1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GCMetadata.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/RuntimeLibcalls.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/StackMaps.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/GCStrategy.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include <cassert> 47 #include <cstddef> 48 #include <cstdint> 49 #include <iterator> 50 #include <tuple> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "statepoint-lowering" 56 57 STATISTIC(NumSlotsAllocatedForStatepoints, 58 "Number of stack slots allocated for statepoints"); 59 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 60 STATISTIC(StatepointMaxSlotsRequired, 61 "Maximum number of stack slots required for a singe statepoint"); 62 63 cl::opt<bool> UseRegistersForDeoptValues( 64 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 65 cl::desc("Allow using registers for non pointer deopt args")); 66 67 cl::opt<bool> UseRegistersForGCPointersInLandingPad( 68 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false), 69 cl::desc("Allow using registers for gc pointer in landing pad")); 70 71 cl::opt<unsigned> MaxRegistersForGCPointers( 72 "max-registers-for-gc-values", cl::Hidden, cl::init(0), 73 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in")); 74 75 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType; 76 77 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 78 SelectionDAGBuilder &Builder, uint64_t Value) { 79 SDLoc L = Builder.getCurSDLoc(); 80 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 81 MVT::i64)); 82 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 83 } 84 85 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 86 // Consistency check 87 assert(PendingGCRelocateCalls.empty() && 88 "Trying to visit statepoint before finished processing previous one"); 89 Locations.clear(); 90 NextSlotToAllocate = 0; 91 // Need to resize this on each safepoint - we need the two to stay in sync and 92 // the clear patterns of a SelectionDAGBuilder have no relation to 93 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 94 AllocatedStackSlots.clear(); 95 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 96 } 97 98 void StatepointLoweringState::clear() { 99 Locations.clear(); 100 AllocatedStackSlots.clear(); 101 assert(PendingGCRelocateCalls.empty() && 102 "cleared before statepoint sequence completed"); 103 } 104 105 SDValue 106 StatepointLoweringState::allocateStackSlot(EVT ValueType, 107 SelectionDAGBuilder &Builder) { 108 NumSlotsAllocatedForStatepoints++; 109 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 110 111 unsigned SpillSize = ValueType.getStoreSize(); 112 assert((SpillSize * 8) == 113 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8. 114 "Size not in bytes?"); 115 116 // First look for a previously created stack slot which is not in 117 // use (accounting for the fact arbitrary slots may already be 118 // reserved), or to create a new stack slot and use it. 119 120 const size_t NumSlots = AllocatedStackSlots.size(); 121 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 122 123 assert(AllocatedStackSlots.size() == 124 Builder.FuncInfo.StatepointStackSlots.size() && 125 "Broken invariant"); 126 127 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 128 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 129 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 130 if (MFI.getObjectSize(FI) == SpillSize) { 131 AllocatedStackSlots.set(NextSlotToAllocate); 132 // TODO: Is ValueType the right thing to use here? 133 return Builder.DAG.getFrameIndex(FI, ValueType); 134 } 135 } 136 } 137 138 // Couldn't find a free slot, so create a new one: 139 140 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 141 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 142 MFI.markAsStatepointSpillSlotObjectIndex(FI); 143 144 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 145 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 146 assert(AllocatedStackSlots.size() == 147 Builder.FuncInfo.StatepointStackSlots.size() && 148 "Broken invariant"); 149 150 StatepointMaxSlotsRequired.updateMax( 151 Builder.FuncInfo.StatepointStackSlots.size()); 152 153 return SpillSlot; 154 } 155 156 /// Utility function for reservePreviousStackSlotForValue. Tries to find 157 /// stack slot index to which we have spilled value for previous statepoints. 158 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 159 static Optional<int> findPreviousSpillSlot(const Value *Val, 160 SelectionDAGBuilder &Builder, 161 int LookUpDepth) { 162 // Can not look any further - give up now 163 if (LookUpDepth <= 0) 164 return None; 165 166 // Spill location is known for gc relocates 167 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 168 const auto &RelocationMap = 169 Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()]; 170 171 auto It = RelocationMap.find(Relocate->getDerivedPtr()); 172 if (It == RelocationMap.end()) 173 return None; 174 175 auto &Record = It->second; 176 if (Record.type != RecordType::Spill) 177 return None; 178 179 return Record.payload.FI; 180 } 181 182 // Look through bitcast instructions. 183 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 184 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 185 186 // Look through phi nodes 187 // All incoming values should have same known stack slot, otherwise result 188 // is unknown. 189 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 190 Optional<int> MergedResult = None; 191 192 for (auto &IncomingValue : Phi->incoming_values()) { 193 Optional<int> SpillSlot = 194 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 195 if (!SpillSlot.hasValue()) 196 return None; 197 198 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 199 return None; 200 201 MergedResult = SpillSlot; 202 } 203 return MergedResult; 204 } 205 206 // TODO: We can do better for PHI nodes. In cases like this: 207 // ptr = phi(relocated_pointer, not_relocated_pointer) 208 // statepoint(ptr) 209 // We will return that stack slot for ptr is unknown. And later we might 210 // assign different stack slots for ptr and relocated_pointer. This limits 211 // llvm's ability to remove redundant stores. 212 // Unfortunately it's hard to accomplish in current infrastructure. 213 // We use this function to eliminate spill store completely, while 214 // in example we still need to emit store, but instead of any location 215 // we need to use special "preferred" location. 216 217 // TODO: handle simple updates. If a value is modified and the original 218 // value is no longer live, it would be nice to put the modified value in the 219 // same slot. This allows folding of the memory accesses for some 220 // instructions types (like an increment). 221 // statepoint (i) 222 // i1 = i+1 223 // statepoint (i1) 224 // However we need to be careful for cases like this: 225 // statepoint(i) 226 // i1 = i+1 227 // statepoint(i, i1) 228 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 229 // put handling of simple modifications in this function like it's done 230 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 231 // which we visit values is unspecified. 232 233 // Don't know any information about this instruction 234 return None; 235 } 236 237 /// Return true if-and-only-if the given SDValue can be lowered as either a 238 /// constant argument or a stack reference. The key point is that the value 239 /// doesn't need to be spilled or tracked as a vreg use. 240 static bool willLowerDirectly(SDValue Incoming) { 241 // We are making an unchecked assumption that the frame size <= 2^16 as that 242 // is the largest offset which can be encoded in the stackmap format. 243 if (isa<FrameIndexSDNode>(Incoming)) 244 return true; 245 246 // The largest constant describeable in the StackMap format is 64 bits. 247 // Potential Optimization: Constants values are sign extended by consumer, 248 // and thus there are many constants of static type > 64 bits whose value 249 // happens to be sext(Con64) and could thus be lowered directly. 250 if (Incoming.getValueType().getSizeInBits() > 64) 251 return false; 252 253 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 254 Incoming.isUndef()); 255 } 256 257 /// Try to find existing copies of the incoming values in stack slots used for 258 /// statepoint spilling. If we can find a spill slot for the incoming value, 259 /// mark that slot as allocated, and reuse the same slot for this safepoint. 260 /// This helps to avoid series of loads and stores that only serve to reshuffle 261 /// values on the stack between calls. 262 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 263 SelectionDAGBuilder &Builder) { 264 SDValue Incoming = Builder.getValue(IncomingValue); 265 266 // If we won't spill this, we don't need to check for previously allocated 267 // stack slots. 268 if (willLowerDirectly(Incoming)) 269 return; 270 271 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 272 if (OldLocation.getNode()) 273 // Duplicates in input 274 return; 275 276 const int LookUpDepth = 6; 277 Optional<int> Index = 278 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 279 if (!Index.hasValue()) 280 return; 281 282 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 283 284 auto SlotIt = find(StatepointSlots, *Index); 285 assert(SlotIt != StatepointSlots.end() && 286 "Value spilled to the unknown stack slot"); 287 288 // This is one of our dedicated lowering slots 289 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 290 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 291 // stack slot already assigned to someone else, can't use it! 292 // TODO: currently we reserve space for gc arguments after doing 293 // normal allocation for deopt arguments. We should reserve for 294 // _all_ deopt and gc arguments, then start allocating. This 295 // will prevent some moves being inserted when vm state changes, 296 // but gc state doesn't between two calls. 297 return; 298 } 299 // Reserve this stack slot 300 Builder.StatepointLowering.reserveStackSlot(Offset); 301 302 // Cache this slot so we find it when going through the normal 303 // assignment loop. 304 SDValue Loc = 305 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 306 Builder.StatepointLowering.setLocation(Incoming, Loc); 307 } 308 309 /// Extract call from statepoint, lower it and return pointer to the 310 /// call node. Also update NodeMap so that getValue(statepoint) will 311 /// reference lowered call result 312 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 313 SelectionDAGBuilder::StatepointLoweringInfo &SI, 314 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 315 SDValue ReturnValue, CallEndVal; 316 std::tie(ReturnValue, CallEndVal) = 317 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 318 SDNode *CallEnd = CallEndVal.getNode(); 319 320 // Get a call instruction from the call sequence chain. Tail calls are not 321 // allowed. The following code is essentially reverse engineering X86's 322 // LowerCallTo. 323 // 324 // We are expecting DAG to have the following form: 325 // 326 // ch = eh_label (only in case of invoke statepoint) 327 // ch, glue = callseq_start ch 328 // ch, glue = X86::Call ch, glue 329 // ch, glue = callseq_end ch, glue 330 // get_return_value ch, glue 331 // 332 // get_return_value can either be a sequence of CopyFromReg instructions 333 // to grab the return value from the return register(s), or it can be a LOAD 334 // to load a value returned by reference via a stack slot. 335 336 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 337 if (HasDef) { 338 if (CallEnd->getOpcode() == ISD::LOAD) 339 CallEnd = CallEnd->getOperand(0).getNode(); 340 else 341 while (CallEnd->getOpcode() == ISD::CopyFromReg) 342 CallEnd = CallEnd->getOperand(0).getNode(); 343 } 344 345 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 346 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 347 } 348 349 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 350 FrameIndexSDNode &FI) { 351 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 352 auto MMOFlags = MachineMemOperand::MOStore | 353 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 354 auto &MFI = MF.getFrameInfo(); 355 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 356 MFI.getObjectSize(FI.getIndex()), 357 MFI.getObjectAlign(FI.getIndex())); 358 } 359 360 /// Spill a value incoming to the statepoint. It might be either part of 361 /// vmstate 362 /// or gcstate. In both cases unconditionally spill it on the stack unless it 363 /// is a null constant. Return pair with first element being frame index 364 /// containing saved value and second element with outgoing chain from the 365 /// emitted store 366 static std::tuple<SDValue, SDValue, MachineMemOperand*> 367 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 368 SelectionDAGBuilder &Builder) { 369 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 370 MachineMemOperand* MMO = nullptr; 371 372 // Emit new store if we didn't do it for this ptr before 373 if (!Loc.getNode()) { 374 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 375 Builder); 376 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 377 // We use TargetFrameIndex so that isel will not select it into LEA 378 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 379 380 // Right now we always allocate spill slots that are of the same 381 // size as the value we're about to spill (the size of spillee can 382 // vary since we spill vectors of pointers too). At some point we 383 // can consider allowing spills of smaller values to larger slots 384 // (i.e. change the '==' in the assert below to a '>='). 385 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 386 assert((MFI.getObjectSize(Index) * 8) == 387 (-8 & (7 + // Round up modulo 8. 388 (int64_t)Incoming.getValueSizeInBits())) && 389 "Bad spill: stack slot does not match!"); 390 391 // Note: Using the alignment of the spill slot (rather than the abi or 392 // preferred alignment) is required for correctness when dealing with spill 393 // slots with preferred alignments larger than frame alignment.. 394 auto &MF = Builder.DAG.getMachineFunction(); 395 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 396 auto *StoreMMO = MF.getMachineMemOperand( 397 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 398 MFI.getObjectAlign(Index)); 399 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 400 StoreMMO); 401 402 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 403 404 Builder.StatepointLowering.setLocation(Incoming, Loc); 405 } 406 407 assert(Loc.getNode()); 408 return std::make_tuple(Loc, Chain, MMO); 409 } 410 411 /// Lower a single value incoming to a statepoint node. This value can be 412 /// either a deopt value or a gc value, the handling is the same. We special 413 /// case constants and allocas, then fall back to spilling if required. 414 static void 415 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 416 SmallVectorImpl<SDValue> &Ops, 417 SmallVectorImpl<MachineMemOperand *> &MemRefs, 418 SelectionDAGBuilder &Builder) { 419 420 if (willLowerDirectly(Incoming)) { 421 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 422 // This handles allocas as arguments to the statepoint (this is only 423 // really meaningful for a deopt value. For GC, we'd be trying to 424 // relocate the address of the alloca itself?) 425 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 426 "Incoming value is a frame index!"); 427 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 428 Builder.getFrameIndexTy())); 429 430 auto &MF = Builder.DAG.getMachineFunction(); 431 auto *MMO = getMachineMemOperand(MF, *FI); 432 MemRefs.push_back(MMO); 433 return; 434 } 435 436 assert(Incoming.getValueType().getSizeInBits() <= 64); 437 438 if (Incoming.isUndef()) { 439 // Put an easily recognized constant that's unlikely to be a valid 440 // value so that uses of undef by the consumer of the stackmap is 441 // easily recognized. This is legal since the compiler is always 442 // allowed to chose an arbitrary value for undef. 443 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 444 return; 445 } 446 447 // If the original value was a constant, make sure it gets recorded as 448 // such in the stackmap. This is required so that the consumer can 449 // parse any internal format to the deopt state. It also handles null 450 // pointers and other constant pointers in GC states. 451 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 452 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 453 return; 454 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 455 pushStackMapConstant(Ops, Builder, 456 C->getValueAPF().bitcastToAPInt().getZExtValue()); 457 return; 458 } 459 460 llvm_unreachable("unhandled direct lowering case"); 461 } 462 463 464 465 if (!RequireSpillSlot) { 466 // If this value is live in (not live-on-return, or live-through), we can 467 // treat it the same way patchpoint treats it's "live in" values. We'll 468 // end up folding some of these into stack references, but they'll be 469 // handled by the register allocator. Note that we do not have the notion 470 // of a late use so these values might be placed in registers which are 471 // clobbered by the call. This is fine for live-in. For live-through 472 // fix-up pass should be executed to force spilling of such registers. 473 Ops.push_back(Incoming); 474 } else { 475 // Otherwise, locate a spill slot and explicitly spill it so it can be 476 // found by the runtime later. Note: We know all of these spills are 477 // independent, but don't bother to exploit that chain wise. DAGCombine 478 // will happily do so as needed, so doing it here would be a small compile 479 // time win at most. 480 SDValue Chain = Builder.getRoot(); 481 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 482 Ops.push_back(std::get<0>(Res)); 483 if (auto *MMO = std::get<2>(Res)) 484 MemRefs.push_back(MMO); 485 Chain = std::get<1>(Res);; 486 Builder.DAG.setRoot(Chain); 487 } 488 489 } 490 491 /// Return true if value V represents the GC value. The behavior is conservative 492 /// in case it is not sure that value is not GC the function returns true. 493 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) { 494 auto *Ty = V->getType(); 495 if (!Ty->isPtrOrPtrVectorTy()) 496 return false; 497 if (auto *GFI = Builder.GFI) 498 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 499 return *IsManaged; 500 return true; // conservative 501 } 502 503 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 504 /// lowering is described in lowerIncomingStatepointValue. This function is 505 /// responsible for lowering everything in the right position and playing some 506 /// tricks to avoid redundant stack manipulation where possible. On 507 /// completion, 'Ops' will contain ready to use operands for machine code 508 /// statepoint. The chain nodes will have already been created and the DAG root 509 /// will be set to the last value spilled (if any were). 510 static void 511 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 512 SmallVectorImpl<MachineMemOperand *> &MemRefs, 513 SmallVectorImpl<SDValue> &GCPtrs, 514 DenseMap<SDValue, int> &LowerAsVReg, 515 SelectionDAGBuilder::StatepointLoweringInfo &SI, 516 SelectionDAGBuilder &Builder) { 517 // Lower the deopt and gc arguments for this statepoint. Layout will be: 518 // deopt argument length, deopt arguments.., gc arguments... 519 #ifndef NDEBUG 520 if (auto *GFI = Builder.GFI) { 521 // Check that each of the gc pointer and bases we've gotten out of the 522 // safepoint is something the strategy thinks might be a pointer (or vector 523 // of pointers) into the GC heap. This is basically just here to help catch 524 // errors during statepoint insertion. TODO: This should actually be in the 525 // Verifier, but we can't get to the GCStrategy from there (yet). 526 GCStrategy &S = GFI->getStrategy(); 527 for (const Value *V : SI.Bases) { 528 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 529 if (Opt.hasValue()) { 530 assert(Opt.getValue() && 531 "non gc managed base pointer found in statepoint"); 532 } 533 } 534 for (const Value *V : SI.Ptrs) { 535 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 536 if (Opt.hasValue()) { 537 assert(Opt.getValue() && 538 "non gc managed derived pointer found in statepoint"); 539 } 540 } 541 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 542 } else { 543 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 544 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 545 } 546 #endif 547 548 // Figure out what lowering strategy we're going to use for each part 549 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 550 // as "live-through". A "live-through" variable is one which is "live-in", 551 // "live-out", and live throughout the lifetime of the call (i.e. we can find 552 // it from any PC within the transitive callee of the statepoint). In 553 // particular, if the callee spills callee preserved registers we may not 554 // be able to find a value placed in that register during the call. This is 555 // fine for live-out, but not for live-through. If we were willing to make 556 // assumptions about the code generator producing the callee, we could 557 // potentially allow live-through values in callee saved registers. 558 const bool LiveInDeopt = 559 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 560 561 // Decide which deriver pointers will go on VRegs 562 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue(); 563 564 // Pointers used on exceptional path of invoke statepoint. 565 // We cannot assing them to VRegs. 566 SmallSet<SDValue, 8> LPadPointers; 567 if (!UseRegistersForGCPointersInLandingPad) 568 if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) { 569 LandingPadInst *LPI = StInvoke->getLandingPadInst(); 570 for (auto *Relocate : SI.GCRelocates) 571 if (Relocate->getOperand(0) == LPI) { 572 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr())); 573 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr())); 574 } 575 } 576 577 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n"); 578 579 // List of unique lowered GC Pointer values. 580 SmallSetVector<SDValue, 16> LoweredGCPtrs; 581 // Map lowered GC Pointer value to the index in above vector 582 DenseMap<SDValue, unsigned> GCPtrIndexMap; 583 584 unsigned CurNumVRegs = 0; 585 586 auto canPassGCPtrOnVReg = [&](SDValue SD) { 587 if (SD.getValueType().isVector()) 588 return false; 589 if (LPadPointers.count(SD)) 590 return false; 591 return !willLowerDirectly(SD); 592 }; 593 594 auto processGCPtr = [&](const Value *V) { 595 SDValue PtrSD = Builder.getValue(V); 596 if (!LoweredGCPtrs.insert(PtrSD)) 597 return; // skip duplicates 598 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1; 599 600 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen"); 601 if (LowerAsVReg.size() == MaxVRegPtrs) 602 return; 603 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && 604 "IR and SD types disagree"); 605 if (!canPassGCPtrOnVReg(PtrSD)) { 606 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG)); 607 return; 608 } 609 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG)); 610 LowerAsVReg[PtrSD] = CurNumVRegs++; 611 }; 612 613 // Process derived pointers first to give them more chance to go on VReg. 614 for (const Value *V : SI.Ptrs) 615 processGCPtr(V); 616 for (const Value *V : SI.Bases) 617 processGCPtr(V); 618 619 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n"); 620 621 auto requireSpillSlot = [&](const Value *V) { 622 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal( 623 Builder.getValue(V).getValueType())) 624 return true; 625 if (isGCValue(V, Builder)) 626 return !LowerAsVReg.count(Builder.getValue(V)); 627 return !(LiveInDeopt || UseRegistersForDeoptValues); 628 }; 629 630 // Before we actually start lowering (and allocating spill slots for values), 631 // reserve any stack slots which we judge to be profitable to reuse for a 632 // particular value. This is purely an optimization over the code below and 633 // doesn't change semantics at all. It is important for performance that we 634 // reserve slots for both deopt and gc values before lowering either. 635 for (const Value *V : SI.DeoptState) { 636 if (requireSpillSlot(V)) 637 reservePreviousStackSlotForValue(V, Builder); 638 } 639 640 for (const Value *V : SI.Ptrs) { 641 SDValue SDV = Builder.getValue(V); 642 if (!LowerAsVReg.count(SDV)) 643 reservePreviousStackSlotForValue(V, Builder); 644 } 645 646 for (const Value *V : SI.Bases) { 647 SDValue SDV = Builder.getValue(V); 648 if (!LowerAsVReg.count(SDV)) 649 reservePreviousStackSlotForValue(V, Builder); 650 } 651 652 // First, prefix the list with the number of unique values to be 653 // lowered. Note that this is the number of *Values* not the 654 // number of SDValues required to lower them. 655 const int NumVMSArgs = SI.DeoptState.size(); 656 pushStackMapConstant(Ops, Builder, NumVMSArgs); 657 658 // The vm state arguments are lowered in an opaque manner. We do not know 659 // what type of values are contained within. 660 LLVM_DEBUG(dbgs() << "Lowering deopt state\n"); 661 for (const Value *V : SI.DeoptState) { 662 SDValue Incoming; 663 // If this is a function argument at a static frame index, generate it as 664 // the frame index. 665 if (const Argument *Arg = dyn_cast<Argument>(V)) { 666 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 667 if (FI != INT_MAX) 668 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 669 } 670 if (!Incoming.getNode()) 671 Incoming = Builder.getValue(V); 672 LLVM_DEBUG(dbgs() << "Value " << *V 673 << " requireSpillSlot = " << requireSpillSlot(V) << "\n"); 674 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 675 Builder); 676 } 677 678 // Finally, go ahead and lower all the gc arguments. 679 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size()); 680 for (SDValue SDV : LoweredGCPtrs) 681 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs, 682 Builder); 683 684 // Copy to out vector. LoweredGCPtrs will be empty after this point. 685 GCPtrs = LoweredGCPtrs.takeVector(); 686 687 // If there are any explicit spill slots passed to the statepoint, record 688 // them, but otherwise do not do anything special. These are user provided 689 // allocas and give control over placement to the consumer. In this case, 690 // it is the contents of the slot which may get updated, not the pointer to 691 // the alloca 692 SmallVector<SDValue, 4> Allocas; 693 for (Value *V : SI.GCArgs) { 694 SDValue Incoming = Builder.getValue(V); 695 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 696 // This handles allocas as arguments to the statepoint 697 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 698 "Incoming value is a frame index!"); 699 Allocas.push_back(Builder.DAG.getTargetFrameIndex( 700 FI->getIndex(), Builder.getFrameIndexTy())); 701 702 auto &MF = Builder.DAG.getMachineFunction(); 703 auto *MMO = getMachineMemOperand(MF, *FI); 704 MemRefs.push_back(MMO); 705 } 706 } 707 pushStackMapConstant(Ops, Builder, Allocas.size()); 708 Ops.append(Allocas.begin(), Allocas.end()); 709 710 // Now construct GC base/derived map; 711 pushStackMapConstant(Ops, Builder, SI.Ptrs.size()); 712 SDLoc L = Builder.getCurSDLoc(); 713 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) { 714 SDValue Base = Builder.getValue(SI.Bases[i]); 715 assert(GCPtrIndexMap.count(Base) && "base not found in index map"); 716 Ops.push_back( 717 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64)); 718 SDValue Derived = Builder.getValue(SI.Ptrs[i]); 719 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map"); 720 Ops.push_back( 721 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64)); 722 } 723 } 724 725 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 726 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 727 // The basic scheme here is that information about both the original call and 728 // the safepoint is encoded in the CallInst. We create a temporary call and 729 // lower it, then reverse engineer the calling sequence. 730 731 NumOfStatepoints++; 732 // Clear state 733 StatepointLowering.startNewStatepoint(*this); 734 assert(SI.Bases.size() == SI.Ptrs.size()); 735 736 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n"); 737 #ifndef NDEBUG 738 for (auto *Reloc : SI.GCRelocates) 739 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 740 StatepointLowering.scheduleRelocCall(*Reloc); 741 #endif 742 743 // Lower statepoint vmstate and gcstate arguments 744 745 // All lowered meta args. 746 SmallVector<SDValue, 10> LoweredMetaArgs; 747 // Lowered GC pointers (subset of above). 748 SmallVector<SDValue, 16> LoweredGCArgs; 749 SmallVector<MachineMemOperand*, 16> MemRefs; 750 // Maps derived pointer SDValue to statepoint result of relocated pointer. 751 DenseMap<SDValue, int> LowerAsVReg; 752 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg, 753 SI, *this); 754 755 // Now that we've emitted the spills, we need to update the root so that the 756 // call sequence is ordered correctly. 757 SI.CLI.setChain(getRoot()); 758 759 // Get call node, we will replace it later with statepoint 760 SDValue ReturnVal; 761 SDNode *CallNode; 762 std::tie(ReturnVal, CallNode) = 763 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 764 765 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 766 // nodes with all the appropriate arguments and return values. 767 768 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 769 SDValue Chain = CallNode->getOperand(0); 770 771 SDValue Glue; 772 bool CallHasIncomingGlue = CallNode->getGluedNode(); 773 if (CallHasIncomingGlue) { 774 // Glue is always last operand 775 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 776 } 777 778 // Build the GC_TRANSITION_START node if necessary. 779 // 780 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 781 // order in which they appear in the call to the statepoint intrinsic. If 782 // any of the operands is a pointer-typed, that operand is immediately 783 // followed by a SRCVALUE for the pointer that may be used during lowering 784 // (e.g. to form MachinePointerInfo values for loads/stores). 785 const bool IsGCTransition = 786 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 787 (uint64_t)StatepointFlags::GCTransition; 788 if (IsGCTransition) { 789 SmallVector<SDValue, 8> TSOps; 790 791 // Add chain 792 TSOps.push_back(Chain); 793 794 // Add GC transition arguments 795 for (const Value *V : SI.GCTransitionArgs) { 796 TSOps.push_back(getValue(V)); 797 if (V->getType()->isPointerTy()) 798 TSOps.push_back(DAG.getSrcValue(V)); 799 } 800 801 // Add glue if necessary 802 if (CallHasIncomingGlue) 803 TSOps.push_back(Glue); 804 805 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 806 807 SDValue GCTransitionStart = 808 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 809 810 Chain = GCTransitionStart.getValue(0); 811 Glue = GCTransitionStart.getValue(1); 812 } 813 814 // TODO: Currently, all of these operands are being marked as read/write in 815 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 816 // and flags to be read-only. 817 SmallVector<SDValue, 40> Ops; 818 819 // Add the <id> and <numBytes> constants. 820 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 821 Ops.push_back( 822 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 823 824 // Calculate and push starting position of vmstate arguments 825 // Get number of arguments incoming directly into call node 826 unsigned NumCallRegArgs = 827 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 828 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 829 830 // Add call target 831 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 832 Ops.push_back(CallTarget); 833 834 // Add call arguments 835 // Get position of register mask in the call 836 SDNode::op_iterator RegMaskIt; 837 if (CallHasIncomingGlue) 838 RegMaskIt = CallNode->op_end() - 2; 839 else 840 RegMaskIt = CallNode->op_end() - 1; 841 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 842 843 // Add a constant argument for the calling convention 844 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 845 846 // Add a constant argument for the flags 847 uint64_t Flags = SI.StatepointFlags; 848 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 849 "Unknown flag used"); 850 pushStackMapConstant(Ops, *this, Flags); 851 852 // Insert all vmstate and gcstate arguments 853 llvm::append_range(Ops, LoweredMetaArgs); 854 855 // Add register mask from call node 856 Ops.push_back(*RegMaskIt); 857 858 // Add chain 859 Ops.push_back(Chain); 860 861 // Same for the glue, but we add it only if original call had it 862 if (Glue.getNode()) 863 Ops.push_back(Glue); 864 865 // Compute return values. Provide a glue output since we consume one as 866 // input. This allows someone else to chain off us as needed. 867 SmallVector<EVT, 8> NodeTys; 868 for (auto SD : LoweredGCArgs) { 869 if (!LowerAsVReg.count(SD)) 870 continue; 871 NodeTys.push_back(SD.getValueType()); 872 } 873 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n"); 874 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering"); 875 NodeTys.push_back(MVT::Other); 876 NodeTys.push_back(MVT::Glue); 877 878 unsigned NumResults = NodeTys.size(); 879 MachineSDNode *StatepointMCNode = 880 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 881 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 882 883 // For values lowered to tied-defs, create the virtual registers. Note that 884 // for simplicity, we *always* create a vreg even within a single block. 885 DenseMap<SDValue, Register> VirtRegs; 886 for (const auto *Relocate : SI.GCRelocates) { 887 Value *Derived = Relocate->getDerivedPtr(); 888 SDValue SD = getValue(Derived); 889 if (!LowerAsVReg.count(SD)) 890 continue; 891 892 // Handle multiple gc.relocates of the same input efficiently. 893 if (VirtRegs.count(SD)) 894 continue; 895 896 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]); 897 898 auto *RetTy = Relocate->getType(); 899 Register Reg = FuncInfo.CreateRegs(RetTy); 900 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 901 DAG.getDataLayout(), Reg, RetTy, None); 902 SDValue Chain = DAG.getRoot(); 903 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr); 904 PendingExports.push_back(Chain); 905 906 VirtRegs[SD] = Reg; 907 } 908 909 // Record for later use how each relocation was lowered. This is needed to 910 // allow later gc.relocates to mirror the lowering chosen. 911 const Instruction *StatepointInstr = SI.StatepointInstr; 912 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr]; 913 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 914 const Value *V = Relocate->getDerivedPtr(); 915 SDValue SDV = getValue(V); 916 SDValue Loc = StatepointLowering.getLocation(SDV); 917 918 RecordType Record; 919 if (LowerAsVReg.count(SDV)) { 920 Record.type = RecordType::VReg; 921 assert(VirtRegs.count(SDV)); 922 Record.payload.Reg = VirtRegs[SDV]; 923 } else if (Loc.getNode()) { 924 Record.type = RecordType::Spill; 925 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 926 } else { 927 Record.type = RecordType::NoRelocate; 928 // If we didn't relocate a value, we'll essentialy end up inserting an 929 // additional use of the original value when lowering the gc.relocate. 930 // We need to make sure the value is available at the new use, which 931 // might be in another block. 932 if (Relocate->getParent() != StatepointInstr->getParent()) 933 ExportFromCurrentBlock(V); 934 } 935 RelocationMap[V] = Record; 936 } 937 938 939 940 SDNode *SinkNode = StatepointMCNode; 941 942 // Build the GC_TRANSITION_END node if necessary. 943 // 944 // See the comment above regarding GC_TRANSITION_START for the layout of 945 // the operands to the GC_TRANSITION_END node. 946 if (IsGCTransition) { 947 SmallVector<SDValue, 8> TEOps; 948 949 // Add chain 950 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2)); 951 952 // Add GC transition arguments 953 for (const Value *V : SI.GCTransitionArgs) { 954 TEOps.push_back(getValue(V)); 955 if (V->getType()->isPointerTy()) 956 TEOps.push_back(DAG.getSrcValue(V)); 957 } 958 959 // Add glue 960 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1)); 961 962 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 963 964 SDValue GCTransitionStart = 965 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 966 967 SinkNode = GCTransitionStart.getNode(); 968 } 969 970 // Replace original call 971 // Call: ch,glue = CALL ... 972 // Statepoint: [gc relocates],ch,glue = STATEPOINT ... 973 unsigned NumSinkValues = SinkNode->getNumValues(); 974 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2), 975 SDValue(SinkNode, NumSinkValues - 1)}; 976 DAG.ReplaceAllUsesWith(CallNode, StatepointValues); 977 // Remove original call node 978 DAG.DeleteNode(CallNode); 979 980 // Since we always emit CopyToRegs (even for local relocates), we must 981 // update root, so that they are emitted before any local uses. 982 (void)getControlRoot(); 983 984 // TODO: A better future implementation would be to emit a single variable 985 // argument, variable return value STATEPOINT node here and then hookup the 986 // return value of each gc.relocate to the respective output of the 987 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 988 // to actually be possible today. 989 990 return ReturnVal; 991 } 992 993 void 994 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 995 const BasicBlock *EHPadBB /*= nullptr*/) { 996 assert(I.getCallingConv() != CallingConv::AnyReg && 997 "anyregcc is not supported on statepoints!"); 998 999 #ifndef NDEBUG 1000 // Check that the associated GCStrategy expects to encounter statepoints. 1001 assert(GFI->getStrategy().useStatepoints() && 1002 "GCStrategy does not expect to encounter statepoints"); 1003 #endif 1004 1005 SDValue ActualCallee; 1006 SDValue Callee = getValue(I.getActualCalledOperand()); 1007 1008 if (I.getNumPatchBytes() > 0) { 1009 // If we've been asked to emit a nop sequence instead of a call instruction 1010 // for this statepoint then don't lower the call target, but use a constant 1011 // `undef` instead. Not lowering the call target lets statepoint clients 1012 // get away without providing a physical address for the symbolic call 1013 // target at link time. 1014 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 1015 } else { 1016 ActualCallee = Callee; 1017 } 1018 1019 StatepointLoweringInfo SI(DAG); 1020 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 1021 I.getNumCallArgs(), ActualCallee, 1022 I.getActualReturnType(), false /* IsPatchPoint */); 1023 1024 // There may be duplication in the gc.relocate list; such as two copies of 1025 // each relocation on normal and exceptional path for an invoke. We only 1026 // need to spill once and record one copy in the stackmap, but we need to 1027 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 1028 // handled as a CSE problem elsewhere.) 1029 // TODO: There a couple of major stackmap size optimizations we could do 1030 // here if we wished. 1031 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 1032 // record {B,B} if it's seen later. 1033 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 1034 // given that, we could change the format to record base pointer relocations 1035 // separately with half the space. This would require a format rev and a 1036 // fairly major rework of the STATEPOINT node though. 1037 SmallSet<SDValue, 8> Seen; 1038 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 1039 SI.GCRelocates.push_back(Relocate); 1040 1041 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 1042 if (Seen.insert(DerivedSD).second) { 1043 SI.Bases.push_back(Relocate->getBasePtr()); 1044 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 1045 } 1046 } 1047 1048 // If we find a deopt value which isn't explicitly added, we need to 1049 // ensure it gets lowered such that gc cycles occurring before the 1050 // deoptimization event during the lifetime of the call don't invalidate 1051 // the pointer we're deopting with. Note that we assume that all 1052 // pointers passed to deopt are base pointers; relaxing that assumption 1053 // would require relatively large changes to how we represent relocations. 1054 for (Value *V : I.deopt_operands()) { 1055 if (!isGCValue(V, *this)) 1056 continue; 1057 if (Seen.insert(getValue(V)).second) { 1058 SI.Bases.push_back(V); 1059 SI.Ptrs.push_back(V); 1060 } 1061 } 1062 1063 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 1064 SI.StatepointInstr = &I; 1065 SI.ID = I.getID(); 1066 1067 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 1068 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 1069 I.gc_transition_args_end()); 1070 1071 SI.StatepointFlags = I.getFlags(); 1072 SI.NumPatchBytes = I.getNumPatchBytes(); 1073 SI.EHPadBB = EHPadBB; 1074 1075 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 1076 1077 // Export the result value if needed 1078 const std::pair<bool, bool> GCResultLocality = I.getGCResultLocality(); 1079 Type *RetTy = I.getActualReturnType(); 1080 1081 if (RetTy->isVoidTy() || 1082 (!GCResultLocality.first && !GCResultLocality.second)) { 1083 // The return value is not needed, just generate a poison value. 1084 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 1085 return; 1086 } 1087 1088 if (GCResultLocality.first) { 1089 // Result value will be used in a same basic block. Don't export it or 1090 // perform any explicit register copies. The gc_result will simply grab 1091 // this value. 1092 setValue(&I, ReturnValue); 1093 } 1094 1095 if (!GCResultLocality.second) 1096 return; 1097 // Result value will be used in a different basic block so we need to export 1098 // it now. Default exporting mechanism will not work here because statepoint 1099 // call has a different type than the actual call. It means that by default 1100 // llvm will create export register of the wrong type (always i32 in our 1101 // case). So instead we need to create export register with correct type 1102 // manually. 1103 // TODO: To eliminate this problem we can remove gc.result intrinsics 1104 // completely and make statepoint call to return a tuple. 1105 unsigned Reg = FuncInfo.CreateRegs(RetTy); 1106 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1107 DAG.getDataLayout(), Reg, RetTy, 1108 I.getCallingConv()); 1109 SDValue Chain = DAG.getEntryNode(); 1110 1111 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 1112 PendingExports.push_back(Chain); 1113 FuncInfo.ValueMap[&I] = Reg; 1114 } 1115 1116 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 1117 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 1118 bool VarArgDisallowed, bool ForceVoidReturnTy) { 1119 StatepointLoweringInfo SI(DAG); 1120 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 1121 populateCallLoweringInfo( 1122 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 1123 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 1124 false); 1125 if (!VarArgDisallowed) 1126 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 1127 1128 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 1129 1130 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 1131 1132 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1133 SI.ID = SD.StatepointID.getValueOr(DefaultID); 1134 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 1135 1136 SI.DeoptState = 1137 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 1138 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 1139 SI.EHPadBB = EHPadBB; 1140 1141 // NB! The GC arguments are deliberately left empty. 1142 1143 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 1144 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 1145 setValue(Call, ReturnVal); 1146 } 1147 } 1148 1149 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 1150 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 1151 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 1152 /* VarArgDisallowed = */ false, 1153 /* ForceVoidReturnTy = */ false); 1154 } 1155 1156 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 1157 // The result value of the gc_result is simply the result of the actual 1158 // call. We've already emitted this, so just grab the value. 1159 const GCStatepointInst *SI = CI.getStatepoint(); 1160 1161 if (SI->getParent() == CI.getParent()) { 1162 setValue(&CI, getValue(SI)); 1163 return; 1164 } 1165 // Statepoint is in different basic block so we should have stored call 1166 // result in a virtual register. 1167 // We can not use default getValue() functionality to copy value from this 1168 // register because statepoint and actual call return types can be 1169 // different, and getValue() will use CopyFromReg of the wrong type, 1170 // which is always i32 in our case. 1171 Type *RetTy = SI->getActualReturnType(); 1172 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy); 1173 1174 assert(CopyFromReg.getNode()); 1175 setValue(&CI, CopyFromReg); 1176 } 1177 1178 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 1179 #ifndef NDEBUG 1180 // Consistency check 1181 // We skip this check for relocates not in the same basic block as their 1182 // statepoint. It would be too expensive to preserve validation info through 1183 // different basic blocks. 1184 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 1185 StatepointLowering.relocCallVisited(Relocate); 1186 1187 auto *Ty = Relocate.getType()->getScalarType(); 1188 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 1189 assert(*IsManaged && "Non gc managed pointer relocated!"); 1190 #endif 1191 1192 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1193 auto &RelocationMap = 1194 FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()]; 1195 auto SlotIt = RelocationMap.find(DerivedPtr); 1196 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value"); 1197 const RecordType &Record = SlotIt->second; 1198 1199 // If relocation was done via virtual register.. 1200 if (Record.type == RecordType::VReg) { 1201 Register InReg = Record.payload.Reg; 1202 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1203 DAG.getDataLayout(), InReg, Relocate.getType(), 1204 None); // This is not an ABI copy. 1205 // We generate copy to/from regs even for local uses, hence we must 1206 // chain with current root to ensure proper ordering of copies w.r.t. 1207 // statepoint. 1208 SDValue Chain = DAG.getRoot(); 1209 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 1210 Chain, nullptr, nullptr); 1211 setValue(&Relocate, Relocation); 1212 return; 1213 } 1214 1215 if (Record.type == RecordType::Spill) { 1216 unsigned Index = Record.payload.FI; 1217 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1218 1219 // All the reloads are independent and are reading memory only modified by 1220 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1221 // this this let's CSE kick in for free and allows reordering of 1222 // instructions if possible. The lowering for statepoint sets the root, 1223 // so this is ordering all reloads with the either 1224 // a) the statepoint node itself, or 1225 // b) the entry of the current block for an invoke statepoint. 1226 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1227 1228 auto &MF = DAG.getMachineFunction(); 1229 auto &MFI = MF.getFrameInfo(); 1230 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1231 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1232 MFI.getObjectSize(Index), 1233 MFI.getObjectAlign(Index)); 1234 1235 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1236 Relocate.getType()); 1237 1238 SDValue SpillLoad = 1239 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO); 1240 PendingLoads.push_back(SpillLoad.getValue(1)); 1241 1242 assert(SpillLoad.getNode()); 1243 setValue(&Relocate, SpillLoad); 1244 return; 1245 } 1246 1247 assert(Record.type == RecordType::NoRelocate); 1248 SDValue SD = getValue(DerivedPtr); 1249 1250 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1251 // Lowering relocate(undef) as arbitrary constant. Current constant value 1252 // is chosen such that it's unlikely to be a valid pointer. 1253 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1254 return; 1255 } 1256 1257 // We didn't need to spill these special cases (constants and allocas). 1258 // See the handling in spillIncomingValueForStatepoint for detail. 1259 setValue(&Relocate, SD); 1260 } 1261 1262 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1263 const auto &TLI = DAG.getTargetLoweringInfo(); 1264 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1265 TLI.getPointerTy(DAG.getDataLayout())); 1266 1267 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1268 // call. We also do not lower the return value to any virtual register, and 1269 // change the immediately following return to a trap instruction. 1270 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1271 /* VarArgDisallowed = */ true, 1272 /* ForceVoidReturnTy = */ true); 1273 } 1274 1275 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1276 // We do not lower the return value from llvm.deoptimize to any virtual 1277 // register, and change the immediately following return to a trap 1278 // instruction. 1279 if (DAG.getTarget().Options.TrapUnreachable) 1280 DAG.setRoot( 1281 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1282 } 1283