1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachinePassRegistry.h" 47 #include "llvm/CodeGen/MachineRegisterInfo.h" 48 #include "llvm/CodeGen/SchedulerRegistry.h" 49 #include "llvm/CodeGen/SelectionDAG.h" 50 #include "llvm/CodeGen/SelectionDAGNodes.h" 51 #include "llvm/CodeGen/StackProtector.h" 52 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/DebugInfoMetadata.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DiagnosticInfo.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/InlineAsm.h" 67 #include "llvm/IR/InstIterator.h" 68 #include "llvm/IR/InstrTypes.h" 69 #include "llvm/IR/Instruction.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/Intrinsics.h" 73 #include "llvm/IR/Metadata.h" 74 #include "llvm/IR/Type.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/MC/MCInstrDesc.h" 78 #include "llvm/MC/MCRegisterInfo.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/Timer.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetIntrinsicInfo.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <string> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 #define DEBUG_TYPE "isel" 108 109 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 110 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 111 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 112 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 113 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 114 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 115 STATISTIC(NumFastIselFailLowerArguments, 116 "Number of entry blocks where fast isel failed to lower arguments"); 117 118 static cl::opt<int> EnableFastISelAbort( 119 "fast-isel-abort", cl::Hidden, 120 cl::desc("Enable abort calls when \"fast\" instruction selection " 121 "fails to lower an instruction: 0 disable the abort, 1 will " 122 "abort but for args, calls and terminators, 2 will also " 123 "abort for argument lowering, and 3 will never fallback " 124 "to SelectionDAG.")); 125 126 static cl::opt<bool> EnableFastISelFallbackReport( 127 "fast-isel-report-on-fallback", cl::Hidden, 128 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 129 "falls back to SelectionDAG.")); 130 131 static cl::opt<bool> 132 UseMBPI("use-mbpi", 133 cl::desc("use Machine Branch Probability Info"), 134 cl::init(true), cl::Hidden); 135 136 #ifndef NDEBUG 137 static cl::opt<std::string> 138 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 139 cl::desc("Only display the basic block whose name " 140 "matches this for all view-*-dags options")); 141 static cl::opt<bool> 142 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 143 cl::desc("Pop up a window to show dags before the first " 144 "dag combine pass")); 145 static cl::opt<bool> 146 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 147 cl::desc("Pop up a window to show dags before legalize types")); 148 static cl::opt<bool> 149 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 150 cl::desc("Pop up a window to show dags before legalize")); 151 static cl::opt<bool> 152 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 153 cl::desc("Pop up a window to show dags before the second " 154 "dag combine pass")); 155 static cl::opt<bool> 156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 157 cl::desc("Pop up a window to show dags before the post legalize types" 158 " dag combine pass")); 159 static cl::opt<bool> 160 ViewISelDAGs("view-isel-dags", cl::Hidden, 161 cl::desc("Pop up a window to show isel dags as they are selected")); 162 static cl::opt<bool> 163 ViewSchedDAGs("view-sched-dags", cl::Hidden, 164 cl::desc("Pop up a window to show sched dags as they are processed")); 165 static cl::opt<bool> 166 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 167 cl::desc("Pop up a window to show SUnit dags after they are processed")); 168 #else 169 static const bool ViewDAGCombine1 = false, 170 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 171 ViewDAGCombine2 = false, 172 ViewDAGCombineLT = false, 173 ViewISelDAGs = false, ViewSchedDAGs = false, 174 ViewSUnitDAGs = false; 175 #endif 176 177 //===---------------------------------------------------------------------===// 178 /// 179 /// RegisterScheduler class - Track the registration of instruction schedulers. 180 /// 181 //===---------------------------------------------------------------------===// 182 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 183 RegisterScheduler::Registry; 184 185 //===---------------------------------------------------------------------===// 186 /// 187 /// ISHeuristic command line option for instruction schedulers. 188 /// 189 //===---------------------------------------------------------------------===// 190 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 191 RegisterPassParser<RegisterScheduler>> 192 ISHeuristic("pre-RA-sched", 193 cl::init(&createDefaultScheduler), cl::Hidden, 194 cl::desc("Instruction schedulers available (before register" 195 " allocation):")); 196 197 static RegisterScheduler 198 defaultListDAGScheduler("default", "Best scheduler for the target", 199 createDefaultScheduler); 200 201 namespace llvm { 202 203 //===--------------------------------------------------------------------===// 204 /// This class is used by SelectionDAGISel to temporarily override 205 /// the optimization level on a per-function basis. 206 class OptLevelChanger { 207 SelectionDAGISel &IS; 208 CodeGenOpt::Level SavedOptLevel; 209 bool SavedFastISel; 210 211 public: 212 OptLevelChanger(SelectionDAGISel &ISel, 213 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 214 SavedOptLevel = IS.OptLevel; 215 if (NewOptLevel == SavedOptLevel) 216 return; 217 IS.OptLevel = NewOptLevel; 218 IS.TM.setOptLevel(NewOptLevel); 219 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 220 << IS.MF->getFunction().getName() << "\n"); 221 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 222 << NewOptLevel << "\n"); 223 SavedFastISel = IS.TM.Options.EnableFastISel; 224 if (NewOptLevel == CodeGenOpt::None) { 225 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 226 LLVM_DEBUG( 227 dbgs() << "\tFastISel is " 228 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 229 << "\n"); 230 } 231 } 232 233 ~OptLevelChanger() { 234 if (IS.OptLevel == SavedOptLevel) 235 return; 236 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 237 << IS.MF->getFunction().getName() << "\n"); 238 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 239 << SavedOptLevel << "\n"); 240 IS.OptLevel = SavedOptLevel; 241 IS.TM.setOptLevel(SavedOptLevel); 242 IS.TM.setFastISel(SavedFastISel); 243 } 244 }; 245 246 //===--------------------------------------------------------------------===// 247 /// createDefaultScheduler - This creates an instruction scheduler appropriate 248 /// for the target. 249 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 250 CodeGenOpt::Level OptLevel) { 251 const TargetLowering *TLI = IS->TLI; 252 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 253 254 // Try first to see if the Target has its own way of selecting a scheduler 255 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 256 return SchedulerCtor(IS, OptLevel); 257 } 258 259 if (OptLevel == CodeGenOpt::None || 260 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 261 TLI->getSchedulingPreference() == Sched::Source) 262 return createSourceListDAGScheduler(IS, OptLevel); 263 if (TLI->getSchedulingPreference() == Sched::RegPressure) 264 return createBURRListDAGScheduler(IS, OptLevel); 265 if (TLI->getSchedulingPreference() == Sched::Hybrid) 266 return createHybridListDAGScheduler(IS, OptLevel); 267 if (TLI->getSchedulingPreference() == Sched::VLIW) 268 return createVLIWDAGScheduler(IS, OptLevel); 269 assert(TLI->getSchedulingPreference() == Sched::ILP && 270 "Unknown sched type!"); 271 return createILPListDAGScheduler(IS, OptLevel); 272 } 273 274 } // end namespace llvm 275 276 // EmitInstrWithCustomInserter - This method should be implemented by targets 277 // that mark instructions with the 'usesCustomInserter' flag. These 278 // instructions are special in various ways, which require special support to 279 // insert. The specified MachineInstr is created but not inserted into any 280 // basic blocks, and this method is called to expand it into a sequence of 281 // instructions, potentially also creating new basic blocks and control flow. 282 // When new basic blocks are inserted and the edges from MBB to its successors 283 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 284 // DenseMap. 285 MachineBasicBlock * 286 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 287 MachineBasicBlock *MBB) const { 288 #ifndef NDEBUG 289 dbgs() << "If a target marks an instruction with " 290 "'usesCustomInserter', it must implement " 291 "TargetLowering::EmitInstrWithCustomInserter!"; 292 #endif 293 llvm_unreachable(nullptr); 294 } 295 296 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 297 SDNode *Node) const { 298 assert(!MI.hasPostISelHook() && 299 "If a target marks an instruction with 'hasPostISelHook', " 300 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 301 } 302 303 //===----------------------------------------------------------------------===// 304 // SelectionDAGISel code 305 //===----------------------------------------------------------------------===// 306 307 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 308 CodeGenOpt::Level OL) : 309 MachineFunctionPass(ID), TM(tm), 310 FuncInfo(new FunctionLoweringInfo()), 311 SwiftError(new SwiftErrorValueTracking()), 312 CurDAG(new SelectionDAG(tm, OL)), 313 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, *SwiftError, OL)), 314 AA(), GFI(), 315 OptLevel(OL), 316 DAGSize(0) { 317 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 318 initializeBranchProbabilityInfoWrapperPassPass( 319 *PassRegistry::getPassRegistry()); 320 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 321 initializeTargetLibraryInfoWrapperPassPass( 322 *PassRegistry::getPassRegistry()); 323 } 324 325 SelectionDAGISel::~SelectionDAGISel() { 326 delete SDB; 327 delete CurDAG; 328 delete FuncInfo; 329 delete SwiftError; 330 } 331 332 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 333 if (OptLevel != CodeGenOpt::None) 334 AU.addRequired<AAResultsWrapperPass>(); 335 AU.addRequired<GCModuleInfo>(); 336 AU.addRequired<StackProtector>(); 337 AU.addPreserved<GCModuleInfo>(); 338 AU.addRequired<TargetLibraryInfoWrapperPass>(); 339 AU.addRequired<TargetTransformInfoWrapperPass>(); 340 if (UseMBPI && OptLevel != CodeGenOpt::None) 341 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 342 MachineFunctionPass::getAnalysisUsage(AU); 343 } 344 345 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 346 /// may trap on it. In this case we have to split the edge so that the path 347 /// through the predecessor block that doesn't go to the phi block doesn't 348 /// execute the possibly trapping instruction. If available, we pass domtree 349 /// and loop info to be updated when we split critical edges. This is because 350 /// SelectionDAGISel preserves these analyses. 351 /// This is required for correctness, so it must be done at -O0. 352 /// 353 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 354 LoopInfo *LI) { 355 // Loop for blocks with phi nodes. 356 for (BasicBlock &BB : Fn) { 357 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 358 if (!PN) continue; 359 360 ReprocessBlock: 361 // For each block with a PHI node, check to see if any of the input values 362 // are potentially trapping constant expressions. Constant expressions are 363 // the only potentially trapping value that can occur as the argument to a 364 // PHI. 365 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 367 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 368 if (!CE || !CE->canTrap()) continue; 369 370 // The only case we have to worry about is when the edge is critical. 371 // Since this block has a PHI Node, we assume it has multiple input 372 // edges: check to see if the pred has multiple successors. 373 BasicBlock *Pred = PN->getIncomingBlock(i); 374 if (Pred->getTerminator()->getNumSuccessors() == 1) 375 continue; 376 377 // Okay, we have to split this edge. 378 SplitCriticalEdge( 379 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 380 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 381 goto ReprocessBlock; 382 } 383 } 384 } 385 386 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 387 MachineModuleInfo &MMI) { 388 // Only needed for MSVC 389 if (!TT.isWindowsMSVCEnvironment()) 390 return; 391 392 // If it's already set, nothing to do. 393 if (MMI.usesMSVCFloatingPoint()) 394 return; 395 396 for (const Instruction &I : instructions(F)) { 397 if (I.getType()->isFPOrFPVectorTy()) { 398 MMI.setUsesMSVCFloatingPoint(true); 399 return; 400 } 401 for (const auto &Op : I.operands()) { 402 if (Op->getType()->isFPOrFPVectorTy()) { 403 MMI.setUsesMSVCFloatingPoint(true); 404 return; 405 } 406 } 407 } 408 } 409 410 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 411 // If we already selected that function, we do not need to run SDISel. 412 if (mf.getProperties().hasProperty( 413 MachineFunctionProperties::Property::Selected)) 414 return false; 415 // Do some sanity-checking on the command-line options. 416 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 417 "-fast-isel-abort > 0 requires -fast-isel"); 418 419 const Function &Fn = mf.getFunction(); 420 MF = &mf; 421 422 // Reset the target options before resetting the optimization 423 // level below. 424 // FIXME: This is a horrible hack and should be processed via 425 // codegen looking at the optimization level explicitly when 426 // it wants to look at it. 427 TM.resetTargetOptions(Fn); 428 // Reset OptLevel to None for optnone functions. 429 CodeGenOpt::Level NewOptLevel = OptLevel; 430 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 431 NewOptLevel = CodeGenOpt::None; 432 OptLevelChanger OLC(*this, NewOptLevel); 433 434 TII = MF->getSubtarget().getInstrInfo(); 435 TLI = MF->getSubtarget().getTargetLowering(); 436 RegInfo = &MF->getRegInfo(); 437 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 438 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 439 ORE = make_unique<OptimizationRemarkEmitter>(&Fn); 440 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 441 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 442 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 443 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 444 445 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 446 447 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 448 449 CurDAG->init(*MF, *ORE, this, LibInfo, 450 getAnalysisIfAvailable<LegacyDivergenceAnalysis>()); 451 FuncInfo->set(Fn, *MF, CurDAG); 452 SwiftError->setFunction(*MF); 453 454 // Now get the optional analyzes if we want to. 455 // This is based on the possibly changed OptLevel (after optnone is taken 456 // into account). That's unfortunate but OK because it just means we won't 457 // ask for passes that have been required anyway. 458 459 if (UseMBPI && OptLevel != CodeGenOpt::None) 460 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 461 else 462 FuncInfo->BPI = nullptr; 463 464 if (OptLevel != CodeGenOpt::None) 465 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 466 else 467 AA = nullptr; 468 469 SDB->init(GFI, AA, LibInfo); 470 471 MF->setHasInlineAsm(false); 472 473 FuncInfo->SplitCSR = false; 474 475 // We split CSR if the target supports it for the given function 476 // and the function has only return exits. 477 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 478 FuncInfo->SplitCSR = true; 479 480 // Collect all the return blocks. 481 for (const BasicBlock &BB : Fn) { 482 if (!succ_empty(&BB)) 483 continue; 484 485 const Instruction *Term = BB.getTerminator(); 486 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 487 continue; 488 489 // Bail out if the exit block is not Return nor Unreachable. 490 FuncInfo->SplitCSR = false; 491 break; 492 } 493 } 494 495 MachineBasicBlock *EntryMBB = &MF->front(); 496 if (FuncInfo->SplitCSR) 497 // This performs initialization so lowering for SplitCSR will be correct. 498 TLI->initializeSplitCSR(EntryMBB); 499 500 SelectAllBasicBlocks(Fn); 501 if (FastISelFailed && EnableFastISelFallbackReport) { 502 DiagnosticInfoISelFallback DiagFallback(Fn); 503 Fn.getContext().diagnose(DiagFallback); 504 } 505 506 // Replace forward-declared registers with the registers containing 507 // the desired value. 508 // Note: it is important that this happens **before** the call to 509 // EmitLiveInCopies, since implementations can skip copies of unused 510 // registers. If we don't apply the reg fixups before, some registers may 511 // appear as unused and will be skipped, resulting in bad MI. 512 MachineRegisterInfo &MRI = MF->getRegInfo(); 513 for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(), 514 E = FuncInfo->RegFixups.end(); 515 I != E; ++I) { 516 unsigned From = I->first; 517 unsigned To = I->second; 518 // If To is also scheduled to be replaced, find what its ultimate 519 // replacement is. 520 while (true) { 521 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 522 if (J == E) 523 break; 524 To = J->second; 525 } 526 // Make sure the new register has a sufficiently constrained register class. 527 if (TargetRegisterInfo::isVirtualRegister(From) && 528 TargetRegisterInfo::isVirtualRegister(To)) 529 MRI.constrainRegClass(To, MRI.getRegClass(From)); 530 // Replace it. 531 532 // Replacing one register with another won't touch the kill flags. 533 // We need to conservatively clear the kill flags as a kill on the old 534 // register might dominate existing uses of the new register. 535 if (!MRI.use_empty(To)) 536 MRI.clearKillFlags(From); 537 MRI.replaceRegWith(From, To); 538 } 539 540 // If the first basic block in the function has live ins that need to be 541 // copied into vregs, emit the copies into the top of the block before 542 // emitting the code for the block. 543 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 544 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 545 546 // Insert copies in the entry block and the return blocks. 547 if (FuncInfo->SplitCSR) { 548 SmallVector<MachineBasicBlock*, 4> Returns; 549 // Collect all the return blocks. 550 for (MachineBasicBlock &MBB : mf) { 551 if (!MBB.succ_empty()) 552 continue; 553 554 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 555 if (Term != MBB.end() && Term->isReturn()) { 556 Returns.push_back(&MBB); 557 continue; 558 } 559 } 560 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 561 } 562 563 DenseMap<unsigned, unsigned> LiveInMap; 564 if (!FuncInfo->ArgDbgValues.empty()) 565 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 566 if (LI.second) 567 LiveInMap.insert(LI); 568 569 // Insert DBG_VALUE instructions for function arguments to the entry block. 570 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 571 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 572 bool hasFI = MI->getOperand(0).isFI(); 573 Register Reg = 574 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 575 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 576 EntryMBB->insert(EntryMBB->begin(), MI); 577 else { 578 MachineInstr *Def = RegInfo->getVRegDef(Reg); 579 if (Def) { 580 MachineBasicBlock::iterator InsertPos = Def; 581 // FIXME: VR def may not be in entry block. 582 Def->getParent()->insert(std::next(InsertPos), MI); 583 } else 584 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 585 << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); 586 } 587 588 // If Reg is live-in then update debug info to track its copy in a vreg. 589 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 590 if (LDI != LiveInMap.end()) { 591 assert(!hasFI && "There's no handling of frame pointer updating here yet " 592 "- add if needed"); 593 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 594 MachineBasicBlock::iterator InsertPos = Def; 595 const MDNode *Variable = MI->getDebugVariable(); 596 const MDNode *Expr = MI->getDebugExpression(); 597 DebugLoc DL = MI->getDebugLoc(); 598 bool IsIndirect = MI->isIndirectDebugValue(); 599 if (IsIndirect) 600 assert(MI->getOperand(1).getImm() == 0 && 601 "DBG_VALUE with nonzero offset"); 602 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 603 "Expected inlined-at fields to agree"); 604 // Def is never a terminator here, so it is ok to increment InsertPos. 605 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 606 IsIndirect, LDI->second, Variable, Expr); 607 608 // If this vreg is directly copied into an exported register then 609 // that COPY instructions also need DBG_VALUE, if it is the only 610 // user of LDI->second. 611 MachineInstr *CopyUseMI = nullptr; 612 for (MachineRegisterInfo::use_instr_iterator 613 UI = RegInfo->use_instr_begin(LDI->second), 614 E = RegInfo->use_instr_end(); UI != E; ) { 615 MachineInstr *UseMI = &*(UI++); 616 if (UseMI->isDebugValue()) continue; 617 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 618 CopyUseMI = UseMI; continue; 619 } 620 // Otherwise this is another use or second copy use. 621 CopyUseMI = nullptr; break; 622 } 623 if (CopyUseMI) { 624 // Use MI's debug location, which describes where Variable was 625 // declared, rather than whatever is attached to CopyUseMI. 626 MachineInstr *NewMI = 627 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 628 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 629 MachineBasicBlock::iterator Pos = CopyUseMI; 630 EntryMBB->insertAfter(Pos, NewMI); 631 } 632 } 633 } 634 635 // Determine if there are any calls in this machine function. 636 MachineFrameInfo &MFI = MF->getFrameInfo(); 637 for (const auto &MBB : *MF) { 638 if (MFI.hasCalls() && MF->hasInlineAsm()) 639 break; 640 641 for (const auto &MI : MBB) { 642 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 643 if ((MCID.isCall() && !MCID.isReturn()) || 644 MI.isStackAligningInlineAsm()) { 645 MFI.setHasCalls(true); 646 } 647 if (MI.isInlineAsm()) { 648 MF->setHasInlineAsm(true); 649 } 650 } 651 } 652 653 // Determine if there is a call to setjmp in the machine function. 654 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 655 656 // Determine if floating point is used for msvc 657 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 658 659 // Replace forward-declared registers with the registers containing 660 // the desired value. 661 for (DenseMap<unsigned, unsigned>::iterator 662 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 663 I != E; ++I) { 664 unsigned From = I->first; 665 unsigned To = I->second; 666 // If To is also scheduled to be replaced, find what its ultimate 667 // replacement is. 668 while (true) { 669 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 670 if (J == E) break; 671 To = J->second; 672 } 673 // Make sure the new register has a sufficiently constrained register class. 674 if (TargetRegisterInfo::isVirtualRegister(From) && 675 TargetRegisterInfo::isVirtualRegister(To)) 676 MRI.constrainRegClass(To, MRI.getRegClass(From)); 677 // Replace it. 678 679 680 // Replacing one register with another won't touch the kill flags. 681 // We need to conservatively clear the kill flags as a kill on the old 682 // register might dominate existing uses of the new register. 683 if (!MRI.use_empty(To)) 684 MRI.clearKillFlags(From); 685 MRI.replaceRegWith(From, To); 686 } 687 688 TLI->finalizeLowering(*MF); 689 690 // Release function-specific state. SDB and CurDAG are already cleared 691 // at this point. 692 FuncInfo->clear(); 693 694 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 695 LLVM_DEBUG(MF->print(dbgs())); 696 697 return true; 698 } 699 700 static void reportFastISelFailure(MachineFunction &MF, 701 OptimizationRemarkEmitter &ORE, 702 OptimizationRemarkMissed &R, 703 bool ShouldAbort) { 704 // Print the function name explicitly if we don't have a debug location (which 705 // makes the diagnostic less useful) or if we're going to emit a raw error. 706 if (!R.getLocation().isValid() || ShouldAbort) 707 R << (" (in function: " + MF.getName() + ")").str(); 708 709 if (ShouldAbort) 710 report_fatal_error(R.getMsg()); 711 712 ORE.emit(R); 713 } 714 715 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 716 BasicBlock::const_iterator End, 717 bool &HadTailCall) { 718 // Allow creating illegal types during DAG building for the basic block. 719 CurDAG->NewNodesMustHaveLegalTypes = false; 720 721 // Lower the instructions. If a call is emitted as a tail call, cease emitting 722 // nodes for this block. 723 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 724 if (!ElidedArgCopyInstrs.count(&*I)) 725 SDB->visit(*I); 726 } 727 728 // Make sure the root of the DAG is up-to-date. 729 CurDAG->setRoot(SDB->getControlRoot()); 730 HadTailCall = SDB->HasTailCall; 731 SDB->resolveOrClearDbgInfo(); 732 SDB->clear(); 733 734 // Final step, emit the lowered DAG as machine code. 735 CodeGenAndEmitDAG(); 736 } 737 738 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 739 SmallPtrSet<SDNode*, 16> VisitedNodes; 740 SmallVector<SDNode*, 128> Worklist; 741 742 Worklist.push_back(CurDAG->getRoot().getNode()); 743 744 KnownBits Known; 745 746 do { 747 SDNode *N = Worklist.pop_back_val(); 748 749 // If we've already seen this node, ignore it. 750 if (!VisitedNodes.insert(N).second) 751 continue; 752 753 // Otherwise, add all chain operands to the worklist. 754 for (const SDValue &Op : N->op_values()) 755 if (Op.getValueType() == MVT::Other) 756 Worklist.push_back(Op.getNode()); 757 758 // If this is a CopyToReg with a vreg dest, process it. 759 if (N->getOpcode() != ISD::CopyToReg) 760 continue; 761 762 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 763 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 764 continue; 765 766 // Ignore non-integer values. 767 SDValue Src = N->getOperand(2); 768 EVT SrcVT = Src.getValueType(); 769 if (!SrcVT.isInteger()) 770 continue; 771 772 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 773 Known = CurDAG->computeKnownBits(Src); 774 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 775 } while (!Worklist.empty()); 776 } 777 778 void SelectionDAGISel::CodeGenAndEmitDAG() { 779 StringRef GroupName = "sdag"; 780 StringRef GroupDescription = "Instruction Selection and Scheduling"; 781 std::string BlockName; 782 bool MatchFilterBB = false; (void)MatchFilterBB; 783 #ifndef NDEBUG 784 TargetTransformInfo &TTI = 785 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 786 #endif 787 788 // Pre-type legalization allow creation of any node types. 789 CurDAG->NewNodesMustHaveLegalTypes = false; 790 791 #ifndef NDEBUG 792 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 793 FilterDAGBasicBlockName == 794 FuncInfo->MBB->getBasicBlock()->getName()); 795 #endif 796 #ifdef NDEBUG 797 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 798 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 799 ViewSUnitDAGs) 800 #endif 801 { 802 BlockName = 803 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 804 } 805 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 806 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 807 << "'\n"; 808 CurDAG->dump()); 809 810 if (ViewDAGCombine1 && MatchFilterBB) 811 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 812 813 // Run the DAG combiner in pre-legalize mode. 814 { 815 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 816 GroupDescription, TimePassesIsEnabled); 817 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 818 } 819 820 #ifndef NDEBUG 821 if (TTI.hasBranchDivergence()) 822 CurDAG->VerifyDAGDiverence(); 823 #endif 824 825 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 826 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 827 << "'\n"; 828 CurDAG->dump()); 829 830 // Second step, hack on the DAG until it only uses operations and types that 831 // the target supports. 832 if (ViewLegalizeTypesDAGs && MatchFilterBB) 833 CurDAG->viewGraph("legalize-types input for " + BlockName); 834 835 bool Changed; 836 { 837 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 838 GroupDescription, TimePassesIsEnabled); 839 Changed = CurDAG->LegalizeTypes(); 840 } 841 842 #ifndef NDEBUG 843 if (TTI.hasBranchDivergence()) 844 CurDAG->VerifyDAGDiverence(); 845 #endif 846 847 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 848 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 849 << "'\n"; 850 CurDAG->dump()); 851 852 // Only allow creation of legal node types. 853 CurDAG->NewNodesMustHaveLegalTypes = true; 854 855 if (Changed) { 856 if (ViewDAGCombineLT && MatchFilterBB) 857 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 858 859 // Run the DAG combiner in post-type-legalize mode. 860 { 861 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 862 GroupName, GroupDescription, TimePassesIsEnabled); 863 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 864 } 865 866 #ifndef NDEBUG 867 if (TTI.hasBranchDivergence()) 868 CurDAG->VerifyDAGDiverence(); 869 #endif 870 871 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 872 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 873 << "'\n"; 874 CurDAG->dump()); 875 } 876 877 { 878 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 879 GroupDescription, TimePassesIsEnabled); 880 Changed = CurDAG->LegalizeVectors(); 881 } 882 883 if (Changed) { 884 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 885 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 886 << "'\n"; 887 CurDAG->dump()); 888 889 { 890 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 891 GroupDescription, TimePassesIsEnabled); 892 CurDAG->LegalizeTypes(); 893 } 894 895 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 896 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 897 << "'\n"; 898 CurDAG->dump()); 899 900 if (ViewDAGCombineLT && MatchFilterBB) 901 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 902 903 // Run the DAG combiner in post-type-legalize mode. 904 { 905 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 906 GroupName, GroupDescription, TimePassesIsEnabled); 907 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 908 } 909 910 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 911 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 912 << "'\n"; 913 CurDAG->dump()); 914 915 #ifndef NDEBUG 916 if (TTI.hasBranchDivergence()) 917 CurDAG->VerifyDAGDiverence(); 918 #endif 919 } 920 921 if (ViewLegalizeDAGs && MatchFilterBB) 922 CurDAG->viewGraph("legalize input for " + BlockName); 923 924 { 925 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 926 GroupDescription, TimePassesIsEnabled); 927 CurDAG->Legalize(); 928 } 929 930 #ifndef NDEBUG 931 if (TTI.hasBranchDivergence()) 932 CurDAG->VerifyDAGDiverence(); 933 #endif 934 935 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 936 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 937 << "'\n"; 938 CurDAG->dump()); 939 940 if (ViewDAGCombine2 && MatchFilterBB) 941 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 942 943 // Run the DAG combiner in post-legalize mode. 944 { 945 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 946 GroupDescription, TimePassesIsEnabled); 947 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 948 } 949 950 #ifndef NDEBUG 951 if (TTI.hasBranchDivergence()) 952 CurDAG->VerifyDAGDiverence(); 953 #endif 954 955 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 956 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 957 << "'\n"; 958 CurDAG->dump()); 959 960 if (OptLevel != CodeGenOpt::None) 961 ComputeLiveOutVRegInfo(); 962 963 if (ViewISelDAGs && MatchFilterBB) 964 CurDAG->viewGraph("isel input for " + BlockName); 965 966 // Third, instruction select all of the operations to machine code, adding the 967 // code to the MachineBasicBlock. 968 { 969 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 970 GroupDescription, TimePassesIsEnabled); 971 DoInstructionSelection(); 972 } 973 974 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 975 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 976 << "'\n"; 977 CurDAG->dump()); 978 979 if (ViewSchedDAGs && MatchFilterBB) 980 CurDAG->viewGraph("scheduler input for " + BlockName); 981 982 // Schedule machine code. 983 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 984 { 985 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 986 GroupDescription, TimePassesIsEnabled); 987 Scheduler->Run(CurDAG, FuncInfo->MBB); 988 } 989 990 if (ViewSUnitDAGs && MatchFilterBB) 991 Scheduler->viewGraph(); 992 993 // Emit machine code to BB. This can change 'BB' to the last block being 994 // inserted into. 995 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 996 { 997 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 998 GroupDescription, TimePassesIsEnabled); 999 1000 // FuncInfo->InsertPt is passed by reference and set to the end of the 1001 // scheduled instructions. 1002 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 1003 } 1004 1005 // If the block was split, make sure we update any references that are used to 1006 // update PHI nodes later on. 1007 if (FirstMBB != LastMBB) 1008 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 1009 1010 // Free the scheduler state. 1011 { 1012 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1013 GroupDescription, TimePassesIsEnabled); 1014 delete Scheduler; 1015 } 1016 1017 // Free the SelectionDAG state, now that we're finished with it. 1018 CurDAG->clear(); 1019 } 1020 1021 namespace { 1022 1023 /// ISelUpdater - helper class to handle updates of the instruction selection 1024 /// graph. 1025 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1026 SelectionDAG::allnodes_iterator &ISelPosition; 1027 1028 public: 1029 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1030 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1031 1032 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1033 /// deleted is the current ISelPosition node, update ISelPosition. 1034 /// 1035 void NodeDeleted(SDNode *N, SDNode *E) override { 1036 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1037 ++ISelPosition; 1038 } 1039 }; 1040 1041 } // end anonymous namespace 1042 1043 // This function is used to enforce the topological node id property 1044 // property leveraged during Instruction selection. Before selection all 1045 // nodes are given a non-negative id such that all nodes have a larger id than 1046 // their operands. As this holds transitively we can prune checks that a node N 1047 // is a predecessor of M another by not recursively checking through M's 1048 // operands if N's ID is larger than M's ID. This is significantly improves 1049 // performance of for various legality checks (e.g. IsLegalToFold / 1050 // UpdateChains). 1051 1052 // However, when we fuse multiple nodes into a single node 1053 // during selection we may induce a predecessor relationship between inputs and 1054 // outputs of distinct nodes being merged violating the topological property. 1055 // Should a fused node have a successor which has yet to be selected, our 1056 // legality checks would be incorrect. To avoid this we mark all unselected 1057 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => 1058 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1059 // We use bit-negation to more clearly enforce that node id -1 can only be 1060 // achieved by selected nodes). As the conversion is reversable the original Id, 1061 // topological pruning can still be leveraged when looking for unselected nodes. 1062 // This method is call internally in all ISel replacement calls. 1063 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1064 SmallVector<SDNode *, 4> Nodes; 1065 Nodes.push_back(Node); 1066 1067 while (!Nodes.empty()) { 1068 SDNode *N = Nodes.pop_back_val(); 1069 for (auto *U : N->uses()) { 1070 auto UId = U->getNodeId(); 1071 if (UId > 0) { 1072 InvalidateNodeId(U); 1073 Nodes.push_back(U); 1074 } 1075 } 1076 } 1077 } 1078 1079 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a 1080 // NodeId with the equivalent node id which is invalid for topological 1081 // pruning. 1082 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1083 int InvalidId = -(N->getNodeId() + 1); 1084 N->setNodeId(InvalidId); 1085 } 1086 1087 // getUninvalidatedNodeId - get original uninvalidated node id. 1088 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1089 int Id = N->getNodeId(); 1090 if (Id < -1) 1091 return -(Id + 1); 1092 return Id; 1093 } 1094 1095 void SelectionDAGISel::DoInstructionSelection() { 1096 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1097 << printMBBReference(*FuncInfo->MBB) << " '" 1098 << FuncInfo->MBB->getName() << "'\n"); 1099 1100 PreprocessISelDAG(); 1101 1102 // Select target instructions for the DAG. 1103 { 1104 // Number all nodes with a topological order and set DAGSize. 1105 DAGSize = CurDAG->AssignTopologicalOrder(); 1106 1107 // Create a dummy node (which is not added to allnodes), that adds 1108 // a reference to the root node, preventing it from being deleted, 1109 // and tracking any changes of the root. 1110 HandleSDNode Dummy(CurDAG->getRoot()); 1111 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1112 ++ISelPosition; 1113 1114 // Make sure that ISelPosition gets properly updated when nodes are deleted 1115 // in calls made from this function. 1116 ISelUpdater ISU(*CurDAG, ISelPosition); 1117 1118 // The AllNodes list is now topological-sorted. Visit the 1119 // nodes by starting at the end of the list (the root of the 1120 // graph) and preceding back toward the beginning (the entry 1121 // node). 1122 while (ISelPosition != CurDAG->allnodes_begin()) { 1123 SDNode *Node = &*--ISelPosition; 1124 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1125 // but there are currently some corner cases that it misses. Also, this 1126 // makes it theoretically possible to disable the DAGCombiner. 1127 if (Node->use_empty()) 1128 continue; 1129 1130 #ifndef NDEBUG 1131 SmallVector<SDNode *, 4> Nodes; 1132 Nodes.push_back(Node); 1133 1134 while (!Nodes.empty()) { 1135 auto N = Nodes.pop_back_val(); 1136 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1137 continue; 1138 for (const SDValue &Op : N->op_values()) { 1139 if (Op->getOpcode() == ISD::TokenFactor) 1140 Nodes.push_back(Op.getNode()); 1141 else { 1142 // We rely on topological ordering of node ids for checking for 1143 // cycles when fusing nodes during selection. All unselected nodes 1144 // successors of an already selected node should have a negative id. 1145 // This assertion will catch such cases. If this assertion triggers 1146 // it is likely you using DAG-level Value/Node replacement functions 1147 // (versus equivalent ISEL replacement) in backend-specific 1148 // selections. See comment in EnforceNodeIdInvariant for more 1149 // details. 1150 assert(Op->getNodeId() != -1 && 1151 "Node has already selected predecessor node"); 1152 } 1153 } 1154 } 1155 #endif 1156 1157 // When we are using non-default rounding modes or FP exception behavior 1158 // FP operations are represented by StrictFP pseudo-operations. For 1159 // targets that do not (yet) understand strict FP operations directly, 1160 // we convert them to normal FP opcodes instead at this point. This 1161 // will allow them to be handled by existing target-specific instruction 1162 // selectors. 1163 if (Node->isStrictFPOpcode() && 1164 (TLI->getOperationAction(Node->getOpcode(), Node->getValueType(0)) 1165 != TargetLowering::Legal)) 1166 Node = CurDAG->mutateStrictFPToFP(Node); 1167 1168 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1169 Node->dump(CurDAG)); 1170 1171 Select(Node); 1172 } 1173 1174 CurDAG->setRoot(Dummy.getValue()); 1175 } 1176 1177 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1178 1179 PostprocessISelDAG(); 1180 } 1181 1182 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1183 for (const User *U : CPI->users()) { 1184 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1185 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1186 if (IID == Intrinsic::eh_exceptionpointer || 1187 IID == Intrinsic::eh_exceptioncode) 1188 return true; 1189 } 1190 } 1191 return false; 1192 } 1193 1194 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1195 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1196 // and store the mapping in the function. 1197 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1198 const CatchPadInst *CPI) { 1199 MachineFunction *MF = MBB->getParent(); 1200 // In case of single catch (...), we don't emit LSDA, so we don't need 1201 // this information. 1202 bool IsSingleCatchAllClause = 1203 CPI->getNumArgOperands() == 1 && 1204 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1205 if (!IsSingleCatchAllClause) { 1206 // Create a mapping from landing pad label to landing pad index. 1207 bool IntrFound = false; 1208 for (const User *U : CPI->users()) { 1209 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1210 Intrinsic::ID IID = Call->getIntrinsicID(); 1211 if (IID == Intrinsic::wasm_landingpad_index) { 1212 Value *IndexArg = Call->getArgOperand(1); 1213 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1214 MF->setWasmLandingPadIndex(MBB, Index); 1215 IntrFound = true; 1216 break; 1217 } 1218 } 1219 } 1220 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1221 (void)IntrFound; 1222 } 1223 } 1224 1225 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1226 /// do other setup for EH landing-pad blocks. 1227 bool SelectionDAGISel::PrepareEHLandingPad() { 1228 MachineBasicBlock *MBB = FuncInfo->MBB; 1229 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1230 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1231 const TargetRegisterClass *PtrRC = 1232 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1233 1234 auto Pers = classifyEHPersonality(PersonalityFn); 1235 1236 // Catchpads have one live-in register, which typically holds the exception 1237 // pointer or code. 1238 if (isFuncletEHPersonality(Pers)) { 1239 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1240 if (hasExceptionPointerOrCodeUser(CPI)) { 1241 // Get or create the virtual register to hold the pointer or code. Mark 1242 // the live in physreg and copy into the vreg. 1243 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1244 assert(EHPhysReg && "target lacks exception pointer register"); 1245 MBB->addLiveIn(EHPhysReg); 1246 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1247 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1248 TII->get(TargetOpcode::COPY), VReg) 1249 .addReg(EHPhysReg, RegState::Kill); 1250 } 1251 } 1252 return true; 1253 } 1254 1255 // Add a label to mark the beginning of the landing pad. Deletion of the 1256 // landing pad can thus be detected via the MachineModuleInfo. 1257 MCSymbol *Label = MF->addLandingPad(MBB); 1258 1259 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1260 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1261 .addSym(Label); 1262 1263 if (Pers == EHPersonality::Wasm_CXX) { 1264 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1265 mapWasmLandingPadIndex(MBB, CPI); 1266 } else { 1267 // Assign the call site to the landing pad's begin label. 1268 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1269 // Mark exception register as live in. 1270 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1271 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1272 // Mark exception selector register as live in. 1273 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1274 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1275 } 1276 1277 return true; 1278 } 1279 1280 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1281 /// side-effect free and is either dead or folded into a generated instruction. 1282 /// Return false if it needs to be emitted. 1283 static bool isFoldedOrDeadInstruction(const Instruction *I, 1284 FunctionLoweringInfo *FuncInfo) { 1285 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1286 !I->isTerminator() && // Terminators aren't folded. 1287 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1288 !I->isEHPad() && // EH pad instructions aren't folded. 1289 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 1290 } 1291 1292 /// Collect llvm.dbg.declare information. This is done after argument lowering 1293 /// in case the declarations refer to arguments. 1294 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) { 1295 MachineFunction *MF = FuncInfo->MF; 1296 const DataLayout &DL = MF->getDataLayout(); 1297 for (const BasicBlock &BB : *FuncInfo->Fn) { 1298 for (const Instruction &I : BB) { 1299 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1300 if (!DI) 1301 continue; 1302 1303 assert(DI->getVariable() && "Missing variable"); 1304 assert(DI->getDebugLoc() && "Missing location"); 1305 const Value *Address = DI->getAddress(); 1306 if (!Address) 1307 continue; 1308 1309 // Look through casts and constant offset GEPs. These mostly come from 1310 // inalloca. 1311 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1312 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1313 1314 // Check if the variable is a static alloca or a byval or inalloca 1315 // argument passed in memory. If it is not, then we will ignore this 1316 // intrinsic and handle this during isel like dbg.value. 1317 int FI = std::numeric_limits<int>::max(); 1318 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1319 auto SI = FuncInfo->StaticAllocaMap.find(AI); 1320 if (SI != FuncInfo->StaticAllocaMap.end()) 1321 FI = SI->second; 1322 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1323 FI = FuncInfo->getArgumentFrameIndex(Arg); 1324 1325 if (FI == std::numeric_limits<int>::max()) 1326 continue; 1327 1328 DIExpression *Expr = DI->getExpression(); 1329 if (Offset.getBoolValue()) 1330 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1331 Offset.getZExtValue()); 1332 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1333 } 1334 } 1335 } 1336 1337 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1338 FastISelFailed = false; 1339 // Initialize the Fast-ISel state, if needed. 1340 FastISel *FastIS = nullptr; 1341 if (TM.Options.EnableFastISel) { 1342 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1343 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1344 } 1345 1346 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1347 1348 // Lower arguments up front. An RPO iteration always visits the entry block 1349 // first. 1350 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1351 ++NumEntryBlocks; 1352 1353 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1354 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1355 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1356 1357 CurDAG->setFunctionLoweringInfo(FuncInfo); 1358 1359 if (!FastIS) { 1360 LowerArguments(Fn); 1361 } else { 1362 // See if fast isel can lower the arguments. 1363 FastIS->startNewBlock(); 1364 if (!FastIS->lowerArguments()) { 1365 FastISelFailed = true; 1366 // Fast isel failed to lower these arguments 1367 ++NumFastIselFailLowerArguments; 1368 1369 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1370 Fn.getSubprogram(), 1371 &Fn.getEntryBlock()); 1372 R << "FastISel didn't lower all arguments: " 1373 << ore::NV("Prototype", Fn.getType()); 1374 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1375 1376 // Use SelectionDAG argument lowering 1377 LowerArguments(Fn); 1378 CurDAG->setRoot(SDB->getControlRoot()); 1379 SDB->clear(); 1380 CodeGenAndEmitDAG(); 1381 } 1382 1383 // If we inserted any instructions at the beginning, make a note of 1384 // where they are, so we can be sure to emit subsequent instructions 1385 // after them. 1386 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1387 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1388 else 1389 FastIS->setLastLocalValue(nullptr); 1390 } 1391 1392 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1393 1394 if (FastIS && Inserted) 1395 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1396 1397 processDbgDeclares(FuncInfo); 1398 1399 // Iterate over all basic blocks in the function. 1400 StackProtector &SP = getAnalysis<StackProtector>(); 1401 for (const BasicBlock *LLVMBB : RPOT) { 1402 if (OptLevel != CodeGenOpt::None) { 1403 bool AllPredsVisited = true; 1404 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1405 PI != PE; ++PI) { 1406 if (!FuncInfo->VisitedBBs.count(*PI)) { 1407 AllPredsVisited = false; 1408 break; 1409 } 1410 } 1411 1412 if (AllPredsVisited) { 1413 for (const PHINode &PN : LLVMBB->phis()) 1414 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1415 } else { 1416 for (const PHINode &PN : LLVMBB->phis()) 1417 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1418 } 1419 1420 FuncInfo->VisitedBBs.insert(LLVMBB); 1421 } 1422 1423 BasicBlock::const_iterator const Begin = 1424 LLVMBB->getFirstNonPHI()->getIterator(); 1425 BasicBlock::const_iterator const End = LLVMBB->end(); 1426 BasicBlock::const_iterator BI = End; 1427 1428 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1429 if (!FuncInfo->MBB) 1430 continue; // Some blocks like catchpads have no code or MBB. 1431 1432 // Insert new instructions after any phi or argument setup code. 1433 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1434 1435 // Setup an EH landing-pad block. 1436 FuncInfo->ExceptionPointerVirtReg = 0; 1437 FuncInfo->ExceptionSelectorVirtReg = 0; 1438 if (LLVMBB->isEHPad()) 1439 if (!PrepareEHLandingPad()) 1440 continue; 1441 1442 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1443 if (FastIS) { 1444 if (LLVMBB != &Fn.getEntryBlock()) 1445 FastIS->startNewBlock(); 1446 1447 unsigned NumFastIselRemaining = std::distance(Begin, End); 1448 1449 // Pre-assign swifterror vregs. 1450 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1451 1452 // Do FastISel on as many instructions as possible. 1453 for (; BI != Begin; --BI) { 1454 const Instruction *Inst = &*std::prev(BI); 1455 1456 // If we no longer require this instruction, skip it. 1457 if (isFoldedOrDeadInstruction(Inst, FuncInfo) || 1458 ElidedArgCopyInstrs.count(Inst)) { 1459 --NumFastIselRemaining; 1460 continue; 1461 } 1462 1463 // Bottom-up: reset the insert pos at the top, after any local-value 1464 // instructions. 1465 FastIS->recomputeInsertPt(); 1466 1467 // Try to select the instruction with FastISel. 1468 if (FastIS->selectInstruction(Inst)) { 1469 --NumFastIselRemaining; 1470 ++NumFastIselSuccess; 1471 // If fast isel succeeded, skip over all the folded instructions, and 1472 // then see if there is a load right before the selected instructions. 1473 // Try to fold the load if so. 1474 const Instruction *BeforeInst = Inst; 1475 while (BeforeInst != &*Begin) { 1476 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1477 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1478 break; 1479 } 1480 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1481 BeforeInst->hasOneUse() && 1482 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1483 // If we succeeded, don't re-select the load. 1484 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1485 --NumFastIselRemaining; 1486 ++NumFastIselSuccess; 1487 } 1488 continue; 1489 } 1490 1491 FastISelFailed = true; 1492 1493 // Then handle certain instructions as single-LLVM-Instruction blocks. 1494 // We cannot separate out GCrelocates to their own blocks since we need 1495 // to keep track of gc-relocates for a particular gc-statepoint. This is 1496 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1497 // visitGCRelocate. 1498 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) && 1499 !isGCResult(Inst)) { 1500 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1501 Inst->getDebugLoc(), LLVMBB); 1502 1503 R << "FastISel missed call"; 1504 1505 if (R.isEnabled() || EnableFastISelAbort) { 1506 std::string InstStrStorage; 1507 raw_string_ostream InstStr(InstStrStorage); 1508 InstStr << *Inst; 1509 1510 R << ": " << InstStr.str(); 1511 } 1512 1513 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1514 1515 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1516 !Inst->use_empty()) { 1517 unsigned &R = FuncInfo->ValueMap[Inst]; 1518 if (!R) 1519 R = FuncInfo->CreateRegs(Inst); 1520 } 1521 1522 bool HadTailCall = false; 1523 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1524 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1525 1526 // If the call was emitted as a tail call, we're done with the block. 1527 // We also need to delete any previously emitted instructions. 1528 if (HadTailCall) { 1529 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1530 --BI; 1531 break; 1532 } 1533 1534 // Recompute NumFastIselRemaining as Selection DAG instruction 1535 // selection may have handled the call, input args, etc. 1536 unsigned RemainingNow = std::distance(Begin, BI); 1537 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1538 NumFastIselRemaining = RemainingNow; 1539 continue; 1540 } 1541 1542 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1543 Inst->getDebugLoc(), LLVMBB); 1544 1545 bool ShouldAbort = EnableFastISelAbort; 1546 if (Inst->isTerminator()) { 1547 // Use a different message for terminator misses. 1548 R << "FastISel missed terminator"; 1549 // Don't abort for terminator unless the level is really high 1550 ShouldAbort = (EnableFastISelAbort > 2); 1551 } else { 1552 R << "FastISel missed"; 1553 } 1554 1555 if (R.isEnabled() || EnableFastISelAbort) { 1556 std::string InstStrStorage; 1557 raw_string_ostream InstStr(InstStrStorage); 1558 InstStr << *Inst; 1559 R << ": " << InstStr.str(); 1560 } 1561 1562 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1563 1564 NumFastIselFailures += NumFastIselRemaining; 1565 break; 1566 } 1567 1568 FastIS->recomputeInsertPt(); 1569 } 1570 1571 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1572 bool FunctionBasedInstrumentation = 1573 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1574 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1575 FunctionBasedInstrumentation); 1576 } 1577 1578 if (Begin != BI) 1579 ++NumDAGBlocks; 1580 else 1581 ++NumFastIselBlocks; 1582 1583 if (Begin != BI) { 1584 // Run SelectionDAG instruction selection on the remainder of the block 1585 // not handled by FastISel. If FastISel is not run, this is the entire 1586 // block. 1587 bool HadTailCall; 1588 SelectBasicBlock(Begin, BI, HadTailCall); 1589 1590 // But if FastISel was run, we already selected some of the block. 1591 // If we emitted a tail-call, we need to delete any previously emitted 1592 // instruction that follows it. 1593 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1594 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1595 } 1596 1597 if (FastIS) 1598 FastIS->finishBasicBlock(); 1599 FinishBasicBlock(); 1600 FuncInfo->PHINodesToUpdate.clear(); 1601 ElidedArgCopyInstrs.clear(); 1602 } 1603 1604 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1605 1606 SwiftError->propagateVRegs(); 1607 1608 delete FastIS; 1609 SDB->clearDanglingDebugInfo(); 1610 SDB->SPDescriptor.resetPerFunctionState(); 1611 } 1612 1613 /// Given that the input MI is before a partial terminator sequence TSeq, return 1614 /// true if M + TSeq also a partial terminator sequence. 1615 /// 1616 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1617 /// lowering copy vregs into physical registers, which are then passed into 1618 /// terminator instructors so we can satisfy ABI constraints. A partial 1619 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1620 /// may be the whole terminator sequence). 1621 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1622 // If we do not have a copy or an implicit def, we return true if and only if 1623 // MI is a debug value. 1624 if (!MI.isCopy() && !MI.isImplicitDef()) 1625 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1626 // physical registers if there is debug info associated with the terminator 1627 // of our mbb. We want to include said debug info in our terminator 1628 // sequence, so we return true in that case. 1629 return MI.isDebugValue(); 1630 1631 // We have left the terminator sequence if we are not doing one of the 1632 // following: 1633 // 1634 // 1. Copying a vreg into a physical register. 1635 // 2. Copying a vreg into a vreg. 1636 // 3. Defining a register via an implicit def. 1637 1638 // OPI should always be a register definition... 1639 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1640 if (!OPI->isReg() || !OPI->isDef()) 1641 return false; 1642 1643 // Defining any register via an implicit def is always ok. 1644 if (MI.isImplicitDef()) 1645 return true; 1646 1647 // Grab the copy source... 1648 MachineInstr::const_mop_iterator OPI2 = OPI; 1649 ++OPI2; 1650 assert(OPI2 != MI.operands_end() 1651 && "Should have a copy implying we should have 2 arguments."); 1652 1653 // Make sure that the copy dest is not a vreg when the copy source is a 1654 // physical register. 1655 if (!OPI2->isReg() || 1656 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && 1657 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) 1658 return false; 1659 1660 return true; 1661 } 1662 1663 /// Find the split point at which to splice the end of BB into its success stack 1664 /// protector check machine basic block. 1665 /// 1666 /// On many platforms, due to ABI constraints, terminators, even before register 1667 /// allocation, use physical registers. This creates an issue for us since 1668 /// physical registers at this point can not travel across basic 1669 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1670 /// when they enter functions and moves them through a sequence of copies back 1671 /// into the physical registers right before the terminator creating a 1672 /// ``Terminator Sequence''. This function is searching for the beginning of the 1673 /// terminator sequence so that we can ensure that we splice off not just the 1674 /// terminator, but additionally the copies that move the vregs into the 1675 /// physical registers. 1676 static MachineBasicBlock::iterator 1677 FindSplitPointForStackProtector(MachineBasicBlock *BB) { 1678 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1679 // 1680 if (SplitPoint == BB->begin()) 1681 return SplitPoint; 1682 1683 MachineBasicBlock::iterator Start = BB->begin(); 1684 MachineBasicBlock::iterator Previous = SplitPoint; 1685 --Previous; 1686 1687 while (MIIsInTerminatorSequence(*Previous)) { 1688 SplitPoint = Previous; 1689 if (Previous == Start) 1690 break; 1691 --Previous; 1692 } 1693 1694 return SplitPoint; 1695 } 1696 1697 void 1698 SelectionDAGISel::FinishBasicBlock() { 1699 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1700 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1701 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1702 ++i) dbgs() 1703 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1704 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1705 1706 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1707 // PHI nodes in successors. 1708 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1709 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1710 assert(PHI->isPHI() && 1711 "This is not a machine PHI node that we are updating!"); 1712 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1713 continue; 1714 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1715 } 1716 1717 // Handle stack protector. 1718 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1719 // The target provides a guard check function. There is no need to 1720 // generate error handling code or to split current basic block. 1721 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1722 1723 // Add load and check to the basicblock. 1724 FuncInfo->MBB = ParentMBB; 1725 FuncInfo->InsertPt = 1726 FindSplitPointForStackProtector(ParentMBB); 1727 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1728 CurDAG->setRoot(SDB->getRoot()); 1729 SDB->clear(); 1730 CodeGenAndEmitDAG(); 1731 1732 // Clear the Per-BB State. 1733 SDB->SPDescriptor.resetPerBBState(); 1734 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1735 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1736 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1737 1738 // Find the split point to split the parent mbb. At the same time copy all 1739 // physical registers used in the tail of parent mbb into virtual registers 1740 // before the split point and back into physical registers after the split 1741 // point. This prevents us needing to deal with Live-ins and many other 1742 // register allocation issues caused by us splitting the parent mbb. The 1743 // register allocator will clean up said virtual copies later on. 1744 MachineBasicBlock::iterator SplitPoint = 1745 FindSplitPointForStackProtector(ParentMBB); 1746 1747 // Splice the terminator of ParentMBB into SuccessMBB. 1748 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1749 SplitPoint, 1750 ParentMBB->end()); 1751 1752 // Add compare/jump on neq/jump to the parent BB. 1753 FuncInfo->MBB = ParentMBB; 1754 FuncInfo->InsertPt = ParentMBB->end(); 1755 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1756 CurDAG->setRoot(SDB->getRoot()); 1757 SDB->clear(); 1758 CodeGenAndEmitDAG(); 1759 1760 // CodeGen Failure MBB if we have not codegened it yet. 1761 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1762 if (FailureMBB->empty()) { 1763 FuncInfo->MBB = FailureMBB; 1764 FuncInfo->InsertPt = FailureMBB->end(); 1765 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1766 CurDAG->setRoot(SDB->getRoot()); 1767 SDB->clear(); 1768 CodeGenAndEmitDAG(); 1769 } 1770 1771 // Clear the Per-BB State. 1772 SDB->SPDescriptor.resetPerBBState(); 1773 } 1774 1775 // Lower each BitTestBlock. 1776 for (auto &BTB : SDB->SL->BitTestCases) { 1777 // Lower header first, if it wasn't already lowered 1778 if (!BTB.Emitted) { 1779 // Set the current basic block to the mbb we wish to insert the code into 1780 FuncInfo->MBB = BTB.Parent; 1781 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1782 // Emit the code 1783 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1784 CurDAG->setRoot(SDB->getRoot()); 1785 SDB->clear(); 1786 CodeGenAndEmitDAG(); 1787 } 1788 1789 BranchProbability UnhandledProb = BTB.Prob; 1790 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1791 UnhandledProb -= BTB.Cases[j].ExtraProb; 1792 // Set the current basic block to the mbb we wish to insert the code into 1793 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1794 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1795 // Emit the code 1796 1797 // If all cases cover a contiguous range, it is not necessary to jump to 1798 // the default block after the last bit test fails. This is because the 1799 // range check during bit test header creation has guaranteed that every 1800 // case here doesn't go outside the range. In this case, there is no need 1801 // to perform the last bit test, as it will always be true. Instead, make 1802 // the second-to-last bit-test fall through to the target of the last bit 1803 // test, and delete the last bit test. 1804 1805 MachineBasicBlock *NextMBB; 1806 if (BTB.ContiguousRange && j + 2 == ej) { 1807 // Second-to-last bit-test with contiguous range: fall through to the 1808 // target of the final bit test. 1809 NextMBB = BTB.Cases[j + 1].TargetBB; 1810 } else if (j + 1 == ej) { 1811 // For the last bit test, fall through to Default. 1812 NextMBB = BTB.Default; 1813 } else { 1814 // Otherwise, fall through to the next bit test. 1815 NextMBB = BTB.Cases[j + 1].ThisBB; 1816 } 1817 1818 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1819 FuncInfo->MBB); 1820 1821 CurDAG->setRoot(SDB->getRoot()); 1822 SDB->clear(); 1823 CodeGenAndEmitDAG(); 1824 1825 if (BTB.ContiguousRange && j + 2 == ej) { 1826 // Since we're not going to use the final bit test, remove it. 1827 BTB.Cases.pop_back(); 1828 break; 1829 } 1830 } 1831 1832 // Update PHI Nodes 1833 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1834 pi != pe; ++pi) { 1835 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1836 MachineBasicBlock *PHIBB = PHI->getParent(); 1837 assert(PHI->isPHI() && 1838 "This is not a machine PHI node that we are updating!"); 1839 // This is "default" BB. We have two jumps to it. From "header" BB and 1840 // from last "case" BB, unless the latter was skipped. 1841 if (PHIBB == BTB.Default) { 1842 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1843 if (!BTB.ContiguousRange) { 1844 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1845 .addMBB(BTB.Cases.back().ThisBB); 1846 } 1847 } 1848 // One of "cases" BB. 1849 for (unsigned j = 0, ej = BTB.Cases.size(); 1850 j != ej; ++j) { 1851 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1852 if (cBB->isSuccessor(PHIBB)) 1853 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1854 } 1855 } 1856 } 1857 SDB->SL->BitTestCases.clear(); 1858 1859 // If the JumpTable record is filled in, then we need to emit a jump table. 1860 // Updating the PHI nodes is tricky in this case, since we need to determine 1861 // whether the PHI is a successor of the range check MBB or the jump table MBB 1862 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1863 // Lower header first, if it wasn't already lowered 1864 if (!SDB->SL->JTCases[i].first.Emitted) { 1865 // Set the current basic block to the mbb we wish to insert the code into 1866 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1867 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1868 // Emit the code 1869 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1870 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1871 CurDAG->setRoot(SDB->getRoot()); 1872 SDB->clear(); 1873 CodeGenAndEmitDAG(); 1874 } 1875 1876 // Set the current basic block to the mbb we wish to insert the code into 1877 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1878 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1879 // Emit the code 1880 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1881 CurDAG->setRoot(SDB->getRoot()); 1882 SDB->clear(); 1883 CodeGenAndEmitDAG(); 1884 1885 // Update PHI Nodes 1886 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1887 pi != pe; ++pi) { 1888 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1889 MachineBasicBlock *PHIBB = PHI->getParent(); 1890 assert(PHI->isPHI() && 1891 "This is not a machine PHI node that we are updating!"); 1892 // "default" BB. We can go there only from header BB. 1893 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1894 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1895 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1896 // JT BB. Just iterate over successors here 1897 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1898 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1899 } 1900 } 1901 SDB->SL->JTCases.clear(); 1902 1903 // If we generated any switch lowering information, build and codegen any 1904 // additional DAGs necessary. 1905 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1906 // Set the current basic block to the mbb we wish to insert the code into 1907 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1908 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1909 1910 // Determine the unique successors. 1911 SmallVector<MachineBasicBlock *, 2> Succs; 1912 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1913 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1914 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1915 1916 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1917 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1918 CurDAG->setRoot(SDB->getRoot()); 1919 SDB->clear(); 1920 CodeGenAndEmitDAG(); 1921 1922 // Remember the last block, now that any splitting is done, for use in 1923 // populating PHI nodes in successors. 1924 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1925 1926 // Handle any PHI nodes in successors of this chunk, as if we were coming 1927 // from the original BB before switch expansion. Note that PHI nodes can 1928 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1929 // handle them the right number of times. 1930 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1931 FuncInfo->MBB = Succs[i]; 1932 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1933 // FuncInfo->MBB may have been removed from the CFG if a branch was 1934 // constant folded. 1935 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1936 for (MachineBasicBlock::iterator 1937 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1938 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1939 MachineInstrBuilder PHI(*MF, MBBI); 1940 // This value for this PHI node is recorded in PHINodesToUpdate. 1941 for (unsigned pn = 0; ; ++pn) { 1942 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1943 "Didn't find PHI entry!"); 1944 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1945 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1946 break; 1947 } 1948 } 1949 } 1950 } 1951 } 1952 } 1953 SDB->SL->SwitchCases.clear(); 1954 } 1955 1956 /// Create the scheduler. If a specific scheduler was specified 1957 /// via the SchedulerRegistry, use it, otherwise select the 1958 /// one preferred by the target. 1959 /// 1960 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1961 return ISHeuristic(this, OptLevel); 1962 } 1963 1964 //===----------------------------------------------------------------------===// 1965 // Helper functions used by the generated instruction selector. 1966 //===----------------------------------------------------------------------===// 1967 // Calls to these methods are generated by tblgen. 1968 1969 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1970 /// the dag combiner simplified the 255, we still want to match. RHS is the 1971 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1972 /// specified in the .td file (e.g. 255). 1973 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1974 int64_t DesiredMaskS) const { 1975 const APInt &ActualMask = RHS->getAPIntValue(); 1976 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1977 1978 // If the actual mask exactly matches, success! 1979 if (ActualMask == DesiredMask) 1980 return true; 1981 1982 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1983 if (!ActualMask.isSubsetOf(DesiredMask)) 1984 return false; 1985 1986 // Otherwise, the DAG Combiner may have proven that the value coming in is 1987 // either already zero or is not demanded. Check for known zero input bits. 1988 APInt NeededMask = DesiredMask & ~ActualMask; 1989 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1990 return true; 1991 1992 // TODO: check to see if missing bits are just not demanded. 1993 1994 // Otherwise, this pattern doesn't match. 1995 return false; 1996 } 1997 1998 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1999 /// the dag combiner simplified the 255, we still want to match. RHS is the 2000 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 2001 /// specified in the .td file (e.g. 255). 2002 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 2003 int64_t DesiredMaskS) const { 2004 const APInt &ActualMask = RHS->getAPIntValue(); 2005 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2006 2007 // If the actual mask exactly matches, success! 2008 if (ActualMask == DesiredMask) 2009 return true; 2010 2011 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2012 if (!ActualMask.isSubsetOf(DesiredMask)) 2013 return false; 2014 2015 // Otherwise, the DAG Combiner may have proven that the value coming in is 2016 // either already zero or is not demanded. Check for known zero input bits. 2017 APInt NeededMask = DesiredMask & ~ActualMask; 2018 KnownBits Known = CurDAG->computeKnownBits(LHS); 2019 2020 // If all the missing bits in the or are already known to be set, match! 2021 if (NeededMask.isSubsetOf(Known.One)) 2022 return true; 2023 2024 // TODO: check to see if missing bits are just not demanded. 2025 2026 // Otherwise, this pattern doesn't match. 2027 return false; 2028 } 2029 2030 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2031 /// by tblgen. Others should not call it. 2032 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2033 const SDLoc &DL) { 2034 std::vector<SDValue> InOps; 2035 std::swap(InOps, Ops); 2036 2037 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2038 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2039 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2040 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2041 2042 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2043 if (InOps[e-1].getValueType() == MVT::Glue) 2044 --e; // Don't process a glue operand if it is here. 2045 2046 while (i != e) { 2047 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2048 if (!InlineAsm::isMemKind(Flags)) { 2049 // Just skip over this operand, copying the operands verbatim. 2050 Ops.insert(Ops.end(), InOps.begin()+i, 2051 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2052 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2053 } else { 2054 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2055 "Memory operand with multiple values?"); 2056 2057 unsigned TiedToOperand; 2058 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2059 // We need the constraint ID from the operand this is tied to. 2060 unsigned CurOp = InlineAsm::Op_FirstOperand; 2061 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2062 for (; TiedToOperand; --TiedToOperand) { 2063 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2064 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2065 } 2066 } 2067 2068 // Otherwise, this is a memory operand. Ask the target to select it. 2069 std::vector<SDValue> SelOps; 2070 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2071 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2072 report_fatal_error("Could not match memory address. Inline asm" 2073 " failure!"); 2074 2075 // Add this to the output node. 2076 unsigned NewFlags = 2077 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2078 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2079 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2080 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 2081 i += 2; 2082 } 2083 } 2084 2085 // Add the glue input back if present. 2086 if (e != InOps.size()) 2087 Ops.push_back(InOps.back()); 2088 } 2089 2090 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2091 /// SDNode. 2092 /// 2093 static SDNode *findGlueUse(SDNode *N) { 2094 unsigned FlagResNo = N->getNumValues()-1; 2095 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2096 SDUse &Use = I.getUse(); 2097 if (Use.getResNo() == FlagResNo) 2098 return Use.getUser(); 2099 } 2100 return nullptr; 2101 } 2102 2103 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2104 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2105 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2106 bool IgnoreChains) { 2107 SmallPtrSet<const SDNode *, 16> Visited; 2108 SmallVector<const SDNode *, 16> WorkList; 2109 // Only check if we have non-immediate uses of Def. 2110 if (ImmedUse->isOnlyUserOf(Def)) 2111 return false; 2112 2113 // We don't care about paths to Def that go through ImmedUse so mark it 2114 // visited and mark non-def operands as used. 2115 Visited.insert(ImmedUse); 2116 for (const SDValue &Op : ImmedUse->op_values()) { 2117 SDNode *N = Op.getNode(); 2118 // Ignore chain deps (they are validated by 2119 // HandleMergeInputChains) and immediate uses 2120 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2121 continue; 2122 if (!Visited.insert(N).second) 2123 continue; 2124 WorkList.push_back(N); 2125 } 2126 2127 // Initialize worklist to operands of Root. 2128 if (Root != ImmedUse) { 2129 for (const SDValue &Op : Root->op_values()) { 2130 SDNode *N = Op.getNode(); 2131 // Ignore chains (they are validated by HandleMergeInputChains) 2132 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2133 continue; 2134 if (!Visited.insert(N).second) 2135 continue; 2136 WorkList.push_back(N); 2137 } 2138 } 2139 2140 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2141 } 2142 2143 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2144 /// operand node N of U during instruction selection that starts at Root. 2145 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2146 SDNode *Root) const { 2147 if (OptLevel == CodeGenOpt::None) return false; 2148 return N.hasOneUse(); 2149 } 2150 2151 /// IsLegalToFold - Returns true if the specific operand node N of 2152 /// U can be folded during instruction selection that starts at Root. 2153 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2154 CodeGenOpt::Level OptLevel, 2155 bool IgnoreChains) { 2156 if (OptLevel == CodeGenOpt::None) return false; 2157 2158 // If Root use can somehow reach N through a path that that doesn't contain 2159 // U then folding N would create a cycle. e.g. In the following 2160 // diagram, Root can reach N through X. If N is folded into Root, then 2161 // X is both a predecessor and a successor of U. 2162 // 2163 // [N*] // 2164 // ^ ^ // 2165 // / \ // 2166 // [U*] [X]? // 2167 // ^ ^ // 2168 // \ / // 2169 // \ / // 2170 // [Root*] // 2171 // 2172 // * indicates nodes to be folded together. 2173 // 2174 // If Root produces glue, then it gets (even more) interesting. Since it 2175 // will be "glued" together with its glue use in the scheduler, we need to 2176 // check if it might reach N. 2177 // 2178 // [N*] // 2179 // ^ ^ // 2180 // / \ // 2181 // [U*] [X]? // 2182 // ^ ^ // 2183 // \ \ // 2184 // \ | // 2185 // [Root*] | // 2186 // ^ | // 2187 // f | // 2188 // | / // 2189 // [Y] / // 2190 // ^ / // 2191 // f / // 2192 // | / // 2193 // [GU] // 2194 // 2195 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2196 // (call it Fold), then X is a predecessor of GU and a successor of 2197 // Fold. But since Fold and GU are glued together, this will create 2198 // a cycle in the scheduling graph. 2199 2200 // If the node has glue, walk down the graph to the "lowest" node in the 2201 // glueged set. 2202 EVT VT = Root->getValueType(Root->getNumValues()-1); 2203 while (VT == MVT::Glue) { 2204 SDNode *GU = findGlueUse(Root); 2205 if (!GU) 2206 break; 2207 Root = GU; 2208 VT = Root->getValueType(Root->getNumValues()-1); 2209 2210 // If our query node has a glue result with a use, we've walked up it. If 2211 // the user (which has already been selected) has a chain or indirectly uses 2212 // the chain, HandleMergeInputChains will not consider it. Because of 2213 // this, we cannot ignore chains in this predicate. 2214 IgnoreChains = false; 2215 } 2216 2217 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2218 } 2219 2220 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) { 2221 SDLoc DL(N); 2222 2223 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2224 SelectInlineAsmMemoryOperands(Ops, DL); 2225 2226 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2227 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops); 2228 New->setNodeId(-1); 2229 ReplaceUses(N, New.getNode()); 2230 CurDAG->RemoveDeadNode(N); 2231 } 2232 2233 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2234 SDLoc dl(Op); 2235 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2236 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2237 unsigned Reg = 2238 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), 2239 *CurDAG); 2240 SDValue New = CurDAG->getCopyFromReg( 2241 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2242 New->setNodeId(-1); 2243 ReplaceUses(Op, New.getNode()); 2244 CurDAG->RemoveDeadNode(Op); 2245 } 2246 2247 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2248 SDLoc dl(Op); 2249 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2250 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2251 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), 2252 Op->getOperand(2).getValueType(), 2253 *CurDAG); 2254 SDValue New = CurDAG->getCopyToReg( 2255 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2256 New->setNodeId(-1); 2257 ReplaceUses(Op, New.getNode()); 2258 CurDAG->RemoveDeadNode(Op); 2259 } 2260 2261 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2262 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2263 } 2264 2265 /// GetVBR - decode a vbr encoding whose top bit is set. 2266 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2267 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2268 assert(Val >= 128 && "Not a VBR"); 2269 Val &= 127; // Remove first vbr bit. 2270 2271 unsigned Shift = 7; 2272 uint64_t NextBits; 2273 do { 2274 NextBits = MatcherTable[Idx++]; 2275 Val |= (NextBits&127) << Shift; 2276 Shift += 7; 2277 } while (NextBits & 128); 2278 2279 return Val; 2280 } 2281 2282 /// When a match is complete, this method updates uses of interior chain results 2283 /// to use the new results. 2284 void SelectionDAGISel::UpdateChains( 2285 SDNode *NodeToMatch, SDValue InputChain, 2286 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2287 SmallVector<SDNode*, 4> NowDeadNodes; 2288 2289 // Now that all the normal results are replaced, we replace the chain and 2290 // glue results if present. 2291 if (!ChainNodesMatched.empty()) { 2292 assert(InputChain.getNode() && 2293 "Matched input chains but didn't produce a chain"); 2294 // Loop over all of the nodes we matched that produced a chain result. 2295 // Replace all the chain results with the final chain we ended up with. 2296 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2297 SDNode *ChainNode = ChainNodesMatched[i]; 2298 // If ChainNode is null, it's because we replaced it on a previous 2299 // iteration and we cleared it out of the map. Just skip it. 2300 if (!ChainNode) 2301 continue; 2302 2303 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2304 "Deleted node left in chain"); 2305 2306 // Don't replace the results of the root node if we're doing a 2307 // MorphNodeTo. 2308 if (ChainNode == NodeToMatch && isMorphNodeTo) 2309 continue; 2310 2311 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2312 if (ChainVal.getValueType() == MVT::Glue) 2313 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2314 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2315 SelectionDAG::DAGNodeDeletedListener NDL( 2316 *CurDAG, [&](SDNode *N, SDNode *E) { 2317 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2318 static_cast<SDNode *>(nullptr)); 2319 }); 2320 if (ChainNode->getOpcode() != ISD::TokenFactor) 2321 ReplaceUses(ChainVal, InputChain); 2322 2323 // If the node became dead and we haven't already seen it, delete it. 2324 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2325 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2326 NowDeadNodes.push_back(ChainNode); 2327 } 2328 } 2329 2330 if (!NowDeadNodes.empty()) 2331 CurDAG->RemoveDeadNodes(NowDeadNodes); 2332 2333 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2334 } 2335 2336 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2337 /// operation for when the pattern matched at least one node with a chains. The 2338 /// input vector contains a list of all of the chained nodes that we match. We 2339 /// must determine if this is a valid thing to cover (i.e. matching it won't 2340 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2341 /// be used as the input node chain for the generated nodes. 2342 static SDValue 2343 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2344 SelectionDAG *CurDAG) { 2345 2346 SmallPtrSet<const SDNode *, 16> Visited; 2347 SmallVector<const SDNode *, 8> Worklist; 2348 SmallVector<SDValue, 3> InputChains; 2349 unsigned int Max = 8192; 2350 2351 // Quick exit on trivial merge. 2352 if (ChainNodesMatched.size() == 1) 2353 return ChainNodesMatched[0]->getOperand(0); 2354 2355 // Add chains that aren't already added (internal). Peek through 2356 // token factors. 2357 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2358 if (V.getValueType() != MVT::Other) 2359 return; 2360 if (V->getOpcode() == ISD::EntryToken) 2361 return; 2362 if (!Visited.insert(V.getNode()).second) 2363 return; 2364 if (V->getOpcode() == ISD::TokenFactor) { 2365 for (const SDValue &Op : V->op_values()) 2366 AddChains(Op); 2367 } else 2368 InputChains.push_back(V); 2369 }; 2370 2371 for (auto *N : ChainNodesMatched) { 2372 Worklist.push_back(N); 2373 Visited.insert(N); 2374 } 2375 2376 while (!Worklist.empty()) 2377 AddChains(Worklist.pop_back_val()->getOperand(0)); 2378 2379 // Skip the search if there are no chain dependencies. 2380 if (InputChains.size() == 0) 2381 return CurDAG->getEntryNode(); 2382 2383 // If one of these chains is a successor of input, we must have a 2384 // node that is both the predecessor and successor of the 2385 // to-be-merged nodes. Fail. 2386 Visited.clear(); 2387 for (SDValue V : InputChains) 2388 Worklist.push_back(V.getNode()); 2389 2390 for (auto *N : ChainNodesMatched) 2391 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2392 return SDValue(); 2393 2394 // Return merged chain. 2395 if (InputChains.size() == 1) 2396 return InputChains[0]; 2397 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2398 MVT::Other, InputChains); 2399 } 2400 2401 /// MorphNode - Handle morphing a node in place for the selector. 2402 SDNode *SelectionDAGISel:: 2403 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2404 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2405 // It is possible we're using MorphNodeTo to replace a node with no 2406 // normal results with one that has a normal result (or we could be 2407 // adding a chain) and the input could have glue and chains as well. 2408 // In this case we need to shift the operands down. 2409 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2410 // than the old isel though. 2411 int OldGlueResultNo = -1, OldChainResultNo = -1; 2412 2413 unsigned NTMNumResults = Node->getNumValues(); 2414 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2415 OldGlueResultNo = NTMNumResults-1; 2416 if (NTMNumResults != 1 && 2417 Node->getValueType(NTMNumResults-2) == MVT::Other) 2418 OldChainResultNo = NTMNumResults-2; 2419 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2420 OldChainResultNo = NTMNumResults-1; 2421 2422 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2423 // that this deletes operands of the old node that become dead. 2424 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2425 2426 // MorphNodeTo can operate in two ways: if an existing node with the 2427 // specified operands exists, it can just return it. Otherwise, it 2428 // updates the node in place to have the requested operands. 2429 if (Res == Node) { 2430 // If we updated the node in place, reset the node ID. To the isel, 2431 // this should be just like a newly allocated machine node. 2432 Res->setNodeId(-1); 2433 } 2434 2435 unsigned ResNumResults = Res->getNumValues(); 2436 // Move the glue if needed. 2437 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2438 (unsigned)OldGlueResultNo != ResNumResults-1) 2439 ReplaceUses(SDValue(Node, OldGlueResultNo), 2440 SDValue(Res, ResNumResults - 1)); 2441 2442 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2443 --ResNumResults; 2444 2445 // Move the chain reference if needed. 2446 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2447 (unsigned)OldChainResultNo != ResNumResults-1) 2448 ReplaceUses(SDValue(Node, OldChainResultNo), 2449 SDValue(Res, ResNumResults - 1)); 2450 2451 // Otherwise, no replacement happened because the node already exists. Replace 2452 // Uses of the old node with the new one. 2453 if (Res != Node) { 2454 ReplaceNode(Node, Res); 2455 } else { 2456 EnforceNodeIdInvariant(Res); 2457 } 2458 2459 return Res; 2460 } 2461 2462 /// CheckSame - Implements OP_CheckSame. 2463 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2464 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2465 SDValue N, 2466 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2467 // Accept if it is exactly the same as a previously recorded node. 2468 unsigned RecNo = MatcherTable[MatcherIndex++]; 2469 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2470 return N == RecordedNodes[RecNo].first; 2471 } 2472 2473 /// CheckChildSame - Implements OP_CheckChildXSame. 2474 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2475 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2476 SDValue N, 2477 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes, 2478 unsigned ChildNo) { 2479 if (ChildNo >= N.getNumOperands()) 2480 return false; // Match fails if out of range child #. 2481 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2482 RecordedNodes); 2483 } 2484 2485 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2486 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2487 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2488 const SelectionDAGISel &SDISel) { 2489 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2490 } 2491 2492 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2493 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2494 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2495 const SelectionDAGISel &SDISel, SDNode *N) { 2496 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2497 } 2498 2499 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2500 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2501 SDNode *N) { 2502 uint16_t Opc = MatcherTable[MatcherIndex++]; 2503 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2504 return N->getOpcode() == Opc; 2505 } 2506 2507 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2508 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2509 const TargetLowering *TLI, const DataLayout &DL) { 2510 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2511 if (N.getValueType() == VT) return true; 2512 2513 // Handle the case when VT is iPTR. 2514 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2515 } 2516 2517 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2518 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2519 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2520 unsigned ChildNo) { 2521 if (ChildNo >= N.getNumOperands()) 2522 return false; // Match fails if out of range child #. 2523 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2524 DL); 2525 } 2526 2527 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2528 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2529 SDValue N) { 2530 return cast<CondCodeSDNode>(N)->get() == 2531 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2532 } 2533 2534 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2535 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2536 SDValue N) { 2537 if (2 >= N.getNumOperands()) 2538 return false; 2539 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2540 } 2541 2542 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2543 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2544 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2545 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2546 if (cast<VTSDNode>(N)->getVT() == VT) 2547 return true; 2548 2549 // Handle the case when VT is iPTR. 2550 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2551 } 2552 2553 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2554 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2555 SDValue N) { 2556 int64_t Val = MatcherTable[MatcherIndex++]; 2557 if (Val & 128) 2558 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2559 2560 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2561 return C && C->getSExtValue() == Val; 2562 } 2563 2564 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2565 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2566 SDValue N, unsigned ChildNo) { 2567 if (ChildNo >= N.getNumOperands()) 2568 return false; // Match fails if out of range child #. 2569 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2570 } 2571 2572 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2573 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2574 SDValue N, const SelectionDAGISel &SDISel) { 2575 int64_t Val = MatcherTable[MatcherIndex++]; 2576 if (Val & 128) 2577 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2578 2579 if (N->getOpcode() != ISD::AND) return false; 2580 2581 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2582 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2583 } 2584 2585 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2586 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2587 SDValue N, const SelectionDAGISel &SDISel) { 2588 int64_t Val = MatcherTable[MatcherIndex++]; 2589 if (Val & 128) 2590 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2591 2592 if (N->getOpcode() != ISD::OR) return false; 2593 2594 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2595 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2596 } 2597 2598 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2599 /// scope, evaluate the current node. If the current predicate is known to 2600 /// fail, set Result=true and return anything. If the current predicate is 2601 /// known to pass, set Result=false and return the MatcherIndex to continue 2602 /// with. If the current predicate is unknown, set Result=false and return the 2603 /// MatcherIndex to continue with. 2604 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2605 unsigned Index, SDValue N, 2606 bool &Result, 2607 const SelectionDAGISel &SDISel, 2608 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2609 switch (Table[Index++]) { 2610 default: 2611 Result = false; 2612 return Index-1; // Could not evaluate this predicate. 2613 case SelectionDAGISel::OPC_CheckSame: 2614 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2615 return Index; 2616 case SelectionDAGISel::OPC_CheckChild0Same: 2617 case SelectionDAGISel::OPC_CheckChild1Same: 2618 case SelectionDAGISel::OPC_CheckChild2Same: 2619 case SelectionDAGISel::OPC_CheckChild3Same: 2620 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2621 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2622 return Index; 2623 case SelectionDAGISel::OPC_CheckPatternPredicate: 2624 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2625 return Index; 2626 case SelectionDAGISel::OPC_CheckPredicate: 2627 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2628 return Index; 2629 case SelectionDAGISel::OPC_CheckOpcode: 2630 Result = !::CheckOpcode(Table, Index, N.getNode()); 2631 return Index; 2632 case SelectionDAGISel::OPC_CheckType: 2633 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2634 SDISel.CurDAG->getDataLayout()); 2635 return Index; 2636 case SelectionDAGISel::OPC_CheckTypeRes: { 2637 unsigned Res = Table[Index++]; 2638 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2639 SDISel.CurDAG->getDataLayout()); 2640 return Index; 2641 } 2642 case SelectionDAGISel::OPC_CheckChild0Type: 2643 case SelectionDAGISel::OPC_CheckChild1Type: 2644 case SelectionDAGISel::OPC_CheckChild2Type: 2645 case SelectionDAGISel::OPC_CheckChild3Type: 2646 case SelectionDAGISel::OPC_CheckChild4Type: 2647 case SelectionDAGISel::OPC_CheckChild5Type: 2648 case SelectionDAGISel::OPC_CheckChild6Type: 2649 case SelectionDAGISel::OPC_CheckChild7Type: 2650 Result = !::CheckChildType( 2651 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2652 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2653 return Index; 2654 case SelectionDAGISel::OPC_CheckCondCode: 2655 Result = !::CheckCondCode(Table, Index, N); 2656 return Index; 2657 case SelectionDAGISel::OPC_CheckChild2CondCode: 2658 Result = !::CheckChild2CondCode(Table, Index, N); 2659 return Index; 2660 case SelectionDAGISel::OPC_CheckValueType: 2661 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2662 SDISel.CurDAG->getDataLayout()); 2663 return Index; 2664 case SelectionDAGISel::OPC_CheckInteger: 2665 Result = !::CheckInteger(Table, Index, N); 2666 return Index; 2667 case SelectionDAGISel::OPC_CheckChild0Integer: 2668 case SelectionDAGISel::OPC_CheckChild1Integer: 2669 case SelectionDAGISel::OPC_CheckChild2Integer: 2670 case SelectionDAGISel::OPC_CheckChild3Integer: 2671 case SelectionDAGISel::OPC_CheckChild4Integer: 2672 Result = !::CheckChildInteger(Table, Index, N, 2673 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2674 return Index; 2675 case SelectionDAGISel::OPC_CheckAndImm: 2676 Result = !::CheckAndImm(Table, Index, N, SDISel); 2677 return Index; 2678 case SelectionDAGISel::OPC_CheckOrImm: 2679 Result = !::CheckOrImm(Table, Index, N, SDISel); 2680 return Index; 2681 } 2682 } 2683 2684 namespace { 2685 2686 struct MatchScope { 2687 /// FailIndex - If this match fails, this is the index to continue with. 2688 unsigned FailIndex; 2689 2690 /// NodeStack - The node stack when the scope was formed. 2691 SmallVector<SDValue, 4> NodeStack; 2692 2693 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2694 unsigned NumRecordedNodes; 2695 2696 /// NumMatchedMemRefs - The number of matched memref entries. 2697 unsigned NumMatchedMemRefs; 2698 2699 /// InputChain/InputGlue - The current chain/glue 2700 SDValue InputChain, InputGlue; 2701 2702 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2703 bool HasChainNodesMatched; 2704 }; 2705 2706 /// \A DAG update listener to keep the matching state 2707 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2708 /// change the DAG while matching. X86 addressing mode matcher is an example 2709 /// for this. 2710 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2711 { 2712 SDNode **NodeToMatch; 2713 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2714 SmallVectorImpl<MatchScope> &MatchScopes; 2715 2716 public: 2717 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2718 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2719 SmallVectorImpl<MatchScope> &MS) 2720 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2721 RecordedNodes(RN), MatchScopes(MS) {} 2722 2723 void NodeDeleted(SDNode *N, SDNode *E) override { 2724 // Some early-returns here to avoid the search if we deleted the node or 2725 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2726 // do, so it's unnecessary to update matching state at that point). 2727 // Neither of these can occur currently because we only install this 2728 // update listener during matching a complex patterns. 2729 if (!E || E->isMachineOpcode()) 2730 return; 2731 // Check if NodeToMatch was updated. 2732 if (N == *NodeToMatch) 2733 *NodeToMatch = E; 2734 // Performing linear search here does not matter because we almost never 2735 // run this code. You'd have to have a CSE during complex pattern 2736 // matching. 2737 for (auto &I : RecordedNodes) 2738 if (I.first.getNode() == N) 2739 I.first.setNode(E); 2740 2741 for (auto &I : MatchScopes) 2742 for (auto &J : I.NodeStack) 2743 if (J.getNode() == N) 2744 J.setNode(E); 2745 } 2746 }; 2747 2748 } // end anonymous namespace 2749 2750 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2751 const unsigned char *MatcherTable, 2752 unsigned TableSize) { 2753 // FIXME: Should these even be selected? Handle these cases in the caller? 2754 switch (NodeToMatch->getOpcode()) { 2755 default: 2756 break; 2757 case ISD::EntryToken: // These nodes remain the same. 2758 case ISD::BasicBlock: 2759 case ISD::Register: 2760 case ISD::RegisterMask: 2761 case ISD::HANDLENODE: 2762 case ISD::MDNODE_SDNODE: 2763 case ISD::TargetConstant: 2764 case ISD::TargetConstantFP: 2765 case ISD::TargetConstantPool: 2766 case ISD::TargetFrameIndex: 2767 case ISD::TargetExternalSymbol: 2768 case ISD::MCSymbol: 2769 case ISD::TargetBlockAddress: 2770 case ISD::TargetJumpTable: 2771 case ISD::TargetGlobalTLSAddress: 2772 case ISD::TargetGlobalAddress: 2773 case ISD::TokenFactor: 2774 case ISD::CopyFromReg: 2775 case ISD::CopyToReg: 2776 case ISD::EH_LABEL: 2777 case ISD::ANNOTATION_LABEL: 2778 case ISD::LIFETIME_START: 2779 case ISD::LIFETIME_END: 2780 NodeToMatch->setNodeId(-1); // Mark selected. 2781 return; 2782 case ISD::AssertSext: 2783 case ISD::AssertZext: 2784 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2785 CurDAG->RemoveDeadNode(NodeToMatch); 2786 return; 2787 case ISD::INLINEASM: 2788 case ISD::INLINEASM_BR: 2789 Select_INLINEASM(NodeToMatch, 2790 NodeToMatch->getOpcode() == ISD::INLINEASM_BR); 2791 return; 2792 case ISD::READ_REGISTER: 2793 Select_READ_REGISTER(NodeToMatch); 2794 return; 2795 case ISD::WRITE_REGISTER: 2796 Select_WRITE_REGISTER(NodeToMatch); 2797 return; 2798 case ISD::UNDEF: 2799 Select_UNDEF(NodeToMatch); 2800 return; 2801 } 2802 2803 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2804 2805 // Set up the node stack with NodeToMatch as the only node on the stack. 2806 SmallVector<SDValue, 8> NodeStack; 2807 SDValue N = SDValue(NodeToMatch, 0); 2808 NodeStack.push_back(N); 2809 2810 // MatchScopes - Scopes used when matching, if a match failure happens, this 2811 // indicates where to continue checking. 2812 SmallVector<MatchScope, 8> MatchScopes; 2813 2814 // RecordedNodes - This is the set of nodes that have been recorded by the 2815 // state machine. The second value is the parent of the node, or null if the 2816 // root is recorded. 2817 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2818 2819 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2820 // pattern. 2821 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2822 2823 // These are the current input chain and glue for use when generating nodes. 2824 // Various Emit operations change these. For example, emitting a copytoreg 2825 // uses and updates these. 2826 SDValue InputChain, InputGlue; 2827 2828 // ChainNodesMatched - If a pattern matches nodes that have input/output 2829 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2830 // which ones they are. The result is captured into this list so that we can 2831 // update the chain results when the pattern is complete. 2832 SmallVector<SDNode*, 3> ChainNodesMatched; 2833 2834 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2835 2836 // Determine where to start the interpreter. Normally we start at opcode #0, 2837 // but if the state machine starts with an OPC_SwitchOpcode, then we 2838 // accelerate the first lookup (which is guaranteed to be hot) with the 2839 // OpcodeOffset table. 2840 unsigned MatcherIndex = 0; 2841 2842 if (!OpcodeOffset.empty()) { 2843 // Already computed the OpcodeOffset table, just index into it. 2844 if (N.getOpcode() < OpcodeOffset.size()) 2845 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2846 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2847 2848 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2849 // Otherwise, the table isn't computed, but the state machine does start 2850 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2851 // is the first time we're selecting an instruction. 2852 unsigned Idx = 1; 2853 while (true) { 2854 // Get the size of this case. 2855 unsigned CaseSize = MatcherTable[Idx++]; 2856 if (CaseSize & 128) 2857 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2858 if (CaseSize == 0) break; 2859 2860 // Get the opcode, add the index to the table. 2861 uint16_t Opc = MatcherTable[Idx++]; 2862 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2863 if (Opc >= OpcodeOffset.size()) 2864 OpcodeOffset.resize((Opc+1)*2); 2865 OpcodeOffset[Opc] = Idx; 2866 Idx += CaseSize; 2867 } 2868 2869 // Okay, do the lookup for the first opcode. 2870 if (N.getOpcode() < OpcodeOffset.size()) 2871 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2872 } 2873 2874 while (true) { 2875 assert(MatcherIndex < TableSize && "Invalid index"); 2876 #ifndef NDEBUG 2877 unsigned CurrentOpcodeIndex = MatcherIndex; 2878 #endif 2879 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2880 switch (Opcode) { 2881 case OPC_Scope: { 2882 // Okay, the semantics of this operation are that we should push a scope 2883 // then evaluate the first child. However, pushing a scope only to have 2884 // the first check fail (which then pops it) is inefficient. If we can 2885 // determine immediately that the first check (or first several) will 2886 // immediately fail, don't even bother pushing a scope for them. 2887 unsigned FailIndex; 2888 2889 while (true) { 2890 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2891 if (NumToSkip & 128) 2892 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2893 // Found the end of the scope with no match. 2894 if (NumToSkip == 0) { 2895 FailIndex = 0; 2896 break; 2897 } 2898 2899 FailIndex = MatcherIndex+NumToSkip; 2900 2901 unsigned MatcherIndexOfPredicate = MatcherIndex; 2902 (void)MatcherIndexOfPredicate; // silence warning. 2903 2904 // If we can't evaluate this predicate without pushing a scope (e.g. if 2905 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2906 // push the scope and evaluate the full predicate chain. 2907 bool Result; 2908 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2909 Result, *this, RecordedNodes); 2910 if (!Result) 2911 break; 2912 2913 LLVM_DEBUG( 2914 dbgs() << " Skipped scope entry (due to false predicate) at " 2915 << "index " << MatcherIndexOfPredicate << ", continuing at " 2916 << FailIndex << "\n"); 2917 ++NumDAGIselRetries; 2918 2919 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2920 // move to the next case. 2921 MatcherIndex = FailIndex; 2922 } 2923 2924 // If the whole scope failed to match, bail. 2925 if (FailIndex == 0) break; 2926 2927 // Push a MatchScope which indicates where to go if the first child fails 2928 // to match. 2929 MatchScope NewEntry; 2930 NewEntry.FailIndex = FailIndex; 2931 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2932 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2933 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2934 NewEntry.InputChain = InputChain; 2935 NewEntry.InputGlue = InputGlue; 2936 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2937 MatchScopes.push_back(NewEntry); 2938 continue; 2939 } 2940 case OPC_RecordNode: { 2941 // Remember this node, it may end up being an operand in the pattern. 2942 SDNode *Parent = nullptr; 2943 if (NodeStack.size() > 1) 2944 Parent = NodeStack[NodeStack.size()-2].getNode(); 2945 RecordedNodes.push_back(std::make_pair(N, Parent)); 2946 continue; 2947 } 2948 2949 case OPC_RecordChild0: case OPC_RecordChild1: 2950 case OPC_RecordChild2: case OPC_RecordChild3: 2951 case OPC_RecordChild4: case OPC_RecordChild5: 2952 case OPC_RecordChild6: case OPC_RecordChild7: { 2953 unsigned ChildNo = Opcode-OPC_RecordChild0; 2954 if (ChildNo >= N.getNumOperands()) 2955 break; // Match fails if out of range child #. 2956 2957 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2958 N.getNode())); 2959 continue; 2960 } 2961 case OPC_RecordMemRef: 2962 if (auto *MN = dyn_cast<MemSDNode>(N)) 2963 MatchedMemRefs.push_back(MN->getMemOperand()); 2964 else { 2965 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 2966 dbgs() << '\n'); 2967 } 2968 2969 continue; 2970 2971 case OPC_CaptureGlueInput: 2972 // If the current node has an input glue, capture it in InputGlue. 2973 if (N->getNumOperands() != 0 && 2974 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2975 InputGlue = N->getOperand(N->getNumOperands()-1); 2976 continue; 2977 2978 case OPC_MoveChild: { 2979 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2980 if (ChildNo >= N.getNumOperands()) 2981 break; // Match fails if out of range child #. 2982 N = N.getOperand(ChildNo); 2983 NodeStack.push_back(N); 2984 continue; 2985 } 2986 2987 case OPC_MoveChild0: case OPC_MoveChild1: 2988 case OPC_MoveChild2: case OPC_MoveChild3: 2989 case OPC_MoveChild4: case OPC_MoveChild5: 2990 case OPC_MoveChild6: case OPC_MoveChild7: { 2991 unsigned ChildNo = Opcode-OPC_MoveChild0; 2992 if (ChildNo >= N.getNumOperands()) 2993 break; // Match fails if out of range child #. 2994 N = N.getOperand(ChildNo); 2995 NodeStack.push_back(N); 2996 continue; 2997 } 2998 2999 case OPC_MoveParent: 3000 // Pop the current node off the NodeStack. 3001 NodeStack.pop_back(); 3002 assert(!NodeStack.empty() && "Node stack imbalance!"); 3003 N = NodeStack.back(); 3004 continue; 3005 3006 case OPC_CheckSame: 3007 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 3008 continue; 3009 3010 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3011 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3012 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3013 Opcode-OPC_CheckChild0Same)) 3014 break; 3015 continue; 3016 3017 case OPC_CheckPatternPredicate: 3018 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3019 continue; 3020 case OPC_CheckPredicate: 3021 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3022 N.getNode())) 3023 break; 3024 continue; 3025 case OPC_CheckPredicateWithOperands: { 3026 unsigned OpNum = MatcherTable[MatcherIndex++]; 3027 SmallVector<SDValue, 8> Operands; 3028 3029 for (unsigned i = 0; i < OpNum; ++i) 3030 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3031 3032 unsigned PredNo = MatcherTable[MatcherIndex++]; 3033 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3034 break; 3035 continue; 3036 } 3037 case OPC_CheckComplexPat: { 3038 unsigned CPNum = MatcherTable[MatcherIndex++]; 3039 unsigned RecNo = MatcherTable[MatcherIndex++]; 3040 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3041 3042 // If target can modify DAG during matching, keep the matching state 3043 // consistent. 3044 std::unique_ptr<MatchStateUpdater> MSU; 3045 if (ComplexPatternFuncMutatesDAG()) 3046 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3047 MatchScopes)); 3048 3049 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3050 RecordedNodes[RecNo].first, CPNum, 3051 RecordedNodes)) 3052 break; 3053 continue; 3054 } 3055 case OPC_CheckOpcode: 3056 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3057 continue; 3058 3059 case OPC_CheckType: 3060 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3061 CurDAG->getDataLayout())) 3062 break; 3063 continue; 3064 3065 case OPC_CheckTypeRes: { 3066 unsigned Res = MatcherTable[MatcherIndex++]; 3067 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3068 CurDAG->getDataLayout())) 3069 break; 3070 continue; 3071 } 3072 3073 case OPC_SwitchOpcode: { 3074 unsigned CurNodeOpcode = N.getOpcode(); 3075 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3076 unsigned CaseSize; 3077 while (true) { 3078 // Get the size of this case. 3079 CaseSize = MatcherTable[MatcherIndex++]; 3080 if (CaseSize & 128) 3081 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3082 if (CaseSize == 0) break; 3083 3084 uint16_t Opc = MatcherTable[MatcherIndex++]; 3085 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3086 3087 // If the opcode matches, then we will execute this case. 3088 if (CurNodeOpcode == Opc) 3089 break; 3090 3091 // Otherwise, skip over this case. 3092 MatcherIndex += CaseSize; 3093 } 3094 3095 // If no cases matched, bail out. 3096 if (CaseSize == 0) break; 3097 3098 // Otherwise, execute the case we found. 3099 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3100 << MatcherIndex << "\n"); 3101 continue; 3102 } 3103 3104 case OPC_SwitchType: { 3105 MVT CurNodeVT = N.getSimpleValueType(); 3106 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3107 unsigned CaseSize; 3108 while (true) { 3109 // Get the size of this case. 3110 CaseSize = MatcherTable[MatcherIndex++]; 3111 if (CaseSize & 128) 3112 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3113 if (CaseSize == 0) break; 3114 3115 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3116 if (CaseVT == MVT::iPTR) 3117 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3118 3119 // If the VT matches, then we will execute this case. 3120 if (CurNodeVT == CaseVT) 3121 break; 3122 3123 // Otherwise, skip over this case. 3124 MatcherIndex += CaseSize; 3125 } 3126 3127 // If no cases matched, bail out. 3128 if (CaseSize == 0) break; 3129 3130 // Otherwise, execute the case we found. 3131 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3132 << "] from " << SwitchStart << " to " << MatcherIndex 3133 << '\n'); 3134 continue; 3135 } 3136 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3137 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3138 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3139 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3140 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3141 CurDAG->getDataLayout(), 3142 Opcode - OPC_CheckChild0Type)) 3143 break; 3144 continue; 3145 case OPC_CheckCondCode: 3146 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3147 continue; 3148 case OPC_CheckChild2CondCode: 3149 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3150 continue; 3151 case OPC_CheckValueType: 3152 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3153 CurDAG->getDataLayout())) 3154 break; 3155 continue; 3156 case OPC_CheckInteger: 3157 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3158 continue; 3159 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3160 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3161 case OPC_CheckChild4Integer: 3162 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3163 Opcode-OPC_CheckChild0Integer)) break; 3164 continue; 3165 case OPC_CheckAndImm: 3166 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3167 continue; 3168 case OPC_CheckOrImm: 3169 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3170 continue; 3171 case OPC_CheckImmAllOnesV: 3172 if (!ISD::isBuildVectorAllOnes(N.getNode())) break; 3173 continue; 3174 case OPC_CheckImmAllZerosV: 3175 if (!ISD::isBuildVectorAllZeros(N.getNode())) break; 3176 continue; 3177 3178 case OPC_CheckFoldableChainNode: { 3179 assert(NodeStack.size() != 1 && "No parent node"); 3180 // Verify that all intermediate nodes between the root and this one have 3181 // a single use. 3182 bool HasMultipleUses = false; 3183 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 3184 if (!NodeStack[i].getNode()->hasOneUse()) { 3185 HasMultipleUses = true; 3186 break; 3187 } 3188 if (HasMultipleUses) break; 3189 3190 // Check to see that the target thinks this is profitable to fold and that 3191 // we can fold it without inducing cycles in the graph. 3192 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3193 NodeToMatch) || 3194 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3195 NodeToMatch, OptLevel, 3196 true/*We validate our own chains*/)) 3197 break; 3198 3199 continue; 3200 } 3201 case OPC_EmitInteger: { 3202 MVT::SimpleValueType VT = 3203 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3204 int64_t Val = MatcherTable[MatcherIndex++]; 3205 if (Val & 128) 3206 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3207 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3208 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3209 VT), nullptr)); 3210 continue; 3211 } 3212 case OPC_EmitRegister: { 3213 MVT::SimpleValueType VT = 3214 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3215 unsigned RegNo = MatcherTable[MatcherIndex++]; 3216 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3217 CurDAG->getRegister(RegNo, VT), nullptr)); 3218 continue; 3219 } 3220 case OPC_EmitRegister2: { 3221 // For targets w/ more than 256 register names, the register enum 3222 // values are stored in two bytes in the matcher table (just like 3223 // opcodes). 3224 MVT::SimpleValueType VT = 3225 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3226 unsigned RegNo = MatcherTable[MatcherIndex++]; 3227 RegNo |= MatcherTable[MatcherIndex++] << 8; 3228 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3229 CurDAG->getRegister(RegNo, VT), nullptr)); 3230 continue; 3231 } 3232 3233 case OPC_EmitConvertToTarget: { 3234 // Convert from IMM/FPIMM to target version. 3235 unsigned RecNo = MatcherTable[MatcherIndex++]; 3236 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3237 SDValue Imm = RecordedNodes[RecNo].first; 3238 3239 if (Imm->getOpcode() == ISD::Constant) { 3240 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3241 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3242 Imm.getValueType()); 3243 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3244 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3245 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3246 Imm.getValueType()); 3247 } 3248 3249 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3250 continue; 3251 } 3252 3253 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3254 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3255 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3256 // These are space-optimized forms of OPC_EmitMergeInputChains. 3257 assert(!InputChain.getNode() && 3258 "EmitMergeInputChains should be the first chain producing node"); 3259 assert(ChainNodesMatched.empty() && 3260 "Should only have one EmitMergeInputChains per match"); 3261 3262 // Read all of the chained nodes. 3263 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3264 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3265 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3266 3267 // FIXME: What if other value results of the node have uses not matched 3268 // by this pattern? 3269 if (ChainNodesMatched.back() != NodeToMatch && 3270 !RecordedNodes[RecNo].first.hasOneUse()) { 3271 ChainNodesMatched.clear(); 3272 break; 3273 } 3274 3275 // Merge the input chains if they are not intra-pattern references. 3276 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3277 3278 if (!InputChain.getNode()) 3279 break; // Failed to merge. 3280 continue; 3281 } 3282 3283 case OPC_EmitMergeInputChains: { 3284 assert(!InputChain.getNode() && 3285 "EmitMergeInputChains should be the first chain producing node"); 3286 // This node gets a list of nodes we matched in the input that have 3287 // chains. We want to token factor all of the input chains to these nodes 3288 // together. However, if any of the input chains is actually one of the 3289 // nodes matched in this pattern, then we have an intra-match reference. 3290 // Ignore these because the newly token factored chain should not refer to 3291 // the old nodes. 3292 unsigned NumChains = MatcherTable[MatcherIndex++]; 3293 assert(NumChains != 0 && "Can't TF zero chains"); 3294 3295 assert(ChainNodesMatched.empty() && 3296 "Should only have one EmitMergeInputChains per match"); 3297 3298 // Read all of the chained nodes. 3299 for (unsigned i = 0; i != NumChains; ++i) { 3300 unsigned RecNo = MatcherTable[MatcherIndex++]; 3301 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3302 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3303 3304 // FIXME: What if other value results of the node have uses not matched 3305 // by this pattern? 3306 if (ChainNodesMatched.back() != NodeToMatch && 3307 !RecordedNodes[RecNo].first.hasOneUse()) { 3308 ChainNodesMatched.clear(); 3309 break; 3310 } 3311 } 3312 3313 // If the inner loop broke out, the match fails. 3314 if (ChainNodesMatched.empty()) 3315 break; 3316 3317 // Merge the input chains if they are not intra-pattern references. 3318 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3319 3320 if (!InputChain.getNode()) 3321 break; // Failed to merge. 3322 3323 continue; 3324 } 3325 3326 case OPC_EmitCopyToReg: { 3327 unsigned RecNo = MatcherTable[MatcherIndex++]; 3328 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3329 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3330 3331 if (!InputChain.getNode()) 3332 InputChain = CurDAG->getEntryNode(); 3333 3334 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3335 DestPhysReg, RecordedNodes[RecNo].first, 3336 InputGlue); 3337 3338 InputGlue = InputChain.getValue(1); 3339 continue; 3340 } 3341 3342 case OPC_EmitNodeXForm: { 3343 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3344 unsigned RecNo = MatcherTable[MatcherIndex++]; 3345 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3346 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3347 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3348 continue; 3349 } 3350 case OPC_Coverage: { 3351 // This is emitted right before MorphNode/EmitNode. 3352 // So it should be safe to assume that this node has been selected 3353 unsigned index = MatcherTable[MatcherIndex++]; 3354 index |= (MatcherTable[MatcherIndex++] << 8); 3355 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3356 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3357 continue; 3358 } 3359 3360 case OPC_EmitNode: case OPC_MorphNodeTo: 3361 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3362 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3363 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3364 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3365 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3366 // Get the result VT list. 3367 unsigned NumVTs; 3368 // If this is one of the compressed forms, get the number of VTs based 3369 // on the Opcode. Otherwise read the next byte from the table. 3370 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3371 NumVTs = Opcode - OPC_MorphNodeTo0; 3372 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3373 NumVTs = Opcode - OPC_EmitNode0; 3374 else 3375 NumVTs = MatcherTable[MatcherIndex++]; 3376 SmallVector<EVT, 4> VTs; 3377 for (unsigned i = 0; i != NumVTs; ++i) { 3378 MVT::SimpleValueType VT = 3379 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3380 if (VT == MVT::iPTR) 3381 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3382 VTs.push_back(VT); 3383 } 3384 3385 if (EmitNodeInfo & OPFL_Chain) 3386 VTs.push_back(MVT::Other); 3387 if (EmitNodeInfo & OPFL_GlueOutput) 3388 VTs.push_back(MVT::Glue); 3389 3390 // This is hot code, so optimize the two most common cases of 1 and 2 3391 // results. 3392 SDVTList VTList; 3393 if (VTs.size() == 1) 3394 VTList = CurDAG->getVTList(VTs[0]); 3395 else if (VTs.size() == 2) 3396 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3397 else 3398 VTList = CurDAG->getVTList(VTs); 3399 3400 // Get the operand list. 3401 unsigned NumOps = MatcherTable[MatcherIndex++]; 3402 SmallVector<SDValue, 8> Ops; 3403 for (unsigned i = 0; i != NumOps; ++i) { 3404 unsigned RecNo = MatcherTable[MatcherIndex++]; 3405 if (RecNo & 128) 3406 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3407 3408 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3409 Ops.push_back(RecordedNodes[RecNo].first); 3410 } 3411 3412 // If there are variadic operands to add, handle them now. 3413 if (EmitNodeInfo & OPFL_VariadicInfo) { 3414 // Determine the start index to copy from. 3415 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3416 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3417 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3418 "Invalid variadic node"); 3419 // Copy all of the variadic operands, not including a potential glue 3420 // input. 3421 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3422 i != e; ++i) { 3423 SDValue V = NodeToMatch->getOperand(i); 3424 if (V.getValueType() == MVT::Glue) break; 3425 Ops.push_back(V); 3426 } 3427 } 3428 3429 // If this has chain/glue inputs, add them. 3430 if (EmitNodeInfo & OPFL_Chain) 3431 Ops.push_back(InputChain); 3432 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3433 Ops.push_back(InputGlue); 3434 3435 // Create the node. 3436 MachineSDNode *Res = nullptr; 3437 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3438 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3439 if (!IsMorphNodeTo) { 3440 // If this is a normal EmitNode command, just create the new node and 3441 // add the results to the RecordedNodes list. 3442 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3443 VTList, Ops); 3444 3445 // Add all the non-glue/non-chain results to the RecordedNodes list. 3446 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3447 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3448 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3449 nullptr)); 3450 } 3451 } else { 3452 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3453 "NodeToMatch was removed partway through selection"); 3454 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3455 SDNode *E) { 3456 CurDAG->salvageDebugInfo(*N); 3457 auto &Chain = ChainNodesMatched; 3458 assert((!E || !is_contained(Chain, N)) && 3459 "Chain node replaced during MorphNode"); 3460 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); 3461 }); 3462 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3463 Ops, EmitNodeInfo)); 3464 } 3465 3466 // If the node had chain/glue results, update our notion of the current 3467 // chain and glue. 3468 if (EmitNodeInfo & OPFL_GlueOutput) { 3469 InputGlue = SDValue(Res, VTs.size()-1); 3470 if (EmitNodeInfo & OPFL_Chain) 3471 InputChain = SDValue(Res, VTs.size()-2); 3472 } else if (EmitNodeInfo & OPFL_Chain) 3473 InputChain = SDValue(Res, VTs.size()-1); 3474 3475 // If the OPFL_MemRefs glue is set on this node, slap all of the 3476 // accumulated memrefs onto it. 3477 // 3478 // FIXME: This is vastly incorrect for patterns with multiple outputs 3479 // instructions that access memory and for ComplexPatterns that match 3480 // loads. 3481 if (EmitNodeInfo & OPFL_MemRefs) { 3482 // Only attach load or store memory operands if the generated 3483 // instruction may load or store. 3484 const MCInstrDesc &MCID = TII->get(TargetOpc); 3485 bool mayLoad = MCID.mayLoad(); 3486 bool mayStore = MCID.mayStore(); 3487 3488 // We expect to have relatively few of these so just filter them into a 3489 // temporary buffer so that we can easily add them to the instruction. 3490 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3491 for (MachineMemOperand *MMO : MatchedMemRefs) { 3492 if (MMO->isLoad()) { 3493 if (mayLoad) 3494 FilteredMemRefs.push_back(MMO); 3495 } else if (MMO->isStore()) { 3496 if (mayStore) 3497 FilteredMemRefs.push_back(MMO); 3498 } else { 3499 FilteredMemRefs.push_back(MMO); 3500 } 3501 } 3502 3503 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3504 } 3505 3506 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3507 << " Dropping mem operands\n"; 3508 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3509 << " node: "; 3510 Res->dump(CurDAG);); 3511 3512 // If this was a MorphNodeTo then we're completely done! 3513 if (IsMorphNodeTo) { 3514 // Update chain uses. 3515 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3516 return; 3517 } 3518 continue; 3519 } 3520 3521 case OPC_CompleteMatch: { 3522 // The match has been completed, and any new nodes (if any) have been 3523 // created. Patch up references to the matched dag to use the newly 3524 // created nodes. 3525 unsigned NumResults = MatcherTable[MatcherIndex++]; 3526 3527 for (unsigned i = 0; i != NumResults; ++i) { 3528 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3529 if (ResSlot & 128) 3530 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3531 3532 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3533 SDValue Res = RecordedNodes[ResSlot].first; 3534 3535 assert(i < NodeToMatch->getNumValues() && 3536 NodeToMatch->getValueType(i) != MVT::Other && 3537 NodeToMatch->getValueType(i) != MVT::Glue && 3538 "Invalid number of results to complete!"); 3539 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3540 NodeToMatch->getValueType(i) == MVT::iPTR || 3541 Res.getValueType() == MVT::iPTR || 3542 NodeToMatch->getValueType(i).getSizeInBits() == 3543 Res.getValueSizeInBits()) && 3544 "invalid replacement"); 3545 ReplaceUses(SDValue(NodeToMatch, i), Res); 3546 } 3547 3548 // Update chain uses. 3549 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3550 3551 // If the root node defines glue, we need to update it to the glue result. 3552 // TODO: This never happens in our tests and I think it can be removed / 3553 // replaced with an assert, but if we do it this the way the change is 3554 // NFC. 3555 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3556 MVT::Glue && 3557 InputGlue.getNode()) 3558 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3559 InputGlue); 3560 3561 assert(NodeToMatch->use_empty() && 3562 "Didn't replace all uses of the node?"); 3563 CurDAG->RemoveDeadNode(NodeToMatch); 3564 3565 return; 3566 } 3567 } 3568 3569 // If the code reached this point, then the match failed. See if there is 3570 // another child to try in the current 'Scope', otherwise pop it until we 3571 // find a case to check. 3572 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3573 << "\n"); 3574 ++NumDAGIselRetries; 3575 while (true) { 3576 if (MatchScopes.empty()) { 3577 CannotYetSelect(NodeToMatch); 3578 return; 3579 } 3580 3581 // Restore the interpreter state back to the point where the scope was 3582 // formed. 3583 MatchScope &LastScope = MatchScopes.back(); 3584 RecordedNodes.resize(LastScope.NumRecordedNodes); 3585 NodeStack.clear(); 3586 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3587 N = NodeStack.back(); 3588 3589 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3590 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3591 MatcherIndex = LastScope.FailIndex; 3592 3593 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3594 3595 InputChain = LastScope.InputChain; 3596 InputGlue = LastScope.InputGlue; 3597 if (!LastScope.HasChainNodesMatched) 3598 ChainNodesMatched.clear(); 3599 3600 // Check to see what the offset is at the new MatcherIndex. If it is zero 3601 // we have reached the end of this scope, otherwise we have another child 3602 // in the current scope to try. 3603 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3604 if (NumToSkip & 128) 3605 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3606 3607 // If we have another child in this scope to match, update FailIndex and 3608 // try it. 3609 if (NumToSkip != 0) { 3610 LastScope.FailIndex = MatcherIndex+NumToSkip; 3611 break; 3612 } 3613 3614 // End of this scope, pop it and try the next child in the containing 3615 // scope. 3616 MatchScopes.pop_back(); 3617 } 3618 } 3619 } 3620 3621 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3622 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3623 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3624 if (!C) 3625 return false; 3626 3627 // Detect when "or" is used to add an offset to a stack object. 3628 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3629 MachineFrameInfo &MFI = MF->getFrameInfo(); 3630 unsigned A = MFI.getObjectAlignment(FN->getIndex()); 3631 assert(isPowerOf2_32(A) && "Unexpected alignment"); 3632 int32_t Off = C->getSExtValue(); 3633 // If the alleged offset fits in the zero bits guaranteed by 3634 // the alignment, then this or is really an add. 3635 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off)); 3636 } 3637 return false; 3638 } 3639 3640 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3641 std::string msg; 3642 raw_string_ostream Msg(msg); 3643 Msg << "Cannot select: "; 3644 3645 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3646 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3647 N->getOpcode() != ISD::INTRINSIC_VOID) { 3648 N->printrFull(Msg, CurDAG); 3649 Msg << "\nIn function: " << MF->getName(); 3650 } else { 3651 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3652 unsigned iid = 3653 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3654 if (iid < Intrinsic::num_intrinsics) 3655 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); 3656 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3657 Msg << "target intrinsic %" << TII->getName(iid); 3658 else 3659 Msg << "unknown intrinsic #" << iid; 3660 } 3661 report_fatal_error(Msg.str()); 3662 } 3663 3664 char SelectionDAGISel::ID = 0; 3665