1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/ISDOpcodes.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/RuntimeLibcalls.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/SelectionDAGNodes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/GCStrategy.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 #include <iterator> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "statepoint-lowering" 58 59 STATISTIC(NumSlotsAllocatedForStatepoints, 60 "Number of stack slots allocated for statepoints"); 61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 62 STATISTIC(StatepointMaxSlotsRequired, 63 "Maximum number of stack slots required for a singe statepoint"); 64 65 cl::opt<bool> UseRegistersForDeoptValues( 66 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 67 cl::desc("Allow using registers for non pointer deopt args")); 68 69 cl::opt<bool> UseRegistersForGCPointersInLandingPad( 70 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false), 71 cl::desc("Allow using registers for gc pointer in landing pad")); 72 73 cl::opt<unsigned> MaxRegistersForGCPointers( 74 "max-registers-for-gc-values", cl::Hidden, cl::init(0), 75 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in")); 76 77 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType; 78 79 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 80 SelectionDAGBuilder &Builder, uint64_t Value) { 81 SDLoc L = Builder.getCurSDLoc(); 82 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 83 MVT::i64)); 84 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 85 } 86 87 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 88 // Consistency check 89 assert(PendingGCRelocateCalls.empty() && 90 "Trying to visit statepoint before finished processing previous one"); 91 Locations.clear(); 92 NextSlotToAllocate = 0; 93 // Need to resize this on each safepoint - we need the two to stay in sync and 94 // the clear patterns of a SelectionDAGBuilder have no relation to 95 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 96 AllocatedStackSlots.clear(); 97 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 98 } 99 100 void StatepointLoweringState::clear() { 101 Locations.clear(); 102 AllocatedStackSlots.clear(); 103 assert(PendingGCRelocateCalls.empty() && 104 "cleared before statepoint sequence completed"); 105 } 106 107 SDValue 108 StatepointLoweringState::allocateStackSlot(EVT ValueType, 109 SelectionDAGBuilder &Builder) { 110 NumSlotsAllocatedForStatepoints++; 111 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 112 113 unsigned SpillSize = ValueType.getStoreSize(); 114 assert((SpillSize * 8) == 115 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8. 116 "Size not in bytes?"); 117 118 // First look for a previously created stack slot which is not in 119 // use (accounting for the fact arbitrary slots may already be 120 // reserved), or to create a new stack slot and use it. 121 122 const size_t NumSlots = AllocatedStackSlots.size(); 123 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 124 125 assert(AllocatedStackSlots.size() == 126 Builder.FuncInfo.StatepointStackSlots.size() && 127 "Broken invariant"); 128 129 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 130 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 131 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 132 if (MFI.getObjectSize(FI) == SpillSize) { 133 AllocatedStackSlots.set(NextSlotToAllocate); 134 // TODO: Is ValueType the right thing to use here? 135 return Builder.DAG.getFrameIndex(FI, ValueType); 136 } 137 } 138 } 139 140 // Couldn't find a free slot, so create a new one: 141 142 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 143 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 144 MFI.markAsStatepointSpillSlotObjectIndex(FI); 145 146 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 147 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 148 assert(AllocatedStackSlots.size() == 149 Builder.FuncInfo.StatepointStackSlots.size() && 150 "Broken invariant"); 151 152 StatepointMaxSlotsRequired.updateMax( 153 Builder.FuncInfo.StatepointStackSlots.size()); 154 155 return SpillSlot; 156 } 157 158 /// Utility function for reservePreviousStackSlotForValue. Tries to find 159 /// stack slot index to which we have spilled value for previous statepoints. 160 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 161 static std::optional<int> findPreviousSpillSlot(const Value *Val, 162 SelectionDAGBuilder &Builder, 163 int LookUpDepth) { 164 // Can not look any further - give up now 165 if (LookUpDepth <= 0) 166 return std::nullopt; 167 168 // Spill location is known for gc relocates 169 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 170 const Value *Statepoint = Relocate->getStatepoint(); 171 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) && 172 "GetStatepoint must return one of two types"); 173 if (isa<UndefValue>(Statepoint)) 174 return std::nullopt; 175 176 const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps 177 [cast<GCStatepointInst>(Statepoint)]; 178 179 auto It = RelocationMap.find(Relocate); 180 if (It == RelocationMap.end()) 181 return std::nullopt; 182 183 auto &Record = It->second; 184 if (Record.type != RecordType::Spill) 185 return std::nullopt; 186 187 return Record.payload.FI; 188 } 189 190 // Look through bitcast instructions. 191 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 192 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 193 194 // Look through phi nodes 195 // All incoming values should have same known stack slot, otherwise result 196 // is unknown. 197 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 198 std::optional<int> MergedResult; 199 200 for (const auto &IncomingValue : Phi->incoming_values()) { 201 std::optional<int> SpillSlot = 202 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 203 if (!SpillSlot) 204 return std::nullopt; 205 206 if (MergedResult && *MergedResult != *SpillSlot) 207 return std::nullopt; 208 209 MergedResult = SpillSlot; 210 } 211 return MergedResult; 212 } 213 214 // TODO: We can do better for PHI nodes. In cases like this: 215 // ptr = phi(relocated_pointer, not_relocated_pointer) 216 // statepoint(ptr) 217 // We will return that stack slot for ptr is unknown. And later we might 218 // assign different stack slots for ptr and relocated_pointer. This limits 219 // llvm's ability to remove redundant stores. 220 // Unfortunately it's hard to accomplish in current infrastructure. 221 // We use this function to eliminate spill store completely, while 222 // in example we still need to emit store, but instead of any location 223 // we need to use special "preferred" location. 224 225 // TODO: handle simple updates. If a value is modified and the original 226 // value is no longer live, it would be nice to put the modified value in the 227 // same slot. This allows folding of the memory accesses for some 228 // instructions types (like an increment). 229 // statepoint (i) 230 // i1 = i+1 231 // statepoint (i1) 232 // However we need to be careful for cases like this: 233 // statepoint(i) 234 // i1 = i+1 235 // statepoint(i, i1) 236 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 237 // put handling of simple modifications in this function like it's done 238 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 239 // which we visit values is unspecified. 240 241 // Don't know any information about this instruction 242 return std::nullopt; 243 } 244 245 /// Return true if-and-only-if the given SDValue can be lowered as either a 246 /// constant argument or a stack reference. The key point is that the value 247 /// doesn't need to be spilled or tracked as a vreg use. 248 static bool willLowerDirectly(SDValue Incoming) { 249 // We are making an unchecked assumption that the frame size <= 2^16 as that 250 // is the largest offset which can be encoded in the stackmap format. 251 if (isa<FrameIndexSDNode>(Incoming)) 252 return true; 253 254 // The largest constant describeable in the StackMap format is 64 bits. 255 // Potential Optimization: Constants values are sign extended by consumer, 256 // and thus there are many constants of static type > 64 bits whose value 257 // happens to be sext(Con64) and could thus be lowered directly. 258 if (Incoming.getValueType().getSizeInBits() > 64) 259 return false; 260 261 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 262 Incoming.isUndef()); 263 } 264 265 /// Try to find existing copies of the incoming values in stack slots used for 266 /// statepoint spilling. If we can find a spill slot for the incoming value, 267 /// mark that slot as allocated, and reuse the same slot for this safepoint. 268 /// This helps to avoid series of loads and stores that only serve to reshuffle 269 /// values on the stack between calls. 270 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 271 SelectionDAGBuilder &Builder) { 272 SDValue Incoming = Builder.getValue(IncomingValue); 273 274 // If we won't spill this, we don't need to check for previously allocated 275 // stack slots. 276 if (willLowerDirectly(Incoming)) 277 return; 278 279 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 280 if (OldLocation.getNode()) 281 // Duplicates in input 282 return; 283 284 const int LookUpDepth = 6; 285 std::optional<int> Index = 286 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 287 if (!Index) 288 return; 289 290 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 291 292 auto SlotIt = find(StatepointSlots, *Index); 293 assert(SlotIt != StatepointSlots.end() && 294 "Value spilled to the unknown stack slot"); 295 296 // This is one of our dedicated lowering slots 297 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 298 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 299 // stack slot already assigned to someone else, can't use it! 300 // TODO: currently we reserve space for gc arguments after doing 301 // normal allocation for deopt arguments. We should reserve for 302 // _all_ deopt and gc arguments, then start allocating. This 303 // will prevent some moves being inserted when vm state changes, 304 // but gc state doesn't between two calls. 305 return; 306 } 307 // Reserve this stack slot 308 Builder.StatepointLowering.reserveStackSlot(Offset); 309 310 // Cache this slot so we find it when going through the normal 311 // assignment loop. 312 SDValue Loc = 313 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 314 Builder.StatepointLowering.setLocation(Incoming, Loc); 315 } 316 317 /// Extract call from statepoint, lower it and return pointer to the 318 /// call node. Also update NodeMap so that getValue(statepoint) will 319 /// reference lowered call result 320 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 321 SelectionDAGBuilder::StatepointLoweringInfo &SI, 322 SelectionDAGBuilder &Builder) { 323 SDValue ReturnValue, CallEndVal; 324 std::tie(ReturnValue, CallEndVal) = 325 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 326 SDNode *CallEnd = CallEndVal.getNode(); 327 328 // Get a call instruction from the call sequence chain. Tail calls are not 329 // allowed. The following code is essentially reverse engineering X86's 330 // LowerCallTo. 331 // 332 // We are expecting DAG to have the following form: 333 // 334 // ch = eh_label (only in case of invoke statepoint) 335 // ch, glue = callseq_start ch 336 // ch, glue = X86::Call ch, glue 337 // ch, glue = callseq_end ch, glue 338 // get_return_value ch, glue 339 // 340 // get_return_value can either be a sequence of CopyFromReg instructions 341 // to grab the return value from the return register(s), or it can be a LOAD 342 // to load a value returned by reference via a stack slot. 343 344 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 345 if (HasDef) { 346 if (CallEnd->getOpcode() == ISD::LOAD) 347 CallEnd = CallEnd->getOperand(0).getNode(); 348 else 349 while (CallEnd->getOpcode() == ISD::CopyFromReg) 350 CallEnd = CallEnd->getOperand(0).getNode(); 351 } 352 353 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 354 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 355 } 356 357 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 358 FrameIndexSDNode &FI) { 359 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 360 auto MMOFlags = MachineMemOperand::MOStore | 361 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 362 auto &MFI = MF.getFrameInfo(); 363 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 364 MFI.getObjectSize(FI.getIndex()), 365 MFI.getObjectAlign(FI.getIndex())); 366 } 367 368 /// Spill a value incoming to the statepoint. It might be either part of 369 /// vmstate 370 /// or gcstate. In both cases unconditionally spill it on the stack unless it 371 /// is a null constant. Return pair with first element being frame index 372 /// containing saved value and second element with outgoing chain from the 373 /// emitted store 374 static std::tuple<SDValue, SDValue, MachineMemOperand*> 375 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 376 SelectionDAGBuilder &Builder) { 377 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 378 MachineMemOperand* MMO = nullptr; 379 380 // Emit new store if we didn't do it for this ptr before 381 if (!Loc.getNode()) { 382 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 383 Builder); 384 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 385 // We use TargetFrameIndex so that isel will not select it into LEA 386 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 387 388 // Right now we always allocate spill slots that are of the same 389 // size as the value we're about to spill (the size of spillee can 390 // vary since we spill vectors of pointers too). At some point we 391 // can consider allowing spills of smaller values to larger slots 392 // (i.e. change the '==' in the assert below to a '>='). 393 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 394 assert((MFI.getObjectSize(Index) * 8) == 395 (-8 & (7 + // Round up modulo 8. 396 (int64_t)Incoming.getValueSizeInBits())) && 397 "Bad spill: stack slot does not match!"); 398 399 // Note: Using the alignment of the spill slot (rather than the abi or 400 // preferred alignment) is required for correctness when dealing with spill 401 // slots with preferred alignments larger than frame alignment.. 402 auto &MF = Builder.DAG.getMachineFunction(); 403 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 404 auto *StoreMMO = MF.getMachineMemOperand( 405 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 406 MFI.getObjectAlign(Index)); 407 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 408 StoreMMO); 409 410 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 411 412 Builder.StatepointLowering.setLocation(Incoming, Loc); 413 } 414 415 assert(Loc.getNode()); 416 return std::make_tuple(Loc, Chain, MMO); 417 } 418 419 /// Lower a single value incoming to a statepoint node. This value can be 420 /// either a deopt value or a gc value, the handling is the same. We special 421 /// case constants and allocas, then fall back to spilling if required. 422 static void 423 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 424 SmallVectorImpl<SDValue> &Ops, 425 SmallVectorImpl<MachineMemOperand *> &MemRefs, 426 SelectionDAGBuilder &Builder) { 427 428 if (willLowerDirectly(Incoming)) { 429 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 430 // This handles allocas as arguments to the statepoint (this is only 431 // really meaningful for a deopt value. For GC, we'd be trying to 432 // relocate the address of the alloca itself?) 433 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 434 "Incoming value is a frame index!"); 435 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 436 Builder.getFrameIndexTy())); 437 438 auto &MF = Builder.DAG.getMachineFunction(); 439 auto *MMO = getMachineMemOperand(MF, *FI); 440 MemRefs.push_back(MMO); 441 return; 442 } 443 444 assert(Incoming.getValueType().getSizeInBits() <= 64); 445 446 if (Incoming.isUndef()) { 447 // Put an easily recognized constant that's unlikely to be a valid 448 // value so that uses of undef by the consumer of the stackmap is 449 // easily recognized. This is legal since the compiler is always 450 // allowed to chose an arbitrary value for undef. 451 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 452 return; 453 } 454 455 // If the original value was a constant, make sure it gets recorded as 456 // such in the stackmap. This is required so that the consumer can 457 // parse any internal format to the deopt state. It also handles null 458 // pointers and other constant pointers in GC states. 459 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 460 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 461 return; 462 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 463 pushStackMapConstant(Ops, Builder, 464 C->getValueAPF().bitcastToAPInt().getZExtValue()); 465 return; 466 } 467 468 llvm_unreachable("unhandled direct lowering case"); 469 } 470 471 472 473 if (!RequireSpillSlot) { 474 // If this value is live in (not live-on-return, or live-through), we can 475 // treat it the same way patchpoint treats it's "live in" values. We'll 476 // end up folding some of these into stack references, but they'll be 477 // handled by the register allocator. Note that we do not have the notion 478 // of a late use so these values might be placed in registers which are 479 // clobbered by the call. This is fine for live-in. For live-through 480 // fix-up pass should be executed to force spilling of such registers. 481 Ops.push_back(Incoming); 482 } else { 483 // Otherwise, locate a spill slot and explicitly spill it so it can be 484 // found by the runtime later. Note: We know all of these spills are 485 // independent, but don't bother to exploit that chain wise. DAGCombine 486 // will happily do so as needed, so doing it here would be a small compile 487 // time win at most. 488 SDValue Chain = Builder.getRoot(); 489 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 490 Ops.push_back(std::get<0>(Res)); 491 if (auto *MMO = std::get<2>(Res)) 492 MemRefs.push_back(MMO); 493 Chain = std::get<1>(Res);; 494 Builder.DAG.setRoot(Chain); 495 } 496 497 } 498 499 /// Return true if value V represents the GC value. The behavior is conservative 500 /// in case it is not sure that value is not GC the function returns true. 501 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) { 502 auto *Ty = V->getType(); 503 if (!Ty->isPtrOrPtrVectorTy()) 504 return false; 505 if (auto *GFI = Builder.GFI) 506 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 507 return *IsManaged; 508 return true; // conservative 509 } 510 511 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 512 /// lowering is described in lowerIncomingStatepointValue. This function is 513 /// responsible for lowering everything in the right position and playing some 514 /// tricks to avoid redundant stack manipulation where possible. On 515 /// completion, 'Ops' will contain ready to use operands for machine code 516 /// statepoint. The chain nodes will have already been created and the DAG root 517 /// will be set to the last value spilled (if any were). 518 static void 519 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 520 SmallVectorImpl<MachineMemOperand *> &MemRefs, 521 SmallVectorImpl<SDValue> &GCPtrs, 522 DenseMap<SDValue, int> &LowerAsVReg, 523 SelectionDAGBuilder::StatepointLoweringInfo &SI, 524 SelectionDAGBuilder &Builder) { 525 // Lower the deopt and gc arguments for this statepoint. Layout will be: 526 // deopt argument length, deopt arguments.., gc arguments... 527 528 // Figure out what lowering strategy we're going to use for each part 529 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 530 // as "live-through". A "live-through" variable is one which is "live-in", 531 // "live-out", and live throughout the lifetime of the call (i.e. we can find 532 // it from any PC within the transitive callee of the statepoint). In 533 // particular, if the callee spills callee preserved registers we may not 534 // be able to find a value placed in that register during the call. This is 535 // fine for live-out, but not for live-through. If we were willing to make 536 // assumptions about the code generator producing the callee, we could 537 // potentially allow live-through values in callee saved registers. 538 const bool LiveInDeopt = 539 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 540 541 // Decide which deriver pointers will go on VRegs 542 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue(); 543 544 // Pointers used on exceptional path of invoke statepoint. 545 // We cannot assing them to VRegs. 546 SmallSet<SDValue, 8> LPadPointers; 547 if (!UseRegistersForGCPointersInLandingPad) 548 if (const auto *StInvoke = 549 dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) { 550 LandingPadInst *LPI = StInvoke->getLandingPadInst(); 551 for (const auto *Relocate : SI.GCRelocates) 552 if (Relocate->getOperand(0) == LPI) { 553 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr())); 554 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr())); 555 } 556 } 557 558 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n"); 559 560 // List of unique lowered GC Pointer values. 561 SmallSetVector<SDValue, 16> LoweredGCPtrs; 562 // Map lowered GC Pointer value to the index in above vector 563 DenseMap<SDValue, unsigned> GCPtrIndexMap; 564 565 unsigned CurNumVRegs = 0; 566 567 auto canPassGCPtrOnVReg = [&](SDValue SD) { 568 if (SD.getValueType().isVector()) 569 return false; 570 if (LPadPointers.count(SD)) 571 return false; 572 return !willLowerDirectly(SD); 573 }; 574 575 auto processGCPtr = [&](const Value *V) { 576 SDValue PtrSD = Builder.getValue(V); 577 if (!LoweredGCPtrs.insert(PtrSD)) 578 return; // skip duplicates 579 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1; 580 581 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen"); 582 if (LowerAsVReg.size() == MaxVRegPtrs) 583 return; 584 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && 585 "IR and SD types disagree"); 586 if (!canPassGCPtrOnVReg(PtrSD)) { 587 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG)); 588 return; 589 } 590 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG)); 591 LowerAsVReg[PtrSD] = CurNumVRegs++; 592 }; 593 594 // Process derived pointers first to give them more chance to go on VReg. 595 for (const Value *V : SI.Ptrs) 596 processGCPtr(V); 597 for (const Value *V : SI.Bases) 598 processGCPtr(V); 599 600 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n"); 601 602 auto requireSpillSlot = [&](const Value *V) { 603 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal( 604 Builder.getValue(V).getValueType())) 605 return true; 606 if (isGCValue(V, Builder)) 607 return !LowerAsVReg.count(Builder.getValue(V)); 608 return !(LiveInDeopt || UseRegistersForDeoptValues); 609 }; 610 611 // Before we actually start lowering (and allocating spill slots for values), 612 // reserve any stack slots which we judge to be profitable to reuse for a 613 // particular value. This is purely an optimization over the code below and 614 // doesn't change semantics at all. It is important for performance that we 615 // reserve slots for both deopt and gc values before lowering either. 616 for (const Value *V : SI.DeoptState) { 617 if (requireSpillSlot(V)) 618 reservePreviousStackSlotForValue(V, Builder); 619 } 620 621 for (const Value *V : SI.Ptrs) { 622 SDValue SDV = Builder.getValue(V); 623 if (!LowerAsVReg.count(SDV)) 624 reservePreviousStackSlotForValue(V, Builder); 625 } 626 627 for (const Value *V : SI.Bases) { 628 SDValue SDV = Builder.getValue(V); 629 if (!LowerAsVReg.count(SDV)) 630 reservePreviousStackSlotForValue(V, Builder); 631 } 632 633 // First, prefix the list with the number of unique values to be 634 // lowered. Note that this is the number of *Values* not the 635 // number of SDValues required to lower them. 636 const int NumVMSArgs = SI.DeoptState.size(); 637 pushStackMapConstant(Ops, Builder, NumVMSArgs); 638 639 // The vm state arguments are lowered in an opaque manner. We do not know 640 // what type of values are contained within. 641 LLVM_DEBUG(dbgs() << "Lowering deopt state\n"); 642 for (const Value *V : SI.DeoptState) { 643 SDValue Incoming; 644 // If this is a function argument at a static frame index, generate it as 645 // the frame index. 646 if (const Argument *Arg = dyn_cast<Argument>(V)) { 647 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 648 if (FI != INT_MAX) 649 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 650 } 651 if (!Incoming.getNode()) 652 Incoming = Builder.getValue(V); 653 LLVM_DEBUG(dbgs() << "Value " << *V 654 << " requireSpillSlot = " << requireSpillSlot(V) << "\n"); 655 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 656 Builder); 657 } 658 659 // Finally, go ahead and lower all the gc arguments. 660 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size()); 661 for (SDValue SDV : LoweredGCPtrs) 662 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs, 663 Builder); 664 665 // Copy to out vector. LoweredGCPtrs will be empty after this point. 666 GCPtrs = LoweredGCPtrs.takeVector(); 667 668 // If there are any explicit spill slots passed to the statepoint, record 669 // them, but otherwise do not do anything special. These are user provided 670 // allocas and give control over placement to the consumer. In this case, 671 // it is the contents of the slot which may get updated, not the pointer to 672 // the alloca 673 SmallVector<SDValue, 4> Allocas; 674 for (Value *V : SI.GCArgs) { 675 SDValue Incoming = Builder.getValue(V); 676 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 677 // This handles allocas as arguments to the statepoint 678 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 679 "Incoming value is a frame index!"); 680 Allocas.push_back(Builder.DAG.getTargetFrameIndex( 681 FI->getIndex(), Builder.getFrameIndexTy())); 682 683 auto &MF = Builder.DAG.getMachineFunction(); 684 auto *MMO = getMachineMemOperand(MF, *FI); 685 MemRefs.push_back(MMO); 686 } 687 } 688 pushStackMapConstant(Ops, Builder, Allocas.size()); 689 Ops.append(Allocas.begin(), Allocas.end()); 690 691 // Now construct GC base/derived map; 692 pushStackMapConstant(Ops, Builder, SI.Ptrs.size()); 693 SDLoc L = Builder.getCurSDLoc(); 694 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) { 695 SDValue Base = Builder.getValue(SI.Bases[i]); 696 assert(GCPtrIndexMap.count(Base) && "base not found in index map"); 697 Ops.push_back( 698 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64)); 699 SDValue Derived = Builder.getValue(SI.Ptrs[i]); 700 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map"); 701 Ops.push_back( 702 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64)); 703 } 704 } 705 706 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 707 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 708 // The basic scheme here is that information about both the original call and 709 // the safepoint is encoded in the CallInst. We create a temporary call and 710 // lower it, then reverse engineer the calling sequence. 711 712 NumOfStatepoints++; 713 // Clear state 714 StatepointLowering.startNewStatepoint(*this); 715 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 716 assert((GFI || SI.Bases.empty()) && 717 "No gc specified, so cannot relocate pointers!"); 718 719 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n"); 720 #ifndef NDEBUG 721 for (const auto *Reloc : SI.GCRelocates) 722 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 723 StatepointLowering.scheduleRelocCall(*Reloc); 724 #endif 725 726 // Lower statepoint vmstate and gcstate arguments 727 728 // All lowered meta args. 729 SmallVector<SDValue, 10> LoweredMetaArgs; 730 // Lowered GC pointers (subset of above). 731 SmallVector<SDValue, 16> LoweredGCArgs; 732 SmallVector<MachineMemOperand*, 16> MemRefs; 733 // Maps derived pointer SDValue to statepoint result of relocated pointer. 734 DenseMap<SDValue, int> LowerAsVReg; 735 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg, 736 SI, *this); 737 738 // Now that we've emitted the spills, we need to update the root so that the 739 // call sequence is ordered correctly. 740 SI.CLI.setChain(getRoot()); 741 742 // Get call node, we will replace it later with statepoint 743 SDValue ReturnVal; 744 SDNode *CallNode; 745 std::tie(ReturnVal, CallNode) = lowerCallFromStatepointLoweringInfo(SI, *this); 746 747 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 748 // nodes with all the appropriate arguments and return values. 749 750 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 751 SDValue Chain = CallNode->getOperand(0); 752 753 SDValue Glue; 754 bool CallHasIncomingGlue = CallNode->getGluedNode(); 755 if (CallHasIncomingGlue) { 756 // Glue is always last operand 757 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 758 } 759 760 // Build the GC_TRANSITION_START node if necessary. 761 // 762 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 763 // order in which they appear in the call to the statepoint intrinsic. If 764 // any of the operands is a pointer-typed, that operand is immediately 765 // followed by a SRCVALUE for the pointer that may be used during lowering 766 // (e.g. to form MachinePointerInfo values for loads/stores). 767 const bool IsGCTransition = 768 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 769 (uint64_t)StatepointFlags::GCTransition; 770 if (IsGCTransition) { 771 SmallVector<SDValue, 8> TSOps; 772 773 // Add chain 774 TSOps.push_back(Chain); 775 776 // Add GC transition arguments 777 for (const Value *V : SI.GCTransitionArgs) { 778 TSOps.push_back(getValue(V)); 779 if (V->getType()->isPointerTy()) 780 TSOps.push_back(DAG.getSrcValue(V)); 781 } 782 783 // Add glue if necessary 784 if (CallHasIncomingGlue) 785 TSOps.push_back(Glue); 786 787 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 788 789 SDValue GCTransitionStart = 790 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 791 792 Chain = GCTransitionStart.getValue(0); 793 Glue = GCTransitionStart.getValue(1); 794 } 795 796 // TODO: Currently, all of these operands are being marked as read/write in 797 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 798 // and flags to be read-only. 799 SmallVector<SDValue, 40> Ops; 800 801 // Add the <id> and <numBytes> constants. 802 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 803 Ops.push_back( 804 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 805 806 // Calculate and push starting position of vmstate arguments 807 // Get number of arguments incoming directly into call node 808 unsigned NumCallRegArgs = 809 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 810 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 811 812 // Add call target 813 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 814 Ops.push_back(CallTarget); 815 816 // Add call arguments 817 // Get position of register mask in the call 818 SDNode::op_iterator RegMaskIt; 819 if (CallHasIncomingGlue) 820 RegMaskIt = CallNode->op_end() - 2; 821 else 822 RegMaskIt = CallNode->op_end() - 1; 823 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 824 825 // Add a constant argument for the calling convention 826 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 827 828 // Add a constant argument for the flags 829 uint64_t Flags = SI.StatepointFlags; 830 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 831 "Unknown flag used"); 832 pushStackMapConstant(Ops, *this, Flags); 833 834 // Insert all vmstate and gcstate arguments 835 llvm::append_range(Ops, LoweredMetaArgs); 836 837 // Add register mask from call node 838 Ops.push_back(*RegMaskIt); 839 840 // Add chain 841 Ops.push_back(Chain); 842 843 // Same for the glue, but we add it only if original call had it 844 if (Glue.getNode()) 845 Ops.push_back(Glue); 846 847 // Compute return values. Provide a glue output since we consume one as 848 // input. This allows someone else to chain off us as needed. 849 SmallVector<EVT, 8> NodeTys; 850 for (auto SD : LoweredGCArgs) { 851 if (!LowerAsVReg.count(SD)) 852 continue; 853 NodeTys.push_back(SD.getValueType()); 854 } 855 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n"); 856 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering"); 857 NodeTys.push_back(MVT::Other); 858 NodeTys.push_back(MVT::Glue); 859 860 unsigned NumResults = NodeTys.size(); 861 MachineSDNode *StatepointMCNode = 862 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 863 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 864 865 // For values lowered to tied-defs, create the virtual registers if used 866 // in other blocks. For local gc.relocate record appropriate statepoint 867 // result in StatepointLoweringState. 868 DenseMap<SDValue, Register> VirtRegs; 869 for (const auto *Relocate : SI.GCRelocates) { 870 Value *Derived = Relocate->getDerivedPtr(); 871 SDValue SD = getValue(Derived); 872 if (!LowerAsVReg.count(SD)) 873 continue; 874 875 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]); 876 877 // Handle local relocate. Note that different relocates might 878 // map to the same SDValue. 879 if (SI.StatepointInstr->getParent() == Relocate->getParent()) { 880 SDValue Res = StatepointLowering.getLocation(SD); 881 if (Res) 882 assert(Res == Relocated); 883 else 884 StatepointLowering.setLocation(SD, Relocated); 885 continue; 886 } 887 888 // Handle multiple gc.relocates of the same input efficiently. 889 if (VirtRegs.count(SD)) 890 continue; 891 892 auto *RetTy = Relocate->getType(); 893 Register Reg = FuncInfo.CreateRegs(RetTy); 894 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 895 DAG.getDataLayout(), Reg, RetTy, std::nullopt); 896 SDValue Chain = DAG.getRoot(); 897 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr); 898 PendingExports.push_back(Chain); 899 900 VirtRegs[SD] = Reg; 901 } 902 903 // Record for later use how each relocation was lowered. This is needed to 904 // allow later gc.relocates to mirror the lowering chosen. 905 const Instruction *StatepointInstr = SI.StatepointInstr; 906 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr]; 907 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 908 const Value *V = Relocate->getDerivedPtr(); 909 SDValue SDV = getValue(V); 910 SDValue Loc = StatepointLowering.getLocation(SDV); 911 912 bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent()); 913 914 RecordType Record; 915 if (IsLocal && LowerAsVReg.count(SDV)) { 916 // Result is already stored in StatepointLowering 917 Record.type = RecordType::SDValueNode; 918 } else if (LowerAsVReg.count(SDV)) { 919 Record.type = RecordType::VReg; 920 assert(VirtRegs.count(SDV)); 921 Record.payload.Reg = VirtRegs[SDV]; 922 } else if (Loc.getNode()) { 923 Record.type = RecordType::Spill; 924 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 925 } else { 926 Record.type = RecordType::NoRelocate; 927 // If we didn't relocate a value, we'll essentialy end up inserting an 928 // additional use of the original value when lowering the gc.relocate. 929 // We need to make sure the value is available at the new use, which 930 // might be in another block. 931 if (Relocate->getParent() != StatepointInstr->getParent()) 932 ExportFromCurrentBlock(V); 933 } 934 RelocationMap[Relocate] = Record; 935 } 936 937 938 939 SDNode *SinkNode = StatepointMCNode; 940 941 // Build the GC_TRANSITION_END node if necessary. 942 // 943 // See the comment above regarding GC_TRANSITION_START for the layout of 944 // the operands to the GC_TRANSITION_END node. 945 if (IsGCTransition) { 946 SmallVector<SDValue, 8> TEOps; 947 948 // Add chain 949 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2)); 950 951 // Add GC transition arguments 952 for (const Value *V : SI.GCTransitionArgs) { 953 TEOps.push_back(getValue(V)); 954 if (V->getType()->isPointerTy()) 955 TEOps.push_back(DAG.getSrcValue(V)); 956 } 957 958 // Add glue 959 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1)); 960 961 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 962 963 SDValue GCTransitionStart = 964 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 965 966 SinkNode = GCTransitionStart.getNode(); 967 } 968 969 // Replace original call 970 // Call: ch,glue = CALL ... 971 // Statepoint: [gc relocates],ch,glue = STATEPOINT ... 972 unsigned NumSinkValues = SinkNode->getNumValues(); 973 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2), 974 SDValue(SinkNode, NumSinkValues - 1)}; 975 DAG.ReplaceAllUsesWith(CallNode, StatepointValues); 976 // Remove original call node 977 DAG.DeleteNode(CallNode); 978 979 // Since we always emit CopyToRegs (even for local relocates), we must 980 // update root, so that they are emitted before any local uses. 981 (void)getControlRoot(); 982 983 // TODO: A better future implementation would be to emit a single variable 984 // argument, variable return value STATEPOINT node here and then hookup the 985 // return value of each gc.relocate to the respective output of the 986 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 987 // to actually be possible today. 988 989 return ReturnVal; 990 } 991 992 /// Return two gc.results if present. First result is a block local 993 /// gc.result, second result is a non-block local gc.result. Corresponding 994 /// entry will be nullptr if not present. 995 static std::pair<const GCResultInst*, const GCResultInst*> 996 getGCResultLocality(const GCStatepointInst &S) { 997 std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr); 998 for (const auto *U : S.users()) { 999 auto *GRI = dyn_cast<GCResultInst>(U); 1000 if (!GRI) 1001 continue; 1002 if (GRI->getParent() == S.getParent()) 1003 Res.first = GRI; 1004 else 1005 Res.second = GRI; 1006 } 1007 return Res; 1008 } 1009 1010 void 1011 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 1012 const BasicBlock *EHPadBB /*= nullptr*/) { 1013 assert(I.getCallingConv() != CallingConv::AnyReg && 1014 "anyregcc is not supported on statepoints!"); 1015 1016 #ifndef NDEBUG 1017 // Check that the associated GCStrategy expects to encounter statepoints. 1018 assert(GFI->getStrategy().useStatepoints() && 1019 "GCStrategy does not expect to encounter statepoints"); 1020 #endif 1021 1022 SDValue ActualCallee; 1023 SDValue Callee = getValue(I.getActualCalledOperand()); 1024 1025 if (I.getNumPatchBytes() > 0) { 1026 // If we've been asked to emit a nop sequence instead of a call instruction 1027 // for this statepoint then don't lower the call target, but use a constant 1028 // `undef` instead. Not lowering the call target lets statepoint clients 1029 // get away without providing a physical address for the symbolic call 1030 // target at link time. 1031 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 1032 } else { 1033 ActualCallee = Callee; 1034 } 1035 1036 StatepointLoweringInfo SI(DAG); 1037 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 1038 I.getNumCallArgs(), ActualCallee, 1039 I.getActualReturnType(), false /* IsPatchPoint */); 1040 1041 // There may be duplication in the gc.relocate list; such as two copies of 1042 // each relocation on normal and exceptional path for an invoke. We only 1043 // need to spill once and record one copy in the stackmap, but we need to 1044 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 1045 // handled as a CSE problem elsewhere.) 1046 // TODO: There a couple of major stackmap size optimizations we could do 1047 // here if we wished. 1048 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 1049 // record {B,B} if it's seen later. 1050 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 1051 // given that, we could change the format to record base pointer relocations 1052 // separately with half the space. This would require a format rev and a 1053 // fairly major rework of the STATEPOINT node though. 1054 SmallSet<SDValue, 8> Seen; 1055 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 1056 SI.GCRelocates.push_back(Relocate); 1057 1058 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 1059 if (Seen.insert(DerivedSD).second) { 1060 SI.Bases.push_back(Relocate->getBasePtr()); 1061 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 1062 } 1063 } 1064 1065 // If we find a deopt value which isn't explicitly added, we need to 1066 // ensure it gets lowered such that gc cycles occurring before the 1067 // deoptimization event during the lifetime of the call don't invalidate 1068 // the pointer we're deopting with. Note that we assume that all 1069 // pointers passed to deopt are base pointers; relaxing that assumption 1070 // would require relatively large changes to how we represent relocations. 1071 for (Value *V : I.deopt_operands()) { 1072 if (!isGCValue(V, *this)) 1073 continue; 1074 if (Seen.insert(getValue(V)).second) { 1075 SI.Bases.push_back(V); 1076 SI.Ptrs.push_back(V); 1077 } 1078 } 1079 1080 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 1081 SI.StatepointInstr = &I; 1082 SI.ID = I.getID(); 1083 1084 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 1085 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 1086 I.gc_transition_args_end()); 1087 1088 SI.StatepointFlags = I.getFlags(); 1089 SI.NumPatchBytes = I.getNumPatchBytes(); 1090 SI.EHPadBB = EHPadBB; 1091 1092 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 1093 1094 // Export the result value if needed 1095 const auto GCResultLocality = getGCResultLocality(I); 1096 1097 if (!GCResultLocality.first && !GCResultLocality.second) { 1098 // The return value is not needed, just generate a poison value. 1099 // Note: This covers the void return case. 1100 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 1101 return; 1102 } 1103 1104 if (GCResultLocality.first) { 1105 // Result value will be used in a same basic block. Don't export it or 1106 // perform any explicit register copies. The gc_result will simply grab 1107 // this value. 1108 setValue(&I, ReturnValue); 1109 } 1110 1111 if (!GCResultLocality.second) 1112 return; 1113 // Result value will be used in a different basic block so we need to export 1114 // it now. Default exporting mechanism will not work here because statepoint 1115 // call has a different type than the actual call. It means that by default 1116 // llvm will create export register of the wrong type (always i32 in our 1117 // case). So instead we need to create export register with correct type 1118 // manually. 1119 // TODO: To eliminate this problem we can remove gc.result intrinsics 1120 // completely and make statepoint call to return a tuple. 1121 Type *RetTy = GCResultLocality.second->getType(); 1122 Register Reg = FuncInfo.CreateRegs(RetTy); 1123 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1124 DAG.getDataLayout(), Reg, RetTy, 1125 I.getCallingConv()); 1126 SDValue Chain = DAG.getEntryNode(); 1127 1128 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 1129 PendingExports.push_back(Chain); 1130 FuncInfo.ValueMap[&I] = Reg; 1131 } 1132 1133 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 1134 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 1135 bool VarArgDisallowed, bool ForceVoidReturnTy) { 1136 StatepointLoweringInfo SI(DAG); 1137 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 1138 populateCallLoweringInfo( 1139 SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee, 1140 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 1141 false); 1142 if (!VarArgDisallowed) 1143 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 1144 1145 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 1146 1147 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 1148 1149 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1150 SI.ID = SD.StatepointID.value_or(DefaultID); 1151 SI.NumPatchBytes = SD.NumPatchBytes.value_or(0); 1152 1153 SI.DeoptState = 1154 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 1155 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 1156 SI.EHPadBB = EHPadBB; 1157 1158 // NB! The GC arguments are deliberately left empty. 1159 1160 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 1161 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 1162 setValue(Call, ReturnVal); 1163 } 1164 } 1165 1166 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 1167 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 1168 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 1169 /* VarArgDisallowed = */ false, 1170 /* ForceVoidReturnTy = */ false); 1171 } 1172 1173 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 1174 // The result value of the gc_result is simply the result of the actual 1175 // call. We've already emitted this, so just grab the value. 1176 const Value *SI = CI.getStatepoint(); 1177 assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) && 1178 "GetStatepoint must return one of two types"); 1179 if (isa<UndefValue>(SI)) 1180 return; 1181 1182 if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) { 1183 setValue(&CI, getValue(SI)); 1184 return; 1185 } 1186 // Statepoint is in different basic block so we should have stored call 1187 // result in a virtual register. 1188 // We can not use default getValue() functionality to copy value from this 1189 // register because statepoint and actual call return types can be 1190 // different, and getValue() will use CopyFromReg of the wrong type, 1191 // which is always i32 in our case. 1192 Type *RetTy = CI.getType(); 1193 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy); 1194 1195 assert(CopyFromReg.getNode()); 1196 setValue(&CI, CopyFromReg); 1197 } 1198 1199 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 1200 const Value *Statepoint = Relocate.getStatepoint(); 1201 #ifndef NDEBUG 1202 // Consistency check 1203 // We skip this check for relocates not in the same basic block as their 1204 // statepoint. It would be too expensive to preserve validation info through 1205 // different basic blocks. 1206 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) && 1207 "GetStatepoint must return one of two types"); 1208 if (isa<UndefValue>(Statepoint)) 1209 return; 1210 1211 if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent()) 1212 StatepointLowering.relocCallVisited(Relocate); 1213 #endif 1214 1215 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1216 auto &RelocationMap = 1217 FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)]; 1218 auto SlotIt = RelocationMap.find(&Relocate); 1219 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value"); 1220 const RecordType &Record = SlotIt->second; 1221 1222 // If relocation was done via virtual register.. 1223 if (Record.type == RecordType::SDValueNode) { 1224 assert(cast<GCStatepointInst>(Statepoint)->getParent() == 1225 Relocate.getParent() && 1226 "Nonlocal gc.relocate mapped via SDValue"); 1227 SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr)); 1228 assert(SDV.getNode() && "empty SDValue"); 1229 setValue(&Relocate, SDV); 1230 return; 1231 } 1232 if (Record.type == RecordType::VReg) { 1233 Register InReg = Record.payload.Reg; 1234 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1235 DAG.getDataLayout(), InReg, Relocate.getType(), 1236 std::nullopt); // This is not an ABI copy. 1237 // We generate copy to/from regs even for local uses, hence we must 1238 // chain with current root to ensure proper ordering of copies w.r.t. 1239 // statepoint. 1240 SDValue Chain = DAG.getRoot(); 1241 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 1242 Chain, nullptr, nullptr); 1243 setValue(&Relocate, Relocation); 1244 return; 1245 } 1246 1247 if (Record.type == RecordType::Spill) { 1248 unsigned Index = Record.payload.FI; 1249 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1250 1251 // All the reloads are independent and are reading memory only modified by 1252 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1253 // this this let's CSE kick in for free and allows reordering of 1254 // instructions if possible. The lowering for statepoint sets the root, 1255 // so this is ordering all reloads with the either 1256 // a) the statepoint node itself, or 1257 // b) the entry of the current block for an invoke statepoint. 1258 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1259 1260 auto &MF = DAG.getMachineFunction(); 1261 auto &MFI = MF.getFrameInfo(); 1262 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1263 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1264 MFI.getObjectSize(Index), 1265 MFI.getObjectAlign(Index)); 1266 1267 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1268 Relocate.getType()); 1269 1270 SDValue SpillLoad = 1271 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO); 1272 PendingLoads.push_back(SpillLoad.getValue(1)); 1273 1274 assert(SpillLoad.getNode()); 1275 setValue(&Relocate, SpillLoad); 1276 return; 1277 } 1278 1279 assert(Record.type == RecordType::NoRelocate); 1280 SDValue SD = getValue(DerivedPtr); 1281 1282 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1283 // Lowering relocate(undef) as arbitrary constant. Current constant value 1284 // is chosen such that it's unlikely to be a valid pointer. 1285 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1286 return; 1287 } 1288 1289 // We didn't need to spill these special cases (constants and allocas). 1290 // See the handling in spillIncomingValueForStatepoint for detail. 1291 setValue(&Relocate, SD); 1292 } 1293 1294 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1295 const auto &TLI = DAG.getTargetLoweringInfo(); 1296 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1297 TLI.getPointerTy(DAG.getDataLayout())); 1298 1299 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1300 // call. We also do not lower the return value to any virtual register, and 1301 // change the immediately following return to a trap instruction. 1302 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1303 /* VarArgDisallowed = */ true, 1304 /* ForceVoidReturnTy = */ true); 1305 } 1306 1307 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1308 // We do not lower the return value from llvm.deoptimize to any virtual 1309 // register, and change the immediately following return to a trap 1310 // instruction. 1311 if (DAG.getTarget().Options.TrapUnreachable) 1312 DAG.setRoot( 1313 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1314 } 1315