xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/SelectionDAGNodes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGenTypes/MachineValueType.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/GCStrategy.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Statepoint.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 #include <iterator>
52 #include <tuple>
53 #include <utility>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "statepoint-lowering"
58 
59 STATISTIC(NumSlotsAllocatedForStatepoints,
60           "Number of stack slots allocated for statepoints");
61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
62 STATISTIC(StatepointMaxSlotsRequired,
63           "Maximum number of stack slots required for a singe statepoint");
64 
65 static cl::opt<bool> UseRegistersForDeoptValues(
66     "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
67     cl::desc("Allow using registers for non pointer deopt args"));
68 
69 static cl::opt<bool> UseRegistersForGCPointersInLandingPad(
70     "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
71     cl::desc("Allow using registers for gc pointer in landing pad"));
72 
73 static cl::opt<unsigned> MaxRegistersForGCPointers(
74     "max-registers-for-gc-values", cl::Hidden, cl::init(0),
75     cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
76 
77 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
78 
79 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
80                                  SelectionDAGBuilder &Builder, uint64_t Value) {
81   SDLoc L = Builder.getCurSDLoc();
82   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
83                                               MVT::i64));
84   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
85 }
86 
87 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
88   // Consistency check
89   assert(PendingGCRelocateCalls.empty() &&
90          "Trying to visit statepoint before finished processing previous one");
91   Locations.clear();
92   NextSlotToAllocate = 0;
93   // Need to resize this on each safepoint - we need the two to stay in sync and
94   // the clear patterns of a SelectionDAGBuilder have no relation to
95   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
96   AllocatedStackSlots.clear();
97   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
98 }
99 
100 void StatepointLoweringState::clear() {
101   Locations.clear();
102   AllocatedStackSlots.clear();
103   assert(PendingGCRelocateCalls.empty() &&
104          "cleared before statepoint sequence completed");
105 }
106 
107 SDValue
108 StatepointLoweringState::allocateStackSlot(EVT ValueType,
109                                            SelectionDAGBuilder &Builder) {
110   NumSlotsAllocatedForStatepoints++;
111   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
112 
113   unsigned SpillSize = ValueType.getStoreSize();
114   assert((SpillSize * 8) ==
115              (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
116          "Size not in bytes?");
117 
118   // First look for a previously created stack slot which is not in
119   // use (accounting for the fact arbitrary slots may already be
120   // reserved), or to create a new stack slot and use it.
121 
122   const size_t NumSlots = AllocatedStackSlots.size();
123   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
124 
125   assert(AllocatedStackSlots.size() ==
126          Builder.FuncInfo.StatepointStackSlots.size() &&
127          "Broken invariant");
128 
129   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
130     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
131       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
132       if (MFI.getObjectSize(FI) == SpillSize) {
133         AllocatedStackSlots.set(NextSlotToAllocate);
134         // TODO: Is ValueType the right thing to use here?
135         return Builder.DAG.getFrameIndex(FI, ValueType);
136       }
137     }
138   }
139 
140   // Couldn't find a free slot, so create a new one:
141 
142   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
143   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
144   MFI.markAsStatepointSpillSlotObjectIndex(FI);
145 
146   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
147   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
148   assert(AllocatedStackSlots.size() ==
149          Builder.FuncInfo.StatepointStackSlots.size() &&
150          "Broken invariant");
151 
152   StatepointMaxSlotsRequired.updateMax(
153       Builder.FuncInfo.StatepointStackSlots.size());
154 
155   return SpillSlot;
156 }
157 
158 /// Utility function for reservePreviousStackSlotForValue. Tries to find
159 /// stack slot index to which we have spilled value for previous statepoints.
160 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
161 static std::optional<int> findPreviousSpillSlot(const Value *Val,
162                                                 SelectionDAGBuilder &Builder,
163                                                 int LookUpDepth) {
164   // Can not look any further - give up now
165   if (LookUpDepth <= 0)
166     return std::nullopt;
167 
168   // Spill location is known for gc relocates
169   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
170     const Value *Statepoint = Relocate->getStatepoint();
171     assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
172            "GetStatepoint must return one of two types");
173     if (isa<UndefValue>(Statepoint))
174       return std::nullopt;
175 
176     const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps
177                                     [cast<GCStatepointInst>(Statepoint)];
178 
179     auto It = RelocationMap.find(Relocate);
180     if (It == RelocationMap.end())
181       return std::nullopt;
182 
183     auto &Record = It->second;
184     if (Record.type != RecordType::Spill)
185       return std::nullopt;
186 
187     return Record.payload.FI;
188   }
189 
190   // Look through bitcast instructions.
191   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
192     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
193 
194   // Look through phi nodes
195   // All incoming values should have same known stack slot, otherwise result
196   // is unknown.
197   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
198     std::optional<int> MergedResult;
199 
200     for (const auto &IncomingValue : Phi->incoming_values()) {
201       std::optional<int> SpillSlot =
202           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
203       if (!SpillSlot)
204         return std::nullopt;
205 
206       if (MergedResult && *MergedResult != *SpillSlot)
207         return std::nullopt;
208 
209       MergedResult = SpillSlot;
210     }
211     return MergedResult;
212   }
213 
214   // TODO: We can do better for PHI nodes. In cases like this:
215   //   ptr = phi(relocated_pointer, not_relocated_pointer)
216   //   statepoint(ptr)
217   // We will return that stack slot for ptr is unknown. And later we might
218   // assign different stack slots for ptr and relocated_pointer. This limits
219   // llvm's ability to remove redundant stores.
220   // Unfortunately it's hard to accomplish in current infrastructure.
221   // We use this function to eliminate spill store completely, while
222   // in example we still need to emit store, but instead of any location
223   // we need to use special "preferred" location.
224 
225   // TODO: handle simple updates.  If a value is modified and the original
226   // value is no longer live, it would be nice to put the modified value in the
227   // same slot.  This allows folding of the memory accesses for some
228   // instructions types (like an increment).
229   //   statepoint (i)
230   //   i1 = i+1
231   //   statepoint (i1)
232   // However we need to be careful for cases like this:
233   //   statepoint(i)
234   //   i1 = i+1
235   //   statepoint(i, i1)
236   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
237   // put handling of simple modifications in this function like it's done
238   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
239   // which we visit values is unspecified.
240 
241   // Don't know any information about this instruction
242   return std::nullopt;
243 }
244 
245 /// Return true if-and-only-if the given SDValue can be lowered as either a
246 /// constant argument or a stack reference.  The key point is that the value
247 /// doesn't need to be spilled or tracked as a vreg use.
248 static bool willLowerDirectly(SDValue Incoming) {
249   // We are making an unchecked assumption that the frame size <= 2^16 as that
250   // is the largest offset which can be encoded in the stackmap format.
251   if (isa<FrameIndexSDNode>(Incoming))
252     return true;
253 
254   // The largest constant describeable in the StackMap format is 64 bits.
255   // Potential Optimization:  Constants values are sign extended by consumer,
256   // and thus there are many constants of static type > 64 bits whose value
257   // happens to be sext(Con64) and could thus be lowered directly.
258   if (Incoming.getValueType().getSizeInBits() > 64)
259     return false;
260 
261   return isIntOrFPConstant(Incoming) || Incoming.isUndef();
262 }
263 
264 /// Try to find existing copies of the incoming values in stack slots used for
265 /// statepoint spilling.  If we can find a spill slot for the incoming value,
266 /// mark that slot as allocated, and reuse the same slot for this safepoint.
267 /// This helps to avoid series of loads and stores that only serve to reshuffle
268 /// values on the stack between calls.
269 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
270                                              SelectionDAGBuilder &Builder) {
271   SDValue Incoming = Builder.getValue(IncomingValue);
272 
273   // If we won't spill this, we don't need to check for previously allocated
274   // stack slots.
275   if (willLowerDirectly(Incoming))
276     return;
277 
278   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
279   if (OldLocation.getNode())
280     // Duplicates in input
281     return;
282 
283   const int LookUpDepth = 6;
284   std::optional<int> Index =
285       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
286   if (!Index)
287     return;
288 
289   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
290 
291   auto SlotIt = find(StatepointSlots, *Index);
292   assert(SlotIt != StatepointSlots.end() &&
293          "Value spilled to the unknown stack slot");
294 
295   // This is one of our dedicated lowering slots
296   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
297   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
298     // stack slot already assigned to someone else, can't use it!
299     // TODO: currently we reserve space for gc arguments after doing
300     // normal allocation for deopt arguments.  We should reserve for
301     // _all_ deopt and gc arguments, then start allocating.  This
302     // will prevent some moves being inserted when vm state changes,
303     // but gc state doesn't between two calls.
304     return;
305   }
306   // Reserve this stack slot
307   Builder.StatepointLowering.reserveStackSlot(Offset);
308 
309   // Cache this slot so we find it when going through the normal
310   // assignment loop.
311   SDValue Loc =
312       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
313   Builder.StatepointLowering.setLocation(Incoming, Loc);
314 }
315 
316 /// Extract call from statepoint, lower it and return pointer to the
317 /// call node. Also update NodeMap so that getValue(statepoint) will
318 /// reference lowered call result
319 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
320     SelectionDAGBuilder::StatepointLoweringInfo &SI,
321     SelectionDAGBuilder &Builder) {
322   SDValue ReturnValue, CallEndVal;
323   std::tie(ReturnValue, CallEndVal) =
324       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
325   SDNode *CallEnd = CallEndVal.getNode();
326 
327   // Get a call instruction from the call sequence chain.  Tail calls are not
328   // allowed.  The following code is essentially reverse engineering X86's
329   // LowerCallTo.
330   //
331   // We are expecting DAG to have the following form:
332   //
333   // ch = eh_label (only in case of invoke statepoint)
334   //   ch, glue = callseq_start ch
335   //   ch, glue = X86::Call ch, glue
336   //   ch, glue = callseq_end ch, glue
337   //   get_return_value ch, glue
338   //
339   // get_return_value can either be a sequence of CopyFromReg instructions
340   // to grab the return value from the return register(s), or it can be a LOAD
341   // to load a value returned by reference via a stack slot.
342 
343   if (CallEnd->getOpcode() == ISD::EH_LABEL)
344     CallEnd = CallEnd->getOperand(0).getNode();
345 
346   bool HasDef = !SI.CLI.RetTy->isVoidTy();
347   if (HasDef) {
348     if (CallEnd->getOpcode() == ISD::LOAD)
349       CallEnd = CallEnd->getOperand(0).getNode();
350     else
351       while (CallEnd->getOpcode() == ISD::CopyFromReg)
352         CallEnd = CallEnd->getOperand(0).getNode();
353   }
354 
355   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
356   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
357 }
358 
359 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
360                                                FrameIndexSDNode &FI) {
361   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
362   auto MMOFlags = MachineMemOperand::MOStore |
363     MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
364   auto &MFI = MF.getFrameInfo();
365   return MF.getMachineMemOperand(PtrInfo, MMOFlags,
366                                  MFI.getObjectSize(FI.getIndex()),
367                                  MFI.getObjectAlign(FI.getIndex()));
368 }
369 
370 /// Spill a value incoming to the statepoint. It might be either part of
371 /// vmstate
372 /// or gcstate. In both cases unconditionally spill it on the stack unless it
373 /// is a null constant. Return pair with first element being frame index
374 /// containing saved value and second element with outgoing chain from the
375 /// emitted store
376 static std::tuple<SDValue, SDValue, MachineMemOperand*>
377 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
378                              SelectionDAGBuilder &Builder) {
379   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
380   MachineMemOperand* MMO = nullptr;
381 
382   // Emit new store if we didn't do it for this ptr before
383   if (!Loc.getNode()) {
384     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
385                                                        Builder);
386     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
387     // We use TargetFrameIndex so that isel will not select it into LEA
388     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
389 
390     // Right now we always allocate spill slots that are of the same
391     // size as the value we're about to spill (the size of spillee can
392     // vary since we spill vectors of pointers too).  At some point we
393     // can consider allowing spills of smaller values to larger slots
394     // (i.e. change the '==' in the assert below to a '>=').
395     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
396     assert((MFI.getObjectSize(Index) * 8) ==
397                (-8 & (7 + // Round up modulo 8.
398                       (int64_t)Incoming.getValueSizeInBits())) &&
399            "Bad spill:  stack slot does not match!");
400 
401     // Note: Using the alignment of the spill slot (rather than the abi or
402     // preferred alignment) is required for correctness when dealing with spill
403     // slots with preferred alignments larger than frame alignment..
404     auto &MF = Builder.DAG.getMachineFunction();
405     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
406     auto *StoreMMO = MF.getMachineMemOperand(
407         PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
408         MFI.getObjectAlign(Index));
409     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
410                                  StoreMMO);
411 
412     MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
413 
414     Builder.StatepointLowering.setLocation(Incoming, Loc);
415   }
416 
417   assert(Loc.getNode());
418   return std::make_tuple(Loc, Chain, MMO);
419 }
420 
421 /// Lower a single value incoming to a statepoint node.  This value can be
422 /// either a deopt value or a gc value, the handling is the same.  We special
423 /// case constants and allocas, then fall back to spilling if required.
424 static void
425 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
426                              SmallVectorImpl<SDValue> &Ops,
427                              SmallVectorImpl<MachineMemOperand *> &MemRefs,
428                              SelectionDAGBuilder &Builder) {
429 
430   if (willLowerDirectly(Incoming)) {
431     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
432       // This handles allocas as arguments to the statepoint (this is only
433       // really meaningful for a deopt value.  For GC, we'd be trying to
434       // relocate the address of the alloca itself?)
435       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
436              "Incoming value is a frame index!");
437       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
438                                                     Builder.getFrameIndexTy()));
439 
440       auto &MF = Builder.DAG.getMachineFunction();
441       auto *MMO = getMachineMemOperand(MF, *FI);
442       MemRefs.push_back(MMO);
443       return;
444     }
445 
446     assert(Incoming.getValueType().getSizeInBits() <= 64);
447 
448     if (Incoming.isUndef()) {
449       // Put an easily recognized constant that's unlikely to be a valid
450       // value so that uses of undef by the consumer of the stackmap is
451       // easily recognized. This is legal since the compiler is always
452       // allowed to chose an arbitrary value for undef.
453       pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
454       return;
455     }
456 
457     // If the original value was a constant, make sure it gets recorded as
458     // such in the stackmap.  This is required so that the consumer can
459     // parse any internal format to the deopt state.  It also handles null
460     // pointers and other constant pointers in GC states.
461     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
462       pushStackMapConstant(Ops, Builder, C->getSExtValue());
463       return;
464     } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
465       pushStackMapConstant(Ops, Builder,
466                            C->getValueAPF().bitcastToAPInt().getZExtValue());
467       return;
468     }
469 
470     llvm_unreachable("unhandled direct lowering case");
471   }
472 
473 
474 
475   if (!RequireSpillSlot) {
476     // If this value is live in (not live-on-return, or live-through), we can
477     // treat it the same way patchpoint treats it's "live in" values.  We'll
478     // end up folding some of these into stack references, but they'll be
479     // handled by the register allocator.  Note that we do not have the notion
480     // of a late use so these values might be placed in registers which are
481     // clobbered by the call.  This is fine for live-in. For live-through
482     // fix-up pass should be executed to force spilling of such registers.
483     Ops.push_back(Incoming);
484   } else {
485     // Otherwise, locate a spill slot and explicitly spill it so it can be
486     // found by the runtime later.  Note: We know all of these spills are
487     // independent, but don't bother to exploit that chain wise.  DAGCombine
488     // will happily do so as needed, so doing it here would be a small compile
489     // time win at most.
490     SDValue Chain = Builder.getRoot();
491     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
492     Ops.push_back(std::get<0>(Res));
493     if (auto *MMO = std::get<2>(Res))
494       MemRefs.push_back(MMO);
495     Chain = std::get<1>(Res);
496     Builder.DAG.setRoot(Chain);
497   }
498 
499 }
500 
501 /// Return true if value V represents the GC value. The behavior is conservative
502 /// in case it is not sure that value is not GC the function returns true.
503 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
504   auto *Ty = V->getType();
505   if (!Ty->isPtrOrPtrVectorTy())
506     return false;
507   if (auto *GFI = Builder.GFI)
508     if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
509       return *IsManaged;
510   return true; // conservative
511 }
512 
513 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
514 /// lowering is described in lowerIncomingStatepointValue.  This function is
515 /// responsible for lowering everything in the right position and playing some
516 /// tricks to avoid redundant stack manipulation where possible.  On
517 /// completion, 'Ops' will contain ready to use operands for machine code
518 /// statepoint. The chain nodes will have already been created and the DAG root
519 /// will be set to the last value spilled (if any were).
520 static void
521 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
522                         SmallVectorImpl<MachineMemOperand *> &MemRefs,
523                         SmallVectorImpl<SDValue> &GCPtrs,
524                         DenseMap<SDValue, int> &LowerAsVReg,
525                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
526                         SelectionDAGBuilder &Builder) {
527   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
528   // deopt argument length, deopt arguments.., gc arguments...
529 
530   // Figure out what lowering strategy we're going to use for each part
531   // Note: It is conservatively correct to lower both "live-in" and "live-out"
532   // as "live-through". A "live-through" variable is one which is "live-in",
533   // "live-out", and live throughout the lifetime of the call (i.e. we can find
534   // it from any PC within the transitive callee of the statepoint).  In
535   // particular, if the callee spills callee preserved registers we may not
536   // be able to find a value placed in that register during the call.  This is
537   // fine for live-out, but not for live-through.  If we were willing to make
538   // assumptions about the code generator producing the callee, we could
539   // potentially allow live-through values in callee saved registers.
540   const bool LiveInDeopt =
541     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
542 
543   // Decide which deriver pointers will go on VRegs
544   unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
545 
546   // Pointers used on exceptional path of invoke statepoint.
547   // We cannot assing them to VRegs.
548   SmallSet<SDValue, 8> LPadPointers;
549   if (!UseRegistersForGCPointersInLandingPad)
550     if (const auto *StInvoke =
551             dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
552       LandingPadInst *LPI = StInvoke->getLandingPadInst();
553       for (const auto *Relocate : SI.GCRelocates)
554         if (Relocate->getOperand(0) == LPI) {
555           LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
556           LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
557         }
558     }
559 
560   LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
561 
562   // List of unique lowered GC Pointer values.
563   SmallSetVector<SDValue, 16> LoweredGCPtrs;
564   // Map lowered GC Pointer value to the index in above vector
565   DenseMap<SDValue, unsigned> GCPtrIndexMap;
566 
567   unsigned CurNumVRegs = 0;
568 
569   auto canPassGCPtrOnVReg = [&](SDValue SD) {
570     if (SD.getValueType().isVector())
571       return false;
572     if (LPadPointers.count(SD))
573       return false;
574     return !willLowerDirectly(SD);
575   };
576 
577   auto processGCPtr = [&](const Value *V) {
578     SDValue PtrSD = Builder.getValue(V);
579     if (!LoweredGCPtrs.insert(PtrSD))
580       return; // skip duplicates
581     GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
582 
583     assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
584     if (LowerAsVReg.size() == MaxVRegPtrs)
585       return;
586     assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
587            "IR and SD types disagree");
588     if (!canPassGCPtrOnVReg(PtrSD)) {
589       LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
590       return;
591     }
592     LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
593     LowerAsVReg[PtrSD] = CurNumVRegs++;
594   };
595 
596   // Process derived pointers first to give them more chance to go on VReg.
597   for (const Value *V : SI.Ptrs)
598     processGCPtr(V);
599   for (const Value *V : SI.Bases)
600     processGCPtr(V);
601 
602   LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
603 
604   auto requireSpillSlot = [&](const Value *V) {
605     if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
606              Builder.getValue(V).getValueType()))
607       return true;
608     if (isGCValue(V, Builder))
609       return !LowerAsVReg.count(Builder.getValue(V));
610     return !(LiveInDeopt || UseRegistersForDeoptValues);
611   };
612 
613   // Before we actually start lowering (and allocating spill slots for values),
614   // reserve any stack slots which we judge to be profitable to reuse for a
615   // particular value.  This is purely an optimization over the code below and
616   // doesn't change semantics at all.  It is important for performance that we
617   // reserve slots for both deopt and gc values before lowering either.
618   for (const Value *V : SI.DeoptState) {
619     if (requireSpillSlot(V))
620       reservePreviousStackSlotForValue(V, Builder);
621   }
622 
623   for (const Value *V : SI.Ptrs) {
624     SDValue SDV = Builder.getValue(V);
625     if (!LowerAsVReg.count(SDV))
626       reservePreviousStackSlotForValue(V, Builder);
627   }
628 
629   for (const Value *V : SI.Bases) {
630     SDValue SDV = Builder.getValue(V);
631     if (!LowerAsVReg.count(SDV))
632       reservePreviousStackSlotForValue(V, Builder);
633   }
634 
635   // First, prefix the list with the number of unique values to be
636   // lowered.  Note that this is the number of *Values* not the
637   // number of SDValues required to lower them.
638   const int NumVMSArgs = SI.DeoptState.size();
639   pushStackMapConstant(Ops, Builder, NumVMSArgs);
640 
641   // The vm state arguments are lowered in an opaque manner.  We do not know
642   // what type of values are contained within.
643   LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
644   for (const Value *V : SI.DeoptState) {
645     SDValue Incoming;
646     // If this is a function argument at a static frame index, generate it as
647     // the frame index.
648     if (const Argument *Arg = dyn_cast<Argument>(V)) {
649       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
650       if (FI != INT_MAX)
651         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
652     }
653     if (!Incoming.getNode())
654       Incoming = Builder.getValue(V);
655     LLVM_DEBUG(dbgs() << "Value " << *V
656                       << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
657     lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
658                                  Builder);
659   }
660 
661   // Finally, go ahead and lower all the gc arguments.
662   pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
663   for (SDValue SDV : LoweredGCPtrs)
664     lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
665                                  Builder);
666 
667   // Copy to out vector. LoweredGCPtrs will be empty after this point.
668   GCPtrs = LoweredGCPtrs.takeVector();
669 
670   // If there are any explicit spill slots passed to the statepoint, record
671   // them, but otherwise do not do anything special.  These are user provided
672   // allocas and give control over placement to the consumer.  In this case,
673   // it is the contents of the slot which may get updated, not the pointer to
674   // the alloca
675   SmallVector<SDValue, 4> Allocas;
676   for (Value *V : SI.GCArgs) {
677     SDValue Incoming = Builder.getValue(V);
678     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
679       // This handles allocas as arguments to the statepoint
680       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
681              "Incoming value is a frame index!");
682       Allocas.push_back(Builder.DAG.getTargetFrameIndex(
683           FI->getIndex(), Builder.getFrameIndexTy()));
684 
685       auto &MF = Builder.DAG.getMachineFunction();
686       auto *MMO = getMachineMemOperand(MF, *FI);
687       MemRefs.push_back(MMO);
688     }
689   }
690   pushStackMapConstant(Ops, Builder, Allocas.size());
691   Ops.append(Allocas.begin(), Allocas.end());
692 
693   // Now construct GC base/derived map;
694   pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
695   SDLoc L = Builder.getCurSDLoc();
696   for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
697     SDValue Base = Builder.getValue(SI.Bases[i]);
698     assert(GCPtrIndexMap.count(Base) && "base not found in index map");
699     Ops.push_back(
700         Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
701     SDValue Derived = Builder.getValue(SI.Ptrs[i]);
702     assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
703     Ops.push_back(
704         Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
705   }
706 }
707 
708 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
709     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
710   // The basic scheme here is that information about both the original call and
711   // the safepoint is encoded in the CallInst.  We create a temporary call and
712   // lower it, then reverse engineer the calling sequence.
713 
714   NumOfStatepoints++;
715   // Clear state
716   StatepointLowering.startNewStatepoint(*this);
717   assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
718   assert((GFI || SI.Bases.empty()) &&
719          "No gc specified, so cannot relocate pointers!");
720 
721   LLVM_DEBUG(if (SI.StatepointInstr) dbgs()
722              << "Lowering statepoint " << *SI.StatepointInstr << "\n");
723 #ifndef NDEBUG
724   for (const auto *Reloc : SI.GCRelocates)
725     if (Reloc->getParent() == SI.StatepointInstr->getParent())
726       StatepointLowering.scheduleRelocCall(*Reloc);
727 #endif
728 
729   // Lower statepoint vmstate and gcstate arguments
730 
731   // All lowered meta args.
732   SmallVector<SDValue, 10> LoweredMetaArgs;
733   // Lowered GC pointers (subset of above).
734   SmallVector<SDValue, 16> LoweredGCArgs;
735   SmallVector<MachineMemOperand*, 16> MemRefs;
736   // Maps derived pointer SDValue to statepoint result of relocated pointer.
737   DenseMap<SDValue, int> LowerAsVReg;
738   lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
739                           SI, *this);
740 
741   // Now that we've emitted the spills, we need to update the root so that the
742   // call sequence is ordered correctly.
743   SI.CLI.setChain(getRoot());
744 
745   // Get call node, we will replace it later with statepoint
746   SDValue ReturnVal;
747   SDNode *CallNode;
748   std::tie(ReturnVal, CallNode) = lowerCallFromStatepointLoweringInfo(SI, *this);
749 
750   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
751   // nodes with all the appropriate arguments and return values.
752 
753   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
754   SDValue Chain = CallNode->getOperand(0);
755 
756   SDValue Glue;
757   bool CallHasIncomingGlue = CallNode->getGluedNode();
758   if (CallHasIncomingGlue) {
759     // Glue is always last operand
760     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
761   }
762 
763   // Build the GC_TRANSITION_START node if necessary.
764   //
765   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
766   // order in which they appear in the call to the statepoint intrinsic. If
767   // any of the operands is a pointer-typed, that operand is immediately
768   // followed by a SRCVALUE for the pointer that may be used during lowering
769   // (e.g. to form MachinePointerInfo values for loads/stores).
770   const bool IsGCTransition =
771       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
772       (uint64_t)StatepointFlags::GCTransition;
773   if (IsGCTransition) {
774     SmallVector<SDValue, 8> TSOps;
775 
776     // Add chain
777     TSOps.push_back(Chain);
778 
779     // Add GC transition arguments
780     for (const Value *V : SI.GCTransitionArgs) {
781       TSOps.push_back(getValue(V));
782       if (V->getType()->isPointerTy())
783         TSOps.push_back(DAG.getSrcValue(V));
784     }
785 
786     // Add glue if necessary
787     if (CallHasIncomingGlue)
788       TSOps.push_back(Glue);
789 
790     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
791 
792     SDValue GCTransitionStart =
793         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
794 
795     Chain = GCTransitionStart.getValue(0);
796     Glue = GCTransitionStart.getValue(1);
797   }
798 
799   // TODO: Currently, all of these operands are being marked as read/write in
800   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
801   // and flags to be read-only.
802   SmallVector<SDValue, 40> Ops;
803 
804   // Add the <id> and <numBytes> constants.
805   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
806   Ops.push_back(
807       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
808 
809   // Calculate and push starting position of vmstate arguments
810   // Get number of arguments incoming directly into call node
811   unsigned NumCallRegArgs =
812       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
813   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
814 
815   // Add call target
816   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
817   Ops.push_back(CallTarget);
818 
819   // Add call arguments
820   // Get position of register mask in the call
821   SDNode::op_iterator RegMaskIt;
822   if (CallHasIncomingGlue)
823     RegMaskIt = CallNode->op_end() - 2;
824   else
825     RegMaskIt = CallNode->op_end() - 1;
826   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
827 
828   // Add a constant argument for the calling convention
829   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
830 
831   // Add a constant argument for the flags
832   uint64_t Flags = SI.StatepointFlags;
833   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
834          "Unknown flag used");
835   pushStackMapConstant(Ops, *this, Flags);
836 
837   // Insert all vmstate and gcstate arguments
838   llvm::append_range(Ops, LoweredMetaArgs);
839 
840   // Add register mask from call node
841   Ops.push_back(*RegMaskIt);
842 
843   // Add chain
844   Ops.push_back(Chain);
845 
846   // Same for the glue, but we add it only if original call had it
847   if (Glue.getNode())
848     Ops.push_back(Glue);
849 
850   // Compute return values.  Provide a glue output since we consume one as
851   // input.  This allows someone else to chain off us as needed.
852   SmallVector<EVT, 8> NodeTys;
853   for (auto SD : LoweredGCArgs) {
854     if (!LowerAsVReg.count(SD))
855       continue;
856     NodeTys.push_back(SD.getValueType());
857   }
858   LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
859   assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
860   NodeTys.push_back(MVT::Other);
861   NodeTys.push_back(MVT::Glue);
862 
863   unsigned NumResults = NodeTys.size();
864   MachineSDNode *StatepointMCNode =
865     DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
866   DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
867 
868   // For values lowered to tied-defs, create the virtual registers if used
869   // in other blocks. For local gc.relocate record appropriate statepoint
870   // result in StatepointLoweringState.
871   DenseMap<SDValue, Register> VirtRegs;
872   for (const auto *Relocate : SI.GCRelocates) {
873     Value *Derived = Relocate->getDerivedPtr();
874     SDValue SD = getValue(Derived);
875     if (!LowerAsVReg.count(SD))
876       continue;
877 
878     SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
879 
880     // Handle local relocate. Note that different relocates might
881     // map to the same SDValue.
882     if (SI.StatepointInstr->getParent() == Relocate->getParent()) {
883       SDValue Res = StatepointLowering.getLocation(SD);
884       if (Res)
885         assert(Res == Relocated);
886       else
887         StatepointLowering.setLocation(SD, Relocated);
888       continue;
889     }
890 
891     // Handle multiple gc.relocates of the same input efficiently.
892     if (VirtRegs.count(SD))
893       continue;
894 
895     auto *RetTy = Relocate->getType();
896     Register Reg = FuncInfo.CreateRegs(RetTy);
897     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
898                      DAG.getDataLayout(), Reg, RetTy, std::nullopt);
899     SDValue Chain = DAG.getRoot();
900     RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
901     PendingExports.push_back(Chain);
902 
903     VirtRegs[SD] = Reg;
904   }
905 
906   // Record for later use how each relocation was lowered.  This is needed to
907   // allow later gc.relocates to mirror the lowering chosen.
908   const Instruction *StatepointInstr = SI.StatepointInstr;
909   auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
910   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
911     const Value *V = Relocate->getDerivedPtr();
912     SDValue SDV = getValue(V);
913     SDValue Loc = StatepointLowering.getLocation(SDV);
914 
915     bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent());
916 
917     RecordType Record;
918     if (IsLocal && LowerAsVReg.count(SDV)) {
919       // Result is already stored in StatepointLowering
920       Record.type = RecordType::SDValueNode;
921     } else if (LowerAsVReg.count(SDV)) {
922       Record.type = RecordType::VReg;
923       assert(VirtRegs.count(SDV));
924       Record.payload.Reg = VirtRegs[SDV];
925     } else if (Loc.getNode()) {
926       Record.type = RecordType::Spill;
927       Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
928     } else {
929       Record.type = RecordType::NoRelocate;
930       // If we didn't relocate a value, we'll essentialy end up inserting an
931       // additional use of the original value when lowering the gc.relocate.
932       // We need to make sure the value is available at the new use, which
933       // might be in another block.
934       if (Relocate->getParent() != StatepointInstr->getParent())
935         ExportFromCurrentBlock(V);
936     }
937     RelocationMap[Relocate] = Record;
938   }
939 
940 
941 
942   SDNode *SinkNode = StatepointMCNode;
943 
944   // Build the GC_TRANSITION_END node if necessary.
945   //
946   // See the comment above regarding GC_TRANSITION_START for the layout of
947   // the operands to the GC_TRANSITION_END node.
948   if (IsGCTransition) {
949     SmallVector<SDValue, 8> TEOps;
950 
951     // Add chain
952     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
953 
954     // Add GC transition arguments
955     for (const Value *V : SI.GCTransitionArgs) {
956       TEOps.push_back(getValue(V));
957       if (V->getType()->isPointerTy())
958         TEOps.push_back(DAG.getSrcValue(V));
959     }
960 
961     // Add glue
962     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
963 
964     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
965 
966     SDValue GCTransitionStart =
967         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
968 
969     SinkNode = GCTransitionStart.getNode();
970   }
971 
972   // Replace original call
973   // Call: ch,glue = CALL ...
974   // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
975   unsigned NumSinkValues = SinkNode->getNumValues();
976   SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
977                                  SDValue(SinkNode, NumSinkValues - 1)};
978   DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
979   // Remove original call node
980   DAG.DeleteNode(CallNode);
981 
982   // Since we always emit CopyToRegs (even for local relocates), we must
983   // update root, so that they are emitted before any local uses.
984   (void)getControlRoot();
985 
986   // TODO: A better future implementation would be to emit a single variable
987   // argument, variable return value STATEPOINT node here and then hookup the
988   // return value of each gc.relocate to the respective output of the
989   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
990   // to actually be possible today.
991 
992   return ReturnVal;
993 }
994 
995 /// Return two gc.results if present.  First result is a block local
996 /// gc.result, second result is a non-block local gc.result.  Corresponding
997 /// entry will be nullptr if not present.
998 static std::pair<const GCResultInst*, const GCResultInst*>
999 getGCResultLocality(const GCStatepointInst &S) {
1000   std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr);
1001   for (const auto *U : S.users()) {
1002     auto *GRI = dyn_cast<GCResultInst>(U);
1003     if (!GRI)
1004       continue;
1005     if (GRI->getParent() == S.getParent())
1006       Res.first = GRI;
1007     else
1008       Res.second = GRI;
1009   }
1010   return Res;
1011 }
1012 
1013 void
1014 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
1015                                      const BasicBlock *EHPadBB /*= nullptr*/) {
1016   assert(I.getCallingConv() != CallingConv::AnyReg &&
1017          "anyregcc is not supported on statepoints!");
1018 
1019 #ifndef NDEBUG
1020   // Check that the associated GCStrategy expects to encounter statepoints.
1021   assert(GFI->getStrategy().useStatepoints() &&
1022          "GCStrategy does not expect to encounter statepoints");
1023 #endif
1024 
1025   SDValue ActualCallee;
1026   SDValue Callee = getValue(I.getActualCalledOperand());
1027 
1028   if (I.getNumPatchBytes() > 0) {
1029     // If we've been asked to emit a nop sequence instead of a call instruction
1030     // for this statepoint then don't lower the call target, but use a constant
1031     // `undef` instead.  Not lowering the call target lets statepoint clients
1032     // get away without providing a physical address for the symbolic call
1033     // target at link time.
1034     ActualCallee = DAG.getUNDEF(Callee.getValueType());
1035   } else {
1036     ActualCallee = Callee;
1037   }
1038 
1039   const auto GCResultLocality = getGCResultLocality(I);
1040   AttributeSet retAttrs;
1041   if (GCResultLocality.first)
1042     retAttrs = GCResultLocality.first->getAttributes().getRetAttrs();
1043 
1044   StatepointLoweringInfo SI(DAG);
1045   populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1046                            I.getNumCallArgs(), ActualCallee,
1047                            I.getActualReturnType(), retAttrs,
1048                            /*IsPatchPoint=*/false);
1049 
1050   // There may be duplication in the gc.relocate list; such as two copies of
1051   // each relocation on normal and exceptional path for an invoke.  We only
1052   // need to spill once and record one copy in the stackmap, but we need to
1053   // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
1054   // handled as a CSE problem elsewhere.)
1055   // TODO: There a couple of major stackmap size optimizations we could do
1056   // here if we wished.
1057   // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1058   // record {B,B} if it's seen later.
1059   // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1060   // given that, we could change the format to record base pointer relocations
1061   // separately with half the space. This would require a format rev and a
1062   // fairly major rework of the STATEPOINT node though.
1063   SmallSet<SDValue, 8> Seen;
1064   for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1065     SI.GCRelocates.push_back(Relocate);
1066 
1067     SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1068     if (Seen.insert(DerivedSD).second) {
1069       SI.Bases.push_back(Relocate->getBasePtr());
1070       SI.Ptrs.push_back(Relocate->getDerivedPtr());
1071     }
1072   }
1073 
1074   // If we find a deopt value which isn't explicitly added, we need to
1075   // ensure it gets lowered such that gc cycles occurring before the
1076   // deoptimization event during the lifetime of the call don't invalidate
1077   // the pointer we're deopting with.  Note that we assume that all
1078   // pointers passed to deopt are base pointers; relaxing that assumption
1079   // would require relatively large changes to how we represent relocations.
1080   for (Value *V : I.deopt_operands()) {
1081     if (!isGCValue(V, *this))
1082       continue;
1083     if (Seen.insert(getValue(V)).second) {
1084       SI.Bases.push_back(V);
1085       SI.Ptrs.push_back(V);
1086     }
1087   }
1088 
1089   SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
1090   SI.StatepointInstr = &I;
1091   SI.ID = I.getID();
1092 
1093   SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1094   SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1095                                             I.gc_transition_args_end());
1096 
1097   SI.StatepointFlags = I.getFlags();
1098   SI.NumPatchBytes = I.getNumPatchBytes();
1099   SI.EHPadBB = EHPadBB;
1100 
1101   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1102 
1103   // Export the result value if needed
1104   if (!GCResultLocality.first && !GCResultLocality.second) {
1105     // The return value is not needed, just generate a poison value.
1106     // Note: This covers the void return case.
1107     setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1108     return;
1109   }
1110 
1111   if (GCResultLocality.first) {
1112     // Result value will be used in a same basic block. Don't export it or
1113     // perform any explicit register copies. The gc_result will simply grab
1114     // this value.
1115     setValue(&I, ReturnValue);
1116   }
1117 
1118   if (!GCResultLocality.second)
1119     return;
1120   // Result value will be used in a different basic block so we need to export
1121   // it now.  Default exporting mechanism will not work here because statepoint
1122   // call has a different type than the actual call. It means that by default
1123   // llvm will create export register of the wrong type (always i32 in our
1124   // case). So instead we need to create export register with correct type
1125   // manually.
1126   // TODO: To eliminate this problem we can remove gc.result intrinsics
1127   //       completely and make statepoint call to return a tuple.
1128   Type *RetTy = GCResultLocality.second->getType();
1129   Register Reg = FuncInfo.CreateRegs(RetTy);
1130   RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1131                    DAG.getDataLayout(), Reg, RetTy,
1132                    I.getCallingConv());
1133   SDValue Chain = DAG.getEntryNode();
1134 
1135   RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1136   PendingExports.push_back(Chain);
1137   FuncInfo.ValueMap[&I] = Reg;
1138 }
1139 
1140 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1141     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1142     bool VarArgDisallowed, bool ForceVoidReturnTy) {
1143   StatepointLoweringInfo SI(DAG);
1144   unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1145   populateCallLoweringInfo(
1146       SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee,
1147       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1148       Call->getAttributes().getRetAttrs(), /*IsPatchPoint=*/false);
1149   if (!VarArgDisallowed)
1150     SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1151 
1152   auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1153 
1154   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1155 
1156   auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1157   SI.ID = SD.StatepointID.value_or(DefaultID);
1158   SI.NumPatchBytes = SD.NumPatchBytes.value_or(0);
1159 
1160   SI.DeoptState =
1161       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1162   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1163   SI.EHPadBB = EHPadBB;
1164 
1165   // NB! The GC arguments are deliberately left empty.
1166 
1167   LLVM_DEBUG(dbgs() << "Lowering call with deopt bundle " << *Call << "\n");
1168   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1169     ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1170     setValue(Call, ReturnVal);
1171   }
1172 }
1173 
1174 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1175     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1176   LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1177                                    /* VarArgDisallowed = */ false,
1178                                    /* ForceVoidReturnTy  = */ false);
1179 }
1180 
1181 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1182   // The result value of the gc_result is simply the result of the actual
1183   // call.  We've already emitted this, so just grab the value.
1184   const Value *SI = CI.getStatepoint();
1185   assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) &&
1186          "GetStatepoint must return one of two types");
1187   if (isa<UndefValue>(SI))
1188     return;
1189 
1190   if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) {
1191     setValue(&CI, getValue(SI));
1192     return;
1193   }
1194   // Statepoint is in different basic block so we should have stored call
1195   // result in a virtual register.
1196   // We can not use default getValue() functionality to copy value from this
1197   // register because statepoint and actual call return types can be
1198   // different, and getValue() will use CopyFromReg of the wrong type,
1199   // which is always i32 in our case.
1200   Type *RetTy = CI.getType();
1201   SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1202 
1203   assert(CopyFromReg.getNode());
1204   setValue(&CI, CopyFromReg);
1205 }
1206 
1207 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1208   const Value *Statepoint = Relocate.getStatepoint();
1209 #ifndef NDEBUG
1210   // Consistency check
1211   // We skip this check for relocates not in the same basic block as their
1212   // statepoint. It would be too expensive to preserve validation info through
1213   // different basic blocks.
1214   assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
1215          "GetStatepoint must return one of two types");
1216   if (isa<UndefValue>(Statepoint))
1217     return;
1218 
1219   if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent())
1220     StatepointLowering.relocCallVisited(Relocate);
1221 #endif
1222 
1223   const Value *DerivedPtr = Relocate.getDerivedPtr();
1224   auto &RelocationMap =
1225       FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)];
1226   auto SlotIt = RelocationMap.find(&Relocate);
1227   assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1228   const RecordType &Record = SlotIt->second;
1229 
1230   // If relocation was done via virtual register..
1231   if (Record.type == RecordType::SDValueNode) {
1232     assert(cast<GCStatepointInst>(Statepoint)->getParent() ==
1233                Relocate.getParent() &&
1234            "Nonlocal gc.relocate mapped via SDValue");
1235     SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr));
1236     assert(SDV.getNode() && "empty SDValue");
1237     setValue(&Relocate, SDV);
1238     return;
1239   }
1240   if (Record.type == RecordType::VReg) {
1241     Register InReg = Record.payload.Reg;
1242     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1243                      DAG.getDataLayout(), InReg, Relocate.getType(),
1244                      std::nullopt); // This is not an ABI copy.
1245     // We generate copy to/from regs even for local uses, hence we must
1246     // chain with current root to ensure proper ordering of copies w.r.t.
1247     // statepoint.
1248     SDValue Chain = DAG.getRoot();
1249     SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1250                                              Chain, nullptr, nullptr);
1251     setValue(&Relocate, Relocation);
1252     return;
1253   }
1254 
1255   if (Record.type == RecordType::Spill) {
1256     unsigned Index = Record.payload.FI;
1257     SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1258 
1259     // All the reloads are independent and are reading memory only modified by
1260     // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1261     // this lets CSE kick in for free and allows reordering of
1262     // instructions if possible.  The lowering for statepoint sets the root,
1263     // so this is ordering all reloads with the either
1264     // a) the statepoint node itself, or
1265     // b) the entry of the current block for an invoke statepoint.
1266     const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1267 
1268     auto &MF = DAG.getMachineFunction();
1269     auto &MFI = MF.getFrameInfo();
1270     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1271     auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1272                                             MFI.getObjectSize(Index),
1273                                             MFI.getObjectAlign(Index));
1274 
1275     auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1276                                                            Relocate.getType());
1277 
1278     SDValue SpillLoad =
1279         DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
1280     PendingLoads.push_back(SpillLoad.getValue(1));
1281 
1282     assert(SpillLoad.getNode());
1283     setValue(&Relocate, SpillLoad);
1284     return;
1285   }
1286 
1287   assert(Record.type == RecordType::NoRelocate);
1288   SDValue SD = getValue(DerivedPtr);
1289 
1290   if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1291     // Lowering relocate(undef) as arbitrary constant. Current constant value
1292     // is chosen such that it's unlikely to be a valid pointer.
1293     setValue(&Relocate, DAG.getConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1294     return;
1295   }
1296 
1297   // We didn't need to spill these special cases (constants and allocas).
1298   // See the handling in spillIncomingValueForStatepoint for detail.
1299   setValue(&Relocate, SD);
1300 }
1301 
1302 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1303   const auto &TLI = DAG.getTargetLoweringInfo();
1304   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1305                                          TLI.getPointerTy(DAG.getDataLayout()));
1306 
1307   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1308   // call.  We also do not lower the return value to any virtual register, and
1309   // change the immediately following return to a trap instruction.
1310   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1311                                    /* VarArgDisallowed = */ true,
1312                                    /* ForceVoidReturnTy = */ true);
1313 }
1314 
1315 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1316   // We do not lower the return value from llvm.deoptimize to any virtual
1317   // register, and change the immediately following return to a trap
1318   // instruction.
1319   if (DAG.getTarget().Options.TrapUnreachable)
1320     DAG.setRoot(
1321         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1322 }
1323