xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp (revision a3c35da61bb201168575f1d18f4ca3e96937d35c)
1  //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file includes support code use by SelectionDAGBuilder when lowering a
10  // statepoint sequence in SelectionDAG IR.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "StatepointLowering.h"
15  #include "SelectionDAGBuilder.h"
16  #include "llvm/ADT/ArrayRef.h"
17  #include "llvm/ADT/DenseMap.h"
18  #include "llvm/ADT/None.h"
19  #include "llvm/ADT/Optional.h"
20  #include "llvm/ADT/STLExtras.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/ADT/Statistic.h"
23  #include "llvm/CodeGen/FunctionLoweringInfo.h"
24  #include "llvm/CodeGen/GCMetadata.h"
25  #include "llvm/CodeGen/GCStrategy.h"
26  #include "llvm/CodeGen/ISDOpcodes.h"
27  #include "llvm/CodeGen/MachineFrameInfo.h"
28  #include "llvm/CodeGen/MachineFunction.h"
29  #include "llvm/CodeGen/MachineMemOperand.h"
30  #include "llvm/CodeGen/RuntimeLibcalls.h"
31  #include "llvm/CodeGen/SelectionDAG.h"
32  #include "llvm/CodeGen/SelectionDAGNodes.h"
33  #include "llvm/CodeGen/StackMaps.h"
34  #include "llvm/CodeGen/TargetLowering.h"
35  #include "llvm/CodeGen/TargetOpcodes.h"
36  #include "llvm/IR/CallingConv.h"
37  #include "llvm/IR/DerivedTypes.h"
38  #include "llvm/IR/Instruction.h"
39  #include "llvm/IR/Instructions.h"
40  #include "llvm/IR/LLVMContext.h"
41  #include "llvm/IR/Statepoint.h"
42  #include "llvm/IR/Type.h"
43  #include "llvm/Support/Casting.h"
44  #include "llvm/Support/MachineValueType.h"
45  #include "llvm/Target/TargetMachine.h"
46  #include "llvm/Target/TargetOptions.h"
47  #include <cassert>
48  #include <cstddef>
49  #include <cstdint>
50  #include <iterator>
51  #include <tuple>
52  #include <utility>
53  
54  using namespace llvm;
55  
56  #define DEBUG_TYPE "statepoint-lowering"
57  
58  STATISTIC(NumSlotsAllocatedForStatepoints,
59            "Number of stack slots allocated for statepoints");
60  STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
61  STATISTIC(StatepointMaxSlotsRequired,
62            "Maximum number of stack slots required for a singe statepoint");
63  
64  static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
65                                   SelectionDAGBuilder &Builder, uint64_t Value) {
66    SDLoc L = Builder.getCurSDLoc();
67    Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
68                                                MVT::i64));
69    Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
70  }
71  
72  void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
73    // Consistency check
74    assert(PendingGCRelocateCalls.empty() &&
75           "Trying to visit statepoint before finished processing previous one");
76    Locations.clear();
77    NextSlotToAllocate = 0;
78    // Need to resize this on each safepoint - we need the two to stay in sync and
79    // the clear patterns of a SelectionDAGBuilder have no relation to
80    // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
81    AllocatedStackSlots.clear();
82    AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
83  }
84  
85  void StatepointLoweringState::clear() {
86    Locations.clear();
87    AllocatedStackSlots.clear();
88    assert(PendingGCRelocateCalls.empty() &&
89           "cleared before statepoint sequence completed");
90  }
91  
92  SDValue
93  StatepointLoweringState::allocateStackSlot(EVT ValueType,
94                                             SelectionDAGBuilder &Builder) {
95    NumSlotsAllocatedForStatepoints++;
96    MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
97  
98    unsigned SpillSize = ValueType.getStoreSize();
99    assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
100  
101    // First look for a previously created stack slot which is not in
102    // use (accounting for the fact arbitrary slots may already be
103    // reserved), or to create a new stack slot and use it.
104  
105    const size_t NumSlots = AllocatedStackSlots.size();
106    assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
107  
108    assert(AllocatedStackSlots.size() ==
109           Builder.FuncInfo.StatepointStackSlots.size() &&
110           "Broken invariant");
111  
112    for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
113      if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
114        const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
115        if (MFI.getObjectSize(FI) == SpillSize) {
116          AllocatedStackSlots.set(NextSlotToAllocate);
117          // TODO: Is ValueType the right thing to use here?
118          return Builder.DAG.getFrameIndex(FI, ValueType);
119        }
120      }
121    }
122  
123    // Couldn't find a free slot, so create a new one:
124  
125    SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
126    const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
127    MFI.markAsStatepointSpillSlotObjectIndex(FI);
128  
129    Builder.FuncInfo.StatepointStackSlots.push_back(FI);
130    AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
131    assert(AllocatedStackSlots.size() ==
132           Builder.FuncInfo.StatepointStackSlots.size() &&
133           "Broken invariant");
134  
135    StatepointMaxSlotsRequired.updateMax(
136        Builder.FuncInfo.StatepointStackSlots.size());
137  
138    return SpillSlot;
139  }
140  
141  /// Utility function for reservePreviousStackSlotForValue. Tries to find
142  /// stack slot index to which we have spilled value for previous statepoints.
143  /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
144  static Optional<int> findPreviousSpillSlot(const Value *Val,
145                                             SelectionDAGBuilder &Builder,
146                                             int LookUpDepth) {
147    // Can not look any further - give up now
148    if (LookUpDepth <= 0)
149      return None;
150  
151    // Spill location is known for gc relocates
152    if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
153      const auto &SpillMap =
154          Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
155  
156      auto It = SpillMap.find(Relocate->getDerivedPtr());
157      if (It == SpillMap.end())
158        return None;
159  
160      return It->second;
161    }
162  
163    // Look through bitcast instructions.
164    if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
165      return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
166  
167    // Look through phi nodes
168    // All incoming values should have same known stack slot, otherwise result
169    // is unknown.
170    if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
171      Optional<int> MergedResult = None;
172  
173      for (auto &IncomingValue : Phi->incoming_values()) {
174        Optional<int> SpillSlot =
175            findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
176        if (!SpillSlot.hasValue())
177          return None;
178  
179        if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
180          return None;
181  
182        MergedResult = SpillSlot;
183      }
184      return MergedResult;
185    }
186  
187    // TODO: We can do better for PHI nodes. In cases like this:
188    //   ptr = phi(relocated_pointer, not_relocated_pointer)
189    //   statepoint(ptr)
190    // We will return that stack slot for ptr is unknown. And later we might
191    // assign different stack slots for ptr and relocated_pointer. This limits
192    // llvm's ability to remove redundant stores.
193    // Unfortunately it's hard to accomplish in current infrastructure.
194    // We use this function to eliminate spill store completely, while
195    // in example we still need to emit store, but instead of any location
196    // we need to use special "preferred" location.
197  
198    // TODO: handle simple updates.  If a value is modified and the original
199    // value is no longer live, it would be nice to put the modified value in the
200    // same slot.  This allows folding of the memory accesses for some
201    // instructions types (like an increment).
202    //   statepoint (i)
203    //   i1 = i+1
204    //   statepoint (i1)
205    // However we need to be careful for cases like this:
206    //   statepoint(i)
207    //   i1 = i+1
208    //   statepoint(i, i1)
209    // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210    // put handling of simple modifications in this function like it's done
211    // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212    // which we visit values is unspecified.
213  
214    // Don't know any information about this instruction
215    return None;
216  }
217  
218  /// Try to find existing copies of the incoming values in stack slots used for
219  /// statepoint spilling.  If we can find a spill slot for the incoming value,
220  /// mark that slot as allocated, and reuse the same slot for this safepoint.
221  /// This helps to avoid series of loads and stores that only serve to reshuffle
222  /// values on the stack between calls.
223  static void reservePreviousStackSlotForValue(const Value *IncomingValue,
224                                               SelectionDAGBuilder &Builder) {
225    SDValue Incoming = Builder.getValue(IncomingValue);
226  
227    if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
228      // We won't need to spill this, so no need to check for previously
229      // allocated stack slots
230      return;
231    }
232  
233    SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
234    if (OldLocation.getNode())
235      // Duplicates in input
236      return;
237  
238    const int LookUpDepth = 6;
239    Optional<int> Index =
240        findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
241    if (!Index.hasValue())
242      return;
243  
244    const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
245  
246    auto SlotIt = find(StatepointSlots, *Index);
247    assert(SlotIt != StatepointSlots.end() &&
248           "Value spilled to the unknown stack slot");
249  
250    // This is one of our dedicated lowering slots
251    const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
252    if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
253      // stack slot already assigned to someone else, can't use it!
254      // TODO: currently we reserve space for gc arguments after doing
255      // normal allocation for deopt arguments.  We should reserve for
256      // _all_ deopt and gc arguments, then start allocating.  This
257      // will prevent some moves being inserted when vm state changes,
258      // but gc state doesn't between two calls.
259      return;
260    }
261    // Reserve this stack slot
262    Builder.StatepointLowering.reserveStackSlot(Offset);
263  
264    // Cache this slot so we find it when going through the normal
265    // assignment loop.
266    SDValue Loc =
267        Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
268    Builder.StatepointLowering.setLocation(Incoming, Loc);
269  }
270  
271  /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
272  /// is not required for correctness.  It's purpose is to reduce the size of
273  /// StackMap section.  It has no effect on the number of spill slots required
274  /// or the actual lowering.
275  static void
276  removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
277                        SmallVectorImpl<const Value *> &Ptrs,
278                        SmallVectorImpl<const GCRelocateInst *> &Relocs,
279                        SelectionDAGBuilder &Builder,
280                        FunctionLoweringInfo::StatepointSpillMap &SSM) {
281    DenseMap<SDValue, const Value *> Seen;
282  
283    SmallVector<const Value *, 64> NewBases, NewPtrs;
284    SmallVector<const GCRelocateInst *, 64> NewRelocs;
285    for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
286      SDValue SD = Builder.getValue(Ptrs[i]);
287      auto SeenIt = Seen.find(SD);
288  
289      if (SeenIt == Seen.end()) {
290        // Only add non-duplicates
291        NewBases.push_back(Bases[i]);
292        NewPtrs.push_back(Ptrs[i]);
293        NewRelocs.push_back(Relocs[i]);
294        Seen[SD] = Ptrs[i];
295      } else {
296        // Duplicate pointer found, note in SSM and move on:
297        SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
298      }
299    }
300    assert(Bases.size() >= NewBases.size());
301    assert(Ptrs.size() >= NewPtrs.size());
302    assert(Relocs.size() >= NewRelocs.size());
303    Bases = NewBases;
304    Ptrs = NewPtrs;
305    Relocs = NewRelocs;
306    assert(Ptrs.size() == Bases.size());
307    assert(Ptrs.size() == Relocs.size());
308  }
309  
310  /// Extract call from statepoint, lower it and return pointer to the
311  /// call node. Also update NodeMap so that getValue(statepoint) will
312  /// reference lowered call result
313  static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
314      SelectionDAGBuilder::StatepointLoweringInfo &SI,
315      SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
316    SDValue ReturnValue, CallEndVal;
317    std::tie(ReturnValue, CallEndVal) =
318        Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
319    SDNode *CallEnd = CallEndVal.getNode();
320  
321    // Get a call instruction from the call sequence chain.  Tail calls are not
322    // allowed.  The following code is essentially reverse engineering X86's
323    // LowerCallTo.
324    //
325    // We are expecting DAG to have the following form:
326    //
327    // ch = eh_label (only in case of invoke statepoint)
328    //   ch, glue = callseq_start ch
329    //   ch, glue = X86::Call ch, glue
330    //   ch, glue = callseq_end ch, glue
331    //   get_return_value ch, glue
332    //
333    // get_return_value can either be a sequence of CopyFromReg instructions
334    // to grab the return value from the return register(s), or it can be a LOAD
335    // to load a value returned by reference via a stack slot.
336  
337    bool HasDef = !SI.CLI.RetTy->isVoidTy();
338    if (HasDef) {
339      if (CallEnd->getOpcode() == ISD::LOAD)
340        CallEnd = CallEnd->getOperand(0).getNode();
341      else
342        while (CallEnd->getOpcode() == ISD::CopyFromReg)
343          CallEnd = CallEnd->getOperand(0).getNode();
344    }
345  
346    assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
347    return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
348  }
349  
350  static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
351                                                 FrameIndexSDNode &FI) {
352    auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
353    auto MMOFlags = MachineMemOperand::MOStore |
354      MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
355    auto &MFI = MF.getFrameInfo();
356    return MF.getMachineMemOperand(PtrInfo, MMOFlags,
357                                   MFI.getObjectSize(FI.getIndex()),
358                                   MFI.getObjectAlignment(FI.getIndex()));
359  }
360  
361  /// Spill a value incoming to the statepoint. It might be either part of
362  /// vmstate
363  /// or gcstate. In both cases unconditionally spill it on the stack unless it
364  /// is a null constant. Return pair with first element being frame index
365  /// containing saved value and second element with outgoing chain from the
366  /// emitted store
367  static std::tuple<SDValue, SDValue, MachineMemOperand*>
368  spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
369                               SelectionDAGBuilder &Builder) {
370    SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
371    MachineMemOperand* MMO = nullptr;
372  
373    // Emit new store if we didn't do it for this ptr before
374    if (!Loc.getNode()) {
375      Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
376                                                         Builder);
377      int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
378      // We use TargetFrameIndex so that isel will not select it into LEA
379      Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
380  
381  #ifndef NDEBUG
382      // Right now we always allocate spill slots that are of the same
383      // size as the value we're about to spill (the size of spillee can
384      // vary since we spill vectors of pointers too).  At some point we
385      // can consider allowing spills of smaller values to larger slots
386      // (i.e. change the '==' in the assert below to a '>=').
387      MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
388      assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() &&
389             "Bad spill:  stack slot does not match!");
390  #endif
391  
392      auto &MF = Builder.DAG.getMachineFunction();
393      auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
394      Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
395                                   PtrInfo);
396  
397      MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
398  
399      Builder.StatepointLowering.setLocation(Incoming, Loc);
400    }
401  
402    assert(Loc.getNode());
403    return std::make_tuple(Loc, Chain, MMO);
404  }
405  
406  /// Lower a single value incoming to a statepoint node.  This value can be
407  /// either a deopt value or a gc value, the handling is the same.  We special
408  /// case constants and allocas, then fall back to spilling if required.
409  static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
410                                           SmallVectorImpl<SDValue> &Ops,
411                                           SmallVectorImpl<MachineMemOperand*> &MemRefs,
412                                           SelectionDAGBuilder &Builder) {
413    // Note: We know all of these spills are independent, but don't bother to
414    // exploit that chain wise.  DAGCombine will happily do so as needed, so
415    // doing it here would be a small compile time win at most.
416    SDValue Chain = Builder.getRoot();
417  
418    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
419      // If the original value was a constant, make sure it gets recorded as
420      // such in the stackmap.  This is required so that the consumer can
421      // parse any internal format to the deopt state.  It also handles null
422      // pointers and other constant pointers in GC states.  Note the constant
423      // vectors do not appear to actually hit this path and that anything larger
424      // than an i64 value (not type!) will fail asserts here.
425      pushStackMapConstant(Ops, Builder, C->getSExtValue());
426    } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
427      // This handles allocas as arguments to the statepoint (this is only
428      // really meaningful for a deopt value.  For GC, we'd be trying to
429      // relocate the address of the alloca itself?)
430      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
431             "Incoming value is a frame index!");
432      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
433                                                    Builder.getFrameIndexTy()));
434  
435      auto &MF = Builder.DAG.getMachineFunction();
436      auto *MMO = getMachineMemOperand(MF, *FI);
437      MemRefs.push_back(MMO);
438  
439    } else if (LiveInOnly) {
440      // If this value is live in (not live-on-return, or live-through), we can
441      // treat it the same way patchpoint treats it's "live in" values.  We'll
442      // end up folding some of these into stack references, but they'll be
443      // handled by the register allocator.  Note that we do not have the notion
444      // of a late use so these values might be placed in registers which are
445      // clobbered by the call.  This is fine for live-in.
446      Ops.push_back(Incoming);
447    } else {
448      // Otherwise, locate a spill slot and explicitly spill it so it
449      // can be found by the runtime later.  We currently do not support
450      // tracking values through callee saved registers to their eventual
451      // spill location.  This would be a useful optimization, but would
452      // need to be optional since it requires a lot of complexity on the
453      // runtime side which not all would support.
454      auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
455      Ops.push_back(std::get<0>(Res));
456      if (auto *MMO = std::get<2>(Res))
457        MemRefs.push_back(MMO);
458      Chain = std::get<1>(Res);;
459    }
460  
461    Builder.DAG.setRoot(Chain);
462  }
463  
464  /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
465  /// lowering is described in lowerIncomingStatepointValue.  This function is
466  /// responsible for lowering everything in the right position and playing some
467  /// tricks to avoid redundant stack manipulation where possible.  On
468  /// completion, 'Ops' will contain ready to use operands for machine code
469  /// statepoint. The chain nodes will have already been created and the DAG root
470  /// will be set to the last value spilled (if any were).
471  static void
472  lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
473                          SmallVectorImpl<MachineMemOperand*> &MemRefs,                                    SelectionDAGBuilder::StatepointLoweringInfo &SI,
474                          SelectionDAGBuilder &Builder) {
475    // Lower the deopt and gc arguments for this statepoint.  Layout will be:
476    // deopt argument length, deopt arguments.., gc arguments...
477  #ifndef NDEBUG
478    if (auto *GFI = Builder.GFI) {
479      // Check that each of the gc pointer and bases we've gotten out of the
480      // safepoint is something the strategy thinks might be a pointer (or vector
481      // of pointers) into the GC heap.  This is basically just here to help catch
482      // errors during statepoint insertion. TODO: This should actually be in the
483      // Verifier, but we can't get to the GCStrategy from there (yet).
484      GCStrategy &S = GFI->getStrategy();
485      for (const Value *V : SI.Bases) {
486        auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
487        if (Opt.hasValue()) {
488          assert(Opt.getValue() &&
489                 "non gc managed base pointer found in statepoint");
490        }
491      }
492      for (const Value *V : SI.Ptrs) {
493        auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
494        if (Opt.hasValue()) {
495          assert(Opt.getValue() &&
496                 "non gc managed derived pointer found in statepoint");
497        }
498      }
499      assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
500    } else {
501      assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
502      assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
503    }
504  #endif
505  
506    // Figure out what lowering strategy we're going to use for each part
507    // Note: Is is conservatively correct to lower both "live-in" and "live-out"
508    // as "live-through". A "live-through" variable is one which is "live-in",
509    // "live-out", and live throughout the lifetime of the call (i.e. we can find
510    // it from any PC within the transitive callee of the statepoint).  In
511    // particular, if the callee spills callee preserved registers we may not
512    // be able to find a value placed in that register during the call.  This is
513    // fine for live-out, but not for live-through.  If we were willing to make
514    // assumptions about the code generator producing the callee, we could
515    // potentially allow live-through values in callee saved registers.
516    const bool LiveInDeopt =
517      SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
518  
519    auto isGCValue =[&](const Value *V) {
520      return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
521    };
522  
523    // Before we actually start lowering (and allocating spill slots for values),
524    // reserve any stack slots which we judge to be profitable to reuse for a
525    // particular value.  This is purely an optimization over the code below and
526    // doesn't change semantics at all.  It is important for performance that we
527    // reserve slots for both deopt and gc values before lowering either.
528    for (const Value *V : SI.DeoptState) {
529      if (!LiveInDeopt || isGCValue(V))
530        reservePreviousStackSlotForValue(V, Builder);
531    }
532    for (unsigned i = 0; i < SI.Bases.size(); ++i) {
533      reservePreviousStackSlotForValue(SI.Bases[i], Builder);
534      reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
535    }
536  
537    // First, prefix the list with the number of unique values to be
538    // lowered.  Note that this is the number of *Values* not the
539    // number of SDValues required to lower them.
540    const int NumVMSArgs = SI.DeoptState.size();
541    pushStackMapConstant(Ops, Builder, NumVMSArgs);
542  
543    // The vm state arguments are lowered in an opaque manner.  We do not know
544    // what type of values are contained within.
545    for (const Value *V : SI.DeoptState) {
546      SDValue Incoming;
547      // If this is a function argument at a static frame index, generate it as
548      // the frame index.
549      if (const Argument *Arg = dyn_cast<Argument>(V)) {
550        int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
551        if (FI != INT_MAX)
552          Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
553      }
554      if (!Incoming.getNode())
555        Incoming = Builder.getValue(V);
556      const bool LiveInValue = LiveInDeopt && !isGCValue(V);
557      lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder);
558    }
559  
560    // Finally, go ahead and lower all the gc arguments.  There's no prefixed
561    // length for this one.  After lowering, we'll have the base and pointer
562    // arrays interwoven with each (lowered) base pointer immediately followed by
563    // it's (lowered) derived pointer.  i.e
564    // (base[0], ptr[0], base[1], ptr[1], ...)
565    for (unsigned i = 0; i < SI.Bases.size(); ++i) {
566      const Value *Base = SI.Bases[i];
567      lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
568                                   Ops, MemRefs, Builder);
569  
570      const Value *Ptr = SI.Ptrs[i];
571      lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
572                                   Ops, MemRefs, Builder);
573    }
574  
575    // If there are any explicit spill slots passed to the statepoint, record
576    // them, but otherwise do not do anything special.  These are user provided
577    // allocas and give control over placement to the consumer.  In this case,
578    // it is the contents of the slot which may get updated, not the pointer to
579    // the alloca
580    for (Value *V : SI.GCArgs) {
581      SDValue Incoming = Builder.getValue(V);
582      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
583        // This handles allocas as arguments to the statepoint
584        assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
585               "Incoming value is a frame index!");
586        Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
587                                                      Builder.getFrameIndexTy()));
588  
589        auto &MF = Builder.DAG.getMachineFunction();
590        auto *MMO = getMachineMemOperand(MF, *FI);
591        MemRefs.push_back(MMO);
592      }
593    }
594  
595    // Record computed locations for all lowered values.
596    // This can not be embedded in lowering loops as we need to record *all*
597    // values, while previous loops account only values with unique SDValues.
598    const Instruction *StatepointInstr = SI.StatepointInstr;
599    auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
600  
601    for (const GCRelocateInst *Relocate : SI.GCRelocates) {
602      const Value *V = Relocate->getDerivedPtr();
603      SDValue SDV = Builder.getValue(V);
604      SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
605  
606      if (Loc.getNode()) {
607        SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
608      } else {
609        // Record value as visited, but not spilled. This is case for allocas
610        // and constants. For this values we can avoid emitting spill load while
611        // visiting corresponding gc_relocate.
612        // Actually we do not need to record them in this map at all.
613        // We do this only to check that we are not relocating any unvisited
614        // value.
615        SpillMap.SlotMap[V] = None;
616  
617        // Default llvm mechanisms for exporting values which are used in
618        // different basic blocks does not work for gc relocates.
619        // Note that it would be incorrect to teach llvm that all relocates are
620        // uses of the corresponding values so that it would automatically
621        // export them. Relocates of the spilled values does not use original
622        // value.
623        if (Relocate->getParent() != StatepointInstr->getParent())
624          Builder.ExportFromCurrentBlock(V);
625      }
626    }
627  }
628  
629  SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
630      SelectionDAGBuilder::StatepointLoweringInfo &SI) {
631    // The basic scheme here is that information about both the original call and
632    // the safepoint is encoded in the CallInst.  We create a temporary call and
633    // lower it, then reverse engineer the calling sequence.
634  
635    NumOfStatepoints++;
636    // Clear state
637    StatepointLowering.startNewStatepoint(*this);
638  
639  #ifndef NDEBUG
640    // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
641    // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
642    for (auto *Reloc : SI.GCRelocates)
643      if (Reloc->getParent() == SI.StatepointInstr->getParent())
644        StatepointLowering.scheduleRelocCall(*Reloc);
645  #endif
646  
647    // Remove any redundant llvm::Values which map to the same SDValue as another
648    // input.  Also has the effect of removing duplicates in the original
649    // llvm::Value input list as well.  This is a useful optimization for
650    // reducing the size of the StackMap section.  It has no other impact.
651    removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
652                          FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
653    assert(SI.Bases.size() == SI.Ptrs.size() &&
654           SI.Ptrs.size() == SI.GCRelocates.size());
655  
656    // Lower statepoint vmstate and gcstate arguments
657    SmallVector<SDValue, 10> LoweredMetaArgs;
658    SmallVector<MachineMemOperand*, 16> MemRefs;
659    lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this);
660  
661    // Now that we've emitted the spills, we need to update the root so that the
662    // call sequence is ordered correctly.
663    SI.CLI.setChain(getRoot());
664  
665    // Get call node, we will replace it later with statepoint
666    SDValue ReturnVal;
667    SDNode *CallNode;
668    std::tie(ReturnVal, CallNode) =
669        lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
670  
671    // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
672    // nodes with all the appropriate arguments and return values.
673  
674    // Call Node: Chain, Target, {Args}, RegMask, [Glue]
675    SDValue Chain = CallNode->getOperand(0);
676  
677    SDValue Glue;
678    bool CallHasIncomingGlue = CallNode->getGluedNode();
679    if (CallHasIncomingGlue) {
680      // Glue is always last operand
681      Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
682    }
683  
684    // Build the GC_TRANSITION_START node if necessary.
685    //
686    // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
687    // order in which they appear in the call to the statepoint intrinsic. If
688    // any of the operands is a pointer-typed, that operand is immediately
689    // followed by a SRCVALUE for the pointer that may be used during lowering
690    // (e.g. to form MachinePointerInfo values for loads/stores).
691    const bool IsGCTransition =
692        (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
693        (uint64_t)StatepointFlags::GCTransition;
694    if (IsGCTransition) {
695      SmallVector<SDValue, 8> TSOps;
696  
697      // Add chain
698      TSOps.push_back(Chain);
699  
700      // Add GC transition arguments
701      for (const Value *V : SI.GCTransitionArgs) {
702        TSOps.push_back(getValue(V));
703        if (V->getType()->isPointerTy())
704          TSOps.push_back(DAG.getSrcValue(V));
705      }
706  
707      // Add glue if necessary
708      if (CallHasIncomingGlue)
709        TSOps.push_back(Glue);
710  
711      SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
712  
713      SDValue GCTransitionStart =
714          DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
715  
716      Chain = GCTransitionStart.getValue(0);
717      Glue = GCTransitionStart.getValue(1);
718    }
719  
720    // TODO: Currently, all of these operands are being marked as read/write in
721    // PrologEpilougeInserter.cpp, we should special case the VMState arguments
722    // and flags to be read-only.
723    SmallVector<SDValue, 40> Ops;
724  
725    // Add the <id> and <numBytes> constants.
726    Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
727    Ops.push_back(
728        DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
729  
730    // Calculate and push starting position of vmstate arguments
731    // Get number of arguments incoming directly into call node
732    unsigned NumCallRegArgs =
733        CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
734    Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
735  
736    // Add call target
737    SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
738    Ops.push_back(CallTarget);
739  
740    // Add call arguments
741    // Get position of register mask in the call
742    SDNode::op_iterator RegMaskIt;
743    if (CallHasIncomingGlue)
744      RegMaskIt = CallNode->op_end() - 2;
745    else
746      RegMaskIt = CallNode->op_end() - 1;
747    Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
748  
749    // Add a constant argument for the calling convention
750    pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
751  
752    // Add a constant argument for the flags
753    uint64_t Flags = SI.StatepointFlags;
754    assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
755           "Unknown flag used");
756    pushStackMapConstant(Ops, *this, Flags);
757  
758    // Insert all vmstate and gcstate arguments
759    Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
760  
761    // Add register mask from call node
762    Ops.push_back(*RegMaskIt);
763  
764    // Add chain
765    Ops.push_back(Chain);
766  
767    // Same for the glue, but we add it only if original call had it
768    if (Glue.getNode())
769      Ops.push_back(Glue);
770  
771    // Compute return values.  Provide a glue output since we consume one as
772    // input.  This allows someone else to chain off us as needed.
773    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
774  
775    MachineSDNode *StatepointMCNode =
776      DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
777    DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
778  
779    SDNode *SinkNode = StatepointMCNode;
780  
781    // Build the GC_TRANSITION_END node if necessary.
782    //
783    // See the comment above regarding GC_TRANSITION_START for the layout of
784    // the operands to the GC_TRANSITION_END node.
785    if (IsGCTransition) {
786      SmallVector<SDValue, 8> TEOps;
787  
788      // Add chain
789      TEOps.push_back(SDValue(StatepointMCNode, 0));
790  
791      // Add GC transition arguments
792      for (const Value *V : SI.GCTransitionArgs) {
793        TEOps.push_back(getValue(V));
794        if (V->getType()->isPointerTy())
795          TEOps.push_back(DAG.getSrcValue(V));
796      }
797  
798      // Add glue
799      TEOps.push_back(SDValue(StatepointMCNode, 1));
800  
801      SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
802  
803      SDValue GCTransitionStart =
804          DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
805  
806      SinkNode = GCTransitionStart.getNode();
807    }
808  
809    // Replace original call
810    DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
811    // Remove original call node
812    DAG.DeleteNode(CallNode);
813  
814    // DON'T set the root - under the assumption that it's already set past the
815    // inserted node we created.
816  
817    // TODO: A better future implementation would be to emit a single variable
818    // argument, variable return value STATEPOINT node here and then hookup the
819    // return value of each gc.relocate to the respective output of the
820    // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
821    // to actually be possible today.
822  
823    return ReturnVal;
824  }
825  
826  void
827  SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
828                                       const BasicBlock *EHPadBB /*= nullptr*/) {
829    assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg &&
830           "anyregcc is not supported on statepoints!");
831  
832  #ifndef NDEBUG
833    // If this is a malformed statepoint, report it early to simplify debugging.
834    // This should catch any IR level mistake that's made when constructing or
835    // transforming statepoints.
836    ISP.verify();
837  
838    // Check that the associated GCStrategy expects to encounter statepoints.
839    assert(GFI->getStrategy().useStatepoints() &&
840           "GCStrategy does not expect to encounter statepoints");
841  #endif
842  
843    SDValue ActualCallee;
844  
845    if (ISP.getNumPatchBytes() > 0) {
846      // If we've been asked to emit a nop sequence instead of a call instruction
847      // for this statepoint then don't lower the call target, but use a constant
848      // `null` instead.  Not lowering the call target lets statepoint clients get
849      // away without providing a physical address for the symbolic call target at
850      // link time.
851  
852      const auto &TLI = DAG.getTargetLoweringInfo();
853      const auto &DL = DAG.getDataLayout();
854  
855      unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
856      ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
857    } else {
858      ActualCallee = getValue(ISP.getCalledValue());
859    }
860  
861    StatepointLoweringInfo SI(DAG);
862    populateCallLoweringInfo(SI.CLI, ISP.getCall(),
863                             ImmutableStatepoint::CallArgsBeginPos,
864                             ISP.getNumCallArgs(), ActualCallee,
865                             ISP.getActualReturnType(), false /* IsPatchPoint */);
866  
867    for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
868      SI.GCRelocates.push_back(Relocate);
869      SI.Bases.push_back(Relocate->getBasePtr());
870      SI.Ptrs.push_back(Relocate->getDerivedPtr());
871    }
872  
873    SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
874    SI.StatepointInstr = ISP.getInstruction();
875    SI.GCTransitionArgs =
876        ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
877    SI.ID = ISP.getID();
878    SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
879    SI.StatepointFlags = ISP.getFlags();
880    SI.NumPatchBytes = ISP.getNumPatchBytes();
881    SI.EHPadBB = EHPadBB;
882  
883    SDValue ReturnValue = LowerAsSTATEPOINT(SI);
884  
885    // Export the result value if needed
886    const GCResultInst *GCResult = ISP.getGCResult();
887    Type *RetTy = ISP.getActualReturnType();
888    if (!RetTy->isVoidTy() && GCResult) {
889      if (GCResult->getParent() != ISP.getCall()->getParent()) {
890        // Result value will be used in a different basic block so we need to
891        // export it now.  Default exporting mechanism will not work here because
892        // statepoint call has a different type than the actual call. It means
893        // that by default llvm will create export register of the wrong type
894        // (always i32 in our case). So instead we need to create export register
895        // with correct type manually.
896        // TODO: To eliminate this problem we can remove gc.result intrinsics
897        //       completely and make statepoint call to return a tuple.
898        unsigned Reg = FuncInfo.CreateRegs(RetTy);
899        RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
900                         DAG.getDataLayout(), Reg, RetTy,
901                         ISP.getCall()->getCallingConv());
902        SDValue Chain = DAG.getEntryNode();
903  
904        RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
905        PendingExports.push_back(Chain);
906        FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
907      } else {
908        // Result value will be used in a same basic block. Don't export it or
909        // perform any explicit register copies.
910        // We'll replace the actuall call node shortly. gc_result will grab
911        // this value.
912        setValue(ISP.getInstruction(), ReturnValue);
913      }
914    } else {
915      // The token value is never used from here on, just generate a poison value
916      setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
917    }
918  }
919  
920  void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
921      const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
922      bool VarArgDisallowed, bool ForceVoidReturnTy) {
923    StatepointLoweringInfo SI(DAG);
924    unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
925    populateCallLoweringInfo(
926        SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
927        ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
928        false);
929    if (!VarArgDisallowed)
930      SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
931  
932    auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
933  
934    unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
935  
936    auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
937    SI.ID = SD.StatepointID.getValueOr(DefaultID);
938    SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
939  
940    SI.DeoptState =
941        ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
942    SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
943    SI.EHPadBB = EHPadBB;
944  
945    // NB! The GC arguments are deliberately left empty.
946  
947    if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
948      ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
949      setValue(Call, ReturnVal);
950    }
951  }
952  
953  void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
954      const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
955    LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
956                                     /* VarArgDisallowed = */ false,
957                                     /* ForceVoidReturnTy  = */ false);
958  }
959  
960  void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
961    // The result value of the gc_result is simply the result of the actual
962    // call.  We've already emitted this, so just grab the value.
963    const Instruction *I = CI.getStatepoint();
964  
965    if (I->getParent() != CI.getParent()) {
966      // Statepoint is in different basic block so we should have stored call
967      // result in a virtual register.
968      // We can not use default getValue() functionality to copy value from this
969      // register because statepoint and actual call return types can be
970      // different, and getValue() will use CopyFromReg of the wrong type,
971      // which is always i32 in our case.
972      PointerType *CalleeType = cast<PointerType>(
973          ImmutableStatepoint(I).getCalledValue()->getType());
974      Type *RetTy =
975          cast<FunctionType>(CalleeType->getElementType())->getReturnType();
976      SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
977  
978      assert(CopyFromReg.getNode());
979      setValue(&CI, CopyFromReg);
980    } else {
981      setValue(&CI, getValue(I));
982    }
983  }
984  
985  void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
986  #ifndef NDEBUG
987    // Consistency check
988    // We skip this check for relocates not in the same basic block as their
989    // statepoint. It would be too expensive to preserve validation info through
990    // different basic blocks.
991    if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
992      StatepointLowering.relocCallVisited(Relocate);
993  
994    auto *Ty = Relocate.getType()->getScalarType();
995    if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
996      assert(*IsManaged && "Non gc managed pointer relocated!");
997  #endif
998  
999    const Value *DerivedPtr = Relocate.getDerivedPtr();
1000    SDValue SD = getValue(DerivedPtr);
1001  
1002    auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
1003    auto SlotIt = SpillMap.find(DerivedPtr);
1004    assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
1005    Optional<int> DerivedPtrLocation = SlotIt->second;
1006  
1007    // We didn't need to spill these special cases (constants and allocas).
1008    // See the handling in spillIncomingValueForStatepoint for detail.
1009    if (!DerivedPtrLocation) {
1010      setValue(&Relocate, SD);
1011      return;
1012    }
1013  
1014    SDValue SpillSlot =
1015      DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy());
1016  
1017    // Note: We know all of these reloads are independent, but don't bother to
1018    // exploit that chain wise.  DAGCombine will happily do so as needed, so
1019    // doing it here would be a small compile time win at most.
1020    SDValue Chain = getRoot();
1021  
1022    SDValue SpillLoad =
1023        DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1024                                                             Relocate.getType()),
1025                    getCurSDLoc(), Chain, SpillSlot,
1026                    MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
1027                                                      *DerivedPtrLocation));
1028  
1029    DAG.setRoot(SpillLoad.getValue(1));
1030  
1031    assert(SpillLoad.getNode());
1032    setValue(&Relocate, SpillLoad);
1033  }
1034  
1035  void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1036    const auto &TLI = DAG.getTargetLoweringInfo();
1037    SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1038                                           TLI.getPointerTy(DAG.getDataLayout()));
1039  
1040    // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1041    // call.  We also do not lower the return value to any virtual register, and
1042    // change the immediately following return to a trap instruction.
1043    LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1044                                     /* VarArgDisallowed = */ true,
1045                                     /* ForceVoidReturnTy = */ true);
1046  }
1047  
1048  void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1049    // We do not lower the return value from llvm.deoptimize to any virtual
1050    // register, and change the immediately following return to a trap
1051    // instruction.
1052    if (DAG.getTarget().Options.TrapUnreachable)
1053      DAG.setRoot(
1054          DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1055  }
1056