1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBuilder.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachinePassRegistry.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/SchedulerRegistry.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/StackProtector.h" 55 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/ValueTypes.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DataLayout.h" 64 #include "llvm/IR/DebugInfoMetadata.h" 65 #include "llvm/IR/DebugLoc.h" 66 #include "llvm/IR/DiagnosticInfo.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/InlineAsm.h" 70 #include "llvm/IR/InstIterator.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instruction.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsWebAssembly.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Type.h" 79 #include "llvm/IR/User.h" 80 #include "llvm/IR/Value.h" 81 #include "llvm/InitializePasses.h" 82 #include "llvm/MC/MCInstrDesc.h" 83 #include "llvm/MC/MCRegisterInfo.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/BranchProbability.h" 86 #include "llvm/Support/Casting.h" 87 #include "llvm/Support/CodeGen.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Compiler.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/KnownBits.h" 93 #include "llvm/Support/MachineValueType.h" 94 #include "llvm/Support/Timer.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <iterator> 104 #include <limits> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 #include <vector> 109 110 using namespace llvm; 111 112 #define DEBUG_TYPE "isel" 113 114 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 115 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 116 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 117 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 118 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 119 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 120 STATISTIC(NumFastIselFailLowerArguments, 121 "Number of entry blocks where fast isel failed to lower arguments"); 122 123 static cl::opt<int> EnableFastISelAbort( 124 "fast-isel-abort", cl::Hidden, 125 cl::desc("Enable abort calls when \"fast\" instruction selection " 126 "fails to lower an instruction: 0 disable the abort, 1 will " 127 "abort but for args, calls and terminators, 2 will also " 128 "abort for argument lowering, and 3 will never fallback " 129 "to SelectionDAG.")); 130 131 static cl::opt<bool> EnableFastISelFallbackReport( 132 "fast-isel-report-on-fallback", cl::Hidden, 133 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 134 "falls back to SelectionDAG.")); 135 136 static cl::opt<bool> 137 UseMBPI("use-mbpi", 138 cl::desc("use Machine Branch Probability Info"), 139 cl::init(true), cl::Hidden); 140 141 #ifndef NDEBUG 142 static cl::opt<std::string> 143 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 144 cl::desc("Only display the basic block whose name " 145 "matches this for all view-*-dags options")); 146 static cl::opt<bool> 147 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 148 cl::desc("Pop up a window to show dags before the first " 149 "dag combine pass")); 150 static cl::opt<bool> 151 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 152 cl::desc("Pop up a window to show dags before legalize types")); 153 static cl::opt<bool> 154 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 155 cl::desc("Pop up a window to show dags before the post " 156 "legalize types dag combine pass")); 157 static cl::opt<bool> 158 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 159 cl::desc("Pop up a window to show dags before legalize")); 160 static cl::opt<bool> 161 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 162 cl::desc("Pop up a window to show dags before the second " 163 "dag combine pass")); 164 static cl::opt<bool> 165 ViewISelDAGs("view-isel-dags", cl::Hidden, 166 cl::desc("Pop up a window to show isel dags as they are selected")); 167 static cl::opt<bool> 168 ViewSchedDAGs("view-sched-dags", cl::Hidden, 169 cl::desc("Pop up a window to show sched dags as they are processed")); 170 static cl::opt<bool> 171 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 172 cl::desc("Pop up a window to show SUnit dags after they are processed")); 173 #else 174 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, 175 ViewDAGCombineLT = false, ViewLegalizeDAGs = false, 176 ViewDAGCombine2 = false, ViewISelDAGs = false, 177 ViewSchedDAGs = false, ViewSUnitDAGs = false; 178 #endif 179 180 //===---------------------------------------------------------------------===// 181 /// 182 /// RegisterScheduler class - Track the registration of instruction schedulers. 183 /// 184 //===---------------------------------------------------------------------===// 185 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 186 RegisterScheduler::Registry; 187 188 //===---------------------------------------------------------------------===// 189 /// 190 /// ISHeuristic command line option for instruction schedulers. 191 /// 192 //===---------------------------------------------------------------------===// 193 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 194 RegisterPassParser<RegisterScheduler>> 195 ISHeuristic("pre-RA-sched", 196 cl::init(&createDefaultScheduler), cl::Hidden, 197 cl::desc("Instruction schedulers available (before register" 198 " allocation):")); 199 200 static RegisterScheduler 201 defaultListDAGScheduler("default", "Best scheduler for the target", 202 createDefaultScheduler); 203 204 namespace llvm { 205 206 //===--------------------------------------------------------------------===// 207 /// This class is used by SelectionDAGISel to temporarily override 208 /// the optimization level on a per-function basis. 209 class OptLevelChanger { 210 SelectionDAGISel &IS; 211 CodeGenOpt::Level SavedOptLevel; 212 bool SavedFastISel; 213 214 public: 215 OptLevelChanger(SelectionDAGISel &ISel, 216 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 217 SavedOptLevel = IS.OptLevel; 218 if (NewOptLevel == SavedOptLevel) 219 return; 220 IS.OptLevel = NewOptLevel; 221 IS.TM.setOptLevel(NewOptLevel); 222 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 223 << IS.MF->getFunction().getName() << "\n"); 224 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 225 << NewOptLevel << "\n"); 226 SavedFastISel = IS.TM.Options.EnableFastISel; 227 if (NewOptLevel == CodeGenOpt::None) { 228 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 229 LLVM_DEBUG( 230 dbgs() << "\tFastISel is " 231 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 232 << "\n"); 233 } 234 } 235 236 ~OptLevelChanger() { 237 if (IS.OptLevel == SavedOptLevel) 238 return; 239 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 240 << IS.MF->getFunction().getName() << "\n"); 241 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 242 << SavedOptLevel << "\n"); 243 IS.OptLevel = SavedOptLevel; 244 IS.TM.setOptLevel(SavedOptLevel); 245 IS.TM.setFastISel(SavedFastISel); 246 } 247 }; 248 249 //===--------------------------------------------------------------------===// 250 /// createDefaultScheduler - This creates an instruction scheduler appropriate 251 /// for the target. 252 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 253 CodeGenOpt::Level OptLevel) { 254 const TargetLowering *TLI = IS->TLI; 255 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 256 257 // Try first to see if the Target has its own way of selecting a scheduler 258 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 259 return SchedulerCtor(IS, OptLevel); 260 } 261 262 if (OptLevel == CodeGenOpt::None || 263 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 264 TLI->getSchedulingPreference() == Sched::Source) 265 return createSourceListDAGScheduler(IS, OptLevel); 266 if (TLI->getSchedulingPreference() == Sched::RegPressure) 267 return createBURRListDAGScheduler(IS, OptLevel); 268 if (TLI->getSchedulingPreference() == Sched::Hybrid) 269 return createHybridListDAGScheduler(IS, OptLevel); 270 if (TLI->getSchedulingPreference() == Sched::VLIW) 271 return createVLIWDAGScheduler(IS, OptLevel); 272 assert(TLI->getSchedulingPreference() == Sched::ILP && 273 "Unknown sched type!"); 274 return createILPListDAGScheduler(IS, OptLevel); 275 } 276 277 } // end namespace llvm 278 279 // EmitInstrWithCustomInserter - This method should be implemented by targets 280 // that mark instructions with the 'usesCustomInserter' flag. These 281 // instructions are special in various ways, which require special support to 282 // insert. The specified MachineInstr is created but not inserted into any 283 // basic blocks, and this method is called to expand it into a sequence of 284 // instructions, potentially also creating new basic blocks and control flow. 285 // When new basic blocks are inserted and the edges from MBB to its successors 286 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 287 // DenseMap. 288 MachineBasicBlock * 289 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 290 MachineBasicBlock *MBB) const { 291 #ifndef NDEBUG 292 dbgs() << "If a target marks an instruction with " 293 "'usesCustomInserter', it must implement " 294 "TargetLowering::EmitInstrWithCustomInserter!"; 295 #endif 296 llvm_unreachable(nullptr); 297 } 298 299 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 300 SDNode *Node) const { 301 assert(!MI.hasPostISelHook() && 302 "If a target marks an instruction with 'hasPostISelHook', " 303 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 304 } 305 306 //===----------------------------------------------------------------------===// 307 // SelectionDAGISel code 308 //===----------------------------------------------------------------------===// 309 310 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) 311 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), 312 SwiftError(new SwiftErrorValueTracking()), 313 CurDAG(new SelectionDAG(tm, OL)), 314 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError, 315 OL)), 316 AA(), GFI(), OptLevel(OL), DAGSize(0) { 317 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 318 initializeBranchProbabilityInfoWrapperPassPass( 319 *PassRegistry::getPassRegistry()); 320 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 321 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 322 } 323 324 SelectionDAGISel::~SelectionDAGISel() { 325 delete CurDAG; 326 delete SwiftError; 327 } 328 329 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 330 if (OptLevel != CodeGenOpt::None) 331 AU.addRequired<AAResultsWrapperPass>(); 332 AU.addRequired<GCModuleInfo>(); 333 AU.addRequired<StackProtector>(); 334 AU.addPreserved<GCModuleInfo>(); 335 AU.addRequired<TargetLibraryInfoWrapperPass>(); 336 AU.addRequired<TargetTransformInfoWrapperPass>(); 337 if (UseMBPI && OptLevel != CodeGenOpt::None) 338 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 339 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 340 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 341 MachineFunctionPass::getAnalysisUsage(AU); 342 } 343 344 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 345 /// may trap on it. In this case we have to split the edge so that the path 346 /// through the predecessor block that doesn't go to the phi block doesn't 347 /// execute the possibly trapping instruction. If available, we pass domtree 348 /// and loop info to be updated when we split critical edges. This is because 349 /// SelectionDAGISel preserves these analyses. 350 /// This is required for correctness, so it must be done at -O0. 351 /// 352 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 353 LoopInfo *LI) { 354 // Loop for blocks with phi nodes. 355 for (BasicBlock &BB : Fn) { 356 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 357 if (!PN) continue; 358 359 ReprocessBlock: 360 // For each block with a PHI node, check to see if any of the input values 361 // are potentially trapping constant expressions. Constant expressions are 362 // the only potentially trapping value that can occur as the argument to a 363 // PHI. 364 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 365 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 366 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 367 if (!CE || !CE->canTrap()) continue; 368 369 // The only case we have to worry about is when the edge is critical. 370 // Since this block has a PHI Node, we assume it has multiple input 371 // edges: check to see if the pred has multiple successors. 372 BasicBlock *Pred = PN->getIncomingBlock(i); 373 if (Pred->getTerminator()->getNumSuccessors() == 1) 374 continue; 375 376 // Okay, we have to split this edge. 377 SplitCriticalEdge( 378 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 379 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 380 goto ReprocessBlock; 381 } 382 } 383 } 384 385 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 386 MachineModuleInfo &MMI) { 387 // Only needed for MSVC 388 if (!TT.isWindowsMSVCEnvironment()) 389 return; 390 391 // If it's already set, nothing to do. 392 if (MMI.usesMSVCFloatingPoint()) 393 return; 394 395 for (const Instruction &I : instructions(F)) { 396 if (I.getType()->isFPOrFPVectorTy()) { 397 MMI.setUsesMSVCFloatingPoint(true); 398 return; 399 } 400 for (const auto &Op : I.operands()) { 401 if (Op->getType()->isFPOrFPVectorTy()) { 402 MMI.setUsesMSVCFloatingPoint(true); 403 return; 404 } 405 } 406 } 407 } 408 409 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 410 // If we already selected that function, we do not need to run SDISel. 411 if (mf.getProperties().hasProperty( 412 MachineFunctionProperties::Property::Selected)) 413 return false; 414 // Do some sanity-checking on the command-line options. 415 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 416 "-fast-isel-abort > 0 requires -fast-isel"); 417 418 const Function &Fn = mf.getFunction(); 419 MF = &mf; 420 421 // Reset the target options before resetting the optimization 422 // level below. 423 // FIXME: This is a horrible hack and should be processed via 424 // codegen looking at the optimization level explicitly when 425 // it wants to look at it. 426 TM.resetTargetOptions(Fn); 427 // Reset OptLevel to None for optnone functions. 428 CodeGenOpt::Level NewOptLevel = OptLevel; 429 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 430 NewOptLevel = CodeGenOpt::None; 431 OptLevelChanger OLC(*this, NewOptLevel); 432 433 TII = MF->getSubtarget().getInstrInfo(); 434 TLI = MF->getSubtarget().getTargetLowering(); 435 RegInfo = &MF->getRegInfo(); 436 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 437 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 438 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 439 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 440 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 441 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 442 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 443 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 444 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 445 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 446 nullptr; 447 448 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 449 450 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 451 452 CurDAG->init(*MF, *ORE, this, LibInfo, 453 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI); 454 FuncInfo->set(Fn, *MF, CurDAG); 455 SwiftError->setFunction(*MF); 456 457 // Now get the optional analyzes if we want to. 458 // This is based on the possibly changed OptLevel (after optnone is taken 459 // into account). That's unfortunate but OK because it just means we won't 460 // ask for passes that have been required anyway. 461 462 if (UseMBPI && OptLevel != CodeGenOpt::None) 463 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 464 else 465 FuncInfo->BPI = nullptr; 466 467 if (OptLevel != CodeGenOpt::None) 468 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 469 else 470 AA = nullptr; 471 472 SDB->init(GFI, AA, LibInfo); 473 474 MF->setHasInlineAsm(false); 475 476 FuncInfo->SplitCSR = false; 477 478 // We split CSR if the target supports it for the given function 479 // and the function has only return exits. 480 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 481 FuncInfo->SplitCSR = true; 482 483 // Collect all the return blocks. 484 for (const BasicBlock &BB : Fn) { 485 if (!succ_empty(&BB)) 486 continue; 487 488 const Instruction *Term = BB.getTerminator(); 489 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 490 continue; 491 492 // Bail out if the exit block is not Return nor Unreachable. 493 FuncInfo->SplitCSR = false; 494 break; 495 } 496 } 497 498 MachineBasicBlock *EntryMBB = &MF->front(); 499 if (FuncInfo->SplitCSR) 500 // This performs initialization so lowering for SplitCSR will be correct. 501 TLI->initializeSplitCSR(EntryMBB); 502 503 SelectAllBasicBlocks(Fn); 504 if (FastISelFailed && EnableFastISelFallbackReport) { 505 DiagnosticInfoISelFallback DiagFallback(Fn); 506 Fn.getContext().diagnose(DiagFallback); 507 } 508 509 // Replace forward-declared registers with the registers containing 510 // the desired value. 511 // Note: it is important that this happens **before** the call to 512 // EmitLiveInCopies, since implementations can skip copies of unused 513 // registers. If we don't apply the reg fixups before, some registers may 514 // appear as unused and will be skipped, resulting in bad MI. 515 MachineRegisterInfo &MRI = MF->getRegInfo(); 516 for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(), 517 E = FuncInfo->RegFixups.end(); 518 I != E; ++I) { 519 unsigned From = I->first; 520 unsigned To = I->second; 521 // If To is also scheduled to be replaced, find what its ultimate 522 // replacement is. 523 while (true) { 524 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 525 if (J == E) 526 break; 527 To = J->second; 528 } 529 // Make sure the new register has a sufficiently constrained register class. 530 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 531 MRI.constrainRegClass(To, MRI.getRegClass(From)); 532 // Replace it. 533 534 // Replacing one register with another won't touch the kill flags. 535 // We need to conservatively clear the kill flags as a kill on the old 536 // register might dominate existing uses of the new register. 537 if (!MRI.use_empty(To)) 538 MRI.clearKillFlags(From); 539 MRI.replaceRegWith(From, To); 540 } 541 542 // If the first basic block in the function has live ins that need to be 543 // copied into vregs, emit the copies into the top of the block before 544 // emitting the code for the block. 545 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 546 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 547 548 // Insert copies in the entry block and the return blocks. 549 if (FuncInfo->SplitCSR) { 550 SmallVector<MachineBasicBlock*, 4> Returns; 551 // Collect all the return blocks. 552 for (MachineBasicBlock &MBB : mf) { 553 if (!MBB.succ_empty()) 554 continue; 555 556 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 557 if (Term != MBB.end() && Term->isReturn()) { 558 Returns.push_back(&MBB); 559 continue; 560 } 561 } 562 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 563 } 564 565 DenseMap<unsigned, unsigned> LiveInMap; 566 if (!FuncInfo->ArgDbgValues.empty()) 567 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 568 if (LI.second) 569 LiveInMap.insert(LI); 570 571 // Insert DBG_VALUE instructions for function arguments to the entry block. 572 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 573 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 574 bool hasFI = MI->getOperand(0).isFI(); 575 Register Reg = 576 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 577 if (Register::isPhysicalRegister(Reg)) 578 EntryMBB->insert(EntryMBB->begin(), MI); 579 else { 580 MachineInstr *Def = RegInfo->getVRegDef(Reg); 581 if (Def) { 582 MachineBasicBlock::iterator InsertPos = Def; 583 // FIXME: VR def may not be in entry block. 584 Def->getParent()->insert(std::next(InsertPos), MI); 585 } else 586 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 587 << Register::virtReg2Index(Reg) << "\n"); 588 } 589 590 // If Reg is live-in then update debug info to track its copy in a vreg. 591 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 592 if (LDI != LiveInMap.end()) { 593 assert(!hasFI && "There's no handling of frame pointer updating here yet " 594 "- add if needed"); 595 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 596 MachineBasicBlock::iterator InsertPos = Def; 597 const MDNode *Variable = MI->getDebugVariable(); 598 const MDNode *Expr = MI->getDebugExpression(); 599 DebugLoc DL = MI->getDebugLoc(); 600 bool IsIndirect = MI->isIndirectDebugValue(); 601 if (IsIndirect) 602 assert(MI->getOperand(1).getImm() == 0 && 603 "DBG_VALUE with nonzero offset"); 604 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 605 "Expected inlined-at fields to agree"); 606 // Def is never a terminator here, so it is ok to increment InsertPos. 607 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 608 IsIndirect, LDI->second, Variable, Expr); 609 610 // If this vreg is directly copied into an exported register then 611 // that COPY instructions also need DBG_VALUE, if it is the only 612 // user of LDI->second. 613 MachineInstr *CopyUseMI = nullptr; 614 for (MachineRegisterInfo::use_instr_iterator 615 UI = RegInfo->use_instr_begin(LDI->second), 616 E = RegInfo->use_instr_end(); UI != E; ) { 617 MachineInstr *UseMI = &*(UI++); 618 if (UseMI->isDebugValue()) continue; 619 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 620 CopyUseMI = UseMI; continue; 621 } 622 // Otherwise this is another use or second copy use. 623 CopyUseMI = nullptr; break; 624 } 625 if (CopyUseMI) { 626 // Use MI's debug location, which describes where Variable was 627 // declared, rather than whatever is attached to CopyUseMI. 628 MachineInstr *NewMI = 629 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 630 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 631 MachineBasicBlock::iterator Pos = CopyUseMI; 632 EntryMBB->insertAfter(Pos, NewMI); 633 } 634 } 635 } 636 637 // Determine if there are any calls in this machine function. 638 MachineFrameInfo &MFI = MF->getFrameInfo(); 639 for (const auto &MBB : *MF) { 640 if (MFI.hasCalls() && MF->hasInlineAsm()) 641 break; 642 643 for (const auto &MI : MBB) { 644 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 645 if ((MCID.isCall() && !MCID.isReturn()) || 646 MI.isStackAligningInlineAsm()) { 647 MFI.setHasCalls(true); 648 } 649 if (MI.isInlineAsm()) { 650 MF->setHasInlineAsm(true); 651 } 652 } 653 } 654 655 // Determine if there is a call to setjmp in the machine function. 656 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 657 658 // Determine if floating point is used for msvc 659 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 660 661 // Replace forward-declared registers with the registers containing 662 // the desired value. 663 for (DenseMap<unsigned, unsigned>::iterator 664 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 665 I != E; ++I) { 666 unsigned From = I->first; 667 unsigned To = I->second; 668 // If To is also scheduled to be replaced, find what its ultimate 669 // replacement is. 670 while (true) { 671 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 672 if (J == E) break; 673 To = J->second; 674 } 675 // Make sure the new register has a sufficiently constrained register class. 676 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 677 MRI.constrainRegClass(To, MRI.getRegClass(From)); 678 // Replace it. 679 680 681 // Replacing one register with another won't touch the kill flags. 682 // We need to conservatively clear the kill flags as a kill on the old 683 // register might dominate existing uses of the new register. 684 if (!MRI.use_empty(To)) 685 MRI.clearKillFlags(From); 686 MRI.replaceRegWith(From, To); 687 } 688 689 TLI->finalizeLowering(*MF); 690 691 // Release function-specific state. SDB and CurDAG are already cleared 692 // at this point. 693 FuncInfo->clear(); 694 695 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 696 LLVM_DEBUG(MF->print(dbgs())); 697 698 return true; 699 } 700 701 static void reportFastISelFailure(MachineFunction &MF, 702 OptimizationRemarkEmitter &ORE, 703 OptimizationRemarkMissed &R, 704 bool ShouldAbort) { 705 // Print the function name explicitly if we don't have a debug location (which 706 // makes the diagnostic less useful) or if we're going to emit a raw error. 707 if (!R.getLocation().isValid() || ShouldAbort) 708 R << (" (in function: " + MF.getName() + ")").str(); 709 710 if (ShouldAbort) 711 report_fatal_error(R.getMsg()); 712 713 ORE.emit(R); 714 } 715 716 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 717 BasicBlock::const_iterator End, 718 bool &HadTailCall) { 719 // Allow creating illegal types during DAG building for the basic block. 720 CurDAG->NewNodesMustHaveLegalTypes = false; 721 722 // Lower the instructions. If a call is emitted as a tail call, cease emitting 723 // nodes for this block. 724 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 725 if (!ElidedArgCopyInstrs.count(&*I)) 726 SDB->visit(*I); 727 } 728 729 // Make sure the root of the DAG is up-to-date. 730 CurDAG->setRoot(SDB->getControlRoot()); 731 HadTailCall = SDB->HasTailCall; 732 SDB->resolveOrClearDbgInfo(); 733 SDB->clear(); 734 735 // Final step, emit the lowered DAG as machine code. 736 CodeGenAndEmitDAG(); 737 } 738 739 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 740 SmallPtrSet<SDNode *, 16> Added; 741 SmallVector<SDNode*, 128> Worklist; 742 743 Worklist.push_back(CurDAG->getRoot().getNode()); 744 Added.insert(CurDAG->getRoot().getNode()); 745 746 KnownBits Known; 747 748 do { 749 SDNode *N = Worklist.pop_back_val(); 750 751 // Otherwise, add all chain operands to the worklist. 752 for (const SDValue &Op : N->op_values()) 753 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second) 754 Worklist.push_back(Op.getNode()); 755 756 // If this is a CopyToReg with a vreg dest, process it. 757 if (N->getOpcode() != ISD::CopyToReg) 758 continue; 759 760 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 761 if (!Register::isVirtualRegister(DestReg)) 762 continue; 763 764 // Ignore non-integer values. 765 SDValue Src = N->getOperand(2); 766 EVT SrcVT = Src.getValueType(); 767 if (!SrcVT.isInteger()) 768 continue; 769 770 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 771 Known = CurDAG->computeKnownBits(Src); 772 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 773 } while (!Worklist.empty()); 774 } 775 776 void SelectionDAGISel::CodeGenAndEmitDAG() { 777 StringRef GroupName = "sdag"; 778 StringRef GroupDescription = "Instruction Selection and Scheduling"; 779 std::string BlockName; 780 bool MatchFilterBB = false; (void)MatchFilterBB; 781 #ifndef NDEBUG 782 TargetTransformInfo &TTI = 783 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 784 #endif 785 786 // Pre-type legalization allow creation of any node types. 787 CurDAG->NewNodesMustHaveLegalTypes = false; 788 789 #ifndef NDEBUG 790 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 791 FilterDAGBasicBlockName == 792 FuncInfo->MBB->getBasicBlock()->getName()); 793 #endif 794 #ifdef NDEBUG 795 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || 796 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || 797 ViewSUnitDAGs) 798 #endif 799 { 800 BlockName = 801 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 802 } 803 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 804 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 805 << "'\n"; 806 CurDAG->dump()); 807 808 if (ViewDAGCombine1 && MatchFilterBB) 809 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 810 811 // Run the DAG combiner in pre-legalize mode. 812 { 813 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 814 GroupDescription, TimePassesIsEnabled); 815 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 816 } 817 818 #ifndef NDEBUG 819 if (TTI.hasBranchDivergence()) 820 CurDAG->VerifyDAGDiverence(); 821 #endif 822 823 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 824 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 825 << "'\n"; 826 CurDAG->dump()); 827 828 // Second step, hack on the DAG until it only uses operations and types that 829 // the target supports. 830 if (ViewLegalizeTypesDAGs && MatchFilterBB) 831 CurDAG->viewGraph("legalize-types input for " + BlockName); 832 833 bool Changed; 834 { 835 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 836 GroupDescription, TimePassesIsEnabled); 837 Changed = CurDAG->LegalizeTypes(); 838 } 839 840 #ifndef NDEBUG 841 if (TTI.hasBranchDivergence()) 842 CurDAG->VerifyDAGDiverence(); 843 #endif 844 845 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 846 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 847 << "'\n"; 848 CurDAG->dump()); 849 850 // Only allow creation of legal node types. 851 CurDAG->NewNodesMustHaveLegalTypes = true; 852 853 if (Changed) { 854 if (ViewDAGCombineLT && MatchFilterBB) 855 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 856 857 // Run the DAG combiner in post-type-legalize mode. 858 { 859 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 860 GroupName, GroupDescription, TimePassesIsEnabled); 861 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 862 } 863 864 #ifndef NDEBUG 865 if (TTI.hasBranchDivergence()) 866 CurDAG->VerifyDAGDiverence(); 867 #endif 868 869 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 870 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 871 << "'\n"; 872 CurDAG->dump()); 873 } 874 875 { 876 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 877 GroupDescription, TimePassesIsEnabled); 878 Changed = CurDAG->LegalizeVectors(); 879 } 880 881 if (Changed) { 882 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 883 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 884 << "'\n"; 885 CurDAG->dump()); 886 887 { 888 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 889 GroupDescription, TimePassesIsEnabled); 890 CurDAG->LegalizeTypes(); 891 } 892 893 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 894 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 895 << "'\n"; 896 CurDAG->dump()); 897 898 if (ViewDAGCombineLT && MatchFilterBB) 899 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 900 901 // Run the DAG combiner in post-type-legalize mode. 902 { 903 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 904 GroupName, GroupDescription, TimePassesIsEnabled); 905 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 906 } 907 908 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 909 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 910 << "'\n"; 911 CurDAG->dump()); 912 913 #ifndef NDEBUG 914 if (TTI.hasBranchDivergence()) 915 CurDAG->VerifyDAGDiverence(); 916 #endif 917 } 918 919 if (ViewLegalizeDAGs && MatchFilterBB) 920 CurDAG->viewGraph("legalize input for " + BlockName); 921 922 { 923 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 924 GroupDescription, TimePassesIsEnabled); 925 CurDAG->Legalize(); 926 } 927 928 #ifndef NDEBUG 929 if (TTI.hasBranchDivergence()) 930 CurDAG->VerifyDAGDiverence(); 931 #endif 932 933 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 934 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 935 << "'\n"; 936 CurDAG->dump()); 937 938 if (ViewDAGCombine2 && MatchFilterBB) 939 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 940 941 // Run the DAG combiner in post-legalize mode. 942 { 943 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 944 GroupDescription, TimePassesIsEnabled); 945 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 946 } 947 948 #ifndef NDEBUG 949 if (TTI.hasBranchDivergence()) 950 CurDAG->VerifyDAGDiverence(); 951 #endif 952 953 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 954 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 955 << "'\n"; 956 CurDAG->dump()); 957 958 if (OptLevel != CodeGenOpt::None) 959 ComputeLiveOutVRegInfo(); 960 961 if (ViewISelDAGs && MatchFilterBB) 962 CurDAG->viewGraph("isel input for " + BlockName); 963 964 // Third, instruction select all of the operations to machine code, adding the 965 // code to the MachineBasicBlock. 966 { 967 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 968 GroupDescription, TimePassesIsEnabled); 969 DoInstructionSelection(); 970 } 971 972 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 973 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 974 << "'\n"; 975 CurDAG->dump()); 976 977 if (ViewSchedDAGs && MatchFilterBB) 978 CurDAG->viewGraph("scheduler input for " + BlockName); 979 980 // Schedule machine code. 981 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 982 { 983 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 984 GroupDescription, TimePassesIsEnabled); 985 Scheduler->Run(CurDAG, FuncInfo->MBB); 986 } 987 988 if (ViewSUnitDAGs && MatchFilterBB) 989 Scheduler->viewGraph(); 990 991 // Emit machine code to BB. This can change 'BB' to the last block being 992 // inserted into. 993 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 994 { 995 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 996 GroupDescription, TimePassesIsEnabled); 997 998 // FuncInfo->InsertPt is passed by reference and set to the end of the 999 // scheduled instructions. 1000 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 1001 } 1002 1003 // If the block was split, make sure we update any references that are used to 1004 // update PHI nodes later on. 1005 if (FirstMBB != LastMBB) 1006 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 1007 1008 // Free the scheduler state. 1009 { 1010 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1011 GroupDescription, TimePassesIsEnabled); 1012 delete Scheduler; 1013 } 1014 1015 // Free the SelectionDAG state, now that we're finished with it. 1016 CurDAG->clear(); 1017 } 1018 1019 namespace { 1020 1021 /// ISelUpdater - helper class to handle updates of the instruction selection 1022 /// graph. 1023 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1024 SelectionDAG::allnodes_iterator &ISelPosition; 1025 1026 public: 1027 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1028 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1029 1030 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1031 /// deleted is the current ISelPosition node, update ISelPosition. 1032 /// 1033 void NodeDeleted(SDNode *N, SDNode *E) override { 1034 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1035 ++ISelPosition; 1036 } 1037 }; 1038 1039 } // end anonymous namespace 1040 1041 // This function is used to enforce the topological node id property 1042 // property leveraged during Instruction selection. Before selection all 1043 // nodes are given a non-negative id such that all nodes have a larger id than 1044 // their operands. As this holds transitively we can prune checks that a node N 1045 // is a predecessor of M another by not recursively checking through M's 1046 // operands if N's ID is larger than M's ID. This is significantly improves 1047 // performance of for various legality checks (e.g. IsLegalToFold / 1048 // UpdateChains). 1049 1050 // However, when we fuse multiple nodes into a single node 1051 // during selection we may induce a predecessor relationship between inputs and 1052 // outputs of distinct nodes being merged violating the topological property. 1053 // Should a fused node have a successor which has yet to be selected, our 1054 // legality checks would be incorrect. To avoid this we mark all unselected 1055 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => 1056 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1057 // We use bit-negation to more clearly enforce that node id -1 can only be 1058 // achieved by selected nodes). As the conversion is reversable the original Id, 1059 // topological pruning can still be leveraged when looking for unselected nodes. 1060 // This method is call internally in all ISel replacement calls. 1061 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1062 SmallVector<SDNode *, 4> Nodes; 1063 Nodes.push_back(Node); 1064 1065 while (!Nodes.empty()) { 1066 SDNode *N = Nodes.pop_back_val(); 1067 for (auto *U : N->uses()) { 1068 auto UId = U->getNodeId(); 1069 if (UId > 0) { 1070 InvalidateNodeId(U); 1071 Nodes.push_back(U); 1072 } 1073 } 1074 } 1075 } 1076 1077 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a 1078 // NodeId with the equivalent node id which is invalid for topological 1079 // pruning. 1080 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1081 int InvalidId = -(N->getNodeId() + 1); 1082 N->setNodeId(InvalidId); 1083 } 1084 1085 // getUninvalidatedNodeId - get original uninvalidated node id. 1086 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1087 int Id = N->getNodeId(); 1088 if (Id < -1) 1089 return -(Id + 1); 1090 return Id; 1091 } 1092 1093 void SelectionDAGISel::DoInstructionSelection() { 1094 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1095 << printMBBReference(*FuncInfo->MBB) << " '" 1096 << FuncInfo->MBB->getName() << "'\n"); 1097 1098 PreprocessISelDAG(); 1099 1100 // Select target instructions for the DAG. 1101 { 1102 // Number all nodes with a topological order and set DAGSize. 1103 DAGSize = CurDAG->AssignTopologicalOrder(); 1104 1105 // Create a dummy node (which is not added to allnodes), that adds 1106 // a reference to the root node, preventing it from being deleted, 1107 // and tracking any changes of the root. 1108 HandleSDNode Dummy(CurDAG->getRoot()); 1109 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1110 ++ISelPosition; 1111 1112 // Make sure that ISelPosition gets properly updated when nodes are deleted 1113 // in calls made from this function. 1114 ISelUpdater ISU(*CurDAG, ISelPosition); 1115 1116 // The AllNodes list is now topological-sorted. Visit the 1117 // nodes by starting at the end of the list (the root of the 1118 // graph) and preceding back toward the beginning (the entry 1119 // node). 1120 while (ISelPosition != CurDAG->allnodes_begin()) { 1121 SDNode *Node = &*--ISelPosition; 1122 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1123 // but there are currently some corner cases that it misses. Also, this 1124 // makes it theoretically possible to disable the DAGCombiner. 1125 if (Node->use_empty()) 1126 continue; 1127 1128 #ifndef NDEBUG 1129 SmallVector<SDNode *, 4> Nodes; 1130 Nodes.push_back(Node); 1131 1132 while (!Nodes.empty()) { 1133 auto N = Nodes.pop_back_val(); 1134 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1135 continue; 1136 for (const SDValue &Op : N->op_values()) { 1137 if (Op->getOpcode() == ISD::TokenFactor) 1138 Nodes.push_back(Op.getNode()); 1139 else { 1140 // We rely on topological ordering of node ids for checking for 1141 // cycles when fusing nodes during selection. All unselected nodes 1142 // successors of an already selected node should have a negative id. 1143 // This assertion will catch such cases. If this assertion triggers 1144 // it is likely you using DAG-level Value/Node replacement functions 1145 // (versus equivalent ISEL replacement) in backend-specific 1146 // selections. See comment in EnforceNodeIdInvariant for more 1147 // details. 1148 assert(Op->getNodeId() != -1 && 1149 "Node has already selected predecessor node"); 1150 } 1151 } 1152 } 1153 #endif 1154 1155 // When we are using non-default rounding modes or FP exception behavior 1156 // FP operations are represented by StrictFP pseudo-operations. For 1157 // targets that do not (yet) understand strict FP operations directly, 1158 // we convert them to normal FP opcodes instead at this point. This 1159 // will allow them to be handled by existing target-specific instruction 1160 // selectors. 1161 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { 1162 // For some opcodes, we need to call TLI->getOperationAction using 1163 // the first operand type instead of the result type. Note that this 1164 // must match what SelectionDAGLegalize::LegalizeOp is doing. 1165 EVT ActionVT; 1166 switch (Node->getOpcode()) { 1167 case ISD::STRICT_SINT_TO_FP: 1168 case ISD::STRICT_UINT_TO_FP: 1169 case ISD::STRICT_LRINT: 1170 case ISD::STRICT_LLRINT: 1171 case ISD::STRICT_LROUND: 1172 case ISD::STRICT_LLROUND: 1173 case ISD::STRICT_FSETCC: 1174 case ISD::STRICT_FSETCCS: 1175 ActionVT = Node->getOperand(1).getValueType(); 1176 break; 1177 default: 1178 ActionVT = Node->getValueType(0); 1179 break; 1180 } 1181 if (TLI->getOperationAction(Node->getOpcode(), ActionVT) 1182 == TargetLowering::Expand) 1183 Node = CurDAG->mutateStrictFPToFP(Node); 1184 } 1185 1186 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1187 Node->dump(CurDAG)); 1188 1189 Select(Node); 1190 } 1191 1192 CurDAG->setRoot(Dummy.getValue()); 1193 } 1194 1195 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1196 1197 PostprocessISelDAG(); 1198 } 1199 1200 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1201 for (const User *U : CPI->users()) { 1202 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1203 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1204 if (IID == Intrinsic::eh_exceptionpointer || 1205 IID == Intrinsic::eh_exceptioncode) 1206 return true; 1207 } 1208 } 1209 return false; 1210 } 1211 1212 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1213 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1214 // and store the mapping in the function. 1215 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1216 const CatchPadInst *CPI) { 1217 MachineFunction *MF = MBB->getParent(); 1218 // In case of single catch (...), we don't emit LSDA, so we don't need 1219 // this information. 1220 bool IsSingleCatchAllClause = 1221 CPI->getNumArgOperands() == 1 && 1222 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1223 if (!IsSingleCatchAllClause) { 1224 // Create a mapping from landing pad label to landing pad index. 1225 bool IntrFound = false; 1226 for (const User *U : CPI->users()) { 1227 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1228 Intrinsic::ID IID = Call->getIntrinsicID(); 1229 if (IID == Intrinsic::wasm_landingpad_index) { 1230 Value *IndexArg = Call->getArgOperand(1); 1231 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1232 MF->setWasmLandingPadIndex(MBB, Index); 1233 IntrFound = true; 1234 break; 1235 } 1236 } 1237 } 1238 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1239 (void)IntrFound; 1240 } 1241 } 1242 1243 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1244 /// do other setup for EH landing-pad blocks. 1245 bool SelectionDAGISel::PrepareEHLandingPad() { 1246 MachineBasicBlock *MBB = FuncInfo->MBB; 1247 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1248 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1249 const TargetRegisterClass *PtrRC = 1250 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1251 1252 auto Pers = classifyEHPersonality(PersonalityFn); 1253 1254 // Catchpads have one live-in register, which typically holds the exception 1255 // pointer or code. 1256 if (isFuncletEHPersonality(Pers)) { 1257 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1258 if (hasExceptionPointerOrCodeUser(CPI)) { 1259 // Get or create the virtual register to hold the pointer or code. Mark 1260 // the live in physreg and copy into the vreg. 1261 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1262 assert(EHPhysReg && "target lacks exception pointer register"); 1263 MBB->addLiveIn(EHPhysReg); 1264 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1265 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1266 TII->get(TargetOpcode::COPY), VReg) 1267 .addReg(EHPhysReg, RegState::Kill); 1268 } 1269 } 1270 return true; 1271 } 1272 1273 // Add a label to mark the beginning of the landing pad. Deletion of the 1274 // landing pad can thus be detected via the MachineModuleInfo. 1275 MCSymbol *Label = MF->addLandingPad(MBB); 1276 1277 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1278 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1279 .addSym(Label); 1280 1281 if (Pers == EHPersonality::Wasm_CXX) { 1282 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1283 mapWasmLandingPadIndex(MBB, CPI); 1284 } else { 1285 // Assign the call site to the landing pad's begin label. 1286 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1287 // Mark exception register as live in. 1288 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1289 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1290 // Mark exception selector register as live in. 1291 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1292 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1293 } 1294 1295 return true; 1296 } 1297 1298 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1299 /// side-effect free and is either dead or folded into a generated instruction. 1300 /// Return false if it needs to be emitted. 1301 static bool isFoldedOrDeadInstruction(const Instruction *I, 1302 const FunctionLoweringInfo &FuncInfo) { 1303 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1304 !I->isTerminator() && // Terminators aren't folded. 1305 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1306 !I->isEHPad() && // EH pad instructions aren't folded. 1307 !FuncInfo.isExportedInst(I); // Exported instrs must be computed. 1308 } 1309 1310 /// Collect llvm.dbg.declare information. This is done after argument lowering 1311 /// in case the declarations refer to arguments. 1312 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { 1313 MachineFunction *MF = FuncInfo.MF; 1314 const DataLayout &DL = MF->getDataLayout(); 1315 for (const BasicBlock &BB : *FuncInfo.Fn) { 1316 for (const Instruction &I : BB) { 1317 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1318 if (!DI) 1319 continue; 1320 1321 assert(DI->getVariable() && "Missing variable"); 1322 assert(DI->getDebugLoc() && "Missing location"); 1323 const Value *Address = DI->getAddress(); 1324 if (!Address) 1325 continue; 1326 1327 // Look through casts and constant offset GEPs. These mostly come from 1328 // inalloca. 1329 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1330 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1331 1332 // Check if the variable is a static alloca or a byval or inalloca 1333 // argument passed in memory. If it is not, then we will ignore this 1334 // intrinsic and handle this during isel like dbg.value. 1335 int FI = std::numeric_limits<int>::max(); 1336 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1337 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1338 if (SI != FuncInfo.StaticAllocaMap.end()) 1339 FI = SI->second; 1340 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1341 FI = FuncInfo.getArgumentFrameIndex(Arg); 1342 1343 if (FI == std::numeric_limits<int>::max()) 1344 continue; 1345 1346 DIExpression *Expr = DI->getExpression(); 1347 if (Offset.getBoolValue()) 1348 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1349 Offset.getZExtValue()); 1350 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1351 } 1352 } 1353 } 1354 1355 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1356 FastISelFailed = false; 1357 // Initialize the Fast-ISel state, if needed. 1358 FastISel *FastIS = nullptr; 1359 if (TM.Options.EnableFastISel) { 1360 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1361 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1362 } 1363 1364 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1365 1366 // Lower arguments up front. An RPO iteration always visits the entry block 1367 // first. 1368 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1369 ++NumEntryBlocks; 1370 1371 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1372 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1373 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1374 1375 CurDAG->setFunctionLoweringInfo(FuncInfo.get()); 1376 1377 if (!FastIS) { 1378 LowerArguments(Fn); 1379 } else { 1380 // See if fast isel can lower the arguments. 1381 FastIS->startNewBlock(); 1382 if (!FastIS->lowerArguments()) { 1383 FastISelFailed = true; 1384 // Fast isel failed to lower these arguments 1385 ++NumFastIselFailLowerArguments; 1386 1387 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1388 Fn.getSubprogram(), 1389 &Fn.getEntryBlock()); 1390 R << "FastISel didn't lower all arguments: " 1391 << ore::NV("Prototype", Fn.getType()); 1392 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1393 1394 // Use SelectionDAG argument lowering 1395 LowerArguments(Fn); 1396 CurDAG->setRoot(SDB->getControlRoot()); 1397 SDB->clear(); 1398 CodeGenAndEmitDAG(); 1399 } 1400 1401 // If we inserted any instructions at the beginning, make a note of 1402 // where they are, so we can be sure to emit subsequent instructions 1403 // after them. 1404 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1405 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1406 else 1407 FastIS->setLastLocalValue(nullptr); 1408 } 1409 1410 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1411 1412 if (FastIS && Inserted) 1413 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1414 1415 processDbgDeclares(*FuncInfo); 1416 1417 // Iterate over all basic blocks in the function. 1418 StackProtector &SP = getAnalysis<StackProtector>(); 1419 for (const BasicBlock *LLVMBB : RPOT) { 1420 if (OptLevel != CodeGenOpt::None) { 1421 bool AllPredsVisited = true; 1422 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1423 PI != PE; ++PI) { 1424 if (!FuncInfo->VisitedBBs.count(*PI)) { 1425 AllPredsVisited = false; 1426 break; 1427 } 1428 } 1429 1430 if (AllPredsVisited) { 1431 for (const PHINode &PN : LLVMBB->phis()) 1432 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1433 } else { 1434 for (const PHINode &PN : LLVMBB->phis()) 1435 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1436 } 1437 1438 FuncInfo->VisitedBBs.insert(LLVMBB); 1439 } 1440 1441 BasicBlock::const_iterator const Begin = 1442 LLVMBB->getFirstNonPHI()->getIterator(); 1443 BasicBlock::const_iterator const End = LLVMBB->end(); 1444 BasicBlock::const_iterator BI = End; 1445 1446 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1447 if (!FuncInfo->MBB) 1448 continue; // Some blocks like catchpads have no code or MBB. 1449 1450 // Insert new instructions after any phi or argument setup code. 1451 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1452 1453 // Setup an EH landing-pad block. 1454 FuncInfo->ExceptionPointerVirtReg = 0; 1455 FuncInfo->ExceptionSelectorVirtReg = 0; 1456 if (LLVMBB->isEHPad()) 1457 if (!PrepareEHLandingPad()) 1458 continue; 1459 1460 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1461 if (FastIS) { 1462 if (LLVMBB != &Fn.getEntryBlock()) 1463 FastIS->startNewBlock(); 1464 1465 unsigned NumFastIselRemaining = std::distance(Begin, End); 1466 1467 // Pre-assign swifterror vregs. 1468 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1469 1470 // Do FastISel on as many instructions as possible. 1471 for (; BI != Begin; --BI) { 1472 const Instruction *Inst = &*std::prev(BI); 1473 1474 // If we no longer require this instruction, skip it. 1475 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) || 1476 ElidedArgCopyInstrs.count(Inst)) { 1477 --NumFastIselRemaining; 1478 continue; 1479 } 1480 1481 // Bottom-up: reset the insert pos at the top, after any local-value 1482 // instructions. 1483 FastIS->recomputeInsertPt(); 1484 1485 // Try to select the instruction with FastISel. 1486 if (FastIS->selectInstruction(Inst)) { 1487 --NumFastIselRemaining; 1488 ++NumFastIselSuccess; 1489 // If fast isel succeeded, skip over all the folded instructions, and 1490 // then see if there is a load right before the selected instructions. 1491 // Try to fold the load if so. 1492 const Instruction *BeforeInst = Inst; 1493 while (BeforeInst != &*Begin) { 1494 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1495 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo)) 1496 break; 1497 } 1498 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1499 BeforeInst->hasOneUse() && 1500 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1501 // If we succeeded, don't re-select the load. 1502 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1503 --NumFastIselRemaining; 1504 ++NumFastIselSuccess; 1505 } 1506 continue; 1507 } 1508 1509 FastISelFailed = true; 1510 1511 // Then handle certain instructions as single-LLVM-Instruction blocks. 1512 // We cannot separate out GCrelocates to their own blocks since we need 1513 // to keep track of gc-relocates for a particular gc-statepoint. This is 1514 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1515 // visitGCRelocate. 1516 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) && 1517 !isGCResult(Inst)) { 1518 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1519 Inst->getDebugLoc(), LLVMBB); 1520 1521 R << "FastISel missed call"; 1522 1523 if (R.isEnabled() || EnableFastISelAbort) { 1524 std::string InstStrStorage; 1525 raw_string_ostream InstStr(InstStrStorage); 1526 InstStr << *Inst; 1527 1528 R << ": " << InstStr.str(); 1529 } 1530 1531 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1532 1533 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1534 !Inst->use_empty()) { 1535 unsigned &R = FuncInfo->ValueMap[Inst]; 1536 if (!R) 1537 R = FuncInfo->CreateRegs(Inst); 1538 } 1539 1540 bool HadTailCall = false; 1541 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1542 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1543 1544 // If the call was emitted as a tail call, we're done with the block. 1545 // We also need to delete any previously emitted instructions. 1546 if (HadTailCall) { 1547 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1548 --BI; 1549 break; 1550 } 1551 1552 // Recompute NumFastIselRemaining as Selection DAG instruction 1553 // selection may have handled the call, input args, etc. 1554 unsigned RemainingNow = std::distance(Begin, BI); 1555 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1556 NumFastIselRemaining = RemainingNow; 1557 continue; 1558 } 1559 1560 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1561 Inst->getDebugLoc(), LLVMBB); 1562 1563 bool ShouldAbort = EnableFastISelAbort; 1564 if (Inst->isTerminator()) { 1565 // Use a different message for terminator misses. 1566 R << "FastISel missed terminator"; 1567 // Don't abort for terminator unless the level is really high 1568 ShouldAbort = (EnableFastISelAbort > 2); 1569 } else { 1570 R << "FastISel missed"; 1571 } 1572 1573 if (R.isEnabled() || EnableFastISelAbort) { 1574 std::string InstStrStorage; 1575 raw_string_ostream InstStr(InstStrStorage); 1576 InstStr << *Inst; 1577 R << ": " << InstStr.str(); 1578 } 1579 1580 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1581 1582 NumFastIselFailures += NumFastIselRemaining; 1583 break; 1584 } 1585 1586 FastIS->recomputeInsertPt(); 1587 } 1588 1589 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1590 bool FunctionBasedInstrumentation = 1591 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1592 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1593 FunctionBasedInstrumentation); 1594 } 1595 1596 if (Begin != BI) 1597 ++NumDAGBlocks; 1598 else 1599 ++NumFastIselBlocks; 1600 1601 if (Begin != BI) { 1602 // Run SelectionDAG instruction selection on the remainder of the block 1603 // not handled by FastISel. If FastISel is not run, this is the entire 1604 // block. 1605 bool HadTailCall; 1606 SelectBasicBlock(Begin, BI, HadTailCall); 1607 1608 // But if FastISel was run, we already selected some of the block. 1609 // If we emitted a tail-call, we need to delete any previously emitted 1610 // instruction that follows it. 1611 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1612 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1613 } 1614 1615 if (FastIS) 1616 FastIS->finishBasicBlock(); 1617 FinishBasicBlock(); 1618 FuncInfo->PHINodesToUpdate.clear(); 1619 ElidedArgCopyInstrs.clear(); 1620 } 1621 1622 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1623 1624 SwiftError->propagateVRegs(); 1625 1626 delete FastIS; 1627 SDB->clearDanglingDebugInfo(); 1628 SDB->SPDescriptor.resetPerFunctionState(); 1629 } 1630 1631 /// Given that the input MI is before a partial terminator sequence TSeq, return 1632 /// true if M + TSeq also a partial terminator sequence. 1633 /// 1634 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1635 /// lowering copy vregs into physical registers, which are then passed into 1636 /// terminator instructors so we can satisfy ABI constraints. A partial 1637 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1638 /// may be the whole terminator sequence). 1639 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1640 // If we do not have a copy or an implicit def, we return true if and only if 1641 // MI is a debug value. 1642 if (!MI.isCopy() && !MI.isImplicitDef()) 1643 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1644 // physical registers if there is debug info associated with the terminator 1645 // of our mbb. We want to include said debug info in our terminator 1646 // sequence, so we return true in that case. 1647 return MI.isDebugValue(); 1648 1649 // We have left the terminator sequence if we are not doing one of the 1650 // following: 1651 // 1652 // 1. Copying a vreg into a physical register. 1653 // 2. Copying a vreg into a vreg. 1654 // 3. Defining a register via an implicit def. 1655 1656 // OPI should always be a register definition... 1657 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1658 if (!OPI->isReg() || !OPI->isDef()) 1659 return false; 1660 1661 // Defining any register via an implicit def is always ok. 1662 if (MI.isImplicitDef()) 1663 return true; 1664 1665 // Grab the copy source... 1666 MachineInstr::const_mop_iterator OPI2 = OPI; 1667 ++OPI2; 1668 assert(OPI2 != MI.operands_end() 1669 && "Should have a copy implying we should have 2 arguments."); 1670 1671 // Make sure that the copy dest is not a vreg when the copy source is a 1672 // physical register. 1673 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) && 1674 Register::isPhysicalRegister(OPI2->getReg()))) 1675 return false; 1676 1677 return true; 1678 } 1679 1680 /// Find the split point at which to splice the end of BB into its success stack 1681 /// protector check machine basic block. 1682 /// 1683 /// On many platforms, due to ABI constraints, terminators, even before register 1684 /// allocation, use physical registers. This creates an issue for us since 1685 /// physical registers at this point can not travel across basic 1686 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1687 /// when they enter functions and moves them through a sequence of copies back 1688 /// into the physical registers right before the terminator creating a 1689 /// ``Terminator Sequence''. This function is searching for the beginning of the 1690 /// terminator sequence so that we can ensure that we splice off not just the 1691 /// terminator, but additionally the copies that move the vregs into the 1692 /// physical registers. 1693 static MachineBasicBlock::iterator 1694 FindSplitPointForStackProtector(MachineBasicBlock *BB) { 1695 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1696 // 1697 if (SplitPoint == BB->begin()) 1698 return SplitPoint; 1699 1700 MachineBasicBlock::iterator Start = BB->begin(); 1701 MachineBasicBlock::iterator Previous = SplitPoint; 1702 --Previous; 1703 1704 while (MIIsInTerminatorSequence(*Previous)) { 1705 SplitPoint = Previous; 1706 if (Previous == Start) 1707 break; 1708 --Previous; 1709 } 1710 1711 return SplitPoint; 1712 } 1713 1714 void 1715 SelectionDAGISel::FinishBasicBlock() { 1716 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1717 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1718 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1719 ++i) dbgs() 1720 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1721 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1722 1723 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1724 // PHI nodes in successors. 1725 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1726 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1727 assert(PHI->isPHI() && 1728 "This is not a machine PHI node that we are updating!"); 1729 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1730 continue; 1731 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1732 } 1733 1734 // Handle stack protector. 1735 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1736 // The target provides a guard check function. There is no need to 1737 // generate error handling code or to split current basic block. 1738 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1739 1740 // Add load and check to the basicblock. 1741 FuncInfo->MBB = ParentMBB; 1742 FuncInfo->InsertPt = 1743 FindSplitPointForStackProtector(ParentMBB); 1744 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1745 CurDAG->setRoot(SDB->getRoot()); 1746 SDB->clear(); 1747 CodeGenAndEmitDAG(); 1748 1749 // Clear the Per-BB State. 1750 SDB->SPDescriptor.resetPerBBState(); 1751 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1752 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1753 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1754 1755 // Find the split point to split the parent mbb. At the same time copy all 1756 // physical registers used in the tail of parent mbb into virtual registers 1757 // before the split point and back into physical registers after the split 1758 // point. This prevents us needing to deal with Live-ins and many other 1759 // register allocation issues caused by us splitting the parent mbb. The 1760 // register allocator will clean up said virtual copies later on. 1761 MachineBasicBlock::iterator SplitPoint = 1762 FindSplitPointForStackProtector(ParentMBB); 1763 1764 // Splice the terminator of ParentMBB into SuccessMBB. 1765 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1766 SplitPoint, 1767 ParentMBB->end()); 1768 1769 // Add compare/jump on neq/jump to the parent BB. 1770 FuncInfo->MBB = ParentMBB; 1771 FuncInfo->InsertPt = ParentMBB->end(); 1772 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1773 CurDAG->setRoot(SDB->getRoot()); 1774 SDB->clear(); 1775 CodeGenAndEmitDAG(); 1776 1777 // CodeGen Failure MBB if we have not codegened it yet. 1778 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1779 if (FailureMBB->empty()) { 1780 FuncInfo->MBB = FailureMBB; 1781 FuncInfo->InsertPt = FailureMBB->end(); 1782 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1783 CurDAG->setRoot(SDB->getRoot()); 1784 SDB->clear(); 1785 CodeGenAndEmitDAG(); 1786 } 1787 1788 // Clear the Per-BB State. 1789 SDB->SPDescriptor.resetPerBBState(); 1790 } 1791 1792 // Lower each BitTestBlock. 1793 for (auto &BTB : SDB->SL->BitTestCases) { 1794 // Lower header first, if it wasn't already lowered 1795 if (!BTB.Emitted) { 1796 // Set the current basic block to the mbb we wish to insert the code into 1797 FuncInfo->MBB = BTB.Parent; 1798 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1799 // Emit the code 1800 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1801 CurDAG->setRoot(SDB->getRoot()); 1802 SDB->clear(); 1803 CodeGenAndEmitDAG(); 1804 } 1805 1806 BranchProbability UnhandledProb = BTB.Prob; 1807 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1808 UnhandledProb -= BTB.Cases[j].ExtraProb; 1809 // Set the current basic block to the mbb we wish to insert the code into 1810 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1811 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1812 // Emit the code 1813 1814 // If all cases cover a contiguous range, it is not necessary to jump to 1815 // the default block after the last bit test fails. This is because the 1816 // range check during bit test header creation has guaranteed that every 1817 // case here doesn't go outside the range. In this case, there is no need 1818 // to perform the last bit test, as it will always be true. Instead, make 1819 // the second-to-last bit-test fall through to the target of the last bit 1820 // test, and delete the last bit test. 1821 1822 MachineBasicBlock *NextMBB; 1823 if (BTB.ContiguousRange && j + 2 == ej) { 1824 // Second-to-last bit-test with contiguous range: fall through to the 1825 // target of the final bit test. 1826 NextMBB = BTB.Cases[j + 1].TargetBB; 1827 } else if (j + 1 == ej) { 1828 // For the last bit test, fall through to Default. 1829 NextMBB = BTB.Default; 1830 } else { 1831 // Otherwise, fall through to the next bit test. 1832 NextMBB = BTB.Cases[j + 1].ThisBB; 1833 } 1834 1835 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1836 FuncInfo->MBB); 1837 1838 CurDAG->setRoot(SDB->getRoot()); 1839 SDB->clear(); 1840 CodeGenAndEmitDAG(); 1841 1842 if (BTB.ContiguousRange && j + 2 == ej) { 1843 // Since we're not going to use the final bit test, remove it. 1844 BTB.Cases.pop_back(); 1845 break; 1846 } 1847 } 1848 1849 // Update PHI Nodes 1850 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1851 pi != pe; ++pi) { 1852 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1853 MachineBasicBlock *PHIBB = PHI->getParent(); 1854 assert(PHI->isPHI() && 1855 "This is not a machine PHI node that we are updating!"); 1856 // This is "default" BB. We have two jumps to it. From "header" BB and 1857 // from last "case" BB, unless the latter was skipped. 1858 if (PHIBB == BTB.Default) { 1859 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1860 if (!BTB.ContiguousRange) { 1861 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1862 .addMBB(BTB.Cases.back().ThisBB); 1863 } 1864 } 1865 // One of "cases" BB. 1866 for (unsigned j = 0, ej = BTB.Cases.size(); 1867 j != ej; ++j) { 1868 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1869 if (cBB->isSuccessor(PHIBB)) 1870 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1871 } 1872 } 1873 } 1874 SDB->SL->BitTestCases.clear(); 1875 1876 // If the JumpTable record is filled in, then we need to emit a jump table. 1877 // Updating the PHI nodes is tricky in this case, since we need to determine 1878 // whether the PHI is a successor of the range check MBB or the jump table MBB 1879 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1880 // Lower header first, if it wasn't already lowered 1881 if (!SDB->SL->JTCases[i].first.Emitted) { 1882 // Set the current basic block to the mbb we wish to insert the code into 1883 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1884 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1885 // Emit the code 1886 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1887 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1888 CurDAG->setRoot(SDB->getRoot()); 1889 SDB->clear(); 1890 CodeGenAndEmitDAG(); 1891 } 1892 1893 // Set the current basic block to the mbb we wish to insert the code into 1894 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1895 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1896 // Emit the code 1897 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1898 CurDAG->setRoot(SDB->getRoot()); 1899 SDB->clear(); 1900 CodeGenAndEmitDAG(); 1901 1902 // Update PHI Nodes 1903 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1904 pi != pe; ++pi) { 1905 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1906 MachineBasicBlock *PHIBB = PHI->getParent(); 1907 assert(PHI->isPHI() && 1908 "This is not a machine PHI node that we are updating!"); 1909 // "default" BB. We can go there only from header BB. 1910 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1911 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1912 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1913 // JT BB. Just iterate over successors here 1914 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1915 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1916 } 1917 } 1918 SDB->SL->JTCases.clear(); 1919 1920 // If we generated any switch lowering information, build and codegen any 1921 // additional DAGs necessary. 1922 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1923 // Set the current basic block to the mbb we wish to insert the code into 1924 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1925 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1926 1927 // Determine the unique successors. 1928 SmallVector<MachineBasicBlock *, 2> Succs; 1929 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1930 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1931 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1932 1933 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1934 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1935 CurDAG->setRoot(SDB->getRoot()); 1936 SDB->clear(); 1937 CodeGenAndEmitDAG(); 1938 1939 // Remember the last block, now that any splitting is done, for use in 1940 // populating PHI nodes in successors. 1941 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1942 1943 // Handle any PHI nodes in successors of this chunk, as if we were coming 1944 // from the original BB before switch expansion. Note that PHI nodes can 1945 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1946 // handle them the right number of times. 1947 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1948 FuncInfo->MBB = Succs[i]; 1949 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1950 // FuncInfo->MBB may have been removed from the CFG if a branch was 1951 // constant folded. 1952 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1953 for (MachineBasicBlock::iterator 1954 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1955 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1956 MachineInstrBuilder PHI(*MF, MBBI); 1957 // This value for this PHI node is recorded in PHINodesToUpdate. 1958 for (unsigned pn = 0; ; ++pn) { 1959 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1960 "Didn't find PHI entry!"); 1961 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1962 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1963 break; 1964 } 1965 } 1966 } 1967 } 1968 } 1969 } 1970 SDB->SL->SwitchCases.clear(); 1971 } 1972 1973 /// Create the scheduler. If a specific scheduler was specified 1974 /// via the SchedulerRegistry, use it, otherwise select the 1975 /// one preferred by the target. 1976 /// 1977 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1978 return ISHeuristic(this, OptLevel); 1979 } 1980 1981 //===----------------------------------------------------------------------===// 1982 // Helper functions used by the generated instruction selector. 1983 //===----------------------------------------------------------------------===// 1984 // Calls to these methods are generated by tblgen. 1985 1986 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1987 /// the dag combiner simplified the 255, we still want to match. RHS is the 1988 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1989 /// specified in the .td file (e.g. 255). 1990 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1991 int64_t DesiredMaskS) const { 1992 const APInt &ActualMask = RHS->getAPIntValue(); 1993 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1994 1995 // If the actual mask exactly matches, success! 1996 if (ActualMask == DesiredMask) 1997 return true; 1998 1999 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2000 if (!ActualMask.isSubsetOf(DesiredMask)) 2001 return false; 2002 2003 // Otherwise, the DAG Combiner may have proven that the value coming in is 2004 // either already zero or is not demanded. Check for known zero input bits. 2005 APInt NeededMask = DesiredMask & ~ActualMask; 2006 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 2007 return true; 2008 2009 // TODO: check to see if missing bits are just not demanded. 2010 2011 // Otherwise, this pattern doesn't match. 2012 return false; 2013 } 2014 2015 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 2016 /// the dag combiner simplified the 255, we still want to match. RHS is the 2017 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 2018 /// specified in the .td file (e.g. 255). 2019 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 2020 int64_t DesiredMaskS) const { 2021 const APInt &ActualMask = RHS->getAPIntValue(); 2022 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2023 2024 // If the actual mask exactly matches, success! 2025 if (ActualMask == DesiredMask) 2026 return true; 2027 2028 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2029 if (!ActualMask.isSubsetOf(DesiredMask)) 2030 return false; 2031 2032 // Otherwise, the DAG Combiner may have proven that the value coming in is 2033 // either already zero or is not demanded. Check for known zero input bits. 2034 APInt NeededMask = DesiredMask & ~ActualMask; 2035 KnownBits Known = CurDAG->computeKnownBits(LHS); 2036 2037 // If all the missing bits in the or are already known to be set, match! 2038 if (NeededMask.isSubsetOf(Known.One)) 2039 return true; 2040 2041 // TODO: check to see if missing bits are just not demanded. 2042 2043 // Otherwise, this pattern doesn't match. 2044 return false; 2045 } 2046 2047 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2048 /// by tblgen. Others should not call it. 2049 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2050 const SDLoc &DL) { 2051 std::vector<SDValue> InOps; 2052 std::swap(InOps, Ops); 2053 2054 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2055 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2056 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2057 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2058 2059 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2060 if (InOps[e-1].getValueType() == MVT::Glue) 2061 --e; // Don't process a glue operand if it is here. 2062 2063 while (i != e) { 2064 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2065 if (!InlineAsm::isMemKind(Flags)) { 2066 // Just skip over this operand, copying the operands verbatim. 2067 Ops.insert(Ops.end(), InOps.begin()+i, 2068 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2069 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2070 } else { 2071 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2072 "Memory operand with multiple values?"); 2073 2074 unsigned TiedToOperand; 2075 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2076 // We need the constraint ID from the operand this is tied to. 2077 unsigned CurOp = InlineAsm::Op_FirstOperand; 2078 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2079 for (; TiedToOperand; --TiedToOperand) { 2080 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2081 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2082 } 2083 } 2084 2085 // Otherwise, this is a memory operand. Ask the target to select it. 2086 std::vector<SDValue> SelOps; 2087 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2088 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2089 report_fatal_error("Could not match memory address. Inline asm" 2090 " failure!"); 2091 2092 // Add this to the output node. 2093 unsigned NewFlags = 2094 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2095 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2096 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2097 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 2098 i += 2; 2099 } 2100 } 2101 2102 // Add the glue input back if present. 2103 if (e != InOps.size()) 2104 Ops.push_back(InOps.back()); 2105 } 2106 2107 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2108 /// SDNode. 2109 /// 2110 static SDNode *findGlueUse(SDNode *N) { 2111 unsigned FlagResNo = N->getNumValues()-1; 2112 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2113 SDUse &Use = I.getUse(); 2114 if (Use.getResNo() == FlagResNo) 2115 return Use.getUser(); 2116 } 2117 return nullptr; 2118 } 2119 2120 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2121 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2122 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2123 bool IgnoreChains) { 2124 SmallPtrSet<const SDNode *, 16> Visited; 2125 SmallVector<const SDNode *, 16> WorkList; 2126 // Only check if we have non-immediate uses of Def. 2127 if (ImmedUse->isOnlyUserOf(Def)) 2128 return false; 2129 2130 // We don't care about paths to Def that go through ImmedUse so mark it 2131 // visited and mark non-def operands as used. 2132 Visited.insert(ImmedUse); 2133 for (const SDValue &Op : ImmedUse->op_values()) { 2134 SDNode *N = Op.getNode(); 2135 // Ignore chain deps (they are validated by 2136 // HandleMergeInputChains) and immediate uses 2137 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2138 continue; 2139 if (!Visited.insert(N).second) 2140 continue; 2141 WorkList.push_back(N); 2142 } 2143 2144 // Initialize worklist to operands of Root. 2145 if (Root != ImmedUse) { 2146 for (const SDValue &Op : Root->op_values()) { 2147 SDNode *N = Op.getNode(); 2148 // Ignore chains (they are validated by HandleMergeInputChains) 2149 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2150 continue; 2151 if (!Visited.insert(N).second) 2152 continue; 2153 WorkList.push_back(N); 2154 } 2155 } 2156 2157 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2158 } 2159 2160 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2161 /// operand node N of U during instruction selection that starts at Root. 2162 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2163 SDNode *Root) const { 2164 if (OptLevel == CodeGenOpt::None) return false; 2165 return N.hasOneUse(); 2166 } 2167 2168 /// IsLegalToFold - Returns true if the specific operand node N of 2169 /// U can be folded during instruction selection that starts at Root. 2170 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2171 CodeGenOpt::Level OptLevel, 2172 bool IgnoreChains) { 2173 if (OptLevel == CodeGenOpt::None) return false; 2174 2175 // If Root use can somehow reach N through a path that that doesn't contain 2176 // U then folding N would create a cycle. e.g. In the following 2177 // diagram, Root can reach N through X. If N is folded into Root, then 2178 // X is both a predecessor and a successor of U. 2179 // 2180 // [N*] // 2181 // ^ ^ // 2182 // / \ // 2183 // [U*] [X]? // 2184 // ^ ^ // 2185 // \ / // 2186 // \ / // 2187 // [Root*] // 2188 // 2189 // * indicates nodes to be folded together. 2190 // 2191 // If Root produces glue, then it gets (even more) interesting. Since it 2192 // will be "glued" together with its glue use in the scheduler, we need to 2193 // check if it might reach N. 2194 // 2195 // [N*] // 2196 // ^ ^ // 2197 // / \ // 2198 // [U*] [X]? // 2199 // ^ ^ // 2200 // \ \ // 2201 // \ | // 2202 // [Root*] | // 2203 // ^ | // 2204 // f | // 2205 // | / // 2206 // [Y] / // 2207 // ^ / // 2208 // f / // 2209 // | / // 2210 // [GU] // 2211 // 2212 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2213 // (call it Fold), then X is a predecessor of GU and a successor of 2214 // Fold. But since Fold and GU are glued together, this will create 2215 // a cycle in the scheduling graph. 2216 2217 // If the node has glue, walk down the graph to the "lowest" node in the 2218 // glueged set. 2219 EVT VT = Root->getValueType(Root->getNumValues()-1); 2220 while (VT == MVT::Glue) { 2221 SDNode *GU = findGlueUse(Root); 2222 if (!GU) 2223 break; 2224 Root = GU; 2225 VT = Root->getValueType(Root->getNumValues()-1); 2226 2227 // If our query node has a glue result with a use, we've walked up it. If 2228 // the user (which has already been selected) has a chain or indirectly uses 2229 // the chain, HandleMergeInputChains will not consider it. Because of 2230 // this, we cannot ignore chains in this predicate. 2231 IgnoreChains = false; 2232 } 2233 2234 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2235 } 2236 2237 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) { 2238 SDLoc DL(N); 2239 2240 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2241 SelectInlineAsmMemoryOperands(Ops, DL); 2242 2243 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2244 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops); 2245 New->setNodeId(-1); 2246 ReplaceUses(N, New.getNode()); 2247 CurDAG->RemoveDeadNode(N); 2248 } 2249 2250 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2251 SDLoc dl(Op); 2252 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2253 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2254 2255 EVT VT = Op->getValueType(0); 2256 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2257 Register Reg = 2258 TLI->getRegisterByName(RegStr->getString().data(), Ty, 2259 CurDAG->getMachineFunction()); 2260 SDValue New = CurDAG->getCopyFromReg( 2261 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2262 New->setNodeId(-1); 2263 ReplaceUses(Op, New.getNode()); 2264 CurDAG->RemoveDeadNode(Op); 2265 } 2266 2267 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2268 SDLoc dl(Op); 2269 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2270 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2271 2272 EVT VT = Op->getOperand(2).getValueType(); 2273 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2274 2275 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, 2276 CurDAG->getMachineFunction()); 2277 SDValue New = CurDAG->getCopyToReg( 2278 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2279 New->setNodeId(-1); 2280 ReplaceUses(Op, New.getNode()); 2281 CurDAG->RemoveDeadNode(Op); 2282 } 2283 2284 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2285 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2286 } 2287 2288 /// GetVBR - decode a vbr encoding whose top bit is set. 2289 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2290 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2291 assert(Val >= 128 && "Not a VBR"); 2292 Val &= 127; // Remove first vbr bit. 2293 2294 unsigned Shift = 7; 2295 uint64_t NextBits; 2296 do { 2297 NextBits = MatcherTable[Idx++]; 2298 Val |= (NextBits&127) << Shift; 2299 Shift += 7; 2300 } while (NextBits & 128); 2301 2302 return Val; 2303 } 2304 2305 /// When a match is complete, this method updates uses of interior chain results 2306 /// to use the new results. 2307 void SelectionDAGISel::UpdateChains( 2308 SDNode *NodeToMatch, SDValue InputChain, 2309 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2310 SmallVector<SDNode*, 4> NowDeadNodes; 2311 2312 // Now that all the normal results are replaced, we replace the chain and 2313 // glue results if present. 2314 if (!ChainNodesMatched.empty()) { 2315 assert(InputChain.getNode() && 2316 "Matched input chains but didn't produce a chain"); 2317 // Loop over all of the nodes we matched that produced a chain result. 2318 // Replace all the chain results with the final chain we ended up with. 2319 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2320 SDNode *ChainNode = ChainNodesMatched[i]; 2321 // If ChainNode is null, it's because we replaced it on a previous 2322 // iteration and we cleared it out of the map. Just skip it. 2323 if (!ChainNode) 2324 continue; 2325 2326 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2327 "Deleted node left in chain"); 2328 2329 // Don't replace the results of the root node if we're doing a 2330 // MorphNodeTo. 2331 if (ChainNode == NodeToMatch && isMorphNodeTo) 2332 continue; 2333 2334 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2335 if (ChainVal.getValueType() == MVT::Glue) 2336 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2337 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2338 SelectionDAG::DAGNodeDeletedListener NDL( 2339 *CurDAG, [&](SDNode *N, SDNode *E) { 2340 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2341 static_cast<SDNode *>(nullptr)); 2342 }); 2343 if (ChainNode->getOpcode() != ISD::TokenFactor) 2344 ReplaceUses(ChainVal, InputChain); 2345 2346 // If the node became dead and we haven't already seen it, delete it. 2347 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2348 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2349 NowDeadNodes.push_back(ChainNode); 2350 } 2351 } 2352 2353 if (!NowDeadNodes.empty()) 2354 CurDAG->RemoveDeadNodes(NowDeadNodes); 2355 2356 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2357 } 2358 2359 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2360 /// operation for when the pattern matched at least one node with a chains. The 2361 /// input vector contains a list of all of the chained nodes that we match. We 2362 /// must determine if this is a valid thing to cover (i.e. matching it won't 2363 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2364 /// be used as the input node chain for the generated nodes. 2365 static SDValue 2366 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2367 SelectionDAG *CurDAG) { 2368 2369 SmallPtrSet<const SDNode *, 16> Visited; 2370 SmallVector<const SDNode *, 8> Worklist; 2371 SmallVector<SDValue, 3> InputChains; 2372 unsigned int Max = 8192; 2373 2374 // Quick exit on trivial merge. 2375 if (ChainNodesMatched.size() == 1) 2376 return ChainNodesMatched[0]->getOperand(0); 2377 2378 // Add chains that aren't already added (internal). Peek through 2379 // token factors. 2380 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2381 if (V.getValueType() != MVT::Other) 2382 return; 2383 if (V->getOpcode() == ISD::EntryToken) 2384 return; 2385 if (!Visited.insert(V.getNode()).second) 2386 return; 2387 if (V->getOpcode() == ISD::TokenFactor) { 2388 for (const SDValue &Op : V->op_values()) 2389 AddChains(Op); 2390 } else 2391 InputChains.push_back(V); 2392 }; 2393 2394 for (auto *N : ChainNodesMatched) { 2395 Worklist.push_back(N); 2396 Visited.insert(N); 2397 } 2398 2399 while (!Worklist.empty()) 2400 AddChains(Worklist.pop_back_val()->getOperand(0)); 2401 2402 // Skip the search if there are no chain dependencies. 2403 if (InputChains.size() == 0) 2404 return CurDAG->getEntryNode(); 2405 2406 // If one of these chains is a successor of input, we must have a 2407 // node that is both the predecessor and successor of the 2408 // to-be-merged nodes. Fail. 2409 Visited.clear(); 2410 for (SDValue V : InputChains) 2411 Worklist.push_back(V.getNode()); 2412 2413 for (auto *N : ChainNodesMatched) 2414 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2415 return SDValue(); 2416 2417 // Return merged chain. 2418 if (InputChains.size() == 1) 2419 return InputChains[0]; 2420 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2421 MVT::Other, InputChains); 2422 } 2423 2424 /// MorphNode - Handle morphing a node in place for the selector. 2425 SDNode *SelectionDAGISel:: 2426 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2427 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2428 // It is possible we're using MorphNodeTo to replace a node with no 2429 // normal results with one that has a normal result (or we could be 2430 // adding a chain) and the input could have glue and chains as well. 2431 // In this case we need to shift the operands down. 2432 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2433 // than the old isel though. 2434 int OldGlueResultNo = -1, OldChainResultNo = -1; 2435 2436 unsigned NTMNumResults = Node->getNumValues(); 2437 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2438 OldGlueResultNo = NTMNumResults-1; 2439 if (NTMNumResults != 1 && 2440 Node->getValueType(NTMNumResults-2) == MVT::Other) 2441 OldChainResultNo = NTMNumResults-2; 2442 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2443 OldChainResultNo = NTMNumResults-1; 2444 2445 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2446 // that this deletes operands of the old node that become dead. 2447 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2448 2449 // MorphNodeTo can operate in two ways: if an existing node with the 2450 // specified operands exists, it can just return it. Otherwise, it 2451 // updates the node in place to have the requested operands. 2452 if (Res == Node) { 2453 // If we updated the node in place, reset the node ID. To the isel, 2454 // this should be just like a newly allocated machine node. 2455 Res->setNodeId(-1); 2456 } 2457 2458 unsigned ResNumResults = Res->getNumValues(); 2459 // Move the glue if needed. 2460 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2461 (unsigned)OldGlueResultNo != ResNumResults-1) 2462 ReplaceUses(SDValue(Node, OldGlueResultNo), 2463 SDValue(Res, ResNumResults - 1)); 2464 2465 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2466 --ResNumResults; 2467 2468 // Move the chain reference if needed. 2469 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2470 (unsigned)OldChainResultNo != ResNumResults-1) 2471 ReplaceUses(SDValue(Node, OldChainResultNo), 2472 SDValue(Res, ResNumResults - 1)); 2473 2474 // Otherwise, no replacement happened because the node already exists. Replace 2475 // Uses of the old node with the new one. 2476 if (Res != Node) { 2477 ReplaceNode(Node, Res); 2478 } else { 2479 EnforceNodeIdInvariant(Res); 2480 } 2481 2482 return Res; 2483 } 2484 2485 /// CheckSame - Implements OP_CheckSame. 2486 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2487 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2488 SDValue N, 2489 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2490 // Accept if it is exactly the same as a previously recorded node. 2491 unsigned RecNo = MatcherTable[MatcherIndex++]; 2492 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2493 return N == RecordedNodes[RecNo].first; 2494 } 2495 2496 /// CheckChildSame - Implements OP_CheckChildXSame. 2497 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2498 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2499 SDValue N, 2500 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes, 2501 unsigned ChildNo) { 2502 if (ChildNo >= N.getNumOperands()) 2503 return false; // Match fails if out of range child #. 2504 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2505 RecordedNodes); 2506 } 2507 2508 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2509 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2510 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2511 const SelectionDAGISel &SDISel) { 2512 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2513 } 2514 2515 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2516 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2517 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2518 const SelectionDAGISel &SDISel, SDNode *N) { 2519 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2520 } 2521 2522 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2523 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2524 SDNode *N) { 2525 uint16_t Opc = MatcherTable[MatcherIndex++]; 2526 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2527 return N->getOpcode() == Opc; 2528 } 2529 2530 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2531 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2532 const TargetLowering *TLI, const DataLayout &DL) { 2533 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2534 if (N.getValueType() == VT) return true; 2535 2536 // Handle the case when VT is iPTR. 2537 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2538 } 2539 2540 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2541 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2542 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2543 unsigned ChildNo) { 2544 if (ChildNo >= N.getNumOperands()) 2545 return false; // Match fails if out of range child #. 2546 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2547 DL); 2548 } 2549 2550 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2551 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2552 SDValue N) { 2553 return cast<CondCodeSDNode>(N)->get() == 2554 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2555 } 2556 2557 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2558 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2559 SDValue N) { 2560 if (2 >= N.getNumOperands()) 2561 return false; 2562 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2563 } 2564 2565 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2566 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2567 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2568 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2569 if (cast<VTSDNode>(N)->getVT() == VT) 2570 return true; 2571 2572 // Handle the case when VT is iPTR. 2573 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2574 } 2575 2576 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2577 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2578 SDValue N) { 2579 int64_t Val = MatcherTable[MatcherIndex++]; 2580 if (Val & 128) 2581 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2582 2583 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2584 return C && C->getSExtValue() == Val; 2585 } 2586 2587 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2588 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2589 SDValue N, unsigned ChildNo) { 2590 if (ChildNo >= N.getNumOperands()) 2591 return false; // Match fails if out of range child #. 2592 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2593 } 2594 2595 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2596 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2597 SDValue N, const SelectionDAGISel &SDISel) { 2598 int64_t Val = MatcherTable[MatcherIndex++]; 2599 if (Val & 128) 2600 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2601 2602 if (N->getOpcode() != ISD::AND) return false; 2603 2604 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2605 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2606 } 2607 2608 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2609 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2610 SDValue N, const SelectionDAGISel &SDISel) { 2611 int64_t Val = MatcherTable[MatcherIndex++]; 2612 if (Val & 128) 2613 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2614 2615 if (N->getOpcode() != ISD::OR) return false; 2616 2617 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2618 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2619 } 2620 2621 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2622 /// scope, evaluate the current node. If the current predicate is known to 2623 /// fail, set Result=true and return anything. If the current predicate is 2624 /// known to pass, set Result=false and return the MatcherIndex to continue 2625 /// with. If the current predicate is unknown, set Result=false and return the 2626 /// MatcherIndex to continue with. 2627 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2628 unsigned Index, SDValue N, 2629 bool &Result, 2630 const SelectionDAGISel &SDISel, 2631 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2632 switch (Table[Index++]) { 2633 default: 2634 Result = false; 2635 return Index-1; // Could not evaluate this predicate. 2636 case SelectionDAGISel::OPC_CheckSame: 2637 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2638 return Index; 2639 case SelectionDAGISel::OPC_CheckChild0Same: 2640 case SelectionDAGISel::OPC_CheckChild1Same: 2641 case SelectionDAGISel::OPC_CheckChild2Same: 2642 case SelectionDAGISel::OPC_CheckChild3Same: 2643 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2644 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2645 return Index; 2646 case SelectionDAGISel::OPC_CheckPatternPredicate: 2647 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2648 return Index; 2649 case SelectionDAGISel::OPC_CheckPredicate: 2650 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2651 return Index; 2652 case SelectionDAGISel::OPC_CheckOpcode: 2653 Result = !::CheckOpcode(Table, Index, N.getNode()); 2654 return Index; 2655 case SelectionDAGISel::OPC_CheckType: 2656 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2657 SDISel.CurDAG->getDataLayout()); 2658 return Index; 2659 case SelectionDAGISel::OPC_CheckTypeRes: { 2660 unsigned Res = Table[Index++]; 2661 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2662 SDISel.CurDAG->getDataLayout()); 2663 return Index; 2664 } 2665 case SelectionDAGISel::OPC_CheckChild0Type: 2666 case SelectionDAGISel::OPC_CheckChild1Type: 2667 case SelectionDAGISel::OPC_CheckChild2Type: 2668 case SelectionDAGISel::OPC_CheckChild3Type: 2669 case SelectionDAGISel::OPC_CheckChild4Type: 2670 case SelectionDAGISel::OPC_CheckChild5Type: 2671 case SelectionDAGISel::OPC_CheckChild6Type: 2672 case SelectionDAGISel::OPC_CheckChild7Type: 2673 Result = !::CheckChildType( 2674 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2675 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2676 return Index; 2677 case SelectionDAGISel::OPC_CheckCondCode: 2678 Result = !::CheckCondCode(Table, Index, N); 2679 return Index; 2680 case SelectionDAGISel::OPC_CheckChild2CondCode: 2681 Result = !::CheckChild2CondCode(Table, Index, N); 2682 return Index; 2683 case SelectionDAGISel::OPC_CheckValueType: 2684 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2685 SDISel.CurDAG->getDataLayout()); 2686 return Index; 2687 case SelectionDAGISel::OPC_CheckInteger: 2688 Result = !::CheckInteger(Table, Index, N); 2689 return Index; 2690 case SelectionDAGISel::OPC_CheckChild0Integer: 2691 case SelectionDAGISel::OPC_CheckChild1Integer: 2692 case SelectionDAGISel::OPC_CheckChild2Integer: 2693 case SelectionDAGISel::OPC_CheckChild3Integer: 2694 case SelectionDAGISel::OPC_CheckChild4Integer: 2695 Result = !::CheckChildInteger(Table, Index, N, 2696 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2697 return Index; 2698 case SelectionDAGISel::OPC_CheckAndImm: 2699 Result = !::CheckAndImm(Table, Index, N, SDISel); 2700 return Index; 2701 case SelectionDAGISel::OPC_CheckOrImm: 2702 Result = !::CheckOrImm(Table, Index, N, SDISel); 2703 return Index; 2704 } 2705 } 2706 2707 namespace { 2708 2709 struct MatchScope { 2710 /// FailIndex - If this match fails, this is the index to continue with. 2711 unsigned FailIndex; 2712 2713 /// NodeStack - The node stack when the scope was formed. 2714 SmallVector<SDValue, 4> NodeStack; 2715 2716 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2717 unsigned NumRecordedNodes; 2718 2719 /// NumMatchedMemRefs - The number of matched memref entries. 2720 unsigned NumMatchedMemRefs; 2721 2722 /// InputChain/InputGlue - The current chain/glue 2723 SDValue InputChain, InputGlue; 2724 2725 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2726 bool HasChainNodesMatched; 2727 }; 2728 2729 /// \A DAG update listener to keep the matching state 2730 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2731 /// change the DAG while matching. X86 addressing mode matcher is an example 2732 /// for this. 2733 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2734 { 2735 SDNode **NodeToMatch; 2736 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2737 SmallVectorImpl<MatchScope> &MatchScopes; 2738 2739 public: 2740 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2741 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2742 SmallVectorImpl<MatchScope> &MS) 2743 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2744 RecordedNodes(RN), MatchScopes(MS) {} 2745 2746 void NodeDeleted(SDNode *N, SDNode *E) override { 2747 // Some early-returns here to avoid the search if we deleted the node or 2748 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2749 // do, so it's unnecessary to update matching state at that point). 2750 // Neither of these can occur currently because we only install this 2751 // update listener during matching a complex patterns. 2752 if (!E || E->isMachineOpcode()) 2753 return; 2754 // Check if NodeToMatch was updated. 2755 if (N == *NodeToMatch) 2756 *NodeToMatch = E; 2757 // Performing linear search here does not matter because we almost never 2758 // run this code. You'd have to have a CSE during complex pattern 2759 // matching. 2760 for (auto &I : RecordedNodes) 2761 if (I.first.getNode() == N) 2762 I.first.setNode(E); 2763 2764 for (auto &I : MatchScopes) 2765 for (auto &J : I.NodeStack) 2766 if (J.getNode() == N) 2767 J.setNode(E); 2768 } 2769 }; 2770 2771 } // end anonymous namespace 2772 2773 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2774 const unsigned char *MatcherTable, 2775 unsigned TableSize) { 2776 // FIXME: Should these even be selected? Handle these cases in the caller? 2777 switch (NodeToMatch->getOpcode()) { 2778 default: 2779 break; 2780 case ISD::EntryToken: // These nodes remain the same. 2781 case ISD::BasicBlock: 2782 case ISD::Register: 2783 case ISD::RegisterMask: 2784 case ISD::HANDLENODE: 2785 case ISD::MDNODE_SDNODE: 2786 case ISD::TargetConstant: 2787 case ISD::TargetConstantFP: 2788 case ISD::TargetConstantPool: 2789 case ISD::TargetFrameIndex: 2790 case ISD::TargetExternalSymbol: 2791 case ISD::MCSymbol: 2792 case ISD::TargetBlockAddress: 2793 case ISD::TargetJumpTable: 2794 case ISD::TargetGlobalTLSAddress: 2795 case ISD::TargetGlobalAddress: 2796 case ISD::TokenFactor: 2797 case ISD::CopyFromReg: 2798 case ISD::CopyToReg: 2799 case ISD::EH_LABEL: 2800 case ISD::ANNOTATION_LABEL: 2801 case ISD::LIFETIME_START: 2802 case ISD::LIFETIME_END: 2803 NodeToMatch->setNodeId(-1); // Mark selected. 2804 return; 2805 case ISD::AssertSext: 2806 case ISD::AssertZext: 2807 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2808 CurDAG->RemoveDeadNode(NodeToMatch); 2809 return; 2810 case ISD::INLINEASM: 2811 case ISD::INLINEASM_BR: 2812 Select_INLINEASM(NodeToMatch, 2813 NodeToMatch->getOpcode() == ISD::INLINEASM_BR); 2814 return; 2815 case ISD::READ_REGISTER: 2816 Select_READ_REGISTER(NodeToMatch); 2817 return; 2818 case ISD::WRITE_REGISTER: 2819 Select_WRITE_REGISTER(NodeToMatch); 2820 return; 2821 case ISD::UNDEF: 2822 Select_UNDEF(NodeToMatch); 2823 return; 2824 } 2825 2826 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2827 2828 // Set up the node stack with NodeToMatch as the only node on the stack. 2829 SmallVector<SDValue, 8> NodeStack; 2830 SDValue N = SDValue(NodeToMatch, 0); 2831 NodeStack.push_back(N); 2832 2833 // MatchScopes - Scopes used when matching, if a match failure happens, this 2834 // indicates where to continue checking. 2835 SmallVector<MatchScope, 8> MatchScopes; 2836 2837 // RecordedNodes - This is the set of nodes that have been recorded by the 2838 // state machine. The second value is the parent of the node, or null if the 2839 // root is recorded. 2840 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2841 2842 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2843 // pattern. 2844 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2845 2846 // These are the current input chain and glue for use when generating nodes. 2847 // Various Emit operations change these. For example, emitting a copytoreg 2848 // uses and updates these. 2849 SDValue InputChain, InputGlue; 2850 2851 // ChainNodesMatched - If a pattern matches nodes that have input/output 2852 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2853 // which ones they are. The result is captured into this list so that we can 2854 // update the chain results when the pattern is complete. 2855 SmallVector<SDNode*, 3> ChainNodesMatched; 2856 2857 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2858 2859 // Determine where to start the interpreter. Normally we start at opcode #0, 2860 // but if the state machine starts with an OPC_SwitchOpcode, then we 2861 // accelerate the first lookup (which is guaranteed to be hot) with the 2862 // OpcodeOffset table. 2863 unsigned MatcherIndex = 0; 2864 2865 if (!OpcodeOffset.empty()) { 2866 // Already computed the OpcodeOffset table, just index into it. 2867 if (N.getOpcode() < OpcodeOffset.size()) 2868 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2869 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2870 2871 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2872 // Otherwise, the table isn't computed, but the state machine does start 2873 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2874 // is the first time we're selecting an instruction. 2875 unsigned Idx = 1; 2876 while (true) { 2877 // Get the size of this case. 2878 unsigned CaseSize = MatcherTable[Idx++]; 2879 if (CaseSize & 128) 2880 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2881 if (CaseSize == 0) break; 2882 2883 // Get the opcode, add the index to the table. 2884 uint16_t Opc = MatcherTable[Idx++]; 2885 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2886 if (Opc >= OpcodeOffset.size()) 2887 OpcodeOffset.resize((Opc+1)*2); 2888 OpcodeOffset[Opc] = Idx; 2889 Idx += CaseSize; 2890 } 2891 2892 // Okay, do the lookup for the first opcode. 2893 if (N.getOpcode() < OpcodeOffset.size()) 2894 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2895 } 2896 2897 while (true) { 2898 assert(MatcherIndex < TableSize && "Invalid index"); 2899 #ifndef NDEBUG 2900 unsigned CurrentOpcodeIndex = MatcherIndex; 2901 #endif 2902 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2903 switch (Opcode) { 2904 case OPC_Scope: { 2905 // Okay, the semantics of this operation are that we should push a scope 2906 // then evaluate the first child. However, pushing a scope only to have 2907 // the first check fail (which then pops it) is inefficient. If we can 2908 // determine immediately that the first check (or first several) will 2909 // immediately fail, don't even bother pushing a scope for them. 2910 unsigned FailIndex; 2911 2912 while (true) { 2913 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2914 if (NumToSkip & 128) 2915 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2916 // Found the end of the scope with no match. 2917 if (NumToSkip == 0) { 2918 FailIndex = 0; 2919 break; 2920 } 2921 2922 FailIndex = MatcherIndex+NumToSkip; 2923 2924 unsigned MatcherIndexOfPredicate = MatcherIndex; 2925 (void)MatcherIndexOfPredicate; // silence warning. 2926 2927 // If we can't evaluate this predicate without pushing a scope (e.g. if 2928 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2929 // push the scope and evaluate the full predicate chain. 2930 bool Result; 2931 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2932 Result, *this, RecordedNodes); 2933 if (!Result) 2934 break; 2935 2936 LLVM_DEBUG( 2937 dbgs() << " Skipped scope entry (due to false predicate) at " 2938 << "index " << MatcherIndexOfPredicate << ", continuing at " 2939 << FailIndex << "\n"); 2940 ++NumDAGIselRetries; 2941 2942 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2943 // move to the next case. 2944 MatcherIndex = FailIndex; 2945 } 2946 2947 // If the whole scope failed to match, bail. 2948 if (FailIndex == 0) break; 2949 2950 // Push a MatchScope which indicates where to go if the first child fails 2951 // to match. 2952 MatchScope NewEntry; 2953 NewEntry.FailIndex = FailIndex; 2954 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2955 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2956 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2957 NewEntry.InputChain = InputChain; 2958 NewEntry.InputGlue = InputGlue; 2959 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2960 MatchScopes.push_back(NewEntry); 2961 continue; 2962 } 2963 case OPC_RecordNode: { 2964 // Remember this node, it may end up being an operand in the pattern. 2965 SDNode *Parent = nullptr; 2966 if (NodeStack.size() > 1) 2967 Parent = NodeStack[NodeStack.size()-2].getNode(); 2968 RecordedNodes.push_back(std::make_pair(N, Parent)); 2969 continue; 2970 } 2971 2972 case OPC_RecordChild0: case OPC_RecordChild1: 2973 case OPC_RecordChild2: case OPC_RecordChild3: 2974 case OPC_RecordChild4: case OPC_RecordChild5: 2975 case OPC_RecordChild6: case OPC_RecordChild7: { 2976 unsigned ChildNo = Opcode-OPC_RecordChild0; 2977 if (ChildNo >= N.getNumOperands()) 2978 break; // Match fails if out of range child #. 2979 2980 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2981 N.getNode())); 2982 continue; 2983 } 2984 case OPC_RecordMemRef: 2985 if (auto *MN = dyn_cast<MemSDNode>(N)) 2986 MatchedMemRefs.push_back(MN->getMemOperand()); 2987 else { 2988 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 2989 dbgs() << '\n'); 2990 } 2991 2992 continue; 2993 2994 case OPC_CaptureGlueInput: 2995 // If the current node has an input glue, capture it in InputGlue. 2996 if (N->getNumOperands() != 0 && 2997 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2998 InputGlue = N->getOperand(N->getNumOperands()-1); 2999 continue; 3000 3001 case OPC_MoveChild: { 3002 unsigned ChildNo = MatcherTable[MatcherIndex++]; 3003 if (ChildNo >= N.getNumOperands()) 3004 break; // Match fails if out of range child #. 3005 N = N.getOperand(ChildNo); 3006 NodeStack.push_back(N); 3007 continue; 3008 } 3009 3010 case OPC_MoveChild0: case OPC_MoveChild1: 3011 case OPC_MoveChild2: case OPC_MoveChild3: 3012 case OPC_MoveChild4: case OPC_MoveChild5: 3013 case OPC_MoveChild6: case OPC_MoveChild7: { 3014 unsigned ChildNo = Opcode-OPC_MoveChild0; 3015 if (ChildNo >= N.getNumOperands()) 3016 break; // Match fails if out of range child #. 3017 N = N.getOperand(ChildNo); 3018 NodeStack.push_back(N); 3019 continue; 3020 } 3021 3022 case OPC_MoveParent: 3023 // Pop the current node off the NodeStack. 3024 NodeStack.pop_back(); 3025 assert(!NodeStack.empty() && "Node stack imbalance!"); 3026 N = NodeStack.back(); 3027 continue; 3028 3029 case OPC_CheckSame: 3030 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 3031 continue; 3032 3033 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3034 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3035 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3036 Opcode-OPC_CheckChild0Same)) 3037 break; 3038 continue; 3039 3040 case OPC_CheckPatternPredicate: 3041 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3042 continue; 3043 case OPC_CheckPredicate: 3044 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3045 N.getNode())) 3046 break; 3047 continue; 3048 case OPC_CheckPredicateWithOperands: { 3049 unsigned OpNum = MatcherTable[MatcherIndex++]; 3050 SmallVector<SDValue, 8> Operands; 3051 3052 for (unsigned i = 0; i < OpNum; ++i) 3053 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3054 3055 unsigned PredNo = MatcherTable[MatcherIndex++]; 3056 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3057 break; 3058 continue; 3059 } 3060 case OPC_CheckComplexPat: { 3061 unsigned CPNum = MatcherTable[MatcherIndex++]; 3062 unsigned RecNo = MatcherTable[MatcherIndex++]; 3063 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3064 3065 // If target can modify DAG during matching, keep the matching state 3066 // consistent. 3067 std::unique_ptr<MatchStateUpdater> MSU; 3068 if (ComplexPatternFuncMutatesDAG()) 3069 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3070 MatchScopes)); 3071 3072 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3073 RecordedNodes[RecNo].first, CPNum, 3074 RecordedNodes)) 3075 break; 3076 continue; 3077 } 3078 case OPC_CheckOpcode: 3079 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3080 continue; 3081 3082 case OPC_CheckType: 3083 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3084 CurDAG->getDataLayout())) 3085 break; 3086 continue; 3087 3088 case OPC_CheckTypeRes: { 3089 unsigned Res = MatcherTable[MatcherIndex++]; 3090 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3091 CurDAG->getDataLayout())) 3092 break; 3093 continue; 3094 } 3095 3096 case OPC_SwitchOpcode: { 3097 unsigned CurNodeOpcode = N.getOpcode(); 3098 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3099 unsigned CaseSize; 3100 while (true) { 3101 // Get the size of this case. 3102 CaseSize = MatcherTable[MatcherIndex++]; 3103 if (CaseSize & 128) 3104 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3105 if (CaseSize == 0) break; 3106 3107 uint16_t Opc = MatcherTable[MatcherIndex++]; 3108 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3109 3110 // If the opcode matches, then we will execute this case. 3111 if (CurNodeOpcode == Opc) 3112 break; 3113 3114 // Otherwise, skip over this case. 3115 MatcherIndex += CaseSize; 3116 } 3117 3118 // If no cases matched, bail out. 3119 if (CaseSize == 0) break; 3120 3121 // Otherwise, execute the case we found. 3122 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3123 << MatcherIndex << "\n"); 3124 continue; 3125 } 3126 3127 case OPC_SwitchType: { 3128 MVT CurNodeVT = N.getSimpleValueType(); 3129 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3130 unsigned CaseSize; 3131 while (true) { 3132 // Get the size of this case. 3133 CaseSize = MatcherTable[MatcherIndex++]; 3134 if (CaseSize & 128) 3135 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3136 if (CaseSize == 0) break; 3137 3138 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3139 if (CaseVT == MVT::iPTR) 3140 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3141 3142 // If the VT matches, then we will execute this case. 3143 if (CurNodeVT == CaseVT) 3144 break; 3145 3146 // Otherwise, skip over this case. 3147 MatcherIndex += CaseSize; 3148 } 3149 3150 // If no cases matched, bail out. 3151 if (CaseSize == 0) break; 3152 3153 // Otherwise, execute the case we found. 3154 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3155 << "] from " << SwitchStart << " to " << MatcherIndex 3156 << '\n'); 3157 continue; 3158 } 3159 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3160 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3161 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3162 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3163 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3164 CurDAG->getDataLayout(), 3165 Opcode - OPC_CheckChild0Type)) 3166 break; 3167 continue; 3168 case OPC_CheckCondCode: 3169 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3170 continue; 3171 case OPC_CheckChild2CondCode: 3172 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3173 continue; 3174 case OPC_CheckValueType: 3175 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3176 CurDAG->getDataLayout())) 3177 break; 3178 continue; 3179 case OPC_CheckInteger: 3180 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3181 continue; 3182 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3183 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3184 case OPC_CheckChild4Integer: 3185 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3186 Opcode-OPC_CheckChild0Integer)) break; 3187 continue; 3188 case OPC_CheckAndImm: 3189 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3190 continue; 3191 case OPC_CheckOrImm: 3192 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3193 continue; 3194 case OPC_CheckImmAllOnesV: 3195 if (!ISD::isBuildVectorAllOnes(N.getNode())) break; 3196 continue; 3197 case OPC_CheckImmAllZerosV: 3198 if (!ISD::isBuildVectorAllZeros(N.getNode())) break; 3199 continue; 3200 3201 case OPC_CheckFoldableChainNode: { 3202 assert(NodeStack.size() != 1 && "No parent node"); 3203 // Verify that all intermediate nodes between the root and this one have 3204 // a single use (ignoring chains, which are handled in UpdateChains). 3205 bool HasMultipleUses = false; 3206 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { 3207 unsigned NNonChainUses = 0; 3208 SDNode *NS = NodeStack[i].getNode(); 3209 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI) 3210 if (UI.getUse().getValueType() != MVT::Other) 3211 if (++NNonChainUses > 1) { 3212 HasMultipleUses = true; 3213 break; 3214 } 3215 if (HasMultipleUses) break; 3216 } 3217 if (HasMultipleUses) break; 3218 3219 // Check to see that the target thinks this is profitable to fold and that 3220 // we can fold it without inducing cycles in the graph. 3221 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3222 NodeToMatch) || 3223 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3224 NodeToMatch, OptLevel, 3225 true/*We validate our own chains*/)) 3226 break; 3227 3228 continue; 3229 } 3230 case OPC_EmitInteger: { 3231 MVT::SimpleValueType VT = 3232 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3233 int64_t Val = MatcherTable[MatcherIndex++]; 3234 if (Val & 128) 3235 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3236 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3237 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3238 VT), nullptr)); 3239 continue; 3240 } 3241 case OPC_EmitRegister: { 3242 MVT::SimpleValueType VT = 3243 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3244 unsigned RegNo = MatcherTable[MatcherIndex++]; 3245 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3246 CurDAG->getRegister(RegNo, VT), nullptr)); 3247 continue; 3248 } 3249 case OPC_EmitRegister2: { 3250 // For targets w/ more than 256 register names, the register enum 3251 // values are stored in two bytes in the matcher table (just like 3252 // opcodes). 3253 MVT::SimpleValueType VT = 3254 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3255 unsigned RegNo = MatcherTable[MatcherIndex++]; 3256 RegNo |= MatcherTable[MatcherIndex++] << 8; 3257 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3258 CurDAG->getRegister(RegNo, VT), nullptr)); 3259 continue; 3260 } 3261 3262 case OPC_EmitConvertToTarget: { 3263 // Convert from IMM/FPIMM to target version. 3264 unsigned RecNo = MatcherTable[MatcherIndex++]; 3265 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3266 SDValue Imm = RecordedNodes[RecNo].first; 3267 3268 if (Imm->getOpcode() == ISD::Constant) { 3269 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3270 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3271 Imm.getValueType()); 3272 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3273 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3274 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3275 Imm.getValueType()); 3276 } 3277 3278 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3279 continue; 3280 } 3281 3282 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3283 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3284 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3285 // These are space-optimized forms of OPC_EmitMergeInputChains. 3286 assert(!InputChain.getNode() && 3287 "EmitMergeInputChains should be the first chain producing node"); 3288 assert(ChainNodesMatched.empty() && 3289 "Should only have one EmitMergeInputChains per match"); 3290 3291 // Read all of the chained nodes. 3292 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3293 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3294 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3295 3296 // FIXME: What if other value results of the node have uses not matched 3297 // by this pattern? 3298 if (ChainNodesMatched.back() != NodeToMatch && 3299 !RecordedNodes[RecNo].first.hasOneUse()) { 3300 ChainNodesMatched.clear(); 3301 break; 3302 } 3303 3304 // Merge the input chains if they are not intra-pattern references. 3305 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3306 3307 if (!InputChain.getNode()) 3308 break; // Failed to merge. 3309 continue; 3310 } 3311 3312 case OPC_EmitMergeInputChains: { 3313 assert(!InputChain.getNode() && 3314 "EmitMergeInputChains should be the first chain producing node"); 3315 // This node gets a list of nodes we matched in the input that have 3316 // chains. We want to token factor all of the input chains to these nodes 3317 // together. However, if any of the input chains is actually one of the 3318 // nodes matched in this pattern, then we have an intra-match reference. 3319 // Ignore these because the newly token factored chain should not refer to 3320 // the old nodes. 3321 unsigned NumChains = MatcherTable[MatcherIndex++]; 3322 assert(NumChains != 0 && "Can't TF zero chains"); 3323 3324 assert(ChainNodesMatched.empty() && 3325 "Should only have one EmitMergeInputChains per match"); 3326 3327 // Read all of the chained nodes. 3328 for (unsigned i = 0; i != NumChains; ++i) { 3329 unsigned RecNo = MatcherTable[MatcherIndex++]; 3330 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3331 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3332 3333 // FIXME: What if other value results of the node have uses not matched 3334 // by this pattern? 3335 if (ChainNodesMatched.back() != NodeToMatch && 3336 !RecordedNodes[RecNo].first.hasOneUse()) { 3337 ChainNodesMatched.clear(); 3338 break; 3339 } 3340 } 3341 3342 // If the inner loop broke out, the match fails. 3343 if (ChainNodesMatched.empty()) 3344 break; 3345 3346 // Merge the input chains if they are not intra-pattern references. 3347 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3348 3349 if (!InputChain.getNode()) 3350 break; // Failed to merge. 3351 3352 continue; 3353 } 3354 3355 case OPC_EmitCopyToReg: 3356 case OPC_EmitCopyToReg2: { 3357 unsigned RecNo = MatcherTable[MatcherIndex++]; 3358 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3359 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3360 if (Opcode == OPC_EmitCopyToReg2) 3361 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3362 3363 if (!InputChain.getNode()) 3364 InputChain = CurDAG->getEntryNode(); 3365 3366 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3367 DestPhysReg, RecordedNodes[RecNo].first, 3368 InputGlue); 3369 3370 InputGlue = InputChain.getValue(1); 3371 continue; 3372 } 3373 3374 case OPC_EmitNodeXForm: { 3375 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3376 unsigned RecNo = MatcherTable[MatcherIndex++]; 3377 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3378 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3379 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3380 continue; 3381 } 3382 case OPC_Coverage: { 3383 // This is emitted right before MorphNode/EmitNode. 3384 // So it should be safe to assume that this node has been selected 3385 unsigned index = MatcherTable[MatcherIndex++]; 3386 index |= (MatcherTable[MatcherIndex++] << 8); 3387 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3388 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3389 continue; 3390 } 3391 3392 case OPC_EmitNode: case OPC_MorphNodeTo: 3393 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3394 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3395 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3396 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3397 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3398 // Get the result VT list. 3399 unsigned NumVTs; 3400 // If this is one of the compressed forms, get the number of VTs based 3401 // on the Opcode. Otherwise read the next byte from the table. 3402 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3403 NumVTs = Opcode - OPC_MorphNodeTo0; 3404 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3405 NumVTs = Opcode - OPC_EmitNode0; 3406 else 3407 NumVTs = MatcherTable[MatcherIndex++]; 3408 SmallVector<EVT, 4> VTs; 3409 for (unsigned i = 0; i != NumVTs; ++i) { 3410 MVT::SimpleValueType VT = 3411 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3412 if (VT == MVT::iPTR) 3413 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3414 VTs.push_back(VT); 3415 } 3416 3417 if (EmitNodeInfo & OPFL_Chain) 3418 VTs.push_back(MVT::Other); 3419 if (EmitNodeInfo & OPFL_GlueOutput) 3420 VTs.push_back(MVT::Glue); 3421 3422 // This is hot code, so optimize the two most common cases of 1 and 2 3423 // results. 3424 SDVTList VTList; 3425 if (VTs.size() == 1) 3426 VTList = CurDAG->getVTList(VTs[0]); 3427 else if (VTs.size() == 2) 3428 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3429 else 3430 VTList = CurDAG->getVTList(VTs); 3431 3432 // Get the operand list. 3433 unsigned NumOps = MatcherTable[MatcherIndex++]; 3434 SmallVector<SDValue, 8> Ops; 3435 for (unsigned i = 0; i != NumOps; ++i) { 3436 unsigned RecNo = MatcherTable[MatcherIndex++]; 3437 if (RecNo & 128) 3438 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3439 3440 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3441 Ops.push_back(RecordedNodes[RecNo].first); 3442 } 3443 3444 // If there are variadic operands to add, handle them now. 3445 if (EmitNodeInfo & OPFL_VariadicInfo) { 3446 // Determine the start index to copy from. 3447 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3448 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3449 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3450 "Invalid variadic node"); 3451 // Copy all of the variadic operands, not including a potential glue 3452 // input. 3453 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3454 i != e; ++i) { 3455 SDValue V = NodeToMatch->getOperand(i); 3456 if (V.getValueType() == MVT::Glue) break; 3457 Ops.push_back(V); 3458 } 3459 } 3460 3461 // If this has chain/glue inputs, add them. 3462 if (EmitNodeInfo & OPFL_Chain) 3463 Ops.push_back(InputChain); 3464 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3465 Ops.push_back(InputGlue); 3466 3467 // Check whether any matched node could raise an FP exception. Since all 3468 // such nodes must have a chain, it suffices to check ChainNodesMatched. 3469 // We need to perform this check before potentially modifying one of the 3470 // nodes via MorphNode. 3471 bool MayRaiseFPException = false; 3472 for (auto *N : ChainNodesMatched) 3473 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) { 3474 MayRaiseFPException = true; 3475 break; 3476 } 3477 3478 // Create the node. 3479 MachineSDNode *Res = nullptr; 3480 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3481 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3482 if (!IsMorphNodeTo) { 3483 // If this is a normal EmitNode command, just create the new node and 3484 // add the results to the RecordedNodes list. 3485 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3486 VTList, Ops); 3487 3488 // Add all the non-glue/non-chain results to the RecordedNodes list. 3489 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3490 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3491 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3492 nullptr)); 3493 } 3494 } else { 3495 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3496 "NodeToMatch was removed partway through selection"); 3497 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3498 SDNode *E) { 3499 CurDAG->salvageDebugInfo(*N); 3500 auto &Chain = ChainNodesMatched; 3501 assert((!E || !is_contained(Chain, N)) && 3502 "Chain node replaced during MorphNode"); 3503 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); 3504 }); 3505 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3506 Ops, EmitNodeInfo)); 3507 } 3508 3509 // Set the NoFPExcept flag when no original matched node could 3510 // raise an FP exception, but the new node potentially might. 3511 if (!MayRaiseFPException && mayRaiseFPException(Res)) { 3512 SDNodeFlags Flags = Res->getFlags(); 3513 Flags.setNoFPExcept(true); 3514 Res->setFlags(Flags); 3515 } 3516 3517 // If the node had chain/glue results, update our notion of the current 3518 // chain and glue. 3519 if (EmitNodeInfo & OPFL_GlueOutput) { 3520 InputGlue = SDValue(Res, VTs.size()-1); 3521 if (EmitNodeInfo & OPFL_Chain) 3522 InputChain = SDValue(Res, VTs.size()-2); 3523 } else if (EmitNodeInfo & OPFL_Chain) 3524 InputChain = SDValue(Res, VTs.size()-1); 3525 3526 // If the OPFL_MemRefs glue is set on this node, slap all of the 3527 // accumulated memrefs onto it. 3528 // 3529 // FIXME: This is vastly incorrect for patterns with multiple outputs 3530 // instructions that access memory and for ComplexPatterns that match 3531 // loads. 3532 if (EmitNodeInfo & OPFL_MemRefs) { 3533 // Only attach load or store memory operands if the generated 3534 // instruction may load or store. 3535 const MCInstrDesc &MCID = TII->get(TargetOpc); 3536 bool mayLoad = MCID.mayLoad(); 3537 bool mayStore = MCID.mayStore(); 3538 3539 // We expect to have relatively few of these so just filter them into a 3540 // temporary buffer so that we can easily add them to the instruction. 3541 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3542 for (MachineMemOperand *MMO : MatchedMemRefs) { 3543 if (MMO->isLoad()) { 3544 if (mayLoad) 3545 FilteredMemRefs.push_back(MMO); 3546 } else if (MMO->isStore()) { 3547 if (mayStore) 3548 FilteredMemRefs.push_back(MMO); 3549 } else { 3550 FilteredMemRefs.push_back(MMO); 3551 } 3552 } 3553 3554 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3555 } 3556 3557 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3558 << " Dropping mem operands\n"; 3559 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3560 << " node: "; 3561 Res->dump(CurDAG);); 3562 3563 // If this was a MorphNodeTo then we're completely done! 3564 if (IsMorphNodeTo) { 3565 // Update chain uses. 3566 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3567 return; 3568 } 3569 continue; 3570 } 3571 3572 case OPC_CompleteMatch: { 3573 // The match has been completed, and any new nodes (if any) have been 3574 // created. Patch up references to the matched dag to use the newly 3575 // created nodes. 3576 unsigned NumResults = MatcherTable[MatcherIndex++]; 3577 3578 for (unsigned i = 0; i != NumResults; ++i) { 3579 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3580 if (ResSlot & 128) 3581 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3582 3583 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3584 SDValue Res = RecordedNodes[ResSlot].first; 3585 3586 assert(i < NodeToMatch->getNumValues() && 3587 NodeToMatch->getValueType(i) != MVT::Other && 3588 NodeToMatch->getValueType(i) != MVT::Glue && 3589 "Invalid number of results to complete!"); 3590 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3591 NodeToMatch->getValueType(i) == MVT::iPTR || 3592 Res.getValueType() == MVT::iPTR || 3593 NodeToMatch->getValueType(i).getSizeInBits() == 3594 Res.getValueSizeInBits()) && 3595 "invalid replacement"); 3596 ReplaceUses(SDValue(NodeToMatch, i), Res); 3597 } 3598 3599 // Update chain uses. 3600 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3601 3602 // If the root node defines glue, we need to update it to the glue result. 3603 // TODO: This never happens in our tests and I think it can be removed / 3604 // replaced with an assert, but if we do it this the way the change is 3605 // NFC. 3606 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3607 MVT::Glue && 3608 InputGlue.getNode()) 3609 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3610 InputGlue); 3611 3612 assert(NodeToMatch->use_empty() && 3613 "Didn't replace all uses of the node?"); 3614 CurDAG->RemoveDeadNode(NodeToMatch); 3615 3616 return; 3617 } 3618 } 3619 3620 // If the code reached this point, then the match failed. See if there is 3621 // another child to try in the current 'Scope', otherwise pop it until we 3622 // find a case to check. 3623 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3624 << "\n"); 3625 ++NumDAGIselRetries; 3626 while (true) { 3627 if (MatchScopes.empty()) { 3628 CannotYetSelect(NodeToMatch); 3629 return; 3630 } 3631 3632 // Restore the interpreter state back to the point where the scope was 3633 // formed. 3634 MatchScope &LastScope = MatchScopes.back(); 3635 RecordedNodes.resize(LastScope.NumRecordedNodes); 3636 NodeStack.clear(); 3637 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3638 N = NodeStack.back(); 3639 3640 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3641 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3642 MatcherIndex = LastScope.FailIndex; 3643 3644 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3645 3646 InputChain = LastScope.InputChain; 3647 InputGlue = LastScope.InputGlue; 3648 if (!LastScope.HasChainNodesMatched) 3649 ChainNodesMatched.clear(); 3650 3651 // Check to see what the offset is at the new MatcherIndex. If it is zero 3652 // we have reached the end of this scope, otherwise we have another child 3653 // in the current scope to try. 3654 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3655 if (NumToSkip & 128) 3656 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3657 3658 // If we have another child in this scope to match, update FailIndex and 3659 // try it. 3660 if (NumToSkip != 0) { 3661 LastScope.FailIndex = MatcherIndex+NumToSkip; 3662 break; 3663 } 3664 3665 // End of this scope, pop it and try the next child in the containing 3666 // scope. 3667 MatchScopes.pop_back(); 3668 } 3669 } 3670 } 3671 3672 /// Return whether the node may raise an FP exception. 3673 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { 3674 // For machine opcodes, consult the MCID flag. 3675 if (N->isMachineOpcode()) { 3676 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 3677 return MCID.mayRaiseFPException(); 3678 } 3679 3680 // For ISD opcodes, only StrictFP opcodes may raise an FP 3681 // exception. 3682 if (N->isTargetOpcode()) 3683 return N->isTargetStrictFPOpcode(); 3684 return N->isStrictFPOpcode(); 3685 } 3686 3687 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3688 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3689 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3690 if (!C) 3691 return false; 3692 3693 // Detect when "or" is used to add an offset to a stack object. 3694 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3695 MachineFrameInfo &MFI = MF->getFrameInfo(); 3696 unsigned A = MFI.getObjectAlignment(FN->getIndex()); 3697 assert(isPowerOf2_32(A) && "Unexpected alignment"); 3698 int32_t Off = C->getSExtValue(); 3699 // If the alleged offset fits in the zero bits guaranteed by 3700 // the alignment, then this or is really an add. 3701 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off)); 3702 } 3703 return false; 3704 } 3705 3706 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3707 std::string msg; 3708 raw_string_ostream Msg(msg); 3709 Msg << "Cannot select: "; 3710 3711 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3712 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3713 N->getOpcode() != ISD::INTRINSIC_VOID) { 3714 N->printrFull(Msg, CurDAG); 3715 Msg << "\nIn function: " << MF->getName(); 3716 } else { 3717 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3718 unsigned iid = 3719 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3720 if (iid < Intrinsic::num_intrinsics) 3721 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); 3722 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3723 Msg << "target intrinsic %" << TII->getName(iid); 3724 else 3725 Msg << "unknown intrinsic #" << iid; 3726 } 3727 report_fatal_error(Msg.str()); 3728 } 3729 3730 char SelectionDAGISel::ID = 0; 3731