1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/GCStrategy.h" 26 #include "llvm/CodeGen/ISDOpcodes.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <iterator> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "statepoint-lowering" 57 58 STATISTIC(NumSlotsAllocatedForStatepoints, 59 "Number of stack slots allocated for statepoints"); 60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 61 STATISTIC(StatepointMaxSlotsRequired, 62 "Maximum number of stack slots required for a singe statepoint"); 63 64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 65 SelectionDAGBuilder &Builder, uint64_t Value) { 66 SDLoc L = Builder.getCurSDLoc(); 67 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 68 MVT::i64)); 69 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 70 } 71 72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 73 // Consistency check 74 assert(PendingGCRelocateCalls.empty() && 75 "Trying to visit statepoint before finished processing previous one"); 76 Locations.clear(); 77 NextSlotToAllocate = 0; 78 // Need to resize this on each safepoint - we need the two to stay in sync and 79 // the clear patterns of a SelectionDAGBuilder have no relation to 80 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 81 AllocatedStackSlots.clear(); 82 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 83 } 84 85 void StatepointLoweringState::clear() { 86 Locations.clear(); 87 AllocatedStackSlots.clear(); 88 assert(PendingGCRelocateCalls.empty() && 89 "cleared before statepoint sequence completed"); 90 } 91 92 SDValue 93 StatepointLoweringState::allocateStackSlot(EVT ValueType, 94 SelectionDAGBuilder &Builder) { 95 NumSlotsAllocatedForStatepoints++; 96 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 97 98 unsigned SpillSize = ValueType.getStoreSize(); 99 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 100 101 // First look for a previously created stack slot which is not in 102 // use (accounting for the fact arbitrary slots may already be 103 // reserved), or to create a new stack slot and use it. 104 105 const size_t NumSlots = AllocatedStackSlots.size(); 106 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 107 108 assert(AllocatedStackSlots.size() == 109 Builder.FuncInfo.StatepointStackSlots.size() && 110 "Broken invariant"); 111 112 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 113 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 114 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 115 if (MFI.getObjectSize(FI) == SpillSize) { 116 AllocatedStackSlots.set(NextSlotToAllocate); 117 // TODO: Is ValueType the right thing to use here? 118 return Builder.DAG.getFrameIndex(FI, ValueType); 119 } 120 } 121 } 122 123 // Couldn't find a free slot, so create a new one: 124 125 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 126 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 127 MFI.markAsStatepointSpillSlotObjectIndex(FI); 128 129 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 130 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 131 assert(AllocatedStackSlots.size() == 132 Builder.FuncInfo.StatepointStackSlots.size() && 133 "Broken invariant"); 134 135 StatepointMaxSlotsRequired.updateMax( 136 Builder.FuncInfo.StatepointStackSlots.size()); 137 138 return SpillSlot; 139 } 140 141 /// Utility function for reservePreviousStackSlotForValue. Tries to find 142 /// stack slot index to which we have spilled value for previous statepoints. 143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 144 static Optional<int> findPreviousSpillSlot(const Value *Val, 145 SelectionDAGBuilder &Builder, 146 int LookUpDepth) { 147 // Can not look any further - give up now 148 if (LookUpDepth <= 0) 149 return None; 150 151 // Spill location is known for gc relocates 152 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 153 const auto &SpillMap = 154 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 155 156 auto It = SpillMap.find(Relocate->getDerivedPtr()); 157 if (It == SpillMap.end()) 158 return None; 159 160 return It->second; 161 } 162 163 // Look through bitcast instructions. 164 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 165 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 166 167 // Look through phi nodes 168 // All incoming values should have same known stack slot, otherwise result 169 // is unknown. 170 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 171 Optional<int> MergedResult = None; 172 173 for (auto &IncomingValue : Phi->incoming_values()) { 174 Optional<int> SpillSlot = 175 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 176 if (!SpillSlot.hasValue()) 177 return None; 178 179 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 180 return None; 181 182 MergedResult = SpillSlot; 183 } 184 return MergedResult; 185 } 186 187 // TODO: We can do better for PHI nodes. In cases like this: 188 // ptr = phi(relocated_pointer, not_relocated_pointer) 189 // statepoint(ptr) 190 // We will return that stack slot for ptr is unknown. And later we might 191 // assign different stack slots for ptr and relocated_pointer. This limits 192 // llvm's ability to remove redundant stores. 193 // Unfortunately it's hard to accomplish in current infrastructure. 194 // We use this function to eliminate spill store completely, while 195 // in example we still need to emit store, but instead of any location 196 // we need to use special "preferred" location. 197 198 // TODO: handle simple updates. If a value is modified and the original 199 // value is no longer live, it would be nice to put the modified value in the 200 // same slot. This allows folding of the memory accesses for some 201 // instructions types (like an increment). 202 // statepoint (i) 203 // i1 = i+1 204 // statepoint (i1) 205 // However we need to be careful for cases like this: 206 // statepoint(i) 207 // i1 = i+1 208 // statepoint(i, i1) 209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 210 // put handling of simple modifications in this function like it's done 211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 212 // which we visit values is unspecified. 213 214 // Don't know any information about this instruction 215 return None; 216 } 217 218 /// Try to find existing copies of the incoming values in stack slots used for 219 /// statepoint spilling. If we can find a spill slot for the incoming value, 220 /// mark that slot as allocated, and reuse the same slot for this safepoint. 221 /// This helps to avoid series of loads and stores that only serve to reshuffle 222 /// values on the stack between calls. 223 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 224 SelectionDAGBuilder &Builder) { 225 SDValue Incoming = Builder.getValue(IncomingValue); 226 227 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 228 // We won't need to spill this, so no need to check for previously 229 // allocated stack slots 230 return; 231 } 232 233 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 234 if (OldLocation.getNode()) 235 // Duplicates in input 236 return; 237 238 const int LookUpDepth = 6; 239 Optional<int> Index = 240 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 241 if (!Index.hasValue()) 242 return; 243 244 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 245 246 auto SlotIt = find(StatepointSlots, *Index); 247 assert(SlotIt != StatepointSlots.end() && 248 "Value spilled to the unknown stack slot"); 249 250 // This is one of our dedicated lowering slots 251 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 252 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 253 // stack slot already assigned to someone else, can't use it! 254 // TODO: currently we reserve space for gc arguments after doing 255 // normal allocation for deopt arguments. We should reserve for 256 // _all_ deopt and gc arguments, then start allocating. This 257 // will prevent some moves being inserted when vm state changes, 258 // but gc state doesn't between two calls. 259 return; 260 } 261 // Reserve this stack slot 262 Builder.StatepointLowering.reserveStackSlot(Offset); 263 264 // Cache this slot so we find it when going through the normal 265 // assignment loop. 266 SDValue Loc = 267 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 268 Builder.StatepointLowering.setLocation(Incoming, Loc); 269 } 270 271 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 272 /// is not required for correctness. It's purpose is to reduce the size of 273 /// StackMap section. It has no effect on the number of spill slots required 274 /// or the actual lowering. 275 static void 276 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 277 SmallVectorImpl<const Value *> &Ptrs, 278 SmallVectorImpl<const GCRelocateInst *> &Relocs, 279 SelectionDAGBuilder &Builder, 280 FunctionLoweringInfo::StatepointSpillMap &SSM) { 281 DenseMap<SDValue, const Value *> Seen; 282 283 SmallVector<const Value *, 64> NewBases, NewPtrs; 284 SmallVector<const GCRelocateInst *, 64> NewRelocs; 285 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 286 SDValue SD = Builder.getValue(Ptrs[i]); 287 auto SeenIt = Seen.find(SD); 288 289 if (SeenIt == Seen.end()) { 290 // Only add non-duplicates 291 NewBases.push_back(Bases[i]); 292 NewPtrs.push_back(Ptrs[i]); 293 NewRelocs.push_back(Relocs[i]); 294 Seen[SD] = Ptrs[i]; 295 } else { 296 // Duplicate pointer found, note in SSM and move on: 297 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 298 } 299 } 300 assert(Bases.size() >= NewBases.size()); 301 assert(Ptrs.size() >= NewPtrs.size()); 302 assert(Relocs.size() >= NewRelocs.size()); 303 Bases = NewBases; 304 Ptrs = NewPtrs; 305 Relocs = NewRelocs; 306 assert(Ptrs.size() == Bases.size()); 307 assert(Ptrs.size() == Relocs.size()); 308 } 309 310 /// Extract call from statepoint, lower it and return pointer to the 311 /// call node. Also update NodeMap so that getValue(statepoint) will 312 /// reference lowered call result 313 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 314 SelectionDAGBuilder::StatepointLoweringInfo &SI, 315 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 316 SDValue ReturnValue, CallEndVal; 317 std::tie(ReturnValue, CallEndVal) = 318 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 319 SDNode *CallEnd = CallEndVal.getNode(); 320 321 // Get a call instruction from the call sequence chain. Tail calls are not 322 // allowed. The following code is essentially reverse engineering X86's 323 // LowerCallTo. 324 // 325 // We are expecting DAG to have the following form: 326 // 327 // ch = eh_label (only in case of invoke statepoint) 328 // ch, glue = callseq_start ch 329 // ch, glue = X86::Call ch, glue 330 // ch, glue = callseq_end ch, glue 331 // get_return_value ch, glue 332 // 333 // get_return_value can either be a sequence of CopyFromReg instructions 334 // to grab the return value from the return register(s), or it can be a LOAD 335 // to load a value returned by reference via a stack slot. 336 337 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 338 if (HasDef) { 339 if (CallEnd->getOpcode() == ISD::LOAD) 340 CallEnd = CallEnd->getOperand(0).getNode(); 341 else 342 while (CallEnd->getOpcode() == ISD::CopyFromReg) 343 CallEnd = CallEnd->getOperand(0).getNode(); 344 } 345 346 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 347 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 348 } 349 350 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 351 FrameIndexSDNode &FI) { 352 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 353 auto MMOFlags = MachineMemOperand::MOStore | 354 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 355 auto &MFI = MF.getFrameInfo(); 356 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 357 MFI.getObjectSize(FI.getIndex()), 358 MFI.getObjectAlignment(FI.getIndex())); 359 } 360 361 /// Spill a value incoming to the statepoint. It might be either part of 362 /// vmstate 363 /// or gcstate. In both cases unconditionally spill it on the stack unless it 364 /// is a null constant. Return pair with first element being frame index 365 /// containing saved value and second element with outgoing chain from the 366 /// emitted store 367 static std::tuple<SDValue, SDValue, MachineMemOperand*> 368 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 369 SelectionDAGBuilder &Builder) { 370 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 371 MachineMemOperand* MMO = nullptr; 372 373 // Emit new store if we didn't do it for this ptr before 374 if (!Loc.getNode()) { 375 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 376 Builder); 377 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 378 // We use TargetFrameIndex so that isel will not select it into LEA 379 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 380 381 // Right now we always allocate spill slots that are of the same 382 // size as the value we're about to spill (the size of spillee can 383 // vary since we spill vectors of pointers too). At some point we 384 // can consider allowing spills of smaller values to larger slots 385 // (i.e. change the '==' in the assert below to a '>='). 386 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 387 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && 388 "Bad spill: stack slot does not match!"); 389 390 // Note: Using the alignment of the spill slot (rather than the abi or 391 // preferred alignment) is required for correctness when dealing with spill 392 // slots with preferred alignments larger than frame alignment.. 393 auto &MF = Builder.DAG.getMachineFunction(); 394 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 395 auto *StoreMMO = 396 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 397 MFI.getObjectSize(Index), 398 MFI.getObjectAlignment(Index)); 399 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 400 StoreMMO); 401 402 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 403 404 Builder.StatepointLowering.setLocation(Incoming, Loc); 405 } 406 407 assert(Loc.getNode()); 408 return std::make_tuple(Loc, Chain, MMO); 409 } 410 411 /// Lower a single value incoming to a statepoint node. This value can be 412 /// either a deopt value or a gc value, the handling is the same. We special 413 /// case constants and allocas, then fall back to spilling if required. 414 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 415 SmallVectorImpl<SDValue> &Ops, 416 SmallVectorImpl<MachineMemOperand*> &MemRefs, 417 SelectionDAGBuilder &Builder) { 418 // Note: We know all of these spills are independent, but don't bother to 419 // exploit that chain wise. DAGCombine will happily do so as needed, so 420 // doing it here would be a small compile time win at most. 421 SDValue Chain = Builder.getRoot(); 422 423 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 424 // If the original value was a constant, make sure it gets recorded as 425 // such in the stackmap. This is required so that the consumer can 426 // parse any internal format to the deopt state. It also handles null 427 // pointers and other constant pointers in GC states. Note the constant 428 // vectors do not appear to actually hit this path and that anything larger 429 // than an i64 value (not type!) will fail asserts here. 430 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 431 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 432 // This handles allocas as arguments to the statepoint (this is only 433 // really meaningful for a deopt value. For GC, we'd be trying to 434 // relocate the address of the alloca itself?) 435 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 436 "Incoming value is a frame index!"); 437 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 438 Builder.getFrameIndexTy())); 439 440 auto &MF = Builder.DAG.getMachineFunction(); 441 auto *MMO = getMachineMemOperand(MF, *FI); 442 MemRefs.push_back(MMO); 443 444 } else if (LiveInOnly) { 445 // If this value is live in (not live-on-return, or live-through), we can 446 // treat it the same way patchpoint treats it's "live in" values. We'll 447 // end up folding some of these into stack references, but they'll be 448 // handled by the register allocator. Note that we do not have the notion 449 // of a late use so these values might be placed in registers which are 450 // clobbered by the call. This is fine for live-in. 451 Ops.push_back(Incoming); 452 } else { 453 // Otherwise, locate a spill slot and explicitly spill it so it 454 // can be found by the runtime later. We currently do not support 455 // tracking values through callee saved registers to their eventual 456 // spill location. This would be a useful optimization, but would 457 // need to be optional since it requires a lot of complexity on the 458 // runtime side which not all would support. 459 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 460 Ops.push_back(std::get<0>(Res)); 461 if (auto *MMO = std::get<2>(Res)) 462 MemRefs.push_back(MMO); 463 Chain = std::get<1>(Res);; 464 } 465 466 Builder.DAG.setRoot(Chain); 467 } 468 469 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 470 /// lowering is described in lowerIncomingStatepointValue. This function is 471 /// responsible for lowering everything in the right position and playing some 472 /// tricks to avoid redundant stack manipulation where possible. On 473 /// completion, 'Ops' will contain ready to use operands for machine code 474 /// statepoint. The chain nodes will have already been created and the DAG root 475 /// will be set to the last value spilled (if any were). 476 static void 477 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 478 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI, 479 SelectionDAGBuilder &Builder) { 480 // Lower the deopt and gc arguments for this statepoint. Layout will be: 481 // deopt argument length, deopt arguments.., gc arguments... 482 #ifndef NDEBUG 483 if (auto *GFI = Builder.GFI) { 484 // Check that each of the gc pointer and bases we've gotten out of the 485 // safepoint is something the strategy thinks might be a pointer (or vector 486 // of pointers) into the GC heap. This is basically just here to help catch 487 // errors during statepoint insertion. TODO: This should actually be in the 488 // Verifier, but we can't get to the GCStrategy from there (yet). 489 GCStrategy &S = GFI->getStrategy(); 490 for (const Value *V : SI.Bases) { 491 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 492 if (Opt.hasValue()) { 493 assert(Opt.getValue() && 494 "non gc managed base pointer found in statepoint"); 495 } 496 } 497 for (const Value *V : SI.Ptrs) { 498 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 499 if (Opt.hasValue()) { 500 assert(Opt.getValue() && 501 "non gc managed derived pointer found in statepoint"); 502 } 503 } 504 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 505 } else { 506 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 507 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 508 } 509 #endif 510 511 // Figure out what lowering strategy we're going to use for each part 512 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 513 // as "live-through". A "live-through" variable is one which is "live-in", 514 // "live-out", and live throughout the lifetime of the call (i.e. we can find 515 // it from any PC within the transitive callee of the statepoint). In 516 // particular, if the callee spills callee preserved registers we may not 517 // be able to find a value placed in that register during the call. This is 518 // fine for live-out, but not for live-through. If we were willing to make 519 // assumptions about the code generator producing the callee, we could 520 // potentially allow live-through values in callee saved registers. 521 const bool LiveInDeopt = 522 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 523 524 auto isGCValue =[&](const Value *V) { 525 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 526 }; 527 528 // Before we actually start lowering (and allocating spill slots for values), 529 // reserve any stack slots which we judge to be profitable to reuse for a 530 // particular value. This is purely an optimization over the code below and 531 // doesn't change semantics at all. It is important for performance that we 532 // reserve slots for both deopt and gc values before lowering either. 533 for (const Value *V : SI.DeoptState) { 534 if (!LiveInDeopt || isGCValue(V)) 535 reservePreviousStackSlotForValue(V, Builder); 536 } 537 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 538 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 539 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 540 } 541 542 // First, prefix the list with the number of unique values to be 543 // lowered. Note that this is the number of *Values* not the 544 // number of SDValues required to lower them. 545 const int NumVMSArgs = SI.DeoptState.size(); 546 pushStackMapConstant(Ops, Builder, NumVMSArgs); 547 548 // The vm state arguments are lowered in an opaque manner. We do not know 549 // what type of values are contained within. 550 for (const Value *V : SI.DeoptState) { 551 SDValue Incoming; 552 // If this is a function argument at a static frame index, generate it as 553 // the frame index. 554 if (const Argument *Arg = dyn_cast<Argument>(V)) { 555 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 556 if (FI != INT_MAX) 557 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 558 } 559 if (!Incoming.getNode()) 560 Incoming = Builder.getValue(V); 561 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 562 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder); 563 } 564 565 // Finally, go ahead and lower all the gc arguments. There's no prefixed 566 // length for this one. After lowering, we'll have the base and pointer 567 // arrays interwoven with each (lowered) base pointer immediately followed by 568 // it's (lowered) derived pointer. i.e 569 // (base[0], ptr[0], base[1], ptr[1], ...) 570 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 571 const Value *Base = SI.Bases[i]; 572 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 573 Ops, MemRefs, Builder); 574 575 const Value *Ptr = SI.Ptrs[i]; 576 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 577 Ops, MemRefs, Builder); 578 } 579 580 // If there are any explicit spill slots passed to the statepoint, record 581 // them, but otherwise do not do anything special. These are user provided 582 // allocas and give control over placement to the consumer. In this case, 583 // it is the contents of the slot which may get updated, not the pointer to 584 // the alloca 585 for (Value *V : SI.GCArgs) { 586 SDValue Incoming = Builder.getValue(V); 587 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 588 // This handles allocas as arguments to the statepoint 589 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 590 "Incoming value is a frame index!"); 591 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 592 Builder.getFrameIndexTy())); 593 594 auto &MF = Builder.DAG.getMachineFunction(); 595 auto *MMO = getMachineMemOperand(MF, *FI); 596 MemRefs.push_back(MMO); 597 } 598 } 599 600 // Record computed locations for all lowered values. 601 // This can not be embedded in lowering loops as we need to record *all* 602 // values, while previous loops account only values with unique SDValues. 603 const Instruction *StatepointInstr = SI.StatepointInstr; 604 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 605 606 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 607 const Value *V = Relocate->getDerivedPtr(); 608 SDValue SDV = Builder.getValue(V); 609 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 610 611 if (Loc.getNode()) { 612 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 613 } else { 614 // Record value as visited, but not spilled. This is case for allocas 615 // and constants. For this values we can avoid emitting spill load while 616 // visiting corresponding gc_relocate. 617 // Actually we do not need to record them in this map at all. 618 // We do this only to check that we are not relocating any unvisited 619 // value. 620 SpillMap.SlotMap[V] = None; 621 622 // Default llvm mechanisms for exporting values which are used in 623 // different basic blocks does not work for gc relocates. 624 // Note that it would be incorrect to teach llvm that all relocates are 625 // uses of the corresponding values so that it would automatically 626 // export them. Relocates of the spilled values does not use original 627 // value. 628 if (Relocate->getParent() != StatepointInstr->getParent()) 629 Builder.ExportFromCurrentBlock(V); 630 } 631 } 632 } 633 634 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 635 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 636 // The basic scheme here is that information about both the original call and 637 // the safepoint is encoded in the CallInst. We create a temporary call and 638 // lower it, then reverse engineer the calling sequence. 639 640 NumOfStatepoints++; 641 // Clear state 642 StatepointLowering.startNewStatepoint(*this); 643 644 #ifndef NDEBUG 645 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 646 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 647 for (auto *Reloc : SI.GCRelocates) 648 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 649 StatepointLowering.scheduleRelocCall(*Reloc); 650 #endif 651 652 // Remove any redundant llvm::Values which map to the same SDValue as another 653 // input. Also has the effect of removing duplicates in the original 654 // llvm::Value input list as well. This is a useful optimization for 655 // reducing the size of the StackMap section. It has no other impact. 656 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 657 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 658 assert(SI.Bases.size() == SI.Ptrs.size() && 659 SI.Ptrs.size() == SI.GCRelocates.size()); 660 661 // Lower statepoint vmstate and gcstate arguments 662 SmallVector<SDValue, 10> LoweredMetaArgs; 663 SmallVector<MachineMemOperand*, 16> MemRefs; 664 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); 665 666 // Now that we've emitted the spills, we need to update the root so that the 667 // call sequence is ordered correctly. 668 SI.CLI.setChain(getRoot()); 669 670 // Get call node, we will replace it later with statepoint 671 SDValue ReturnVal; 672 SDNode *CallNode; 673 std::tie(ReturnVal, CallNode) = 674 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 675 676 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 677 // nodes with all the appropriate arguments and return values. 678 679 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 680 SDValue Chain = CallNode->getOperand(0); 681 682 SDValue Glue; 683 bool CallHasIncomingGlue = CallNode->getGluedNode(); 684 if (CallHasIncomingGlue) { 685 // Glue is always last operand 686 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 687 } 688 689 // Build the GC_TRANSITION_START node if necessary. 690 // 691 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 692 // order in which they appear in the call to the statepoint intrinsic. If 693 // any of the operands is a pointer-typed, that operand is immediately 694 // followed by a SRCVALUE for the pointer that may be used during lowering 695 // (e.g. to form MachinePointerInfo values for loads/stores). 696 const bool IsGCTransition = 697 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 698 (uint64_t)StatepointFlags::GCTransition; 699 if (IsGCTransition) { 700 SmallVector<SDValue, 8> TSOps; 701 702 // Add chain 703 TSOps.push_back(Chain); 704 705 // Add GC transition arguments 706 for (const Value *V : SI.GCTransitionArgs) { 707 TSOps.push_back(getValue(V)); 708 if (V->getType()->isPointerTy()) 709 TSOps.push_back(DAG.getSrcValue(V)); 710 } 711 712 // Add glue if necessary 713 if (CallHasIncomingGlue) 714 TSOps.push_back(Glue); 715 716 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 717 718 SDValue GCTransitionStart = 719 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 720 721 Chain = GCTransitionStart.getValue(0); 722 Glue = GCTransitionStart.getValue(1); 723 } 724 725 // TODO: Currently, all of these operands are being marked as read/write in 726 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 727 // and flags to be read-only. 728 SmallVector<SDValue, 40> Ops; 729 730 // Add the <id> and <numBytes> constants. 731 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 732 Ops.push_back( 733 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 734 735 // Calculate and push starting position of vmstate arguments 736 // Get number of arguments incoming directly into call node 737 unsigned NumCallRegArgs = 738 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 739 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 740 741 // Add call target 742 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 743 Ops.push_back(CallTarget); 744 745 // Add call arguments 746 // Get position of register mask in the call 747 SDNode::op_iterator RegMaskIt; 748 if (CallHasIncomingGlue) 749 RegMaskIt = CallNode->op_end() - 2; 750 else 751 RegMaskIt = CallNode->op_end() - 1; 752 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 753 754 // Add a constant argument for the calling convention 755 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 756 757 // Add a constant argument for the flags 758 uint64_t Flags = SI.StatepointFlags; 759 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 760 "Unknown flag used"); 761 pushStackMapConstant(Ops, *this, Flags); 762 763 // Insert all vmstate and gcstate arguments 764 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 765 766 // Add register mask from call node 767 Ops.push_back(*RegMaskIt); 768 769 // Add chain 770 Ops.push_back(Chain); 771 772 // Same for the glue, but we add it only if original call had it 773 if (Glue.getNode()) 774 Ops.push_back(Glue); 775 776 // Compute return values. Provide a glue output since we consume one as 777 // input. This allows someone else to chain off us as needed. 778 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 779 780 MachineSDNode *StatepointMCNode = 781 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 782 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 783 784 SDNode *SinkNode = StatepointMCNode; 785 786 // Build the GC_TRANSITION_END node if necessary. 787 // 788 // See the comment above regarding GC_TRANSITION_START for the layout of 789 // the operands to the GC_TRANSITION_END node. 790 if (IsGCTransition) { 791 SmallVector<SDValue, 8> TEOps; 792 793 // Add chain 794 TEOps.push_back(SDValue(StatepointMCNode, 0)); 795 796 // Add GC transition arguments 797 for (const Value *V : SI.GCTransitionArgs) { 798 TEOps.push_back(getValue(V)); 799 if (V->getType()->isPointerTy()) 800 TEOps.push_back(DAG.getSrcValue(V)); 801 } 802 803 // Add glue 804 TEOps.push_back(SDValue(StatepointMCNode, 1)); 805 806 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 807 808 SDValue GCTransitionStart = 809 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 810 811 SinkNode = GCTransitionStart.getNode(); 812 } 813 814 // Replace original call 815 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 816 // Remove original call node 817 DAG.DeleteNode(CallNode); 818 819 // DON'T set the root - under the assumption that it's already set past the 820 // inserted node we created. 821 822 // TODO: A better future implementation would be to emit a single variable 823 // argument, variable return value STATEPOINT node here and then hookup the 824 // return value of each gc.relocate to the respective output of the 825 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 826 // to actually be possible today. 827 828 return ReturnVal; 829 } 830 831 void 832 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 833 const BasicBlock *EHPadBB /*= nullptr*/) { 834 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg && 835 "anyregcc is not supported on statepoints!"); 836 837 #ifndef NDEBUG 838 // If this is a malformed statepoint, report it early to simplify debugging. 839 // This should catch any IR level mistake that's made when constructing or 840 // transforming statepoints. 841 ISP.verify(); 842 843 // Check that the associated GCStrategy expects to encounter statepoints. 844 assert(GFI->getStrategy().useStatepoints() && 845 "GCStrategy does not expect to encounter statepoints"); 846 #endif 847 848 SDValue ActualCallee; 849 850 if (ISP.getNumPatchBytes() > 0) { 851 // If we've been asked to emit a nop sequence instead of a call instruction 852 // for this statepoint then don't lower the call target, but use a constant 853 // `null` instead. Not lowering the call target lets statepoint clients get 854 // away without providing a physical address for the symbolic call target at 855 // link time. 856 857 const auto &TLI = DAG.getTargetLoweringInfo(); 858 const auto &DL = DAG.getDataLayout(); 859 860 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 861 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 862 } else { 863 ActualCallee = getValue(ISP.getCalledValue()); 864 } 865 866 StatepointLoweringInfo SI(DAG); 867 populateCallLoweringInfo(SI.CLI, ISP.getCall(), 868 ImmutableStatepoint::CallArgsBeginPos, 869 ISP.getNumCallArgs(), ActualCallee, 870 ISP.getActualReturnType(), false /* IsPatchPoint */); 871 872 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 873 SI.GCRelocates.push_back(Relocate); 874 SI.Bases.push_back(Relocate->getBasePtr()); 875 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 876 } 877 878 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 879 SI.StatepointInstr = ISP.getInstruction(); 880 SI.GCTransitionArgs = 881 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 882 SI.ID = ISP.getID(); 883 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 884 SI.StatepointFlags = ISP.getFlags(); 885 SI.NumPatchBytes = ISP.getNumPatchBytes(); 886 SI.EHPadBB = EHPadBB; 887 888 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 889 890 // Export the result value if needed 891 const GCResultInst *GCResult = ISP.getGCResult(); 892 Type *RetTy = ISP.getActualReturnType(); 893 if (!RetTy->isVoidTy() && GCResult) { 894 if (GCResult->getParent() != ISP.getCall()->getParent()) { 895 // Result value will be used in a different basic block so we need to 896 // export it now. Default exporting mechanism will not work here because 897 // statepoint call has a different type than the actual call. It means 898 // that by default llvm will create export register of the wrong type 899 // (always i32 in our case). So instead we need to create export register 900 // with correct type manually. 901 // TODO: To eliminate this problem we can remove gc.result intrinsics 902 // completely and make statepoint call to return a tuple. 903 unsigned Reg = FuncInfo.CreateRegs(RetTy); 904 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 905 DAG.getDataLayout(), Reg, RetTy, 906 ISP.getCall()->getCallingConv()); 907 SDValue Chain = DAG.getEntryNode(); 908 909 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 910 PendingExports.push_back(Chain); 911 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 912 } else { 913 // Result value will be used in a same basic block. Don't export it or 914 // perform any explicit register copies. 915 // We'll replace the actuall call node shortly. gc_result will grab 916 // this value. 917 setValue(ISP.getInstruction(), ReturnValue); 918 } 919 } else { 920 // The token value is never used from here on, just generate a poison value 921 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 922 } 923 } 924 925 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 926 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 927 bool VarArgDisallowed, bool ForceVoidReturnTy) { 928 StatepointLoweringInfo SI(DAG); 929 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 930 populateCallLoweringInfo( 931 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 932 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 933 false); 934 if (!VarArgDisallowed) 935 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 936 937 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 938 939 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 940 941 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 942 SI.ID = SD.StatepointID.getValueOr(DefaultID); 943 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 944 945 SI.DeoptState = 946 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 947 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 948 SI.EHPadBB = EHPadBB; 949 950 // NB! The GC arguments are deliberately left empty. 951 952 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 953 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 954 setValue(Call, ReturnVal); 955 } 956 } 957 958 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 959 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 960 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 961 /* VarArgDisallowed = */ false, 962 /* ForceVoidReturnTy = */ false); 963 } 964 965 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 966 // The result value of the gc_result is simply the result of the actual 967 // call. We've already emitted this, so just grab the value. 968 const Instruction *I = CI.getStatepoint(); 969 970 if (I->getParent() != CI.getParent()) { 971 // Statepoint is in different basic block so we should have stored call 972 // result in a virtual register. 973 // We can not use default getValue() functionality to copy value from this 974 // register because statepoint and actual call return types can be 975 // different, and getValue() will use CopyFromReg of the wrong type, 976 // which is always i32 in our case. 977 PointerType *CalleeType = cast<PointerType>( 978 ImmutableStatepoint(I).getCalledValue()->getType()); 979 Type *RetTy = 980 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 981 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 982 983 assert(CopyFromReg.getNode()); 984 setValue(&CI, CopyFromReg); 985 } else { 986 setValue(&CI, getValue(I)); 987 } 988 } 989 990 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 991 #ifndef NDEBUG 992 // Consistency check 993 // We skip this check for relocates not in the same basic block as their 994 // statepoint. It would be too expensive to preserve validation info through 995 // different basic blocks. 996 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 997 StatepointLowering.relocCallVisited(Relocate); 998 999 auto *Ty = Relocate.getType()->getScalarType(); 1000 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 1001 assert(*IsManaged && "Non gc managed pointer relocated!"); 1002 #endif 1003 1004 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1005 SDValue SD = getValue(DerivedPtr); 1006 1007 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 1008 auto SlotIt = SpillMap.find(DerivedPtr); 1009 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 1010 Optional<int> DerivedPtrLocation = SlotIt->second; 1011 1012 // We didn't need to spill these special cases (constants and allocas). 1013 // See the handling in spillIncomingValueForStatepoint for detail. 1014 if (!DerivedPtrLocation) { 1015 setValue(&Relocate, SD); 1016 return; 1017 } 1018 1019 unsigned Index = *DerivedPtrLocation; 1020 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1021 1022 // Note: We know all of these reloads are independent, but don't bother to 1023 // exploit that chain wise. DAGCombine will happily do so as needed, so 1024 // doing it here would be a small compile time win at most. 1025 SDValue Chain = getRoot(); 1026 1027 auto &MF = DAG.getMachineFunction(); 1028 auto &MFI = MF.getFrameInfo(); 1029 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1030 auto *LoadMMO = 1031 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1032 MFI.getObjectSize(Index), 1033 MFI.getObjectAlignment(Index)); 1034 1035 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1036 Relocate.getType()); 1037 1038 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1039 SpillSlot, LoadMMO); 1040 1041 DAG.setRoot(SpillLoad.getValue(1)); 1042 1043 assert(SpillLoad.getNode()); 1044 setValue(&Relocate, SpillLoad); 1045 } 1046 1047 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1048 const auto &TLI = DAG.getTargetLoweringInfo(); 1049 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1050 TLI.getPointerTy(DAG.getDataLayout())); 1051 1052 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1053 // call. We also do not lower the return value to any virtual register, and 1054 // change the immediately following return to a trap instruction. 1055 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1056 /* VarArgDisallowed = */ true, 1057 /* ForceVoidReturnTy = */ true); 1058 } 1059 1060 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1061 // We do not lower the return value from llvm.deoptimize to any virtual 1062 // register, and change the immediately following return to a trap 1063 // instruction. 1064 if (DAG.getTarget().Options.TrapUnreachable) 1065 DAG.setRoot( 1066 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1067 } 1068