1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/GCStrategy.h" 26 #include "llvm/CodeGen/ISDOpcodes.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <iterator> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "statepoint-lowering" 57 58 STATISTIC(NumSlotsAllocatedForStatepoints, 59 "Number of stack slots allocated for statepoints"); 60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 61 STATISTIC(StatepointMaxSlotsRequired, 62 "Maximum number of stack slots required for a singe statepoint"); 63 64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 65 SelectionDAGBuilder &Builder, uint64_t Value) { 66 SDLoc L = Builder.getCurSDLoc(); 67 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 68 MVT::i64)); 69 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 70 } 71 72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 73 // Consistency check 74 assert(PendingGCRelocateCalls.empty() && 75 "Trying to visit statepoint before finished processing previous one"); 76 Locations.clear(); 77 NextSlotToAllocate = 0; 78 // Need to resize this on each safepoint - we need the two to stay in sync and 79 // the clear patterns of a SelectionDAGBuilder have no relation to 80 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 81 AllocatedStackSlots.clear(); 82 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 83 } 84 85 void StatepointLoweringState::clear() { 86 Locations.clear(); 87 AllocatedStackSlots.clear(); 88 assert(PendingGCRelocateCalls.empty() && 89 "cleared before statepoint sequence completed"); 90 } 91 92 SDValue 93 StatepointLoweringState::allocateStackSlot(EVT ValueType, 94 SelectionDAGBuilder &Builder) { 95 NumSlotsAllocatedForStatepoints++; 96 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 97 98 unsigned SpillSize = ValueType.getStoreSize(); 99 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 100 101 // First look for a previously created stack slot which is not in 102 // use (accounting for the fact arbitrary slots may already be 103 // reserved), or to create a new stack slot and use it. 104 105 const size_t NumSlots = AllocatedStackSlots.size(); 106 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 107 108 assert(AllocatedStackSlots.size() == 109 Builder.FuncInfo.StatepointStackSlots.size() && 110 "Broken invariant"); 111 112 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 113 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 114 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 115 if (MFI.getObjectSize(FI) == SpillSize) { 116 AllocatedStackSlots.set(NextSlotToAllocate); 117 // TODO: Is ValueType the right thing to use here? 118 return Builder.DAG.getFrameIndex(FI, ValueType); 119 } 120 } 121 } 122 123 // Couldn't find a free slot, so create a new one: 124 125 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 126 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 127 MFI.markAsStatepointSpillSlotObjectIndex(FI); 128 129 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 130 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 131 assert(AllocatedStackSlots.size() == 132 Builder.FuncInfo.StatepointStackSlots.size() && 133 "Broken invariant"); 134 135 StatepointMaxSlotsRequired.updateMax( 136 Builder.FuncInfo.StatepointStackSlots.size()); 137 138 return SpillSlot; 139 } 140 141 /// Utility function for reservePreviousStackSlotForValue. Tries to find 142 /// stack slot index to which we have spilled value for previous statepoints. 143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 144 static Optional<int> findPreviousSpillSlot(const Value *Val, 145 SelectionDAGBuilder &Builder, 146 int LookUpDepth) { 147 // Can not look any further - give up now 148 if (LookUpDepth <= 0) 149 return None; 150 151 // Spill location is known for gc relocates 152 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 153 const auto &SpillMap = 154 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 155 156 auto It = SpillMap.find(Relocate->getDerivedPtr()); 157 if (It == SpillMap.end()) 158 return None; 159 160 return It->second; 161 } 162 163 // Look through bitcast instructions. 164 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 165 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 166 167 // Look through phi nodes 168 // All incoming values should have same known stack slot, otherwise result 169 // is unknown. 170 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 171 Optional<int> MergedResult = None; 172 173 for (auto &IncomingValue : Phi->incoming_values()) { 174 Optional<int> SpillSlot = 175 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 176 if (!SpillSlot.hasValue()) 177 return None; 178 179 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 180 return None; 181 182 MergedResult = SpillSlot; 183 } 184 return MergedResult; 185 } 186 187 // TODO: We can do better for PHI nodes. In cases like this: 188 // ptr = phi(relocated_pointer, not_relocated_pointer) 189 // statepoint(ptr) 190 // We will return that stack slot for ptr is unknown. And later we might 191 // assign different stack slots for ptr and relocated_pointer. This limits 192 // llvm's ability to remove redundant stores. 193 // Unfortunately it's hard to accomplish in current infrastructure. 194 // We use this function to eliminate spill store completely, while 195 // in example we still need to emit store, but instead of any location 196 // we need to use special "preferred" location. 197 198 // TODO: handle simple updates. If a value is modified and the original 199 // value is no longer live, it would be nice to put the modified value in the 200 // same slot. This allows folding of the memory accesses for some 201 // instructions types (like an increment). 202 // statepoint (i) 203 // i1 = i+1 204 // statepoint (i1) 205 // However we need to be careful for cases like this: 206 // statepoint(i) 207 // i1 = i+1 208 // statepoint(i, i1) 209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 210 // put handling of simple modifications in this function like it's done 211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 212 // which we visit values is unspecified. 213 214 // Don't know any information about this instruction 215 return None; 216 } 217 218 /// Try to find existing copies of the incoming values in stack slots used for 219 /// statepoint spilling. If we can find a spill slot for the incoming value, 220 /// mark that slot as allocated, and reuse the same slot for this safepoint. 221 /// This helps to avoid series of loads and stores that only serve to reshuffle 222 /// values on the stack between calls. 223 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 224 SelectionDAGBuilder &Builder) { 225 SDValue Incoming = Builder.getValue(IncomingValue); 226 227 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 228 // We won't need to spill this, so no need to check for previously 229 // allocated stack slots 230 return; 231 } 232 233 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 234 if (OldLocation.getNode()) 235 // Duplicates in input 236 return; 237 238 const int LookUpDepth = 6; 239 Optional<int> Index = 240 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 241 if (!Index.hasValue()) 242 return; 243 244 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 245 246 auto SlotIt = find(StatepointSlots, *Index); 247 assert(SlotIt != StatepointSlots.end() && 248 "Value spilled to the unknown stack slot"); 249 250 // This is one of our dedicated lowering slots 251 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 252 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 253 // stack slot already assigned to someone else, can't use it! 254 // TODO: currently we reserve space for gc arguments after doing 255 // normal allocation for deopt arguments. We should reserve for 256 // _all_ deopt and gc arguments, then start allocating. This 257 // will prevent some moves being inserted when vm state changes, 258 // but gc state doesn't between two calls. 259 return; 260 } 261 // Reserve this stack slot 262 Builder.StatepointLowering.reserveStackSlot(Offset); 263 264 // Cache this slot so we find it when going through the normal 265 // assignment loop. 266 SDValue Loc = 267 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 268 Builder.StatepointLowering.setLocation(Incoming, Loc); 269 } 270 271 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 272 /// is not required for correctness. It's purpose is to reduce the size of 273 /// StackMap section. It has no effect on the number of spill slots required 274 /// or the actual lowering. 275 static void 276 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 277 SmallVectorImpl<const Value *> &Ptrs, 278 SmallVectorImpl<const GCRelocateInst *> &Relocs, 279 SelectionDAGBuilder &Builder, 280 FunctionLoweringInfo::StatepointSpillMap &SSM) { 281 DenseMap<SDValue, const Value *> Seen; 282 283 SmallVector<const Value *, 64> NewBases, NewPtrs; 284 SmallVector<const GCRelocateInst *, 64> NewRelocs; 285 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 286 SDValue SD = Builder.getValue(Ptrs[i]); 287 auto SeenIt = Seen.find(SD); 288 289 if (SeenIt == Seen.end()) { 290 // Only add non-duplicates 291 NewBases.push_back(Bases[i]); 292 NewPtrs.push_back(Ptrs[i]); 293 NewRelocs.push_back(Relocs[i]); 294 Seen[SD] = Ptrs[i]; 295 } else { 296 // Duplicate pointer found, note in SSM and move on: 297 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 298 } 299 } 300 assert(Bases.size() >= NewBases.size()); 301 assert(Ptrs.size() >= NewPtrs.size()); 302 assert(Relocs.size() >= NewRelocs.size()); 303 Bases = NewBases; 304 Ptrs = NewPtrs; 305 Relocs = NewRelocs; 306 assert(Ptrs.size() == Bases.size()); 307 assert(Ptrs.size() == Relocs.size()); 308 } 309 310 /// Extract call from statepoint, lower it and return pointer to the 311 /// call node. Also update NodeMap so that getValue(statepoint) will 312 /// reference lowered call result 313 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 314 SelectionDAGBuilder::StatepointLoweringInfo &SI, 315 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 316 SDValue ReturnValue, CallEndVal; 317 std::tie(ReturnValue, CallEndVal) = 318 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 319 SDNode *CallEnd = CallEndVal.getNode(); 320 321 // Get a call instruction from the call sequence chain. Tail calls are not 322 // allowed. The following code is essentially reverse engineering X86's 323 // LowerCallTo. 324 // 325 // We are expecting DAG to have the following form: 326 // 327 // ch = eh_label (only in case of invoke statepoint) 328 // ch, glue = callseq_start ch 329 // ch, glue = X86::Call ch, glue 330 // ch, glue = callseq_end ch, glue 331 // get_return_value ch, glue 332 // 333 // get_return_value can either be a sequence of CopyFromReg instructions 334 // to grab the return value from the return register(s), or it can be a LOAD 335 // to load a value returned by reference via a stack slot. 336 337 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 338 if (HasDef) { 339 if (CallEnd->getOpcode() == ISD::LOAD) 340 CallEnd = CallEnd->getOperand(0).getNode(); 341 else 342 while (CallEnd->getOpcode() == ISD::CopyFromReg) 343 CallEnd = CallEnd->getOperand(0).getNode(); 344 } 345 346 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 347 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 348 } 349 350 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 351 FrameIndexSDNode &FI) { 352 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 353 auto MMOFlags = MachineMemOperand::MOStore | 354 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 355 auto &MFI = MF.getFrameInfo(); 356 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 357 MFI.getObjectSize(FI.getIndex()), 358 MFI.getObjectAlignment(FI.getIndex())); 359 } 360 361 /// Spill a value incoming to the statepoint. It might be either part of 362 /// vmstate 363 /// or gcstate. In both cases unconditionally spill it on the stack unless it 364 /// is a null constant. Return pair with first element being frame index 365 /// containing saved value and second element with outgoing chain from the 366 /// emitted store 367 static std::tuple<SDValue, SDValue, MachineMemOperand*> 368 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 369 SelectionDAGBuilder &Builder) { 370 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 371 MachineMemOperand* MMO = nullptr; 372 373 // Emit new store if we didn't do it for this ptr before 374 if (!Loc.getNode()) { 375 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 376 Builder); 377 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 378 // We use TargetFrameIndex so that isel will not select it into LEA 379 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 380 381 // Right now we always allocate spill slots that are of the same 382 // size as the value we're about to spill (the size of spillee can 383 // vary since we spill vectors of pointers too). At some point we 384 // can consider allowing spills of smaller values to larger slots 385 // (i.e. change the '==' in the assert below to a '>='). 386 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 387 assert((MFI.getObjectSize(Index) * 8) == 388 (int64_t)Incoming.getValueSizeInBits() && 389 "Bad spill: stack slot does not match!"); 390 391 // Note: Using the alignment of the spill slot (rather than the abi or 392 // preferred alignment) is required for correctness when dealing with spill 393 // slots with preferred alignments larger than frame alignment.. 394 auto &MF = Builder.DAG.getMachineFunction(); 395 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 396 auto *StoreMMO = 397 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 398 MFI.getObjectSize(Index), 399 MFI.getObjectAlignment(Index)); 400 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 401 StoreMMO); 402 403 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 404 405 Builder.StatepointLowering.setLocation(Incoming, Loc); 406 } 407 408 assert(Loc.getNode()); 409 return std::make_tuple(Loc, Chain, MMO); 410 } 411 412 /// Lower a single value incoming to a statepoint node. This value can be 413 /// either a deopt value or a gc value, the handling is the same. We special 414 /// case constants and allocas, then fall back to spilling if required. 415 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 416 SmallVectorImpl<SDValue> &Ops, 417 SmallVectorImpl<MachineMemOperand*> &MemRefs, 418 SelectionDAGBuilder &Builder) { 419 // Note: We know all of these spills are independent, but don't bother to 420 // exploit that chain wise. DAGCombine will happily do so as needed, so 421 // doing it here would be a small compile time win at most. 422 SDValue Chain = Builder.getRoot(); 423 424 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 425 // If the original value was a constant, make sure it gets recorded as 426 // such in the stackmap. This is required so that the consumer can 427 // parse any internal format to the deopt state. It also handles null 428 // pointers and other constant pointers in GC states. Note the constant 429 // vectors do not appear to actually hit this path and that anything larger 430 // than an i64 value (not type!) will fail asserts here. 431 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 432 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 433 // This handles allocas as arguments to the statepoint (this is only 434 // really meaningful for a deopt value. For GC, we'd be trying to 435 // relocate the address of the alloca itself?) 436 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 437 "Incoming value is a frame index!"); 438 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 439 Builder.getFrameIndexTy())); 440 441 auto &MF = Builder.DAG.getMachineFunction(); 442 auto *MMO = getMachineMemOperand(MF, *FI); 443 MemRefs.push_back(MMO); 444 445 } else if (LiveInOnly) { 446 // If this value is live in (not live-on-return, or live-through), we can 447 // treat it the same way patchpoint treats it's "live in" values. We'll 448 // end up folding some of these into stack references, but they'll be 449 // handled by the register allocator. Note that we do not have the notion 450 // of a late use so these values might be placed in registers which are 451 // clobbered by the call. This is fine for live-in. 452 Ops.push_back(Incoming); 453 } else { 454 // Otherwise, locate a spill slot and explicitly spill it so it 455 // can be found by the runtime later. We currently do not support 456 // tracking values through callee saved registers to their eventual 457 // spill location. This would be a useful optimization, but would 458 // need to be optional since it requires a lot of complexity on the 459 // runtime side which not all would support. 460 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 461 Ops.push_back(std::get<0>(Res)); 462 if (auto *MMO = std::get<2>(Res)) 463 MemRefs.push_back(MMO); 464 Chain = std::get<1>(Res);; 465 } 466 467 Builder.DAG.setRoot(Chain); 468 } 469 470 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 471 /// lowering is described in lowerIncomingStatepointValue. This function is 472 /// responsible for lowering everything in the right position and playing some 473 /// tricks to avoid redundant stack manipulation where possible. On 474 /// completion, 'Ops' will contain ready to use operands for machine code 475 /// statepoint. The chain nodes will have already been created and the DAG root 476 /// will be set to the last value spilled (if any were). 477 static void 478 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 479 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI, 480 SelectionDAGBuilder &Builder) { 481 // Lower the deopt and gc arguments for this statepoint. Layout will be: 482 // deopt argument length, deopt arguments.., gc arguments... 483 #ifndef NDEBUG 484 if (auto *GFI = Builder.GFI) { 485 // Check that each of the gc pointer and bases we've gotten out of the 486 // safepoint is something the strategy thinks might be a pointer (or vector 487 // of pointers) into the GC heap. This is basically just here to help catch 488 // errors during statepoint insertion. TODO: This should actually be in the 489 // Verifier, but we can't get to the GCStrategy from there (yet). 490 GCStrategy &S = GFI->getStrategy(); 491 for (const Value *V : SI.Bases) { 492 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 493 if (Opt.hasValue()) { 494 assert(Opt.getValue() && 495 "non gc managed base pointer found in statepoint"); 496 } 497 } 498 for (const Value *V : SI.Ptrs) { 499 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 500 if (Opt.hasValue()) { 501 assert(Opt.getValue() && 502 "non gc managed derived pointer found in statepoint"); 503 } 504 } 505 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 506 } else { 507 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 508 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 509 } 510 #endif 511 512 // Figure out what lowering strategy we're going to use for each part 513 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 514 // as "live-through". A "live-through" variable is one which is "live-in", 515 // "live-out", and live throughout the lifetime of the call (i.e. we can find 516 // it from any PC within the transitive callee of the statepoint). In 517 // particular, if the callee spills callee preserved registers we may not 518 // be able to find a value placed in that register during the call. This is 519 // fine for live-out, but not for live-through. If we were willing to make 520 // assumptions about the code generator producing the callee, we could 521 // potentially allow live-through values in callee saved registers. 522 const bool LiveInDeopt = 523 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 524 525 auto isGCValue =[&](const Value *V) { 526 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 527 }; 528 529 // Before we actually start lowering (and allocating spill slots for values), 530 // reserve any stack slots which we judge to be profitable to reuse for a 531 // particular value. This is purely an optimization over the code below and 532 // doesn't change semantics at all. It is important for performance that we 533 // reserve slots for both deopt and gc values before lowering either. 534 for (const Value *V : SI.DeoptState) { 535 if (!LiveInDeopt || isGCValue(V)) 536 reservePreviousStackSlotForValue(V, Builder); 537 } 538 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 539 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 540 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 541 } 542 543 // First, prefix the list with the number of unique values to be 544 // lowered. Note that this is the number of *Values* not the 545 // number of SDValues required to lower them. 546 const int NumVMSArgs = SI.DeoptState.size(); 547 pushStackMapConstant(Ops, Builder, NumVMSArgs); 548 549 // The vm state arguments are lowered in an opaque manner. We do not know 550 // what type of values are contained within. 551 for (const Value *V : SI.DeoptState) { 552 SDValue Incoming; 553 // If this is a function argument at a static frame index, generate it as 554 // the frame index. 555 if (const Argument *Arg = dyn_cast<Argument>(V)) { 556 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 557 if (FI != INT_MAX) 558 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 559 } 560 if (!Incoming.getNode()) 561 Incoming = Builder.getValue(V); 562 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 563 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder); 564 } 565 566 // Finally, go ahead and lower all the gc arguments. There's no prefixed 567 // length for this one. After lowering, we'll have the base and pointer 568 // arrays interwoven with each (lowered) base pointer immediately followed by 569 // it's (lowered) derived pointer. i.e 570 // (base[0], ptr[0], base[1], ptr[1], ...) 571 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 572 const Value *Base = SI.Bases[i]; 573 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 574 Ops, MemRefs, Builder); 575 576 const Value *Ptr = SI.Ptrs[i]; 577 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 578 Ops, MemRefs, Builder); 579 } 580 581 // If there are any explicit spill slots passed to the statepoint, record 582 // them, but otherwise do not do anything special. These are user provided 583 // allocas and give control over placement to the consumer. In this case, 584 // it is the contents of the slot which may get updated, not the pointer to 585 // the alloca 586 for (Value *V : SI.GCArgs) { 587 SDValue Incoming = Builder.getValue(V); 588 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 589 // This handles allocas as arguments to the statepoint 590 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 591 "Incoming value is a frame index!"); 592 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 593 Builder.getFrameIndexTy())); 594 595 auto &MF = Builder.DAG.getMachineFunction(); 596 auto *MMO = getMachineMemOperand(MF, *FI); 597 MemRefs.push_back(MMO); 598 } 599 } 600 601 // Record computed locations for all lowered values. 602 // This can not be embedded in lowering loops as we need to record *all* 603 // values, while previous loops account only values with unique SDValues. 604 const Instruction *StatepointInstr = SI.StatepointInstr; 605 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 606 607 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 608 const Value *V = Relocate->getDerivedPtr(); 609 SDValue SDV = Builder.getValue(V); 610 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 611 612 if (Loc.getNode()) { 613 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 614 } else { 615 // Record value as visited, but not spilled. This is case for allocas 616 // and constants. For this values we can avoid emitting spill load while 617 // visiting corresponding gc_relocate. 618 // Actually we do not need to record them in this map at all. 619 // We do this only to check that we are not relocating any unvisited 620 // value. 621 SpillMap.SlotMap[V] = None; 622 623 // Default llvm mechanisms for exporting values which are used in 624 // different basic blocks does not work for gc relocates. 625 // Note that it would be incorrect to teach llvm that all relocates are 626 // uses of the corresponding values so that it would automatically 627 // export them. Relocates of the spilled values does not use original 628 // value. 629 if (Relocate->getParent() != StatepointInstr->getParent()) 630 Builder.ExportFromCurrentBlock(V); 631 } 632 } 633 } 634 635 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 636 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 637 // The basic scheme here is that information about both the original call and 638 // the safepoint is encoded in the CallInst. We create a temporary call and 639 // lower it, then reverse engineer the calling sequence. 640 641 NumOfStatepoints++; 642 // Clear state 643 StatepointLowering.startNewStatepoint(*this); 644 645 #ifndef NDEBUG 646 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 647 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 648 for (auto *Reloc : SI.GCRelocates) 649 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 650 StatepointLowering.scheduleRelocCall(*Reloc); 651 #endif 652 653 // Remove any redundant llvm::Values which map to the same SDValue as another 654 // input. Also has the effect of removing duplicates in the original 655 // llvm::Value input list as well. This is a useful optimization for 656 // reducing the size of the StackMap section. It has no other impact. 657 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 658 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 659 assert(SI.Bases.size() == SI.Ptrs.size() && 660 SI.Ptrs.size() == SI.GCRelocates.size()); 661 662 // Lower statepoint vmstate and gcstate arguments 663 SmallVector<SDValue, 10> LoweredMetaArgs; 664 SmallVector<MachineMemOperand*, 16> MemRefs; 665 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); 666 667 // Now that we've emitted the spills, we need to update the root so that the 668 // call sequence is ordered correctly. 669 SI.CLI.setChain(getRoot()); 670 671 // Get call node, we will replace it later with statepoint 672 SDValue ReturnVal; 673 SDNode *CallNode; 674 std::tie(ReturnVal, CallNode) = 675 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 676 677 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 678 // nodes with all the appropriate arguments and return values. 679 680 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 681 SDValue Chain = CallNode->getOperand(0); 682 683 SDValue Glue; 684 bool CallHasIncomingGlue = CallNode->getGluedNode(); 685 if (CallHasIncomingGlue) { 686 // Glue is always last operand 687 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 688 } 689 690 // Build the GC_TRANSITION_START node if necessary. 691 // 692 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 693 // order in which they appear in the call to the statepoint intrinsic. If 694 // any of the operands is a pointer-typed, that operand is immediately 695 // followed by a SRCVALUE for the pointer that may be used during lowering 696 // (e.g. to form MachinePointerInfo values for loads/stores). 697 const bool IsGCTransition = 698 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 699 (uint64_t)StatepointFlags::GCTransition; 700 if (IsGCTransition) { 701 SmallVector<SDValue, 8> TSOps; 702 703 // Add chain 704 TSOps.push_back(Chain); 705 706 // Add GC transition arguments 707 for (const Value *V : SI.GCTransitionArgs) { 708 TSOps.push_back(getValue(V)); 709 if (V->getType()->isPointerTy()) 710 TSOps.push_back(DAG.getSrcValue(V)); 711 } 712 713 // Add glue if necessary 714 if (CallHasIncomingGlue) 715 TSOps.push_back(Glue); 716 717 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 718 719 SDValue GCTransitionStart = 720 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 721 722 Chain = GCTransitionStart.getValue(0); 723 Glue = GCTransitionStart.getValue(1); 724 } 725 726 // TODO: Currently, all of these operands are being marked as read/write in 727 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 728 // and flags to be read-only. 729 SmallVector<SDValue, 40> Ops; 730 731 // Add the <id> and <numBytes> constants. 732 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 733 Ops.push_back( 734 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 735 736 // Calculate and push starting position of vmstate arguments 737 // Get number of arguments incoming directly into call node 738 unsigned NumCallRegArgs = 739 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 740 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 741 742 // Add call target 743 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 744 Ops.push_back(CallTarget); 745 746 // Add call arguments 747 // Get position of register mask in the call 748 SDNode::op_iterator RegMaskIt; 749 if (CallHasIncomingGlue) 750 RegMaskIt = CallNode->op_end() - 2; 751 else 752 RegMaskIt = CallNode->op_end() - 1; 753 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 754 755 // Add a constant argument for the calling convention 756 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 757 758 // Add a constant argument for the flags 759 uint64_t Flags = SI.StatepointFlags; 760 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 761 "Unknown flag used"); 762 pushStackMapConstant(Ops, *this, Flags); 763 764 // Insert all vmstate and gcstate arguments 765 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 766 767 // Add register mask from call node 768 Ops.push_back(*RegMaskIt); 769 770 // Add chain 771 Ops.push_back(Chain); 772 773 // Same for the glue, but we add it only if original call had it 774 if (Glue.getNode()) 775 Ops.push_back(Glue); 776 777 // Compute return values. Provide a glue output since we consume one as 778 // input. This allows someone else to chain off us as needed. 779 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 780 781 MachineSDNode *StatepointMCNode = 782 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 783 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 784 785 SDNode *SinkNode = StatepointMCNode; 786 787 // Build the GC_TRANSITION_END node if necessary. 788 // 789 // See the comment above regarding GC_TRANSITION_START for the layout of 790 // the operands to the GC_TRANSITION_END node. 791 if (IsGCTransition) { 792 SmallVector<SDValue, 8> TEOps; 793 794 // Add chain 795 TEOps.push_back(SDValue(StatepointMCNode, 0)); 796 797 // Add GC transition arguments 798 for (const Value *V : SI.GCTransitionArgs) { 799 TEOps.push_back(getValue(V)); 800 if (V->getType()->isPointerTy()) 801 TEOps.push_back(DAG.getSrcValue(V)); 802 } 803 804 // Add glue 805 TEOps.push_back(SDValue(StatepointMCNode, 1)); 806 807 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 808 809 SDValue GCTransitionStart = 810 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 811 812 SinkNode = GCTransitionStart.getNode(); 813 } 814 815 // Replace original call 816 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 817 // Remove original call node 818 DAG.DeleteNode(CallNode); 819 820 // DON'T set the root - under the assumption that it's already set past the 821 // inserted node we created. 822 823 // TODO: A better future implementation would be to emit a single variable 824 // argument, variable return value STATEPOINT node here and then hookup the 825 // return value of each gc.relocate to the respective output of the 826 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 827 // to actually be possible today. 828 829 return ReturnVal; 830 } 831 832 void 833 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 834 const BasicBlock *EHPadBB /*= nullptr*/) { 835 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg && 836 "anyregcc is not supported on statepoints!"); 837 838 #ifndef NDEBUG 839 // If this is a malformed statepoint, report it early to simplify debugging. 840 // This should catch any IR level mistake that's made when constructing or 841 // transforming statepoints. 842 ISP.verify(); 843 844 // Check that the associated GCStrategy expects to encounter statepoints. 845 assert(GFI->getStrategy().useStatepoints() && 846 "GCStrategy does not expect to encounter statepoints"); 847 #endif 848 849 SDValue ActualCallee; 850 851 if (ISP.getNumPatchBytes() > 0) { 852 // If we've been asked to emit a nop sequence instead of a call instruction 853 // for this statepoint then don't lower the call target, but use a constant 854 // `null` instead. Not lowering the call target lets statepoint clients get 855 // away without providing a physical address for the symbolic call target at 856 // link time. 857 858 const auto &TLI = DAG.getTargetLoweringInfo(); 859 const auto &DL = DAG.getDataLayout(); 860 861 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 862 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 863 } else { 864 ActualCallee = getValue(ISP.getCalledValue()); 865 } 866 867 StatepointLoweringInfo SI(DAG); 868 populateCallLoweringInfo(SI.CLI, ISP.getCall(), 869 ImmutableStatepoint::CallArgsBeginPos, 870 ISP.getNumCallArgs(), ActualCallee, 871 ISP.getActualReturnType(), false /* IsPatchPoint */); 872 873 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 874 SI.GCRelocates.push_back(Relocate); 875 SI.Bases.push_back(Relocate->getBasePtr()); 876 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 877 } 878 879 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 880 SI.StatepointInstr = ISP.getInstruction(); 881 SI.GCTransitionArgs = 882 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 883 SI.ID = ISP.getID(); 884 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 885 SI.StatepointFlags = ISP.getFlags(); 886 SI.NumPatchBytes = ISP.getNumPatchBytes(); 887 SI.EHPadBB = EHPadBB; 888 889 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 890 891 // Export the result value if needed 892 const GCResultInst *GCResult = ISP.getGCResult(); 893 Type *RetTy = ISP.getActualReturnType(); 894 if (!RetTy->isVoidTy() && GCResult) { 895 if (GCResult->getParent() != ISP.getCall()->getParent()) { 896 // Result value will be used in a different basic block so we need to 897 // export it now. Default exporting mechanism will not work here because 898 // statepoint call has a different type than the actual call. It means 899 // that by default llvm will create export register of the wrong type 900 // (always i32 in our case). So instead we need to create export register 901 // with correct type manually. 902 // TODO: To eliminate this problem we can remove gc.result intrinsics 903 // completely and make statepoint call to return a tuple. 904 unsigned Reg = FuncInfo.CreateRegs(RetTy); 905 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 906 DAG.getDataLayout(), Reg, RetTy, 907 ISP.getCall()->getCallingConv()); 908 SDValue Chain = DAG.getEntryNode(); 909 910 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 911 PendingExports.push_back(Chain); 912 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 913 } else { 914 // Result value will be used in a same basic block. Don't export it or 915 // perform any explicit register copies. 916 // We'll replace the actuall call node shortly. gc_result will grab 917 // this value. 918 setValue(ISP.getInstruction(), ReturnValue); 919 } 920 } else { 921 // The token value is never used from here on, just generate a poison value 922 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 923 } 924 } 925 926 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 927 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 928 bool VarArgDisallowed, bool ForceVoidReturnTy) { 929 StatepointLoweringInfo SI(DAG); 930 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 931 populateCallLoweringInfo( 932 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 933 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 934 false); 935 if (!VarArgDisallowed) 936 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 937 938 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 939 940 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 941 942 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 943 SI.ID = SD.StatepointID.getValueOr(DefaultID); 944 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 945 946 SI.DeoptState = 947 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 948 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 949 SI.EHPadBB = EHPadBB; 950 951 // NB! The GC arguments are deliberately left empty. 952 953 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 954 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 955 setValue(Call, ReturnVal); 956 } 957 } 958 959 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 960 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 961 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 962 /* VarArgDisallowed = */ false, 963 /* ForceVoidReturnTy = */ false); 964 } 965 966 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 967 // The result value of the gc_result is simply the result of the actual 968 // call. We've already emitted this, so just grab the value. 969 const Instruction *I = CI.getStatepoint(); 970 971 if (I->getParent() != CI.getParent()) { 972 // Statepoint is in different basic block so we should have stored call 973 // result in a virtual register. 974 // We can not use default getValue() functionality to copy value from this 975 // register because statepoint and actual call return types can be 976 // different, and getValue() will use CopyFromReg of the wrong type, 977 // which is always i32 in our case. 978 PointerType *CalleeType = cast<PointerType>( 979 ImmutableStatepoint(I).getCalledValue()->getType()); 980 Type *RetTy = 981 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 982 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 983 984 assert(CopyFromReg.getNode()); 985 setValue(&CI, CopyFromReg); 986 } else { 987 setValue(&CI, getValue(I)); 988 } 989 } 990 991 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 992 #ifndef NDEBUG 993 // Consistency check 994 // We skip this check for relocates not in the same basic block as their 995 // statepoint. It would be too expensive to preserve validation info through 996 // different basic blocks. 997 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 998 StatepointLowering.relocCallVisited(Relocate); 999 1000 auto *Ty = Relocate.getType()->getScalarType(); 1001 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 1002 assert(*IsManaged && "Non gc managed pointer relocated!"); 1003 #endif 1004 1005 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1006 SDValue SD = getValue(DerivedPtr); 1007 1008 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 1009 auto SlotIt = SpillMap.find(DerivedPtr); 1010 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 1011 Optional<int> DerivedPtrLocation = SlotIt->second; 1012 1013 // We didn't need to spill these special cases (constants and allocas). 1014 // See the handling in spillIncomingValueForStatepoint for detail. 1015 if (!DerivedPtrLocation) { 1016 setValue(&Relocate, SD); 1017 return; 1018 } 1019 1020 unsigned Index = *DerivedPtrLocation; 1021 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1022 1023 // Note: We know all of these reloads are independent, but don't bother to 1024 // exploit that chain wise. DAGCombine will happily do so as needed, so 1025 // doing it here would be a small compile time win at most. 1026 SDValue Chain = getRoot(); 1027 1028 auto &MF = DAG.getMachineFunction(); 1029 auto &MFI = MF.getFrameInfo(); 1030 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1031 auto *LoadMMO = 1032 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1033 MFI.getObjectSize(Index), 1034 MFI.getObjectAlignment(Index)); 1035 1036 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1037 Relocate.getType()); 1038 1039 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1040 SpillSlot, LoadMMO); 1041 1042 DAG.setRoot(SpillLoad.getValue(1)); 1043 1044 assert(SpillLoad.getNode()); 1045 setValue(&Relocate, SpillLoad); 1046 } 1047 1048 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1049 const auto &TLI = DAG.getTargetLoweringInfo(); 1050 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1051 TLI.getPointerTy(DAG.getDataLayout())); 1052 1053 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1054 // call. We also do not lower the return value to any virtual register, and 1055 // change the immediately following return to a trap instruction. 1056 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1057 /* VarArgDisallowed = */ true, 1058 /* ForceVoidReturnTy = */ true); 1059 } 1060 1061 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1062 // We do not lower the return value from llvm.deoptimize to any virtual 1063 // register, and change the immediately following return to a trap 1064 // instruction. 1065 if (DAG.getTarget().Options.TrapUnreachable) 1066 DAG.setRoot( 1067 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1068 } 1069