xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InlineAsm.h"
70 #include "llvm/IR/InstIterator.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Type.h"
79 #include "llvm/IR/User.h"
80 #include "llvm/IR/Value.h"
81 #include "llvm/InitializePasses.h"
82 #include "llvm/MC/MCInstrDesc.h"
83 #include "llvm/MC/MCRegisterInfo.h"
84 #include "llvm/Pass.h"
85 #include "llvm/Support/BranchProbability.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/CodeGen.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Compiler.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/ErrorHandling.h"
92 #include "llvm/Support/KnownBits.h"
93 #include "llvm/Support/MachineValueType.h"
94 #include "llvm/Support/Timer.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <iterator>
104 #include <limits>
105 #include <memory>
106 #include <string>
107 #include <utility>
108 #include <vector>
109 
110 using namespace llvm;
111 
112 #define DEBUG_TYPE "isel"
113 
114 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
115 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
116 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
117 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
118 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
119 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
120 STATISTIC(NumFastIselFailLowerArguments,
121           "Number of entry blocks where fast isel failed to lower arguments");
122 
123 static cl::opt<int> EnableFastISelAbort(
124     "fast-isel-abort", cl::Hidden,
125     cl::desc("Enable abort calls when \"fast\" instruction selection "
126              "fails to lower an instruction: 0 disable the abort, 1 will "
127              "abort but for args, calls and terminators, 2 will also "
128              "abort for argument lowering, and 3 will never fallback "
129              "to SelectionDAG."));
130 
131 static cl::opt<bool> EnableFastISelFallbackReport(
132     "fast-isel-report-on-fallback", cl::Hidden,
133     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
134              "falls back to SelectionDAG."));
135 
136 static cl::opt<bool>
137 UseMBPI("use-mbpi",
138         cl::desc("use Machine Branch Probability Info"),
139         cl::init(true), cl::Hidden);
140 
141 #ifndef NDEBUG
142 static cl::opt<std::string>
143 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
144                         cl::desc("Only display the basic block whose name "
145                                  "matches this for all view-*-dags options"));
146 static cl::opt<bool>
147 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
148           cl::desc("Pop up a window to show dags before the first "
149                    "dag combine pass"));
150 static cl::opt<bool>
151 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
152           cl::desc("Pop up a window to show dags before legalize types"));
153 static cl::opt<bool>
154     ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
155                      cl::desc("Pop up a window to show dags before the post "
156                               "legalize types dag combine pass"));
157 static cl::opt<bool>
158     ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
159                      cl::desc("Pop up a window to show dags before legalize"));
160 static cl::opt<bool>
161 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
162           cl::desc("Pop up a window to show dags before the second "
163                    "dag combine pass"));
164 static cl::opt<bool>
165 ViewISelDAGs("view-isel-dags", cl::Hidden,
166           cl::desc("Pop up a window to show isel dags as they are selected"));
167 static cl::opt<bool>
168 ViewSchedDAGs("view-sched-dags", cl::Hidden,
169           cl::desc("Pop up a window to show sched dags as they are processed"));
170 static cl::opt<bool>
171 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
172       cl::desc("Pop up a window to show SUnit dags after they are processed"));
173 #else
174 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
175                   ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
176                   ViewDAGCombine2 = false, ViewISelDAGs = false,
177                   ViewSchedDAGs = false, ViewSUnitDAGs = false;
178 #endif
179 
180 //===---------------------------------------------------------------------===//
181 ///
182 /// RegisterScheduler class - Track the registration of instruction schedulers.
183 ///
184 //===---------------------------------------------------------------------===//
185 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
186     RegisterScheduler::Registry;
187 
188 //===---------------------------------------------------------------------===//
189 ///
190 /// ISHeuristic command line option for instruction schedulers.
191 ///
192 //===---------------------------------------------------------------------===//
193 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
194                RegisterPassParser<RegisterScheduler>>
195 ISHeuristic("pre-RA-sched",
196             cl::init(&createDefaultScheduler), cl::Hidden,
197             cl::desc("Instruction schedulers available (before register"
198                      " allocation):"));
199 
200 static RegisterScheduler
201 defaultListDAGScheduler("default", "Best scheduler for the target",
202                         createDefaultScheduler);
203 
204 namespace llvm {
205 
206   //===--------------------------------------------------------------------===//
207   /// This class is used by SelectionDAGISel to temporarily override
208   /// the optimization level on a per-function basis.
209   class OptLevelChanger {
210     SelectionDAGISel &IS;
211     CodeGenOpt::Level SavedOptLevel;
212     bool SavedFastISel;
213 
214   public:
215     OptLevelChanger(SelectionDAGISel &ISel,
216                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
217       SavedOptLevel = IS.OptLevel;
218       SavedFastISel = IS.TM.Options.EnableFastISel;
219       if (NewOptLevel == SavedOptLevel)
220         return;
221       IS.OptLevel = NewOptLevel;
222       IS.TM.setOptLevel(NewOptLevel);
223       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
224                         << IS.MF->getFunction().getName() << "\n");
225       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
226                         << NewOptLevel << "\n");
227       if (NewOptLevel == CodeGenOpt::None) {
228         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
229         LLVM_DEBUG(
230             dbgs() << "\tFastISel is "
231                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
232                    << "\n");
233       }
234     }
235 
236     ~OptLevelChanger() {
237       if (IS.OptLevel == SavedOptLevel)
238         return;
239       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
240                         << IS.MF->getFunction().getName() << "\n");
241       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
242                         << SavedOptLevel << "\n");
243       IS.OptLevel = SavedOptLevel;
244       IS.TM.setOptLevel(SavedOptLevel);
245       IS.TM.setFastISel(SavedFastISel);
246     }
247   };
248 
249   //===--------------------------------------------------------------------===//
250   /// createDefaultScheduler - This creates an instruction scheduler appropriate
251   /// for the target.
252   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
253                                              CodeGenOpt::Level OptLevel) {
254     const TargetLowering *TLI = IS->TLI;
255     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
256 
257     // Try first to see if the Target has its own way of selecting a scheduler
258     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
259       return SchedulerCtor(IS, OptLevel);
260     }
261 
262     if (OptLevel == CodeGenOpt::None ||
263         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
264         TLI->getSchedulingPreference() == Sched::Source)
265       return createSourceListDAGScheduler(IS, OptLevel);
266     if (TLI->getSchedulingPreference() == Sched::RegPressure)
267       return createBURRListDAGScheduler(IS, OptLevel);
268     if (TLI->getSchedulingPreference() == Sched::Hybrid)
269       return createHybridListDAGScheduler(IS, OptLevel);
270     if (TLI->getSchedulingPreference() == Sched::VLIW)
271       return createVLIWDAGScheduler(IS, OptLevel);
272     assert(TLI->getSchedulingPreference() == Sched::ILP &&
273            "Unknown sched type!");
274     return createILPListDAGScheduler(IS, OptLevel);
275   }
276 
277 } // end namespace llvm
278 
279 // EmitInstrWithCustomInserter - This method should be implemented by targets
280 // that mark instructions with the 'usesCustomInserter' flag.  These
281 // instructions are special in various ways, which require special support to
282 // insert.  The specified MachineInstr is created but not inserted into any
283 // basic blocks, and this method is called to expand it into a sequence of
284 // instructions, potentially also creating new basic blocks and control flow.
285 // When new basic blocks are inserted and the edges from MBB to its successors
286 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
287 // DenseMap.
288 MachineBasicBlock *
289 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
290                                             MachineBasicBlock *MBB) const {
291 #ifndef NDEBUG
292   dbgs() << "If a target marks an instruction with "
293           "'usesCustomInserter', it must implement "
294           "TargetLowering::EmitInstrWithCustomInserter!";
295 #endif
296   llvm_unreachable(nullptr);
297 }
298 
299 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
300                                                    SDNode *Node) const {
301   assert(!MI.hasPostISelHook() &&
302          "If a target marks an instruction with 'hasPostISelHook', "
303          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
304 }
305 
306 //===----------------------------------------------------------------------===//
307 // SelectionDAGISel code
308 //===----------------------------------------------------------------------===//
309 
310 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
311     : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
312       SwiftError(new SwiftErrorValueTracking()),
313       CurDAG(new SelectionDAG(tm, OL)),
314       SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
315                                                 OL)),
316       AA(), GFI(), OptLevel(OL), DAGSize(0) {
317   initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
318   initializeBranchProbabilityInfoWrapperPassPass(
319       *PassRegistry::getPassRegistry());
320   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
321   initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
322 }
323 
324 SelectionDAGISel::~SelectionDAGISel() {
325   delete CurDAG;
326   delete SwiftError;
327 }
328 
329 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
330   if (OptLevel != CodeGenOpt::None)
331     AU.addRequired<AAResultsWrapperPass>();
332   AU.addRequired<GCModuleInfo>();
333   AU.addRequired<StackProtector>();
334   AU.addPreserved<GCModuleInfo>();
335   AU.addRequired<TargetLibraryInfoWrapperPass>();
336   AU.addRequired<TargetTransformInfoWrapperPass>();
337   if (UseMBPI && OptLevel != CodeGenOpt::None)
338     AU.addRequired<BranchProbabilityInfoWrapperPass>();
339   AU.addRequired<ProfileSummaryInfoWrapperPass>();
340   if (OptLevel != CodeGenOpt::None)
341     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
342   MachineFunctionPass::getAnalysisUsage(AU);
343 }
344 
345 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
346 /// may trap on it.  In this case we have to split the edge so that the path
347 /// through the predecessor block that doesn't go to the phi block doesn't
348 /// execute the possibly trapping instruction. If available, we pass domtree
349 /// and loop info to be updated when we split critical edges. This is because
350 /// SelectionDAGISel preserves these analyses.
351 /// This is required for correctness, so it must be done at -O0.
352 ///
353 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
354                                          LoopInfo *LI) {
355   // Loop for blocks with phi nodes.
356   for (BasicBlock &BB : Fn) {
357     PHINode *PN = dyn_cast<PHINode>(BB.begin());
358     if (!PN) continue;
359 
360   ReprocessBlock:
361     // For each block with a PHI node, check to see if any of the input values
362     // are potentially trapping constant expressions.  Constant expressions are
363     // the only potentially trapping value that can occur as the argument to a
364     // PHI.
365     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
366       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
367         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
368         if (!CE || !CE->canTrap()) continue;
369 
370         // The only case we have to worry about is when the edge is critical.
371         // Since this block has a PHI Node, we assume it has multiple input
372         // edges: check to see if the pred has multiple successors.
373         BasicBlock *Pred = PN->getIncomingBlock(i);
374         if (Pred->getTerminator()->getNumSuccessors() == 1)
375           continue;
376 
377         // Okay, we have to split this edge.
378         SplitCriticalEdge(
379             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
380             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
381         goto ReprocessBlock;
382       }
383   }
384 }
385 
386 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
387                                          MachineModuleInfo &MMI) {
388   // Only needed for MSVC
389   if (!TT.isWindowsMSVCEnvironment())
390     return;
391 
392   // If it's already set, nothing to do.
393   if (MMI.usesMSVCFloatingPoint())
394     return;
395 
396   for (const Instruction &I : instructions(F)) {
397     if (I.getType()->isFPOrFPVectorTy()) {
398       MMI.setUsesMSVCFloatingPoint(true);
399       return;
400     }
401     for (const auto &Op : I.operands()) {
402       if (Op->getType()->isFPOrFPVectorTy()) {
403         MMI.setUsesMSVCFloatingPoint(true);
404         return;
405       }
406     }
407   }
408 }
409 
410 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
411   // If we already selected that function, we do not need to run SDISel.
412   if (mf.getProperties().hasProperty(
413           MachineFunctionProperties::Property::Selected))
414     return false;
415   // Do some sanity-checking on the command-line options.
416   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
417          "-fast-isel-abort > 0 requires -fast-isel");
418 
419   const Function &Fn = mf.getFunction();
420   MF = &mf;
421 
422   // Reset the target options before resetting the optimization
423   // level below.
424   // FIXME: This is a horrible hack and should be processed via
425   // codegen looking at the optimization level explicitly when
426   // it wants to look at it.
427   TM.resetTargetOptions(Fn);
428   // Reset OptLevel to None for optnone functions.
429   CodeGenOpt::Level NewOptLevel = OptLevel;
430   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
431     NewOptLevel = CodeGenOpt::None;
432   OptLevelChanger OLC(*this, NewOptLevel);
433 
434   TII = MF->getSubtarget().getInstrInfo();
435   TLI = MF->getSubtarget().getTargetLowering();
436   RegInfo = &MF->getRegInfo();
437   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
438   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
439   ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
440   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
441   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
442   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
443   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
444   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
445   BlockFrequencyInfo *BFI = nullptr;
446   if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
447     BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
448 
449   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
450 
451   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
452 
453   CurDAG->init(*MF, *ORE, this, LibInfo,
454                getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
455   FuncInfo->set(Fn, *MF, CurDAG);
456   SwiftError->setFunction(*MF);
457 
458   // Now get the optional analyzes if we want to.
459   // This is based on the possibly changed OptLevel (after optnone is taken
460   // into account).  That's unfortunate but OK because it just means we won't
461   // ask for passes that have been required anyway.
462 
463   if (UseMBPI && OptLevel != CodeGenOpt::None)
464     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
465   else
466     FuncInfo->BPI = nullptr;
467 
468   if (OptLevel != CodeGenOpt::None)
469     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
470   else
471     AA = nullptr;
472 
473   SDB->init(GFI, AA, LibInfo);
474 
475   MF->setHasInlineAsm(false);
476 
477   FuncInfo->SplitCSR = false;
478 
479   // We split CSR if the target supports it for the given function
480   // and the function has only return exits.
481   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
482     FuncInfo->SplitCSR = true;
483 
484     // Collect all the return blocks.
485     for (const BasicBlock &BB : Fn) {
486       if (!succ_empty(&BB))
487         continue;
488 
489       const Instruction *Term = BB.getTerminator();
490       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
491         continue;
492 
493       // Bail out if the exit block is not Return nor Unreachable.
494       FuncInfo->SplitCSR = false;
495       break;
496     }
497   }
498 
499   MachineBasicBlock *EntryMBB = &MF->front();
500   if (FuncInfo->SplitCSR)
501     // This performs initialization so lowering for SplitCSR will be correct.
502     TLI->initializeSplitCSR(EntryMBB);
503 
504   SelectAllBasicBlocks(Fn);
505   if (FastISelFailed && EnableFastISelFallbackReport) {
506     DiagnosticInfoISelFallback DiagFallback(Fn);
507     Fn.getContext().diagnose(DiagFallback);
508   }
509 
510   // Replace forward-declared registers with the registers containing
511   // the desired value.
512   // Note: it is important that this happens **before** the call to
513   // EmitLiveInCopies, since implementations can skip copies of unused
514   // registers. If we don't apply the reg fixups before, some registers may
515   // appear as unused and will be skipped, resulting in bad MI.
516   MachineRegisterInfo &MRI = MF->getRegInfo();
517   for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
518                                               E = FuncInfo->RegFixups.end();
519        I != E; ++I) {
520     Register From = I->first;
521     Register To = I->second;
522     // If To is also scheduled to be replaced, find what its ultimate
523     // replacement is.
524     while (true) {
525       DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
526       if (J == E)
527         break;
528       To = J->second;
529     }
530     // Make sure the new register has a sufficiently constrained register class.
531     if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
532       MRI.constrainRegClass(To, MRI.getRegClass(From));
533     // Replace it.
534 
535     // Replacing one register with another won't touch the kill flags.
536     // We need to conservatively clear the kill flags as a kill on the old
537     // register might dominate existing uses of the new register.
538     if (!MRI.use_empty(To))
539       MRI.clearKillFlags(From);
540     MRI.replaceRegWith(From, To);
541   }
542 
543   // If the first basic block in the function has live ins that need to be
544   // copied into vregs, emit the copies into the top of the block before
545   // emitting the code for the block.
546   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
547   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
548 
549   // Insert copies in the entry block and the return blocks.
550   if (FuncInfo->SplitCSR) {
551     SmallVector<MachineBasicBlock*, 4> Returns;
552     // Collect all the return blocks.
553     for (MachineBasicBlock &MBB : mf) {
554       if (!MBB.succ_empty())
555         continue;
556 
557       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
558       if (Term != MBB.end() && Term->isReturn()) {
559         Returns.push_back(&MBB);
560         continue;
561       }
562     }
563     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
564   }
565 
566   DenseMap<unsigned, unsigned> LiveInMap;
567   if (!FuncInfo->ArgDbgValues.empty())
568     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
569       if (LI.second)
570         LiveInMap.insert(LI);
571 
572   // Insert DBG_VALUE instructions for function arguments to the entry block.
573   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
574     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
575     bool hasFI = MI->getOperand(0).isFI();
576     Register Reg =
577         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
578     if (Register::isPhysicalRegister(Reg))
579       EntryMBB->insert(EntryMBB->begin(), MI);
580     else {
581       MachineInstr *Def = RegInfo->getVRegDef(Reg);
582       if (Def) {
583         MachineBasicBlock::iterator InsertPos = Def;
584         // FIXME: VR def may not be in entry block.
585         Def->getParent()->insert(std::next(InsertPos), MI);
586       } else
587         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
588                           << Register::virtReg2Index(Reg) << "\n");
589     }
590 
591     // If Reg is live-in then update debug info to track its copy in a vreg.
592     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
593     if (LDI != LiveInMap.end()) {
594       assert(!hasFI && "There's no handling of frame pointer updating here yet "
595                        "- add if needed");
596       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
597       MachineBasicBlock::iterator InsertPos = Def;
598       const MDNode *Variable = MI->getDebugVariable();
599       const MDNode *Expr = MI->getDebugExpression();
600       DebugLoc DL = MI->getDebugLoc();
601       bool IsIndirect = MI->isIndirectDebugValue();
602       if (IsIndirect)
603         assert(MI->getOperand(1).getImm() == 0 &&
604                "DBG_VALUE with nonzero offset");
605       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
606              "Expected inlined-at fields to agree");
607       // Def is never a terminator here, so it is ok to increment InsertPos.
608       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
609               IsIndirect, LDI->second, Variable, Expr);
610 
611       // If this vreg is directly copied into an exported register then
612       // that COPY instructions also need DBG_VALUE, if it is the only
613       // user of LDI->second.
614       MachineInstr *CopyUseMI = nullptr;
615       for (MachineRegisterInfo::use_instr_iterator
616            UI = RegInfo->use_instr_begin(LDI->second),
617            E = RegInfo->use_instr_end(); UI != E; ) {
618         MachineInstr *UseMI = &*(UI++);
619         if (UseMI->isDebugValue()) continue;
620         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
621           CopyUseMI = UseMI; continue;
622         }
623         // Otherwise this is another use or second copy use.
624         CopyUseMI = nullptr; break;
625       }
626       if (CopyUseMI &&
627           TRI.getRegSizeInBits(LDI->second, MRI) ==
628               TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
629         // Use MI's debug location, which describes where Variable was
630         // declared, rather than whatever is attached to CopyUseMI.
631         MachineInstr *NewMI =
632             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
633                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
634         MachineBasicBlock::iterator Pos = CopyUseMI;
635         EntryMBB->insertAfter(Pos, NewMI);
636       }
637     }
638   }
639 
640   // Determine if there are any calls in this machine function.
641   MachineFrameInfo &MFI = MF->getFrameInfo();
642   for (const auto &MBB : *MF) {
643     if (MFI.hasCalls() && MF->hasInlineAsm())
644       break;
645 
646     for (const auto &MI : MBB) {
647       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
648       if ((MCID.isCall() && !MCID.isReturn()) ||
649           MI.isStackAligningInlineAsm()) {
650         MFI.setHasCalls(true);
651       }
652       if (MI.isInlineAsm()) {
653         MF->setHasInlineAsm(true);
654       }
655     }
656   }
657 
658   // Determine if there is a call to setjmp in the machine function.
659   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
660 
661   // Determine if floating point is used for msvc
662   computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
663 
664   // Release function-specific state. SDB and CurDAG are already cleared
665   // at this point.
666   FuncInfo->clear();
667 
668   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
669   LLVM_DEBUG(MF->print(dbgs()));
670 
671   return true;
672 }
673 
674 static void reportFastISelFailure(MachineFunction &MF,
675                                   OptimizationRemarkEmitter &ORE,
676                                   OptimizationRemarkMissed &R,
677                                   bool ShouldAbort) {
678   // Print the function name explicitly if we don't have a debug location (which
679   // makes the diagnostic less useful) or if we're going to emit a raw error.
680   if (!R.getLocation().isValid() || ShouldAbort)
681     R << (" (in function: " + MF.getName() + ")").str();
682 
683   if (ShouldAbort)
684     report_fatal_error(R.getMsg());
685 
686   ORE.emit(R);
687 }
688 
689 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
690                                         BasicBlock::const_iterator End,
691                                         bool &HadTailCall) {
692   // Allow creating illegal types during DAG building for the basic block.
693   CurDAG->NewNodesMustHaveLegalTypes = false;
694 
695   // Lower the instructions. If a call is emitted as a tail call, cease emitting
696   // nodes for this block.
697   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
698     if (!ElidedArgCopyInstrs.count(&*I))
699       SDB->visit(*I);
700   }
701 
702   // Make sure the root of the DAG is up-to-date.
703   CurDAG->setRoot(SDB->getControlRoot());
704   HadTailCall = SDB->HasTailCall;
705   SDB->resolveOrClearDbgInfo();
706   SDB->clear();
707 
708   // Final step, emit the lowered DAG as machine code.
709   CodeGenAndEmitDAG();
710 }
711 
712 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
713   SmallPtrSet<SDNode *, 16> Added;
714   SmallVector<SDNode*, 128> Worklist;
715 
716   Worklist.push_back(CurDAG->getRoot().getNode());
717   Added.insert(CurDAG->getRoot().getNode());
718 
719   KnownBits Known;
720 
721   do {
722     SDNode *N = Worklist.pop_back_val();
723 
724     // Otherwise, add all chain operands to the worklist.
725     for (const SDValue &Op : N->op_values())
726       if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
727         Worklist.push_back(Op.getNode());
728 
729     // If this is a CopyToReg with a vreg dest, process it.
730     if (N->getOpcode() != ISD::CopyToReg)
731       continue;
732 
733     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
734     if (!Register::isVirtualRegister(DestReg))
735       continue;
736 
737     // Ignore non-integer values.
738     SDValue Src = N->getOperand(2);
739     EVT SrcVT = Src.getValueType();
740     if (!SrcVT.isInteger())
741       continue;
742 
743     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
744     Known = CurDAG->computeKnownBits(Src);
745     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
746   } while (!Worklist.empty());
747 }
748 
749 void SelectionDAGISel::CodeGenAndEmitDAG() {
750   StringRef GroupName = "sdag";
751   StringRef GroupDescription = "Instruction Selection and Scheduling";
752   std::string BlockName;
753   bool MatchFilterBB = false; (void)MatchFilterBB;
754 #ifndef NDEBUG
755   TargetTransformInfo &TTI =
756       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
757 #endif
758 
759   // Pre-type legalization allow creation of any node types.
760   CurDAG->NewNodesMustHaveLegalTypes = false;
761 
762 #ifndef NDEBUG
763   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
764                    FilterDAGBasicBlockName ==
765                        FuncInfo->MBB->getBasicBlock()->getName());
766 #endif
767 #ifdef NDEBUG
768   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
769       ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
770       ViewSUnitDAGs)
771 #endif
772   {
773     BlockName =
774         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
775   }
776   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
777                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
778                     << "'\n";
779              CurDAG->dump());
780 
781   if (ViewDAGCombine1 && MatchFilterBB)
782     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
783 
784   // Run the DAG combiner in pre-legalize mode.
785   {
786     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
787                        GroupDescription, TimePassesIsEnabled);
788     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
789   }
790 
791 #ifndef NDEBUG
792   if (TTI.hasBranchDivergence())
793     CurDAG->VerifyDAGDiverence();
794 #endif
795 
796   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
797                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
798                     << "'\n";
799              CurDAG->dump());
800 
801   // Second step, hack on the DAG until it only uses operations and types that
802   // the target supports.
803   if (ViewLegalizeTypesDAGs && MatchFilterBB)
804     CurDAG->viewGraph("legalize-types input for " + BlockName);
805 
806   bool Changed;
807   {
808     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
809                        GroupDescription, TimePassesIsEnabled);
810     Changed = CurDAG->LegalizeTypes();
811   }
812 
813 #ifndef NDEBUG
814   if (TTI.hasBranchDivergence())
815     CurDAG->VerifyDAGDiverence();
816 #endif
817 
818   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
819                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
820                     << "'\n";
821              CurDAG->dump());
822 
823   // Only allow creation of legal node types.
824   CurDAG->NewNodesMustHaveLegalTypes = true;
825 
826   if (Changed) {
827     if (ViewDAGCombineLT && MatchFilterBB)
828       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
829 
830     // Run the DAG combiner in post-type-legalize mode.
831     {
832       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
833                          GroupName, GroupDescription, TimePassesIsEnabled);
834       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
835     }
836 
837 #ifndef NDEBUG
838     if (TTI.hasBranchDivergence())
839       CurDAG->VerifyDAGDiverence();
840 #endif
841 
842     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
843                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
844                       << "'\n";
845                CurDAG->dump());
846   }
847 
848   {
849     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
850                        GroupDescription, TimePassesIsEnabled);
851     Changed = CurDAG->LegalizeVectors();
852   }
853 
854   if (Changed) {
855     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
856                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
857                       << "'\n";
858                CurDAG->dump());
859 
860     {
861       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
862                          GroupDescription, TimePassesIsEnabled);
863       CurDAG->LegalizeTypes();
864     }
865 
866     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
867                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
868                       << "'\n";
869                CurDAG->dump());
870 
871     if (ViewDAGCombineLT && MatchFilterBB)
872       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
873 
874     // Run the DAG combiner in post-type-legalize mode.
875     {
876       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
877                          GroupName, GroupDescription, TimePassesIsEnabled);
878       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
879     }
880 
881     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
882                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
883                       << "'\n";
884                CurDAG->dump());
885 
886 #ifndef NDEBUG
887     if (TTI.hasBranchDivergence())
888       CurDAG->VerifyDAGDiverence();
889 #endif
890   }
891 
892   if (ViewLegalizeDAGs && MatchFilterBB)
893     CurDAG->viewGraph("legalize input for " + BlockName);
894 
895   {
896     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
897                        GroupDescription, TimePassesIsEnabled);
898     CurDAG->Legalize();
899   }
900 
901 #ifndef NDEBUG
902   if (TTI.hasBranchDivergence())
903     CurDAG->VerifyDAGDiverence();
904 #endif
905 
906   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
907                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
908                     << "'\n";
909              CurDAG->dump());
910 
911   if (ViewDAGCombine2 && MatchFilterBB)
912     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
913 
914   // Run the DAG combiner in post-legalize mode.
915   {
916     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
917                        GroupDescription, TimePassesIsEnabled);
918     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
919   }
920 
921 #ifndef NDEBUG
922   if (TTI.hasBranchDivergence())
923     CurDAG->VerifyDAGDiverence();
924 #endif
925 
926   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
927                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
928                     << "'\n";
929              CurDAG->dump());
930 
931   if (OptLevel != CodeGenOpt::None)
932     ComputeLiveOutVRegInfo();
933 
934   if (ViewISelDAGs && MatchFilterBB)
935     CurDAG->viewGraph("isel input for " + BlockName);
936 
937   // Third, instruction select all of the operations to machine code, adding the
938   // code to the MachineBasicBlock.
939   {
940     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
941                        GroupDescription, TimePassesIsEnabled);
942     DoInstructionSelection();
943   }
944 
945   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
946                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
947                     << "'\n";
948              CurDAG->dump());
949 
950   if (ViewSchedDAGs && MatchFilterBB)
951     CurDAG->viewGraph("scheduler input for " + BlockName);
952 
953   // Schedule machine code.
954   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
955   {
956     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
957                        GroupDescription, TimePassesIsEnabled);
958     Scheduler->Run(CurDAG, FuncInfo->MBB);
959   }
960 
961   if (ViewSUnitDAGs && MatchFilterBB)
962     Scheduler->viewGraph();
963 
964   // Emit machine code to BB.  This can change 'BB' to the last block being
965   // inserted into.
966   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
967   {
968     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
969                        GroupDescription, TimePassesIsEnabled);
970 
971     // FuncInfo->InsertPt is passed by reference and set to the end of the
972     // scheduled instructions.
973     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
974   }
975 
976   // If the block was split, make sure we update any references that are used to
977   // update PHI nodes later on.
978   if (FirstMBB != LastMBB)
979     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
980 
981   // Free the scheduler state.
982   {
983     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
984                        GroupDescription, TimePassesIsEnabled);
985     delete Scheduler;
986   }
987 
988   // Free the SelectionDAG state, now that we're finished with it.
989   CurDAG->clear();
990 }
991 
992 namespace {
993 
994 /// ISelUpdater - helper class to handle updates of the instruction selection
995 /// graph.
996 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
997   SelectionDAG::allnodes_iterator &ISelPosition;
998 
999 public:
1000   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1001     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1002 
1003   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1004   /// deleted is the current ISelPosition node, update ISelPosition.
1005   ///
1006   void NodeDeleted(SDNode *N, SDNode *E) override {
1007     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1008       ++ISelPosition;
1009   }
1010 };
1011 
1012 } // end anonymous namespace
1013 
1014 // This function is used to enforce the topological node id property
1015 // property leveraged during Instruction selection. Before selection all
1016 // nodes are given a non-negative id such that all nodes have a larger id than
1017 // their operands. As this holds transitively we can prune checks that a node N
1018 // is a predecessor of M another by not recursively checking through M's
1019 // operands if N's ID is larger than M's ID. This is significantly improves
1020 // performance of for various legality checks (e.g. IsLegalToFold /
1021 // UpdateChains).
1022 
1023 // However, when we fuse multiple nodes into a single node
1024 // during selection we may induce a predecessor relationship between inputs and
1025 // outputs of distinct nodes being merged violating the topological property.
1026 // Should a fused node have a successor which has yet to be selected, our
1027 // legality checks would be incorrect. To avoid this we mark all unselected
1028 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1029 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1030 // We use bit-negation to more clearly enforce that node id -1 can only be
1031 // achieved by selected nodes). As the conversion is reversable the original Id,
1032 // topological pruning can still be leveraged when looking for unselected nodes.
1033 // This method is call internally in all ISel replacement calls.
1034 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1035   SmallVector<SDNode *, 4> Nodes;
1036   Nodes.push_back(Node);
1037 
1038   while (!Nodes.empty()) {
1039     SDNode *N = Nodes.pop_back_val();
1040     for (auto *U : N->uses()) {
1041       auto UId = U->getNodeId();
1042       if (UId > 0) {
1043         InvalidateNodeId(U);
1044         Nodes.push_back(U);
1045       }
1046     }
1047   }
1048 }
1049 
1050 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1051 // NodeId with the equivalent node id which is invalid for topological
1052 // pruning.
1053 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1054   int InvalidId = -(N->getNodeId() + 1);
1055   N->setNodeId(InvalidId);
1056 }
1057 
1058 // getUninvalidatedNodeId - get original uninvalidated node id.
1059 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1060   int Id = N->getNodeId();
1061   if (Id < -1)
1062     return -(Id + 1);
1063   return Id;
1064 }
1065 
1066 void SelectionDAGISel::DoInstructionSelection() {
1067   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1068                     << printMBBReference(*FuncInfo->MBB) << " '"
1069                     << FuncInfo->MBB->getName() << "'\n");
1070 
1071   PreprocessISelDAG();
1072 
1073   // Select target instructions for the DAG.
1074   {
1075     // Number all nodes with a topological order and set DAGSize.
1076     DAGSize = CurDAG->AssignTopologicalOrder();
1077 
1078     // Create a dummy node (which is not added to allnodes), that adds
1079     // a reference to the root node, preventing it from being deleted,
1080     // and tracking any changes of the root.
1081     HandleSDNode Dummy(CurDAG->getRoot());
1082     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1083     ++ISelPosition;
1084 
1085     // Make sure that ISelPosition gets properly updated when nodes are deleted
1086     // in calls made from this function.
1087     ISelUpdater ISU(*CurDAG, ISelPosition);
1088 
1089     // The AllNodes list is now topological-sorted. Visit the
1090     // nodes by starting at the end of the list (the root of the
1091     // graph) and preceding back toward the beginning (the entry
1092     // node).
1093     while (ISelPosition != CurDAG->allnodes_begin()) {
1094       SDNode *Node = &*--ISelPosition;
1095       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1096       // but there are currently some corner cases that it misses. Also, this
1097       // makes it theoretically possible to disable the DAGCombiner.
1098       if (Node->use_empty())
1099         continue;
1100 
1101 #ifndef NDEBUG
1102       SmallVector<SDNode *, 4> Nodes;
1103       Nodes.push_back(Node);
1104 
1105       while (!Nodes.empty()) {
1106         auto N = Nodes.pop_back_val();
1107         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1108           continue;
1109         for (const SDValue &Op : N->op_values()) {
1110           if (Op->getOpcode() == ISD::TokenFactor)
1111             Nodes.push_back(Op.getNode());
1112           else {
1113             // We rely on topological ordering of node ids for checking for
1114             // cycles when fusing nodes during selection. All unselected nodes
1115             // successors of an already selected node should have a negative id.
1116             // This assertion will catch such cases. If this assertion triggers
1117             // it is likely you using DAG-level Value/Node replacement functions
1118             // (versus equivalent ISEL replacement) in backend-specific
1119             // selections. See comment in EnforceNodeIdInvariant for more
1120             // details.
1121             assert(Op->getNodeId() != -1 &&
1122                    "Node has already selected predecessor node");
1123           }
1124         }
1125       }
1126 #endif
1127 
1128       // When we are using non-default rounding modes or FP exception behavior
1129       // FP operations are represented by StrictFP pseudo-operations.  For
1130       // targets that do not (yet) understand strict FP operations directly,
1131       // we convert them to normal FP opcodes instead at this point.  This
1132       // will allow them to be handled by existing target-specific instruction
1133       // selectors.
1134       if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1135         // For some opcodes, we need to call TLI->getOperationAction using
1136         // the first operand type instead of the result type.  Note that this
1137         // must match what SelectionDAGLegalize::LegalizeOp is doing.
1138         EVT ActionVT;
1139         switch (Node->getOpcode()) {
1140         case ISD::STRICT_SINT_TO_FP:
1141         case ISD::STRICT_UINT_TO_FP:
1142         case ISD::STRICT_LRINT:
1143         case ISD::STRICT_LLRINT:
1144         case ISD::STRICT_LROUND:
1145         case ISD::STRICT_LLROUND:
1146         case ISD::STRICT_FSETCC:
1147         case ISD::STRICT_FSETCCS:
1148           ActionVT = Node->getOperand(1).getValueType();
1149           break;
1150         default:
1151           ActionVT = Node->getValueType(0);
1152           break;
1153         }
1154         if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1155             == TargetLowering::Expand)
1156           Node = CurDAG->mutateStrictFPToFP(Node);
1157       }
1158 
1159       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1160                  Node->dump(CurDAG));
1161 
1162       Select(Node);
1163     }
1164 
1165     CurDAG->setRoot(Dummy.getValue());
1166   }
1167 
1168   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1169 
1170   PostprocessISelDAG();
1171 }
1172 
1173 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1174   for (const User *U : CPI->users()) {
1175     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1176       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1177       if (IID == Intrinsic::eh_exceptionpointer ||
1178           IID == Intrinsic::eh_exceptioncode)
1179         return true;
1180     }
1181   }
1182   return false;
1183 }
1184 
1185 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1186 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1187 // and store the mapping in the function.
1188 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1189                                    const CatchPadInst *CPI) {
1190   MachineFunction *MF = MBB->getParent();
1191   // In case of single catch (...), we don't emit LSDA, so we don't need
1192   // this information.
1193   bool IsSingleCatchAllClause =
1194       CPI->getNumArgOperands() == 1 &&
1195       cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1196   if (!IsSingleCatchAllClause) {
1197     // Create a mapping from landing pad label to landing pad index.
1198     bool IntrFound = false;
1199     for (const User *U : CPI->users()) {
1200       if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1201         Intrinsic::ID IID = Call->getIntrinsicID();
1202         if (IID == Intrinsic::wasm_landingpad_index) {
1203           Value *IndexArg = Call->getArgOperand(1);
1204           int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1205           MF->setWasmLandingPadIndex(MBB, Index);
1206           IntrFound = true;
1207           break;
1208         }
1209       }
1210     }
1211     assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1212     (void)IntrFound;
1213   }
1214 }
1215 
1216 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1217 /// do other setup for EH landing-pad blocks.
1218 bool SelectionDAGISel::PrepareEHLandingPad() {
1219   MachineBasicBlock *MBB = FuncInfo->MBB;
1220   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1221   const BasicBlock *LLVMBB = MBB->getBasicBlock();
1222   const TargetRegisterClass *PtrRC =
1223       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1224 
1225   auto Pers = classifyEHPersonality(PersonalityFn);
1226 
1227   // Catchpads have one live-in register, which typically holds the exception
1228   // pointer or code.
1229   if (isFuncletEHPersonality(Pers)) {
1230     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1231       if (hasExceptionPointerOrCodeUser(CPI)) {
1232         // Get or create the virtual register to hold the pointer or code.  Mark
1233         // the live in physreg and copy into the vreg.
1234         MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1235         assert(EHPhysReg && "target lacks exception pointer register");
1236         MBB->addLiveIn(EHPhysReg);
1237         unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1238         BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1239                 TII->get(TargetOpcode::COPY), VReg)
1240             .addReg(EHPhysReg, RegState::Kill);
1241       }
1242     }
1243     return true;
1244   }
1245 
1246   // Add a label to mark the beginning of the landing pad.  Deletion of the
1247   // landing pad can thus be detected via the MachineModuleInfo.
1248   MCSymbol *Label = MF->addLandingPad(MBB);
1249 
1250   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1251   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1252     .addSym(Label);
1253 
1254   if (Pers == EHPersonality::Wasm_CXX) {
1255     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1256       mapWasmLandingPadIndex(MBB, CPI);
1257   } else {
1258     // Assign the call site to the landing pad's begin label.
1259     MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1260     // Mark exception register as live in.
1261     if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1262       FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1263     // Mark exception selector register as live in.
1264     if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1265       FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1266   }
1267 
1268   return true;
1269 }
1270 
1271 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1272 /// side-effect free and is either dead or folded into a generated instruction.
1273 /// Return false if it needs to be emitted.
1274 static bool isFoldedOrDeadInstruction(const Instruction *I,
1275                                       const FunctionLoweringInfo &FuncInfo) {
1276   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1277          !I->isTerminator() &&     // Terminators aren't folded.
1278          !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1279          !I->isEHPad() &&             // EH pad instructions aren't folded.
1280          !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1281 }
1282 
1283 /// Collect llvm.dbg.declare information. This is done after argument lowering
1284 /// in case the declarations refer to arguments.
1285 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1286   MachineFunction *MF = FuncInfo.MF;
1287   const DataLayout &DL = MF->getDataLayout();
1288   for (const BasicBlock &BB : *FuncInfo.Fn) {
1289     for (const Instruction &I : BB) {
1290       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1291       if (!DI)
1292         continue;
1293 
1294       assert(DI->getVariable() && "Missing variable");
1295       assert(DI->getDebugLoc() && "Missing location");
1296       const Value *Address = DI->getAddress();
1297       if (!Address) {
1298         LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1299                           << " (bad address)\n");
1300         continue;
1301       }
1302 
1303       // Look through casts and constant offset GEPs. These mostly come from
1304       // inalloca.
1305       APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1306       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1307 
1308       // Check if the variable is a static alloca or a byval or inalloca
1309       // argument passed in memory. If it is not, then we will ignore this
1310       // intrinsic and handle this during isel like dbg.value.
1311       int FI = std::numeric_limits<int>::max();
1312       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1313         auto SI = FuncInfo.StaticAllocaMap.find(AI);
1314         if (SI != FuncInfo.StaticAllocaMap.end())
1315           FI = SI->second;
1316       } else if (const auto *Arg = dyn_cast<Argument>(Address))
1317         FI = FuncInfo.getArgumentFrameIndex(Arg);
1318 
1319       if (FI == std::numeric_limits<int>::max())
1320         continue;
1321 
1322       DIExpression *Expr = DI->getExpression();
1323       if (Offset.getBoolValue())
1324         Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1325                                      Offset.getZExtValue());
1326       LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1327                         << ", " << *DI << "\n");
1328       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1329     }
1330   }
1331 }
1332 
1333 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1334   FastISelFailed = false;
1335   // Initialize the Fast-ISel state, if needed.
1336   FastISel *FastIS = nullptr;
1337   if (TM.Options.EnableFastISel) {
1338     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1339     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1340   }
1341 
1342   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1343 
1344   // Lower arguments up front. An RPO iteration always visits the entry block
1345   // first.
1346   assert(*RPOT.begin() == &Fn.getEntryBlock());
1347   ++NumEntryBlocks;
1348 
1349   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1350   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1351   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1352 
1353   CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1354 
1355   if (!FastIS) {
1356     LowerArguments(Fn);
1357   } else {
1358     // See if fast isel can lower the arguments.
1359     FastIS->startNewBlock();
1360     if (!FastIS->lowerArguments()) {
1361       FastISelFailed = true;
1362       // Fast isel failed to lower these arguments
1363       ++NumFastIselFailLowerArguments;
1364 
1365       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1366                                  Fn.getSubprogram(),
1367                                  &Fn.getEntryBlock());
1368       R << "FastISel didn't lower all arguments: "
1369         << ore::NV("Prototype", Fn.getType());
1370       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1371 
1372       // Use SelectionDAG argument lowering
1373       LowerArguments(Fn);
1374       CurDAG->setRoot(SDB->getControlRoot());
1375       SDB->clear();
1376       CodeGenAndEmitDAG();
1377     }
1378 
1379     // If we inserted any instructions at the beginning, make a note of
1380     // where they are, so we can be sure to emit subsequent instructions
1381     // after them.
1382     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1383       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1384     else
1385       FastIS->setLastLocalValue(nullptr);
1386   }
1387 
1388   bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1389 
1390   if (FastIS && Inserted)
1391     FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1392 
1393   processDbgDeclares(*FuncInfo);
1394 
1395   // Iterate over all basic blocks in the function.
1396   StackProtector &SP = getAnalysis<StackProtector>();
1397   for (const BasicBlock *LLVMBB : RPOT) {
1398     if (OptLevel != CodeGenOpt::None) {
1399       bool AllPredsVisited = true;
1400       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1401            PI != PE; ++PI) {
1402         if (!FuncInfo->VisitedBBs.count(*PI)) {
1403           AllPredsVisited = false;
1404           break;
1405         }
1406       }
1407 
1408       if (AllPredsVisited) {
1409         for (const PHINode &PN : LLVMBB->phis())
1410           FuncInfo->ComputePHILiveOutRegInfo(&PN);
1411       } else {
1412         for (const PHINode &PN : LLVMBB->phis())
1413           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1414       }
1415 
1416       FuncInfo->VisitedBBs.insert(LLVMBB);
1417     }
1418 
1419     BasicBlock::const_iterator const Begin =
1420         LLVMBB->getFirstNonPHI()->getIterator();
1421     BasicBlock::const_iterator const End = LLVMBB->end();
1422     BasicBlock::const_iterator BI = End;
1423 
1424     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1425     if (!FuncInfo->MBB)
1426       continue; // Some blocks like catchpads have no code or MBB.
1427 
1428     // Insert new instructions after any phi or argument setup code.
1429     FuncInfo->InsertPt = FuncInfo->MBB->end();
1430 
1431     // Setup an EH landing-pad block.
1432     FuncInfo->ExceptionPointerVirtReg = 0;
1433     FuncInfo->ExceptionSelectorVirtReg = 0;
1434     if (LLVMBB->isEHPad())
1435       if (!PrepareEHLandingPad())
1436         continue;
1437 
1438     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1439     if (FastIS) {
1440       if (LLVMBB != &Fn.getEntryBlock())
1441         FastIS->startNewBlock();
1442 
1443       unsigned NumFastIselRemaining = std::distance(Begin, End);
1444 
1445       // Pre-assign swifterror vregs.
1446       SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1447 
1448       // Do FastISel on as many instructions as possible.
1449       for (; BI != Begin; --BI) {
1450         const Instruction *Inst = &*std::prev(BI);
1451 
1452         // If we no longer require this instruction, skip it.
1453         if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1454             ElidedArgCopyInstrs.count(Inst)) {
1455           --NumFastIselRemaining;
1456           continue;
1457         }
1458 
1459         // Bottom-up: reset the insert pos at the top, after any local-value
1460         // instructions.
1461         FastIS->recomputeInsertPt();
1462 
1463         // Try to select the instruction with FastISel.
1464         if (FastIS->selectInstruction(Inst)) {
1465           --NumFastIselRemaining;
1466           ++NumFastIselSuccess;
1467           // If fast isel succeeded, skip over all the folded instructions, and
1468           // then see if there is a load right before the selected instructions.
1469           // Try to fold the load if so.
1470           const Instruction *BeforeInst = Inst;
1471           while (BeforeInst != &*Begin) {
1472             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1473             if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1474               break;
1475           }
1476           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1477               BeforeInst->hasOneUse() &&
1478               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1479             // If we succeeded, don't re-select the load.
1480             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1481             --NumFastIselRemaining;
1482             ++NumFastIselSuccess;
1483           }
1484           continue;
1485         }
1486 
1487         FastISelFailed = true;
1488 
1489         // Then handle certain instructions as single-LLVM-Instruction blocks.
1490         // We cannot separate out GCrelocates to their own blocks since we need
1491         // to keep track of gc-relocates for a particular gc-statepoint. This is
1492         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1493         // visitGCRelocate.
1494         if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1495             !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1496           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1497                                      Inst->getDebugLoc(), LLVMBB);
1498 
1499           R << "FastISel missed call";
1500 
1501           if (R.isEnabled() || EnableFastISelAbort) {
1502             std::string InstStrStorage;
1503             raw_string_ostream InstStr(InstStrStorage);
1504             InstStr << *Inst;
1505 
1506             R << ": " << InstStr.str();
1507           }
1508 
1509           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1510 
1511           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1512               !Inst->use_empty()) {
1513             Register &R = FuncInfo->ValueMap[Inst];
1514             if (!R)
1515               R = FuncInfo->CreateRegs(Inst);
1516           }
1517 
1518           bool HadTailCall = false;
1519           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1520           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1521 
1522           // If the call was emitted as a tail call, we're done with the block.
1523           // We also need to delete any previously emitted instructions.
1524           if (HadTailCall) {
1525             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1526             --BI;
1527             break;
1528           }
1529 
1530           // Recompute NumFastIselRemaining as Selection DAG instruction
1531           // selection may have handled the call, input args, etc.
1532           unsigned RemainingNow = std::distance(Begin, BI);
1533           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1534           NumFastIselRemaining = RemainingNow;
1535           continue;
1536         }
1537 
1538         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1539                                    Inst->getDebugLoc(), LLVMBB);
1540 
1541         bool ShouldAbort = EnableFastISelAbort;
1542         if (Inst->isTerminator()) {
1543           // Use a different message for terminator misses.
1544           R << "FastISel missed terminator";
1545           // Don't abort for terminator unless the level is really high
1546           ShouldAbort = (EnableFastISelAbort > 2);
1547         } else {
1548           R << "FastISel missed";
1549         }
1550 
1551         if (R.isEnabled() || EnableFastISelAbort) {
1552           std::string InstStrStorage;
1553           raw_string_ostream InstStr(InstStrStorage);
1554           InstStr << *Inst;
1555           R << ": " << InstStr.str();
1556         }
1557 
1558         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1559 
1560         NumFastIselFailures += NumFastIselRemaining;
1561         break;
1562       }
1563 
1564       FastIS->recomputeInsertPt();
1565     }
1566 
1567     if (SP.shouldEmitSDCheck(*LLVMBB)) {
1568       bool FunctionBasedInstrumentation =
1569           TLI->getSSPStackGuardCheck(*Fn.getParent());
1570       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1571                                    FunctionBasedInstrumentation);
1572     }
1573 
1574     if (Begin != BI)
1575       ++NumDAGBlocks;
1576     else
1577       ++NumFastIselBlocks;
1578 
1579     if (Begin != BI) {
1580       // Run SelectionDAG instruction selection on the remainder of the block
1581       // not handled by FastISel. If FastISel is not run, this is the entire
1582       // block.
1583       bool HadTailCall;
1584       SelectBasicBlock(Begin, BI, HadTailCall);
1585 
1586       // But if FastISel was run, we already selected some of the block.
1587       // If we emitted a tail-call, we need to delete any previously emitted
1588       // instruction that follows it.
1589       if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1590         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1591     }
1592 
1593     if (FastIS)
1594       FastIS->finishBasicBlock();
1595     FinishBasicBlock();
1596     FuncInfo->PHINodesToUpdate.clear();
1597     ElidedArgCopyInstrs.clear();
1598   }
1599 
1600   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1601 
1602   SwiftError->propagateVRegs();
1603 
1604   delete FastIS;
1605   SDB->clearDanglingDebugInfo();
1606   SDB->SPDescriptor.resetPerFunctionState();
1607 }
1608 
1609 /// Given that the input MI is before a partial terminator sequence TSeq, return
1610 /// true if M + TSeq also a partial terminator sequence.
1611 ///
1612 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1613 /// lowering copy vregs into physical registers, which are then passed into
1614 /// terminator instructors so we can satisfy ABI constraints. A partial
1615 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1616 /// may be the whole terminator sequence).
1617 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1618   // If we do not have a copy or an implicit def, we return true if and only if
1619   // MI is a debug value.
1620   if (!MI.isCopy() && !MI.isImplicitDef())
1621     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1622     // physical registers if there is debug info associated with the terminator
1623     // of our mbb. We want to include said debug info in our terminator
1624     // sequence, so we return true in that case.
1625     return MI.isDebugValue();
1626 
1627   // We have left the terminator sequence if we are not doing one of the
1628   // following:
1629   //
1630   // 1. Copying a vreg into a physical register.
1631   // 2. Copying a vreg into a vreg.
1632   // 3. Defining a register via an implicit def.
1633 
1634   // OPI should always be a register definition...
1635   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1636   if (!OPI->isReg() || !OPI->isDef())
1637     return false;
1638 
1639   // Defining any register via an implicit def is always ok.
1640   if (MI.isImplicitDef())
1641     return true;
1642 
1643   // Grab the copy source...
1644   MachineInstr::const_mop_iterator OPI2 = OPI;
1645   ++OPI2;
1646   assert(OPI2 != MI.operands_end()
1647          && "Should have a copy implying we should have 2 arguments.");
1648 
1649   // Make sure that the copy dest is not a vreg when the copy source is a
1650   // physical register.
1651   if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1652                          Register::isPhysicalRegister(OPI2->getReg())))
1653     return false;
1654 
1655   return true;
1656 }
1657 
1658 /// Find the split point at which to splice the end of BB into its success stack
1659 /// protector check machine basic block.
1660 ///
1661 /// On many platforms, due to ABI constraints, terminators, even before register
1662 /// allocation, use physical registers. This creates an issue for us since
1663 /// physical registers at this point can not travel across basic
1664 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1665 /// when they enter functions and moves them through a sequence of copies back
1666 /// into the physical registers right before the terminator creating a
1667 /// ``Terminator Sequence''. This function is searching for the beginning of the
1668 /// terminator sequence so that we can ensure that we splice off not just the
1669 /// terminator, but additionally the copies that move the vregs into the
1670 /// physical registers.
1671 static MachineBasicBlock::iterator
1672 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1673   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1674   //
1675   if (SplitPoint == BB->begin())
1676     return SplitPoint;
1677 
1678   MachineBasicBlock::iterator Start = BB->begin();
1679   MachineBasicBlock::iterator Previous = SplitPoint;
1680   --Previous;
1681 
1682   while (MIIsInTerminatorSequence(*Previous)) {
1683     SplitPoint = Previous;
1684     if (Previous == Start)
1685       break;
1686     --Previous;
1687   }
1688 
1689   return SplitPoint;
1690 }
1691 
1692 void
1693 SelectionDAGISel::FinishBasicBlock() {
1694   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1695                     << FuncInfo->PHINodesToUpdate.size() << "\n";
1696              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1697                   ++i) dbgs()
1698              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1699              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1700 
1701   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1702   // PHI nodes in successors.
1703   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1704     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1705     assert(PHI->isPHI() &&
1706            "This is not a machine PHI node that we are updating!");
1707     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1708       continue;
1709     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1710   }
1711 
1712   // Handle stack protector.
1713   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1714     // The target provides a guard check function. There is no need to
1715     // generate error handling code or to split current basic block.
1716     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1717 
1718     // Add load and check to the basicblock.
1719     FuncInfo->MBB = ParentMBB;
1720     FuncInfo->InsertPt =
1721         FindSplitPointForStackProtector(ParentMBB);
1722     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1723     CurDAG->setRoot(SDB->getRoot());
1724     SDB->clear();
1725     CodeGenAndEmitDAG();
1726 
1727     // Clear the Per-BB State.
1728     SDB->SPDescriptor.resetPerBBState();
1729   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1730     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1731     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1732 
1733     // Find the split point to split the parent mbb. At the same time copy all
1734     // physical registers used in the tail of parent mbb into virtual registers
1735     // before the split point and back into physical registers after the split
1736     // point. This prevents us needing to deal with Live-ins and many other
1737     // register allocation issues caused by us splitting the parent mbb. The
1738     // register allocator will clean up said virtual copies later on.
1739     MachineBasicBlock::iterator SplitPoint =
1740         FindSplitPointForStackProtector(ParentMBB);
1741 
1742     // Splice the terminator of ParentMBB into SuccessMBB.
1743     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1744                        SplitPoint,
1745                        ParentMBB->end());
1746 
1747     // Add compare/jump on neq/jump to the parent BB.
1748     FuncInfo->MBB = ParentMBB;
1749     FuncInfo->InsertPt = ParentMBB->end();
1750     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1751     CurDAG->setRoot(SDB->getRoot());
1752     SDB->clear();
1753     CodeGenAndEmitDAG();
1754 
1755     // CodeGen Failure MBB if we have not codegened it yet.
1756     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1757     if (FailureMBB->empty()) {
1758       FuncInfo->MBB = FailureMBB;
1759       FuncInfo->InsertPt = FailureMBB->end();
1760       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1761       CurDAG->setRoot(SDB->getRoot());
1762       SDB->clear();
1763       CodeGenAndEmitDAG();
1764     }
1765 
1766     // Clear the Per-BB State.
1767     SDB->SPDescriptor.resetPerBBState();
1768   }
1769 
1770   // Lower each BitTestBlock.
1771   for (auto &BTB : SDB->SL->BitTestCases) {
1772     // Lower header first, if it wasn't already lowered
1773     if (!BTB.Emitted) {
1774       // Set the current basic block to the mbb we wish to insert the code into
1775       FuncInfo->MBB = BTB.Parent;
1776       FuncInfo->InsertPt = FuncInfo->MBB->end();
1777       // Emit the code
1778       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1779       CurDAG->setRoot(SDB->getRoot());
1780       SDB->clear();
1781       CodeGenAndEmitDAG();
1782     }
1783 
1784     BranchProbability UnhandledProb = BTB.Prob;
1785     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1786       UnhandledProb -= BTB.Cases[j].ExtraProb;
1787       // Set the current basic block to the mbb we wish to insert the code into
1788       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1789       FuncInfo->InsertPt = FuncInfo->MBB->end();
1790       // Emit the code
1791 
1792       // If all cases cover a contiguous range, it is not necessary to jump to
1793       // the default block after the last bit test fails. This is because the
1794       // range check during bit test header creation has guaranteed that every
1795       // case here doesn't go outside the range. In this case, there is no need
1796       // to perform the last bit test, as it will always be true. Instead, make
1797       // the second-to-last bit-test fall through to the target of the last bit
1798       // test, and delete the last bit test.
1799 
1800       MachineBasicBlock *NextMBB;
1801       if (BTB.ContiguousRange && j + 2 == ej) {
1802         // Second-to-last bit-test with contiguous range: fall through to the
1803         // target of the final bit test.
1804         NextMBB = BTB.Cases[j + 1].TargetBB;
1805       } else if (j + 1 == ej) {
1806         // For the last bit test, fall through to Default.
1807         NextMBB = BTB.Default;
1808       } else {
1809         // Otherwise, fall through to the next bit test.
1810         NextMBB = BTB.Cases[j + 1].ThisBB;
1811       }
1812 
1813       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1814                             FuncInfo->MBB);
1815 
1816       CurDAG->setRoot(SDB->getRoot());
1817       SDB->clear();
1818       CodeGenAndEmitDAG();
1819 
1820       if (BTB.ContiguousRange && j + 2 == ej) {
1821         // Since we're not going to use the final bit test, remove it.
1822         BTB.Cases.pop_back();
1823         break;
1824       }
1825     }
1826 
1827     // Update PHI Nodes
1828     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1829          pi != pe; ++pi) {
1830       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1831       MachineBasicBlock *PHIBB = PHI->getParent();
1832       assert(PHI->isPHI() &&
1833              "This is not a machine PHI node that we are updating!");
1834       // This is "default" BB. We have two jumps to it. From "header" BB and
1835       // from last "case" BB, unless the latter was skipped.
1836       if (PHIBB == BTB.Default) {
1837         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1838         if (!BTB.ContiguousRange) {
1839           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1840               .addMBB(BTB.Cases.back().ThisBB);
1841          }
1842       }
1843       // One of "cases" BB.
1844       for (unsigned j = 0, ej = BTB.Cases.size();
1845            j != ej; ++j) {
1846         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1847         if (cBB->isSuccessor(PHIBB))
1848           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1849       }
1850     }
1851   }
1852   SDB->SL->BitTestCases.clear();
1853 
1854   // If the JumpTable record is filled in, then we need to emit a jump table.
1855   // Updating the PHI nodes is tricky in this case, since we need to determine
1856   // whether the PHI is a successor of the range check MBB or the jump table MBB
1857   for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1858     // Lower header first, if it wasn't already lowered
1859     if (!SDB->SL->JTCases[i].first.Emitted) {
1860       // Set the current basic block to the mbb we wish to insert the code into
1861       FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1862       FuncInfo->InsertPt = FuncInfo->MBB->end();
1863       // Emit the code
1864       SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1865                                 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1866       CurDAG->setRoot(SDB->getRoot());
1867       SDB->clear();
1868       CodeGenAndEmitDAG();
1869     }
1870 
1871     // Set the current basic block to the mbb we wish to insert the code into
1872     FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1873     FuncInfo->InsertPt = FuncInfo->MBB->end();
1874     // Emit the code
1875     SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1876     CurDAG->setRoot(SDB->getRoot());
1877     SDB->clear();
1878     CodeGenAndEmitDAG();
1879 
1880     // Update PHI Nodes
1881     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1882          pi != pe; ++pi) {
1883       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1884       MachineBasicBlock *PHIBB = PHI->getParent();
1885       assert(PHI->isPHI() &&
1886              "This is not a machine PHI node that we are updating!");
1887       // "default" BB. We can go there only from header BB.
1888       if (PHIBB == SDB->SL->JTCases[i].second.Default)
1889         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1890            .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1891       // JT BB. Just iterate over successors here
1892       if (FuncInfo->MBB->isSuccessor(PHIBB))
1893         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1894     }
1895   }
1896   SDB->SL->JTCases.clear();
1897 
1898   // If we generated any switch lowering information, build and codegen any
1899   // additional DAGs necessary.
1900   for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1901     // Set the current basic block to the mbb we wish to insert the code into
1902     FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1903     FuncInfo->InsertPt = FuncInfo->MBB->end();
1904 
1905     // Determine the unique successors.
1906     SmallVector<MachineBasicBlock *, 2> Succs;
1907     Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1908     if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1909       Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1910 
1911     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1912     SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1913     CurDAG->setRoot(SDB->getRoot());
1914     SDB->clear();
1915     CodeGenAndEmitDAG();
1916 
1917     // Remember the last block, now that any splitting is done, for use in
1918     // populating PHI nodes in successors.
1919     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1920 
1921     // Handle any PHI nodes in successors of this chunk, as if we were coming
1922     // from the original BB before switch expansion.  Note that PHI nodes can
1923     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1924     // handle them the right number of times.
1925     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1926       FuncInfo->MBB = Succs[i];
1927       FuncInfo->InsertPt = FuncInfo->MBB->end();
1928       // FuncInfo->MBB may have been removed from the CFG if a branch was
1929       // constant folded.
1930       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1931         for (MachineBasicBlock::iterator
1932              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1933              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1934           MachineInstrBuilder PHI(*MF, MBBI);
1935           // This value for this PHI node is recorded in PHINodesToUpdate.
1936           for (unsigned pn = 0; ; ++pn) {
1937             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1938                    "Didn't find PHI entry!");
1939             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1940               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1941               break;
1942             }
1943           }
1944         }
1945       }
1946     }
1947   }
1948   SDB->SL->SwitchCases.clear();
1949 }
1950 
1951 /// Create the scheduler. If a specific scheduler was specified
1952 /// via the SchedulerRegistry, use it, otherwise select the
1953 /// one preferred by the target.
1954 ///
1955 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1956   return ISHeuristic(this, OptLevel);
1957 }
1958 
1959 //===----------------------------------------------------------------------===//
1960 // Helper functions used by the generated instruction selector.
1961 //===----------------------------------------------------------------------===//
1962 // Calls to these methods are generated by tblgen.
1963 
1964 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1965 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1966 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1967 /// specified in the .td file (e.g. 255).
1968 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1969                                     int64_t DesiredMaskS) const {
1970   const APInt &ActualMask = RHS->getAPIntValue();
1971   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1972 
1973   // If the actual mask exactly matches, success!
1974   if (ActualMask == DesiredMask)
1975     return true;
1976 
1977   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1978   if (!ActualMask.isSubsetOf(DesiredMask))
1979     return false;
1980 
1981   // Otherwise, the DAG Combiner may have proven that the value coming in is
1982   // either already zero or is not demanded.  Check for known zero input bits.
1983   APInt NeededMask = DesiredMask & ~ActualMask;
1984   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1985     return true;
1986 
1987   // TODO: check to see if missing bits are just not demanded.
1988 
1989   // Otherwise, this pattern doesn't match.
1990   return false;
1991 }
1992 
1993 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1994 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1995 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1996 /// specified in the .td file (e.g. 255).
1997 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1998                                    int64_t DesiredMaskS) const {
1999   const APInt &ActualMask = RHS->getAPIntValue();
2000   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2001 
2002   // If the actual mask exactly matches, success!
2003   if (ActualMask == DesiredMask)
2004     return true;
2005 
2006   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2007   if (!ActualMask.isSubsetOf(DesiredMask))
2008     return false;
2009 
2010   // Otherwise, the DAG Combiner may have proven that the value coming in is
2011   // either already zero or is not demanded.  Check for known zero input bits.
2012   APInt NeededMask = DesiredMask & ~ActualMask;
2013   KnownBits Known = CurDAG->computeKnownBits(LHS);
2014 
2015   // If all the missing bits in the or are already known to be set, match!
2016   if (NeededMask.isSubsetOf(Known.One))
2017     return true;
2018 
2019   // TODO: check to see if missing bits are just not demanded.
2020 
2021   // Otherwise, this pattern doesn't match.
2022   return false;
2023 }
2024 
2025 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2026 /// by tblgen.  Others should not call it.
2027 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2028                                                      const SDLoc &DL) {
2029   std::vector<SDValue> InOps;
2030   std::swap(InOps, Ops);
2031 
2032   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2033   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2034   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2035   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2036 
2037   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2038   if (InOps[e-1].getValueType() == MVT::Glue)
2039     --e;  // Don't process a glue operand if it is here.
2040 
2041   while (i != e) {
2042     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2043     if (!InlineAsm::isMemKind(Flags)) {
2044       // Just skip over this operand, copying the operands verbatim.
2045       Ops.insert(Ops.end(), InOps.begin()+i,
2046                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2047       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2048     } else {
2049       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2050              "Memory operand with multiple values?");
2051 
2052       unsigned TiedToOperand;
2053       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2054         // We need the constraint ID from the operand this is tied to.
2055         unsigned CurOp = InlineAsm::Op_FirstOperand;
2056         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2057         for (; TiedToOperand; --TiedToOperand) {
2058           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2059           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2060         }
2061       }
2062 
2063       // Otherwise, this is a memory operand.  Ask the target to select it.
2064       std::vector<SDValue> SelOps;
2065       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2066       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2067         report_fatal_error("Could not match memory address.  Inline asm"
2068                            " failure!");
2069 
2070       // Add this to the output node.
2071       unsigned NewFlags =
2072         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2073       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2074       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2075       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2076       i += 2;
2077     }
2078   }
2079 
2080   // Add the glue input back if present.
2081   if (e != InOps.size())
2082     Ops.push_back(InOps.back());
2083 }
2084 
2085 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2086 /// SDNode.
2087 ///
2088 static SDNode *findGlueUse(SDNode *N) {
2089   unsigned FlagResNo = N->getNumValues()-1;
2090   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2091     SDUse &Use = I.getUse();
2092     if (Use.getResNo() == FlagResNo)
2093       return Use.getUser();
2094   }
2095   return nullptr;
2096 }
2097 
2098 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2099 /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2100 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2101                           bool IgnoreChains) {
2102   SmallPtrSet<const SDNode *, 16> Visited;
2103   SmallVector<const SDNode *, 16> WorkList;
2104   // Only check if we have non-immediate uses of Def.
2105   if (ImmedUse->isOnlyUserOf(Def))
2106     return false;
2107 
2108   // We don't care about paths to Def that go through ImmedUse so mark it
2109   // visited and mark non-def operands as used.
2110   Visited.insert(ImmedUse);
2111   for (const SDValue &Op : ImmedUse->op_values()) {
2112     SDNode *N = Op.getNode();
2113     // Ignore chain deps (they are validated by
2114     // HandleMergeInputChains) and immediate uses
2115     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2116       continue;
2117     if (!Visited.insert(N).second)
2118       continue;
2119     WorkList.push_back(N);
2120   }
2121 
2122   // Initialize worklist to operands of Root.
2123   if (Root != ImmedUse) {
2124     for (const SDValue &Op : Root->op_values()) {
2125       SDNode *N = Op.getNode();
2126       // Ignore chains (they are validated by HandleMergeInputChains)
2127       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2128         continue;
2129       if (!Visited.insert(N).second)
2130         continue;
2131       WorkList.push_back(N);
2132     }
2133   }
2134 
2135   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2136 }
2137 
2138 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2139 /// operand node N of U during instruction selection that starts at Root.
2140 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2141                                           SDNode *Root) const {
2142   if (OptLevel == CodeGenOpt::None) return false;
2143   return N.hasOneUse();
2144 }
2145 
2146 /// IsLegalToFold - Returns true if the specific operand node N of
2147 /// U can be folded during instruction selection that starts at Root.
2148 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2149                                      CodeGenOpt::Level OptLevel,
2150                                      bool IgnoreChains) {
2151   if (OptLevel == CodeGenOpt::None) return false;
2152 
2153   // If Root use can somehow reach N through a path that that doesn't contain
2154   // U then folding N would create a cycle. e.g. In the following
2155   // diagram, Root can reach N through X. If N is folded into Root, then
2156   // X is both a predecessor and a successor of U.
2157   //
2158   //          [N*]           //
2159   //         ^   ^           //
2160   //        /     \          //
2161   //      [U*]    [X]?       //
2162   //        ^     ^          //
2163   //         \   /           //
2164   //          \ /            //
2165   //         [Root*]         //
2166   //
2167   // * indicates nodes to be folded together.
2168   //
2169   // If Root produces glue, then it gets (even more) interesting. Since it
2170   // will be "glued" together with its glue use in the scheduler, we need to
2171   // check if it might reach N.
2172   //
2173   //          [N*]           //
2174   //         ^   ^           //
2175   //        /     \          //
2176   //      [U*]    [X]?       //
2177   //        ^       ^        //
2178   //         \       \       //
2179   //          \      |       //
2180   //         [Root*] |       //
2181   //          ^      |       //
2182   //          f      |       //
2183   //          |      /       //
2184   //         [Y]    /        //
2185   //           ^   /         //
2186   //           f  /          //
2187   //           | /           //
2188   //          [GU]           //
2189   //
2190   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2191   // (call it Fold), then X is a predecessor of GU and a successor of
2192   // Fold. But since Fold and GU are glued together, this will create
2193   // a cycle in the scheduling graph.
2194 
2195   // If the node has glue, walk down the graph to the "lowest" node in the
2196   // glueged set.
2197   EVT VT = Root->getValueType(Root->getNumValues()-1);
2198   while (VT == MVT::Glue) {
2199     SDNode *GU = findGlueUse(Root);
2200     if (!GU)
2201       break;
2202     Root = GU;
2203     VT = Root->getValueType(Root->getNumValues()-1);
2204 
2205     // If our query node has a glue result with a use, we've walked up it.  If
2206     // the user (which has already been selected) has a chain or indirectly uses
2207     // the chain, HandleMergeInputChains will not consider it.  Because of
2208     // this, we cannot ignore chains in this predicate.
2209     IgnoreChains = false;
2210   }
2211 
2212   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2213 }
2214 
2215 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2216   SDLoc DL(N);
2217 
2218   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2219   SelectInlineAsmMemoryOperands(Ops, DL);
2220 
2221   const EVT VTs[] = {MVT::Other, MVT::Glue};
2222   SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2223   New->setNodeId(-1);
2224   ReplaceUses(N, New.getNode());
2225   CurDAG->RemoveDeadNode(N);
2226 }
2227 
2228 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2229   SDLoc dl(Op);
2230   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2231   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2232 
2233   EVT VT = Op->getValueType(0);
2234   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2235   Register Reg =
2236       TLI->getRegisterByName(RegStr->getString().data(), Ty,
2237                              CurDAG->getMachineFunction());
2238   SDValue New = CurDAG->getCopyFromReg(
2239                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2240   New->setNodeId(-1);
2241   ReplaceUses(Op, New.getNode());
2242   CurDAG->RemoveDeadNode(Op);
2243 }
2244 
2245 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2246   SDLoc dl(Op);
2247   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2248   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2249 
2250   EVT VT = Op->getOperand(2).getValueType();
2251   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2252 
2253   Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2254                                         CurDAG->getMachineFunction());
2255   SDValue New = CurDAG->getCopyToReg(
2256                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2257   New->setNodeId(-1);
2258   ReplaceUses(Op, New.getNode());
2259   CurDAG->RemoveDeadNode(Op);
2260 }
2261 
2262 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2263   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2264 }
2265 
2266 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2267   // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2268   // If FREEZE instruction is added later, the code below must be changed as
2269   // well.
2270   CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2271                        N->getOperand(0));
2272 }
2273 
2274 /// GetVBR - decode a vbr encoding whose top bit is set.
2275 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2276 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2277   assert(Val >= 128 && "Not a VBR");
2278   Val &= 127;  // Remove first vbr bit.
2279 
2280   unsigned Shift = 7;
2281   uint64_t NextBits;
2282   do {
2283     NextBits = MatcherTable[Idx++];
2284     Val |= (NextBits&127) << Shift;
2285     Shift += 7;
2286   } while (NextBits & 128);
2287 
2288   return Val;
2289 }
2290 
2291 /// When a match is complete, this method updates uses of interior chain results
2292 /// to use the new results.
2293 void SelectionDAGISel::UpdateChains(
2294     SDNode *NodeToMatch, SDValue InputChain,
2295     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2296   SmallVector<SDNode*, 4> NowDeadNodes;
2297 
2298   // Now that all the normal results are replaced, we replace the chain and
2299   // glue results if present.
2300   if (!ChainNodesMatched.empty()) {
2301     assert(InputChain.getNode() &&
2302            "Matched input chains but didn't produce a chain");
2303     // Loop over all of the nodes we matched that produced a chain result.
2304     // Replace all the chain results with the final chain we ended up with.
2305     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2306       SDNode *ChainNode = ChainNodesMatched[i];
2307       // If ChainNode is null, it's because we replaced it on a previous
2308       // iteration and we cleared it out of the map. Just skip it.
2309       if (!ChainNode)
2310         continue;
2311 
2312       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2313              "Deleted node left in chain");
2314 
2315       // Don't replace the results of the root node if we're doing a
2316       // MorphNodeTo.
2317       if (ChainNode == NodeToMatch && isMorphNodeTo)
2318         continue;
2319 
2320       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2321       if (ChainVal.getValueType() == MVT::Glue)
2322         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2323       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2324       SelectionDAG::DAGNodeDeletedListener NDL(
2325           *CurDAG, [&](SDNode *N, SDNode *E) {
2326             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2327                          static_cast<SDNode *>(nullptr));
2328           });
2329       if (ChainNode->getOpcode() != ISD::TokenFactor)
2330         ReplaceUses(ChainVal, InputChain);
2331 
2332       // If the node became dead and we haven't already seen it, delete it.
2333       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2334           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2335         NowDeadNodes.push_back(ChainNode);
2336     }
2337   }
2338 
2339   if (!NowDeadNodes.empty())
2340     CurDAG->RemoveDeadNodes(NowDeadNodes);
2341 
2342   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2343 }
2344 
2345 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2346 /// operation for when the pattern matched at least one node with a chains.  The
2347 /// input vector contains a list of all of the chained nodes that we match.  We
2348 /// must determine if this is a valid thing to cover (i.e. matching it won't
2349 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2350 /// be used as the input node chain for the generated nodes.
2351 static SDValue
2352 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2353                        SelectionDAG *CurDAG) {
2354 
2355   SmallPtrSet<const SDNode *, 16> Visited;
2356   SmallVector<const SDNode *, 8> Worklist;
2357   SmallVector<SDValue, 3> InputChains;
2358   unsigned int Max = 8192;
2359 
2360   // Quick exit on trivial merge.
2361   if (ChainNodesMatched.size() == 1)
2362     return ChainNodesMatched[0]->getOperand(0);
2363 
2364   // Add chains that aren't already added (internal). Peek through
2365   // token factors.
2366   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2367     if (V.getValueType() != MVT::Other)
2368       return;
2369     if (V->getOpcode() == ISD::EntryToken)
2370       return;
2371     if (!Visited.insert(V.getNode()).second)
2372       return;
2373     if (V->getOpcode() == ISD::TokenFactor) {
2374       for (const SDValue &Op : V->op_values())
2375         AddChains(Op);
2376     } else
2377       InputChains.push_back(V);
2378   };
2379 
2380   for (auto *N : ChainNodesMatched) {
2381     Worklist.push_back(N);
2382     Visited.insert(N);
2383   }
2384 
2385   while (!Worklist.empty())
2386     AddChains(Worklist.pop_back_val()->getOperand(0));
2387 
2388   // Skip the search if there are no chain dependencies.
2389   if (InputChains.size() == 0)
2390     return CurDAG->getEntryNode();
2391 
2392   // If one of these chains is a successor of input, we must have a
2393   // node that is both the predecessor and successor of the
2394   // to-be-merged nodes. Fail.
2395   Visited.clear();
2396   for (SDValue V : InputChains)
2397     Worklist.push_back(V.getNode());
2398 
2399   for (auto *N : ChainNodesMatched)
2400     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2401       return SDValue();
2402 
2403   // Return merged chain.
2404   if (InputChains.size() == 1)
2405     return InputChains[0];
2406   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2407                          MVT::Other, InputChains);
2408 }
2409 
2410 /// MorphNode - Handle morphing a node in place for the selector.
2411 SDNode *SelectionDAGISel::
2412 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2413           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2414   // It is possible we're using MorphNodeTo to replace a node with no
2415   // normal results with one that has a normal result (or we could be
2416   // adding a chain) and the input could have glue and chains as well.
2417   // In this case we need to shift the operands down.
2418   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2419   // than the old isel though.
2420   int OldGlueResultNo = -1, OldChainResultNo = -1;
2421 
2422   unsigned NTMNumResults = Node->getNumValues();
2423   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2424     OldGlueResultNo = NTMNumResults-1;
2425     if (NTMNumResults != 1 &&
2426         Node->getValueType(NTMNumResults-2) == MVT::Other)
2427       OldChainResultNo = NTMNumResults-2;
2428   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2429     OldChainResultNo = NTMNumResults-1;
2430 
2431   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2432   // that this deletes operands of the old node that become dead.
2433   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2434 
2435   // MorphNodeTo can operate in two ways: if an existing node with the
2436   // specified operands exists, it can just return it.  Otherwise, it
2437   // updates the node in place to have the requested operands.
2438   if (Res == Node) {
2439     // If we updated the node in place, reset the node ID.  To the isel,
2440     // this should be just like a newly allocated machine node.
2441     Res->setNodeId(-1);
2442   }
2443 
2444   unsigned ResNumResults = Res->getNumValues();
2445   // Move the glue if needed.
2446   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2447       (unsigned)OldGlueResultNo != ResNumResults-1)
2448     ReplaceUses(SDValue(Node, OldGlueResultNo),
2449                 SDValue(Res, ResNumResults - 1));
2450 
2451   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2452     --ResNumResults;
2453 
2454   // Move the chain reference if needed.
2455   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2456       (unsigned)OldChainResultNo != ResNumResults-1)
2457     ReplaceUses(SDValue(Node, OldChainResultNo),
2458                 SDValue(Res, ResNumResults - 1));
2459 
2460   // Otherwise, no replacement happened because the node already exists. Replace
2461   // Uses of the old node with the new one.
2462   if (Res != Node) {
2463     ReplaceNode(Node, Res);
2464   } else {
2465     EnforceNodeIdInvariant(Res);
2466   }
2467 
2468   return Res;
2469 }
2470 
2471 /// CheckSame - Implements OP_CheckSame.
2472 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2473 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2474           SDValue N,
2475           const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2476   // Accept if it is exactly the same as a previously recorded node.
2477   unsigned RecNo = MatcherTable[MatcherIndex++];
2478   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2479   return N == RecordedNodes[RecNo].first;
2480 }
2481 
2482 /// CheckChildSame - Implements OP_CheckChildXSame.
2483 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2484 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2485               SDValue N,
2486               const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2487               unsigned ChildNo) {
2488   if (ChildNo >= N.getNumOperands())
2489     return false;  // Match fails if out of range child #.
2490   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2491                      RecordedNodes);
2492 }
2493 
2494 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2495 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2496 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2497                       const SelectionDAGISel &SDISel) {
2498   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2499 }
2500 
2501 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2502 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2503 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2504                    const SelectionDAGISel &SDISel, SDNode *N) {
2505   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2506 }
2507 
2508 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2509 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2510             SDNode *N) {
2511   uint16_t Opc = MatcherTable[MatcherIndex++];
2512   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2513   return N->getOpcode() == Opc;
2514 }
2515 
2516 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2517 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2518           const TargetLowering *TLI, const DataLayout &DL) {
2519   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2520   if (N.getValueType() == VT) return true;
2521 
2522   // Handle the case when VT is iPTR.
2523   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2524 }
2525 
2526 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2527 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2528                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2529                unsigned ChildNo) {
2530   if (ChildNo >= N.getNumOperands())
2531     return false;  // Match fails if out of range child #.
2532   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2533                      DL);
2534 }
2535 
2536 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2537 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2538               SDValue N) {
2539   return cast<CondCodeSDNode>(N)->get() ==
2540       (ISD::CondCode)MatcherTable[MatcherIndex++];
2541 }
2542 
2543 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2544 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2545                     SDValue N) {
2546   if (2 >= N.getNumOperands())
2547     return false;
2548   return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2549 }
2550 
2551 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2552 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2553                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2554   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2555   if (cast<VTSDNode>(N)->getVT() == VT)
2556     return true;
2557 
2558   // Handle the case when VT is iPTR.
2559   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2560 }
2561 
2562 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2563 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2564              SDValue N) {
2565   int64_t Val = MatcherTable[MatcherIndex++];
2566   if (Val & 128)
2567     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2568 
2569   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2570   return C && C->getSExtValue() == Val;
2571 }
2572 
2573 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2574 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2575                   SDValue N, unsigned ChildNo) {
2576   if (ChildNo >= N.getNumOperands())
2577     return false;  // Match fails if out of range child #.
2578   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2579 }
2580 
2581 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2582 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2583             SDValue N, const SelectionDAGISel &SDISel) {
2584   int64_t Val = MatcherTable[MatcherIndex++];
2585   if (Val & 128)
2586     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2587 
2588   if (N->getOpcode() != ISD::AND) return false;
2589 
2590   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2591   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2592 }
2593 
2594 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2595 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2596            SDValue N, const SelectionDAGISel &SDISel) {
2597   int64_t Val = MatcherTable[MatcherIndex++];
2598   if (Val & 128)
2599     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2600 
2601   if (N->getOpcode() != ISD::OR) return false;
2602 
2603   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2604   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2605 }
2606 
2607 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2608 /// scope, evaluate the current node.  If the current predicate is known to
2609 /// fail, set Result=true and return anything.  If the current predicate is
2610 /// known to pass, set Result=false and return the MatcherIndex to continue
2611 /// with.  If the current predicate is unknown, set Result=false and return the
2612 /// MatcherIndex to continue with.
2613 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2614                                        unsigned Index, SDValue N,
2615                                        bool &Result,
2616                                        const SelectionDAGISel &SDISel,
2617                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2618   switch (Table[Index++]) {
2619   default:
2620     Result = false;
2621     return Index-1;  // Could not evaluate this predicate.
2622   case SelectionDAGISel::OPC_CheckSame:
2623     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2624     return Index;
2625   case SelectionDAGISel::OPC_CheckChild0Same:
2626   case SelectionDAGISel::OPC_CheckChild1Same:
2627   case SelectionDAGISel::OPC_CheckChild2Same:
2628   case SelectionDAGISel::OPC_CheckChild3Same:
2629     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2630                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2631     return Index;
2632   case SelectionDAGISel::OPC_CheckPatternPredicate:
2633     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2634     return Index;
2635   case SelectionDAGISel::OPC_CheckPredicate:
2636     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2637     return Index;
2638   case SelectionDAGISel::OPC_CheckOpcode:
2639     Result = !::CheckOpcode(Table, Index, N.getNode());
2640     return Index;
2641   case SelectionDAGISel::OPC_CheckType:
2642     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2643                           SDISel.CurDAG->getDataLayout());
2644     return Index;
2645   case SelectionDAGISel::OPC_CheckTypeRes: {
2646     unsigned Res = Table[Index++];
2647     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2648                           SDISel.CurDAG->getDataLayout());
2649     return Index;
2650   }
2651   case SelectionDAGISel::OPC_CheckChild0Type:
2652   case SelectionDAGISel::OPC_CheckChild1Type:
2653   case SelectionDAGISel::OPC_CheckChild2Type:
2654   case SelectionDAGISel::OPC_CheckChild3Type:
2655   case SelectionDAGISel::OPC_CheckChild4Type:
2656   case SelectionDAGISel::OPC_CheckChild5Type:
2657   case SelectionDAGISel::OPC_CheckChild6Type:
2658   case SelectionDAGISel::OPC_CheckChild7Type:
2659     Result = !::CheckChildType(
2660                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2661                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2662     return Index;
2663   case SelectionDAGISel::OPC_CheckCondCode:
2664     Result = !::CheckCondCode(Table, Index, N);
2665     return Index;
2666   case SelectionDAGISel::OPC_CheckChild2CondCode:
2667     Result = !::CheckChild2CondCode(Table, Index, N);
2668     return Index;
2669   case SelectionDAGISel::OPC_CheckValueType:
2670     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2671                                SDISel.CurDAG->getDataLayout());
2672     return Index;
2673   case SelectionDAGISel::OPC_CheckInteger:
2674     Result = !::CheckInteger(Table, Index, N);
2675     return Index;
2676   case SelectionDAGISel::OPC_CheckChild0Integer:
2677   case SelectionDAGISel::OPC_CheckChild1Integer:
2678   case SelectionDAGISel::OPC_CheckChild2Integer:
2679   case SelectionDAGISel::OPC_CheckChild3Integer:
2680   case SelectionDAGISel::OPC_CheckChild4Integer:
2681     Result = !::CheckChildInteger(Table, Index, N,
2682                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2683     return Index;
2684   case SelectionDAGISel::OPC_CheckAndImm:
2685     Result = !::CheckAndImm(Table, Index, N, SDISel);
2686     return Index;
2687   case SelectionDAGISel::OPC_CheckOrImm:
2688     Result = !::CheckOrImm(Table, Index, N, SDISel);
2689     return Index;
2690   }
2691 }
2692 
2693 namespace {
2694 
2695 struct MatchScope {
2696   /// FailIndex - If this match fails, this is the index to continue with.
2697   unsigned FailIndex;
2698 
2699   /// NodeStack - The node stack when the scope was formed.
2700   SmallVector<SDValue, 4> NodeStack;
2701 
2702   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2703   unsigned NumRecordedNodes;
2704 
2705   /// NumMatchedMemRefs - The number of matched memref entries.
2706   unsigned NumMatchedMemRefs;
2707 
2708   /// InputChain/InputGlue - The current chain/glue
2709   SDValue InputChain, InputGlue;
2710 
2711   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2712   bool HasChainNodesMatched;
2713 };
2714 
2715 /// \A DAG update listener to keep the matching state
2716 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2717 /// change the DAG while matching.  X86 addressing mode matcher is an example
2718 /// for this.
2719 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2720 {
2721   SDNode **NodeToMatch;
2722   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2723   SmallVectorImpl<MatchScope> &MatchScopes;
2724 
2725 public:
2726   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2727                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2728                     SmallVectorImpl<MatchScope> &MS)
2729       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2730         RecordedNodes(RN), MatchScopes(MS) {}
2731 
2732   void NodeDeleted(SDNode *N, SDNode *E) override {
2733     // Some early-returns here to avoid the search if we deleted the node or
2734     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2735     // do, so it's unnecessary to update matching state at that point).
2736     // Neither of these can occur currently because we only install this
2737     // update listener during matching a complex patterns.
2738     if (!E || E->isMachineOpcode())
2739       return;
2740     // Check if NodeToMatch was updated.
2741     if (N == *NodeToMatch)
2742       *NodeToMatch = E;
2743     // Performing linear search here does not matter because we almost never
2744     // run this code.  You'd have to have a CSE during complex pattern
2745     // matching.
2746     for (auto &I : RecordedNodes)
2747       if (I.first.getNode() == N)
2748         I.first.setNode(E);
2749 
2750     for (auto &I : MatchScopes)
2751       for (auto &J : I.NodeStack)
2752         if (J.getNode() == N)
2753           J.setNode(E);
2754   }
2755 };
2756 
2757 } // end anonymous namespace
2758 
2759 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2760                                         const unsigned char *MatcherTable,
2761                                         unsigned TableSize) {
2762   // FIXME: Should these even be selected?  Handle these cases in the caller?
2763   switch (NodeToMatch->getOpcode()) {
2764   default:
2765     break;
2766   case ISD::EntryToken:       // These nodes remain the same.
2767   case ISD::BasicBlock:
2768   case ISD::Register:
2769   case ISD::RegisterMask:
2770   case ISD::HANDLENODE:
2771   case ISD::MDNODE_SDNODE:
2772   case ISD::TargetConstant:
2773   case ISD::TargetConstantFP:
2774   case ISD::TargetConstantPool:
2775   case ISD::TargetFrameIndex:
2776   case ISD::TargetExternalSymbol:
2777   case ISD::MCSymbol:
2778   case ISD::TargetBlockAddress:
2779   case ISD::TargetJumpTable:
2780   case ISD::TargetGlobalTLSAddress:
2781   case ISD::TargetGlobalAddress:
2782   case ISD::TokenFactor:
2783   case ISD::CopyFromReg:
2784   case ISD::CopyToReg:
2785   case ISD::EH_LABEL:
2786   case ISD::ANNOTATION_LABEL:
2787   case ISD::LIFETIME_START:
2788   case ISD::LIFETIME_END:
2789     NodeToMatch->setNodeId(-1); // Mark selected.
2790     return;
2791   case ISD::AssertSext:
2792   case ISD::AssertZext:
2793   case ISD::AssertAlign:
2794     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2795     CurDAG->RemoveDeadNode(NodeToMatch);
2796     return;
2797   case ISD::INLINEASM:
2798   case ISD::INLINEASM_BR:
2799     Select_INLINEASM(NodeToMatch);
2800     return;
2801   case ISD::READ_REGISTER:
2802     Select_READ_REGISTER(NodeToMatch);
2803     return;
2804   case ISD::WRITE_REGISTER:
2805     Select_WRITE_REGISTER(NodeToMatch);
2806     return;
2807   case ISD::UNDEF:
2808     Select_UNDEF(NodeToMatch);
2809     return;
2810   case ISD::FREEZE:
2811     Select_FREEZE(NodeToMatch);
2812     return;
2813   }
2814 
2815   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2816 
2817   // Set up the node stack with NodeToMatch as the only node on the stack.
2818   SmallVector<SDValue, 8> NodeStack;
2819   SDValue N = SDValue(NodeToMatch, 0);
2820   NodeStack.push_back(N);
2821 
2822   // MatchScopes - Scopes used when matching, if a match failure happens, this
2823   // indicates where to continue checking.
2824   SmallVector<MatchScope, 8> MatchScopes;
2825 
2826   // RecordedNodes - This is the set of nodes that have been recorded by the
2827   // state machine.  The second value is the parent of the node, or null if the
2828   // root is recorded.
2829   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2830 
2831   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2832   // pattern.
2833   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2834 
2835   // These are the current input chain and glue for use when generating nodes.
2836   // Various Emit operations change these.  For example, emitting a copytoreg
2837   // uses and updates these.
2838   SDValue InputChain, InputGlue;
2839 
2840   // ChainNodesMatched - If a pattern matches nodes that have input/output
2841   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2842   // which ones they are.  The result is captured into this list so that we can
2843   // update the chain results when the pattern is complete.
2844   SmallVector<SDNode*, 3> ChainNodesMatched;
2845 
2846   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2847 
2848   // Determine where to start the interpreter.  Normally we start at opcode #0,
2849   // but if the state machine starts with an OPC_SwitchOpcode, then we
2850   // accelerate the first lookup (which is guaranteed to be hot) with the
2851   // OpcodeOffset table.
2852   unsigned MatcherIndex = 0;
2853 
2854   if (!OpcodeOffset.empty()) {
2855     // Already computed the OpcodeOffset table, just index into it.
2856     if (N.getOpcode() < OpcodeOffset.size())
2857       MatcherIndex = OpcodeOffset[N.getOpcode()];
2858     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2859 
2860   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2861     // Otherwise, the table isn't computed, but the state machine does start
2862     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2863     // is the first time we're selecting an instruction.
2864     unsigned Idx = 1;
2865     while (true) {
2866       // Get the size of this case.
2867       unsigned CaseSize = MatcherTable[Idx++];
2868       if (CaseSize & 128)
2869         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2870       if (CaseSize == 0) break;
2871 
2872       // Get the opcode, add the index to the table.
2873       uint16_t Opc = MatcherTable[Idx++];
2874       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2875       if (Opc >= OpcodeOffset.size())
2876         OpcodeOffset.resize((Opc+1)*2);
2877       OpcodeOffset[Opc] = Idx;
2878       Idx += CaseSize;
2879     }
2880 
2881     // Okay, do the lookup for the first opcode.
2882     if (N.getOpcode() < OpcodeOffset.size())
2883       MatcherIndex = OpcodeOffset[N.getOpcode()];
2884   }
2885 
2886   while (true) {
2887     assert(MatcherIndex < TableSize && "Invalid index");
2888 #ifndef NDEBUG
2889     unsigned CurrentOpcodeIndex = MatcherIndex;
2890 #endif
2891     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2892     switch (Opcode) {
2893     case OPC_Scope: {
2894       // Okay, the semantics of this operation are that we should push a scope
2895       // then evaluate the first child.  However, pushing a scope only to have
2896       // the first check fail (which then pops it) is inefficient.  If we can
2897       // determine immediately that the first check (or first several) will
2898       // immediately fail, don't even bother pushing a scope for them.
2899       unsigned FailIndex;
2900 
2901       while (true) {
2902         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2903         if (NumToSkip & 128)
2904           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2905         // Found the end of the scope with no match.
2906         if (NumToSkip == 0) {
2907           FailIndex = 0;
2908           break;
2909         }
2910 
2911         FailIndex = MatcherIndex+NumToSkip;
2912 
2913         unsigned MatcherIndexOfPredicate = MatcherIndex;
2914         (void)MatcherIndexOfPredicate; // silence warning.
2915 
2916         // If we can't evaluate this predicate without pushing a scope (e.g. if
2917         // it is a 'MoveParent') or if the predicate succeeds on this node, we
2918         // push the scope and evaluate the full predicate chain.
2919         bool Result;
2920         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2921                                               Result, *this, RecordedNodes);
2922         if (!Result)
2923           break;
2924 
2925         LLVM_DEBUG(
2926             dbgs() << "  Skipped scope entry (due to false predicate) at "
2927                    << "index " << MatcherIndexOfPredicate << ", continuing at "
2928                    << FailIndex << "\n");
2929         ++NumDAGIselRetries;
2930 
2931         // Otherwise, we know that this case of the Scope is guaranteed to fail,
2932         // move to the next case.
2933         MatcherIndex = FailIndex;
2934       }
2935 
2936       // If the whole scope failed to match, bail.
2937       if (FailIndex == 0) break;
2938 
2939       // Push a MatchScope which indicates where to go if the first child fails
2940       // to match.
2941       MatchScope NewEntry;
2942       NewEntry.FailIndex = FailIndex;
2943       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2944       NewEntry.NumRecordedNodes = RecordedNodes.size();
2945       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2946       NewEntry.InputChain = InputChain;
2947       NewEntry.InputGlue = InputGlue;
2948       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2949       MatchScopes.push_back(NewEntry);
2950       continue;
2951     }
2952     case OPC_RecordNode: {
2953       // Remember this node, it may end up being an operand in the pattern.
2954       SDNode *Parent = nullptr;
2955       if (NodeStack.size() > 1)
2956         Parent = NodeStack[NodeStack.size()-2].getNode();
2957       RecordedNodes.push_back(std::make_pair(N, Parent));
2958       continue;
2959     }
2960 
2961     case OPC_RecordChild0: case OPC_RecordChild1:
2962     case OPC_RecordChild2: case OPC_RecordChild3:
2963     case OPC_RecordChild4: case OPC_RecordChild5:
2964     case OPC_RecordChild6: case OPC_RecordChild7: {
2965       unsigned ChildNo = Opcode-OPC_RecordChild0;
2966       if (ChildNo >= N.getNumOperands())
2967         break;  // Match fails if out of range child #.
2968 
2969       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2970                                              N.getNode()));
2971       continue;
2972     }
2973     case OPC_RecordMemRef:
2974       if (auto *MN = dyn_cast<MemSDNode>(N))
2975         MatchedMemRefs.push_back(MN->getMemOperand());
2976       else {
2977         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2978                    dbgs() << '\n');
2979       }
2980 
2981       continue;
2982 
2983     case OPC_CaptureGlueInput:
2984       // If the current node has an input glue, capture it in InputGlue.
2985       if (N->getNumOperands() != 0 &&
2986           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2987         InputGlue = N->getOperand(N->getNumOperands()-1);
2988       continue;
2989 
2990     case OPC_MoveChild: {
2991       unsigned ChildNo = MatcherTable[MatcherIndex++];
2992       if (ChildNo >= N.getNumOperands())
2993         break;  // Match fails if out of range child #.
2994       N = N.getOperand(ChildNo);
2995       NodeStack.push_back(N);
2996       continue;
2997     }
2998 
2999     case OPC_MoveChild0: case OPC_MoveChild1:
3000     case OPC_MoveChild2: case OPC_MoveChild3:
3001     case OPC_MoveChild4: case OPC_MoveChild5:
3002     case OPC_MoveChild6: case OPC_MoveChild7: {
3003       unsigned ChildNo = Opcode-OPC_MoveChild0;
3004       if (ChildNo >= N.getNumOperands())
3005         break;  // Match fails if out of range child #.
3006       N = N.getOperand(ChildNo);
3007       NodeStack.push_back(N);
3008       continue;
3009     }
3010 
3011     case OPC_MoveParent:
3012       // Pop the current node off the NodeStack.
3013       NodeStack.pop_back();
3014       assert(!NodeStack.empty() && "Node stack imbalance!");
3015       N = NodeStack.back();
3016       continue;
3017 
3018     case OPC_CheckSame:
3019       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3020       continue;
3021 
3022     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3023     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3024       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3025                             Opcode-OPC_CheckChild0Same))
3026         break;
3027       continue;
3028 
3029     case OPC_CheckPatternPredicate:
3030       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3031       continue;
3032     case OPC_CheckPredicate:
3033       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3034                                 N.getNode()))
3035         break;
3036       continue;
3037     case OPC_CheckPredicateWithOperands: {
3038       unsigned OpNum = MatcherTable[MatcherIndex++];
3039       SmallVector<SDValue, 8> Operands;
3040 
3041       for (unsigned i = 0; i < OpNum; ++i)
3042         Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3043 
3044       unsigned PredNo = MatcherTable[MatcherIndex++];
3045       if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3046         break;
3047       continue;
3048     }
3049     case OPC_CheckComplexPat: {
3050       unsigned CPNum = MatcherTable[MatcherIndex++];
3051       unsigned RecNo = MatcherTable[MatcherIndex++];
3052       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3053 
3054       // If target can modify DAG during matching, keep the matching state
3055       // consistent.
3056       std::unique_ptr<MatchStateUpdater> MSU;
3057       if (ComplexPatternFuncMutatesDAG())
3058         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3059                                         MatchScopes));
3060 
3061       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3062                                RecordedNodes[RecNo].first, CPNum,
3063                                RecordedNodes))
3064         break;
3065       continue;
3066     }
3067     case OPC_CheckOpcode:
3068       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3069       continue;
3070 
3071     case OPC_CheckType:
3072       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3073                        CurDAG->getDataLayout()))
3074         break;
3075       continue;
3076 
3077     case OPC_CheckTypeRes: {
3078       unsigned Res = MatcherTable[MatcherIndex++];
3079       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3080                        CurDAG->getDataLayout()))
3081         break;
3082       continue;
3083     }
3084 
3085     case OPC_SwitchOpcode: {
3086       unsigned CurNodeOpcode = N.getOpcode();
3087       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3088       unsigned CaseSize;
3089       while (true) {
3090         // Get the size of this case.
3091         CaseSize = MatcherTable[MatcherIndex++];
3092         if (CaseSize & 128)
3093           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3094         if (CaseSize == 0) break;
3095 
3096         uint16_t Opc = MatcherTable[MatcherIndex++];
3097         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3098 
3099         // If the opcode matches, then we will execute this case.
3100         if (CurNodeOpcode == Opc)
3101           break;
3102 
3103         // Otherwise, skip over this case.
3104         MatcherIndex += CaseSize;
3105       }
3106 
3107       // If no cases matched, bail out.
3108       if (CaseSize == 0) break;
3109 
3110       // Otherwise, execute the case we found.
3111       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3112                         << MatcherIndex << "\n");
3113       continue;
3114     }
3115 
3116     case OPC_SwitchType: {
3117       MVT CurNodeVT = N.getSimpleValueType();
3118       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3119       unsigned CaseSize;
3120       while (true) {
3121         // Get the size of this case.
3122         CaseSize = MatcherTable[MatcherIndex++];
3123         if (CaseSize & 128)
3124           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3125         if (CaseSize == 0) break;
3126 
3127         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3128         if (CaseVT == MVT::iPTR)
3129           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3130 
3131         // If the VT matches, then we will execute this case.
3132         if (CurNodeVT == CaseVT)
3133           break;
3134 
3135         // Otherwise, skip over this case.
3136         MatcherIndex += CaseSize;
3137       }
3138 
3139       // If no cases matched, bail out.
3140       if (CaseSize == 0) break;
3141 
3142       // Otherwise, execute the case we found.
3143       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3144                         << "] from " << SwitchStart << " to " << MatcherIndex
3145                         << '\n');
3146       continue;
3147     }
3148     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3149     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3150     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3151     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3152       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3153                             CurDAG->getDataLayout(),
3154                             Opcode - OPC_CheckChild0Type))
3155         break;
3156       continue;
3157     case OPC_CheckCondCode:
3158       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3159       continue;
3160     case OPC_CheckChild2CondCode:
3161       if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3162       continue;
3163     case OPC_CheckValueType:
3164       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3165                             CurDAG->getDataLayout()))
3166         break;
3167       continue;
3168     case OPC_CheckInteger:
3169       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3170       continue;
3171     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3172     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3173     case OPC_CheckChild4Integer:
3174       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3175                                Opcode-OPC_CheckChild0Integer)) break;
3176       continue;
3177     case OPC_CheckAndImm:
3178       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3179       continue;
3180     case OPC_CheckOrImm:
3181       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3182       continue;
3183     case OPC_CheckImmAllOnesV:
3184       if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3185       continue;
3186     case OPC_CheckImmAllZerosV:
3187       if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3188       continue;
3189 
3190     case OPC_CheckFoldableChainNode: {
3191       assert(NodeStack.size() != 1 && "No parent node");
3192       // Verify that all intermediate nodes between the root and this one have
3193       // a single use (ignoring chains, which are handled in UpdateChains).
3194       bool HasMultipleUses = false;
3195       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3196         unsigned NNonChainUses = 0;
3197         SDNode *NS = NodeStack[i].getNode();
3198         for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3199           if (UI.getUse().getValueType() != MVT::Other)
3200             if (++NNonChainUses > 1) {
3201               HasMultipleUses = true;
3202               break;
3203             }
3204         if (HasMultipleUses) break;
3205       }
3206       if (HasMultipleUses) break;
3207 
3208       // Check to see that the target thinks this is profitable to fold and that
3209       // we can fold it without inducing cycles in the graph.
3210       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3211                               NodeToMatch) ||
3212           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3213                          NodeToMatch, OptLevel,
3214                          true/*We validate our own chains*/))
3215         break;
3216 
3217       continue;
3218     }
3219     case OPC_EmitInteger: {
3220       MVT::SimpleValueType VT =
3221         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3222       int64_t Val = MatcherTable[MatcherIndex++];
3223       if (Val & 128)
3224         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3225       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3226                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3227                                                         VT), nullptr));
3228       continue;
3229     }
3230     case OPC_EmitRegister: {
3231       MVT::SimpleValueType VT =
3232         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3233       unsigned RegNo = MatcherTable[MatcherIndex++];
3234       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3235                               CurDAG->getRegister(RegNo, VT), nullptr));
3236       continue;
3237     }
3238     case OPC_EmitRegister2: {
3239       // For targets w/ more than 256 register names, the register enum
3240       // values are stored in two bytes in the matcher table (just like
3241       // opcodes).
3242       MVT::SimpleValueType VT =
3243         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3244       unsigned RegNo = MatcherTable[MatcherIndex++];
3245       RegNo |= MatcherTable[MatcherIndex++] << 8;
3246       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3247                               CurDAG->getRegister(RegNo, VT), nullptr));
3248       continue;
3249     }
3250 
3251     case OPC_EmitConvertToTarget:  {
3252       // Convert from IMM/FPIMM to target version.
3253       unsigned RecNo = MatcherTable[MatcherIndex++];
3254       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3255       SDValue Imm = RecordedNodes[RecNo].first;
3256 
3257       if (Imm->getOpcode() == ISD::Constant) {
3258         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3259         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3260                                         Imm.getValueType());
3261       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3262         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3263         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3264                                           Imm.getValueType());
3265       }
3266 
3267       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3268       continue;
3269     }
3270 
3271     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3272     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3273     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3274       // These are space-optimized forms of OPC_EmitMergeInputChains.
3275       assert(!InputChain.getNode() &&
3276              "EmitMergeInputChains should be the first chain producing node");
3277       assert(ChainNodesMatched.empty() &&
3278              "Should only have one EmitMergeInputChains per match");
3279 
3280       // Read all of the chained nodes.
3281       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3282       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3283       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3284 
3285       // FIXME: What if other value results of the node have uses not matched
3286       // by this pattern?
3287       if (ChainNodesMatched.back() != NodeToMatch &&
3288           !RecordedNodes[RecNo].first.hasOneUse()) {
3289         ChainNodesMatched.clear();
3290         break;
3291       }
3292 
3293       // Merge the input chains if they are not intra-pattern references.
3294       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3295 
3296       if (!InputChain.getNode())
3297         break;  // Failed to merge.
3298       continue;
3299     }
3300 
3301     case OPC_EmitMergeInputChains: {
3302       assert(!InputChain.getNode() &&
3303              "EmitMergeInputChains should be the first chain producing node");
3304       // This node gets a list of nodes we matched in the input that have
3305       // chains.  We want to token factor all of the input chains to these nodes
3306       // together.  However, if any of the input chains is actually one of the
3307       // nodes matched in this pattern, then we have an intra-match reference.
3308       // Ignore these because the newly token factored chain should not refer to
3309       // the old nodes.
3310       unsigned NumChains = MatcherTable[MatcherIndex++];
3311       assert(NumChains != 0 && "Can't TF zero chains");
3312 
3313       assert(ChainNodesMatched.empty() &&
3314              "Should only have one EmitMergeInputChains per match");
3315 
3316       // Read all of the chained nodes.
3317       for (unsigned i = 0; i != NumChains; ++i) {
3318         unsigned RecNo = MatcherTable[MatcherIndex++];
3319         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3320         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3321 
3322         // FIXME: What if other value results of the node have uses not matched
3323         // by this pattern?
3324         if (ChainNodesMatched.back() != NodeToMatch &&
3325             !RecordedNodes[RecNo].first.hasOneUse()) {
3326           ChainNodesMatched.clear();
3327           break;
3328         }
3329       }
3330 
3331       // If the inner loop broke out, the match fails.
3332       if (ChainNodesMatched.empty())
3333         break;
3334 
3335       // Merge the input chains if they are not intra-pattern references.
3336       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3337 
3338       if (!InputChain.getNode())
3339         break;  // Failed to merge.
3340 
3341       continue;
3342     }
3343 
3344     case OPC_EmitCopyToReg:
3345     case OPC_EmitCopyToReg2: {
3346       unsigned RecNo = MatcherTable[MatcherIndex++];
3347       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3348       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3349       if (Opcode == OPC_EmitCopyToReg2)
3350         DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3351 
3352       if (!InputChain.getNode())
3353         InputChain = CurDAG->getEntryNode();
3354 
3355       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3356                                         DestPhysReg, RecordedNodes[RecNo].first,
3357                                         InputGlue);
3358 
3359       InputGlue = InputChain.getValue(1);
3360       continue;
3361     }
3362 
3363     case OPC_EmitNodeXForm: {
3364       unsigned XFormNo = MatcherTable[MatcherIndex++];
3365       unsigned RecNo = MatcherTable[MatcherIndex++];
3366       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3367       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3368       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3369       continue;
3370     }
3371     case OPC_Coverage: {
3372       // This is emitted right before MorphNode/EmitNode.
3373       // So it should be safe to assume that this node has been selected
3374       unsigned index = MatcherTable[MatcherIndex++];
3375       index |= (MatcherTable[MatcherIndex++] << 8);
3376       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3377       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3378       continue;
3379     }
3380 
3381     case OPC_EmitNode:     case OPC_MorphNodeTo:
3382     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3383     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3384       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3385       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3386       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3387       // Get the result VT list.
3388       unsigned NumVTs;
3389       // If this is one of the compressed forms, get the number of VTs based
3390       // on the Opcode. Otherwise read the next byte from the table.
3391       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3392         NumVTs = Opcode - OPC_MorphNodeTo0;
3393       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3394         NumVTs = Opcode - OPC_EmitNode0;
3395       else
3396         NumVTs = MatcherTable[MatcherIndex++];
3397       SmallVector<EVT, 4> VTs;
3398       for (unsigned i = 0; i != NumVTs; ++i) {
3399         MVT::SimpleValueType VT =
3400           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3401         if (VT == MVT::iPTR)
3402           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3403         VTs.push_back(VT);
3404       }
3405 
3406       if (EmitNodeInfo & OPFL_Chain)
3407         VTs.push_back(MVT::Other);
3408       if (EmitNodeInfo & OPFL_GlueOutput)
3409         VTs.push_back(MVT::Glue);
3410 
3411       // This is hot code, so optimize the two most common cases of 1 and 2
3412       // results.
3413       SDVTList VTList;
3414       if (VTs.size() == 1)
3415         VTList = CurDAG->getVTList(VTs[0]);
3416       else if (VTs.size() == 2)
3417         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3418       else
3419         VTList = CurDAG->getVTList(VTs);
3420 
3421       // Get the operand list.
3422       unsigned NumOps = MatcherTable[MatcherIndex++];
3423       SmallVector<SDValue, 8> Ops;
3424       for (unsigned i = 0; i != NumOps; ++i) {
3425         unsigned RecNo = MatcherTable[MatcherIndex++];
3426         if (RecNo & 128)
3427           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3428 
3429         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3430         Ops.push_back(RecordedNodes[RecNo].first);
3431       }
3432 
3433       // If there are variadic operands to add, handle them now.
3434       if (EmitNodeInfo & OPFL_VariadicInfo) {
3435         // Determine the start index to copy from.
3436         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3437         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3438         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3439                "Invalid variadic node");
3440         // Copy all of the variadic operands, not including a potential glue
3441         // input.
3442         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3443              i != e; ++i) {
3444           SDValue V = NodeToMatch->getOperand(i);
3445           if (V.getValueType() == MVT::Glue) break;
3446           Ops.push_back(V);
3447         }
3448       }
3449 
3450       // If this has chain/glue inputs, add them.
3451       if (EmitNodeInfo & OPFL_Chain)
3452         Ops.push_back(InputChain);
3453       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3454         Ops.push_back(InputGlue);
3455 
3456       // Check whether any matched node could raise an FP exception.  Since all
3457       // such nodes must have a chain, it suffices to check ChainNodesMatched.
3458       // We need to perform this check before potentially modifying one of the
3459       // nodes via MorphNode.
3460       bool MayRaiseFPException = false;
3461       for (auto *N : ChainNodesMatched)
3462         if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3463           MayRaiseFPException = true;
3464           break;
3465         }
3466 
3467       // Create the node.
3468       MachineSDNode *Res = nullptr;
3469       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3470                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3471       if (!IsMorphNodeTo) {
3472         // If this is a normal EmitNode command, just create the new node and
3473         // add the results to the RecordedNodes list.
3474         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3475                                      VTList, Ops);
3476 
3477         // Add all the non-glue/non-chain results to the RecordedNodes list.
3478         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3479           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3480           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3481                                                              nullptr));
3482         }
3483       } else {
3484         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3485                "NodeToMatch was removed partway through selection");
3486         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3487                                                               SDNode *E) {
3488           CurDAG->salvageDebugInfo(*N);
3489           auto &Chain = ChainNodesMatched;
3490           assert((!E || !is_contained(Chain, N)) &&
3491                  "Chain node replaced during MorphNode");
3492           Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3493         });
3494         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3495                                             Ops, EmitNodeInfo));
3496       }
3497 
3498       // Set the NoFPExcept flag when no original matched node could
3499       // raise an FP exception, but the new node potentially might.
3500       if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3501         SDNodeFlags Flags = Res->getFlags();
3502         Flags.setNoFPExcept(true);
3503         Res->setFlags(Flags);
3504       }
3505 
3506       // If the node had chain/glue results, update our notion of the current
3507       // chain and glue.
3508       if (EmitNodeInfo & OPFL_GlueOutput) {
3509         InputGlue = SDValue(Res, VTs.size()-1);
3510         if (EmitNodeInfo & OPFL_Chain)
3511           InputChain = SDValue(Res, VTs.size()-2);
3512       } else if (EmitNodeInfo & OPFL_Chain)
3513         InputChain = SDValue(Res, VTs.size()-1);
3514 
3515       // If the OPFL_MemRefs glue is set on this node, slap all of the
3516       // accumulated memrefs onto it.
3517       //
3518       // FIXME: This is vastly incorrect for patterns with multiple outputs
3519       // instructions that access memory and for ComplexPatterns that match
3520       // loads.
3521       if (EmitNodeInfo & OPFL_MemRefs) {
3522         // Only attach load or store memory operands if the generated
3523         // instruction may load or store.
3524         const MCInstrDesc &MCID = TII->get(TargetOpc);
3525         bool mayLoad = MCID.mayLoad();
3526         bool mayStore = MCID.mayStore();
3527 
3528         // We expect to have relatively few of these so just filter them into a
3529         // temporary buffer so that we can easily add them to the instruction.
3530         SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3531         for (MachineMemOperand *MMO : MatchedMemRefs) {
3532           if (MMO->isLoad()) {
3533             if (mayLoad)
3534               FilteredMemRefs.push_back(MMO);
3535           } else if (MMO->isStore()) {
3536             if (mayStore)
3537               FilteredMemRefs.push_back(MMO);
3538           } else {
3539             FilteredMemRefs.push_back(MMO);
3540           }
3541         }
3542 
3543         CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3544       }
3545 
3546       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3547                      << "  Dropping mem operands\n";
3548                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3549                         << " node: ";
3550                  Res->dump(CurDAG););
3551 
3552       // If this was a MorphNodeTo then we're completely done!
3553       if (IsMorphNodeTo) {
3554         // Update chain uses.
3555         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3556         return;
3557       }
3558       continue;
3559     }
3560 
3561     case OPC_CompleteMatch: {
3562       // The match has been completed, and any new nodes (if any) have been
3563       // created.  Patch up references to the matched dag to use the newly
3564       // created nodes.
3565       unsigned NumResults = MatcherTable[MatcherIndex++];
3566 
3567       for (unsigned i = 0; i != NumResults; ++i) {
3568         unsigned ResSlot = MatcherTable[MatcherIndex++];
3569         if (ResSlot & 128)
3570           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3571 
3572         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3573         SDValue Res = RecordedNodes[ResSlot].first;
3574 
3575         assert(i < NodeToMatch->getNumValues() &&
3576                NodeToMatch->getValueType(i) != MVT::Other &&
3577                NodeToMatch->getValueType(i) != MVT::Glue &&
3578                "Invalid number of results to complete!");
3579         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3580                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3581                 Res.getValueType() == MVT::iPTR ||
3582                 NodeToMatch->getValueType(i).getSizeInBits() ==
3583                     Res.getValueSizeInBits()) &&
3584                "invalid replacement");
3585         ReplaceUses(SDValue(NodeToMatch, i), Res);
3586       }
3587 
3588       // Update chain uses.
3589       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3590 
3591       // If the root node defines glue, we need to update it to the glue result.
3592       // TODO: This never happens in our tests and I think it can be removed /
3593       // replaced with an assert, but if we do it this the way the change is
3594       // NFC.
3595       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3596               MVT::Glue &&
3597           InputGlue.getNode())
3598         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3599                     InputGlue);
3600 
3601       assert(NodeToMatch->use_empty() &&
3602              "Didn't replace all uses of the node?");
3603       CurDAG->RemoveDeadNode(NodeToMatch);
3604 
3605       return;
3606     }
3607     }
3608 
3609     // If the code reached this point, then the match failed.  See if there is
3610     // another child to try in the current 'Scope', otherwise pop it until we
3611     // find a case to check.
3612     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3613                       << "\n");
3614     ++NumDAGIselRetries;
3615     while (true) {
3616       if (MatchScopes.empty()) {
3617         CannotYetSelect(NodeToMatch);
3618         return;
3619       }
3620 
3621       // Restore the interpreter state back to the point where the scope was
3622       // formed.
3623       MatchScope &LastScope = MatchScopes.back();
3624       RecordedNodes.resize(LastScope.NumRecordedNodes);
3625       NodeStack.clear();
3626       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3627       N = NodeStack.back();
3628 
3629       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3630         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3631       MatcherIndex = LastScope.FailIndex;
3632 
3633       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3634 
3635       InputChain = LastScope.InputChain;
3636       InputGlue = LastScope.InputGlue;
3637       if (!LastScope.HasChainNodesMatched)
3638         ChainNodesMatched.clear();
3639 
3640       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3641       // we have reached the end of this scope, otherwise we have another child
3642       // in the current scope to try.
3643       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3644       if (NumToSkip & 128)
3645         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3646 
3647       // If we have another child in this scope to match, update FailIndex and
3648       // try it.
3649       if (NumToSkip != 0) {
3650         LastScope.FailIndex = MatcherIndex+NumToSkip;
3651         break;
3652       }
3653 
3654       // End of this scope, pop it and try the next child in the containing
3655       // scope.
3656       MatchScopes.pop_back();
3657     }
3658   }
3659 }
3660 
3661 /// Return whether the node may raise an FP exception.
3662 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3663   // For machine opcodes, consult the MCID flag.
3664   if (N->isMachineOpcode()) {
3665     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3666     return MCID.mayRaiseFPException();
3667   }
3668 
3669   // For ISD opcodes, only StrictFP opcodes may raise an FP
3670   // exception.
3671   if (N->isTargetOpcode())
3672     return N->isTargetStrictFPOpcode();
3673   return N->isStrictFPOpcode();
3674 }
3675 
3676 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3677   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3678   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3679   if (!C)
3680     return false;
3681 
3682   // Detect when "or" is used to add an offset to a stack object.
3683   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3684     MachineFrameInfo &MFI = MF->getFrameInfo();
3685     Align A = MFI.getObjectAlign(FN->getIndex());
3686     int32_t Off = C->getSExtValue();
3687     // If the alleged offset fits in the zero bits guaranteed by
3688     // the alignment, then this or is really an add.
3689     return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3690   }
3691   return false;
3692 }
3693 
3694 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3695   std::string msg;
3696   raw_string_ostream Msg(msg);
3697   Msg << "Cannot select: ";
3698 
3699   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3700       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3701       N->getOpcode() != ISD::INTRINSIC_VOID) {
3702     N->printrFull(Msg, CurDAG);
3703     Msg << "\nIn function: " << MF->getName();
3704   } else {
3705     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3706     unsigned iid =
3707       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3708     if (iid < Intrinsic::num_intrinsics)
3709       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3710     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3711       Msg << "target intrinsic %" << TII->getName(iid);
3712     else
3713       Msg << "unknown intrinsic #" << iid;
3714   }
3715   report_fatal_error(Msg.str());
3716 }
3717 
3718 char SelectionDAGISel::ID = 0;
3719