xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp (revision 7ef62cebc2f965b0f640263e179276928885e33d)
1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/RuntimeLibcalls.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/SelectionDAGNodes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/GCStrategy.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 #include <iterator>
52 #include <tuple>
53 #include <utility>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "statepoint-lowering"
58 
59 STATISTIC(NumSlotsAllocatedForStatepoints,
60           "Number of stack slots allocated for statepoints");
61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
62 STATISTIC(StatepointMaxSlotsRequired,
63           "Maximum number of stack slots required for a singe statepoint");
64 
65 cl::opt<bool> UseRegistersForDeoptValues(
66     "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
67     cl::desc("Allow using registers for non pointer deopt args"));
68 
69 cl::opt<bool> UseRegistersForGCPointersInLandingPad(
70     "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
71     cl::desc("Allow using registers for gc pointer in landing pad"));
72 
73 cl::opt<unsigned> MaxRegistersForGCPointers(
74     "max-registers-for-gc-values", cl::Hidden, cl::init(0),
75     cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
76 
77 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
78 
79 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
80                                  SelectionDAGBuilder &Builder, uint64_t Value) {
81   SDLoc L = Builder.getCurSDLoc();
82   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
83                                               MVT::i64));
84   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
85 }
86 
87 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
88   // Consistency check
89   assert(PendingGCRelocateCalls.empty() &&
90          "Trying to visit statepoint before finished processing previous one");
91   Locations.clear();
92   NextSlotToAllocate = 0;
93   // Need to resize this on each safepoint - we need the two to stay in sync and
94   // the clear patterns of a SelectionDAGBuilder have no relation to
95   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
96   AllocatedStackSlots.clear();
97   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
98 }
99 
100 void StatepointLoweringState::clear() {
101   Locations.clear();
102   AllocatedStackSlots.clear();
103   assert(PendingGCRelocateCalls.empty() &&
104          "cleared before statepoint sequence completed");
105 }
106 
107 SDValue
108 StatepointLoweringState::allocateStackSlot(EVT ValueType,
109                                            SelectionDAGBuilder &Builder) {
110   NumSlotsAllocatedForStatepoints++;
111   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
112 
113   unsigned SpillSize = ValueType.getStoreSize();
114   assert((SpillSize * 8) ==
115              (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
116          "Size not in bytes?");
117 
118   // First look for a previously created stack slot which is not in
119   // use (accounting for the fact arbitrary slots may already be
120   // reserved), or to create a new stack slot and use it.
121 
122   const size_t NumSlots = AllocatedStackSlots.size();
123   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
124 
125   assert(AllocatedStackSlots.size() ==
126          Builder.FuncInfo.StatepointStackSlots.size() &&
127          "Broken invariant");
128 
129   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
130     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
131       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
132       if (MFI.getObjectSize(FI) == SpillSize) {
133         AllocatedStackSlots.set(NextSlotToAllocate);
134         // TODO: Is ValueType the right thing to use here?
135         return Builder.DAG.getFrameIndex(FI, ValueType);
136       }
137     }
138   }
139 
140   // Couldn't find a free slot, so create a new one:
141 
142   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
143   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
144   MFI.markAsStatepointSpillSlotObjectIndex(FI);
145 
146   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
147   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
148   assert(AllocatedStackSlots.size() ==
149          Builder.FuncInfo.StatepointStackSlots.size() &&
150          "Broken invariant");
151 
152   StatepointMaxSlotsRequired.updateMax(
153       Builder.FuncInfo.StatepointStackSlots.size());
154 
155   return SpillSlot;
156 }
157 
158 /// Utility function for reservePreviousStackSlotForValue. Tries to find
159 /// stack slot index to which we have spilled value for previous statepoints.
160 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
161 static std::optional<int> findPreviousSpillSlot(const Value *Val,
162                                                 SelectionDAGBuilder &Builder,
163                                                 int LookUpDepth) {
164   // Can not look any further - give up now
165   if (LookUpDepth <= 0)
166     return std::nullopt;
167 
168   // Spill location is known for gc relocates
169   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
170     const Value *Statepoint = Relocate->getStatepoint();
171     assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
172            "GetStatepoint must return one of two types");
173     if (isa<UndefValue>(Statepoint))
174       return std::nullopt;
175 
176     const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps
177                                     [cast<GCStatepointInst>(Statepoint)];
178 
179     auto It = RelocationMap.find(Relocate);
180     if (It == RelocationMap.end())
181       return std::nullopt;
182 
183     auto &Record = It->second;
184     if (Record.type != RecordType::Spill)
185       return std::nullopt;
186 
187     return Record.payload.FI;
188   }
189 
190   // Look through bitcast instructions.
191   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
192     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
193 
194   // Look through phi nodes
195   // All incoming values should have same known stack slot, otherwise result
196   // is unknown.
197   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
198     std::optional<int> MergedResult;
199 
200     for (const auto &IncomingValue : Phi->incoming_values()) {
201       std::optional<int> SpillSlot =
202           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
203       if (!SpillSlot)
204         return std::nullopt;
205 
206       if (MergedResult && *MergedResult != *SpillSlot)
207         return std::nullopt;
208 
209       MergedResult = SpillSlot;
210     }
211     return MergedResult;
212   }
213 
214   // TODO: We can do better for PHI nodes. In cases like this:
215   //   ptr = phi(relocated_pointer, not_relocated_pointer)
216   //   statepoint(ptr)
217   // We will return that stack slot for ptr is unknown. And later we might
218   // assign different stack slots for ptr and relocated_pointer. This limits
219   // llvm's ability to remove redundant stores.
220   // Unfortunately it's hard to accomplish in current infrastructure.
221   // We use this function to eliminate spill store completely, while
222   // in example we still need to emit store, but instead of any location
223   // we need to use special "preferred" location.
224 
225   // TODO: handle simple updates.  If a value is modified and the original
226   // value is no longer live, it would be nice to put the modified value in the
227   // same slot.  This allows folding of the memory accesses for some
228   // instructions types (like an increment).
229   //   statepoint (i)
230   //   i1 = i+1
231   //   statepoint (i1)
232   // However we need to be careful for cases like this:
233   //   statepoint(i)
234   //   i1 = i+1
235   //   statepoint(i, i1)
236   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
237   // put handling of simple modifications in this function like it's done
238   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
239   // which we visit values is unspecified.
240 
241   // Don't know any information about this instruction
242   return std::nullopt;
243 }
244 
245 /// Return true if-and-only-if the given SDValue can be lowered as either a
246 /// constant argument or a stack reference.  The key point is that the value
247 /// doesn't need to be spilled or tracked as a vreg use.
248 static bool willLowerDirectly(SDValue Incoming) {
249   // We are making an unchecked assumption that the frame size <= 2^16 as that
250   // is the largest offset which can be encoded in the stackmap format.
251   if (isa<FrameIndexSDNode>(Incoming))
252     return true;
253 
254   // The largest constant describeable in the StackMap format is 64 bits.
255   // Potential Optimization:  Constants values are sign extended by consumer,
256   // and thus there are many constants of static type > 64 bits whose value
257   // happens to be sext(Con64) and could thus be lowered directly.
258   if (Incoming.getValueType().getSizeInBits() > 64)
259     return false;
260 
261   return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
262           Incoming.isUndef());
263 }
264 
265 /// Try to find existing copies of the incoming values in stack slots used for
266 /// statepoint spilling.  If we can find a spill slot for the incoming value,
267 /// mark that slot as allocated, and reuse the same slot for this safepoint.
268 /// This helps to avoid series of loads and stores that only serve to reshuffle
269 /// values on the stack between calls.
270 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
271                                              SelectionDAGBuilder &Builder) {
272   SDValue Incoming = Builder.getValue(IncomingValue);
273 
274   // If we won't spill this, we don't need to check for previously allocated
275   // stack slots.
276   if (willLowerDirectly(Incoming))
277     return;
278 
279   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
280   if (OldLocation.getNode())
281     // Duplicates in input
282     return;
283 
284   const int LookUpDepth = 6;
285   std::optional<int> Index =
286       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
287   if (!Index)
288     return;
289 
290   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
291 
292   auto SlotIt = find(StatepointSlots, *Index);
293   assert(SlotIt != StatepointSlots.end() &&
294          "Value spilled to the unknown stack slot");
295 
296   // This is one of our dedicated lowering slots
297   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
298   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
299     // stack slot already assigned to someone else, can't use it!
300     // TODO: currently we reserve space for gc arguments after doing
301     // normal allocation for deopt arguments.  We should reserve for
302     // _all_ deopt and gc arguments, then start allocating.  This
303     // will prevent some moves being inserted when vm state changes,
304     // but gc state doesn't between two calls.
305     return;
306   }
307   // Reserve this stack slot
308   Builder.StatepointLowering.reserveStackSlot(Offset);
309 
310   // Cache this slot so we find it when going through the normal
311   // assignment loop.
312   SDValue Loc =
313       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
314   Builder.StatepointLowering.setLocation(Incoming, Loc);
315 }
316 
317 /// Extract call from statepoint, lower it and return pointer to the
318 /// call node. Also update NodeMap so that getValue(statepoint) will
319 /// reference lowered call result
320 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
321     SelectionDAGBuilder::StatepointLoweringInfo &SI,
322     SelectionDAGBuilder &Builder) {
323   SDValue ReturnValue, CallEndVal;
324   std::tie(ReturnValue, CallEndVal) =
325       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
326   SDNode *CallEnd = CallEndVal.getNode();
327 
328   // Get a call instruction from the call sequence chain.  Tail calls are not
329   // allowed.  The following code is essentially reverse engineering X86's
330   // LowerCallTo.
331   //
332   // We are expecting DAG to have the following form:
333   //
334   // ch = eh_label (only in case of invoke statepoint)
335   //   ch, glue = callseq_start ch
336   //   ch, glue = X86::Call ch, glue
337   //   ch, glue = callseq_end ch, glue
338   //   get_return_value ch, glue
339   //
340   // get_return_value can either be a sequence of CopyFromReg instructions
341   // to grab the return value from the return register(s), or it can be a LOAD
342   // to load a value returned by reference via a stack slot.
343 
344   bool HasDef = !SI.CLI.RetTy->isVoidTy();
345   if (HasDef) {
346     if (CallEnd->getOpcode() == ISD::LOAD)
347       CallEnd = CallEnd->getOperand(0).getNode();
348     else
349       while (CallEnd->getOpcode() == ISD::CopyFromReg)
350         CallEnd = CallEnd->getOperand(0).getNode();
351   }
352 
353   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
354   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
355 }
356 
357 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
358                                                FrameIndexSDNode &FI) {
359   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
360   auto MMOFlags = MachineMemOperand::MOStore |
361     MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
362   auto &MFI = MF.getFrameInfo();
363   return MF.getMachineMemOperand(PtrInfo, MMOFlags,
364                                  MFI.getObjectSize(FI.getIndex()),
365                                  MFI.getObjectAlign(FI.getIndex()));
366 }
367 
368 /// Spill a value incoming to the statepoint. It might be either part of
369 /// vmstate
370 /// or gcstate. In both cases unconditionally spill it on the stack unless it
371 /// is a null constant. Return pair with first element being frame index
372 /// containing saved value and second element with outgoing chain from the
373 /// emitted store
374 static std::tuple<SDValue, SDValue, MachineMemOperand*>
375 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
376                              SelectionDAGBuilder &Builder) {
377   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
378   MachineMemOperand* MMO = nullptr;
379 
380   // Emit new store if we didn't do it for this ptr before
381   if (!Loc.getNode()) {
382     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
383                                                        Builder);
384     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
385     // We use TargetFrameIndex so that isel will not select it into LEA
386     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
387 
388     // Right now we always allocate spill slots that are of the same
389     // size as the value we're about to spill (the size of spillee can
390     // vary since we spill vectors of pointers too).  At some point we
391     // can consider allowing spills of smaller values to larger slots
392     // (i.e. change the '==' in the assert below to a '>=').
393     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
394     assert((MFI.getObjectSize(Index) * 8) ==
395                (-8 & (7 + // Round up modulo 8.
396                       (int64_t)Incoming.getValueSizeInBits())) &&
397            "Bad spill:  stack slot does not match!");
398 
399     // Note: Using the alignment of the spill slot (rather than the abi or
400     // preferred alignment) is required for correctness when dealing with spill
401     // slots with preferred alignments larger than frame alignment..
402     auto &MF = Builder.DAG.getMachineFunction();
403     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
404     auto *StoreMMO = MF.getMachineMemOperand(
405         PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
406         MFI.getObjectAlign(Index));
407     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
408                                  StoreMMO);
409 
410     MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
411 
412     Builder.StatepointLowering.setLocation(Incoming, Loc);
413   }
414 
415   assert(Loc.getNode());
416   return std::make_tuple(Loc, Chain, MMO);
417 }
418 
419 /// Lower a single value incoming to a statepoint node.  This value can be
420 /// either a deopt value or a gc value, the handling is the same.  We special
421 /// case constants and allocas, then fall back to spilling if required.
422 static void
423 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
424                              SmallVectorImpl<SDValue> &Ops,
425                              SmallVectorImpl<MachineMemOperand *> &MemRefs,
426                              SelectionDAGBuilder &Builder) {
427 
428   if (willLowerDirectly(Incoming)) {
429     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
430       // This handles allocas as arguments to the statepoint (this is only
431       // really meaningful for a deopt value.  For GC, we'd be trying to
432       // relocate the address of the alloca itself?)
433       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
434              "Incoming value is a frame index!");
435       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
436                                                     Builder.getFrameIndexTy()));
437 
438       auto &MF = Builder.DAG.getMachineFunction();
439       auto *MMO = getMachineMemOperand(MF, *FI);
440       MemRefs.push_back(MMO);
441       return;
442     }
443 
444     assert(Incoming.getValueType().getSizeInBits() <= 64);
445 
446     if (Incoming.isUndef()) {
447       // Put an easily recognized constant that's unlikely to be a valid
448       // value so that uses of undef by the consumer of the stackmap is
449       // easily recognized. This is legal since the compiler is always
450       // allowed to chose an arbitrary value for undef.
451       pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
452       return;
453     }
454 
455     // If the original value was a constant, make sure it gets recorded as
456     // such in the stackmap.  This is required so that the consumer can
457     // parse any internal format to the deopt state.  It also handles null
458     // pointers and other constant pointers in GC states.
459     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
460       pushStackMapConstant(Ops, Builder, C->getSExtValue());
461       return;
462     } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
463       pushStackMapConstant(Ops, Builder,
464                            C->getValueAPF().bitcastToAPInt().getZExtValue());
465       return;
466     }
467 
468     llvm_unreachable("unhandled direct lowering case");
469   }
470 
471 
472 
473   if (!RequireSpillSlot) {
474     // If this value is live in (not live-on-return, or live-through), we can
475     // treat it the same way patchpoint treats it's "live in" values.  We'll
476     // end up folding some of these into stack references, but they'll be
477     // handled by the register allocator.  Note that we do not have the notion
478     // of a late use so these values might be placed in registers which are
479     // clobbered by the call.  This is fine for live-in. For live-through
480     // fix-up pass should be executed to force spilling of such registers.
481     Ops.push_back(Incoming);
482   } else {
483     // Otherwise, locate a spill slot and explicitly spill it so it can be
484     // found by the runtime later.  Note: We know all of these spills are
485     // independent, but don't bother to exploit that chain wise.  DAGCombine
486     // will happily do so as needed, so doing it here would be a small compile
487     // time win at most.
488     SDValue Chain = Builder.getRoot();
489     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
490     Ops.push_back(std::get<0>(Res));
491     if (auto *MMO = std::get<2>(Res))
492       MemRefs.push_back(MMO);
493     Chain = std::get<1>(Res);;
494     Builder.DAG.setRoot(Chain);
495   }
496 
497 }
498 
499 /// Return true if value V represents the GC value. The behavior is conservative
500 /// in case it is not sure that value is not GC the function returns true.
501 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
502   auto *Ty = V->getType();
503   if (!Ty->isPtrOrPtrVectorTy())
504     return false;
505   if (auto *GFI = Builder.GFI)
506     if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
507       return *IsManaged;
508   return true; // conservative
509 }
510 
511 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
512 /// lowering is described in lowerIncomingStatepointValue.  This function is
513 /// responsible for lowering everything in the right position and playing some
514 /// tricks to avoid redundant stack manipulation where possible.  On
515 /// completion, 'Ops' will contain ready to use operands for machine code
516 /// statepoint. The chain nodes will have already been created and the DAG root
517 /// will be set to the last value spilled (if any were).
518 static void
519 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
520                         SmallVectorImpl<MachineMemOperand *> &MemRefs,
521                         SmallVectorImpl<SDValue> &GCPtrs,
522                         DenseMap<SDValue, int> &LowerAsVReg,
523                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
524                         SelectionDAGBuilder &Builder) {
525   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
526   // deopt argument length, deopt arguments.., gc arguments...
527 
528   // Figure out what lowering strategy we're going to use for each part
529   // Note: Is is conservatively correct to lower both "live-in" and "live-out"
530   // as "live-through". A "live-through" variable is one which is "live-in",
531   // "live-out", and live throughout the lifetime of the call (i.e. we can find
532   // it from any PC within the transitive callee of the statepoint).  In
533   // particular, if the callee spills callee preserved registers we may not
534   // be able to find a value placed in that register during the call.  This is
535   // fine for live-out, but not for live-through.  If we were willing to make
536   // assumptions about the code generator producing the callee, we could
537   // potentially allow live-through values in callee saved registers.
538   const bool LiveInDeopt =
539     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
540 
541   // Decide which deriver pointers will go on VRegs
542   unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
543 
544   // Pointers used on exceptional path of invoke statepoint.
545   // We cannot assing them to VRegs.
546   SmallSet<SDValue, 8> LPadPointers;
547   if (!UseRegistersForGCPointersInLandingPad)
548     if (const auto *StInvoke =
549             dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
550       LandingPadInst *LPI = StInvoke->getLandingPadInst();
551       for (const auto *Relocate : SI.GCRelocates)
552         if (Relocate->getOperand(0) == LPI) {
553           LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
554           LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
555         }
556     }
557 
558   LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
559 
560   // List of unique lowered GC Pointer values.
561   SmallSetVector<SDValue, 16> LoweredGCPtrs;
562   // Map lowered GC Pointer value to the index in above vector
563   DenseMap<SDValue, unsigned> GCPtrIndexMap;
564 
565   unsigned CurNumVRegs = 0;
566 
567   auto canPassGCPtrOnVReg = [&](SDValue SD) {
568     if (SD.getValueType().isVector())
569       return false;
570     if (LPadPointers.count(SD))
571       return false;
572     return !willLowerDirectly(SD);
573   };
574 
575   auto processGCPtr = [&](const Value *V) {
576     SDValue PtrSD = Builder.getValue(V);
577     if (!LoweredGCPtrs.insert(PtrSD))
578       return; // skip duplicates
579     GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
580 
581     assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
582     if (LowerAsVReg.size() == MaxVRegPtrs)
583       return;
584     assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
585            "IR and SD types disagree");
586     if (!canPassGCPtrOnVReg(PtrSD)) {
587       LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
588       return;
589     }
590     LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
591     LowerAsVReg[PtrSD] = CurNumVRegs++;
592   };
593 
594   // Process derived pointers first to give them more chance to go on VReg.
595   for (const Value *V : SI.Ptrs)
596     processGCPtr(V);
597   for (const Value *V : SI.Bases)
598     processGCPtr(V);
599 
600   LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
601 
602   auto requireSpillSlot = [&](const Value *V) {
603     if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
604              Builder.getValue(V).getValueType()))
605       return true;
606     if (isGCValue(V, Builder))
607       return !LowerAsVReg.count(Builder.getValue(V));
608     return !(LiveInDeopt || UseRegistersForDeoptValues);
609   };
610 
611   // Before we actually start lowering (and allocating spill slots for values),
612   // reserve any stack slots which we judge to be profitable to reuse for a
613   // particular value.  This is purely an optimization over the code below and
614   // doesn't change semantics at all.  It is important for performance that we
615   // reserve slots for both deopt and gc values before lowering either.
616   for (const Value *V : SI.DeoptState) {
617     if (requireSpillSlot(V))
618       reservePreviousStackSlotForValue(V, Builder);
619   }
620 
621   for (const Value *V : SI.Ptrs) {
622     SDValue SDV = Builder.getValue(V);
623     if (!LowerAsVReg.count(SDV))
624       reservePreviousStackSlotForValue(V, Builder);
625   }
626 
627   for (const Value *V : SI.Bases) {
628     SDValue SDV = Builder.getValue(V);
629     if (!LowerAsVReg.count(SDV))
630       reservePreviousStackSlotForValue(V, Builder);
631   }
632 
633   // First, prefix the list with the number of unique values to be
634   // lowered.  Note that this is the number of *Values* not the
635   // number of SDValues required to lower them.
636   const int NumVMSArgs = SI.DeoptState.size();
637   pushStackMapConstant(Ops, Builder, NumVMSArgs);
638 
639   // The vm state arguments are lowered in an opaque manner.  We do not know
640   // what type of values are contained within.
641   LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
642   for (const Value *V : SI.DeoptState) {
643     SDValue Incoming;
644     // If this is a function argument at a static frame index, generate it as
645     // the frame index.
646     if (const Argument *Arg = dyn_cast<Argument>(V)) {
647       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
648       if (FI != INT_MAX)
649         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
650     }
651     if (!Incoming.getNode())
652       Incoming = Builder.getValue(V);
653     LLVM_DEBUG(dbgs() << "Value " << *V
654                       << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
655     lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
656                                  Builder);
657   }
658 
659   // Finally, go ahead and lower all the gc arguments.
660   pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
661   for (SDValue SDV : LoweredGCPtrs)
662     lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
663                                  Builder);
664 
665   // Copy to out vector. LoweredGCPtrs will be empty after this point.
666   GCPtrs = LoweredGCPtrs.takeVector();
667 
668   // If there are any explicit spill slots passed to the statepoint, record
669   // them, but otherwise do not do anything special.  These are user provided
670   // allocas and give control over placement to the consumer.  In this case,
671   // it is the contents of the slot which may get updated, not the pointer to
672   // the alloca
673   SmallVector<SDValue, 4> Allocas;
674   for (Value *V : SI.GCArgs) {
675     SDValue Incoming = Builder.getValue(V);
676     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
677       // This handles allocas as arguments to the statepoint
678       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
679              "Incoming value is a frame index!");
680       Allocas.push_back(Builder.DAG.getTargetFrameIndex(
681           FI->getIndex(), Builder.getFrameIndexTy()));
682 
683       auto &MF = Builder.DAG.getMachineFunction();
684       auto *MMO = getMachineMemOperand(MF, *FI);
685       MemRefs.push_back(MMO);
686     }
687   }
688   pushStackMapConstant(Ops, Builder, Allocas.size());
689   Ops.append(Allocas.begin(), Allocas.end());
690 
691   // Now construct GC base/derived map;
692   pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
693   SDLoc L = Builder.getCurSDLoc();
694   for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
695     SDValue Base = Builder.getValue(SI.Bases[i]);
696     assert(GCPtrIndexMap.count(Base) && "base not found in index map");
697     Ops.push_back(
698         Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
699     SDValue Derived = Builder.getValue(SI.Ptrs[i]);
700     assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
701     Ops.push_back(
702         Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
703   }
704 }
705 
706 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
707     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
708   // The basic scheme here is that information about both the original call and
709   // the safepoint is encoded in the CallInst.  We create a temporary call and
710   // lower it, then reverse engineer the calling sequence.
711 
712   NumOfStatepoints++;
713   // Clear state
714   StatepointLowering.startNewStatepoint(*this);
715   assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
716   assert((GFI || SI.Bases.empty()) &&
717          "No gc specified, so cannot relocate pointers!");
718 
719   LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
720 #ifndef NDEBUG
721   for (const auto *Reloc : SI.GCRelocates)
722     if (Reloc->getParent() == SI.StatepointInstr->getParent())
723       StatepointLowering.scheduleRelocCall(*Reloc);
724 #endif
725 
726   // Lower statepoint vmstate and gcstate arguments
727 
728   // All lowered meta args.
729   SmallVector<SDValue, 10> LoweredMetaArgs;
730   // Lowered GC pointers (subset of above).
731   SmallVector<SDValue, 16> LoweredGCArgs;
732   SmallVector<MachineMemOperand*, 16> MemRefs;
733   // Maps derived pointer SDValue to statepoint result of relocated pointer.
734   DenseMap<SDValue, int> LowerAsVReg;
735   lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
736                           SI, *this);
737 
738   // Now that we've emitted the spills, we need to update the root so that the
739   // call sequence is ordered correctly.
740   SI.CLI.setChain(getRoot());
741 
742   // Get call node, we will replace it later with statepoint
743   SDValue ReturnVal;
744   SDNode *CallNode;
745   std::tie(ReturnVal, CallNode) = lowerCallFromStatepointLoweringInfo(SI, *this);
746 
747   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
748   // nodes with all the appropriate arguments and return values.
749 
750   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
751   SDValue Chain = CallNode->getOperand(0);
752 
753   SDValue Glue;
754   bool CallHasIncomingGlue = CallNode->getGluedNode();
755   if (CallHasIncomingGlue) {
756     // Glue is always last operand
757     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
758   }
759 
760   // Build the GC_TRANSITION_START node if necessary.
761   //
762   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
763   // order in which they appear in the call to the statepoint intrinsic. If
764   // any of the operands is a pointer-typed, that operand is immediately
765   // followed by a SRCVALUE for the pointer that may be used during lowering
766   // (e.g. to form MachinePointerInfo values for loads/stores).
767   const bool IsGCTransition =
768       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
769       (uint64_t)StatepointFlags::GCTransition;
770   if (IsGCTransition) {
771     SmallVector<SDValue, 8> TSOps;
772 
773     // Add chain
774     TSOps.push_back(Chain);
775 
776     // Add GC transition arguments
777     for (const Value *V : SI.GCTransitionArgs) {
778       TSOps.push_back(getValue(V));
779       if (V->getType()->isPointerTy())
780         TSOps.push_back(DAG.getSrcValue(V));
781     }
782 
783     // Add glue if necessary
784     if (CallHasIncomingGlue)
785       TSOps.push_back(Glue);
786 
787     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
788 
789     SDValue GCTransitionStart =
790         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
791 
792     Chain = GCTransitionStart.getValue(0);
793     Glue = GCTransitionStart.getValue(1);
794   }
795 
796   // TODO: Currently, all of these operands are being marked as read/write in
797   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
798   // and flags to be read-only.
799   SmallVector<SDValue, 40> Ops;
800 
801   // Add the <id> and <numBytes> constants.
802   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
803   Ops.push_back(
804       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
805 
806   // Calculate and push starting position of vmstate arguments
807   // Get number of arguments incoming directly into call node
808   unsigned NumCallRegArgs =
809       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
810   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
811 
812   // Add call target
813   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
814   Ops.push_back(CallTarget);
815 
816   // Add call arguments
817   // Get position of register mask in the call
818   SDNode::op_iterator RegMaskIt;
819   if (CallHasIncomingGlue)
820     RegMaskIt = CallNode->op_end() - 2;
821   else
822     RegMaskIt = CallNode->op_end() - 1;
823   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
824 
825   // Add a constant argument for the calling convention
826   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
827 
828   // Add a constant argument for the flags
829   uint64_t Flags = SI.StatepointFlags;
830   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
831          "Unknown flag used");
832   pushStackMapConstant(Ops, *this, Flags);
833 
834   // Insert all vmstate and gcstate arguments
835   llvm::append_range(Ops, LoweredMetaArgs);
836 
837   // Add register mask from call node
838   Ops.push_back(*RegMaskIt);
839 
840   // Add chain
841   Ops.push_back(Chain);
842 
843   // Same for the glue, but we add it only if original call had it
844   if (Glue.getNode())
845     Ops.push_back(Glue);
846 
847   // Compute return values.  Provide a glue output since we consume one as
848   // input.  This allows someone else to chain off us as needed.
849   SmallVector<EVT, 8> NodeTys;
850   for (auto SD : LoweredGCArgs) {
851     if (!LowerAsVReg.count(SD))
852       continue;
853     NodeTys.push_back(SD.getValueType());
854   }
855   LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
856   assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
857   NodeTys.push_back(MVT::Other);
858   NodeTys.push_back(MVT::Glue);
859 
860   unsigned NumResults = NodeTys.size();
861   MachineSDNode *StatepointMCNode =
862     DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
863   DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
864 
865   // For values lowered to tied-defs, create the virtual registers if used
866   // in other blocks. For local gc.relocate record appropriate statepoint
867   // result in StatepointLoweringState.
868   DenseMap<SDValue, Register> VirtRegs;
869   for (const auto *Relocate : SI.GCRelocates) {
870     Value *Derived = Relocate->getDerivedPtr();
871     SDValue SD = getValue(Derived);
872     if (!LowerAsVReg.count(SD))
873       continue;
874 
875     SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
876 
877     // Handle local relocate. Note that different relocates might
878     // map to the same SDValue.
879     if (SI.StatepointInstr->getParent() == Relocate->getParent()) {
880       SDValue Res = StatepointLowering.getLocation(SD);
881       if (Res)
882         assert(Res == Relocated);
883       else
884         StatepointLowering.setLocation(SD, Relocated);
885       continue;
886     }
887 
888     // Handle multiple gc.relocates of the same input efficiently.
889     if (VirtRegs.count(SD))
890       continue;
891 
892     auto *RetTy = Relocate->getType();
893     Register Reg = FuncInfo.CreateRegs(RetTy);
894     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
895                      DAG.getDataLayout(), Reg, RetTy, std::nullopt);
896     SDValue Chain = DAG.getRoot();
897     RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
898     PendingExports.push_back(Chain);
899 
900     VirtRegs[SD] = Reg;
901   }
902 
903   // Record for later use how each relocation was lowered.  This is needed to
904   // allow later gc.relocates to mirror the lowering chosen.
905   const Instruction *StatepointInstr = SI.StatepointInstr;
906   auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
907   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
908     const Value *V = Relocate->getDerivedPtr();
909     SDValue SDV = getValue(V);
910     SDValue Loc = StatepointLowering.getLocation(SDV);
911 
912     bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent());
913 
914     RecordType Record;
915     if (IsLocal && LowerAsVReg.count(SDV)) {
916       // Result is already stored in StatepointLowering
917       Record.type = RecordType::SDValueNode;
918     } else if (LowerAsVReg.count(SDV)) {
919       Record.type = RecordType::VReg;
920       assert(VirtRegs.count(SDV));
921       Record.payload.Reg = VirtRegs[SDV];
922     } else if (Loc.getNode()) {
923       Record.type = RecordType::Spill;
924       Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
925     } else {
926       Record.type = RecordType::NoRelocate;
927       // If we didn't relocate a value, we'll essentialy end up inserting an
928       // additional use of the original value when lowering the gc.relocate.
929       // We need to make sure the value is available at the new use, which
930       // might be in another block.
931       if (Relocate->getParent() != StatepointInstr->getParent())
932         ExportFromCurrentBlock(V);
933     }
934     RelocationMap[Relocate] = Record;
935   }
936 
937 
938 
939   SDNode *SinkNode = StatepointMCNode;
940 
941   // Build the GC_TRANSITION_END node if necessary.
942   //
943   // See the comment above regarding GC_TRANSITION_START for the layout of
944   // the operands to the GC_TRANSITION_END node.
945   if (IsGCTransition) {
946     SmallVector<SDValue, 8> TEOps;
947 
948     // Add chain
949     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
950 
951     // Add GC transition arguments
952     for (const Value *V : SI.GCTransitionArgs) {
953       TEOps.push_back(getValue(V));
954       if (V->getType()->isPointerTy())
955         TEOps.push_back(DAG.getSrcValue(V));
956     }
957 
958     // Add glue
959     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
960 
961     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
962 
963     SDValue GCTransitionStart =
964         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
965 
966     SinkNode = GCTransitionStart.getNode();
967   }
968 
969   // Replace original call
970   // Call: ch,glue = CALL ...
971   // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
972   unsigned NumSinkValues = SinkNode->getNumValues();
973   SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
974                                  SDValue(SinkNode, NumSinkValues - 1)};
975   DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
976   // Remove original call node
977   DAG.DeleteNode(CallNode);
978 
979   // Since we always emit CopyToRegs (even for local relocates), we must
980   // update root, so that they are emitted before any local uses.
981   (void)getControlRoot();
982 
983   // TODO: A better future implementation would be to emit a single variable
984   // argument, variable return value STATEPOINT node here and then hookup the
985   // return value of each gc.relocate to the respective output of the
986   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
987   // to actually be possible today.
988 
989   return ReturnVal;
990 }
991 
992 /// Return two gc.results if present.  First result is a block local
993 /// gc.result, second result is a non-block local gc.result.  Corresponding
994 /// entry will be nullptr if not present.
995 static std::pair<const GCResultInst*, const GCResultInst*>
996 getGCResultLocality(const GCStatepointInst &S) {
997   std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr);
998   for (const auto *U : S.users()) {
999     auto *GRI = dyn_cast<GCResultInst>(U);
1000     if (!GRI)
1001       continue;
1002     if (GRI->getParent() == S.getParent())
1003       Res.first = GRI;
1004     else
1005       Res.second = GRI;
1006   }
1007   return Res;
1008 }
1009 
1010 void
1011 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
1012                                      const BasicBlock *EHPadBB /*= nullptr*/) {
1013   assert(I.getCallingConv() != CallingConv::AnyReg &&
1014          "anyregcc is not supported on statepoints!");
1015 
1016 #ifndef NDEBUG
1017   // Check that the associated GCStrategy expects to encounter statepoints.
1018   assert(GFI->getStrategy().useStatepoints() &&
1019          "GCStrategy does not expect to encounter statepoints");
1020 #endif
1021 
1022   SDValue ActualCallee;
1023   SDValue Callee = getValue(I.getActualCalledOperand());
1024 
1025   if (I.getNumPatchBytes() > 0) {
1026     // If we've been asked to emit a nop sequence instead of a call instruction
1027     // for this statepoint then don't lower the call target, but use a constant
1028     // `undef` instead.  Not lowering the call target lets statepoint clients
1029     // get away without providing a physical address for the symbolic call
1030     // target at link time.
1031     ActualCallee = DAG.getUNDEF(Callee.getValueType());
1032   } else {
1033     ActualCallee = Callee;
1034   }
1035 
1036   StatepointLoweringInfo SI(DAG);
1037   populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1038                            I.getNumCallArgs(), ActualCallee,
1039                            I.getActualReturnType(), false /* IsPatchPoint */);
1040 
1041   // There may be duplication in the gc.relocate list; such as two copies of
1042   // each relocation on normal and exceptional path for an invoke.  We only
1043   // need to spill once and record one copy in the stackmap, but we need to
1044   // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
1045   // handled as a CSE problem elsewhere.)
1046   // TODO: There a couple of major stackmap size optimizations we could do
1047   // here if we wished.
1048   // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1049   // record {B,B} if it's seen later.
1050   // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1051   // given that, we could change the format to record base pointer relocations
1052   // separately with half the space. This would require a format rev and a
1053   // fairly major rework of the STATEPOINT node though.
1054   SmallSet<SDValue, 8> Seen;
1055   for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1056     SI.GCRelocates.push_back(Relocate);
1057 
1058     SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1059     if (Seen.insert(DerivedSD).second) {
1060       SI.Bases.push_back(Relocate->getBasePtr());
1061       SI.Ptrs.push_back(Relocate->getDerivedPtr());
1062     }
1063   }
1064 
1065   // If we find a deopt value which isn't explicitly added, we need to
1066   // ensure it gets lowered such that gc cycles occurring before the
1067   // deoptimization event during the lifetime of the call don't invalidate
1068   // the pointer we're deopting with.  Note that we assume that all
1069   // pointers passed to deopt are base pointers; relaxing that assumption
1070   // would require relatively large changes to how we represent relocations.
1071   for (Value *V : I.deopt_operands()) {
1072     if (!isGCValue(V, *this))
1073       continue;
1074     if (Seen.insert(getValue(V)).second) {
1075       SI.Bases.push_back(V);
1076       SI.Ptrs.push_back(V);
1077     }
1078   }
1079 
1080   SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
1081   SI.StatepointInstr = &I;
1082   SI.ID = I.getID();
1083 
1084   SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1085   SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1086                                             I.gc_transition_args_end());
1087 
1088   SI.StatepointFlags = I.getFlags();
1089   SI.NumPatchBytes = I.getNumPatchBytes();
1090   SI.EHPadBB = EHPadBB;
1091 
1092   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1093 
1094   // Export the result value if needed
1095   const auto GCResultLocality = getGCResultLocality(I);
1096 
1097   if (!GCResultLocality.first && !GCResultLocality.second) {
1098     // The return value is not needed, just generate a poison value.
1099     // Note: This covers the void return case.
1100     setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1101     return;
1102   }
1103 
1104   if (GCResultLocality.first) {
1105     // Result value will be used in a same basic block. Don't export it or
1106     // perform any explicit register copies. The gc_result will simply grab
1107     // this value.
1108     setValue(&I, ReturnValue);
1109   }
1110 
1111   if (!GCResultLocality.second)
1112     return;
1113   // Result value will be used in a different basic block so we need to export
1114   // it now.  Default exporting mechanism will not work here because statepoint
1115   // call has a different type than the actual call. It means that by default
1116   // llvm will create export register of the wrong type (always i32 in our
1117   // case). So instead we need to create export register with correct type
1118   // manually.
1119   // TODO: To eliminate this problem we can remove gc.result intrinsics
1120   //       completely and make statepoint call to return a tuple.
1121   Type *RetTy = GCResultLocality.second->getType();
1122   Register Reg = FuncInfo.CreateRegs(RetTy);
1123   RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1124                    DAG.getDataLayout(), Reg, RetTy,
1125                    I.getCallingConv());
1126   SDValue Chain = DAG.getEntryNode();
1127 
1128   RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1129   PendingExports.push_back(Chain);
1130   FuncInfo.ValueMap[&I] = Reg;
1131 }
1132 
1133 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1134     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1135     bool VarArgDisallowed, bool ForceVoidReturnTy) {
1136   StatepointLoweringInfo SI(DAG);
1137   unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1138   populateCallLoweringInfo(
1139       SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee,
1140       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1141       false);
1142   if (!VarArgDisallowed)
1143     SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1144 
1145   auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1146 
1147   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1148 
1149   auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1150   SI.ID = SD.StatepointID.value_or(DefaultID);
1151   SI.NumPatchBytes = SD.NumPatchBytes.value_or(0);
1152 
1153   SI.DeoptState =
1154       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1155   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1156   SI.EHPadBB = EHPadBB;
1157 
1158   // NB! The GC arguments are deliberately left empty.
1159 
1160   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1161     ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1162     setValue(Call, ReturnVal);
1163   }
1164 }
1165 
1166 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1167     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1168   LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1169                                    /* VarArgDisallowed = */ false,
1170                                    /* ForceVoidReturnTy  = */ false);
1171 }
1172 
1173 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1174   // The result value of the gc_result is simply the result of the actual
1175   // call.  We've already emitted this, so just grab the value.
1176   const Value *SI = CI.getStatepoint();
1177   assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) &&
1178          "GetStatepoint must return one of two types");
1179   if (isa<UndefValue>(SI))
1180     return;
1181 
1182   if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) {
1183     setValue(&CI, getValue(SI));
1184     return;
1185   }
1186   // Statepoint is in different basic block so we should have stored call
1187   // result in a virtual register.
1188   // We can not use default getValue() functionality to copy value from this
1189   // register because statepoint and actual call return types can be
1190   // different, and getValue() will use CopyFromReg of the wrong type,
1191   // which is always i32 in our case.
1192   Type *RetTy = CI.getType();
1193   SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1194 
1195   assert(CopyFromReg.getNode());
1196   setValue(&CI, CopyFromReg);
1197 }
1198 
1199 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1200   const Value *Statepoint = Relocate.getStatepoint();
1201 #ifndef NDEBUG
1202   // Consistency check
1203   // We skip this check for relocates not in the same basic block as their
1204   // statepoint. It would be too expensive to preserve validation info through
1205   // different basic blocks.
1206   assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
1207          "GetStatepoint must return one of two types");
1208   if (isa<UndefValue>(Statepoint))
1209     return;
1210 
1211   if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent())
1212     StatepointLowering.relocCallVisited(Relocate);
1213 #endif
1214 
1215   const Value *DerivedPtr = Relocate.getDerivedPtr();
1216   auto &RelocationMap =
1217       FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)];
1218   auto SlotIt = RelocationMap.find(&Relocate);
1219   assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1220   const RecordType &Record = SlotIt->second;
1221 
1222   // If relocation was done via virtual register..
1223   if (Record.type == RecordType::SDValueNode) {
1224     assert(cast<GCStatepointInst>(Statepoint)->getParent() ==
1225                Relocate.getParent() &&
1226            "Nonlocal gc.relocate mapped via SDValue");
1227     SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr));
1228     assert(SDV.getNode() && "empty SDValue");
1229     setValue(&Relocate, SDV);
1230     return;
1231   }
1232   if (Record.type == RecordType::VReg) {
1233     Register InReg = Record.payload.Reg;
1234     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1235                      DAG.getDataLayout(), InReg, Relocate.getType(),
1236                      std::nullopt); // This is not an ABI copy.
1237     // We generate copy to/from regs even for local uses, hence we must
1238     // chain with current root to ensure proper ordering of copies w.r.t.
1239     // statepoint.
1240     SDValue Chain = DAG.getRoot();
1241     SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1242                                              Chain, nullptr, nullptr);
1243     setValue(&Relocate, Relocation);
1244     return;
1245   }
1246 
1247   if (Record.type == RecordType::Spill) {
1248     unsigned Index = Record.payload.FI;
1249     SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1250 
1251     // All the reloads are independent and are reading memory only modified by
1252     // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1253     // this this let's CSE kick in for free and allows reordering of
1254     // instructions if possible.  The lowering for statepoint sets the root,
1255     // so this is ordering all reloads with the either
1256     // a) the statepoint node itself, or
1257     // b) the entry of the current block for an invoke statepoint.
1258     const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1259 
1260     auto &MF = DAG.getMachineFunction();
1261     auto &MFI = MF.getFrameInfo();
1262     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1263     auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1264                                             MFI.getObjectSize(Index),
1265                                             MFI.getObjectAlign(Index));
1266 
1267     auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1268                                                            Relocate.getType());
1269 
1270     SDValue SpillLoad =
1271         DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
1272     PendingLoads.push_back(SpillLoad.getValue(1));
1273 
1274     assert(SpillLoad.getNode());
1275     setValue(&Relocate, SpillLoad);
1276     return;
1277   }
1278 
1279   assert(Record.type == RecordType::NoRelocate);
1280   SDValue SD = getValue(DerivedPtr);
1281 
1282   if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1283     // Lowering relocate(undef) as arbitrary constant. Current constant value
1284     // is chosen such that it's unlikely to be a valid pointer.
1285     setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1286     return;
1287   }
1288 
1289   // We didn't need to spill these special cases (constants and allocas).
1290   // See the handling in spillIncomingValueForStatepoint for detail.
1291   setValue(&Relocate, SD);
1292 }
1293 
1294 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1295   const auto &TLI = DAG.getTargetLoweringInfo();
1296   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1297                                          TLI.getPointerTy(DAG.getDataLayout()));
1298 
1299   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1300   // call.  We also do not lower the return value to any virtual register, and
1301   // change the immediately following return to a trap instruction.
1302   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1303                                    /* VarArgDisallowed = */ true,
1304                                    /* ForceVoidReturnTy = */ true);
1305 }
1306 
1307 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1308   // We do not lower the return value from llvm.deoptimize to any virtual
1309   // register, and change the immediately following return to a trap
1310   // instruction.
1311   if (DAG.getTarget().Options.TrapUnreachable)
1312     DAG.setRoot(
1313         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1314 }
1315