 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 967 // Offset the demanded elts by the subvector index. 968 uint64_t Idx = SubIdx->getZExtValue(); 969 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 970 } 971 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 972 return true; 973 break; 974 } 975 case ISD::CONCAT_VECTORS: { 976 Known.Zero.setAllBits(); 977 Known.One.setAllBits(); 978 EVT SubVT = Op.getOperand(0).getValueType(); 979 unsigned NumSubVecs = Op.getNumOperands(); 980 unsigned NumSubElts = SubVT.getVectorNumElements(); 981 for (unsigned i = 0; i != NumSubVecs; ++i) { 982 APInt DemandedSubElts = 983 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 984 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 985 Known2, TLO, Depth + 1)) 986 return true; 987 // Known bits are shared by every demanded subvector element. 988 if (!!DemandedSubElts) { 989 Known.One &= Known2.One; 990 Known.Zero &= Known2.Zero; 991 } 992 } 993 break; 994 } 995 case ISD::VECTOR_SHUFFLE: { 996 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 997 998 // Collect demanded elements from shuffle operands.. 999 APInt DemandedLHS(NumElts, 0); 1000 APInt DemandedRHS(NumElts, 0); 1001 for (unsigned i = 0; i != NumElts; ++i) { 1002 if (!DemandedElts[i]) 1003 continue; 1004 int M = ShuffleMask[i]; 1005 if (M < 0) { 1006 // For UNDEF elements, we don't know anything about the common state of 1007 // the shuffle result. 1008 DemandedLHS.clearAllBits(); 1009 DemandedRHS.clearAllBits(); 1010 break; 1011 } 1012 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1013 if (M < (int)NumElts) 1014 DemandedLHS.setBit(M); 1015 else 1016 DemandedRHS.setBit(M - NumElts); 1017 } 1018 1019 if (!!DemandedLHS || !!DemandedRHS) { 1020 SDValue Op0 = Op.getOperand(0); 1021 SDValue Op1 = Op.getOperand(1); 1022 1023 Known.Zero.setAllBits(); 1024 Known.One.setAllBits(); 1025 if (!!DemandedLHS) { 1026 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1027 Depth + 1)) 1028 return true; 1029 Known.One &= Known2.One; 1030 Known.Zero &= Known2.Zero; 1031 } 1032 if (!!DemandedRHS) { 1033 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1034 Depth + 1)) 1035 return true; 1036 Known.One &= Known2.One; 1037 Known.Zero &= Known2.Zero; 1038 } 1039 1040 // Attempt to avoid multi-use ops if we don't need anything from them. 1041 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1042 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1043 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1044 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1045 if (DemandedOp0 || DemandedOp1) { 1046 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1047 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1048 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1049 return TLO.CombineTo(Op, NewOp); 1050 } 1051 } 1052 break; 1053 } 1054 case ISD::AND: { 1055 SDValue Op0 = Op.getOperand(0); 1056 SDValue Op1 = Op.getOperand(1); 1057 1058 // If the RHS is a constant, check to see if the LHS would be zero without 1059 // using the bits from the RHS. Below, we use knowledge about the RHS to 1060 // simplify the LHS, here we're using information from the LHS to simplify 1061 // the RHS. 1062 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1063 // Do not increment Depth here; that can cause an infinite loop. 1064 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1065 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1066 if ((LHSKnown.Zero & DemandedBits) == 1067 (~RHSC->getAPIntValue() & DemandedBits)) 1068 return TLO.CombineTo(Op, Op0); 1069 1070 // If any of the set bits in the RHS are known zero on the LHS, shrink 1071 // the constant. 1072 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1073 return true; 1074 1075 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1076 // constant, but if this 'and' is only clearing bits that were just set by 1077 // the xor, then this 'and' can be eliminated by shrinking the mask of 1078 // the xor. For example, for a 32-bit X: 1079 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1080 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1081 LHSKnown.One == ~RHSC->getAPIntValue()) { 1082 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1083 return TLO.CombineTo(Op, Xor); 1084 } 1085 } 1086 1087 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1088 Depth + 1)) 1089 return true; 1090 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1091 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1092 Known2, TLO, Depth + 1)) 1093 return true; 1094 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1095 1096 // Attempt to avoid multi-use ops if we don't need anything from them. 1097 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1098 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1099 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1100 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1101 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1102 if (DemandedOp0 || DemandedOp1) { 1103 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1104 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1105 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1106 return TLO.CombineTo(Op, NewOp); 1107 } 1108 } 1109 1110 // If all of the demanded bits are known one on one side, return the other. 1111 // These bits cannot contribute to the result of the 'and'. 1112 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1113 return TLO.CombineTo(Op, Op0); 1114 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1115 return TLO.CombineTo(Op, Op1); 1116 // If all of the demanded bits in the inputs are known zeros, return zero. 1117 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1118 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1119 // If the RHS is a constant, see if we can simplify it. 1120 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1121 return true; 1122 // If the operation can be done in a smaller type, do so. 1123 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1124 return true; 1125 1126 // Output known-1 bits are only known if set in both the LHS & RHS. 1127 Known.One &= Known2.One; 1128 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1129 Known.Zero |= Known2.Zero; 1130 break; 1131 } 1132 case ISD::OR: { 1133 SDValue Op0 = Op.getOperand(0); 1134 SDValue Op1 = Op.getOperand(1); 1135 1136 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1137 Depth + 1)) 1138 return true; 1139 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1140 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1141 Known2, TLO, Depth + 1)) 1142 return true; 1143 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1144 1145 // Attempt to avoid multi-use ops if we don't need anything from them. 1146 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1147 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1148 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1149 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1150 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1151 if (DemandedOp0 || DemandedOp1) { 1152 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1153 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1154 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1155 return TLO.CombineTo(Op, NewOp); 1156 } 1157 } 1158 1159 // If all of the demanded bits are known zero on one side, return the other. 1160 // These bits cannot contribute to the result of the 'or'. 1161 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1162 return TLO.CombineTo(Op, Op0); 1163 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1164 return TLO.CombineTo(Op, Op1); 1165 // If the RHS is a constant, see if we can simplify it. 1166 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1167 return true; 1168 // If the operation can be done in a smaller type, do so. 1169 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1170 return true; 1171 1172 // Output known-0 bits are only known if clear in both the LHS & RHS. 1173 Known.Zero &= Known2.Zero; 1174 // Output known-1 are known to be set if set in either the LHS | RHS. 1175 Known.One |= Known2.One; 1176 break; 1177 } 1178 case ISD::XOR: { 1179 SDValue Op0 = Op.getOperand(0); 1180 SDValue Op1 = Op.getOperand(1); 1181 1182 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1183 Depth + 1)) 1184 return true; 1185 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1186 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1187 Depth + 1)) 1188 return true; 1189 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1190 1191 // Attempt to avoid multi-use ops if we don't need anything from them. 1192 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1193 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1194 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1195 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1196 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1197 if (DemandedOp0 || DemandedOp1) { 1198 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1199 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1200 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1201 return TLO.CombineTo(Op, NewOp); 1202 } 1203 } 1204 1205 // If all of the demanded bits are known zero on one side, return the other. 1206 // These bits cannot contribute to the result of the 'xor'. 1207 if (DemandedBits.isSubsetOf(Known.Zero)) 1208 return TLO.CombineTo(Op, Op0); 1209 if (DemandedBits.isSubsetOf(Known2.Zero)) 1210 return TLO.CombineTo(Op, Op1); 1211 // If the operation can be done in a smaller type, do so. 1212 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1213 return true; 1214 1215 // If all of the unknown bits are known to be zero on one side or the other 1216 // (but not both) turn this into an *inclusive* or. 1217 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1218 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1219 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1220 1221 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1222 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1223 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1224 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1225 1226 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1227 // If one side is a constant, and all of the known set bits on the other 1228 // side are also set in the constant, turn this into an AND, as we know 1229 // the bits will be cleared. 1230 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1231 // NB: it is okay if more bits are known than are requested 1232 if (C->getAPIntValue() == Known2.One) { 1233 SDValue ANDC = 1234 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1235 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1236 } 1237 1238 // If the RHS is a constant, see if we can change it. Don't alter a -1 1239 // constant because that's a 'not' op, and that is better for combining 1240 // and codegen. 1241 if (!C->isAllOnesValue()) { 1242 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1243 // We're flipping all demanded bits. Flip the undemanded bits too. 1244 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1245 return TLO.CombineTo(Op, New); 1246 } 1247 // If we can't turn this into a 'not', try to shrink the constant. 1248 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1249 return true; 1250 } 1251 } 1252 1253 Known = std::move(KnownOut); 1254 break; 1255 } 1256 case ISD::SELECT: 1257 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1258 Depth + 1)) 1259 return true; 1260 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1261 Depth + 1)) 1262 return true; 1263 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1264 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1265 1266 // If the operands are constants, see if we can simplify them. 1267 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1268 return true; 1269 1270 // Only known if known in both the LHS and RHS. 1271 Known.One &= Known2.One; 1272 Known.Zero &= Known2.Zero; 1273 break; 1274 case ISD::SELECT_CC: 1275 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1276 Depth + 1)) 1277 return true; 1278 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1279 Depth + 1)) 1280 return true; 1281 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1282 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1283 1284 // If the operands are constants, see if we can simplify them. 1285 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1286 return true; 1287 1288 // Only known if known in both the LHS and RHS. 1289 Known.One &= Known2.One; 1290 Known.Zero &= Known2.Zero; 1291 break; 1292 case ISD::SETCC: { 1293 SDValue Op0 = Op.getOperand(0); 1294 SDValue Op1 = Op.getOperand(1); 1295 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1296 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1297 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1298 // -1, we may be able to bypass the setcc. 1299 if (DemandedBits.isSignMask() && 1300 Op0.getScalarValueSizeInBits() == BitWidth && 1301 getBooleanContents(Op0.getValueType()) == 1302 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1303 // If we're testing X < 0, then this compare isn't needed - just use X! 1304 // FIXME: We're limiting to integer types here, but this should also work 1305 // if we don't care about FP signed-zero. The use of SETLT with FP means 1306 // that we don't care about NaNs. 1307 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1308 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1309 return TLO.CombineTo(Op, Op0); 1310 1311 // TODO: Should we check for other forms of sign-bit comparisons? 1312 // Examples: X <= -1, X >= 0 1313 } 1314 if (getBooleanContents(Op0.getValueType()) == 1315 TargetLowering::ZeroOrOneBooleanContent && 1316 BitWidth > 1) 1317 Known.Zero.setBitsFrom(1); 1318 break; 1319 } 1320 case ISD::SHL: { 1321 SDValue Op0 = Op.getOperand(0); 1322 SDValue Op1 = Op.getOperand(1); 1323 1324 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1325 // If the shift count is an invalid immediate, don't do anything. 1326 if (SA->getAPIntValue().uge(BitWidth)) 1327 break; 1328 1329 unsigned ShAmt = SA->getZExtValue(); 1330 if (ShAmt == 0) 1331 return TLO.CombineTo(Op, Op0); 1332 1333 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1334 // single shift. We can do this if the bottom bits (which are shifted 1335 // out) are never demanded. 1336 // TODO - support non-uniform vector amounts. 1337 if (Op0.getOpcode() == ISD::SRL) { 1338 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1339 if (ConstantSDNode *SA2 = 1340 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1341 if (SA2->getAPIntValue().ult(BitWidth)) { 1342 unsigned C1 = SA2->getZExtValue(); 1343 unsigned Opc = ISD::SHL; 1344 int Diff = ShAmt - C1; 1345 if (Diff < 0) { 1346 Diff = -Diff; 1347 Opc = ISD::SRL; 1348 } 1349 1350 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1351 return TLO.CombineTo( 1352 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1353 } 1354 } 1355 } 1356 } 1357 1358 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1359 Known, TLO, Depth + 1)) 1360 return true; 1361 1362 // Try shrinking the operation as long as the shift amount will still be 1363 // in range. 1364 if ((ShAmt < DemandedBits.getActiveBits()) && 1365 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1366 return true; 1367 1368 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1369 // are not demanded. This will likely allow the anyext to be folded away. 1370 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1371 SDValue InnerOp = Op0.getOperand(0); 1372 EVT InnerVT = InnerOp.getValueType(); 1373 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1374 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1375 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1376 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1377 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1378 ShTy = InnerVT; 1379 SDValue NarrowShl = 1380 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1381 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1382 return TLO.CombineTo( 1383 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1384 } 1385 // Repeat the SHL optimization above in cases where an extension 1386 // intervenes: (shl (anyext (shr x, c1)), c2) to 1387 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1388 // aren't demanded (as above) and that the shifted upper c1 bits of 1389 // x aren't demanded. 1390 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1391 InnerOp.hasOneUse()) { 1392 if (ConstantSDNode *SA2 = 1393 isConstOrConstSplat(InnerOp.getOperand(1))) { 1394 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1395 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1396 DemandedBits.getActiveBits() <= 1397 (InnerBits - InnerShAmt + ShAmt) && 1398 DemandedBits.countTrailingZeros() >= ShAmt) { 1399 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1400 Op1.getValueType()); 1401 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1402 InnerOp.getOperand(0)); 1403 return TLO.CombineTo( 1404 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1405 } 1406 } 1407 } 1408 } 1409 1410 Known.Zero <<= ShAmt; 1411 Known.One <<= ShAmt; 1412 // low bits known zero. 1413 Known.Zero.setLowBits(ShAmt); 1414 } 1415 break; 1416 } 1417 case ISD::SRL: { 1418 SDValue Op0 = Op.getOperand(0); 1419 SDValue Op1 = Op.getOperand(1); 1420 1421 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1422 // If the shift count is an invalid immediate, don't do anything. 1423 if (SA->getAPIntValue().uge(BitWidth)) 1424 break; 1425 1426 unsigned ShAmt = SA->getZExtValue(); 1427 if (ShAmt == 0) 1428 return TLO.CombineTo(Op, Op0); 1429 1430 EVT ShiftVT = Op1.getValueType(); 1431 APInt InDemandedMask = (DemandedBits << ShAmt); 1432 1433 // If the shift is exact, then it does demand the low bits (and knows that 1434 // they are zero). 1435 if (Op->getFlags().hasExact()) 1436 InDemandedMask.setLowBits(ShAmt); 1437 1438 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1439 // single shift. We can do this if the top bits (which are shifted out) 1440 // are never demanded. 1441 // TODO - support non-uniform vector amounts. 1442 if (Op0.getOpcode() == ISD::SHL) { 1443 if (ConstantSDNode *SA2 = 1444 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1445 if (!DemandedBits.intersects( 1446 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1447 if (SA2->getAPIntValue().ult(BitWidth)) { 1448 unsigned C1 = SA2->getZExtValue(); 1449 unsigned Opc = ISD::SRL; 1450 int Diff = ShAmt - C1; 1451 if (Diff < 0) { 1452 Diff = -Diff; 1453 Opc = ISD::SHL; 1454 } 1455 1456 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1457 return TLO.CombineTo( 1458 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1459 } 1460 } 1461 } 1462 } 1463 1464 // Compute the new bits that are at the top now. 1465 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1466 Depth + 1)) 1467 return true; 1468 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1469 Known.Zero.lshrInPlace(ShAmt); 1470 Known.One.lshrInPlace(ShAmt); 1471 1472 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1473 } 1474 break; 1475 } 1476 case ISD::SRA: { 1477 SDValue Op0 = Op.getOperand(0); 1478 SDValue Op1 = Op.getOperand(1); 1479 1480 // If this is an arithmetic shift right and only the low-bit is set, we can 1481 // always convert this into a logical shr, even if the shift amount is 1482 // variable. The low bit of the shift cannot be an input sign bit unless 1483 // the shift amount is >= the size of the datatype, which is undefined. 1484 if (DemandedBits.isOneValue()) 1485 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1486 1487 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1488 // If the shift count is an invalid immediate, don't do anything. 1489 if (SA->getAPIntValue().uge(BitWidth)) 1490 break; 1491 1492 unsigned ShAmt = SA->getZExtValue(); 1493 if (ShAmt == 0) 1494 return TLO.CombineTo(Op, Op0); 1495 1496 APInt InDemandedMask = (DemandedBits << ShAmt); 1497 1498 // If the shift is exact, then it does demand the low bits (and knows that 1499 // they are zero). 1500 if (Op->getFlags().hasExact()) 1501 InDemandedMask.setLowBits(ShAmt); 1502 1503 // If any of the demanded bits are produced by the sign extension, we also 1504 // demand the input sign bit. 1505 if (DemandedBits.countLeadingZeros() < ShAmt) 1506 InDemandedMask.setSignBit(); 1507 1508 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1509 Depth + 1)) 1510 return true; 1511 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1512 Known.Zero.lshrInPlace(ShAmt); 1513 Known.One.lshrInPlace(ShAmt); 1514 1515 // If the input sign bit is known to be zero, or if none of the top bits 1516 // are demanded, turn this into an unsigned shift right. 1517 if (Known.Zero[BitWidth - ShAmt - 1] || 1518 DemandedBits.countLeadingZeros() >= ShAmt) { 1519 SDNodeFlags Flags; 1520 Flags.setExact(Op->getFlags().hasExact()); 1521 return TLO.CombineTo( 1522 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1523 } 1524 1525 int Log2 = DemandedBits.exactLogBase2(); 1526 if (Log2 >= 0) { 1527 // The bit must come from the sign. 1528 SDValue NewSA = 1529 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1530 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1531 } 1532 1533 if (Known.One[BitWidth - ShAmt - 1]) 1534 // New bits are known one. 1535 Known.One.setHighBits(ShAmt); 1536 } 1537 break; 1538 } 1539 case ISD::FSHL: 1540 case ISD::FSHR: { 1541 SDValue Op0 = Op.getOperand(0); 1542 SDValue Op1 = Op.getOperand(1); 1543 SDValue Op2 = Op.getOperand(2); 1544 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1545 1546 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1547 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1548 1549 // For fshl, 0-shift returns the 1st arg. 1550 // For fshr, 0-shift returns the 2nd arg. 1551 if (Amt == 0) { 1552 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1553 Known, TLO, Depth + 1)) 1554 return true; 1555 break; 1556 } 1557 1558 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1559 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1560 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1561 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1562 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1563 Depth + 1)) 1564 return true; 1565 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1566 Depth + 1)) 1567 return true; 1568 1569 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1570 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1571 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1572 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1573 Known.One |= Known2.One; 1574 Known.Zero |= Known2.Zero; 1575 } 1576 break; 1577 } 1578 case ISD::BITREVERSE: { 1579 SDValue Src = Op.getOperand(0); 1580 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1581 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1582 Depth + 1)) 1583 return true; 1584 Known.One = Known2.One.reverseBits(); 1585 Known.Zero = Known2.Zero.reverseBits(); 1586 break; 1587 } 1588 case ISD::BSWAP: { 1589 SDValue Src = Op.getOperand(0); 1590 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1591 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1592 Depth + 1)) 1593 return true; 1594 Known.One = Known2.One.byteSwap(); 1595 Known.Zero = Known2.Zero.byteSwap(); 1596 break; 1597 } 1598 case ISD::SIGN_EXTEND_INREG: { 1599 SDValue Op0 = Op.getOperand(0); 1600 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1601 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1602 1603 // If we only care about the highest bit, don't bother shifting right. 1604 if (DemandedBits.isSignMask()) { 1605 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1606 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1607 // However if the input is already sign extended we expect the sign 1608 // extension to be dropped altogether later and do not simplify. 1609 if (!AlreadySignExtended) { 1610 // Compute the correct shift amount type, which must be getShiftAmountTy 1611 // for scalar types after legalization. 1612 EVT ShiftAmtTy = VT; 1613 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1614 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1615 1616 SDValue ShiftAmt = 1617 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1618 return TLO.CombineTo(Op, 1619 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1620 } 1621 } 1622 1623 // If none of the extended bits are demanded, eliminate the sextinreg. 1624 if (DemandedBits.getActiveBits() <= ExVTBits) 1625 return TLO.CombineTo(Op, Op0); 1626 1627 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1628 1629 // Since the sign extended bits are demanded, we know that the sign 1630 // bit is demanded. 1631 InputDemandedBits.setBit(ExVTBits - 1); 1632 1633 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1634 return true; 1635 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1636 1637 // If the sign bit of the input is known set or clear, then we know the 1638 // top bits of the result. 1639 1640 // If the input sign bit is known zero, convert this into a zero extension. 1641 if (Known.Zero[ExVTBits - 1]) 1642 return TLO.CombineTo( 1643 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1644 1645 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1646 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1647 Known.One.setBitsFrom(ExVTBits); 1648 Known.Zero &= Mask; 1649 } else { // Input sign bit unknown 1650 Known.Zero &= Mask; 1651 Known.One &= Mask; 1652 } 1653 break; 1654 } 1655 case ISD::BUILD_PAIR: { 1656 EVT HalfVT = Op.getOperand(0).getValueType(); 1657 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1658 1659 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1660 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1661 1662 KnownBits KnownLo, KnownHi; 1663 1664 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1665 return true; 1666 1667 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1668 return true; 1669 1670 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1671 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1672 1673 Known.One = KnownLo.One.zext(BitWidth) | 1674 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1675 break; 1676 } 1677 case ISD::ZERO_EXTEND: 1678 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1679 SDValue Src = Op.getOperand(0); 1680 EVT SrcVT = Src.getValueType(); 1681 unsigned InBits = SrcVT.getScalarSizeInBits(); 1682 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1683 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1684 1685 // If none of the top bits are demanded, convert this into an any_extend. 1686 if (DemandedBits.getActiveBits() <= InBits) { 1687 // If we only need the non-extended bits of the bottom element 1688 // then we can just bitcast to the result. 1689 if (IsVecInReg && DemandedElts == 1 && 1690 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1691 TLO.DAG.getDataLayout().isLittleEndian()) 1692 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1693 1694 unsigned Opc = 1695 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1696 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1697 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1698 } 1699 1700 APInt InDemandedBits = DemandedBits.trunc(InBits); 1701 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1702 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1703 Depth + 1)) 1704 return true; 1705 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1706 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1707 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1708 break; 1709 } 1710 case ISD::SIGN_EXTEND: 1711 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1712 SDValue Src = Op.getOperand(0); 1713 EVT SrcVT = Src.getValueType(); 1714 unsigned InBits = SrcVT.getScalarSizeInBits(); 1715 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1716 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1717 1718 // If none of the top bits are demanded, convert this into an any_extend. 1719 if (DemandedBits.getActiveBits() <= InBits) { 1720 // If we only need the non-extended bits of the bottom element 1721 // then we can just bitcast to the result. 1722 if (IsVecInReg && DemandedElts == 1 && 1723 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1724 TLO.DAG.getDataLayout().isLittleEndian()) 1725 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1726 1727 unsigned Opc = 1728 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1729 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1730 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1731 } 1732 1733 APInt InDemandedBits = DemandedBits.trunc(InBits); 1734 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1735 1736 // Since some of the sign extended bits are demanded, we know that the sign 1737 // bit is demanded. 1738 InDemandedBits.setBit(InBits - 1); 1739 1740 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1741 Depth + 1)) 1742 return true; 1743 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1744 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1745 1746 // If the sign bit is known one, the top bits match. 1747 Known = Known.sext(BitWidth); 1748 1749 // If the sign bit is known zero, convert this to a zero extend. 1750 if (Known.isNonNegative()) { 1751 unsigned Opc = 1752 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1753 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1754 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1755 } 1756 break; 1757 } 1758 case ISD::ANY_EXTEND: 1759 case ISD::ANY_EXTEND_VECTOR_INREG: { 1760 SDValue Src = Op.getOperand(0); 1761 EVT SrcVT = Src.getValueType(); 1762 unsigned InBits = SrcVT.getScalarSizeInBits(); 1763 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1764 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1765 1766 // If we only need the bottom element then we can just bitcast. 1767 // TODO: Handle ANY_EXTEND? 1768 if (IsVecInReg && DemandedElts == 1 && 1769 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1770 TLO.DAG.getDataLayout().isLittleEndian()) 1771 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1772 1773 APInt InDemandedBits = DemandedBits.trunc(InBits); 1774 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1775 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1776 Depth + 1)) 1777 return true; 1778 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1779 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1780 Known = Known.zext(BitWidth, false /* => any extend */); 1781 break; 1782 } 1783 case ISD::TRUNCATE: { 1784 SDValue Src = Op.getOperand(0); 1785 1786 // Simplify the input, using demanded bit information, and compute the known 1787 // zero/one bits live out. 1788 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1789 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1790 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1791 return true; 1792 Known = Known.trunc(BitWidth); 1793 1794 // Attempt to avoid multi-use ops if we don't need anything from them. 1795 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1796 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1797 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1798 1799 // If the input is only used by this truncate, see if we can shrink it based 1800 // on the known demanded bits. 1801 if (Src.getNode()->hasOneUse()) { 1802 switch (Src.getOpcode()) { 1803 default: 1804 break; 1805 case ISD::SRL: 1806 // Shrink SRL by a constant if none of the high bits shifted in are 1807 // demanded. 1808 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1809 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1810 // undesirable. 1811 break; 1812 1813 SDValue ShAmt = Src.getOperand(1); 1814 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1815 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1816 break; 1817 uint64_t ShVal = ShAmtC->getZExtValue(); 1818 1819 APInt HighBits = 1820 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1821 HighBits.lshrInPlace(ShVal); 1822 HighBits = HighBits.trunc(BitWidth); 1823 1824 if (!(HighBits & DemandedBits)) { 1825 // None of the shifted in bits are needed. Add a truncate of the 1826 // shift input, then shift it. 1827 if (TLO.LegalTypes()) 1828 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1829 SDValue NewTrunc = 1830 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1831 return TLO.CombineTo( 1832 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1833 } 1834 break; 1835 } 1836 } 1837 1838 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1839 break; 1840 } 1841 case ISD::AssertZext: { 1842 // AssertZext demands all of the high bits, plus any of the low bits 1843 // demanded by its users. 1844 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1845 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1846 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1847 TLO, Depth + 1)) 1848 return true; 1849 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1850 1851 Known.Zero |= ~InMask; 1852 break; 1853 } 1854 case ISD::EXTRACT_VECTOR_ELT: { 1855 SDValue Src = Op.getOperand(0); 1856 SDValue Idx = Op.getOperand(1); 1857 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1858 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1859 1860 // Demand the bits from every vector element without a constant index. 1861 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1862 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1863 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1864 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1865 1866 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1867 // anything about the extended bits. 1868 APInt DemandedSrcBits = DemandedBits; 1869 if (BitWidth > EltBitWidth) 1870 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1871 1872 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1873 Depth + 1)) 1874 return true; 1875 1876 // Attempt to avoid multi-use ops if we don't need anything from them. 1877 if (!DemandedSrcBits.isAllOnesValue() || 1878 !DemandedSrcElts.isAllOnesValue()) { 1879 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1880 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1881 SDValue NewOp = 1882 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1883 return TLO.CombineTo(Op, NewOp); 1884 } 1885 } 1886 1887 Known = Known2; 1888 if (BitWidth > EltBitWidth) 1889 Known = Known.zext(BitWidth, false /* => any extend */); 1890 break; 1891 } 1892 case ISD::BITCAST: { 1893 SDValue Src = Op.getOperand(0); 1894 EVT SrcVT = Src.getValueType(); 1895 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1896 1897 // If this is an FP->Int bitcast and if the sign bit is the only 1898 // thing demanded, turn this into a FGETSIGN. 1899 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1900 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1901 SrcVT.isFloatingPoint()) { 1902 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1903 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1904 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1905 SrcVT != MVT::f128) { 1906 // Cannot eliminate/lower SHL for f128 yet. 1907 EVT Ty = OpVTLegal ? VT : MVT::i32; 1908 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1909 // place. We expect the SHL to be eliminated by other optimizations. 1910 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1911 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1912 if (!OpVTLegal && OpVTSizeInBits > 32) 1913 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1914 unsigned ShVal = Op.getValueSizeInBits() - 1; 1915 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1916 return TLO.CombineTo(Op, 1917 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1918 } 1919 } 1920 1921 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1922 // Demand the elt/bit if any of the original elts/bits are demanded. 1923 // TODO - bigendian once we have test coverage. 1924 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1925 TLO.DAG.getDataLayout().isLittleEndian()) { 1926 unsigned Scale = BitWidth / NumSrcEltBits; 1927 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1928 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1929 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1930 for (unsigned i = 0; i != Scale; ++i) { 1931 unsigned Offset = i * NumSrcEltBits; 1932 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1933 if (!Sub.isNullValue()) { 1934 DemandedSrcBits |= Sub; 1935 for (unsigned j = 0; j != NumElts; ++j) 1936 if (DemandedElts[j]) 1937 DemandedSrcElts.setBit((j * Scale) + i); 1938 } 1939 } 1940 1941 APInt KnownSrcUndef, KnownSrcZero; 1942 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1943 KnownSrcZero, TLO, Depth + 1)) 1944 return true; 1945 1946 KnownBits KnownSrcBits; 1947 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1948 KnownSrcBits, TLO, Depth + 1)) 1949 return true; 1950 } else if ((NumSrcEltBits % BitWidth) == 0 && 1951 TLO.DAG.getDataLayout().isLittleEndian()) { 1952 unsigned Scale = NumSrcEltBits / BitWidth; 1953 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1954 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1955 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1956 for (unsigned i = 0; i != NumElts; ++i) 1957 if (DemandedElts[i]) { 1958 unsigned Offset = (i % Scale) * BitWidth; 1959 DemandedSrcBits.insertBits(DemandedBits, Offset); 1960 DemandedSrcElts.setBit(i / Scale); 1961 } 1962 1963 if (SrcVT.isVector()) { 1964 APInt KnownSrcUndef, KnownSrcZero; 1965 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1966 KnownSrcZero, TLO, Depth + 1)) 1967 return true; 1968 } 1969 1970 KnownBits KnownSrcBits; 1971 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1972 KnownSrcBits, TLO, Depth + 1)) 1973 return true; 1974 } 1975 1976 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1977 // recursive call where Known may be useful to the caller. 1978 if (Depth > 0) { 1979 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1980 return false; 1981 } 1982 break; 1983 } 1984 case ISD::ADD: 1985 case ISD::MUL: 1986 case ISD::SUB: { 1987 // Add, Sub, and Mul don't demand any bits in positions beyond that 1988 // of the highest bit demanded of them. 1989 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1990 SDNodeFlags Flags = Op.getNode()->getFlags(); 1991 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1992 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1993 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1994 Depth + 1) || 1995 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1996 Depth + 1) || 1997 // See if the operation should be performed at a smaller bit width. 1998 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1999 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2000 // Disable the nsw and nuw flags. We can no longer guarantee that we 2001 // won't wrap after simplification. 2002 Flags.setNoSignedWrap(false); 2003 Flags.setNoUnsignedWrap(false); 2004 SDValue NewOp = 2005 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2006 return TLO.CombineTo(Op, NewOp); 2007 } 2008 return true; 2009 } 2010 2011 // Attempt to avoid multi-use ops if we don't need anything from them. 2012 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2013 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2014 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2015 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2016 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2017 if (DemandedOp0 || DemandedOp1) { 2018 Flags.setNoSignedWrap(false); 2019 Flags.setNoUnsignedWrap(false); 2020 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2021 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2022 SDValue NewOp = 2023 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2024 return TLO.CombineTo(Op, NewOp); 2025 } 2026 } 2027 2028 // If we have a constant operand, we may be able to turn it into -1 if we 2029 // do not demand the high bits. This can make the constant smaller to 2030 // encode, allow more general folding, or match specialized instruction 2031 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2032 // is probably not useful (and could be detrimental). 2033 ConstantSDNode *C = isConstOrConstSplat(Op1); 2034 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2035 if (C && !C->isAllOnesValue() && !C->isOne() && 2036 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2037 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2038 // Disable the nsw and nuw flags. We can no longer guarantee that we 2039 // won't wrap after simplification. 2040 Flags.setNoSignedWrap(false); 2041 Flags.setNoUnsignedWrap(false); 2042 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2043 return TLO.CombineTo(Op, NewOp); 2044 } 2045 2046 LLVM_FALLTHROUGH; 2047 } 2048 default: 2049 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2050 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2051 Known, TLO, Depth)) 2052 return true; 2053 break; 2054 } 2055 2056 // Just use computeKnownBits to compute output bits. 2057 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2058 break; 2059 } 2060 2061 // If we know the value of all of the demanded bits, return this as a 2062 // constant. 2063 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2064 // Avoid folding to a constant if any OpaqueConstant is involved. 2065 const SDNode *N = Op.getNode(); 2066 for (SDNodeIterator I = SDNodeIterator::begin(N), 2067 E = SDNodeIterator::end(N); 2068 I != E; ++I) { 2069 SDNode *Op = *I; 2070 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2071 if (C->isOpaque()) 2072 return false; 2073 } 2074 // TODO: Handle float bits as well. 2075 if (VT.isInteger()) 2076 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2077 } 2078 2079 return false; 2080 } 2081 2082 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2083 const APInt &DemandedElts, 2084 APInt &KnownUndef, 2085 APInt &KnownZero, 2086 DAGCombinerInfo &DCI) const { 2087 SelectionDAG &DAG = DCI.DAG; 2088 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2089 !DCI.isBeforeLegalizeOps()); 2090 2091 bool Simplified = 2092 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2093 if (Simplified) { 2094 DCI.AddToWorklist(Op.getNode()); 2095 DCI.CommitTargetLoweringOpt(TLO); 2096 } 2097 2098 return Simplified; 2099 } 2100 2101 /// Given a vector binary operation and known undefined elements for each input 2102 /// operand, compute whether each element of the output is undefined. 2103 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2104 const APInt &UndefOp0, 2105 const APInt &UndefOp1) { 2106 EVT VT = BO.getValueType(); 2107 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2108 "Vector binop only"); 2109 2110 EVT EltVT = VT.getVectorElementType(); 2111 unsigned NumElts = VT.getVectorNumElements(); 2112 assert(UndefOp0.getBitWidth() == NumElts && 2113 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2114 2115 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2116 const APInt &UndefVals) { 2117 if (UndefVals[Index]) 2118 return DAG.getUNDEF(EltVT); 2119 2120 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2121 // Try hard to make sure that the getNode() call is not creating temporary 2122 // nodes. Ignore opaque integers because they do not constant fold. 2123 SDValue Elt = BV->getOperand(Index); 2124 auto *C = dyn_cast<ConstantSDNode>(Elt); 2125 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2126 return Elt; 2127 } 2128 2129 return SDValue(); 2130 }; 2131 2132 APInt KnownUndef = APInt::getNullValue(NumElts); 2133 for (unsigned i = 0; i != NumElts; ++i) { 2134 // If both inputs for this element are either constant or undef and match 2135 // the element type, compute the constant/undef result for this element of 2136 // the vector. 2137 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2138 // not handle FP constants. The code within getNode() should be refactored 2139 // to avoid the danger of creating a bogus temporary node here. 2140 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2141 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2142 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2143 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2144 KnownUndef.setBit(i); 2145 } 2146 return KnownUndef; 2147 } 2148 2149 bool TargetLowering::SimplifyDemandedVectorElts( 2150 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2151 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2152 bool AssumeSingleUse) const { 2153 EVT VT = Op.getValueType(); 2154 APInt DemandedElts = OriginalDemandedElts; 2155 unsigned NumElts = DemandedElts.getBitWidth(); 2156 assert(VT.isVector() && "Expected vector op"); 2157 assert(VT.getVectorNumElements() == NumElts && 2158 "Mask size mismatches value type element count!"); 2159 2160 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2161 2162 // Undef operand. 2163 if (Op.isUndef()) { 2164 KnownUndef.setAllBits(); 2165 return false; 2166 } 2167 2168 // If Op has other users, assume that all elements are needed. 2169 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2170 DemandedElts.setAllBits(); 2171 2172 // Not demanding any elements from Op. 2173 if (DemandedElts == 0) { 2174 KnownUndef.setAllBits(); 2175 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2176 } 2177 2178 // Limit search depth. 2179 if (Depth >= SelectionDAG::MaxRecursionDepth) 2180 return false; 2181 2182 SDLoc DL(Op); 2183 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2184 2185 switch (Op.getOpcode()) { 2186 case ISD::SCALAR_TO_VECTOR: { 2187 if (!DemandedElts[0]) { 2188 KnownUndef.setAllBits(); 2189 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2190 } 2191 KnownUndef.setHighBits(NumElts - 1); 2192 break; 2193 } 2194 case ISD::BITCAST: { 2195 SDValue Src = Op.getOperand(0); 2196 EVT SrcVT = Src.getValueType(); 2197 2198 // We only handle vectors here. 2199 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2200 if (!SrcVT.isVector()) 2201 break; 2202 2203 // Fast handling of 'identity' bitcasts. 2204 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2205 if (NumSrcElts == NumElts) 2206 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2207 KnownZero, TLO, Depth + 1); 2208 2209 APInt SrcZero, SrcUndef; 2210 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2211 2212 // Bitcast from 'large element' src vector to 'small element' vector, we 2213 // must demand a source element if any DemandedElt maps to it. 2214 if ((NumElts % NumSrcElts) == 0) { 2215 unsigned Scale = NumElts / NumSrcElts; 2216 for (unsigned i = 0; i != NumElts; ++i) 2217 if (DemandedElts[i]) 2218 SrcDemandedElts.setBit(i / Scale); 2219 2220 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2221 TLO, Depth + 1)) 2222 return true; 2223 2224 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2225 // of the large element. 2226 // TODO - bigendian once we have test coverage. 2227 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2228 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2229 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2230 for (unsigned i = 0; i != NumElts; ++i) 2231 if (DemandedElts[i]) { 2232 unsigned Ofs = (i % Scale) * EltSizeInBits; 2233 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2234 } 2235 2236 KnownBits Known; 2237 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2238 return true; 2239 } 2240 2241 // If the src element is zero/undef then all the output elements will be - 2242 // only demanded elements are guaranteed to be correct. 2243 for (unsigned i = 0; i != NumSrcElts; ++i) { 2244 if (SrcDemandedElts[i]) { 2245 if (SrcZero[i]) 2246 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2247 if (SrcUndef[i]) 2248 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2249 } 2250 } 2251 } 2252 2253 // Bitcast from 'small element' src vector to 'large element' vector, we 2254 // demand all smaller source elements covered by the larger demanded element 2255 // of this vector. 2256 if ((NumSrcElts % NumElts) == 0) { 2257 unsigned Scale = NumSrcElts / NumElts; 2258 for (unsigned i = 0; i != NumElts; ++i) 2259 if (DemandedElts[i]) 2260 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2261 2262 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2263 TLO, Depth + 1)) 2264 return true; 2265 2266 // If all the src elements covering an output element are zero/undef, then 2267 // the output element will be as well, assuming it was demanded. 2268 for (unsigned i = 0; i != NumElts; ++i) { 2269 if (DemandedElts[i]) { 2270 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2271 KnownZero.setBit(i); 2272 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2273 KnownUndef.setBit(i); 2274 } 2275 } 2276 } 2277 break; 2278 } 2279 case ISD::BUILD_VECTOR: { 2280 // Check all elements and simplify any unused elements with UNDEF. 2281 if (!DemandedElts.isAllOnesValue()) { 2282 // Don't simplify BROADCASTS. 2283 if (llvm::any_of(Op->op_values(), 2284 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2285 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2286 bool Updated = false; 2287 for (unsigned i = 0; i != NumElts; ++i) { 2288 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2289 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2290 KnownUndef.setBit(i); 2291 Updated = true; 2292 } 2293 } 2294 if (Updated) 2295 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2296 } 2297 } 2298 for (unsigned i = 0; i != NumElts; ++i) { 2299 SDValue SrcOp = Op.getOperand(i); 2300 if (SrcOp.isUndef()) { 2301 KnownUndef.setBit(i); 2302 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2303 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2304 KnownZero.setBit(i); 2305 } 2306 } 2307 break; 2308 } 2309 case ISD::CONCAT_VECTORS: { 2310 EVT SubVT = Op.getOperand(0).getValueType(); 2311 unsigned NumSubVecs = Op.getNumOperands(); 2312 unsigned NumSubElts = SubVT.getVectorNumElements(); 2313 for (unsigned i = 0; i != NumSubVecs; ++i) { 2314 SDValue SubOp = Op.getOperand(i); 2315 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2316 APInt SubUndef, SubZero; 2317 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2318 Depth + 1)) 2319 return true; 2320 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2321 KnownZero.insertBits(SubZero, i * NumSubElts); 2322 } 2323 break; 2324 } 2325 case ISD::INSERT_SUBVECTOR: { 2326 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2327 break; 2328 SDValue Base = Op.getOperand(0); 2329 SDValue Sub = Op.getOperand(1); 2330 EVT SubVT = Sub.getValueType(); 2331 unsigned NumSubElts = SubVT.getVectorNumElements(); 2332 const APInt &Idx = Op.getConstantOperandAPInt(2); 2333 if (Idx.ugt(NumElts - NumSubElts)) 2334 break; 2335 unsigned SubIdx = Idx.getZExtValue(); 2336 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2337 APInt SubUndef, SubZero; 2338 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2339 Depth + 1)) 2340 return true; 2341 APInt BaseElts = DemandedElts; 2342 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2343 2344 // If none of the base operand elements are demanded, replace it with undef. 2345 if (!BaseElts && !Base.isUndef()) 2346 return TLO.CombineTo(Op, 2347 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2348 TLO.DAG.getUNDEF(VT), 2349 Op.getOperand(1), 2350 Op.getOperand(2))); 2351 2352 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2353 Depth + 1)) 2354 return true; 2355 KnownUndef.insertBits(SubUndef, SubIdx); 2356 KnownZero.insertBits(SubZero, SubIdx); 2357 break; 2358 } 2359 case ISD::EXTRACT_SUBVECTOR: { 2360 SDValue Src = Op.getOperand(0); 2361 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2362 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2363 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2364 // Offset the demanded elts by the subvector index. 2365 uint64_t Idx = SubIdx->getZExtValue(); 2366 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2367 APInt SrcUndef, SrcZero; 2368 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2369 Depth + 1)) 2370 return true; 2371 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2372 KnownZero = SrcZero.extractBits(NumElts, Idx); 2373 } 2374 break; 2375 } 2376 case ISD::INSERT_VECTOR_ELT: { 2377 SDValue Vec = Op.getOperand(0); 2378 SDValue Scl = Op.getOperand(1); 2379 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2380 2381 // For a legal, constant insertion index, if we don't need this insertion 2382 // then strip it, else remove it from the demanded elts. 2383 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2384 unsigned Idx = CIdx->getZExtValue(); 2385 if (!DemandedElts[Idx]) 2386 return TLO.CombineTo(Op, Vec); 2387 2388 APInt DemandedVecElts(DemandedElts); 2389 DemandedVecElts.clearBit(Idx); 2390 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2391 KnownZero, TLO, Depth + 1)) 2392 return true; 2393 2394 KnownUndef.clearBit(Idx); 2395 if (Scl.isUndef()) 2396 KnownUndef.setBit(Idx); 2397 2398 KnownZero.clearBit(Idx); 2399 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2400 KnownZero.setBit(Idx); 2401 break; 2402 } 2403 2404 APInt VecUndef, VecZero; 2405 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2406 Depth + 1)) 2407 return true; 2408 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2409 break; 2410 } 2411 case ISD::VSELECT: { 2412 // Try to transform the select condition based on the current demanded 2413 // elements. 2414 // TODO: If a condition element is undef, we can choose from one arm of the 2415 // select (and if one arm is undef, then we can propagate that to the 2416 // result). 2417 // TODO - add support for constant vselect masks (see IR version of this). 2418 APInt UnusedUndef, UnusedZero; 2419 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2420 UnusedZero, TLO, Depth + 1)) 2421 return true; 2422 2423 // See if we can simplify either vselect operand. 2424 APInt DemandedLHS(DemandedElts); 2425 APInt DemandedRHS(DemandedElts); 2426 APInt UndefLHS, ZeroLHS; 2427 APInt UndefRHS, ZeroRHS; 2428 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2429 ZeroLHS, TLO, Depth + 1)) 2430 return true; 2431 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2432 ZeroRHS, TLO, Depth + 1)) 2433 return true; 2434 2435 KnownUndef = UndefLHS & UndefRHS; 2436 KnownZero = ZeroLHS & ZeroRHS; 2437 break; 2438 } 2439 case ISD::VECTOR_SHUFFLE: { 2440 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2441 2442 // Collect demanded elements from shuffle operands.. 2443 APInt DemandedLHS(NumElts, 0); 2444 APInt DemandedRHS(NumElts, 0); 2445 for (unsigned i = 0; i != NumElts; ++i) { 2446 int M = ShuffleMask[i]; 2447 if (M < 0 || !DemandedElts[i]) 2448 continue; 2449 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2450 if (M < (int)NumElts) 2451 DemandedLHS.setBit(M); 2452 else 2453 DemandedRHS.setBit(M - NumElts); 2454 } 2455 2456 // See if we can simplify either shuffle operand. 2457 APInt UndefLHS, ZeroLHS; 2458 APInt UndefRHS, ZeroRHS; 2459 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2460 ZeroLHS, TLO, Depth + 1)) 2461 return true; 2462 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2463 ZeroRHS, TLO, Depth + 1)) 2464 return true; 2465 2466 // Simplify mask using undef elements from LHS/RHS. 2467 bool Updated = false; 2468 bool IdentityLHS = true, IdentityRHS = true; 2469 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2470 for (unsigned i = 0; i != NumElts; ++i) { 2471 int &M = NewMask[i]; 2472 if (M < 0) 2473 continue; 2474 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2475 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2476 Updated = true; 2477 M = -1; 2478 } 2479 IdentityLHS &= (M < 0) || (M == (int)i); 2480 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2481 } 2482 2483 // Update legal shuffle masks based on demanded elements if it won't reduce 2484 // to Identity which can cause premature removal of the shuffle mask. 2485 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2486 SDValue LegalShuffle = 2487 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2488 NewMask, TLO.DAG); 2489 if (LegalShuffle) 2490 return TLO.CombineTo(Op, LegalShuffle); 2491 } 2492 2493 // Propagate undef/zero elements from LHS/RHS. 2494 for (unsigned i = 0; i != NumElts; ++i) { 2495 int M = ShuffleMask[i]; 2496 if (M < 0) { 2497 KnownUndef.setBit(i); 2498 } else if (M < (int)NumElts) { 2499 if (UndefLHS[M]) 2500 KnownUndef.setBit(i); 2501 if (ZeroLHS[M]) 2502 KnownZero.setBit(i); 2503 } else { 2504 if (UndefRHS[M - NumElts]) 2505 KnownUndef.setBit(i); 2506 if (ZeroRHS[M - NumElts]) 2507 KnownZero.setBit(i); 2508 } 2509 } 2510 break; 2511 } 2512 case ISD::ANY_EXTEND_VECTOR_INREG: 2513 case ISD::SIGN_EXTEND_VECTOR_INREG: 2514 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2515 APInt SrcUndef, SrcZero; 2516 SDValue Src = Op.getOperand(0); 2517 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2518 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2519 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2520 Depth + 1)) 2521 return true; 2522 KnownZero = SrcZero.zextOrTrunc(NumElts); 2523 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2524 2525 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2526 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2527 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2528 // aext - if we just need the bottom element then we can bitcast. 2529 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2530 } 2531 2532 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2533 // zext(undef) upper bits are guaranteed to be zero. 2534 if (DemandedElts.isSubsetOf(KnownUndef)) 2535 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2536 KnownUndef.clearAllBits(); 2537 } 2538 break; 2539 } 2540 2541 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2542 // MAX, saturated math, etc. 2543 case ISD::OR: 2544 case ISD::XOR: 2545 case ISD::ADD: 2546 case ISD::SUB: 2547 case ISD::FADD: 2548 case ISD::FSUB: 2549 case ISD::FMUL: 2550 case ISD::FDIV: 2551 case ISD::FREM: { 2552 APInt UndefRHS, ZeroRHS; 2553 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2554 ZeroRHS, TLO, Depth + 1)) 2555 return true; 2556 APInt UndefLHS, ZeroLHS; 2557 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2558 ZeroLHS, TLO, Depth + 1)) 2559 return true; 2560 2561 KnownZero = ZeroLHS & ZeroRHS; 2562 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2563 break; 2564 } 2565 case ISD::SHL: 2566 case ISD::SRL: 2567 case ISD::SRA: 2568 case ISD::ROTL: 2569 case ISD::ROTR: { 2570 APInt UndefRHS, ZeroRHS; 2571 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2572 ZeroRHS, TLO, Depth + 1)) 2573 return true; 2574 APInt UndefLHS, ZeroLHS; 2575 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2576 ZeroLHS, TLO, Depth + 1)) 2577 return true; 2578 2579 KnownZero = ZeroLHS; 2580 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2581 break; 2582 } 2583 case ISD::MUL: 2584 case ISD::AND: { 2585 APInt SrcUndef, SrcZero; 2586 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2587 SrcZero, TLO, Depth + 1)) 2588 return true; 2589 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2590 KnownZero, TLO, Depth + 1)) 2591 return true; 2592 2593 // If either side has a zero element, then the result element is zero, even 2594 // if the other is an UNDEF. 2595 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2596 // and then handle 'and' nodes with the rest of the binop opcodes. 2597 KnownZero |= SrcZero; 2598 KnownUndef &= SrcUndef; 2599 KnownUndef &= ~KnownZero; 2600 break; 2601 } 2602 case ISD::TRUNCATE: 2603 case ISD::SIGN_EXTEND: 2604 case ISD::ZERO_EXTEND: 2605 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2606 KnownZero, TLO, Depth + 1)) 2607 return true; 2608 2609 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2610 // zext(undef) upper bits are guaranteed to be zero. 2611 if (DemandedElts.isSubsetOf(KnownUndef)) 2612 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2613 KnownUndef.clearAllBits(); 2614 } 2615 break; 2616 default: { 2617 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2618 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2619 KnownZero, TLO, Depth)) 2620 return true; 2621 } else { 2622 KnownBits Known; 2623 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2624 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2625 TLO, Depth, AssumeSingleUse)) 2626 return true; 2627 } 2628 break; 2629 } 2630 } 2631 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2632 2633 // Constant fold all undef cases. 2634 // TODO: Handle zero cases as well. 2635 if (DemandedElts.isSubsetOf(KnownUndef)) 2636 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2637 2638 return false; 2639 } 2640 2641 /// Determine which of the bits specified in Mask are known to be either zero or 2642 /// one and return them in the Known. 2643 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2644 KnownBits &Known, 2645 const APInt &DemandedElts, 2646 const SelectionDAG &DAG, 2647 unsigned Depth) const { 2648 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2649 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2650 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2651 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2652 "Should use MaskedValueIsZero if you don't know whether Op" 2653 " is a target node!"); 2654 Known.resetAll(); 2655 } 2656 2657 void TargetLowering::computeKnownBitsForTargetInstr( 2658 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2659 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2660 unsigned Depth) const { 2661 Known.resetAll(); 2662 } 2663 2664 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2665 KnownBits &Known, 2666 const APInt &DemandedElts, 2667 const SelectionDAG &DAG, 2668 unsigned Depth) const { 2669 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2670 2671 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2672 // The low bits are known zero if the pointer is aligned. 2673 Known.Zero.setLowBits(Log2_32(Align)); 2674 } 2675 } 2676 2677 /// This method can be implemented by targets that want to expose additional 2678 /// information about sign bits to the DAG Combiner. 2679 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2680 const APInt &, 2681 const SelectionDAG &, 2682 unsigned Depth) const { 2683 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2684 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2685 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2686 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2687 "Should use ComputeNumSignBits if you don't know whether Op" 2688 " is a target node!"); 2689 return 1; 2690 } 2691 2692 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2693 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2694 TargetLoweringOpt &TLO, unsigned Depth) const { 2695 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2696 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2697 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2698 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2699 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2700 " is a target node!"); 2701 return false; 2702 } 2703 2704 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2705 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2706 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2707 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2708 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2709 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2710 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2711 "Should use SimplifyDemandedBits if you don't know whether Op" 2712 " is a target node!"); 2713 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2714 return false; 2715 } 2716 2717 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2718 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2719 SelectionDAG &DAG, unsigned Depth) const { 2720 assert( 2721 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2722 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2723 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2724 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2725 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2726 " is a target node!"); 2727 return SDValue(); 2728 } 2729 2730 SDValue 2731 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2732 SDValue N1, MutableArrayRef<int> Mask, 2733 SelectionDAG &DAG) const { 2734 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2735 if (!LegalMask) { 2736 std::swap(N0, N1); 2737 ShuffleVectorSDNode::commuteMask(Mask); 2738 LegalMask = isShuffleMaskLegal(Mask, VT); 2739 } 2740 2741 if (!LegalMask) 2742 return SDValue(); 2743 2744 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2745 } 2746 2747 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2748 return nullptr; 2749 } 2750 2751 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2752 const SelectionDAG &DAG, 2753 bool SNaN, 2754 unsigned Depth) const { 2755 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2756 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2757 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2758 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2759 "Should use isKnownNeverNaN if you don't know whether Op" 2760 " is a target node!"); 2761 return false; 2762 } 2763 2764 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2765 // work with truncating build vectors and vectors with elements of less than 2766 // 8 bits. 2767 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2768 if (!N) 2769 return false; 2770 2771 APInt CVal; 2772 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2773 CVal = CN->getAPIntValue(); 2774 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2775 auto *CN = BV->getConstantSplatNode(); 2776 if (!CN) 2777 return false; 2778 2779 // If this is a truncating build vector, truncate the splat value. 2780 // Otherwise, we may fail to match the expected values below. 2781 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2782 CVal = CN->getAPIntValue(); 2783 if (BVEltWidth < CVal.getBitWidth()) 2784 CVal = CVal.trunc(BVEltWidth); 2785 } else { 2786 return false; 2787 } 2788 2789 switch (getBooleanContents(N->getValueType(0))) { 2790 case UndefinedBooleanContent: 2791 return CVal[0]; 2792 case ZeroOrOneBooleanContent: 2793 return CVal.isOneValue(); 2794 case ZeroOrNegativeOneBooleanContent: 2795 return CVal.isAllOnesValue(); 2796 } 2797 2798 llvm_unreachable("Invalid boolean contents"); 2799 } 2800 2801 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2802 if (!N) 2803 return false; 2804 2805 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2806 if (!CN) { 2807 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2808 if (!BV) 2809 return false; 2810 2811 // Only interested in constant splats, we don't care about undef 2812 // elements in identifying boolean constants and getConstantSplatNode 2813 // returns NULL if all ops are undef; 2814 CN = BV->getConstantSplatNode(); 2815 if (!CN) 2816 return false; 2817 } 2818 2819 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2820 return !CN->getAPIntValue()[0]; 2821 2822 return CN->isNullValue(); 2823 } 2824 2825 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2826 bool SExt) const { 2827 if (VT == MVT::i1) 2828 return N->isOne(); 2829 2830 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2831 switch (Cnt) { 2832 case TargetLowering::ZeroOrOneBooleanContent: 2833 // An extended value of 1 is always true, unless its original type is i1, 2834 // in which case it will be sign extended to -1. 2835 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2836 case TargetLowering::UndefinedBooleanContent: 2837 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2838 return N->isAllOnesValue() && SExt; 2839 } 2840 llvm_unreachable("Unexpected enumeration."); 2841 } 2842 2843 /// This helper function of SimplifySetCC tries to optimize the comparison when 2844 /// either operand of the SetCC node is a bitwise-and instruction. 2845 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2846 ISD::CondCode Cond, const SDLoc &DL, 2847 DAGCombinerInfo &DCI) const { 2848 // Match these patterns in any of their permutations: 2849 // (X & Y) == Y 2850 // (X & Y) != Y 2851 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2852 std::swap(N0, N1); 2853 2854 EVT OpVT = N0.getValueType(); 2855 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2856 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2857 return SDValue(); 2858 2859 SDValue X, Y; 2860 if (N0.getOperand(0) == N1) { 2861 X = N0.getOperand(1); 2862 Y = N0.getOperand(0); 2863 } else if (N0.getOperand(1) == N1) { 2864 X = N0.getOperand(0); 2865 Y = N0.getOperand(1); 2866 } else { 2867 return SDValue(); 2868 } 2869 2870 SelectionDAG &DAG = DCI.DAG; 2871 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2872 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2873 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2874 // Note that where Y is variable and is known to have at most one bit set 2875 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2876 // equivalent when Y == 0. 2877 assert(OpVT.isInteger()); 2878 Cond = ISD::getSetCCInverse(Cond, OpVT); 2879 if (DCI.isBeforeLegalizeOps() || 2880 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2881 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2882 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2883 // If the target supports an 'and-not' or 'and-complement' logic operation, 2884 // try to use that to make a comparison operation more efficient. 2885 // But don't do this transform if the mask is a single bit because there are 2886 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2887 // 'rlwinm' on PPC). 2888 2889 // Bail out if the compare operand that we want to turn into a zero is 2890 // already a zero (otherwise, infinite loop). 2891 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2892 if (YConst && YConst->isNullValue()) 2893 return SDValue(); 2894 2895 // Transform this into: ~X & Y == 0. 2896 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2897 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2898 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2899 } 2900 2901 return SDValue(); 2902 } 2903 2904 /// There are multiple IR patterns that could be checking whether certain 2905 /// truncation of a signed number would be lossy or not. The pattern which is 2906 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2907 /// We are looking for the following pattern: (KeptBits is a constant) 2908 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2909 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2910 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2911 /// We will unfold it into the natural trunc+sext pattern: 2912 /// ((%x << C) a>> C) dstcond %x 2913 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2914 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2915 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2916 const SDLoc &DL) const { 2917 // We must be comparing with a constant. 2918 ConstantSDNode *C1; 2919 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2920 return SDValue(); 2921 2922 // N0 should be: add %x, (1 << (KeptBits-1)) 2923 if (N0->getOpcode() != ISD::ADD) 2924 return SDValue(); 2925 2926 // And we must be 'add'ing a constant. 2927 ConstantSDNode *C01; 2928 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2929 return SDValue(); 2930 2931 SDValue X = N0->getOperand(0); 2932 EVT XVT = X.getValueType(); 2933 2934 // Validate constants ... 2935 2936 APInt I1 = C1->getAPIntValue(); 2937 2938 ISD::CondCode NewCond; 2939 if (Cond == ISD::CondCode::SETULT) { 2940 NewCond = ISD::CondCode::SETEQ; 2941 } else if (Cond == ISD::CondCode::SETULE) { 2942 NewCond = ISD::CondCode::SETEQ; 2943 // But need to 'canonicalize' the constant. 2944 I1 += 1; 2945 } else if (Cond == ISD::CondCode::SETUGT) { 2946 NewCond = ISD::CondCode::SETNE; 2947 // But need to 'canonicalize' the constant. 2948 I1 += 1; 2949 } else if (Cond == ISD::CondCode::SETUGE) { 2950 NewCond = ISD::CondCode::SETNE; 2951 } else 2952 return SDValue(); 2953 2954 APInt I01 = C01->getAPIntValue(); 2955 2956 auto checkConstants = [&I1, &I01]() -> bool { 2957 // Both of them must be power-of-two, and the constant from setcc is bigger. 2958 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2959 }; 2960 2961 if (checkConstants()) { 2962 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2963 } else { 2964 // What if we invert constants? (and the target predicate) 2965 I1.negate(); 2966 I01.negate(); 2967 assert(XVT.isInteger()); 2968 NewCond = getSetCCInverse(NewCond, XVT); 2969 if (!checkConstants()) 2970 return SDValue(); 2971 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2972 } 2973 2974 // They are power-of-two, so which bit is set? 2975 const unsigned KeptBits = I1.logBase2(); 2976 const unsigned KeptBitsMinusOne = I01.logBase2(); 2977 2978 // Magic! 2979 if (KeptBits != (KeptBitsMinusOne + 1)) 2980 return SDValue(); 2981 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2982 2983 // We don't want to do this in every single case. 2984 SelectionDAG &DAG = DCI.DAG; 2985 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2986 XVT, KeptBits)) 2987 return SDValue(); 2988 2989 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2990 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2991 2992 // Unfold into: ((%x << C) a>> C) cond %x 2993 // Where 'cond' will be either 'eq' or 'ne'. 2994 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2995 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2996 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2997 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2998 2999 return T2; 3000 } 3001 3002 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3003 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3004 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3005 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3006 assert(isConstOrConstSplat(N1C) && 3007 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3008 "Should be a comparison with 0."); 3009 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3010 "Valid only for [in]equality comparisons."); 3011 3012 unsigned NewShiftOpcode; 3013 SDValue X, C, Y; 3014 3015 SelectionDAG &DAG = DCI.DAG; 3016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3017 3018 // Look for '(C l>>/<< Y)'. 3019 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3020 // The shift should be one-use. 3021 if (!V.hasOneUse()) 3022 return false; 3023 unsigned OldShiftOpcode = V.getOpcode(); 3024 switch (OldShiftOpcode) { 3025 case ISD::SHL: 3026 NewShiftOpcode = ISD::SRL; 3027 break; 3028 case ISD::SRL: 3029 NewShiftOpcode = ISD::SHL; 3030 break; 3031 default: 3032 return false; // must be a logical shift. 3033 } 3034 // We should be shifting a constant. 3035 // FIXME: best to use isConstantOrConstantVector(). 3036 C = V.getOperand(0); 3037 ConstantSDNode *CC = 3038 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3039 if (!CC) 3040 return false; 3041 Y = V.getOperand(1); 3042 3043 ConstantSDNode *XC = 3044 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3045 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3046 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3047 }; 3048 3049 // LHS of comparison should be an one-use 'and'. 3050 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3051 return SDValue(); 3052 3053 X = N0.getOperand(0); 3054 SDValue Mask = N0.getOperand(1); 3055 3056 // 'and' is commutative! 3057 if (!Match(Mask)) { 3058 std::swap(X, Mask); 3059 if (!Match(Mask)) 3060 return SDValue(); 3061 } 3062 3063 EVT VT = X.getValueType(); 3064 3065 // Produce: 3066 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3067 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3068 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3069 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3070 return T2; 3071 } 3072 3073 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3074 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3075 /// handle the commuted versions of these patterns. 3076 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3077 ISD::CondCode Cond, const SDLoc &DL, 3078 DAGCombinerInfo &DCI) const { 3079 unsigned BOpcode = N0.getOpcode(); 3080 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3081 "Unexpected binop"); 3082 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3083 3084 // (X + Y) == X --> Y == 0 3085 // (X - Y) == X --> Y == 0 3086 // (X ^ Y) == X --> Y == 0 3087 SelectionDAG &DAG = DCI.DAG; 3088 EVT OpVT = N0.getValueType(); 3089 SDValue X = N0.getOperand(0); 3090 SDValue Y = N0.getOperand(1); 3091 if (X == N1) 3092 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3093 3094 if (Y != N1) 3095 return SDValue(); 3096 3097 // (X + Y) == Y --> X == 0 3098 // (X ^ Y) == Y --> X == 0 3099 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3100 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3101 3102 // The shift would not be valid if the operands are boolean (i1). 3103 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3104 return SDValue(); 3105 3106 // (X - Y) == Y --> X == Y << 1 3107 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3108 !DCI.isBeforeLegalize()); 3109 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3110 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3111 if (!DCI.isCalledByLegalizer()) 3112 DCI.AddToWorklist(YShl1.getNode()); 3113 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3114 } 3115 3116 /// Try to simplify a setcc built with the specified operands and cc. If it is 3117 /// unable to simplify it, return a null SDValue. 3118 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3119 ISD::CondCode Cond, bool foldBooleans, 3120 DAGCombinerInfo &DCI, 3121 const SDLoc &dl) const { 3122 SelectionDAG &DAG = DCI.DAG; 3123 const DataLayout &Layout = DAG.getDataLayout(); 3124 EVT OpVT = N0.getValueType(); 3125 3126 // Constant fold or commute setcc. 3127 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3128 return Fold; 3129 3130 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3131 // TODO: Handle non-splat vector constants. All undef causes trouble. 3132 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3133 if (isConstOrConstSplat(N0) && 3134 (DCI.isBeforeLegalizeOps() || 3135 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3136 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3137 3138 // If we have a subtract with the same 2 non-constant operands as this setcc 3139 // -- but in reverse order -- then try to commute the operands of this setcc 3140 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3141 // instruction on some targets. 3142 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3143 (DCI.isBeforeLegalizeOps() || 3144 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3145 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3146 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3147 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3148 3149 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3150 const APInt &C1 = N1C->getAPIntValue(); 3151 3152 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3153 // equality comparison, then we're just comparing whether X itself is 3154 // zero. 3155 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3156 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3157 N0.getOperand(1).getOpcode() == ISD::Constant) { 3158 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3159 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3160 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3161 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3162 // (srl (ctlz x), 5) == 0 -> X != 0 3163 // (srl (ctlz x), 5) != 1 -> X != 0 3164 Cond = ISD::SETNE; 3165 } else { 3166 // (srl (ctlz x), 5) != 0 -> X == 0 3167 // (srl (ctlz x), 5) == 1 -> X == 0 3168 Cond = ISD::SETEQ; 3169 } 3170 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3171 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3172 Zero, Cond); 3173 } 3174 } 3175 3176 SDValue CTPOP = N0; 3177 // Look through truncs that don't change the value of a ctpop. 3178 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3179 CTPOP = N0.getOperand(0); 3180 3181 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3182 (N0 == CTPOP || 3183 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3184 EVT CTVT = CTPOP.getValueType(); 3185 SDValue CTOp = CTPOP.getOperand(0); 3186 3187 // (ctpop x) u< 2 -> (x & x-1) == 0 3188 // (ctpop x) u> 1 -> (x & x-1) != 0 3189 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3190 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3191 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3192 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3193 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3194 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3195 } 3196 3197 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3198 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3199 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3200 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3201 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3202 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3203 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3204 assert(CTVT.isInteger()); 3205 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3206 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3207 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3208 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3209 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3210 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3211 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3212 } 3213 } 3214 3215 // (zext x) == C --> x == (trunc C) 3216 // (sext x) == C --> x == (trunc C) 3217 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3218 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3219 unsigned MinBits = N0.getValueSizeInBits(); 3220 SDValue PreExt; 3221 bool Signed = false; 3222 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3223 // ZExt 3224 MinBits = N0->getOperand(0).getValueSizeInBits(); 3225 PreExt = N0->getOperand(0); 3226 } else if (N0->getOpcode() == ISD::AND) { 3227 // DAGCombine turns costly ZExts into ANDs 3228 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3229 if ((C->getAPIntValue()+1).isPowerOf2()) { 3230 MinBits = C->getAPIntValue().countTrailingOnes(); 3231 PreExt = N0->getOperand(0); 3232 } 3233 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3234 // SExt 3235 MinBits = N0->getOperand(0).getValueSizeInBits(); 3236 PreExt = N0->getOperand(0); 3237 Signed = true; 3238 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3239 // ZEXTLOAD / SEXTLOAD 3240 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3241 MinBits = LN0->getMemoryVT().getSizeInBits(); 3242 PreExt = N0; 3243 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3244 Signed = true; 3245 MinBits = LN0->getMemoryVT().getSizeInBits(); 3246 PreExt = N0; 3247 } 3248 } 3249 3250 // Figure out how many bits we need to preserve this constant. 3251 unsigned ReqdBits = Signed ? 3252 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3253 C1.getActiveBits(); 3254 3255 // Make sure we're not losing bits from the constant. 3256 if (MinBits > 0 && 3257 MinBits < C1.getBitWidth() && 3258 MinBits >= ReqdBits) { 3259 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3260 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3261 // Will get folded away. 3262 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3263 if (MinBits == 1 && C1 == 1) 3264 // Invert the condition. 3265 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3266 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3267 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3268 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3269 } 3270 3271 // If truncating the setcc operands is not desirable, we can still 3272 // simplify the expression in some cases: 3273 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3274 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3275 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3276 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3277 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3278 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3279 SDValue TopSetCC = N0->getOperand(0); 3280 unsigned N0Opc = N0->getOpcode(); 3281 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3282 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3283 TopSetCC.getOpcode() == ISD::SETCC && 3284 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3285 (isConstFalseVal(N1C) || 3286 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3287 3288 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3289 (!N1C->isNullValue() && Cond == ISD::SETNE); 3290 3291 if (!Inverse) 3292 return TopSetCC; 3293 3294 ISD::CondCode InvCond = ISD::getSetCCInverse( 3295 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3296 TopSetCC.getOperand(0).getValueType()); 3297 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3298 TopSetCC.getOperand(1), 3299 InvCond); 3300 } 3301 } 3302 } 3303 3304 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3305 // equality or unsigned, and all 1 bits of the const are in the same 3306 // partial word, see if we can shorten the load. 3307 if (DCI.isBeforeLegalize() && 3308 !ISD::isSignedIntSetCC(Cond) && 3309 N0.getOpcode() == ISD::AND && C1 == 0 && 3310 N0.getNode()->hasOneUse() && 3311 isa<LoadSDNode>(N0.getOperand(0)) && 3312 N0.getOperand(0).getNode()->hasOneUse() && 3313 isa<ConstantSDNode>(N0.getOperand(1))) { 3314 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3315 APInt bestMask; 3316 unsigned bestWidth = 0, bestOffset = 0; 3317 if (Lod->isSimple() && Lod->isUnindexed()) { 3318 unsigned origWidth = N0.getValueSizeInBits(); 3319 unsigned maskWidth = origWidth; 3320 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3321 // 8 bits, but have to be careful... 3322 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3323 origWidth = Lod->getMemoryVT().getSizeInBits(); 3324 const APInt &Mask = N0.getConstantOperandAPInt(1); 3325 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3326 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3327 for (unsigned offset=0; offset<origWidth/width; offset++) { 3328 if (Mask.isSubsetOf(newMask)) { 3329 if (Layout.isLittleEndian()) 3330 bestOffset = (uint64_t)offset * (width/8); 3331 else 3332 bestOffset = (origWidth/width - offset - 1) * (width/8); 3333 bestMask = Mask.lshr(offset * (width/8) * 8); 3334 bestWidth = width; 3335 break; 3336 } 3337 newMask <<= width; 3338 } 3339 } 3340 } 3341 if (bestWidth) { 3342 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3343 if (newVT.isRound() && 3344 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3345 SDValue Ptr = Lod->getBasePtr(); 3346 if (bestOffset != 0) 3347 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3348 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3349 SDValue NewLoad = DAG.getLoad( 3350 newVT, dl, Lod->getChain(), Ptr, 3351 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3352 return DAG.getSetCC(dl, VT, 3353 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3354 DAG.getConstant(bestMask.trunc(bestWidth), 3355 dl, newVT)), 3356 DAG.getConstant(0LL, dl, newVT), Cond); 3357 } 3358 } 3359 } 3360 3361 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3362 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3363 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3364 3365 // If the comparison constant has bits in the upper part, the 3366 // zero-extended value could never match. 3367 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3368 C1.getBitWidth() - InSize))) { 3369 switch (Cond) { 3370 case ISD::SETUGT: 3371 case ISD::SETUGE: 3372 case ISD::SETEQ: 3373 return DAG.getConstant(0, dl, VT); 3374 case ISD::SETULT: 3375 case ISD::SETULE: 3376 case ISD::SETNE: 3377 return DAG.getConstant(1, dl, VT); 3378 case ISD::SETGT: 3379 case ISD::SETGE: 3380 // True if the sign bit of C1 is set. 3381 return DAG.getConstant(C1.isNegative(), dl, VT); 3382 case ISD::SETLT: 3383 case ISD::SETLE: 3384 // True if the sign bit of C1 isn't set. 3385 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3386 default: 3387 break; 3388 } 3389 } 3390 3391 // Otherwise, we can perform the comparison with the low bits. 3392 switch (Cond) { 3393 case ISD::SETEQ: 3394 case ISD::SETNE: 3395 case ISD::SETUGT: 3396 case ISD::SETUGE: 3397 case ISD::SETULT: 3398 case ISD::SETULE: { 3399 EVT newVT = N0.getOperand(0).getValueType(); 3400 if (DCI.isBeforeLegalizeOps() || 3401 (isOperationLegal(ISD::SETCC, newVT) && 3402 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3403 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3404 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3405 3406 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3407 NewConst, Cond); 3408 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3409 } 3410 break; 3411 } 3412 default: 3413 break; // todo, be more careful with signed comparisons 3414 } 3415 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3416 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3417 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3418 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3419 EVT ExtDstTy = N0.getValueType(); 3420 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3421 3422 // If the constant doesn't fit into the number of bits for the source of 3423 // the sign extension, it is impossible for both sides to be equal. 3424 if (C1.getMinSignedBits() > ExtSrcTyBits) 3425 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3426 3427 SDValue ZextOp; 3428 EVT Op0Ty = N0.getOperand(0).getValueType(); 3429 if (Op0Ty == ExtSrcTy) { 3430 ZextOp = N0.getOperand(0); 3431 } else { 3432 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3433 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3434 DAG.getConstant(Imm, dl, Op0Ty)); 3435 } 3436 if (!DCI.isCalledByLegalizer()) 3437 DCI.AddToWorklist(ZextOp.getNode()); 3438 // Otherwise, make this a use of a zext. 3439 return DAG.getSetCC(dl, VT, ZextOp, 3440 DAG.getConstant(C1 & APInt::getLowBitsSet( 3441 ExtDstTyBits, 3442 ExtSrcTyBits), 3443 dl, ExtDstTy), 3444 Cond); 3445 } else if ((N1C->isNullValue() || N1C->isOne()) && 3446 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3447 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3448 if (N0.getOpcode() == ISD::SETCC && 3449 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3450 (N0.getValueType() == MVT::i1 || 3451 getBooleanContents(N0.getOperand(0).getValueType()) == 3452 ZeroOrOneBooleanContent)) { 3453 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3454 if (TrueWhenTrue) 3455 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3456 // Invert the condition. 3457 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3458 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3459 if (DCI.isBeforeLegalizeOps() || 3460 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3461 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3462 } 3463 3464 if ((N0.getOpcode() == ISD::XOR || 3465 (N0.getOpcode() == ISD::AND && 3466 N0.getOperand(0).getOpcode() == ISD::XOR && 3467 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3468 isa<ConstantSDNode>(N0.getOperand(1)) && 3469 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3470 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3471 // can only do this if the top bits are known zero. 3472 unsigned BitWidth = N0.getValueSizeInBits(); 3473 if (DAG.MaskedValueIsZero(N0, 3474 APInt::getHighBitsSet(BitWidth, 3475 BitWidth-1))) { 3476 // Okay, get the un-inverted input value. 3477 SDValue Val; 3478 if (N0.getOpcode() == ISD::XOR) { 3479 Val = N0.getOperand(0); 3480 } else { 3481 assert(N0.getOpcode() == ISD::AND && 3482 N0.getOperand(0).getOpcode() == ISD::XOR); 3483 // ((X^1)&1)^1 -> X & 1 3484 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3485 N0.getOperand(0).getOperand(0), 3486 N0.getOperand(1)); 3487 } 3488 3489 return DAG.getSetCC(dl, VT, Val, N1, 3490 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3491 } 3492 } else if (N1C->isOne()) { 3493 SDValue Op0 = N0; 3494 if (Op0.getOpcode() == ISD::TRUNCATE) 3495 Op0 = Op0.getOperand(0); 3496 3497 if ((Op0.getOpcode() == ISD::XOR) && 3498 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3499 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3500 SDValue XorLHS = Op0.getOperand(0); 3501 SDValue XorRHS = Op0.getOperand(1); 3502 // Ensure that the input setccs return an i1 type or 0/1 value. 3503 if (Op0.getValueType() == MVT::i1 || 3504 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3505 ZeroOrOneBooleanContent && 3506 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3507 ZeroOrOneBooleanContent)) { 3508 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3509 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3510 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3511 } 3512 } 3513 if (Op0.getOpcode() == ISD::AND && 3514 isa<ConstantSDNode>(Op0.getOperand(1)) && 3515 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3516 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3517 if (Op0.getValueType().bitsGT(VT)) 3518 Op0 = DAG.getNode(ISD::AND, dl, VT, 3519 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3520 DAG.getConstant(1, dl, VT)); 3521 else if (Op0.getValueType().bitsLT(VT)) 3522 Op0 = DAG.getNode(ISD::AND, dl, VT, 3523 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3524 DAG.getConstant(1, dl, VT)); 3525 3526 return DAG.getSetCC(dl, VT, Op0, 3527 DAG.getConstant(0, dl, Op0.getValueType()), 3528 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3529 } 3530 if (Op0.getOpcode() == ISD::AssertZext && 3531 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3532 return DAG.getSetCC(dl, VT, Op0, 3533 DAG.getConstant(0, dl, Op0.getValueType()), 3534 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3535 } 3536 } 3537 3538 // Given: 3539 // icmp eq/ne (urem %x, %y), 0 3540 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3541 // icmp eq/ne %x, 0 3542 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3543 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3544 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3545 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3546 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3547 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3548 } 3549 3550 if (SDValue V = 3551 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3552 return V; 3553 } 3554 3555 // These simplifications apply to splat vectors as well. 3556 // TODO: Handle more splat vector cases. 3557 if (auto *N1C = isConstOrConstSplat(N1)) { 3558 const APInt &C1 = N1C->getAPIntValue(); 3559 3560 APInt MinVal, MaxVal; 3561 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3562 if (ISD::isSignedIntSetCC(Cond)) { 3563 MinVal = APInt::getSignedMinValue(OperandBitSize); 3564 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3565 } else { 3566 MinVal = APInt::getMinValue(OperandBitSize); 3567 MaxVal = APInt::getMaxValue(OperandBitSize); 3568 } 3569 3570 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3571 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3572 // X >= MIN --> true 3573 if (C1 == MinVal) 3574 return DAG.getBoolConstant(true, dl, VT, OpVT); 3575 3576 if (!VT.isVector()) { // TODO: Support this for vectors. 3577 // X >= C0 --> X > (C0 - 1) 3578 APInt C = C1 - 1; 3579 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3580 if ((DCI.isBeforeLegalizeOps() || 3581 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3582 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3583 isLegalICmpImmediate(C.getSExtValue())))) { 3584 return DAG.getSetCC(dl, VT, N0, 3585 DAG.getConstant(C, dl, N1.getValueType()), 3586 NewCC); 3587 } 3588 } 3589 } 3590 3591 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3592 // X <= MAX --> true 3593 if (C1 == MaxVal) 3594 return DAG.getBoolConstant(true, dl, VT, OpVT); 3595 3596 // X <= C0 --> X < (C0 + 1) 3597 if (!VT.isVector()) { // TODO: Support this for vectors. 3598 APInt C = C1 + 1; 3599 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3600 if ((DCI.isBeforeLegalizeOps() || 3601 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3602 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3603 isLegalICmpImmediate(C.getSExtValue())))) { 3604 return DAG.getSetCC(dl, VT, N0, 3605 DAG.getConstant(C, dl, N1.getValueType()), 3606 NewCC); 3607 } 3608 } 3609 } 3610 3611 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3612 if (C1 == MinVal) 3613 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3614 3615 // TODO: Support this for vectors after legalize ops. 3616 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3617 // Canonicalize setlt X, Max --> setne X, Max 3618 if (C1 == MaxVal) 3619 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3620 3621 // If we have setult X, 1, turn it into seteq X, 0 3622 if (C1 == MinVal+1) 3623 return DAG.getSetCC(dl, VT, N0, 3624 DAG.getConstant(MinVal, dl, N0.getValueType()), 3625 ISD::SETEQ); 3626 } 3627 } 3628 3629 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3630 if (C1 == MaxVal) 3631 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3632 3633 // TODO: Support this for vectors after legalize ops. 3634 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3635 // Canonicalize setgt X, Min --> setne X, Min 3636 if (C1 == MinVal) 3637 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3638 3639 // If we have setugt X, Max-1, turn it into seteq X, Max 3640 if (C1 == MaxVal-1) 3641 return DAG.getSetCC(dl, VT, N0, 3642 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3643 ISD::SETEQ); 3644 } 3645 } 3646 3647 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3648 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3649 if (C1.isNullValue()) 3650 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3651 VT, N0, N1, Cond, DCI, dl)) 3652 return CC; 3653 } 3654 3655 // If we have "setcc X, C0", check to see if we can shrink the immediate 3656 // by changing cc. 3657 // TODO: Support this for vectors after legalize ops. 3658 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3659 // SETUGT X, SINTMAX -> SETLT X, 0 3660 if (Cond == ISD::SETUGT && 3661 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3662 return DAG.getSetCC(dl, VT, N0, 3663 DAG.getConstant(0, dl, N1.getValueType()), 3664 ISD::SETLT); 3665 3666 // SETULT X, SINTMIN -> SETGT X, -1 3667 if (Cond == ISD::SETULT && 3668 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3669 SDValue ConstMinusOne = 3670 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3671 N1.getValueType()); 3672 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3673 } 3674 } 3675 } 3676 3677 // Back to non-vector simplifications. 3678 // TODO: Can we do these for vector splats? 3679 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3681 const APInt &C1 = N1C->getAPIntValue(); 3682 EVT ShValTy = N0.getValueType(); 3683 3684 // Fold bit comparisons when we can. 3685 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3686 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3687 N0.getOpcode() == ISD::AND) { 3688 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3689 EVT ShiftTy = 3690 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3691 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3692 // Perform the xform if the AND RHS is a single bit. 3693 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3694 if (AndRHS->getAPIntValue().isPowerOf2() && 3695 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3696 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3697 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3698 DAG.getConstant(ShCt, dl, ShiftTy))); 3699 } 3700 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3701 // (X & 8) == 8 --> (X & 8) >> 3 3702 // Perform the xform if C1 is a single bit. 3703 unsigned ShCt = C1.logBase2(); 3704 if (C1.isPowerOf2() && 3705 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3706 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3707 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3708 DAG.getConstant(ShCt, dl, ShiftTy))); 3709 } 3710 } 3711 } 3712 } 3713 3714 if (C1.getMinSignedBits() <= 64 && 3715 !isLegalICmpImmediate(C1.getSExtValue())) { 3716 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3717 // (X & -256) == 256 -> (X >> 8) == 1 3718 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3719 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3720 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3721 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3722 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3723 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3724 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3725 SDValue Shift = 3726 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3727 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3728 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3729 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3730 } 3731 } 3732 } 3733 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3734 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3735 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3736 // X < 0x100000000 -> (X >> 32) < 1 3737 // X >= 0x100000000 -> (X >> 32) >= 1 3738 // X <= 0x0ffffffff -> (X >> 32) < 1 3739 // X > 0x0ffffffff -> (X >> 32) >= 1 3740 unsigned ShiftBits; 3741 APInt NewC = C1; 3742 ISD::CondCode NewCond = Cond; 3743 if (AdjOne) { 3744 ShiftBits = C1.countTrailingOnes(); 3745 NewC = NewC + 1; 3746 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3747 } else { 3748 ShiftBits = C1.countTrailingZeros(); 3749 } 3750 NewC.lshrInPlace(ShiftBits); 3751 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3752 isLegalICmpImmediate(NewC.getSExtValue()) && 3753 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3754 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3755 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3756 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3757 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3758 } 3759 } 3760 } 3761 } 3762 3763 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3764 auto *CFP = cast<ConstantFPSDNode>(N1); 3765 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3766 3767 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3768 // constant if knowing that the operand is non-nan is enough. We prefer to 3769 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3770 // materialize 0.0. 3771 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3772 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3773 3774 // setcc (fneg x), C -> setcc swap(pred) x, -C 3775 if (N0.getOpcode() == ISD::FNEG) { 3776 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3777 if (DCI.isBeforeLegalizeOps() || 3778 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3779 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3780 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3781 } 3782 } 3783 3784 // If the condition is not legal, see if we can find an equivalent one 3785 // which is legal. 3786 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3787 // If the comparison was an awkward floating-point == or != and one of 3788 // the comparison operands is infinity or negative infinity, convert the 3789 // condition to a less-awkward <= or >=. 3790 if (CFP->getValueAPF().isInfinity()) { 3791 if (CFP->getValueAPF().isNegative()) { 3792 if (Cond == ISD::SETOEQ && 3793 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3794 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3795 if (Cond == ISD::SETUEQ && 3796 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3797 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3798 if (Cond == ISD::SETUNE && 3799 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3800 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3801 if (Cond == ISD::SETONE && 3802 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3803 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3804 } else { 3805 if (Cond == ISD::SETOEQ && 3806 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3807 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3808 if (Cond == ISD::SETUEQ && 3809 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3810 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3811 if (Cond == ISD::SETUNE && 3812 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3813 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3814 if (Cond == ISD::SETONE && 3815 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3816 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3817 } 3818 } 3819 } 3820 } 3821 3822 if (N0 == N1) { 3823 // The sext(setcc()) => setcc() optimization relies on the appropriate 3824 // constant being emitted. 3825 assert(!N0.getValueType().isInteger() && 3826 "Integer types should be handled by FoldSetCC"); 3827 3828 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3829 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3830 if (UOF == 2) // FP operators that are undefined on NaNs. 3831 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3832 if (UOF == unsigned(EqTrue)) 3833 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3834 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3835 // if it is not already. 3836 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3837 if (NewCond != Cond && 3838 (DCI.isBeforeLegalizeOps() || 3839 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3840 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3841 } 3842 3843 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3844 N0.getValueType().isInteger()) { 3845 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3846 N0.getOpcode() == ISD::XOR) { 3847 // Simplify (X+Y) == (X+Z) --> Y == Z 3848 if (N0.getOpcode() == N1.getOpcode()) { 3849 if (N0.getOperand(0) == N1.getOperand(0)) 3850 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3851 if (N0.getOperand(1) == N1.getOperand(1)) 3852 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3853 if (isCommutativeBinOp(N0.getOpcode())) { 3854 // If X op Y == Y op X, try other combinations. 3855 if (N0.getOperand(0) == N1.getOperand(1)) 3856 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3857 Cond); 3858 if (N0.getOperand(1) == N1.getOperand(0)) 3859 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3860 Cond); 3861 } 3862 } 3863 3864 // If RHS is a legal immediate value for a compare instruction, we need 3865 // to be careful about increasing register pressure needlessly. 3866 bool LegalRHSImm = false; 3867 3868 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3869 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3870 // Turn (X+C1) == C2 --> X == C2-C1 3871 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3872 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3873 DAG.getConstant(RHSC->getAPIntValue()- 3874 LHSR->getAPIntValue(), 3875 dl, N0.getValueType()), Cond); 3876 } 3877 3878 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3879 if (N0.getOpcode() == ISD::XOR) 3880 // If we know that all of the inverted bits are zero, don't bother 3881 // performing the inversion. 3882 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3883 return 3884 DAG.getSetCC(dl, VT, N0.getOperand(0), 3885 DAG.getConstant(LHSR->getAPIntValue() ^ 3886 RHSC->getAPIntValue(), 3887 dl, N0.getValueType()), 3888 Cond); 3889 } 3890 3891 // Turn (C1-X) == C2 --> X == C1-C2 3892 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3893 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3894 return 3895 DAG.getSetCC(dl, VT, N0.getOperand(1), 3896 DAG.getConstant(SUBC->getAPIntValue() - 3897 RHSC->getAPIntValue(), 3898 dl, N0.getValueType()), 3899 Cond); 3900 } 3901 } 3902 3903 // Could RHSC fold directly into a compare? 3904 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3905 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3906 } 3907 3908 // (X+Y) == X --> Y == 0 and similar folds. 3909 // Don't do this if X is an immediate that can fold into a cmp 3910 // instruction and X+Y has other uses. It could be an induction variable 3911 // chain, and the transform would increase register pressure. 3912 if (!LegalRHSImm || N0.hasOneUse()) 3913 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3914 return V; 3915 } 3916 3917 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3918 N1.getOpcode() == ISD::XOR) 3919 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3920 return V; 3921 3922 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3923 return V; 3924 } 3925 3926 // Fold remainder of division by a constant. 3927 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3928 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3929 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3930 3931 // When division is cheap or optimizing for minimum size, 3932 // fall through to DIVREM creation by skipping this fold. 3933 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3934 if (N0.getOpcode() == ISD::UREM) { 3935 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3936 return Folded; 3937 } else if (N0.getOpcode() == ISD::SREM) { 3938 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3939 return Folded; 3940 } 3941 } 3942 } 3943 3944 // Fold away ALL boolean setcc's. 3945 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3946 SDValue Temp; 3947 switch (Cond) { 3948 default: llvm_unreachable("Unknown integer setcc!"); 3949 case ISD::SETEQ: // X == Y -> ~(X^Y) 3950 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3951 N0 = DAG.getNOT(dl, Temp, OpVT); 3952 if (!DCI.isCalledByLegalizer()) 3953 DCI.AddToWorklist(Temp.getNode()); 3954 break; 3955 case ISD::SETNE: // X != Y --> (X^Y) 3956 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3957 break; 3958 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3959 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3960 Temp = DAG.getNOT(dl, N0, OpVT); 3961 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3962 if (!DCI.isCalledByLegalizer()) 3963 DCI.AddToWorklist(Temp.getNode()); 3964 break; 3965 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3966 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3967 Temp = DAG.getNOT(dl, N1, OpVT); 3968 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3969 if (!DCI.isCalledByLegalizer()) 3970 DCI.AddToWorklist(Temp.getNode()); 3971 break; 3972 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3973 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3974 Temp = DAG.getNOT(dl, N0, OpVT); 3975 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3976 if (!DCI.isCalledByLegalizer()) 3977 DCI.AddToWorklist(Temp.getNode()); 3978 break; 3979 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3980 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3981 Temp = DAG.getNOT(dl, N1, OpVT); 3982 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3983 break; 3984 } 3985 if (VT.getScalarType() != MVT::i1) { 3986 if (!DCI.isCalledByLegalizer()) 3987 DCI.AddToWorklist(N0.getNode()); 3988 // FIXME: If running after legalize, we probably can't do this. 3989 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3990 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3991 } 3992 return N0; 3993 } 3994 3995 // Could not fold it. 3996 return SDValue(); 3997 } 3998 3999 /// Returns true (and the GlobalValue and the offset) if the node is a 4000 /// GlobalAddress + offset. 4001 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4002 int64_t &Offset) const { 4003 4004 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4005 4006 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4007 GA = GASD->getGlobal(); 4008 Offset += GASD->getOffset(); 4009 return true; 4010 } 4011 4012 if (N->getOpcode() == ISD::ADD) { 4013 SDValue N1 = N->getOperand(0); 4014 SDValue N2 = N->getOperand(1); 4015 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4016 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4017 Offset += V->getSExtValue(); 4018 return true; 4019 } 4020 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4021 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4022 Offset += V->getSExtValue(); 4023 return true; 4024 } 4025 } 4026 } 4027 4028 return false; 4029 } 4030 4031 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4032 DAGCombinerInfo &DCI) const { 4033 // Default implementation: no optimization. 4034 return SDValue(); 4035 } 4036 4037 //===----------------------------------------------------------------------===// 4038 // Inline Assembler Implementation Methods 4039 //===----------------------------------------------------------------------===// 4040 4041 TargetLowering::ConstraintType 4042 TargetLowering::getConstraintType(StringRef Constraint) const { 4043 unsigned S = Constraint.size(); 4044 4045 if (S == 1) { 4046 switch (Constraint[0]) { 4047 default: break; 4048 case 'r': 4049 return C_RegisterClass; 4050 case 'm': // memory 4051 case 'o': // offsetable 4052 case 'V': // not offsetable 4053 return C_Memory; 4054 case 'n': // Simple Integer 4055 case 'E': // Floating Point Constant 4056 case 'F': // Floating Point Constant 4057 return C_Immediate; 4058 case 'i': // Simple Integer or Relocatable Constant 4059 case 's': // Relocatable Constant 4060 case 'p': // Address. 4061 case 'X': // Allow ANY value. 4062 case 'I': // Target registers. 4063 case 'J': 4064 case 'K': 4065 case 'L': 4066 case 'M': 4067 case 'N': 4068 case 'O': 4069 case 'P': 4070 case '<': 4071 case '>': 4072 return C_Other; 4073 } 4074 } 4075 4076 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4077 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4078 return C_Memory; 4079 return C_Register; 4080 } 4081 return C_Unknown; 4082 } 4083 4084 /// Try to replace an X constraint, which matches anything, with another that 4085 /// has more specific requirements based on the type of the corresponding 4086 /// operand. 4087 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4088 if (ConstraintVT.isInteger()) 4089 return "r"; 4090 if (ConstraintVT.isFloatingPoint()) 4091 return "f"; // works for many targets 4092 return nullptr; 4093 } 4094 4095 SDValue TargetLowering::LowerAsmOutputForConstraint( 4096 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4097 SelectionDAG &DAG) const { 4098 return SDValue(); 4099 } 4100 4101 /// Lower the specified operand into the Ops vector. 4102 /// If it is invalid, don't add anything to Ops. 4103 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4104 std::string &Constraint, 4105 std::vector<SDValue> &Ops, 4106 SelectionDAG &DAG) const { 4107 4108 if (Constraint.length() > 1) return; 4109 4110 char ConstraintLetter = Constraint[0]; 4111 switch (ConstraintLetter) { 4112 default: break; 4113 case 'X': // Allows any operand; labels (basic block) use this. 4114 if (Op.getOpcode() == ISD::BasicBlock || 4115 Op.getOpcode() == ISD::TargetBlockAddress) { 4116 Ops.push_back(Op); 4117 return; 4118 } 4119 LLVM_FALLTHROUGH; 4120 case 'i': // Simple Integer or Relocatable Constant 4121 case 'n': // Simple Integer 4122 case 's': { // Relocatable Constant 4123 4124 GlobalAddressSDNode *GA; 4125 ConstantSDNode *C; 4126 BlockAddressSDNode *BA; 4127 uint64_t Offset = 0; 4128 4129 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4130 // etc., since getelementpointer is variadic. We can't use 4131 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4132 // while in this case the GA may be furthest from the root node which is 4133 // likely an ISD::ADD. 4134 while (1) { 4135 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4136 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4137 GA->getValueType(0), 4138 Offset + GA->getOffset())); 4139 return; 4140 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4141 ConstraintLetter != 's') { 4142 // gcc prints these as sign extended. Sign extend value to 64 bits 4143 // now; without this it would get ZExt'd later in 4144 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4145 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4146 BooleanContent BCont = getBooleanContents(MVT::i64); 4147 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4148 : ISD::SIGN_EXTEND; 4149 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4150 : C->getSExtValue(); 4151 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4152 SDLoc(C), MVT::i64)); 4153 return; 4154 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4155 ConstraintLetter != 'n') { 4156 Ops.push_back(DAG.getTargetBlockAddress( 4157 BA->getBlockAddress(), BA->getValueType(0), 4158 Offset + BA->getOffset(), BA->getTargetFlags())); 4159 return; 4160 } else { 4161 const unsigned OpCode = Op.getOpcode(); 4162 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4163 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4164 Op = Op.getOperand(1); 4165 // Subtraction is not commutative. 4166 else if (OpCode == ISD::ADD && 4167 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4168 Op = Op.getOperand(0); 4169 else 4170 return; 4171 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4172 continue; 4173 } 4174 } 4175 return; 4176 } 4177 break; 4178 } 4179 } 4180 } 4181 4182 std::pair<unsigned, const TargetRegisterClass *> 4183 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4184 StringRef Constraint, 4185 MVT VT) const { 4186 if (Constraint.empty() || Constraint[0] != '{') 4187 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4188 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4189 4190 // Remove the braces from around the name. 4191 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4192 4193 std::pair<unsigned, const TargetRegisterClass *> R = 4194 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4195 4196 // Figure out which register class contains this reg. 4197 for (const TargetRegisterClass *RC : RI->regclasses()) { 4198 // If none of the value types for this register class are valid, we 4199 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4200 if (!isLegalRC(*RI, *RC)) 4201 continue; 4202 4203 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4204 I != E; ++I) { 4205 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4206 std::pair<unsigned, const TargetRegisterClass *> S = 4207 std::make_pair(*I, RC); 4208 4209 // If this register class has the requested value type, return it, 4210 // otherwise keep searching and return the first class found 4211 // if no other is found which explicitly has the requested type. 4212 if (RI->isTypeLegalForClass(*RC, VT)) 4213 return S; 4214 if (!R.second) 4215 R = S; 4216 } 4217 } 4218 } 4219 4220 return R; 4221 } 4222 4223 //===----------------------------------------------------------------------===// 4224 // Constraint Selection. 4225 4226 /// Return true of this is an input operand that is a matching constraint like 4227 /// "4". 4228 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4229 assert(!ConstraintCode.empty() && "No known constraint!"); 4230 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4231 } 4232 4233 /// If this is an input matching constraint, this method returns the output 4234 /// operand it matches. 4235 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4236 assert(!ConstraintCode.empty() && "No known constraint!"); 4237 return atoi(ConstraintCode.c_str()); 4238 } 4239 4240 /// Split up the constraint string from the inline assembly value into the 4241 /// specific constraints and their prefixes, and also tie in the associated 4242 /// operand values. 4243 /// If this returns an empty vector, and if the constraint string itself 4244 /// isn't empty, there was an error parsing. 4245 TargetLowering::AsmOperandInfoVector 4246 TargetLowering::ParseConstraints(const DataLayout &DL, 4247 const TargetRegisterInfo *TRI, 4248 ImmutableCallSite CS) const { 4249 /// Information about all of the constraints. 4250 AsmOperandInfoVector ConstraintOperands; 4251 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4252 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4253 4254 // Do a prepass over the constraints, canonicalizing them, and building up the 4255 // ConstraintOperands list. 4256 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4257 unsigned ResNo = 0; // ResNo - The result number of the next output. 4258 4259 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4260 ConstraintOperands.emplace_back(std::move(CI)); 4261 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4262 4263 // Update multiple alternative constraint count. 4264 if (OpInfo.multipleAlternatives.size() > maCount) 4265 maCount = OpInfo.multipleAlternatives.size(); 4266 4267 OpInfo.ConstraintVT = MVT::Other; 4268 4269 // Compute the value type for each operand. 4270 switch (OpInfo.Type) { 4271 case InlineAsm::isOutput: 4272 // Indirect outputs just consume an argument. 4273 if (OpInfo.isIndirect) { 4274 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4275 break; 4276 } 4277 4278 // The return value of the call is this value. As such, there is no 4279 // corresponding argument. 4280 assert(!CS.getType()->isVoidTy() && 4281 "Bad inline asm!"); 4282 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4283 OpInfo.ConstraintVT = 4284 getSimpleValueType(DL, STy->getElementType(ResNo)); 4285 } else { 4286 assert(ResNo == 0 && "Asm only has one result!"); 4287 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4288 } 4289 ++ResNo; 4290 break; 4291 case InlineAsm::isInput: 4292 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4293 break; 4294 case InlineAsm::isClobber: 4295 // Nothing to do. 4296 break; 4297 } 4298 4299 if (OpInfo.CallOperandVal) { 4300 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4301 if (OpInfo.isIndirect) { 4302 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4303 if (!PtrTy) 4304 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4305 OpTy = PtrTy->getElementType(); 4306 } 4307 4308 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4309 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4310 if (STy->getNumElements() == 1) 4311 OpTy = STy->getElementType(0); 4312 4313 // If OpTy is not a single value, it may be a struct/union that we 4314 // can tile with integers. 4315 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4316 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4317 switch (BitSize) { 4318 default: break; 4319 case 1: 4320 case 8: 4321 case 16: 4322 case 32: 4323 case 64: 4324 case 128: 4325 OpInfo.ConstraintVT = 4326 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4327 break; 4328 } 4329 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4330 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4331 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4332 } else { 4333 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4334 } 4335 } 4336 } 4337 4338 // If we have multiple alternative constraints, select the best alternative. 4339 if (!ConstraintOperands.empty()) { 4340 if (maCount) { 4341 unsigned bestMAIndex = 0; 4342 int bestWeight = -1; 4343 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4344 int weight = -1; 4345 unsigned maIndex; 4346 // Compute the sums of the weights for each alternative, keeping track 4347 // of the best (highest weight) one so far. 4348 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4349 int weightSum = 0; 4350 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4351 cIndex != eIndex; ++cIndex) { 4352 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4353 if (OpInfo.Type == InlineAsm::isClobber) 4354 continue; 4355 4356 // If this is an output operand with a matching input operand, 4357 // look up the matching input. If their types mismatch, e.g. one 4358 // is an integer, the other is floating point, or their sizes are 4359 // different, flag it as an maCantMatch. 4360 if (OpInfo.hasMatchingInput()) { 4361 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4362 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4363 if ((OpInfo.ConstraintVT.isInteger() != 4364 Input.ConstraintVT.isInteger()) || 4365 (OpInfo.ConstraintVT.getSizeInBits() != 4366 Input.ConstraintVT.getSizeInBits())) { 4367 weightSum = -1; // Can't match. 4368 break; 4369 } 4370 } 4371 } 4372 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4373 if (weight == -1) { 4374 weightSum = -1; 4375 break; 4376 } 4377 weightSum += weight; 4378 } 4379 // Update best. 4380 if (weightSum > bestWeight) { 4381 bestWeight = weightSum; 4382 bestMAIndex = maIndex; 4383 } 4384 } 4385 4386 // Now select chosen alternative in each constraint. 4387 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4388 cIndex != eIndex; ++cIndex) { 4389 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4390 if (cInfo.Type == InlineAsm::isClobber) 4391 continue; 4392 cInfo.selectAlternative(bestMAIndex); 4393 } 4394 } 4395 } 4396 4397 // Check and hook up tied operands, choose constraint code to use. 4398 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4399 cIndex != eIndex; ++cIndex) { 4400 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4401 4402 // If this is an output operand with a matching input operand, look up the 4403 // matching input. If their types mismatch, e.g. one is an integer, the 4404 // other is floating point, or their sizes are different, flag it as an 4405 // error. 4406 if (OpInfo.hasMatchingInput()) { 4407 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4408 4409 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4410 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4411 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4412 OpInfo.ConstraintVT); 4413 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4414 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4415 Input.ConstraintVT); 4416 if ((OpInfo.ConstraintVT.isInteger() != 4417 Input.ConstraintVT.isInteger()) || 4418 (MatchRC.second != InputRC.second)) { 4419 report_fatal_error("Unsupported asm: input constraint" 4420 " with a matching output constraint of" 4421 " incompatible type!"); 4422 } 4423 } 4424 } 4425 } 4426 4427 return ConstraintOperands; 4428 } 4429 4430 /// Return an integer indicating how general CT is. 4431 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4432 switch (CT) { 4433 case TargetLowering::C_Immediate: 4434 case TargetLowering::C_Other: 4435 case TargetLowering::C_Unknown: 4436 return 0; 4437 case TargetLowering::C_Register: 4438 return 1; 4439 case TargetLowering::C_RegisterClass: 4440 return 2; 4441 case TargetLowering::C_Memory: 4442 return 3; 4443 } 4444 llvm_unreachable("Invalid constraint type"); 4445 } 4446 4447 /// Examine constraint type and operand type and determine a weight value. 4448 /// This object must already have been set up with the operand type 4449 /// and the current alternative constraint selected. 4450 TargetLowering::ConstraintWeight 4451 TargetLowering::getMultipleConstraintMatchWeight( 4452 AsmOperandInfo &info, int maIndex) const { 4453 InlineAsm::ConstraintCodeVector *rCodes; 4454 if (maIndex >= (int)info.multipleAlternatives.size()) 4455 rCodes = &info.Codes; 4456 else 4457 rCodes = &info.multipleAlternatives[maIndex].Codes; 4458 ConstraintWeight BestWeight = CW_Invalid; 4459 4460 // Loop over the options, keeping track of the most general one. 4461 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4462 ConstraintWeight weight = 4463 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4464 if (weight > BestWeight) 4465 BestWeight = weight; 4466 } 4467 4468 return BestWeight; 4469 } 4470 4471 /// Examine constraint type and operand type and determine a weight value. 4472 /// This object must already have been set up with the operand type 4473 /// and the current alternative constraint selected. 4474 TargetLowering::ConstraintWeight 4475 TargetLowering::getSingleConstraintMatchWeight( 4476 AsmOperandInfo &info, const char *constraint) const { 4477 ConstraintWeight weight = CW_Invalid; 4478 Value *CallOperandVal = info.CallOperandVal; 4479 // If we don't have a value, we can't do a match, 4480 // but allow it at the lowest weight. 4481 if (!CallOperandVal) 4482 return CW_Default; 4483 // Look at the constraint type. 4484 switch (*constraint) { 4485 case 'i': // immediate integer. 4486 case 'n': // immediate integer with a known value. 4487 if (isa<ConstantInt>(CallOperandVal)) 4488 weight = CW_Constant; 4489 break; 4490 case 's': // non-explicit intregal immediate. 4491 if (isa<GlobalValue>(CallOperandVal)) 4492 weight = CW_Constant; 4493 break; 4494 case 'E': // immediate float if host format. 4495 case 'F': // immediate float. 4496 if (isa<ConstantFP>(CallOperandVal)) 4497 weight = CW_Constant; 4498 break; 4499 case '<': // memory operand with autodecrement. 4500 case '>': // memory operand with autoincrement. 4501 case 'm': // memory operand. 4502 case 'o': // offsettable memory operand 4503 case 'V': // non-offsettable memory operand 4504 weight = CW_Memory; 4505 break; 4506 case 'r': // general register. 4507 case 'g': // general register, memory operand or immediate integer. 4508 // note: Clang converts "g" to "imr". 4509 if (CallOperandVal->getType()->isIntegerTy()) 4510 weight = CW_Register; 4511 break; 4512 case 'X': // any operand. 4513 default: 4514 weight = CW_Default; 4515 break; 4516 } 4517 return weight; 4518 } 4519 4520 /// If there are multiple different constraints that we could pick for this 4521 /// operand (e.g. "imr") try to pick the 'best' one. 4522 /// This is somewhat tricky: constraints fall into four classes: 4523 /// Other -> immediates and magic values 4524 /// Register -> one specific register 4525 /// RegisterClass -> a group of regs 4526 /// Memory -> memory 4527 /// Ideally, we would pick the most specific constraint possible: if we have 4528 /// something that fits into a register, we would pick it. The problem here 4529 /// is that if we have something that could either be in a register or in 4530 /// memory that use of the register could cause selection of *other* 4531 /// operands to fail: they might only succeed if we pick memory. Because of 4532 /// this the heuristic we use is: 4533 /// 4534 /// 1) If there is an 'other' constraint, and if the operand is valid for 4535 /// that constraint, use it. This makes us take advantage of 'i' 4536 /// constraints when available. 4537 /// 2) Otherwise, pick the most general constraint present. This prefers 4538 /// 'm' over 'r', for example. 4539 /// 4540 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4541 const TargetLowering &TLI, 4542 SDValue Op, SelectionDAG *DAG) { 4543 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4544 unsigned BestIdx = 0; 4545 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4546 int BestGenerality = -1; 4547 4548 // Loop over the options, keeping track of the most general one. 4549 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4550 TargetLowering::ConstraintType CType = 4551 TLI.getConstraintType(OpInfo.Codes[i]); 4552 4553 // Indirect 'other' or 'immediate' constraints are not allowed. 4554 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4555 CType == TargetLowering::C_Register || 4556 CType == TargetLowering::C_RegisterClass)) 4557 continue; 4558 4559 // If this is an 'other' or 'immediate' constraint, see if the operand is 4560 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4561 // the operand is an integer in the range [0..31] we want to use I (saving a 4562 // load of a register), otherwise we must use 'r'. 4563 if ((CType == TargetLowering::C_Other || 4564 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4565 assert(OpInfo.Codes[i].size() == 1 && 4566 "Unhandled multi-letter 'other' constraint"); 4567 std::vector<SDValue> ResultOps; 4568 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4569 ResultOps, *DAG); 4570 if (!ResultOps.empty()) { 4571 BestType = CType; 4572 BestIdx = i; 4573 break; 4574 } 4575 } 4576 4577 // Things with matching constraints can only be registers, per gcc 4578 // documentation. This mainly affects "g" constraints. 4579 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4580 continue; 4581 4582 // This constraint letter is more general than the previous one, use it. 4583 int Generality = getConstraintGenerality(CType); 4584 if (Generality > BestGenerality) { 4585 BestType = CType; 4586 BestIdx = i; 4587 BestGenerality = Generality; 4588 } 4589 } 4590 4591 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4592 OpInfo.ConstraintType = BestType; 4593 } 4594 4595 /// Determines the constraint code and constraint type to use for the specific 4596 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4597 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4598 SDValue Op, 4599 SelectionDAG *DAG) const { 4600 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4601 4602 // Single-letter constraints ('r') are very common. 4603 if (OpInfo.Codes.size() == 1) { 4604 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4605 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4606 } else { 4607 ChooseConstraint(OpInfo, *this, Op, DAG); 4608 } 4609 4610 // 'X' matches anything. 4611 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4612 // Labels and constants are handled elsewhere ('X' is the only thing 4613 // that matches labels). For Functions, the type here is the type of 4614 // the result, which is not what we want to look at; leave them alone. 4615 Value *v = OpInfo.CallOperandVal; 4616 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4617 OpInfo.CallOperandVal = v; 4618 return; 4619 } 4620 4621 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4622 return; 4623 4624 // Otherwise, try to resolve it to something we know about by looking at 4625 // the actual operand type. 4626 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4627 OpInfo.ConstraintCode = Repl; 4628 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4629 } 4630 } 4631 } 4632 4633 /// Given an exact SDIV by a constant, create a multiplication 4634 /// with the multiplicative inverse of the constant. 4635 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4636 const SDLoc &dl, SelectionDAG &DAG, 4637 SmallVectorImpl<SDNode *> &Created) { 4638 SDValue Op0 = N->getOperand(0); 4639 SDValue Op1 = N->getOperand(1); 4640 EVT VT = N->getValueType(0); 4641 EVT SVT = VT.getScalarType(); 4642 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4643 EVT ShSVT = ShVT.getScalarType(); 4644 4645 bool UseSRA = false; 4646 SmallVector<SDValue, 16> Shifts, Factors; 4647 4648 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4649 if (C->isNullValue()) 4650 return false; 4651 APInt Divisor = C->getAPIntValue(); 4652 unsigned Shift = Divisor.countTrailingZeros(); 4653 if (Shift) { 4654 Divisor.ashrInPlace(Shift); 4655 UseSRA = true; 4656 } 4657 // Calculate the multiplicative inverse, using Newton's method. 4658 APInt t; 4659 APInt Factor = Divisor; 4660 while ((t = Divisor * Factor) != 1) 4661 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4662 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4663 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4664 return true; 4665 }; 4666 4667 // Collect all magic values from the build vector. 4668 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4669 return SDValue(); 4670 4671 SDValue Shift, Factor; 4672 if (VT.isVector()) { 4673 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4674 Factor = DAG.getBuildVector(VT, dl, Factors); 4675 } else { 4676 Shift = Shifts[0]; 4677 Factor = Factors[0]; 4678 } 4679 4680 SDValue Res = Op0; 4681 4682 // Shift the value upfront if it is even, so the LSB is one. 4683 if (UseSRA) { 4684 // TODO: For UDIV use SRL instead of SRA. 4685 SDNodeFlags Flags; 4686 Flags.setExact(true); 4687 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4688 Created.push_back(Res.getNode()); 4689 } 4690 4691 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4692 } 4693 4694 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4695 SelectionDAG &DAG, 4696 SmallVectorImpl<SDNode *> &Created) const { 4697 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4699 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4700 return SDValue(N, 0); // Lower SDIV as SDIV 4701 return SDValue(); 4702 } 4703 4704 /// Given an ISD::SDIV node expressing a divide by constant, 4705 /// return a DAG expression to select that will generate the same value by 4706 /// multiplying by a magic number. 4707 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4708 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4709 bool IsAfterLegalization, 4710 SmallVectorImpl<SDNode *> &Created) const { 4711 SDLoc dl(N); 4712 EVT VT = N->getValueType(0); 4713 EVT SVT = VT.getScalarType(); 4714 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4715 EVT ShSVT = ShVT.getScalarType(); 4716 unsigned EltBits = VT.getScalarSizeInBits(); 4717 4718 // Check to see if we can do this. 4719 // FIXME: We should be more aggressive here. 4720 if (!isTypeLegal(VT)) 4721 return SDValue(); 4722 4723 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4724 if (N->getFlags().hasExact()) 4725 return BuildExactSDIV(*this, N, dl, DAG, Created); 4726 4727 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4728 4729 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4730 if (C->isNullValue()) 4731 return false; 4732 4733 const APInt &Divisor = C->getAPIntValue(); 4734 APInt::ms magics = Divisor.magic(); 4735 int NumeratorFactor = 0; 4736 int ShiftMask = -1; 4737 4738 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4739 // If d is +1/-1, we just multiply the numerator by +1/-1. 4740 NumeratorFactor = Divisor.getSExtValue(); 4741 magics.m = 0; 4742 magics.s = 0; 4743 ShiftMask = 0; 4744 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4745 // If d > 0 and m < 0, add the numerator. 4746 NumeratorFactor = 1; 4747 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4748 // If d < 0 and m > 0, subtract the numerator. 4749 NumeratorFactor = -1; 4750 } 4751 4752 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4753 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4754 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4755 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4756 return true; 4757 }; 4758 4759 SDValue N0 = N->getOperand(0); 4760 SDValue N1 = N->getOperand(1); 4761 4762 // Collect the shifts / magic values from each element. 4763 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4764 return SDValue(); 4765 4766 SDValue MagicFactor, Factor, Shift, ShiftMask; 4767 if (VT.isVector()) { 4768 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4769 Factor = DAG.getBuildVector(VT, dl, Factors); 4770 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4771 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4772 } else { 4773 MagicFactor = MagicFactors[0]; 4774 Factor = Factors[0]; 4775 Shift = Shifts[0]; 4776 ShiftMask = ShiftMasks[0]; 4777 } 4778 4779 // Multiply the numerator (operand 0) by the magic value. 4780 // FIXME: We should support doing a MUL in a wider type. 4781 SDValue Q; 4782 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4783 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4784 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4785 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4786 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4787 SDValue LoHi = 4788 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4789 Q = SDValue(LoHi.getNode(), 1); 4790 } else 4791 return SDValue(); // No mulhs or equivalent. 4792 Created.push_back(Q.getNode()); 4793 4794 // (Optionally) Add/subtract the numerator using Factor. 4795 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4796 Created.push_back(Factor.getNode()); 4797 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4798 Created.push_back(Q.getNode()); 4799 4800 // Shift right algebraic by shift value. 4801 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4802 Created.push_back(Q.getNode()); 4803 4804 // Extract the sign bit, mask it and add it to the quotient. 4805 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4806 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4807 Created.push_back(T.getNode()); 4808 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4809 Created.push_back(T.getNode()); 4810 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4811 } 4812 4813 /// Given an ISD::UDIV node expressing a divide by constant, 4814 /// return a DAG expression to select that will generate the same value by 4815 /// multiplying by a magic number. 4816 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4817 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4818 bool IsAfterLegalization, 4819 SmallVectorImpl<SDNode *> &Created) const { 4820 SDLoc dl(N); 4821 EVT VT = N->getValueType(0); 4822 EVT SVT = VT.getScalarType(); 4823 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4824 EVT ShSVT = ShVT.getScalarType(); 4825 unsigned EltBits = VT.getScalarSizeInBits(); 4826 4827 // Check to see if we can do this. 4828 // FIXME: We should be more aggressive here. 4829 if (!isTypeLegal(VT)) 4830 return SDValue(); 4831 4832 bool UseNPQ = false; 4833 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4834 4835 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4836 if (C->isNullValue()) 4837 return false; 4838 // FIXME: We should use a narrower constant when the upper 4839 // bits are known to be zero. 4840 APInt Divisor = C->getAPIntValue(); 4841 APInt::mu magics = Divisor.magicu(); 4842 unsigned PreShift = 0, PostShift = 0; 4843 4844 // If the divisor is even, we can avoid using the expensive fixup by 4845 // shifting the divided value upfront. 4846 if (magics.a != 0 && !Divisor[0]) { 4847 PreShift = Divisor.countTrailingZeros(); 4848 // Get magic number for the shifted divisor. 4849 magics = Divisor.lshr(PreShift).magicu(PreShift); 4850 assert(magics.a == 0 && "Should use cheap fixup now"); 4851 } 4852 4853 APInt Magic = magics.m; 4854 4855 unsigned SelNPQ; 4856 if (magics.a == 0 || Divisor.isOneValue()) { 4857 assert(magics.s < Divisor.getBitWidth() && 4858 "We shouldn't generate an undefined shift!"); 4859 PostShift = magics.s; 4860 SelNPQ = false; 4861 } else { 4862 PostShift = magics.s - 1; 4863 SelNPQ = true; 4864 } 4865 4866 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4867 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4868 NPQFactors.push_back( 4869 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4870 : APInt::getNullValue(EltBits), 4871 dl, SVT)); 4872 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4873 UseNPQ |= SelNPQ; 4874 return true; 4875 }; 4876 4877 SDValue N0 = N->getOperand(0); 4878 SDValue N1 = N->getOperand(1); 4879 4880 // Collect the shifts/magic values from each element. 4881 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4882 return SDValue(); 4883 4884 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4885 if (VT.isVector()) { 4886 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4887 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4888 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4889 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4890 } else { 4891 PreShift = PreShifts[0]; 4892 MagicFactor = MagicFactors[0]; 4893 PostShift = PostShifts[0]; 4894 } 4895 4896 SDValue Q = N0; 4897 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4898 Created.push_back(Q.getNode()); 4899 4900 // FIXME: We should support doing a MUL in a wider type. 4901 auto GetMULHU = [&](SDValue X, SDValue Y) { 4902 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4903 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4904 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4905 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4906 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4907 SDValue LoHi = 4908 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4909 return SDValue(LoHi.getNode(), 1); 4910 } 4911 return SDValue(); // No mulhu or equivalent 4912 }; 4913 4914 // Multiply the numerator (operand 0) by the magic value. 4915 Q = GetMULHU(Q, MagicFactor); 4916 if (!Q) 4917 return SDValue(); 4918 4919 Created.push_back(Q.getNode()); 4920 4921 if (UseNPQ) { 4922 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4923 Created.push_back(NPQ.getNode()); 4924 4925 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4926 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4927 if (VT.isVector()) 4928 NPQ = GetMULHU(NPQ, NPQFactor); 4929 else 4930 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4931 4932 Created.push_back(NPQ.getNode()); 4933 4934 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4935 Created.push_back(Q.getNode()); 4936 } 4937 4938 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4939 Created.push_back(Q.getNode()); 4940 4941 SDValue One = DAG.getConstant(1, dl, VT); 4942 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4943 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4944 } 4945 4946 /// If all values in Values that *don't* match the predicate are same 'splat' 4947 /// value, then replace all values with that splat value. 4948 /// Else, if AlternativeReplacement was provided, then replace all values that 4949 /// do match predicate with AlternativeReplacement value. 4950 static void 4951 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4952 std::function<bool(SDValue)> Predicate, 4953 SDValue AlternativeReplacement = SDValue()) { 4954 SDValue Replacement; 4955 // Is there a value for which the Predicate does *NOT* match? What is it? 4956 auto SplatValue = llvm::find_if_not(Values, Predicate); 4957 if (SplatValue != Values.end()) { 4958 // Does Values consist only of SplatValue's and values matching Predicate? 4959 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4960 return Value == *SplatValue || Predicate(Value); 4961 })) // Then we shall replace values matching predicate with SplatValue. 4962 Replacement = *SplatValue; 4963 } 4964 if (!Replacement) { 4965 // Oops, we did not find the "baseline" splat value. 4966 if (!AlternativeReplacement) 4967 return; // Nothing to do. 4968 // Let's replace with provided value then. 4969 Replacement = AlternativeReplacement; 4970 } 4971 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4972 } 4973 4974 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4975 /// where the divisor is constant and the comparison target is zero, 4976 /// return a DAG expression that will generate the same comparison result 4977 /// using only multiplications, additions and shifts/rotations. 4978 /// Ref: "Hacker's Delight" 10-17. 4979 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4980 SDValue CompTargetNode, 4981 ISD::CondCode Cond, 4982 DAGCombinerInfo &DCI, 4983 const SDLoc &DL) const { 4984 SmallVector<SDNode *, 5> Built; 4985 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4986 DCI, DL, Built)) { 4987 for (SDNode *N : Built) 4988 DCI.AddToWorklist(N); 4989 return Folded; 4990 } 4991 4992 return SDValue(); 4993 } 4994 4995 SDValue 4996 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4997 SDValue CompTargetNode, ISD::CondCode Cond, 4998 DAGCombinerInfo &DCI, const SDLoc &DL, 4999 SmallVectorImpl<SDNode *> &Created) const { 5000 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5001 // - D must be constant, with D = D0 * 2^K where D0 is odd 5002 // - P is the multiplicative inverse of D0 modulo 2^W 5003 // - Q = floor(((2^W) - 1) / D) 5004 // where W is the width of the common type of N and D. 5005 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5006 "Only applicable for (in)equality comparisons."); 5007 5008 SelectionDAG &DAG = DCI.DAG; 5009 5010 EVT VT = REMNode.getValueType(); 5011 EVT SVT = VT.getScalarType(); 5012 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5013 EVT ShSVT = ShVT.getScalarType(); 5014 5015 // If MUL is unavailable, we cannot proceed in any case. 5016 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5017 return SDValue(); 5018 5019 bool ComparingWithAllZeros = true; 5020 bool AllComparisonsWithNonZerosAreTautological = true; 5021 bool HadTautologicalLanes = false; 5022 bool AllLanesAreTautological = true; 5023 bool HadEvenDivisor = false; 5024 bool AllDivisorsArePowerOfTwo = true; 5025 bool HadTautologicalInvertedLanes = false; 5026 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5027 5028 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5029 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5030 if (CDiv->isNullValue()) 5031 return false; 5032 5033 const APInt &D = CDiv->getAPIntValue(); 5034 const APInt &Cmp = CCmp->getAPIntValue(); 5035 5036 ComparingWithAllZeros &= Cmp.isNullValue(); 5037 5038 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5039 // if C2 is not less than C1, the comparison is always false. 5040 // But we will only be able to produce the comparison that will give the 5041 // opposive tautological answer. So this lane would need to be fixed up. 5042 bool TautologicalInvertedLane = D.ule(Cmp); 5043 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5044 5045 // If all lanes are tautological (either all divisors are ones, or divisor 5046 // is not greater than the constant we are comparing with), 5047 // we will prefer to avoid the fold. 5048 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5049 HadTautologicalLanes |= TautologicalLane; 5050 AllLanesAreTautological &= TautologicalLane; 5051 5052 // If we are comparing with non-zero, we need'll need to subtract said 5053 // comparison value from the LHS. But there is no point in doing that if 5054 // every lane where we are comparing with non-zero is tautological.. 5055 if (!Cmp.isNullValue()) 5056 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5057 5058 // Decompose D into D0 * 2^K 5059 unsigned K = D.countTrailingZeros(); 5060 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5061 APInt D0 = D.lshr(K); 5062 5063 // D is even if it has trailing zeros. 5064 HadEvenDivisor |= (K != 0); 5065 // D is a power-of-two if D0 is one. 5066 // If all divisors are power-of-two, we will prefer to avoid the fold. 5067 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5068 5069 // P = inv(D0, 2^W) 5070 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5071 unsigned W = D.getBitWidth(); 5072 APInt P = D0.zext(W + 1) 5073 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5074 .trunc(W); 5075 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5076 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5077 5078 // Q = floor((2^W - 1) u/ D) 5079 // R = ((2^W - 1) u% D) 5080 APInt Q, R; 5081 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5082 5083 // If we are comparing with zero, then that comparison constant is okay, 5084 // else it may need to be one less than that. 5085 if (Cmp.ugt(R)) 5086 Q -= 1; 5087 5088 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5089 "We are expecting that K is always less than all-ones for ShSVT"); 5090 5091 // If the lane is tautological the result can be constant-folded. 5092 if (TautologicalLane) { 5093 // Set P and K amount to a bogus values so we can try to splat them. 5094 P = 0; 5095 K = -1; 5096 // And ensure that comparison constant is tautological, 5097 // it will always compare true/false. 5098 Q = -1; 5099 } 5100 5101 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5102 KAmts.push_back( 5103 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5104 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5105 return true; 5106 }; 5107 5108 SDValue N = REMNode.getOperand(0); 5109 SDValue D = REMNode.getOperand(1); 5110 5111 // Collect the values from each element. 5112 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5113 return SDValue(); 5114 5115 // If all lanes are tautological, the result can be constant-folded. 5116 if (AllLanesAreTautological) 5117 return SDValue(); 5118 5119 // If this is a urem by a powers-of-two, avoid the fold since it can be 5120 // best implemented as a bit test. 5121 if (AllDivisorsArePowerOfTwo) 5122 return SDValue(); 5123 5124 SDValue PVal, KVal, QVal; 5125 if (VT.isVector()) { 5126 if (HadTautologicalLanes) { 5127 // Try to turn PAmts into a splat, since we don't care about the values 5128 // that are currently '0'. If we can't, just keep '0'`s. 5129 turnVectorIntoSplatVector(PAmts, isNullConstant); 5130 // Try to turn KAmts into a splat, since we don't care about the values 5131 // that are currently '-1'. If we can't, change them to '0'`s. 5132 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5133 DAG.getConstant(0, DL, ShSVT)); 5134 } 5135 5136 PVal = DAG.getBuildVector(VT, DL, PAmts); 5137 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5138 QVal = DAG.getBuildVector(VT, DL, QAmts); 5139 } else { 5140 PVal = PAmts[0]; 5141 KVal = KAmts[0]; 5142 QVal = QAmts[0]; 5143 } 5144 5145 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5146 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5147 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5148 assert(CompTargetNode.getValueType() == N.getValueType() && 5149 "Expecting that the types on LHS and RHS of comparisons match."); 5150 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5151 } 5152 5153 // (mul N, P) 5154 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5155 Created.push_back(Op0.getNode()); 5156 5157 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5158 // divisors as a performance improvement, since rotating by 0 is a no-op. 5159 if (HadEvenDivisor) { 5160 // We need ROTR to do this. 5161 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5162 return SDValue(); 5163 SDNodeFlags Flags; 5164 Flags.setExact(true); 5165 // UREM: (rotr (mul N, P), K) 5166 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5167 Created.push_back(Op0.getNode()); 5168 } 5169 5170 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5171 SDValue NewCC = 5172 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5173 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5174 if (!HadTautologicalInvertedLanes) 5175 return NewCC; 5176 5177 // If any lanes previously compared always-false, the NewCC will give 5178 // always-true result for them, so we need to fixup those lanes. 5179 // Or the other way around for inequality predicate. 5180 assert(VT.isVector() && "Can/should only get here for vectors."); 5181 Created.push_back(NewCC.getNode()); 5182 5183 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5184 // if C2 is not less than C1, the comparison is always false. 5185 // But we have produced the comparison that will give the 5186 // opposive tautological answer. So these lanes would need to be fixed up. 5187 SDValue TautologicalInvertedChannels = 5188 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5189 Created.push_back(TautologicalInvertedChannels.getNode()); 5190 5191 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5192 // If we have a vector select, let's replace the comparison results in the 5193 // affected lanes with the correct tautological result. 5194 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5195 DL, SETCCVT, SETCCVT); 5196 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5197 Replacement, NewCC); 5198 } 5199 5200 // Else, we can just invert the comparison result in the appropriate lanes. 5201 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5202 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5203 TautologicalInvertedChannels); 5204 5205 return SDValue(); // Don't know how to lower. 5206 } 5207 5208 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5209 /// where the divisor is constant and the comparison target is zero, 5210 /// return a DAG expression that will generate the same comparison result 5211 /// using only multiplications, additions and shifts/rotations. 5212 /// Ref: "Hacker's Delight" 10-17. 5213 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5214 SDValue CompTargetNode, 5215 ISD::CondCode Cond, 5216 DAGCombinerInfo &DCI, 5217 const SDLoc &DL) const { 5218 SmallVector<SDNode *, 7> Built; 5219 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5220 DCI, DL, Built)) { 5221 assert(Built.size() <= 7 && "Max size prediction failed."); 5222 for (SDNode *N : Built) 5223 DCI.AddToWorklist(N); 5224 return Folded; 5225 } 5226 5227 return SDValue(); 5228 } 5229 5230 SDValue 5231 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5232 SDValue CompTargetNode, ISD::CondCode Cond, 5233 DAGCombinerInfo &DCI, const SDLoc &DL, 5234 SmallVectorImpl<SDNode *> &Created) const { 5235 // Fold: 5236 // (seteq/ne (srem N, D), 0) 5237 // To: 5238 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5239 // 5240 // - D must be constant, with D = D0 * 2^K where D0 is odd 5241 // - P is the multiplicative inverse of D0 modulo 2^W 5242 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5243 // - Q = floor((2 * A) / (2^K)) 5244 // where W is the width of the common type of N and D. 5245 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5246 "Only applicable for (in)equality comparisons."); 5247 5248 SelectionDAG &DAG = DCI.DAG; 5249 5250 EVT VT = REMNode.getValueType(); 5251 EVT SVT = VT.getScalarType(); 5252 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5253 EVT ShSVT = ShVT.getScalarType(); 5254 5255 // If MUL is unavailable, we cannot proceed in any case. 5256 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5257 return SDValue(); 5258 5259 // TODO: Could support comparing with non-zero too. 5260 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5261 if (!CompTarget || !CompTarget->isNullValue()) 5262 return SDValue(); 5263 5264 bool HadIntMinDivisor = false; 5265 bool HadOneDivisor = false; 5266 bool AllDivisorsAreOnes = true; 5267 bool HadEvenDivisor = false; 5268 bool NeedToApplyOffset = false; 5269 bool AllDivisorsArePowerOfTwo = true; 5270 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5271 5272 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5273 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5274 if (C->isNullValue()) 5275 return false; 5276 5277 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5278 5279 // WARNING: this fold is only valid for positive divisors! 5280 APInt D = C->getAPIntValue(); 5281 if (D.isNegative()) 5282 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5283 5284 HadIntMinDivisor |= D.isMinSignedValue(); 5285 5286 // If all divisors are ones, we will prefer to avoid the fold. 5287 HadOneDivisor |= D.isOneValue(); 5288 AllDivisorsAreOnes &= D.isOneValue(); 5289 5290 // Decompose D into D0 * 2^K 5291 unsigned K = D.countTrailingZeros(); 5292 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5293 APInt D0 = D.lshr(K); 5294 5295 if (!D.isMinSignedValue()) { 5296 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5297 // we don't care about this lane in this fold, we'll special-handle it. 5298 HadEvenDivisor |= (K != 0); 5299 } 5300 5301 // D is a power-of-two if D0 is one. This includes INT_MIN. 5302 // If all divisors are power-of-two, we will prefer to avoid the fold. 5303 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5304 5305 // P = inv(D0, 2^W) 5306 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5307 unsigned W = D.getBitWidth(); 5308 APInt P = D0.zext(W + 1) 5309 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5310 .trunc(W); 5311 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5312 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5313 5314 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5315 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5316 A.clearLowBits(K); 5317 5318 if (!D.isMinSignedValue()) { 5319 // If divisor INT_MIN, then we don't care about this lane in this fold, 5320 // we'll special-handle it. 5321 NeedToApplyOffset |= A != 0; 5322 } 5323 5324 // Q = floor((2 * A) / (2^K)) 5325 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5326 5327 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5328 "We are expecting that A is always less than all-ones for SVT"); 5329 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5330 "We are expecting that K is always less than all-ones for ShSVT"); 5331 5332 // If the divisor is 1 the result can be constant-folded. Likewise, we 5333 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5334 if (D.isOneValue()) { 5335 // Set P, A and K to a bogus values so we can try to splat them. 5336 P = 0; 5337 A = -1; 5338 K = -1; 5339 5340 // x ?% 1 == 0 <--> true <--> x u<= -1 5341 Q = -1; 5342 } 5343 5344 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5345 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5346 KAmts.push_back( 5347 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5348 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5349 return true; 5350 }; 5351 5352 SDValue N = REMNode.getOperand(0); 5353 SDValue D = REMNode.getOperand(1); 5354 5355 // Collect the values from each element. 5356 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5357 return SDValue(); 5358 5359 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5360 if (AllDivisorsAreOnes) 5361 return SDValue(); 5362 5363 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5364 // since it can be best implemented as a bit test. 5365 if (AllDivisorsArePowerOfTwo) 5366 return SDValue(); 5367 5368 SDValue PVal, AVal, KVal, QVal; 5369 if (VT.isVector()) { 5370 if (HadOneDivisor) { 5371 // Try to turn PAmts into a splat, since we don't care about the values 5372 // that are currently '0'. If we can't, just keep '0'`s. 5373 turnVectorIntoSplatVector(PAmts, isNullConstant); 5374 // Try to turn AAmts into a splat, since we don't care about the 5375 // values that are currently '-1'. If we can't, change them to '0'`s. 5376 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5377 DAG.getConstant(0, DL, SVT)); 5378 // Try to turn KAmts into a splat, since we don't care about the values 5379 // that are currently '-1'. If we can't, change them to '0'`s. 5380 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5381 DAG.getConstant(0, DL, ShSVT)); 5382 } 5383 5384 PVal = DAG.getBuildVector(VT, DL, PAmts); 5385 AVal = DAG.getBuildVector(VT, DL, AAmts); 5386 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5387 QVal = DAG.getBuildVector(VT, DL, QAmts); 5388 } else { 5389 PVal = PAmts[0]; 5390 AVal = AAmts[0]; 5391 KVal = KAmts[0]; 5392 QVal = QAmts[0]; 5393 } 5394 5395 // (mul N, P) 5396 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5397 Created.push_back(Op0.getNode()); 5398 5399 if (NeedToApplyOffset) { 5400 // We need ADD to do this. 5401 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5402 return SDValue(); 5403 5404 // (add (mul N, P), A) 5405 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5406 Created.push_back(Op0.getNode()); 5407 } 5408 5409 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5410 // divisors as a performance improvement, since rotating by 0 is a no-op. 5411 if (HadEvenDivisor) { 5412 // We need ROTR to do this. 5413 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5414 return SDValue(); 5415 SDNodeFlags Flags; 5416 Flags.setExact(true); 5417 // SREM: (rotr (add (mul N, P), A), K) 5418 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5419 Created.push_back(Op0.getNode()); 5420 } 5421 5422 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5423 SDValue Fold = 5424 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5425 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5426 5427 // If we didn't have lanes with INT_MIN divisor, then we're done. 5428 if (!HadIntMinDivisor) 5429 return Fold; 5430 5431 // That fold is only valid for positive divisors. Which effectively means, 5432 // it is invalid for INT_MIN divisors. So if we have such a lane, 5433 // we must fix-up results for said lanes. 5434 assert(VT.isVector() && "Can/should only get here for vectors."); 5435 5436 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5437 !isOperationLegalOrCustom(ISD::AND, VT) || 5438 !isOperationLegalOrCustom(Cond, VT) || 5439 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5440 return SDValue(); 5441 5442 Created.push_back(Fold.getNode()); 5443 5444 SDValue IntMin = DAG.getConstant( 5445 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5446 SDValue IntMax = DAG.getConstant( 5447 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5448 SDValue Zero = 5449 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5450 5451 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5452 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5453 Created.push_back(DivisorIsIntMin.getNode()); 5454 5455 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5456 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5457 Created.push_back(Masked.getNode()); 5458 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5459 Created.push_back(MaskedIsZero.getNode()); 5460 5461 // To produce final result we need to blend 2 vectors: 'SetCC' and 5462 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5463 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5464 // constant-folded, select can get lowered to a shuffle with constant mask. 5465 SDValue Blended = 5466 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5467 5468 return Blended; 5469 } 5470 5471 bool TargetLowering:: 5472 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5473 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5474 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5475 "be a constant integer"); 5476 return true; 5477 } 5478 5479 return false; 5480 } 5481 5482 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, 5483 bool LegalOperations, bool ForCodeSize, 5484 unsigned Depth) const { 5485 // fneg is removable even if it has multiple uses. 5486 if (Op.getOpcode() == ISD::FNEG) 5487 return 2; 5488 5489 // Don't allow anything with multiple uses unless we know it is free. 5490 EVT VT = Op.getValueType(); 5491 const SDNodeFlags Flags = Op->getFlags(); 5492 const TargetOptions &Options = DAG.getTarget().Options; 5493 if (!Op.hasOneUse()) { 5494 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5495 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5496 5497 // If we already have the use of the negated floating constant, it is free 5498 // to negate it even it has multiple uses. 5499 bool IsFreeConstant = 5500 Op.getOpcode() == ISD::ConstantFP && 5501 !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize) 5502 .use_empty(); 5503 5504 if (!IsFreeExtend && !IsFreeConstant) 5505 return 0; 5506 } 5507 5508 // Don't recurse exponentially. 5509 if (Depth > SelectionDAG::MaxRecursionDepth) 5510 return 0; 5511 5512 switch (Op.getOpcode()) { 5513 case ISD::ConstantFP: { 5514 if (!LegalOperations) 5515 return 1; 5516 5517 // Don't invert constant FP values after legalization unless the target says 5518 // the negated constant is legal. 5519 return isOperationLegal(ISD::ConstantFP, VT) || 5520 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5521 ForCodeSize); 5522 } 5523 case ISD::BUILD_VECTOR: { 5524 // Only permit BUILD_VECTOR of constants. 5525 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5526 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5527 })) 5528 return 0; 5529 if (!LegalOperations) 5530 return 1; 5531 if (isOperationLegal(ISD::ConstantFP, VT) && 5532 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5533 return 1; 5534 return llvm::all_of(Op->op_values(), [&](SDValue N) { 5535 return N.isUndef() || 5536 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5537 ForCodeSize); 5538 }); 5539 } 5540 case ISD::FADD: 5541 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5542 return 0; 5543 5544 // After operation legalization, it might not be legal to create new FSUBs. 5545 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5546 return 0; 5547 5548 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5549 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5550 ForCodeSize, Depth + 1)) 5551 return V; 5552 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5553 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5554 ForCodeSize, Depth + 1); 5555 case ISD::FSUB: 5556 // We can't turn -(A-B) into B-A when we honor signed zeros. 5557 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5558 return 0; 5559 5560 // fold (fneg (fsub A, B)) -> (fsub B, A) 5561 return 1; 5562 5563 case ISD::FMUL: 5564 case ISD::FDIV: 5565 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5566 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5567 ForCodeSize, Depth + 1)) 5568 return V; 5569 5570 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5571 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5572 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5573 return 0; 5574 5575 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5576 ForCodeSize, Depth + 1); 5577 5578 case ISD::FMA: 5579 case ISD::FMAD: { 5580 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5581 return 0; 5582 5583 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5584 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5585 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, 5586 ForCodeSize, Depth + 1); 5587 if (!V2) 5588 return 0; 5589 5590 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5591 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5592 ForCodeSize, Depth + 1); 5593 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5594 ForCodeSize, Depth + 1); 5595 char V01 = std::max(V0, V1); 5596 return V01 ? std::max(V01, V2) : 0; 5597 } 5598 5599 case ISD::FP_EXTEND: 5600 case ISD::FP_ROUND: 5601 case ISD::FSIN: 5602 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5603 ForCodeSize, Depth + 1); 5604 } 5605 5606 return 0; 5607 } 5608 5609 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5610 bool LegalOperations, 5611 bool ForCodeSize, 5612 unsigned Depth) const { 5613 // fneg is removable even if it has multiple uses. 5614 if (Op.getOpcode() == ISD::FNEG) 5615 return Op.getOperand(0); 5616 5617 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5618 "getNegatedExpression doesn't match isNegatibleForFree"); 5619 const SDNodeFlags Flags = Op->getFlags(); 5620 5621 switch (Op.getOpcode()) { 5622 case ISD::ConstantFP: { 5623 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5624 V.changeSign(); 5625 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5626 } 5627 case ISD::BUILD_VECTOR: { 5628 SmallVector<SDValue, 4> Ops; 5629 for (SDValue C : Op->op_values()) { 5630 if (C.isUndef()) { 5631 Ops.push_back(C); 5632 continue; 5633 } 5634 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5635 V.changeSign(); 5636 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5637 } 5638 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5639 } 5640 case ISD::FADD: 5641 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5642 Flags.hasNoSignedZeros()) && 5643 "Expected NSZ fp-flag"); 5644 5645 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5646 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5647 Depth + 1)) 5648 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5649 getNegatedExpression(Op.getOperand(0), DAG, 5650 LegalOperations, ForCodeSize, 5651 Depth + 1), 5652 Op.getOperand(1), Flags); 5653 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5654 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5655 getNegatedExpression(Op.getOperand(1), DAG, 5656 LegalOperations, ForCodeSize, 5657 Depth + 1), 5658 Op.getOperand(0), Flags); 5659 case ISD::FSUB: 5660 // fold (fneg (fsub 0, B)) -> B 5661 if (ConstantFPSDNode *N0CFP = 5662 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5663 if (N0CFP->isZero()) 5664 return Op.getOperand(1); 5665 5666 // fold (fneg (fsub A, B)) -> (fsub B, A) 5667 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5668 Op.getOperand(1), Op.getOperand(0), Flags); 5669 5670 case ISD::FMUL: 5671 case ISD::FDIV: 5672 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5673 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5674 Depth + 1)) 5675 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5676 getNegatedExpression(Op.getOperand(0), DAG, 5677 LegalOperations, ForCodeSize, 5678 Depth + 1), 5679 Op.getOperand(1), Flags); 5680 5681 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5682 return DAG.getNode( 5683 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5684 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5685 ForCodeSize, Depth + 1), 5686 Flags); 5687 5688 case ISD::FMA: 5689 case ISD::FMAD: { 5690 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5691 Flags.hasNoSignedZeros()) && 5692 "Expected NSZ fp-flag"); 5693 5694 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5695 ForCodeSize, Depth + 1); 5696 5697 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5698 ForCodeSize, Depth + 1); 5699 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5700 ForCodeSize, Depth + 1); 5701 if (V0 > V1) { 5702 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5703 SDValue Neg0 = getNegatedExpression( 5704 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5705 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5706 Op.getOperand(1), Neg2, Flags); 5707 } 5708 5709 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5710 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5711 ForCodeSize, Depth + 1); 5712 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5713 Op.getOperand(0), Neg1, Neg2, Flags); 5714 } 5715 5716 case ISD::FP_EXTEND: 5717 case ISD::FSIN: 5718 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5719 getNegatedExpression(Op.getOperand(0), DAG, 5720 LegalOperations, ForCodeSize, 5721 Depth + 1)); 5722 case ISD::FP_ROUND: 5723 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5724 getNegatedExpression(Op.getOperand(0), DAG, 5725 LegalOperations, ForCodeSize, 5726 Depth + 1), 5727 Op.getOperand(1)); 5728 } 5729 5730 llvm_unreachable("Unknown code"); 5731 } 5732 5733 //===----------------------------------------------------------------------===// 5734 // Legalization Utilities 5735 //===----------------------------------------------------------------------===// 5736 5737 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5738 SDValue LHS, SDValue RHS, 5739 SmallVectorImpl<SDValue> &Result, 5740 EVT HiLoVT, SelectionDAG &DAG, 5741 MulExpansionKind Kind, SDValue LL, 5742 SDValue LH, SDValue RL, SDValue RH) const { 5743 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5744 Opcode == ISD::SMUL_LOHI); 5745 5746 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5747 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5748 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5749 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5750 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5751 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5752 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5753 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5754 5755 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5756 return false; 5757 5758 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5759 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5760 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5761 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5762 5763 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5764 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5765 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5766 5767 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5768 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5769 bool Signed) -> bool { 5770 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5771 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5772 Hi = SDValue(Lo.getNode(), 1); 5773 return true; 5774 } 5775 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5776 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5777 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5778 return true; 5779 } 5780 return false; 5781 }; 5782 5783 SDValue Lo, Hi; 5784 5785 if (!LL.getNode() && !RL.getNode() && 5786 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5787 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5788 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5789 } 5790 5791 if (!LL.getNode()) 5792 return false; 5793 5794 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5795 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5796 DAG.MaskedValueIsZero(RHS, HighMask)) { 5797 // The inputs are both zero-extended. 5798 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5799 Result.push_back(Lo); 5800 Result.push_back(Hi); 5801 if (Opcode != ISD::MUL) { 5802 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5803 Result.push_back(Zero); 5804 Result.push_back(Zero); 5805 } 5806 return true; 5807 } 5808 } 5809 5810 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5811 RHSSB > InnerBitSize) { 5812 // The input values are both sign-extended. 5813 // TODO non-MUL case? 5814 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5815 Result.push_back(Lo); 5816 Result.push_back(Hi); 5817 return true; 5818 } 5819 } 5820 5821 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5822 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5823 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5824 // FIXME getShiftAmountTy does not always return a sensible result when VT 5825 // is an illegal type, and so the type may be too small to fit the shift 5826 // amount. Override it with i32. The shift will have to be legalized. 5827 ShiftAmountTy = MVT::i32; 5828 } 5829 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5830 5831 if (!LH.getNode() && !RH.getNode() && 5832 isOperationLegalOrCustom(ISD::SRL, VT) && 5833 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5834 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5835 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5836 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5837 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5838 } 5839 5840 if (!LH.getNode()) 5841 return false; 5842 5843 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5844 return false; 5845 5846 Result.push_back(Lo); 5847 5848 if (Opcode == ISD::MUL) { 5849 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5850 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5851 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5852 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5853 Result.push_back(Hi); 5854 return true; 5855 } 5856 5857 // Compute the full width result. 5858 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5859 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5860 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5861 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5862 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5863 }; 5864 5865 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5866 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5867 return false; 5868 5869 // This is effectively the add part of a multiply-add of half-sized operands, 5870 // so it cannot overflow. 5871 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5872 5873 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5874 return false; 5875 5876 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5877 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5878 5879 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5880 isOperationLegalOrCustom(ISD::ADDE, VT)); 5881 if (UseGlue) 5882 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5883 Merge(Lo, Hi)); 5884 else 5885 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5886 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5887 5888 SDValue Carry = Next.getValue(1); 5889 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5890 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5891 5892 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5893 return false; 5894 5895 if (UseGlue) 5896 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5897 Carry); 5898 else 5899 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5900 Zero, Carry); 5901 5902 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5903 5904 if (Opcode == ISD::SMUL_LOHI) { 5905 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5906 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5907 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5908 5909 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5910 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5911 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5912 } 5913 5914 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5915 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5916 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5917 return true; 5918 } 5919 5920 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5921 SelectionDAG &DAG, MulExpansionKind Kind, 5922 SDValue LL, SDValue LH, SDValue RL, 5923 SDValue RH) const { 5924 SmallVector<SDValue, 2> Result; 5925 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5926 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5927 DAG, Kind, LL, LH, RL, RH); 5928 if (Ok) { 5929 assert(Result.size() == 2); 5930 Lo = Result[0]; 5931 Hi = Result[1]; 5932 } 5933 return Ok; 5934 } 5935 5936 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5937 SelectionDAG &DAG) const { 5938 EVT VT = Node->getValueType(0); 5939 5940 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5941 !isOperationLegalOrCustom(ISD::SRL, VT) || 5942 !isOperationLegalOrCustom(ISD::SUB, VT) || 5943 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5944 return false; 5945 5946 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5947 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5948 SDValue X = Node->getOperand(0); 5949 SDValue Y = Node->getOperand(1); 5950 SDValue Z = Node->getOperand(2); 5951 5952 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5953 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5954 SDLoc DL(SDValue(Node, 0)); 5955 5956 EVT ShVT = Z.getValueType(); 5957 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5958 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5959 5960 SDValue ShAmt; 5961 if (isPowerOf2_32(EltSizeInBits)) { 5962 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5963 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5964 } else { 5965 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5966 } 5967 5968 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5969 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5970 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5971 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5972 5973 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5974 // and that is undefined. We must compare and select to avoid UB. 5975 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5976 5977 // For fshl, 0-shift returns the 1st arg (X). 5978 // For fshr, 0-shift returns the 2nd arg (Y). 5979 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5980 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5981 return true; 5982 } 5983 5984 // TODO: Merge with expandFunnelShift. 5985 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5986 SelectionDAG &DAG) const { 5987 EVT VT = Node->getValueType(0); 5988 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5989 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5990 SDValue Op0 = Node->getOperand(0); 5991 SDValue Op1 = Node->getOperand(1); 5992 SDLoc DL(SDValue(Node, 0)); 5993 5994 EVT ShVT = Op1.getValueType(); 5995 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5996 5997 // If a rotate in the other direction is legal, use it. 5998 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5999 if (isOperationLegal(RevRot, VT)) { 6000 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6001 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6002 return true; 6003 } 6004 6005 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6006 !isOperationLegalOrCustom(ISD::SRL, VT) || 6007 !isOperationLegalOrCustom(ISD::SUB, VT) || 6008 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6009 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6010 return false; 6011 6012 // Otherwise, 6013 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6014 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6015 // 6016 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6017 "Expecting the type bitwidth to be a power of 2"); 6018 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6019 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6020 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6021 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6022 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6023 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6024 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6025 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6026 return true; 6027 } 6028 6029 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6030 SelectionDAG &DAG) const { 6031 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6032 SDValue Src = Node->getOperand(OpNo); 6033 EVT SrcVT = Src.getValueType(); 6034 EVT DstVT = Node->getValueType(0); 6035 SDLoc dl(SDValue(Node, 0)); 6036 6037 // FIXME: Only f32 to i64 conversions are supported. 6038 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6039 return false; 6040 6041 if (Node->isStrictFPOpcode()) 6042 // When a NaN is converted to an integer a trap is allowed. We can't 6043 // use this expansion here because it would eliminate that trap. Other 6044 // traps are also allowed and cannot be eliminated. See 6045 // IEEE 754-2008 sec 5.8. 6046 return false; 6047 6048 // Expand f32 -> i64 conversion 6049 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6050 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6051 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6052 EVT IntVT = SrcVT.changeTypeToInteger(); 6053 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6054 6055 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6056 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6057 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6058 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6059 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6060 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6061 6062 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6063 6064 SDValue ExponentBits = DAG.getNode( 6065 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6066 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6067 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6068 6069 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6070 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6071 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6072 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6073 6074 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6075 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6076 DAG.getConstant(0x00800000, dl, IntVT)); 6077 6078 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6079 6080 R = DAG.getSelectCC( 6081 dl, Exponent, ExponentLoBit, 6082 DAG.getNode(ISD::SHL, dl, DstVT, R, 6083 DAG.getZExtOrTrunc( 6084 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6085 dl, IntShVT)), 6086 DAG.getNode(ISD::SRL, dl, DstVT, R, 6087 DAG.getZExtOrTrunc( 6088 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6089 dl, IntShVT)), 6090 ISD::SETGT); 6091 6092 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6093 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6094 6095 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6096 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6097 return true; 6098 } 6099 6100 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6101 SDValue &Chain, 6102 SelectionDAG &DAG) const { 6103 SDLoc dl(SDValue(Node, 0)); 6104 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6105 SDValue Src = Node->getOperand(OpNo); 6106 6107 EVT SrcVT = Src.getValueType(); 6108 EVT DstVT = Node->getValueType(0); 6109 EVT SetCCVT = 6110 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6111 EVT DstSetCCVT = 6112 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6113 6114 // Only expand vector types if we have the appropriate vector bit operations. 6115 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6116 ISD::FP_TO_SINT; 6117 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6118 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6119 return false; 6120 6121 // If the maximum float value is smaller then the signed integer range, 6122 // the destination signmask can't be represented by the float, so we can 6123 // just use FP_TO_SINT directly. 6124 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6125 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6126 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6127 if (APFloat::opOverflow & 6128 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6129 if (Node->isStrictFPOpcode()) { 6130 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6131 { Node->getOperand(0), Src }); 6132 Chain = Result.getValue(1); 6133 } else 6134 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6135 return true; 6136 } 6137 6138 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6139 SDValue Sel; 6140 6141 if (Node->isStrictFPOpcode()) { 6142 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6143 Node->getOperand(0), /*IsSignaling*/ true); 6144 Chain = Sel.getValue(1); 6145 } else { 6146 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6147 } 6148 6149 bool Strict = Node->isStrictFPOpcode() || 6150 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6151 6152 if (Strict) { 6153 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6154 // signmask then offset (the result of which should be fully representable). 6155 // Sel = Src < 0x8000000000000000 6156 // FltOfs = select Sel, 0, 0x8000000000000000 6157 // IntOfs = select Sel, 0, 0x8000000000000000 6158 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6159 6160 // TODO: Should any fast-math-flags be set for the FSUB? 6161 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6162 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6163 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6164 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6165 DAG.getConstant(0, dl, DstVT), 6166 DAG.getConstant(SignMask, dl, DstVT)); 6167 SDValue SInt; 6168 if (Node->isStrictFPOpcode()) { 6169 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6170 { Chain, Src, FltOfs }); 6171 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6172 { Val.getValue(1), Val }); 6173 Chain = SInt.getValue(1); 6174 } else { 6175 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6176 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6177 } 6178 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6179 } else { 6180 // Expand based on maximum range of FP_TO_SINT: 6181 // True = fp_to_sint(Src) 6182 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6183 // Result = select (Src < 0x8000000000000000), True, False 6184 6185 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6186 // TODO: Should any fast-math-flags be set for the FSUB? 6187 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6188 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6189 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6190 DAG.getConstant(SignMask, dl, DstVT)); 6191 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6192 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6193 } 6194 return true; 6195 } 6196 6197 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6198 SDValue &Chain, 6199 SelectionDAG &DAG) const { 6200 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6201 SDValue Src = Node->getOperand(OpNo); 6202 EVT SrcVT = Src.getValueType(); 6203 EVT DstVT = Node->getValueType(0); 6204 6205 if (SrcVT.getScalarType() != MVT::i64) 6206 return false; 6207 6208 SDLoc dl(SDValue(Node, 0)); 6209 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6210 6211 if (DstVT.getScalarType() == MVT::f32) { 6212 // Only expand vector types if we have the appropriate vector bit 6213 // operations. 6214 if (SrcVT.isVector() && 6215 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6216 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6217 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 6218 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6219 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6220 return false; 6221 6222 // For unsigned conversions, convert them to signed conversions using the 6223 // algorithm from the x86_64 __floatundisf in compiler_rt. 6224 6225 // TODO: This really should be implemented using a branch rather than a 6226 // select. We happen to get lucky and machinesink does the right 6227 // thing most of the time. This would be a good candidate for a 6228 // pseudo-op, or, even better, for whole-function isel. 6229 EVT SetCCVT = 6230 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6231 6232 SDValue SignBitTest = DAG.getSetCC( 6233 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 6234 6235 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 6236 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 6237 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 6238 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 6239 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 6240 6241 SDValue Slow, Fast; 6242 if (Node->isStrictFPOpcode()) { 6243 // In strict mode, we must avoid spurious exceptions, and therefore 6244 // must make sure to only emit a single STRICT_SINT_TO_FP. 6245 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Src); 6246 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DstVT, MVT::Other }, 6247 { Node->getOperand(0), InCvt }); 6248 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other }, 6249 { Fast.getValue(1), Fast, Fast }); 6250 Chain = Slow.getValue(1); 6251 // The STRICT_SINT_TO_FP inherits the exception mode from the 6252 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 6253 // never raise any exception. 6254 SDNodeFlags Flags; 6255 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 6256 Fast->setFlags(Flags); 6257 Flags.setNoFPExcept(true); 6258 Slow->setFlags(Flags); 6259 } else { 6260 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 6261 Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 6262 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 6263 } 6264 6265 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 6266 return true; 6267 } 6268 6269 if (DstVT.getScalarType() == MVT::f64) { 6270 // Only expand vector types if we have the appropriate vector bit 6271 // operations. 6272 if (SrcVT.isVector() && 6273 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6274 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6275 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6276 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6277 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6278 return false; 6279 6280 // Implementation of unsigned i64 to f64 following the algorithm in 6281 // __floatundidf in compiler_rt. This implementation has the advantage 6282 // of performing rounding correctly, both in the default rounding mode 6283 // and in all alternate rounding modes. 6284 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6285 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6286 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6287 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6288 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6289 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6290 6291 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6292 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6293 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6294 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6295 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6296 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6297 if (Node->isStrictFPOpcode()) { 6298 SDValue HiSub = 6299 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6300 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6301 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6302 {HiSub.getValue(1), LoFlt, HiSub}); 6303 Chain = Result.getValue(1); 6304 } else { 6305 SDValue HiSub = 6306 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6307 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6308 } 6309 return true; 6310 } 6311 6312 return false; 6313 } 6314 6315 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6316 SelectionDAG &DAG) const { 6317 SDLoc dl(Node); 6318 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6319 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6320 EVT VT = Node->getValueType(0); 6321 if (isOperationLegalOrCustom(NewOp, VT)) { 6322 SDValue Quiet0 = Node->getOperand(0); 6323 SDValue Quiet1 = Node->getOperand(1); 6324 6325 if (!Node->getFlags().hasNoNaNs()) { 6326 // Insert canonicalizes if it's possible we need to quiet to get correct 6327 // sNaN behavior. 6328 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6329 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6330 Node->getFlags()); 6331 } 6332 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6333 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6334 Node->getFlags()); 6335 } 6336 } 6337 6338 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6339 } 6340 6341 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6342 // instead if there are no NaNs. 6343 if (Node->getFlags().hasNoNaNs()) { 6344 unsigned IEEE2018Op = 6345 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6346 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6347 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6348 Node->getOperand(1), Node->getFlags()); 6349 } 6350 } 6351 6352 // If none of the above worked, but there are no NaNs, then expand to 6353 // a compare/select sequence. This is required for correctness since 6354 // InstCombine might have canonicalized a fcmp+select sequence to a 6355 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6356 // expansion to libcall, we might introduce a link-time dependency 6357 // on libm into a file that originally did not have one. 6358 if (Node->getFlags().hasNoNaNs()) { 6359 ISD::CondCode Pred = 6360 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6361 SDValue Op1 = Node->getOperand(0); 6362 SDValue Op2 = Node->getOperand(1); 6363 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6364 // Copy FMF flags, but always set the no-signed-zeros flag 6365 // as this is implied by the FMINNUM/FMAXNUM semantics. 6366 SDNodeFlags Flags = Node->getFlags(); 6367 Flags.setNoSignedZeros(true); 6368 SelCC->setFlags(Flags); 6369 return SelCC; 6370 } 6371 6372 return SDValue(); 6373 } 6374 6375 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6376 SelectionDAG &DAG) const { 6377 SDLoc dl(Node); 6378 EVT VT = Node->getValueType(0); 6379 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6380 SDValue Op = Node->getOperand(0); 6381 unsigned Len = VT.getScalarSizeInBits(); 6382 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6383 6384 // TODO: Add support for irregular type lengths. 6385 if (!(Len <= 128 && Len % 8 == 0)) 6386 return false; 6387 6388 // Only expand vector types if we have the appropriate vector bit operations. 6389 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6390 !isOperationLegalOrCustom(ISD::SUB, VT) || 6391 !isOperationLegalOrCustom(ISD::SRL, VT) || 6392 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6393 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6394 return false; 6395 6396 // This is the "best" algorithm from 6397 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6398 SDValue Mask55 = 6399 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6400 SDValue Mask33 = 6401 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6402 SDValue Mask0F = 6403 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6404 SDValue Mask01 = 6405 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6406 6407 // v = v - ((v >> 1) & 0x55555555...) 6408 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6409 DAG.getNode(ISD::AND, dl, VT, 6410 DAG.getNode(ISD::SRL, dl, VT, Op, 6411 DAG.getConstant(1, dl, ShVT)), 6412 Mask55)); 6413 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6414 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6415 DAG.getNode(ISD::AND, dl, VT, 6416 DAG.getNode(ISD::SRL, dl, VT, Op, 6417 DAG.getConstant(2, dl, ShVT)), 6418 Mask33)); 6419 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6420 Op = DAG.getNode(ISD::AND, dl, VT, 6421 DAG.getNode(ISD::ADD, dl, VT, Op, 6422 DAG.getNode(ISD::SRL, dl, VT, Op, 6423 DAG.getConstant(4, dl, ShVT))), 6424 Mask0F); 6425 // v = (v * 0x01010101...) >> (Len - 8) 6426 if (Len > 8) 6427 Op = 6428 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6429 DAG.getConstant(Len - 8, dl, ShVT)); 6430 6431 Result = Op; 6432 return true; 6433 } 6434 6435 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6436 SelectionDAG &DAG) const { 6437 SDLoc dl(Node); 6438 EVT VT = Node->getValueType(0); 6439 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6440 SDValue Op = Node->getOperand(0); 6441 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6442 6443 // If the non-ZERO_UNDEF version is supported we can use that instead. 6444 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6445 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6446 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6447 return true; 6448 } 6449 6450 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6451 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6452 EVT SetCCVT = 6453 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6454 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6455 SDValue Zero = DAG.getConstant(0, dl, VT); 6456 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6457 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6458 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6459 return true; 6460 } 6461 6462 // Only expand vector types if we have the appropriate vector bit operations. 6463 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6464 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6465 !isOperationLegalOrCustom(ISD::SRL, VT) || 6466 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6467 return false; 6468 6469 // for now, we do this: 6470 // x = x | (x >> 1); 6471 // x = x | (x >> 2); 6472 // ... 6473 // x = x | (x >>16); 6474 // x = x | (x >>32); // for 64-bit input 6475 // return popcount(~x); 6476 // 6477 // Ref: "Hacker's Delight" by Henry Warren 6478 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6479 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6480 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6481 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6482 } 6483 Op = DAG.getNOT(dl, Op, VT); 6484 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6485 return true; 6486 } 6487 6488 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6489 SelectionDAG &DAG) const { 6490 SDLoc dl(Node); 6491 EVT VT = Node->getValueType(0); 6492 SDValue Op = Node->getOperand(0); 6493 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6494 6495 // If the non-ZERO_UNDEF version is supported we can use that instead. 6496 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6497 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6498 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6499 return true; 6500 } 6501 6502 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6503 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6504 EVT SetCCVT = 6505 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6506 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6507 SDValue Zero = DAG.getConstant(0, dl, VT); 6508 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6509 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6510 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6511 return true; 6512 } 6513 6514 // Only expand vector types if we have the appropriate vector bit operations. 6515 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6516 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6517 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6518 !isOperationLegalOrCustom(ISD::SUB, VT) || 6519 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6520 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6521 return false; 6522 6523 // for now, we use: { return popcount(~x & (x - 1)); } 6524 // unless the target has ctlz but not ctpop, in which case we use: 6525 // { return 32 - nlz(~x & (x-1)); } 6526 // Ref: "Hacker's Delight" by Henry Warren 6527 SDValue Tmp = DAG.getNode( 6528 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6529 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6530 6531 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6532 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6533 Result = 6534 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6535 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6536 return true; 6537 } 6538 6539 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6540 return true; 6541 } 6542 6543 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6544 SelectionDAG &DAG) const { 6545 SDLoc dl(N); 6546 EVT VT = N->getValueType(0); 6547 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6548 SDValue Op = N->getOperand(0); 6549 6550 // Only expand vector types if we have the appropriate vector operations. 6551 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6552 !isOperationLegalOrCustom(ISD::ADD, VT) || 6553 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6554 return false; 6555 6556 SDValue Shift = 6557 DAG.getNode(ISD::SRA, dl, VT, Op, 6558 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6559 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6560 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6561 return true; 6562 } 6563 6564 std::pair<SDValue, SDValue> 6565 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6566 SelectionDAG &DAG) const { 6567 SDLoc SL(LD); 6568 SDValue Chain = LD->getChain(); 6569 SDValue BasePTR = LD->getBasePtr(); 6570 EVT SrcVT = LD->getMemoryVT(); 6571 ISD::LoadExtType ExtType = LD->getExtensionType(); 6572 6573 unsigned NumElem = SrcVT.getVectorNumElements(); 6574 6575 EVT SrcEltVT = SrcVT.getScalarType(); 6576 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6577 6578 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6579 assert(SrcEltVT.isByteSized()); 6580 6581 SmallVector<SDValue, 8> Vals; 6582 SmallVector<SDValue, 8> LoadChains; 6583 6584 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6585 SDValue ScalarLoad = 6586 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6587 LD->getPointerInfo().getWithOffset(Idx * Stride), 6588 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6589 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6590 6591 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6592 6593 Vals.push_back(ScalarLoad.getValue(0)); 6594 LoadChains.push_back(ScalarLoad.getValue(1)); 6595 } 6596 6597 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6598 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6599 6600 return std::make_pair(Value, NewChain); 6601 } 6602 6603 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6604 SelectionDAG &DAG) const { 6605 SDLoc SL(ST); 6606 6607 SDValue Chain = ST->getChain(); 6608 SDValue BasePtr = ST->getBasePtr(); 6609 SDValue Value = ST->getValue(); 6610 EVT StVT = ST->getMemoryVT(); 6611 6612 // The type of the data we want to save 6613 EVT RegVT = Value.getValueType(); 6614 EVT RegSclVT = RegVT.getScalarType(); 6615 6616 // The type of data as saved in memory. 6617 EVT MemSclVT = StVT.getScalarType(); 6618 6619 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6620 unsigned NumElem = StVT.getVectorNumElements(); 6621 6622 // A vector must always be stored in memory as-is, i.e. without any padding 6623 // between the elements, since various code depend on it, e.g. in the 6624 // handling of a bitcast of a vector type to int, which may be done with a 6625 // vector store followed by an integer load. A vector that does not have 6626 // elements that are byte-sized must therefore be stored as an integer 6627 // built out of the extracted vector elements. 6628 if (!MemSclVT.isByteSized()) { 6629 unsigned NumBits = StVT.getSizeInBits(); 6630 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6631 6632 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6633 6634 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6635 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6636 DAG.getConstant(Idx, SL, IdxVT)); 6637 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6638 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6639 unsigned ShiftIntoIdx = 6640 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6641 SDValue ShiftAmount = 6642 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6643 SDValue ShiftedElt = 6644 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6645 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6646 } 6647 6648 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6649 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6650 ST->getAAInfo()); 6651 } 6652 6653 // Store Stride in bytes 6654 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6655 assert(Stride && "Zero stride!"); 6656 // Extract each of the elements from the original vector and save them into 6657 // memory individually. 6658 SmallVector<SDValue, 8> Stores; 6659 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6660 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6661 DAG.getConstant(Idx, SL, IdxVT)); 6662 6663 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6664 6665 // This scalar TruncStore may be illegal, but we legalize it later. 6666 SDValue Store = DAG.getTruncStore( 6667 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6668 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6669 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6670 6671 Stores.push_back(Store); 6672 } 6673 6674 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6675 } 6676 6677 std::pair<SDValue, SDValue> 6678 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6679 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6680 "unaligned indexed loads not implemented!"); 6681 SDValue Chain = LD->getChain(); 6682 SDValue Ptr = LD->getBasePtr(); 6683 EVT VT = LD->getValueType(0); 6684 EVT LoadedVT = LD->getMemoryVT(); 6685 SDLoc dl(LD); 6686 auto &MF = DAG.getMachineFunction(); 6687 6688 if (VT.isFloatingPoint() || VT.isVector()) { 6689 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6690 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6691 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6692 LoadedVT.isVector()) { 6693 // Scalarize the load and let the individual components be handled. 6694 return scalarizeVectorLoad(LD, DAG); 6695 } 6696 6697 // Expand to a (misaligned) integer load of the same size, 6698 // then bitconvert to floating point or vector. 6699 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6700 LD->getMemOperand()); 6701 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6702 if (LoadedVT != VT) 6703 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6704 ISD::ANY_EXTEND, dl, VT, Result); 6705 6706 return std::make_pair(Result, newLoad.getValue(1)); 6707 } 6708 6709 // Copy the value to a (aligned) stack slot using (unaligned) integer 6710 // loads and stores, then do a (aligned) load from the stack slot. 6711 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6712 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6713 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6714 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6715 6716 // Make sure the stack slot is also aligned for the register type. 6717 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6718 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6719 SmallVector<SDValue, 8> Stores; 6720 SDValue StackPtr = StackBase; 6721 unsigned Offset = 0; 6722 6723 EVT PtrVT = Ptr.getValueType(); 6724 EVT StackPtrVT = StackPtr.getValueType(); 6725 6726 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6727 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6728 6729 // Do all but one copies using the full register width. 6730 for (unsigned i = 1; i < NumRegs; i++) { 6731 // Load one integer register's worth from the original location. 6732 SDValue Load = DAG.getLoad( 6733 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6734 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6735 LD->getAAInfo()); 6736 // Follow the load with a store to the stack slot. Remember the store. 6737 Stores.push_back(DAG.getStore( 6738 Load.getValue(1), dl, Load, StackPtr, 6739 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6740 // Increment the pointers. 6741 Offset += RegBytes; 6742 6743 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6744 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6745 } 6746 6747 // The last copy may be partial. Do an extending load. 6748 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6749 8 * (LoadedBytes - Offset)); 6750 SDValue Load = 6751 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6752 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6753 MinAlign(LD->getAlignment(), Offset), 6754 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6755 // Follow the load with a store to the stack slot. Remember the store. 6756 // On big-endian machines this requires a truncating store to ensure 6757 // that the bits end up in the right place. 6758 Stores.push_back(DAG.getTruncStore( 6759 Load.getValue(1), dl, Load, StackPtr, 6760 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6761 6762 // The order of the stores doesn't matter - say it with a TokenFactor. 6763 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6764 6765 // Finally, perform the original load only redirected to the stack slot. 6766 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6767 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6768 LoadedVT); 6769 6770 // Callers expect a MERGE_VALUES node. 6771 return std::make_pair(Load, TF); 6772 } 6773 6774 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6775 "Unaligned load of unsupported type."); 6776 6777 // Compute the new VT that is half the size of the old one. This is an 6778 // integer MVT. 6779 unsigned NumBits = LoadedVT.getSizeInBits(); 6780 EVT NewLoadedVT; 6781 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6782 NumBits >>= 1; 6783 6784 unsigned Alignment = LD->getAlignment(); 6785 unsigned IncrementSize = NumBits / 8; 6786 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6787 6788 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6789 if (HiExtType == ISD::NON_EXTLOAD) 6790 HiExtType = ISD::ZEXTLOAD; 6791 6792 // Load the value in two parts 6793 SDValue Lo, Hi; 6794 if (DAG.getDataLayout().isLittleEndian()) { 6795 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6796 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6797 LD->getAAInfo()); 6798 6799 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6800 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6801 LD->getPointerInfo().getWithOffset(IncrementSize), 6802 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6803 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6804 } else { 6805 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6806 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6807 LD->getAAInfo()); 6808 6809 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6810 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6811 LD->getPointerInfo().getWithOffset(IncrementSize), 6812 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6813 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6814 } 6815 6816 // aggregate the two parts 6817 SDValue ShiftAmount = 6818 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6819 DAG.getDataLayout())); 6820 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6821 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6822 6823 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6824 Hi.getValue(1)); 6825 6826 return std::make_pair(Result, TF); 6827 } 6828 6829 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6830 SelectionDAG &DAG) const { 6831 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6832 "unaligned indexed stores not implemented!"); 6833 SDValue Chain = ST->getChain(); 6834 SDValue Ptr = ST->getBasePtr(); 6835 SDValue Val = ST->getValue(); 6836 EVT VT = Val.getValueType(); 6837 int Alignment = ST->getAlignment(); 6838 auto &MF = DAG.getMachineFunction(); 6839 EVT StoreMemVT = ST->getMemoryVT(); 6840 6841 SDLoc dl(ST); 6842 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6843 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6844 if (isTypeLegal(intVT)) { 6845 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6846 StoreMemVT.isVector()) { 6847 // Scalarize the store and let the individual components be handled. 6848 SDValue Result = scalarizeVectorStore(ST, DAG); 6849 return Result; 6850 } 6851 // Expand to a bitconvert of the value to the integer type of the 6852 // same size, then a (misaligned) int store. 6853 // FIXME: Does not handle truncating floating point stores! 6854 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6855 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6856 Alignment, ST->getMemOperand()->getFlags()); 6857 return Result; 6858 } 6859 // Do a (aligned) store to a stack slot, then copy from the stack slot 6860 // to the final destination using (unaligned) integer loads and stores. 6861 MVT RegVT = getRegisterType( 6862 *DAG.getContext(), 6863 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6864 EVT PtrVT = Ptr.getValueType(); 6865 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6866 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6867 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6868 6869 // Make sure the stack slot is also aligned for the register type. 6870 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6871 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6872 6873 // Perform the original store, only redirected to the stack slot. 6874 SDValue Store = DAG.getTruncStore( 6875 Chain, dl, Val, StackPtr, 6876 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6877 6878 EVT StackPtrVT = StackPtr.getValueType(); 6879 6880 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6881 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6882 SmallVector<SDValue, 8> Stores; 6883 unsigned Offset = 0; 6884 6885 // Do all but one copies using the full register width. 6886 for (unsigned i = 1; i < NumRegs; i++) { 6887 // Load one integer register's worth from the stack slot. 6888 SDValue Load = DAG.getLoad( 6889 RegVT, dl, Store, StackPtr, 6890 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6891 // Store it to the final location. Remember the store. 6892 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6893 ST->getPointerInfo().getWithOffset(Offset), 6894 MinAlign(ST->getAlignment(), Offset), 6895 ST->getMemOperand()->getFlags())); 6896 // Increment the pointers. 6897 Offset += RegBytes; 6898 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6899 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6900 } 6901 6902 // The last store may be partial. Do a truncating store. On big-endian 6903 // machines this requires an extending load from the stack slot to ensure 6904 // that the bits are in the right place. 6905 EVT LoadMemVT = 6906 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6907 6908 // Load from the stack slot. 6909 SDValue Load = DAG.getExtLoad( 6910 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6911 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6912 6913 Stores.push_back( 6914 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6915 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6916 MinAlign(ST->getAlignment(), Offset), 6917 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6918 // The order of the stores doesn't matter - say it with a TokenFactor. 6919 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6920 return Result; 6921 } 6922 6923 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6924 "Unaligned store of unknown type."); 6925 // Get the half-size VT 6926 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6927 int NumBits = NewStoredVT.getSizeInBits(); 6928 int IncrementSize = NumBits / 8; 6929 6930 // Divide the stored value in two parts. 6931 SDValue ShiftAmount = DAG.getConstant( 6932 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6933 SDValue Lo = Val; 6934 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6935 6936 // Store the two parts 6937 SDValue Store1, Store2; 6938 Store1 = DAG.getTruncStore(Chain, dl, 6939 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6940 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6941 ST->getMemOperand()->getFlags()); 6942 6943 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6944 Alignment = MinAlign(Alignment, IncrementSize); 6945 Store2 = DAG.getTruncStore( 6946 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6947 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6948 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6949 6950 SDValue Result = 6951 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6952 return Result; 6953 } 6954 6955 SDValue 6956 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6957 const SDLoc &DL, EVT DataVT, 6958 SelectionDAG &DAG, 6959 bool IsCompressedMemory) const { 6960 SDValue Increment; 6961 EVT AddrVT = Addr.getValueType(); 6962 EVT MaskVT = Mask.getValueType(); 6963 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6964 "Incompatible types of Data and Mask"); 6965 if (IsCompressedMemory) { 6966 // Incrementing the pointer according to number of '1's in the mask. 6967 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6968 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6969 if (MaskIntVT.getSizeInBits() < 32) { 6970 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6971 MaskIntVT = MVT::i32; 6972 } 6973 6974 // Count '1's with POPCNT. 6975 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6976 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6977 // Scale is an element size in bytes. 6978 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6979 AddrVT); 6980 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6981 } else 6982 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6983 6984 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6985 } 6986 6987 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6988 SDValue Idx, 6989 EVT VecVT, 6990 const SDLoc &dl) { 6991 if (isa<ConstantSDNode>(Idx)) 6992 return Idx; 6993 6994 EVT IdxVT = Idx.getValueType(); 6995 unsigned NElts = VecVT.getVectorNumElements(); 6996 if (isPowerOf2_32(NElts)) { 6997 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6998 Log2_32(NElts)); 6999 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7000 DAG.getConstant(Imm, dl, IdxVT)); 7001 } 7002 7003 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7004 DAG.getConstant(NElts - 1, dl, IdxVT)); 7005 } 7006 7007 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7008 SDValue VecPtr, EVT VecVT, 7009 SDValue Index) const { 7010 SDLoc dl(Index); 7011 // Make sure the index type is big enough to compute in. 7012 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7013 7014 EVT EltVT = VecVT.getVectorElementType(); 7015 7016 // Calculate the element offset and add it to the pointer. 7017 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7018 assert(EltSize * 8 == EltVT.getSizeInBits() && 7019 "Converting bits to bytes lost precision"); 7020 7021 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7022 7023 EVT IdxVT = Index.getValueType(); 7024 7025 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7026 DAG.getConstant(EltSize, dl, IdxVT)); 7027 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7028 } 7029 7030 //===----------------------------------------------------------------------===// 7031 // Implementation of Emulated TLS Model 7032 //===----------------------------------------------------------------------===// 7033 7034 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7035 SelectionDAG &DAG) const { 7036 // Access to address of TLS varialbe xyz is lowered to a function call: 7037 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7038 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7039 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7040 SDLoc dl(GA); 7041 7042 ArgListTy Args; 7043 ArgListEntry Entry; 7044 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7045 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7046 StringRef EmuTlsVarName(NameString); 7047 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7048 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7049 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7050 Entry.Ty = VoidPtrType; 7051 Args.push_back(Entry); 7052 7053 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7054 7055 TargetLowering::CallLoweringInfo CLI(DAG); 7056 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7057 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7058 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7059 7060 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7061 // At last for X86 targets, maybe good for other targets too? 7062 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7063 MFI.setAdjustsStack(true); // Is this only for X86 target? 7064 MFI.setHasCalls(true); 7065 7066 assert((GA->getOffset() == 0) && 7067 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7068 return CallResult.first; 7069 } 7070 7071 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7072 SelectionDAG &DAG) const { 7073 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7074 if (!isCtlzFast()) 7075 return SDValue(); 7076 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7077 SDLoc dl(Op); 7078 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7079 if (C->isNullValue() && CC == ISD::SETEQ) { 7080 EVT VT = Op.getOperand(0).getValueType(); 7081 SDValue Zext = Op.getOperand(0); 7082 if (VT.bitsLT(MVT::i32)) { 7083 VT = MVT::i32; 7084 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7085 } 7086 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7087 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7088 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7089 DAG.getConstant(Log2b, dl, MVT::i32)); 7090 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7091 } 7092 } 7093 return SDValue(); 7094 } 7095 7096 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7097 unsigned Opcode = Node->getOpcode(); 7098 SDValue LHS = Node->getOperand(0); 7099 SDValue RHS = Node->getOperand(1); 7100 EVT VT = LHS.getValueType(); 7101 SDLoc dl(Node); 7102 7103 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7104 assert(VT.isInteger() && "Expected operands to be integers"); 7105 7106 // usub.sat(a, b) -> umax(a, b) - b 7107 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7108 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7109 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7110 } 7111 7112 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7113 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7114 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7115 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7116 } 7117 7118 unsigned OverflowOp; 7119 switch (Opcode) { 7120 case ISD::SADDSAT: 7121 OverflowOp = ISD::SADDO; 7122 break; 7123 case ISD::UADDSAT: 7124 OverflowOp = ISD::UADDO; 7125 break; 7126 case ISD::SSUBSAT: 7127 OverflowOp = ISD::SSUBO; 7128 break; 7129 case ISD::USUBSAT: 7130 OverflowOp = ISD::USUBO; 7131 break; 7132 default: 7133 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7134 "addition or subtraction node."); 7135 } 7136 7137 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7138 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7139 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7140 LHS, RHS); 7141 SDValue SumDiff = Result.getValue(0); 7142 SDValue Overflow = Result.getValue(1); 7143 SDValue Zero = DAG.getConstant(0, dl, VT); 7144 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7145 7146 if (Opcode == ISD::UADDSAT) { 7147 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7148 // (LHS + RHS) | OverflowMask 7149 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7150 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7151 } 7152 // Overflow ? 0xffff.... : (LHS + RHS) 7153 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7154 } else if (Opcode == ISD::USUBSAT) { 7155 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7156 // (LHS - RHS) & ~OverflowMask 7157 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7158 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7159 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7160 } 7161 // Overflow ? 0 : (LHS - RHS) 7162 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7163 } else { 7164 // SatMax -> Overflow && SumDiff < 0 7165 // SatMin -> Overflow && SumDiff >= 0 7166 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7167 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7168 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7169 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7170 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7171 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7172 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7173 } 7174 } 7175 7176 SDValue 7177 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7178 assert((Node->getOpcode() == ISD::SMULFIX || 7179 Node->getOpcode() == ISD::UMULFIX || 7180 Node->getOpcode() == ISD::SMULFIXSAT || 7181 Node->getOpcode() == ISD::UMULFIXSAT) && 7182 "Expected a fixed point multiplication opcode"); 7183 7184 SDLoc dl(Node); 7185 SDValue LHS = Node->getOperand(0); 7186 SDValue RHS = Node->getOperand(1); 7187 EVT VT = LHS.getValueType(); 7188 unsigned Scale = Node->getConstantOperandVal(2); 7189 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7190 Node->getOpcode() == ISD::UMULFIXSAT); 7191 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7192 Node->getOpcode() == ISD::SMULFIXSAT); 7193 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7194 unsigned VTSize = VT.getScalarSizeInBits(); 7195 7196 if (!Scale) { 7197 // [us]mul.fix(a, b, 0) -> mul(a, b) 7198 if (!Saturating) { 7199 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7200 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7201 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7202 SDValue Result = 7203 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7204 SDValue Product = Result.getValue(0); 7205 SDValue Overflow = Result.getValue(1); 7206 SDValue Zero = DAG.getConstant(0, dl, VT); 7207 7208 APInt MinVal = APInt::getSignedMinValue(VTSize); 7209 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7210 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7211 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7212 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7213 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7214 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7215 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7216 SDValue Result = 7217 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7218 SDValue Product = Result.getValue(0); 7219 SDValue Overflow = Result.getValue(1); 7220 7221 APInt MaxVal = APInt::getMaxValue(VTSize); 7222 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7223 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7224 } 7225 } 7226 7227 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7228 "Expected scale to be less than the number of bits if signed or at " 7229 "most the number of bits if unsigned."); 7230 assert(LHS.getValueType() == RHS.getValueType() && 7231 "Expected both operands to be the same type"); 7232 7233 // Get the upper and lower bits of the result. 7234 SDValue Lo, Hi; 7235 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7236 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7237 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7238 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7239 Lo = Result.getValue(0); 7240 Hi = Result.getValue(1); 7241 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7242 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7243 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7244 } else if (VT.isVector()) { 7245 return SDValue(); 7246 } else { 7247 report_fatal_error("Unable to expand fixed point multiplication."); 7248 } 7249 7250 if (Scale == VTSize) 7251 // Result is just the top half since we'd be shifting by the width of the 7252 // operand. Overflow impossible so this works for both UMULFIX and 7253 // UMULFIXSAT. 7254 return Hi; 7255 7256 // The result will need to be shifted right by the scale since both operands 7257 // are scaled. The result is given to us in 2 halves, so we only want part of 7258 // both in the result. 7259 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7260 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7261 DAG.getConstant(Scale, dl, ShiftTy)); 7262 if (!Saturating) 7263 return Result; 7264 7265 if (!Signed) { 7266 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7267 // widened multiplication) aren't all zeroes. 7268 7269 // Saturate to max if ((Hi >> Scale) != 0), 7270 // which is the same as if (Hi > ((1 << Scale) - 1)) 7271 APInt MaxVal = APInt::getMaxValue(VTSize); 7272 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7273 dl, VT); 7274 Result = DAG.getSelectCC(dl, Hi, LowMask, 7275 DAG.getConstant(MaxVal, dl, VT), Result, 7276 ISD::SETUGT); 7277 7278 return Result; 7279 } 7280 7281 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7282 // widened multiplication) aren't all ones or all zeroes. 7283 7284 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7285 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7286 7287 if (Scale == 0) { 7288 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7289 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7290 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7291 // Saturated to SatMin if wide product is negative, and SatMax if wide 7292 // product is positive ... 7293 SDValue Zero = DAG.getConstant(0, dl, VT); 7294 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7295 ISD::SETLT); 7296 // ... but only if we overflowed. 7297 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7298 } 7299 7300 // We handled Scale==0 above so all the bits to examine is in Hi. 7301 7302 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7303 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7304 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7305 dl, VT); 7306 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7307 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7308 // which is the same as if (HI < (-1 << (Scale - 1)) 7309 SDValue HighMask = 7310 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7311 dl, VT); 7312 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7313 return Result; 7314 } 7315 7316 SDValue 7317 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7318 SDValue LHS, SDValue RHS, 7319 unsigned Scale, SelectionDAG &DAG) const { 7320 assert((Opcode == ISD::SDIVFIX || 7321 Opcode == ISD::UDIVFIX) && 7322 "Expected a fixed point division opcode"); 7323 7324 EVT VT = LHS.getValueType(); 7325 bool Signed = Opcode == ISD::SDIVFIX; 7326 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7327 7328 // If there is enough room in the type to upscale the LHS or downscale the 7329 // RHS before the division, we can perform it in this type without having to 7330 // resize. For signed operations, the LHS headroom is the number of 7331 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7332 // The headroom for the RHS is the number of trailing zeroes. 7333 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7334 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7335 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7336 7337 if (LHSLead + RHSTrail < Scale) 7338 return SDValue(); 7339 7340 unsigned LHSShift = std::min(LHSLead, Scale); 7341 unsigned RHSShift = Scale - LHSShift; 7342 7343 // At this point, we know that if we shift the LHS up by LHSShift and the 7344 // RHS down by RHSShift, we can emit a regular division with a final scaling 7345 // factor of Scale. 7346 7347 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7348 if (LHSShift) 7349 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7350 DAG.getConstant(LHSShift, dl, ShiftTy)); 7351 if (RHSShift) 7352 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7353 DAG.getConstant(RHSShift, dl, ShiftTy)); 7354 7355 SDValue Quot; 7356 if (Signed) { 7357 // For signed operations, if the resulting quotient is negative and the 7358 // remainder is nonzero, subtract 1 from the quotient to round towards 7359 // negative infinity. 7360 SDValue Rem; 7361 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7362 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7363 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7364 if (isTypeLegal(VT) && 7365 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7366 Quot = DAG.getNode(ISD::SDIVREM, dl, 7367 DAG.getVTList(VT, VT), 7368 LHS, RHS); 7369 Rem = Quot.getValue(1); 7370 Quot = Quot.getValue(0); 7371 } else { 7372 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7373 LHS, RHS); 7374 Rem = DAG.getNode(ISD::SREM, dl, VT, 7375 LHS, RHS); 7376 } 7377 SDValue Zero = DAG.getConstant(0, dl, VT); 7378 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7379 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7380 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7381 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7382 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7383 DAG.getConstant(1, dl, VT)); 7384 Quot = DAG.getSelect(dl, VT, 7385 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7386 Sub1, Quot); 7387 } else 7388 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7389 LHS, RHS); 7390 7391 // TODO: Saturation. 7392 7393 return Quot; 7394 } 7395 7396 void TargetLowering::expandUADDSUBO( 7397 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7398 SDLoc dl(Node); 7399 SDValue LHS = Node->getOperand(0); 7400 SDValue RHS = Node->getOperand(1); 7401 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7402 7403 // If ADD/SUBCARRY is legal, use that instead. 7404 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7405 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7406 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7407 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7408 { LHS, RHS, CarryIn }); 7409 Result = SDValue(NodeCarry.getNode(), 0); 7410 Overflow = SDValue(NodeCarry.getNode(), 1); 7411 return; 7412 } 7413 7414 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7415 LHS.getValueType(), LHS, RHS); 7416 7417 EVT ResultType = Node->getValueType(1); 7418 EVT SetCCType = getSetCCResultType( 7419 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7420 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7421 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7422 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7423 } 7424 7425 void TargetLowering::expandSADDSUBO( 7426 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7427 SDLoc dl(Node); 7428 SDValue LHS = Node->getOperand(0); 7429 SDValue RHS = Node->getOperand(1); 7430 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7431 7432 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7433 LHS.getValueType(), LHS, RHS); 7434 7435 EVT ResultType = Node->getValueType(1); 7436 EVT OType = getSetCCResultType( 7437 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7438 7439 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7440 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7441 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7442 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7443 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7444 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7445 return; 7446 } 7447 7448 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7449 7450 // For an addition, the result should be less than one of the operands (LHS) 7451 // if and only if the other operand (RHS) is negative, otherwise there will 7452 // be overflow. 7453 // For a subtraction, the result should be less than one of the operands 7454 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7455 // otherwise there will be overflow. 7456 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7457 SDValue ConditionRHS = 7458 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7459 7460 Overflow = DAG.getBoolExtOrTrunc( 7461 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7462 ResultType, ResultType); 7463 } 7464 7465 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7466 SDValue &Overflow, SelectionDAG &DAG) const { 7467 SDLoc dl(Node); 7468 EVT VT = Node->getValueType(0); 7469 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7470 SDValue LHS = Node->getOperand(0); 7471 SDValue RHS = Node->getOperand(1); 7472 bool isSigned = Node->getOpcode() == ISD::SMULO; 7473 7474 // For power-of-two multiplications we can use a simpler shift expansion. 7475 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7476 const APInt &C = RHSC->getAPIntValue(); 7477 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7478 if (C.isPowerOf2()) { 7479 // smulo(x, signed_min) is same as umulo(x, signed_min). 7480 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7481 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7482 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7483 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7484 Overflow = DAG.getSetCC(dl, SetCCVT, 7485 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7486 dl, VT, Result, ShiftAmt), 7487 LHS, ISD::SETNE); 7488 return true; 7489 } 7490 } 7491 7492 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7493 if (VT.isVector()) 7494 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7495 VT.getVectorNumElements()); 7496 7497 SDValue BottomHalf; 7498 SDValue TopHalf; 7499 static const unsigned Ops[2][3] = 7500 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7501 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7502 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7503 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7504 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7505 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7506 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7507 RHS); 7508 TopHalf = BottomHalf.getValue(1); 7509 } else if (isTypeLegal(WideVT)) { 7510 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7511 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7512 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7513 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7514 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7515 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7516 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7517 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7518 } else { 7519 if (VT.isVector()) 7520 return false; 7521 7522 // We can fall back to a libcall with an illegal type for the MUL if we 7523 // have a libcall big enough. 7524 // Also, we can fall back to a division in some cases, but that's a big 7525 // performance hit in the general case. 7526 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7527 if (WideVT == MVT::i16) 7528 LC = RTLIB::MUL_I16; 7529 else if (WideVT == MVT::i32) 7530 LC = RTLIB::MUL_I32; 7531 else if (WideVT == MVT::i64) 7532 LC = RTLIB::MUL_I64; 7533 else if (WideVT == MVT::i128) 7534 LC = RTLIB::MUL_I128; 7535 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7536 7537 SDValue HiLHS; 7538 SDValue HiRHS; 7539 if (isSigned) { 7540 // The high part is obtained by SRA'ing all but one of the bits of low 7541 // part. 7542 unsigned LoSize = VT.getSizeInBits(); 7543 HiLHS = 7544 DAG.getNode(ISD::SRA, dl, VT, LHS, 7545 DAG.getConstant(LoSize - 1, dl, 7546 getPointerTy(DAG.getDataLayout()))); 7547 HiRHS = 7548 DAG.getNode(ISD::SRA, dl, VT, RHS, 7549 DAG.getConstant(LoSize - 1, dl, 7550 getPointerTy(DAG.getDataLayout()))); 7551 } else { 7552 HiLHS = DAG.getConstant(0, dl, VT); 7553 HiRHS = DAG.getConstant(0, dl, VT); 7554 } 7555 7556 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7557 // pre-lowered to the correct types. This all depends upon WideVT not 7558 // being a legal type for the architecture and thus has to be split to 7559 // two arguments. 7560 SDValue Ret; 7561 TargetLowering::MakeLibCallOptions CallOptions; 7562 CallOptions.setSExt(isSigned); 7563 CallOptions.setIsPostTypeLegalization(true); 7564 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7565 // Halves of WideVT are packed into registers in different order 7566 // depending on platform endianness. This is usually handled by 7567 // the C calling convention, but we can't defer to it in 7568 // the legalizer. 7569 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7570 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7571 } else { 7572 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7573 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7574 } 7575 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7576 "Ret value is a collection of constituent nodes holding result."); 7577 if (DAG.getDataLayout().isLittleEndian()) { 7578 // Same as above. 7579 BottomHalf = Ret.getOperand(0); 7580 TopHalf = Ret.getOperand(1); 7581 } else { 7582 BottomHalf = Ret.getOperand(1); 7583 TopHalf = Ret.getOperand(0); 7584 } 7585 } 7586 7587 Result = BottomHalf; 7588 if (isSigned) { 7589 SDValue ShiftAmt = DAG.getConstant( 7590 VT.getScalarSizeInBits() - 1, dl, 7591 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7592 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7593 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7594 } else { 7595 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7596 DAG.getConstant(0, dl, VT), ISD::SETNE); 7597 } 7598 7599 // Truncate the result if SetCC returns a larger type than needed. 7600 EVT RType = Node->getValueType(1); 7601 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7602 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7603 7604 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7605 "Unexpected result type for S/UMULO legalization"); 7606 return true; 7607 } 7608 7609 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7610 SDLoc dl(Node); 7611 bool NoNaN = Node->getFlags().hasNoNaNs(); 7612 unsigned BaseOpcode = 0; 7613 switch (Node->getOpcode()) { 7614 default: llvm_unreachable("Expected VECREDUCE opcode"); 7615 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7616 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7617 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7618 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7619 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7620 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7621 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7622 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7623 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7624 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7625 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7626 case ISD::VECREDUCE_FMAX: 7627 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7628 break; 7629 case ISD::VECREDUCE_FMIN: 7630 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7631 break; 7632 } 7633 7634 SDValue Op = Node->getOperand(0); 7635 EVT VT = Op.getValueType(); 7636 7637 // Try to use a shuffle reduction for power of two vectors. 7638 if (VT.isPow2VectorType()) { 7639 while (VT.getVectorNumElements() > 1) { 7640 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7641 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7642 break; 7643 7644 SDValue Lo, Hi; 7645 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7646 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7647 VT = HalfVT; 7648 } 7649 } 7650 7651 EVT EltVT = VT.getVectorElementType(); 7652 unsigned NumElts = VT.getVectorNumElements(); 7653 7654 SmallVector<SDValue, 8> Ops; 7655 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7656 7657 SDValue Res = Ops[0]; 7658 for (unsigned i = 1; i < NumElts; i++) 7659 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7660 7661 // Result type may be wider than element type. 7662 if (EltVT != Node->getValueType(0)) 7663 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7664 return Res; 7665 } 7666