1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/GCStrategy.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Statepoint.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MachineValueType.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <iterator> 54 #include <tuple> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "statepoint-lowering" 60 61 STATISTIC(NumSlotsAllocatedForStatepoints, 62 "Number of stack slots allocated for statepoints"); 63 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 64 STATISTIC(StatepointMaxSlotsRequired, 65 "Maximum number of stack slots required for a singe statepoint"); 66 67 cl::opt<bool> UseRegistersForDeoptValues( 68 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 69 cl::desc("Allow using registers for non pointer deopt args")); 70 71 cl::opt<bool> UseRegistersForGCPointersInLandingPad( 72 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false), 73 cl::desc("Allow using registers for gc pointer in landing pad")); 74 75 cl::opt<unsigned> MaxRegistersForGCPointers( 76 "max-registers-for-gc-values", cl::Hidden, cl::init(0), 77 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in")); 78 79 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType; 80 81 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 82 SelectionDAGBuilder &Builder, uint64_t Value) { 83 SDLoc L = Builder.getCurSDLoc(); 84 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 85 MVT::i64)); 86 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 87 } 88 89 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 90 // Consistency check 91 assert(PendingGCRelocateCalls.empty() && 92 "Trying to visit statepoint before finished processing previous one"); 93 Locations.clear(); 94 NextSlotToAllocate = 0; 95 // Need to resize this on each safepoint - we need the two to stay in sync and 96 // the clear patterns of a SelectionDAGBuilder have no relation to 97 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 98 AllocatedStackSlots.clear(); 99 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 100 } 101 102 void StatepointLoweringState::clear() { 103 Locations.clear(); 104 AllocatedStackSlots.clear(); 105 assert(PendingGCRelocateCalls.empty() && 106 "cleared before statepoint sequence completed"); 107 } 108 109 SDValue 110 StatepointLoweringState::allocateStackSlot(EVT ValueType, 111 SelectionDAGBuilder &Builder) { 112 NumSlotsAllocatedForStatepoints++; 113 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 114 115 unsigned SpillSize = ValueType.getStoreSize(); 116 assert((SpillSize * 8) == 117 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8. 118 "Size not in bytes?"); 119 120 // First look for a previously created stack slot which is not in 121 // use (accounting for the fact arbitrary slots may already be 122 // reserved), or to create a new stack slot and use it. 123 124 const size_t NumSlots = AllocatedStackSlots.size(); 125 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 126 127 assert(AllocatedStackSlots.size() == 128 Builder.FuncInfo.StatepointStackSlots.size() && 129 "Broken invariant"); 130 131 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 132 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 133 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 134 if (MFI.getObjectSize(FI) == SpillSize) { 135 AllocatedStackSlots.set(NextSlotToAllocate); 136 // TODO: Is ValueType the right thing to use here? 137 return Builder.DAG.getFrameIndex(FI, ValueType); 138 } 139 } 140 } 141 142 // Couldn't find a free slot, so create a new one: 143 144 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 145 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 146 MFI.markAsStatepointSpillSlotObjectIndex(FI); 147 148 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 149 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 150 assert(AllocatedStackSlots.size() == 151 Builder.FuncInfo.StatepointStackSlots.size() && 152 "Broken invariant"); 153 154 StatepointMaxSlotsRequired.updateMax( 155 Builder.FuncInfo.StatepointStackSlots.size()); 156 157 return SpillSlot; 158 } 159 160 /// Utility function for reservePreviousStackSlotForValue. Tries to find 161 /// stack slot index to which we have spilled value for previous statepoints. 162 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 163 static Optional<int> findPreviousSpillSlot(const Value *Val, 164 SelectionDAGBuilder &Builder, 165 int LookUpDepth) { 166 // Can not look any further - give up now 167 if (LookUpDepth <= 0) 168 return None; 169 170 // Spill location is known for gc relocates 171 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 172 const Value *Statepoint = Relocate->getStatepoint(); 173 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) && 174 "GetStatepoint must return one of two types"); 175 if (isa<UndefValue>(Statepoint)) 176 return None; 177 178 const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps 179 [cast<GCStatepointInst>(Statepoint)]; 180 181 auto It = RelocationMap.find(Relocate); 182 if (It == RelocationMap.end()) 183 return None; 184 185 auto &Record = It->second; 186 if (Record.type != RecordType::Spill) 187 return None; 188 189 return Record.payload.FI; 190 } 191 192 // Look through bitcast instructions. 193 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 194 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 195 196 // Look through phi nodes 197 // All incoming values should have same known stack slot, otherwise result 198 // is unknown. 199 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 200 Optional<int> MergedResult = None; 201 202 for (const auto &IncomingValue : Phi->incoming_values()) { 203 Optional<int> SpillSlot = 204 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 205 if (!SpillSlot) 206 return None; 207 208 if (MergedResult && *MergedResult != *SpillSlot) 209 return None; 210 211 MergedResult = SpillSlot; 212 } 213 return MergedResult; 214 } 215 216 // TODO: We can do better for PHI nodes. In cases like this: 217 // ptr = phi(relocated_pointer, not_relocated_pointer) 218 // statepoint(ptr) 219 // We will return that stack slot for ptr is unknown. And later we might 220 // assign different stack slots for ptr and relocated_pointer. This limits 221 // llvm's ability to remove redundant stores. 222 // Unfortunately it's hard to accomplish in current infrastructure. 223 // We use this function to eliminate spill store completely, while 224 // in example we still need to emit store, but instead of any location 225 // we need to use special "preferred" location. 226 227 // TODO: handle simple updates. If a value is modified and the original 228 // value is no longer live, it would be nice to put the modified value in the 229 // same slot. This allows folding of the memory accesses for some 230 // instructions types (like an increment). 231 // statepoint (i) 232 // i1 = i+1 233 // statepoint (i1) 234 // However we need to be careful for cases like this: 235 // statepoint(i) 236 // i1 = i+1 237 // statepoint(i, i1) 238 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 239 // put handling of simple modifications in this function like it's done 240 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 241 // which we visit values is unspecified. 242 243 // Don't know any information about this instruction 244 return None; 245 } 246 247 /// Return true if-and-only-if the given SDValue can be lowered as either a 248 /// constant argument or a stack reference. The key point is that the value 249 /// doesn't need to be spilled or tracked as a vreg use. 250 static bool willLowerDirectly(SDValue Incoming) { 251 // We are making an unchecked assumption that the frame size <= 2^16 as that 252 // is the largest offset which can be encoded in the stackmap format. 253 if (isa<FrameIndexSDNode>(Incoming)) 254 return true; 255 256 // The largest constant describeable in the StackMap format is 64 bits. 257 // Potential Optimization: Constants values are sign extended by consumer, 258 // and thus there are many constants of static type > 64 bits whose value 259 // happens to be sext(Con64) and could thus be lowered directly. 260 if (Incoming.getValueType().getSizeInBits() > 64) 261 return false; 262 263 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 264 Incoming.isUndef()); 265 } 266 267 /// Try to find existing copies of the incoming values in stack slots used for 268 /// statepoint spilling. If we can find a spill slot for the incoming value, 269 /// mark that slot as allocated, and reuse the same slot for this safepoint. 270 /// This helps to avoid series of loads and stores that only serve to reshuffle 271 /// values on the stack between calls. 272 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 273 SelectionDAGBuilder &Builder) { 274 SDValue Incoming = Builder.getValue(IncomingValue); 275 276 // If we won't spill this, we don't need to check for previously allocated 277 // stack slots. 278 if (willLowerDirectly(Incoming)) 279 return; 280 281 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 282 if (OldLocation.getNode()) 283 // Duplicates in input 284 return; 285 286 const int LookUpDepth = 6; 287 Optional<int> Index = 288 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 289 if (!Index) 290 return; 291 292 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 293 294 auto SlotIt = find(StatepointSlots, *Index); 295 assert(SlotIt != StatepointSlots.end() && 296 "Value spilled to the unknown stack slot"); 297 298 // This is one of our dedicated lowering slots 299 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 300 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 301 // stack slot already assigned to someone else, can't use it! 302 // TODO: currently we reserve space for gc arguments after doing 303 // normal allocation for deopt arguments. We should reserve for 304 // _all_ deopt and gc arguments, then start allocating. This 305 // will prevent some moves being inserted when vm state changes, 306 // but gc state doesn't between two calls. 307 return; 308 } 309 // Reserve this stack slot 310 Builder.StatepointLowering.reserveStackSlot(Offset); 311 312 // Cache this slot so we find it when going through the normal 313 // assignment loop. 314 SDValue Loc = 315 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 316 Builder.StatepointLowering.setLocation(Incoming, Loc); 317 } 318 319 /// Extract call from statepoint, lower it and return pointer to the 320 /// call node. Also update NodeMap so that getValue(statepoint) will 321 /// reference lowered call result 322 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 323 SelectionDAGBuilder::StatepointLoweringInfo &SI, 324 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 325 SDValue ReturnValue, CallEndVal; 326 std::tie(ReturnValue, CallEndVal) = 327 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 328 SDNode *CallEnd = CallEndVal.getNode(); 329 330 // Get a call instruction from the call sequence chain. Tail calls are not 331 // allowed. The following code is essentially reverse engineering X86's 332 // LowerCallTo. 333 // 334 // We are expecting DAG to have the following form: 335 // 336 // ch = eh_label (only in case of invoke statepoint) 337 // ch, glue = callseq_start ch 338 // ch, glue = X86::Call ch, glue 339 // ch, glue = callseq_end ch, glue 340 // get_return_value ch, glue 341 // 342 // get_return_value can either be a sequence of CopyFromReg instructions 343 // to grab the return value from the return register(s), or it can be a LOAD 344 // to load a value returned by reference via a stack slot. 345 346 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 347 if (HasDef) { 348 if (CallEnd->getOpcode() == ISD::LOAD) 349 CallEnd = CallEnd->getOperand(0).getNode(); 350 else 351 while (CallEnd->getOpcode() == ISD::CopyFromReg) 352 CallEnd = CallEnd->getOperand(0).getNode(); 353 } 354 355 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 356 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 357 } 358 359 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 360 FrameIndexSDNode &FI) { 361 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 362 auto MMOFlags = MachineMemOperand::MOStore | 363 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 364 auto &MFI = MF.getFrameInfo(); 365 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 366 MFI.getObjectSize(FI.getIndex()), 367 MFI.getObjectAlign(FI.getIndex())); 368 } 369 370 /// Spill a value incoming to the statepoint. It might be either part of 371 /// vmstate 372 /// or gcstate. In both cases unconditionally spill it on the stack unless it 373 /// is a null constant. Return pair with first element being frame index 374 /// containing saved value and second element with outgoing chain from the 375 /// emitted store 376 static std::tuple<SDValue, SDValue, MachineMemOperand*> 377 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 378 SelectionDAGBuilder &Builder) { 379 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 380 MachineMemOperand* MMO = nullptr; 381 382 // Emit new store if we didn't do it for this ptr before 383 if (!Loc.getNode()) { 384 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 385 Builder); 386 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 387 // We use TargetFrameIndex so that isel will not select it into LEA 388 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 389 390 // Right now we always allocate spill slots that are of the same 391 // size as the value we're about to spill (the size of spillee can 392 // vary since we spill vectors of pointers too). At some point we 393 // can consider allowing spills of smaller values to larger slots 394 // (i.e. change the '==' in the assert below to a '>='). 395 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 396 assert((MFI.getObjectSize(Index) * 8) == 397 (-8 & (7 + // Round up modulo 8. 398 (int64_t)Incoming.getValueSizeInBits())) && 399 "Bad spill: stack slot does not match!"); 400 401 // Note: Using the alignment of the spill slot (rather than the abi or 402 // preferred alignment) is required for correctness when dealing with spill 403 // slots with preferred alignments larger than frame alignment.. 404 auto &MF = Builder.DAG.getMachineFunction(); 405 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 406 auto *StoreMMO = MF.getMachineMemOperand( 407 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 408 MFI.getObjectAlign(Index)); 409 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 410 StoreMMO); 411 412 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 413 414 Builder.StatepointLowering.setLocation(Incoming, Loc); 415 } 416 417 assert(Loc.getNode()); 418 return std::make_tuple(Loc, Chain, MMO); 419 } 420 421 /// Lower a single value incoming to a statepoint node. This value can be 422 /// either a deopt value or a gc value, the handling is the same. We special 423 /// case constants and allocas, then fall back to spilling if required. 424 static void 425 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 426 SmallVectorImpl<SDValue> &Ops, 427 SmallVectorImpl<MachineMemOperand *> &MemRefs, 428 SelectionDAGBuilder &Builder) { 429 430 if (willLowerDirectly(Incoming)) { 431 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 432 // This handles allocas as arguments to the statepoint (this is only 433 // really meaningful for a deopt value. For GC, we'd be trying to 434 // relocate the address of the alloca itself?) 435 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 436 "Incoming value is a frame index!"); 437 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 438 Builder.getFrameIndexTy())); 439 440 auto &MF = Builder.DAG.getMachineFunction(); 441 auto *MMO = getMachineMemOperand(MF, *FI); 442 MemRefs.push_back(MMO); 443 return; 444 } 445 446 assert(Incoming.getValueType().getSizeInBits() <= 64); 447 448 if (Incoming.isUndef()) { 449 // Put an easily recognized constant that's unlikely to be a valid 450 // value so that uses of undef by the consumer of the stackmap is 451 // easily recognized. This is legal since the compiler is always 452 // allowed to chose an arbitrary value for undef. 453 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 454 return; 455 } 456 457 // If the original value was a constant, make sure it gets recorded as 458 // such in the stackmap. This is required so that the consumer can 459 // parse any internal format to the deopt state. It also handles null 460 // pointers and other constant pointers in GC states. 461 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 462 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 463 return; 464 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 465 pushStackMapConstant(Ops, Builder, 466 C->getValueAPF().bitcastToAPInt().getZExtValue()); 467 return; 468 } 469 470 llvm_unreachable("unhandled direct lowering case"); 471 } 472 473 474 475 if (!RequireSpillSlot) { 476 // If this value is live in (not live-on-return, or live-through), we can 477 // treat it the same way patchpoint treats it's "live in" values. We'll 478 // end up folding some of these into stack references, but they'll be 479 // handled by the register allocator. Note that we do not have the notion 480 // of a late use so these values might be placed in registers which are 481 // clobbered by the call. This is fine for live-in. For live-through 482 // fix-up pass should be executed to force spilling of such registers. 483 Ops.push_back(Incoming); 484 } else { 485 // Otherwise, locate a spill slot and explicitly spill it so it can be 486 // found by the runtime later. Note: We know all of these spills are 487 // independent, but don't bother to exploit that chain wise. DAGCombine 488 // will happily do so as needed, so doing it here would be a small compile 489 // time win at most. 490 SDValue Chain = Builder.getRoot(); 491 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 492 Ops.push_back(std::get<0>(Res)); 493 if (auto *MMO = std::get<2>(Res)) 494 MemRefs.push_back(MMO); 495 Chain = std::get<1>(Res);; 496 Builder.DAG.setRoot(Chain); 497 } 498 499 } 500 501 /// Return true if value V represents the GC value. The behavior is conservative 502 /// in case it is not sure that value is not GC the function returns true. 503 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) { 504 auto *Ty = V->getType(); 505 if (!Ty->isPtrOrPtrVectorTy()) 506 return false; 507 if (auto *GFI = Builder.GFI) 508 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 509 return *IsManaged; 510 return true; // conservative 511 } 512 513 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 514 /// lowering is described in lowerIncomingStatepointValue. This function is 515 /// responsible for lowering everything in the right position and playing some 516 /// tricks to avoid redundant stack manipulation where possible. On 517 /// completion, 'Ops' will contain ready to use operands for machine code 518 /// statepoint. The chain nodes will have already been created and the DAG root 519 /// will be set to the last value spilled (if any were). 520 static void 521 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 522 SmallVectorImpl<MachineMemOperand *> &MemRefs, 523 SmallVectorImpl<SDValue> &GCPtrs, 524 DenseMap<SDValue, int> &LowerAsVReg, 525 SelectionDAGBuilder::StatepointLoweringInfo &SI, 526 SelectionDAGBuilder &Builder) { 527 // Lower the deopt and gc arguments for this statepoint. Layout will be: 528 // deopt argument length, deopt arguments.., gc arguments... 529 #ifndef NDEBUG 530 if (auto *GFI = Builder.GFI) { 531 // Check that each of the gc pointer and bases we've gotten out of the 532 // safepoint is something the strategy thinks might be a pointer (or vector 533 // of pointers) into the GC heap. This is basically just here to help catch 534 // errors during statepoint insertion. TODO: This should actually be in the 535 // Verifier, but we can't get to the GCStrategy from there (yet). 536 GCStrategy &S = GFI->getStrategy(); 537 for (const Value *V : SI.Bases) { 538 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 539 if (Opt) { 540 assert(Opt.value() && 541 "non gc managed base pointer found in statepoint"); 542 } 543 } 544 for (const Value *V : SI.Ptrs) { 545 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 546 if (Opt) { 547 assert(Opt.value() && 548 "non gc managed derived pointer found in statepoint"); 549 } 550 } 551 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 552 } else { 553 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 554 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 555 } 556 #endif 557 558 // Figure out what lowering strategy we're going to use for each part 559 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 560 // as "live-through". A "live-through" variable is one which is "live-in", 561 // "live-out", and live throughout the lifetime of the call (i.e. we can find 562 // it from any PC within the transitive callee of the statepoint). In 563 // particular, if the callee spills callee preserved registers we may not 564 // be able to find a value placed in that register during the call. This is 565 // fine for live-out, but not for live-through. If we were willing to make 566 // assumptions about the code generator producing the callee, we could 567 // potentially allow live-through values in callee saved registers. 568 const bool LiveInDeopt = 569 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 570 571 // Decide which deriver pointers will go on VRegs 572 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue(); 573 574 // Pointers used on exceptional path of invoke statepoint. 575 // We cannot assing them to VRegs. 576 SmallSet<SDValue, 8> LPadPointers; 577 if (!UseRegistersForGCPointersInLandingPad) 578 if (const auto *StInvoke = 579 dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) { 580 LandingPadInst *LPI = StInvoke->getLandingPadInst(); 581 for (const auto *Relocate : SI.GCRelocates) 582 if (Relocate->getOperand(0) == LPI) { 583 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr())); 584 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr())); 585 } 586 } 587 588 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n"); 589 590 // List of unique lowered GC Pointer values. 591 SmallSetVector<SDValue, 16> LoweredGCPtrs; 592 // Map lowered GC Pointer value to the index in above vector 593 DenseMap<SDValue, unsigned> GCPtrIndexMap; 594 595 unsigned CurNumVRegs = 0; 596 597 auto canPassGCPtrOnVReg = [&](SDValue SD) { 598 if (SD.getValueType().isVector()) 599 return false; 600 if (LPadPointers.count(SD)) 601 return false; 602 return !willLowerDirectly(SD); 603 }; 604 605 auto processGCPtr = [&](const Value *V) { 606 SDValue PtrSD = Builder.getValue(V); 607 if (!LoweredGCPtrs.insert(PtrSD)) 608 return; // skip duplicates 609 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1; 610 611 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen"); 612 if (LowerAsVReg.size() == MaxVRegPtrs) 613 return; 614 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && 615 "IR and SD types disagree"); 616 if (!canPassGCPtrOnVReg(PtrSD)) { 617 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG)); 618 return; 619 } 620 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG)); 621 LowerAsVReg[PtrSD] = CurNumVRegs++; 622 }; 623 624 // Process derived pointers first to give them more chance to go on VReg. 625 for (const Value *V : SI.Ptrs) 626 processGCPtr(V); 627 for (const Value *V : SI.Bases) 628 processGCPtr(V); 629 630 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n"); 631 632 auto requireSpillSlot = [&](const Value *V) { 633 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal( 634 Builder.getValue(V).getValueType())) 635 return true; 636 if (isGCValue(V, Builder)) 637 return !LowerAsVReg.count(Builder.getValue(V)); 638 return !(LiveInDeopt || UseRegistersForDeoptValues); 639 }; 640 641 // Before we actually start lowering (and allocating spill slots for values), 642 // reserve any stack slots which we judge to be profitable to reuse for a 643 // particular value. This is purely an optimization over the code below and 644 // doesn't change semantics at all. It is important for performance that we 645 // reserve slots for both deopt and gc values before lowering either. 646 for (const Value *V : SI.DeoptState) { 647 if (requireSpillSlot(V)) 648 reservePreviousStackSlotForValue(V, Builder); 649 } 650 651 for (const Value *V : SI.Ptrs) { 652 SDValue SDV = Builder.getValue(V); 653 if (!LowerAsVReg.count(SDV)) 654 reservePreviousStackSlotForValue(V, Builder); 655 } 656 657 for (const Value *V : SI.Bases) { 658 SDValue SDV = Builder.getValue(V); 659 if (!LowerAsVReg.count(SDV)) 660 reservePreviousStackSlotForValue(V, Builder); 661 } 662 663 // First, prefix the list with the number of unique values to be 664 // lowered. Note that this is the number of *Values* not the 665 // number of SDValues required to lower them. 666 const int NumVMSArgs = SI.DeoptState.size(); 667 pushStackMapConstant(Ops, Builder, NumVMSArgs); 668 669 // The vm state arguments are lowered in an opaque manner. We do not know 670 // what type of values are contained within. 671 LLVM_DEBUG(dbgs() << "Lowering deopt state\n"); 672 for (const Value *V : SI.DeoptState) { 673 SDValue Incoming; 674 // If this is a function argument at a static frame index, generate it as 675 // the frame index. 676 if (const Argument *Arg = dyn_cast<Argument>(V)) { 677 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 678 if (FI != INT_MAX) 679 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 680 } 681 if (!Incoming.getNode()) 682 Incoming = Builder.getValue(V); 683 LLVM_DEBUG(dbgs() << "Value " << *V 684 << " requireSpillSlot = " << requireSpillSlot(V) << "\n"); 685 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 686 Builder); 687 } 688 689 // Finally, go ahead and lower all the gc arguments. 690 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size()); 691 for (SDValue SDV : LoweredGCPtrs) 692 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs, 693 Builder); 694 695 // Copy to out vector. LoweredGCPtrs will be empty after this point. 696 GCPtrs = LoweredGCPtrs.takeVector(); 697 698 // If there are any explicit spill slots passed to the statepoint, record 699 // them, but otherwise do not do anything special. These are user provided 700 // allocas and give control over placement to the consumer. In this case, 701 // it is the contents of the slot which may get updated, not the pointer to 702 // the alloca 703 SmallVector<SDValue, 4> Allocas; 704 for (Value *V : SI.GCArgs) { 705 SDValue Incoming = Builder.getValue(V); 706 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 707 // This handles allocas as arguments to the statepoint 708 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 709 "Incoming value is a frame index!"); 710 Allocas.push_back(Builder.DAG.getTargetFrameIndex( 711 FI->getIndex(), Builder.getFrameIndexTy())); 712 713 auto &MF = Builder.DAG.getMachineFunction(); 714 auto *MMO = getMachineMemOperand(MF, *FI); 715 MemRefs.push_back(MMO); 716 } 717 } 718 pushStackMapConstant(Ops, Builder, Allocas.size()); 719 Ops.append(Allocas.begin(), Allocas.end()); 720 721 // Now construct GC base/derived map; 722 pushStackMapConstant(Ops, Builder, SI.Ptrs.size()); 723 SDLoc L = Builder.getCurSDLoc(); 724 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) { 725 SDValue Base = Builder.getValue(SI.Bases[i]); 726 assert(GCPtrIndexMap.count(Base) && "base not found in index map"); 727 Ops.push_back( 728 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64)); 729 SDValue Derived = Builder.getValue(SI.Ptrs[i]); 730 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map"); 731 Ops.push_back( 732 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64)); 733 } 734 } 735 736 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 737 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 738 // The basic scheme here is that information about both the original call and 739 // the safepoint is encoded in the CallInst. We create a temporary call and 740 // lower it, then reverse engineer the calling sequence. 741 742 NumOfStatepoints++; 743 // Clear state 744 StatepointLowering.startNewStatepoint(*this); 745 assert(SI.Bases.size() == SI.Ptrs.size()); 746 747 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n"); 748 #ifndef NDEBUG 749 for (const auto *Reloc : SI.GCRelocates) 750 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 751 StatepointLowering.scheduleRelocCall(*Reloc); 752 #endif 753 754 // Lower statepoint vmstate and gcstate arguments 755 756 // All lowered meta args. 757 SmallVector<SDValue, 10> LoweredMetaArgs; 758 // Lowered GC pointers (subset of above). 759 SmallVector<SDValue, 16> LoweredGCArgs; 760 SmallVector<MachineMemOperand*, 16> MemRefs; 761 // Maps derived pointer SDValue to statepoint result of relocated pointer. 762 DenseMap<SDValue, int> LowerAsVReg; 763 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg, 764 SI, *this); 765 766 // Now that we've emitted the spills, we need to update the root so that the 767 // call sequence is ordered correctly. 768 SI.CLI.setChain(getRoot()); 769 770 // Get call node, we will replace it later with statepoint 771 SDValue ReturnVal; 772 SDNode *CallNode; 773 std::tie(ReturnVal, CallNode) = 774 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 775 776 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 777 // nodes with all the appropriate arguments and return values. 778 779 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 780 SDValue Chain = CallNode->getOperand(0); 781 782 SDValue Glue; 783 bool CallHasIncomingGlue = CallNode->getGluedNode(); 784 if (CallHasIncomingGlue) { 785 // Glue is always last operand 786 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 787 } 788 789 // Build the GC_TRANSITION_START node if necessary. 790 // 791 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 792 // order in which they appear in the call to the statepoint intrinsic. If 793 // any of the operands is a pointer-typed, that operand is immediately 794 // followed by a SRCVALUE for the pointer that may be used during lowering 795 // (e.g. to form MachinePointerInfo values for loads/stores). 796 const bool IsGCTransition = 797 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 798 (uint64_t)StatepointFlags::GCTransition; 799 if (IsGCTransition) { 800 SmallVector<SDValue, 8> TSOps; 801 802 // Add chain 803 TSOps.push_back(Chain); 804 805 // Add GC transition arguments 806 for (const Value *V : SI.GCTransitionArgs) { 807 TSOps.push_back(getValue(V)); 808 if (V->getType()->isPointerTy()) 809 TSOps.push_back(DAG.getSrcValue(V)); 810 } 811 812 // Add glue if necessary 813 if (CallHasIncomingGlue) 814 TSOps.push_back(Glue); 815 816 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 817 818 SDValue GCTransitionStart = 819 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 820 821 Chain = GCTransitionStart.getValue(0); 822 Glue = GCTransitionStart.getValue(1); 823 } 824 825 // TODO: Currently, all of these operands are being marked as read/write in 826 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 827 // and flags to be read-only. 828 SmallVector<SDValue, 40> Ops; 829 830 // Add the <id> and <numBytes> constants. 831 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 832 Ops.push_back( 833 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 834 835 // Calculate and push starting position of vmstate arguments 836 // Get number of arguments incoming directly into call node 837 unsigned NumCallRegArgs = 838 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 839 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 840 841 // Add call target 842 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 843 Ops.push_back(CallTarget); 844 845 // Add call arguments 846 // Get position of register mask in the call 847 SDNode::op_iterator RegMaskIt; 848 if (CallHasIncomingGlue) 849 RegMaskIt = CallNode->op_end() - 2; 850 else 851 RegMaskIt = CallNode->op_end() - 1; 852 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 853 854 // Add a constant argument for the calling convention 855 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 856 857 // Add a constant argument for the flags 858 uint64_t Flags = SI.StatepointFlags; 859 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 860 "Unknown flag used"); 861 pushStackMapConstant(Ops, *this, Flags); 862 863 // Insert all vmstate and gcstate arguments 864 llvm::append_range(Ops, LoweredMetaArgs); 865 866 // Add register mask from call node 867 Ops.push_back(*RegMaskIt); 868 869 // Add chain 870 Ops.push_back(Chain); 871 872 // Same for the glue, but we add it only if original call had it 873 if (Glue.getNode()) 874 Ops.push_back(Glue); 875 876 // Compute return values. Provide a glue output since we consume one as 877 // input. This allows someone else to chain off us as needed. 878 SmallVector<EVT, 8> NodeTys; 879 for (auto SD : LoweredGCArgs) { 880 if (!LowerAsVReg.count(SD)) 881 continue; 882 NodeTys.push_back(SD.getValueType()); 883 } 884 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n"); 885 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering"); 886 NodeTys.push_back(MVT::Other); 887 NodeTys.push_back(MVT::Glue); 888 889 unsigned NumResults = NodeTys.size(); 890 MachineSDNode *StatepointMCNode = 891 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 892 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 893 894 // For values lowered to tied-defs, create the virtual registers if used 895 // in other blocks. For local gc.relocate record appropriate statepoint 896 // result in StatepointLoweringState. 897 DenseMap<SDValue, Register> VirtRegs; 898 for (const auto *Relocate : SI.GCRelocates) { 899 Value *Derived = Relocate->getDerivedPtr(); 900 SDValue SD = getValue(Derived); 901 if (!LowerAsVReg.count(SD)) 902 continue; 903 904 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]); 905 906 // Handle local relocate. Note that different relocates might 907 // map to the same SDValue. 908 if (SI.StatepointInstr->getParent() == Relocate->getParent()) { 909 SDValue Res = StatepointLowering.getLocation(SD); 910 if (Res) 911 assert(Res == Relocated); 912 else 913 StatepointLowering.setLocation(SD, Relocated); 914 continue; 915 } 916 917 // Handle multiple gc.relocates of the same input efficiently. 918 if (VirtRegs.count(SD)) 919 continue; 920 921 auto *RetTy = Relocate->getType(); 922 Register Reg = FuncInfo.CreateRegs(RetTy); 923 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 924 DAG.getDataLayout(), Reg, RetTy, None); 925 SDValue Chain = DAG.getRoot(); 926 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr); 927 PendingExports.push_back(Chain); 928 929 VirtRegs[SD] = Reg; 930 } 931 932 // Record for later use how each relocation was lowered. This is needed to 933 // allow later gc.relocates to mirror the lowering chosen. 934 const Instruction *StatepointInstr = SI.StatepointInstr; 935 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr]; 936 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 937 const Value *V = Relocate->getDerivedPtr(); 938 SDValue SDV = getValue(V); 939 SDValue Loc = StatepointLowering.getLocation(SDV); 940 941 bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent()); 942 943 RecordType Record; 944 if (IsLocal && LowerAsVReg.count(SDV)) { 945 // Result is already stored in StatepointLowering 946 Record.type = RecordType::SDValueNode; 947 } else if (LowerAsVReg.count(SDV)) { 948 Record.type = RecordType::VReg; 949 assert(VirtRegs.count(SDV)); 950 Record.payload.Reg = VirtRegs[SDV]; 951 } else if (Loc.getNode()) { 952 Record.type = RecordType::Spill; 953 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 954 } else { 955 Record.type = RecordType::NoRelocate; 956 // If we didn't relocate a value, we'll essentialy end up inserting an 957 // additional use of the original value when lowering the gc.relocate. 958 // We need to make sure the value is available at the new use, which 959 // might be in another block. 960 if (Relocate->getParent() != StatepointInstr->getParent()) 961 ExportFromCurrentBlock(V); 962 } 963 RelocationMap[Relocate] = Record; 964 } 965 966 967 968 SDNode *SinkNode = StatepointMCNode; 969 970 // Build the GC_TRANSITION_END node if necessary. 971 // 972 // See the comment above regarding GC_TRANSITION_START for the layout of 973 // the operands to the GC_TRANSITION_END node. 974 if (IsGCTransition) { 975 SmallVector<SDValue, 8> TEOps; 976 977 // Add chain 978 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2)); 979 980 // Add GC transition arguments 981 for (const Value *V : SI.GCTransitionArgs) { 982 TEOps.push_back(getValue(V)); 983 if (V->getType()->isPointerTy()) 984 TEOps.push_back(DAG.getSrcValue(V)); 985 } 986 987 // Add glue 988 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1)); 989 990 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 991 992 SDValue GCTransitionStart = 993 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 994 995 SinkNode = GCTransitionStart.getNode(); 996 } 997 998 // Replace original call 999 // Call: ch,glue = CALL ... 1000 // Statepoint: [gc relocates],ch,glue = STATEPOINT ... 1001 unsigned NumSinkValues = SinkNode->getNumValues(); 1002 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2), 1003 SDValue(SinkNode, NumSinkValues - 1)}; 1004 DAG.ReplaceAllUsesWith(CallNode, StatepointValues); 1005 // Remove original call node 1006 DAG.DeleteNode(CallNode); 1007 1008 // Since we always emit CopyToRegs (even for local relocates), we must 1009 // update root, so that they are emitted before any local uses. 1010 (void)getControlRoot(); 1011 1012 // TODO: A better future implementation would be to emit a single variable 1013 // argument, variable return value STATEPOINT node here and then hookup the 1014 // return value of each gc.relocate to the respective output of the 1015 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 1016 // to actually be possible today. 1017 1018 return ReturnVal; 1019 } 1020 1021 /// Return two gc.results if present. First result is a block local 1022 /// gc.result, second result is a non-block local gc.result. Corresponding 1023 /// entry will be nullptr if not present. 1024 static std::pair<const GCResultInst*, const GCResultInst*> 1025 getGCResultLocality(const GCStatepointInst &S) { 1026 std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr); 1027 for (const auto *U : S.users()) { 1028 auto *GRI = dyn_cast<GCResultInst>(U); 1029 if (!GRI) 1030 continue; 1031 if (GRI->getParent() == S.getParent()) 1032 Res.first = GRI; 1033 else 1034 Res.second = GRI; 1035 } 1036 return Res; 1037 } 1038 1039 void 1040 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 1041 const BasicBlock *EHPadBB /*= nullptr*/) { 1042 assert(I.getCallingConv() != CallingConv::AnyReg && 1043 "anyregcc is not supported on statepoints!"); 1044 1045 #ifndef NDEBUG 1046 // Check that the associated GCStrategy expects to encounter statepoints. 1047 assert(GFI->getStrategy().useStatepoints() && 1048 "GCStrategy does not expect to encounter statepoints"); 1049 #endif 1050 1051 SDValue ActualCallee; 1052 SDValue Callee = getValue(I.getActualCalledOperand()); 1053 1054 if (I.getNumPatchBytes() > 0) { 1055 // If we've been asked to emit a nop sequence instead of a call instruction 1056 // for this statepoint then don't lower the call target, but use a constant 1057 // `undef` instead. Not lowering the call target lets statepoint clients 1058 // get away without providing a physical address for the symbolic call 1059 // target at link time. 1060 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 1061 } else { 1062 ActualCallee = Callee; 1063 } 1064 1065 StatepointLoweringInfo SI(DAG); 1066 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 1067 I.getNumCallArgs(), ActualCallee, 1068 I.getActualReturnType(), false /* IsPatchPoint */); 1069 1070 // There may be duplication in the gc.relocate list; such as two copies of 1071 // each relocation on normal and exceptional path for an invoke. We only 1072 // need to spill once and record one copy in the stackmap, but we need to 1073 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 1074 // handled as a CSE problem elsewhere.) 1075 // TODO: There a couple of major stackmap size optimizations we could do 1076 // here if we wished. 1077 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 1078 // record {B,B} if it's seen later. 1079 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 1080 // given that, we could change the format to record base pointer relocations 1081 // separately with half the space. This would require a format rev and a 1082 // fairly major rework of the STATEPOINT node though. 1083 SmallSet<SDValue, 8> Seen; 1084 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 1085 SI.GCRelocates.push_back(Relocate); 1086 1087 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 1088 if (Seen.insert(DerivedSD).second) { 1089 SI.Bases.push_back(Relocate->getBasePtr()); 1090 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 1091 } 1092 } 1093 1094 // If we find a deopt value which isn't explicitly added, we need to 1095 // ensure it gets lowered such that gc cycles occurring before the 1096 // deoptimization event during the lifetime of the call don't invalidate 1097 // the pointer we're deopting with. Note that we assume that all 1098 // pointers passed to deopt are base pointers; relaxing that assumption 1099 // would require relatively large changes to how we represent relocations. 1100 for (Value *V : I.deopt_operands()) { 1101 if (!isGCValue(V, *this)) 1102 continue; 1103 if (Seen.insert(getValue(V)).second) { 1104 SI.Bases.push_back(V); 1105 SI.Ptrs.push_back(V); 1106 } 1107 } 1108 1109 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 1110 SI.StatepointInstr = &I; 1111 SI.ID = I.getID(); 1112 1113 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 1114 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 1115 I.gc_transition_args_end()); 1116 1117 SI.StatepointFlags = I.getFlags(); 1118 SI.NumPatchBytes = I.getNumPatchBytes(); 1119 SI.EHPadBB = EHPadBB; 1120 1121 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 1122 1123 // Export the result value if needed 1124 const auto GCResultLocality = getGCResultLocality(I); 1125 1126 if (!GCResultLocality.first && !GCResultLocality.second) { 1127 // The return value is not needed, just generate a poison value. 1128 // Note: This covers the void return case. 1129 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 1130 return; 1131 } 1132 1133 if (GCResultLocality.first) { 1134 // Result value will be used in a same basic block. Don't export it or 1135 // perform any explicit register copies. The gc_result will simply grab 1136 // this value. 1137 setValue(&I, ReturnValue); 1138 } 1139 1140 if (!GCResultLocality.second) 1141 return; 1142 // Result value will be used in a different basic block so we need to export 1143 // it now. Default exporting mechanism will not work here because statepoint 1144 // call has a different type than the actual call. It means that by default 1145 // llvm will create export register of the wrong type (always i32 in our 1146 // case). So instead we need to create export register with correct type 1147 // manually. 1148 // TODO: To eliminate this problem we can remove gc.result intrinsics 1149 // completely and make statepoint call to return a tuple. 1150 Type *RetTy = GCResultLocality.second->getType(); 1151 unsigned Reg = FuncInfo.CreateRegs(RetTy); 1152 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1153 DAG.getDataLayout(), Reg, RetTy, 1154 I.getCallingConv()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 1157 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 1158 PendingExports.push_back(Chain); 1159 FuncInfo.ValueMap[&I] = Reg; 1160 } 1161 1162 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 1163 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 1164 bool VarArgDisallowed, bool ForceVoidReturnTy) { 1165 StatepointLoweringInfo SI(DAG); 1166 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 1167 populateCallLoweringInfo( 1168 SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee, 1169 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 1170 false); 1171 if (!VarArgDisallowed) 1172 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 1173 1174 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 1175 1176 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 1177 1178 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1179 SI.ID = SD.StatepointID.value_or(DefaultID); 1180 SI.NumPatchBytes = SD.NumPatchBytes.value_or(0); 1181 1182 SI.DeoptState = 1183 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 1184 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 1185 SI.EHPadBB = EHPadBB; 1186 1187 // NB! The GC arguments are deliberately left empty. 1188 1189 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 1190 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 1191 setValue(Call, ReturnVal); 1192 } 1193 } 1194 1195 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 1196 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 1197 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 1198 /* VarArgDisallowed = */ false, 1199 /* ForceVoidReturnTy = */ false); 1200 } 1201 1202 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 1203 // The result value of the gc_result is simply the result of the actual 1204 // call. We've already emitted this, so just grab the value. 1205 const Value *SI = CI.getStatepoint(); 1206 assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) && 1207 "GetStatepoint must return one of two types"); 1208 if (isa<UndefValue>(SI)) 1209 return; 1210 1211 if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) { 1212 setValue(&CI, getValue(SI)); 1213 return; 1214 } 1215 // Statepoint is in different basic block so we should have stored call 1216 // result in a virtual register. 1217 // We can not use default getValue() functionality to copy value from this 1218 // register because statepoint and actual call return types can be 1219 // different, and getValue() will use CopyFromReg of the wrong type, 1220 // which is always i32 in our case. 1221 Type *RetTy = CI.getType(); 1222 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy); 1223 1224 assert(CopyFromReg.getNode()); 1225 setValue(&CI, CopyFromReg); 1226 } 1227 1228 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 1229 const Value *Statepoint = Relocate.getStatepoint(); 1230 #ifndef NDEBUG 1231 // Consistency check 1232 // We skip this check for relocates not in the same basic block as their 1233 // statepoint. It would be too expensive to preserve validation info through 1234 // different basic blocks. 1235 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) && 1236 "GetStatepoint must return one of two types"); 1237 if (isa<UndefValue>(Statepoint)) 1238 return; 1239 1240 if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent()) 1241 StatepointLowering.relocCallVisited(Relocate); 1242 1243 auto *Ty = Relocate.getType()->getScalarType(); 1244 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 1245 assert(*IsManaged && "Non gc managed pointer relocated!"); 1246 #endif 1247 1248 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1249 auto &RelocationMap = 1250 FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)]; 1251 auto SlotIt = RelocationMap.find(&Relocate); 1252 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value"); 1253 const RecordType &Record = SlotIt->second; 1254 1255 // If relocation was done via virtual register.. 1256 if (Record.type == RecordType::SDValueNode) { 1257 assert(cast<GCStatepointInst>(Statepoint)->getParent() == 1258 Relocate.getParent() && 1259 "Nonlocal gc.relocate mapped via SDValue"); 1260 SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr)); 1261 assert(SDV.getNode() && "empty SDValue"); 1262 setValue(&Relocate, SDV); 1263 return; 1264 } 1265 if (Record.type == RecordType::VReg) { 1266 Register InReg = Record.payload.Reg; 1267 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1268 DAG.getDataLayout(), InReg, Relocate.getType(), 1269 None); // This is not an ABI copy. 1270 // We generate copy to/from regs even for local uses, hence we must 1271 // chain with current root to ensure proper ordering of copies w.r.t. 1272 // statepoint. 1273 SDValue Chain = DAG.getRoot(); 1274 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 1275 Chain, nullptr, nullptr); 1276 setValue(&Relocate, Relocation); 1277 return; 1278 } 1279 1280 if (Record.type == RecordType::Spill) { 1281 unsigned Index = Record.payload.FI; 1282 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1283 1284 // All the reloads are independent and are reading memory only modified by 1285 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1286 // this this let's CSE kick in for free and allows reordering of 1287 // instructions if possible. The lowering for statepoint sets the root, 1288 // so this is ordering all reloads with the either 1289 // a) the statepoint node itself, or 1290 // b) the entry of the current block for an invoke statepoint. 1291 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1292 1293 auto &MF = DAG.getMachineFunction(); 1294 auto &MFI = MF.getFrameInfo(); 1295 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1296 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1297 MFI.getObjectSize(Index), 1298 MFI.getObjectAlign(Index)); 1299 1300 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1301 Relocate.getType()); 1302 1303 SDValue SpillLoad = 1304 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO); 1305 PendingLoads.push_back(SpillLoad.getValue(1)); 1306 1307 assert(SpillLoad.getNode()); 1308 setValue(&Relocate, SpillLoad); 1309 return; 1310 } 1311 1312 assert(Record.type == RecordType::NoRelocate); 1313 SDValue SD = getValue(DerivedPtr); 1314 1315 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1316 // Lowering relocate(undef) as arbitrary constant. Current constant value 1317 // is chosen such that it's unlikely to be a valid pointer. 1318 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1319 return; 1320 } 1321 1322 // We didn't need to spill these special cases (constants and allocas). 1323 // See the handling in spillIncomingValueForStatepoint for detail. 1324 setValue(&Relocate, SD); 1325 } 1326 1327 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1328 const auto &TLI = DAG.getTargetLoweringInfo(); 1329 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1330 TLI.getPointerTy(DAG.getDataLayout())); 1331 1332 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1333 // call. We also do not lower the return value to any virtual register, and 1334 // change the immediately following return to a trap instruction. 1335 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1336 /* VarArgDisallowed = */ true, 1337 /* ForceVoidReturnTy = */ true); 1338 } 1339 1340 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1341 // We do not lower the return value from llvm.deoptimize to any virtual 1342 // register, and change the immediately following return to a trap 1343 // instruction. 1344 if (DAG.getTarget().Options.TrapUnreachable) 1345 DAG.setRoot( 1346 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1347 } 1348