1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/UniformityAnalysis.h" 34 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBuilder.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachinePassRegistry.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/MachineValueType.h" 52 #include "llvm/CodeGen/SchedulerRegistry.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/StackProtector.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSubtargetInfo.h" 62 #include "llvm/CodeGen/ValueTypes.h" 63 #include "llvm/CodeGen/WinEHFuncInfo.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstIterator.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/PrintPasses.h" 82 #include "llvm/IR/Statepoint.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/MC/MCInstrDesc.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CodeGen.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/ErrorHandling.h" 96 #include "llvm/Support/KnownBits.h" 97 #include "llvm/Support/Timer.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <iterator> 107 #include <limits> 108 #include <memory> 109 #include <optional> 110 #include <string> 111 #include <utility> 112 #include <vector> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "isel" 117 #define ISEL_DUMP_DEBUG_TYPE DEBUG_TYPE "-dump" 118 119 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 120 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 121 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 122 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 123 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 124 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 125 STATISTIC(NumFastIselFailLowerArguments, 126 "Number of entry blocks where fast isel failed to lower arguments"); 127 128 static cl::opt<int> EnableFastISelAbort( 129 "fast-isel-abort", cl::Hidden, 130 cl::desc("Enable abort calls when \"fast\" instruction selection " 131 "fails to lower an instruction: 0 disable the abort, 1 will " 132 "abort but for args, calls and terminators, 2 will also " 133 "abort for argument lowering, and 3 will never fallback " 134 "to SelectionDAG.")); 135 136 static cl::opt<bool> EnableFastISelFallbackReport( 137 "fast-isel-report-on-fallback", cl::Hidden, 138 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 139 "falls back to SelectionDAG.")); 140 141 static cl::opt<bool> 142 UseMBPI("use-mbpi", 143 cl::desc("use Machine Branch Probability Info"), 144 cl::init(true), cl::Hidden); 145 146 #ifndef NDEBUG 147 static cl::opt<std::string> 148 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 149 cl::desc("Only display the basic block whose name " 150 "matches this for all view-*-dags options")); 151 static cl::opt<bool> 152 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 153 cl::desc("Pop up a window to show dags before the first " 154 "dag combine pass")); 155 static cl::opt<bool> 156 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 157 cl::desc("Pop up a window to show dags before legalize types")); 158 static cl::opt<bool> 159 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 160 cl::desc("Pop up a window to show dags before the post " 161 "legalize types dag combine pass")); 162 static cl::opt<bool> 163 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 164 cl::desc("Pop up a window to show dags before legalize")); 165 static cl::opt<bool> 166 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 167 cl::desc("Pop up a window to show dags before the second " 168 "dag combine pass")); 169 static cl::opt<bool> 170 ViewISelDAGs("view-isel-dags", cl::Hidden, 171 cl::desc("Pop up a window to show isel dags as they are selected")); 172 static cl::opt<bool> 173 ViewSchedDAGs("view-sched-dags", cl::Hidden, 174 cl::desc("Pop up a window to show sched dags as they are processed")); 175 static cl::opt<bool> 176 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 177 cl::desc("Pop up a window to show SUnit dags after they are processed")); 178 #else 179 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, 180 ViewDAGCombineLT = false, ViewLegalizeDAGs = false, 181 ViewDAGCombine2 = false, ViewISelDAGs = false, 182 ViewSchedDAGs = false, ViewSUnitDAGs = false; 183 #endif 184 185 #ifndef NDEBUG 186 #define ISEL_DUMP(X) \ 187 do { \ 188 if (llvm::DebugFlag && \ 189 (isCurrentDebugType(DEBUG_TYPE) || \ 190 (isCurrentDebugType(ISEL_DUMP_DEBUG_TYPE) && MatchFilterFuncName))) { \ 191 X; \ 192 } \ 193 } while (false) 194 #else 195 #define ISEL_DUMP(X) do { } while (false) 196 #endif 197 198 //===---------------------------------------------------------------------===// 199 /// 200 /// RegisterScheduler class - Track the registration of instruction schedulers. 201 /// 202 //===---------------------------------------------------------------------===// 203 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 204 RegisterScheduler::Registry; 205 206 //===---------------------------------------------------------------------===// 207 /// 208 /// ISHeuristic command line option for instruction schedulers. 209 /// 210 //===---------------------------------------------------------------------===// 211 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 212 RegisterPassParser<RegisterScheduler>> 213 ISHeuristic("pre-RA-sched", 214 cl::init(&createDefaultScheduler), cl::Hidden, 215 cl::desc("Instruction schedulers available (before register" 216 " allocation):")); 217 218 static RegisterScheduler 219 defaultListDAGScheduler("default", "Best scheduler for the target", 220 createDefaultScheduler); 221 222 static bool dontUseFastISelFor(const Function &Fn) { 223 // Don't enable FastISel for functions with swiftasync Arguments. 224 // Debug info on those is reliant on good Argument lowering, and FastISel is 225 // not capable of lowering the entire function. Mixing the two selectors tend 226 // to result in poor lowering of Arguments. 227 return any_of(Fn.args(), [](const Argument &Arg) { 228 return Arg.hasAttribute(Attribute::AttrKind::SwiftAsync); 229 }); 230 } 231 232 namespace llvm { 233 234 //===--------------------------------------------------------------------===// 235 /// This class is used by SelectionDAGISel to temporarily override 236 /// the optimization level on a per-function basis. 237 class OptLevelChanger { 238 SelectionDAGISel &IS; 239 CodeGenOptLevel SavedOptLevel; 240 bool SavedFastISel; 241 242 public: 243 OptLevelChanger(SelectionDAGISel &ISel, CodeGenOptLevel NewOptLevel) 244 : IS(ISel) { 245 SavedOptLevel = IS.OptLevel; 246 SavedFastISel = IS.TM.Options.EnableFastISel; 247 if (NewOptLevel != SavedOptLevel) { 248 IS.OptLevel = NewOptLevel; 249 IS.TM.setOptLevel(NewOptLevel); 250 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 251 << IS.MF->getFunction().getName() << "\n"); 252 LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(SavedOptLevel) 253 << " ; After: -O" << static_cast<int>(NewOptLevel) 254 << "\n"); 255 if (NewOptLevel == CodeGenOptLevel::None) 256 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 257 } 258 if (dontUseFastISelFor(IS.MF->getFunction())) 259 IS.TM.setFastISel(false); 260 LLVM_DEBUG( 261 dbgs() << "\tFastISel is " 262 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 263 << "\n"); 264 } 265 266 ~OptLevelChanger() { 267 if (IS.OptLevel == SavedOptLevel) 268 return; 269 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 270 << IS.MF->getFunction().getName() << "\n"); 271 LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(IS.OptLevel) 272 << " ; After: -O" << static_cast<int>(SavedOptLevel) << "\n"); 273 IS.OptLevel = SavedOptLevel; 274 IS.TM.setOptLevel(SavedOptLevel); 275 IS.TM.setFastISel(SavedFastISel); 276 } 277 }; 278 279 //===--------------------------------------------------------------------===// 280 /// createDefaultScheduler - This creates an instruction scheduler appropriate 281 /// for the target. 282 ScheduleDAGSDNodes *createDefaultScheduler(SelectionDAGISel *IS, 283 CodeGenOptLevel OptLevel) { 284 const TargetLowering *TLI = IS->TLI; 285 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 286 287 // Try first to see if the Target has its own way of selecting a scheduler 288 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 289 return SchedulerCtor(IS, OptLevel); 290 } 291 292 if (OptLevel == CodeGenOptLevel::None || 293 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 294 TLI->getSchedulingPreference() == Sched::Source) 295 return createSourceListDAGScheduler(IS, OptLevel); 296 if (TLI->getSchedulingPreference() == Sched::RegPressure) 297 return createBURRListDAGScheduler(IS, OptLevel); 298 if (TLI->getSchedulingPreference() == Sched::Hybrid) 299 return createHybridListDAGScheduler(IS, OptLevel); 300 if (TLI->getSchedulingPreference() == Sched::VLIW) 301 return createVLIWDAGScheduler(IS, OptLevel); 302 if (TLI->getSchedulingPreference() == Sched::Fast) 303 return createFastDAGScheduler(IS, OptLevel); 304 if (TLI->getSchedulingPreference() == Sched::Linearize) 305 return createDAGLinearizer(IS, OptLevel); 306 assert(TLI->getSchedulingPreference() == Sched::ILP && 307 "Unknown sched type!"); 308 return createILPListDAGScheduler(IS, OptLevel); 309 } 310 311 } // end namespace llvm 312 313 // EmitInstrWithCustomInserter - This method should be implemented by targets 314 // that mark instructions with the 'usesCustomInserter' flag. These 315 // instructions are special in various ways, which require special support to 316 // insert. The specified MachineInstr is created but not inserted into any 317 // basic blocks, and this method is called to expand it into a sequence of 318 // instructions, potentially also creating new basic blocks and control flow. 319 // When new basic blocks are inserted and the edges from MBB to its successors 320 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 321 // DenseMap. 322 MachineBasicBlock * 323 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 324 MachineBasicBlock *MBB) const { 325 #ifndef NDEBUG 326 dbgs() << "If a target marks an instruction with " 327 "'usesCustomInserter', it must implement " 328 "TargetLowering::EmitInstrWithCustomInserter!\n"; 329 #endif 330 llvm_unreachable(nullptr); 331 } 332 333 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 334 SDNode *Node) const { 335 assert(!MI.hasPostISelHook() && 336 "If a target marks an instruction with 'hasPostISelHook', " 337 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 338 } 339 340 //===----------------------------------------------------------------------===// 341 // SelectionDAGISel code 342 //===----------------------------------------------------------------------===// 343 344 SelectionDAGISel::SelectionDAGISel(char &ID, TargetMachine &tm, 345 CodeGenOptLevel OL) 346 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), 347 SwiftError(new SwiftErrorValueTracking()), 348 CurDAG(new SelectionDAG(tm, OL)), 349 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError, 350 OL)), 351 OptLevel(OL) { 352 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 353 initializeBranchProbabilityInfoWrapperPassPass( 354 *PassRegistry::getPassRegistry()); 355 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 356 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 357 } 358 359 SelectionDAGISel::~SelectionDAGISel() { 360 delete CurDAG; 361 delete SwiftError; 362 } 363 364 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 365 if (OptLevel != CodeGenOptLevel::None) 366 AU.addRequired<AAResultsWrapperPass>(); 367 AU.addRequired<GCModuleInfo>(); 368 AU.addRequired<StackProtector>(); 369 AU.addPreserved<GCModuleInfo>(); 370 AU.addRequired<TargetLibraryInfoWrapperPass>(); 371 AU.addRequired<TargetTransformInfoWrapperPass>(); 372 AU.addRequired<AssumptionCacheTracker>(); 373 if (UseMBPI && OptLevel != CodeGenOptLevel::None) 374 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 375 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 376 // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for 377 // the module. 378 AU.addRequired<AssignmentTrackingAnalysis>(); 379 AU.addPreserved<AssignmentTrackingAnalysis>(); 380 if (OptLevel != CodeGenOptLevel::None) 381 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 382 MachineFunctionPass::getAnalysisUsage(AU); 383 } 384 385 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 386 MachineModuleInfo &MMI) { 387 // Only needed for MSVC 388 if (!TT.isWindowsMSVCEnvironment()) 389 return; 390 391 // If it's already set, nothing to do. 392 if (MMI.usesMSVCFloatingPoint()) 393 return; 394 395 for (const Instruction &I : instructions(F)) { 396 if (I.getType()->isFPOrFPVectorTy()) { 397 MMI.setUsesMSVCFloatingPoint(true); 398 return; 399 } 400 for (const auto &Op : I.operands()) { 401 if (Op->getType()->isFPOrFPVectorTy()) { 402 MMI.setUsesMSVCFloatingPoint(true); 403 return; 404 } 405 } 406 } 407 } 408 409 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 410 // If we already selected that function, we do not need to run SDISel. 411 if (mf.getProperties().hasProperty( 412 MachineFunctionProperties::Property::Selected)) 413 return false; 414 // Do some sanity-checking on the command-line options. 415 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 416 "-fast-isel-abort > 0 requires -fast-isel"); 417 418 const Function &Fn = mf.getFunction(); 419 MF = &mf; 420 421 #ifndef NDEBUG 422 StringRef FuncName = Fn.getName(); 423 MatchFilterFuncName = isFunctionInPrintList(FuncName); 424 #else 425 (void)MatchFilterFuncName; 426 #endif 427 428 // Decide what flavour of variable location debug-info will be used, before 429 // we change the optimisation level. 430 bool InstrRef = mf.shouldUseDebugInstrRef(); 431 mf.setUseDebugInstrRef(InstrRef); 432 433 // Reset the target options before resetting the optimization 434 // level below. 435 // FIXME: This is a horrible hack and should be processed via 436 // codegen looking at the optimization level explicitly when 437 // it wants to look at it. 438 TM.resetTargetOptions(Fn); 439 // Reset OptLevel to None for optnone functions. 440 CodeGenOptLevel NewOptLevel = OptLevel; 441 if (OptLevel != CodeGenOptLevel::None && skipFunction(Fn)) 442 NewOptLevel = CodeGenOptLevel::None; 443 OptLevelChanger OLC(*this, NewOptLevel); 444 445 TII = MF->getSubtarget().getInstrInfo(); 446 TLI = MF->getSubtarget().getTargetLowering(); 447 RegInfo = &MF->getRegInfo(); 448 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 449 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 450 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 451 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(mf.getFunction()); 452 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 453 BlockFrequencyInfo *BFI = nullptr; 454 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOptLevel::None) 455 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); 456 457 FunctionVarLocs const *FnVarLocs = nullptr; 458 if (isAssignmentTrackingEnabled(*Fn.getParent())) 459 FnVarLocs = getAnalysis<AssignmentTrackingAnalysis>().getResults(); 460 461 ISEL_DUMP(dbgs() << "\n\n\n=== " << FuncName << "\n"); 462 463 UniformityInfo *UA = nullptr; 464 if (auto *UAPass = getAnalysisIfAvailable<UniformityInfoWrapperPass>()) 465 UA = &UAPass->getUniformityInfo(); 466 CurDAG->init(*MF, *ORE, this, LibInfo, UA, PSI, BFI, FnVarLocs); 467 FuncInfo->set(Fn, *MF, CurDAG); 468 SwiftError->setFunction(*MF); 469 470 // Now get the optional analyzes if we want to. 471 // This is based on the possibly changed OptLevel (after optnone is taken 472 // into account). That's unfortunate but OK because it just means we won't 473 // ask for passes that have been required anyway. 474 475 if (UseMBPI && OptLevel != CodeGenOptLevel::None) 476 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 477 else 478 FuncInfo->BPI = nullptr; 479 480 if (OptLevel != CodeGenOptLevel::None) 481 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 482 else 483 AA = nullptr; 484 485 SDB->init(GFI, AA, AC, LibInfo); 486 487 MF->setHasInlineAsm(false); 488 489 FuncInfo->SplitCSR = false; 490 491 // We split CSR if the target supports it for the given function 492 // and the function has only return exits. 493 if (OptLevel != CodeGenOptLevel::None && TLI->supportSplitCSR(MF)) { 494 FuncInfo->SplitCSR = true; 495 496 // Collect all the return blocks. 497 for (const BasicBlock &BB : Fn) { 498 if (!succ_empty(&BB)) 499 continue; 500 501 const Instruction *Term = BB.getTerminator(); 502 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 503 continue; 504 505 // Bail out if the exit block is not Return nor Unreachable. 506 FuncInfo->SplitCSR = false; 507 break; 508 } 509 } 510 511 MachineBasicBlock *EntryMBB = &MF->front(); 512 if (FuncInfo->SplitCSR) 513 // This performs initialization so lowering for SplitCSR will be correct. 514 TLI->initializeSplitCSR(EntryMBB); 515 516 SelectAllBasicBlocks(Fn); 517 if (FastISelFailed && EnableFastISelFallbackReport) { 518 DiagnosticInfoISelFallback DiagFallback(Fn); 519 Fn.getContext().diagnose(DiagFallback); 520 } 521 522 // Replace forward-declared registers with the registers containing 523 // the desired value. 524 // Note: it is important that this happens **before** the call to 525 // EmitLiveInCopies, since implementations can skip copies of unused 526 // registers. If we don't apply the reg fixups before, some registers may 527 // appear as unused and will be skipped, resulting in bad MI. 528 MachineRegisterInfo &MRI = MF->getRegInfo(); 529 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), 530 E = FuncInfo->RegFixups.end(); 531 I != E; ++I) { 532 Register From = I->first; 533 Register To = I->second; 534 // If To is also scheduled to be replaced, find what its ultimate 535 // replacement is. 536 while (true) { 537 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To); 538 if (J == E) 539 break; 540 To = J->second; 541 } 542 // Make sure the new register has a sufficiently constrained register class. 543 if (From.isVirtual() && To.isVirtual()) 544 MRI.constrainRegClass(To, MRI.getRegClass(From)); 545 // Replace it. 546 547 // Replacing one register with another won't touch the kill flags. 548 // We need to conservatively clear the kill flags as a kill on the old 549 // register might dominate existing uses of the new register. 550 if (!MRI.use_empty(To)) 551 MRI.clearKillFlags(From); 552 MRI.replaceRegWith(From, To); 553 } 554 555 // If the first basic block in the function has live ins that need to be 556 // copied into vregs, emit the copies into the top of the block before 557 // emitting the code for the block. 558 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 559 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 560 561 // Insert copies in the entry block and the return blocks. 562 if (FuncInfo->SplitCSR) { 563 SmallVector<MachineBasicBlock*, 4> Returns; 564 // Collect all the return blocks. 565 for (MachineBasicBlock &MBB : mf) { 566 if (!MBB.succ_empty()) 567 continue; 568 569 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 570 if (Term != MBB.end() && Term->isReturn()) { 571 Returns.push_back(&MBB); 572 continue; 573 } 574 } 575 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 576 } 577 578 DenseMap<unsigned, unsigned> LiveInMap; 579 if (!FuncInfo->ArgDbgValues.empty()) 580 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 581 if (LI.second) 582 LiveInMap.insert(LI); 583 584 // Insert DBG_VALUE instructions for function arguments to the entry block. 585 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 586 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1]; 587 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && 588 "Function parameters should not be described by DBG_VALUE_LIST."); 589 bool hasFI = MI->getDebugOperand(0).isFI(); 590 Register Reg = 591 hasFI ? TRI.getFrameRegister(*MF) : MI->getDebugOperand(0).getReg(); 592 if (Reg.isPhysical()) 593 EntryMBB->insert(EntryMBB->begin(), MI); 594 else { 595 MachineInstr *Def = RegInfo->getVRegDef(Reg); 596 if (Def) { 597 MachineBasicBlock::iterator InsertPos = Def; 598 // FIXME: VR def may not be in entry block. 599 Def->getParent()->insert(std::next(InsertPos), MI); 600 } else 601 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 602 << Register::virtReg2Index(Reg) << "\n"); 603 } 604 605 // Don't try and extend through copies in instruction referencing mode. 606 if (InstrRef) 607 continue; 608 609 // If Reg is live-in then update debug info to track its copy in a vreg. 610 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 611 if (LDI != LiveInMap.end()) { 612 assert(!hasFI && "There's no handling of frame pointer updating here yet " 613 "- add if needed"); 614 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 615 MachineBasicBlock::iterator InsertPos = Def; 616 const MDNode *Variable = MI->getDebugVariable(); 617 const MDNode *Expr = MI->getDebugExpression(); 618 DebugLoc DL = MI->getDebugLoc(); 619 bool IsIndirect = MI->isIndirectDebugValue(); 620 if (IsIndirect) 621 assert(MI->getDebugOffset().getImm() == 0 && 622 "DBG_VALUE with nonzero offset"); 623 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 624 "Expected inlined-at fields to agree"); 625 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && 626 "Didn't expect to see a DBG_VALUE_LIST here"); 627 // Def is never a terminator here, so it is ok to increment InsertPos. 628 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 629 IsIndirect, LDI->second, Variable, Expr); 630 631 // If this vreg is directly copied into an exported register then 632 // that COPY instructions also need DBG_VALUE, if it is the only 633 // user of LDI->second. 634 MachineInstr *CopyUseMI = nullptr; 635 for (MachineRegisterInfo::use_instr_iterator 636 UI = RegInfo->use_instr_begin(LDI->second), 637 E = RegInfo->use_instr_end(); UI != E; ) { 638 MachineInstr *UseMI = &*(UI++); 639 if (UseMI->isDebugValue()) continue; 640 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 641 CopyUseMI = UseMI; continue; 642 } 643 // Otherwise this is another use or second copy use. 644 CopyUseMI = nullptr; break; 645 } 646 if (CopyUseMI && 647 TRI.getRegSizeInBits(LDI->second, MRI) == 648 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) { 649 // Use MI's debug location, which describes where Variable was 650 // declared, rather than whatever is attached to CopyUseMI. 651 MachineInstr *NewMI = 652 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 653 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 654 MachineBasicBlock::iterator Pos = CopyUseMI; 655 EntryMBB->insertAfter(Pos, NewMI); 656 } 657 } 658 } 659 660 // For debug-info, in instruction referencing mode, we need to perform some 661 // post-isel maintenence. 662 if (MF->useDebugInstrRef()) 663 MF->finalizeDebugInstrRefs(); 664 665 // Determine if there are any calls in this machine function. 666 MachineFrameInfo &MFI = MF->getFrameInfo(); 667 for (const auto &MBB : *MF) { 668 if (MFI.hasCalls() && MF->hasInlineAsm()) 669 break; 670 671 for (const auto &MI : MBB) { 672 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 673 if ((MCID.isCall() && !MCID.isReturn()) || 674 MI.isStackAligningInlineAsm()) { 675 MFI.setHasCalls(true); 676 } 677 if (MI.isInlineAsm()) { 678 MF->setHasInlineAsm(true); 679 } 680 } 681 } 682 683 // Determine if there is a call to setjmp in the machine function. 684 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 685 686 // Determine if floating point is used for msvc 687 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 688 689 // Release function-specific state. SDB and CurDAG are already cleared 690 // at this point. 691 FuncInfo->clear(); 692 693 ISEL_DUMP(dbgs() << "*** MachineFunction at end of ISel ***\n"); 694 ISEL_DUMP(MF->print(dbgs())); 695 696 return true; 697 } 698 699 static void reportFastISelFailure(MachineFunction &MF, 700 OptimizationRemarkEmitter &ORE, 701 OptimizationRemarkMissed &R, 702 bool ShouldAbort) { 703 // Print the function name explicitly if we don't have a debug location (which 704 // makes the diagnostic less useful) or if we're going to emit a raw error. 705 if (!R.getLocation().isValid() || ShouldAbort) 706 R << (" (in function: " + MF.getName() + ")").str(); 707 708 if (ShouldAbort) 709 report_fatal_error(Twine(R.getMsg())); 710 711 ORE.emit(R); 712 LLVM_DEBUG(dbgs() << R.getMsg() << "\n"); 713 } 714 715 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 716 BasicBlock::const_iterator End, 717 bool &HadTailCall) { 718 // Allow creating illegal types during DAG building for the basic block. 719 CurDAG->NewNodesMustHaveLegalTypes = false; 720 721 // Lower the instructions. If a call is emitted as a tail call, cease emitting 722 // nodes for this block. If an instruction is elided, don't emit it, but do 723 // handle any debug-info attached to it. 724 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 725 if (!ElidedArgCopyInstrs.count(&*I)) 726 SDB->visit(*I); 727 else 728 SDB->visitDbgInfo(*I); 729 } 730 731 // Make sure the root of the DAG is up-to-date. 732 CurDAG->setRoot(SDB->getControlRoot()); 733 HadTailCall = SDB->HasTailCall; 734 SDB->resolveOrClearDbgInfo(); 735 SDB->clear(); 736 737 // Final step, emit the lowered DAG as machine code. 738 CodeGenAndEmitDAG(); 739 } 740 741 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 742 SmallPtrSet<SDNode *, 16> Added; 743 SmallVector<SDNode*, 128> Worklist; 744 745 Worklist.push_back(CurDAG->getRoot().getNode()); 746 Added.insert(CurDAG->getRoot().getNode()); 747 748 KnownBits Known; 749 750 do { 751 SDNode *N = Worklist.pop_back_val(); 752 753 // Otherwise, add all chain operands to the worklist. 754 for (const SDValue &Op : N->op_values()) 755 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second) 756 Worklist.push_back(Op.getNode()); 757 758 // If this is a CopyToReg with a vreg dest, process it. 759 if (N->getOpcode() != ISD::CopyToReg) 760 continue; 761 762 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 763 if (!Register::isVirtualRegister(DestReg)) 764 continue; 765 766 // Ignore non-integer values. 767 SDValue Src = N->getOperand(2); 768 EVT SrcVT = Src.getValueType(); 769 if (!SrcVT.isInteger()) 770 continue; 771 772 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 773 Known = CurDAG->computeKnownBits(Src); 774 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 775 } while (!Worklist.empty()); 776 } 777 778 void SelectionDAGISel::CodeGenAndEmitDAG() { 779 StringRef GroupName = "sdag"; 780 StringRef GroupDescription = "Instruction Selection and Scheduling"; 781 std::string BlockName; 782 bool MatchFilterBB = false; (void)MatchFilterBB; 783 #ifndef NDEBUG 784 TargetTransformInfo &TTI = 785 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 786 #endif 787 788 // Pre-type legalization allow creation of any node types. 789 CurDAG->NewNodesMustHaveLegalTypes = false; 790 791 #ifndef NDEBUG 792 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 793 FilterDAGBasicBlockName == 794 FuncInfo->MBB->getBasicBlock()->getName()); 795 #endif 796 #ifdef NDEBUG 797 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || 798 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || 799 ViewSUnitDAGs) 800 #endif 801 { 802 BlockName = 803 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 804 } 805 ISEL_DUMP(dbgs() << "\nInitial selection DAG: " 806 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 807 << "'\n"; 808 CurDAG->dump()); 809 810 #ifndef NDEBUG 811 if (TTI.hasBranchDivergence()) 812 CurDAG->VerifyDAGDivergence(); 813 #endif 814 815 if (ViewDAGCombine1 && MatchFilterBB) 816 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 817 818 // Run the DAG combiner in pre-legalize mode. 819 { 820 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 821 GroupDescription, TimePassesIsEnabled); 822 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 823 } 824 825 ISEL_DUMP(dbgs() << "\nOptimized lowered selection DAG: " 826 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 827 << "'\n"; 828 CurDAG->dump()); 829 830 #ifndef NDEBUG 831 if (TTI.hasBranchDivergence()) 832 CurDAG->VerifyDAGDivergence(); 833 #endif 834 835 // Second step, hack on the DAG until it only uses operations and types that 836 // the target supports. 837 if (ViewLegalizeTypesDAGs && MatchFilterBB) 838 CurDAG->viewGraph("legalize-types input for " + BlockName); 839 840 bool Changed; 841 { 842 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 843 GroupDescription, TimePassesIsEnabled); 844 Changed = CurDAG->LegalizeTypes(); 845 } 846 847 ISEL_DUMP(dbgs() << "\nType-legalized selection DAG: " 848 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 849 << "'\n"; 850 CurDAG->dump()); 851 852 #ifndef NDEBUG 853 if (TTI.hasBranchDivergence()) 854 CurDAG->VerifyDAGDivergence(); 855 #endif 856 857 // Only allow creation of legal node types. 858 CurDAG->NewNodesMustHaveLegalTypes = true; 859 860 if (Changed) { 861 if (ViewDAGCombineLT && MatchFilterBB) 862 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 863 864 // Run the DAG combiner in post-type-legalize mode. 865 { 866 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 867 GroupName, GroupDescription, TimePassesIsEnabled); 868 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 869 } 870 871 ISEL_DUMP(dbgs() << "\nOptimized type-legalized selection DAG: " 872 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 873 << "'\n"; 874 CurDAG->dump()); 875 876 #ifndef NDEBUG 877 if (TTI.hasBranchDivergence()) 878 CurDAG->VerifyDAGDivergence(); 879 #endif 880 } 881 882 { 883 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 884 GroupDescription, TimePassesIsEnabled); 885 Changed = CurDAG->LegalizeVectors(); 886 } 887 888 if (Changed) { 889 ISEL_DUMP(dbgs() << "\nVector-legalized selection DAG: " 890 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 891 << "'\n"; 892 CurDAG->dump()); 893 894 #ifndef NDEBUG 895 if (TTI.hasBranchDivergence()) 896 CurDAG->VerifyDAGDivergence(); 897 #endif 898 899 { 900 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 901 GroupDescription, TimePassesIsEnabled); 902 CurDAG->LegalizeTypes(); 903 } 904 905 ISEL_DUMP(dbgs() << "\nVector/type-legalized selection DAG: " 906 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 907 << "'\n"; 908 CurDAG->dump()); 909 910 #ifndef NDEBUG 911 if (TTI.hasBranchDivergence()) 912 CurDAG->VerifyDAGDivergence(); 913 #endif 914 915 if (ViewDAGCombineLT && MatchFilterBB) 916 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 917 918 // Run the DAG combiner in post-type-legalize mode. 919 { 920 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 921 GroupName, GroupDescription, TimePassesIsEnabled); 922 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 923 } 924 925 ISEL_DUMP(dbgs() << "\nOptimized vector-legalized selection DAG: " 926 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 927 << "'\n"; 928 CurDAG->dump()); 929 930 #ifndef NDEBUG 931 if (TTI.hasBranchDivergence()) 932 CurDAG->VerifyDAGDivergence(); 933 #endif 934 } 935 936 if (ViewLegalizeDAGs && MatchFilterBB) 937 CurDAG->viewGraph("legalize input for " + BlockName); 938 939 { 940 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 941 GroupDescription, TimePassesIsEnabled); 942 CurDAG->Legalize(); 943 } 944 945 ISEL_DUMP(dbgs() << "\nLegalized selection DAG: " 946 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 947 << "'\n"; 948 CurDAG->dump()); 949 950 #ifndef NDEBUG 951 if (TTI.hasBranchDivergence()) 952 CurDAG->VerifyDAGDivergence(); 953 #endif 954 955 if (ViewDAGCombine2 && MatchFilterBB) 956 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 957 958 // Run the DAG combiner in post-legalize mode. 959 { 960 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 961 GroupDescription, TimePassesIsEnabled); 962 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 963 } 964 965 ISEL_DUMP(dbgs() << "\nOptimized legalized selection DAG: " 966 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 967 << "'\n"; 968 CurDAG->dump()); 969 970 #ifndef NDEBUG 971 if (TTI.hasBranchDivergence()) 972 CurDAG->VerifyDAGDivergence(); 973 #endif 974 975 if (OptLevel != CodeGenOptLevel::None) 976 ComputeLiveOutVRegInfo(); 977 978 if (ViewISelDAGs && MatchFilterBB) 979 CurDAG->viewGraph("isel input for " + BlockName); 980 981 // Third, instruction select all of the operations to machine code, adding the 982 // code to the MachineBasicBlock. 983 { 984 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 985 GroupDescription, TimePassesIsEnabled); 986 DoInstructionSelection(); 987 } 988 989 ISEL_DUMP(dbgs() << "\nSelected selection DAG: " 990 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 991 << "'\n"; 992 CurDAG->dump()); 993 994 if (ViewSchedDAGs && MatchFilterBB) 995 CurDAG->viewGraph("scheduler input for " + BlockName); 996 997 // Schedule machine code. 998 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 999 { 1000 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 1001 GroupDescription, TimePassesIsEnabled); 1002 Scheduler->Run(CurDAG, FuncInfo->MBB); 1003 } 1004 1005 if (ViewSUnitDAGs && MatchFilterBB) 1006 Scheduler->viewGraph(); 1007 1008 // Emit machine code to BB. This can change 'BB' to the last block being 1009 // inserted into. 1010 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 1011 { 1012 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 1013 GroupDescription, TimePassesIsEnabled); 1014 1015 // FuncInfo->InsertPt is passed by reference and set to the end of the 1016 // scheduled instructions. 1017 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 1018 } 1019 1020 // If the block was split, make sure we update any references that are used to 1021 // update PHI nodes later on. 1022 if (FirstMBB != LastMBB) 1023 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 1024 1025 // Free the scheduler state. 1026 { 1027 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1028 GroupDescription, TimePassesIsEnabled); 1029 delete Scheduler; 1030 } 1031 1032 // Free the SelectionDAG state, now that we're finished with it. 1033 CurDAG->clear(); 1034 } 1035 1036 namespace { 1037 1038 /// ISelUpdater - helper class to handle updates of the instruction selection 1039 /// graph. 1040 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1041 SelectionDAG::allnodes_iterator &ISelPosition; 1042 1043 public: 1044 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1045 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1046 1047 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1048 /// deleted is the current ISelPosition node, update ISelPosition. 1049 /// 1050 void NodeDeleted(SDNode *N, SDNode *E) override { 1051 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1052 ++ISelPosition; 1053 } 1054 1055 /// NodeInserted - Handle new nodes inserted into the graph: propagate 1056 /// metadata from root nodes that also applies to new nodes, in case the root 1057 /// is later deleted. 1058 void NodeInserted(SDNode *N) override { 1059 SDNode *CurNode = &*ISelPosition; 1060 if (MDNode *MD = DAG.getPCSections(CurNode)) 1061 DAG.addPCSections(N, MD); 1062 } 1063 }; 1064 1065 } // end anonymous namespace 1066 1067 // This function is used to enforce the topological node id property 1068 // leveraged during instruction selection. Before the selection process all 1069 // nodes are given a non-negative id such that all nodes have a greater id than 1070 // their operands. As this holds transitively we can prune checks that a node N 1071 // is a predecessor of M another by not recursively checking through M's 1072 // operands if N's ID is larger than M's ID. This significantly improves 1073 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains). 1074 1075 // However, when we fuse multiple nodes into a single node during the 1076 // selection we may induce a predecessor relationship between inputs and 1077 // outputs of distinct nodes being merged, violating the topological property. 1078 // Should a fused node have a successor which has yet to be selected, 1079 // our legality checks would be incorrect. To avoid this we mark all unselected 1080 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x => 1081 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1082 // We use bit-negation to more clearly enforce that node id -1 can only be 1083 // achieved by selected nodes. As the conversion is reversable to the original 1084 // Id, topological pruning can still be leveraged when looking for unselected 1085 // nodes. This method is called internally in all ISel replacement related 1086 // functions. 1087 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1088 SmallVector<SDNode *, 4> Nodes; 1089 Nodes.push_back(Node); 1090 1091 while (!Nodes.empty()) { 1092 SDNode *N = Nodes.pop_back_val(); 1093 for (auto *U : N->uses()) { 1094 auto UId = U->getNodeId(); 1095 if (UId > 0) { 1096 InvalidateNodeId(U); 1097 Nodes.push_back(U); 1098 } 1099 } 1100 } 1101 } 1102 1103 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a 1104 // NodeId with the equivalent node id which is invalid for topological 1105 // pruning. 1106 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1107 int InvalidId = -(N->getNodeId() + 1); 1108 N->setNodeId(InvalidId); 1109 } 1110 1111 // getUninvalidatedNodeId - get original uninvalidated node id. 1112 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1113 int Id = N->getNodeId(); 1114 if (Id < -1) 1115 return -(Id + 1); 1116 return Id; 1117 } 1118 1119 void SelectionDAGISel::DoInstructionSelection() { 1120 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1121 << printMBBReference(*FuncInfo->MBB) << " '" 1122 << FuncInfo->MBB->getName() << "'\n"); 1123 1124 PreprocessISelDAG(); 1125 1126 // Select target instructions for the DAG. 1127 { 1128 // Number all nodes with a topological order and set DAGSize. 1129 DAGSize = CurDAG->AssignTopologicalOrder(); 1130 1131 // Create a dummy node (which is not added to allnodes), that adds 1132 // a reference to the root node, preventing it from being deleted, 1133 // and tracking any changes of the root. 1134 HandleSDNode Dummy(CurDAG->getRoot()); 1135 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1136 ++ISelPosition; 1137 1138 // Make sure that ISelPosition gets properly updated when nodes are deleted 1139 // in calls made from this function. New nodes inherit relevant metadata. 1140 ISelUpdater ISU(*CurDAG, ISelPosition); 1141 1142 // The AllNodes list is now topological-sorted. Visit the 1143 // nodes by starting at the end of the list (the root of the 1144 // graph) and preceding back toward the beginning (the entry 1145 // node). 1146 while (ISelPosition != CurDAG->allnodes_begin()) { 1147 SDNode *Node = &*--ISelPosition; 1148 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1149 // but there are currently some corner cases that it misses. Also, this 1150 // makes it theoretically possible to disable the DAGCombiner. 1151 if (Node->use_empty()) 1152 continue; 1153 1154 #ifndef NDEBUG 1155 SmallVector<SDNode *, 4> Nodes; 1156 Nodes.push_back(Node); 1157 1158 while (!Nodes.empty()) { 1159 auto N = Nodes.pop_back_val(); 1160 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1161 continue; 1162 for (const SDValue &Op : N->op_values()) { 1163 if (Op->getOpcode() == ISD::TokenFactor) 1164 Nodes.push_back(Op.getNode()); 1165 else { 1166 // We rely on topological ordering of node ids for checking for 1167 // cycles when fusing nodes during selection. All unselected nodes 1168 // successors of an already selected node should have a negative id. 1169 // This assertion will catch such cases. If this assertion triggers 1170 // it is likely you using DAG-level Value/Node replacement functions 1171 // (versus equivalent ISEL replacement) in backend-specific 1172 // selections. See comment in EnforceNodeIdInvariant for more 1173 // details. 1174 assert(Op->getNodeId() != -1 && 1175 "Node has already selected predecessor node"); 1176 } 1177 } 1178 } 1179 #endif 1180 1181 // When we are using non-default rounding modes or FP exception behavior 1182 // FP operations are represented by StrictFP pseudo-operations. For 1183 // targets that do not (yet) understand strict FP operations directly, 1184 // we convert them to normal FP opcodes instead at this point. This 1185 // will allow them to be handled by existing target-specific instruction 1186 // selectors. 1187 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { 1188 // For some opcodes, we need to call TLI->getOperationAction using 1189 // the first operand type instead of the result type. Note that this 1190 // must match what SelectionDAGLegalize::LegalizeOp is doing. 1191 EVT ActionVT; 1192 switch (Node->getOpcode()) { 1193 case ISD::STRICT_SINT_TO_FP: 1194 case ISD::STRICT_UINT_TO_FP: 1195 case ISD::STRICT_LRINT: 1196 case ISD::STRICT_LLRINT: 1197 case ISD::STRICT_LROUND: 1198 case ISD::STRICT_LLROUND: 1199 case ISD::STRICT_FSETCC: 1200 case ISD::STRICT_FSETCCS: 1201 ActionVT = Node->getOperand(1).getValueType(); 1202 break; 1203 default: 1204 ActionVT = Node->getValueType(0); 1205 break; 1206 } 1207 if (TLI->getOperationAction(Node->getOpcode(), ActionVT) 1208 == TargetLowering::Expand) 1209 Node = CurDAG->mutateStrictFPToFP(Node); 1210 } 1211 1212 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1213 Node->dump(CurDAG)); 1214 1215 Select(Node); 1216 } 1217 1218 CurDAG->setRoot(Dummy.getValue()); 1219 } 1220 1221 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1222 1223 PostprocessISelDAG(); 1224 } 1225 1226 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1227 for (const User *U : CPI->users()) { 1228 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1229 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1230 if (IID == Intrinsic::eh_exceptionpointer || 1231 IID == Intrinsic::eh_exceptioncode) 1232 return true; 1233 } 1234 } 1235 return false; 1236 } 1237 1238 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1239 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1240 // and store the mapping in the function. 1241 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1242 const CatchPadInst *CPI) { 1243 MachineFunction *MF = MBB->getParent(); 1244 // In case of single catch (...), we don't emit LSDA, so we don't need 1245 // this information. 1246 bool IsSingleCatchAllClause = 1247 CPI->arg_size() == 1 && 1248 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1249 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 [] 1250 // and they don't need LSDA info 1251 bool IsCatchLongjmp = CPI->arg_size() == 0; 1252 if (!IsSingleCatchAllClause && !IsCatchLongjmp) { 1253 // Create a mapping from landing pad label to landing pad index. 1254 bool IntrFound = false; 1255 for (const User *U : CPI->users()) { 1256 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1257 Intrinsic::ID IID = Call->getIntrinsicID(); 1258 if (IID == Intrinsic::wasm_landingpad_index) { 1259 Value *IndexArg = Call->getArgOperand(1); 1260 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1261 MF->setWasmLandingPadIndex(MBB, Index); 1262 IntrFound = true; 1263 break; 1264 } 1265 } 1266 } 1267 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1268 (void)IntrFound; 1269 } 1270 } 1271 1272 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1273 /// do other setup for EH landing-pad blocks. 1274 bool SelectionDAGISel::PrepareEHLandingPad() { 1275 MachineBasicBlock *MBB = FuncInfo->MBB; 1276 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1277 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1278 const TargetRegisterClass *PtrRC = 1279 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1280 1281 auto Pers = classifyEHPersonality(PersonalityFn); 1282 1283 // Catchpads have one live-in register, which typically holds the exception 1284 // pointer or code. 1285 if (isFuncletEHPersonality(Pers)) { 1286 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1287 if (hasExceptionPointerOrCodeUser(CPI)) { 1288 // Get or create the virtual register to hold the pointer or code. Mark 1289 // the live in physreg and copy into the vreg. 1290 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1291 assert(EHPhysReg && "target lacks exception pointer register"); 1292 MBB->addLiveIn(EHPhysReg); 1293 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1294 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1295 TII->get(TargetOpcode::COPY), VReg) 1296 .addReg(EHPhysReg, RegState::Kill); 1297 } 1298 } 1299 return true; 1300 } 1301 1302 // Add a label to mark the beginning of the landing pad. Deletion of the 1303 // landing pad can thus be detected via the MachineModuleInfo. 1304 MCSymbol *Label = MF->addLandingPad(MBB); 1305 1306 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1307 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1308 .addSym(Label); 1309 1310 // If the unwinder does not preserve all registers, ensure that the 1311 // function marks the clobbered registers as used. 1312 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 1313 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 1314 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 1315 1316 if (Pers == EHPersonality::Wasm_CXX) { 1317 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1318 mapWasmLandingPadIndex(MBB, CPI); 1319 } else { 1320 // Assign the call site to the landing pad's begin label. 1321 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1322 // Mark exception register as live in. 1323 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1324 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1325 // Mark exception selector register as live in. 1326 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1327 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1328 } 1329 1330 return true; 1331 } 1332 1333 // Mark and Report IPToState for each Block under IsEHa 1334 void SelectionDAGISel::reportIPToStateForBlocks(MachineFunction *MF) { 1335 MachineModuleInfo &MMI = MF->getMMI(); 1336 llvm::WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo(); 1337 if (!EHInfo) 1338 return; 1339 for (auto MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { 1340 MachineBasicBlock *MBB = &*MBBI; 1341 const BasicBlock *BB = MBB->getBasicBlock(); 1342 int State = EHInfo->BlockToStateMap[BB]; 1343 if (BB->getFirstMayFaultInst()) { 1344 // Report IP range only for blocks with Faulty inst 1345 auto MBBb = MBB->getFirstNonPHI(); 1346 MachineInstr *MIb = &*MBBb; 1347 if (MIb->isTerminator()) 1348 continue; 1349 1350 // Insert EH Labels 1351 MCSymbol *BeginLabel = MMI.getContext().createTempSymbol(); 1352 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 1353 EHInfo->addIPToStateRange(State, BeginLabel, EndLabel); 1354 BuildMI(*MBB, MBBb, SDB->getCurDebugLoc(), 1355 TII->get(TargetOpcode::EH_LABEL)) 1356 .addSym(BeginLabel); 1357 auto MBBe = MBB->instr_end(); 1358 MachineInstr *MIe = &*(--MBBe); 1359 // insert before (possible multiple) terminators 1360 while (MIe->isTerminator()) 1361 MIe = &*(--MBBe); 1362 ++MBBe; 1363 BuildMI(*MBB, MBBe, SDB->getCurDebugLoc(), 1364 TII->get(TargetOpcode::EH_LABEL)) 1365 .addSym(EndLabel); 1366 } 1367 } 1368 } 1369 1370 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1371 /// side-effect free and is either dead or folded into a generated instruction. 1372 /// Return false if it needs to be emitted. 1373 static bool isFoldedOrDeadInstruction(const Instruction *I, 1374 const FunctionLoweringInfo &FuncInfo) { 1375 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1376 !I->isTerminator() && // Terminators aren't folded. 1377 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1378 !I->isEHPad() && // EH pad instructions aren't folded. 1379 !FuncInfo.isExportedInst(I); // Exported instrs must be computed. 1380 } 1381 1382 static bool processIfEntryValueDbgDeclare(FunctionLoweringInfo &FuncInfo, 1383 const Value *Arg, DIExpression *Expr, 1384 DILocalVariable *Var, 1385 DebugLoc DbgLoc) { 1386 if (!Expr->isEntryValue() || !isa<Argument>(Arg)) 1387 return false; 1388 1389 auto ArgIt = FuncInfo.ValueMap.find(Arg); 1390 if (ArgIt == FuncInfo.ValueMap.end()) 1391 return false; 1392 Register ArgVReg = ArgIt->getSecond(); 1393 1394 // Find the corresponding livein physical register to this argument. 1395 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 1396 if (VirtReg == ArgVReg) { 1397 // Append an op deref to account for the fact that this is a dbg_declare. 1398 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); 1399 FuncInfo.MF->setVariableDbgInfo(Var, Expr, PhysReg, DbgLoc); 1400 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var 1401 << ", Expr=" << *Expr << ", MCRegister=" << PhysReg 1402 << ", DbgLoc=" << DbgLoc << "\n"); 1403 return true; 1404 } 1405 return false; 1406 } 1407 1408 static bool processDbgDeclare(FunctionLoweringInfo &FuncInfo, 1409 const Value *Address, DIExpression *Expr, 1410 DILocalVariable *Var, DebugLoc DbgLoc) { 1411 if (!Address) { 1412 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *Var 1413 << " (bad address)\n"); 1414 return false; 1415 } 1416 1417 if (processIfEntryValueDbgDeclare(FuncInfo, Address, Expr, Var, DbgLoc)) 1418 return true; 1419 1420 MachineFunction *MF = FuncInfo.MF; 1421 const DataLayout &DL = MF->getDataLayout(); 1422 1423 assert(Var && "Missing variable"); 1424 assert(DbgLoc && "Missing location"); 1425 1426 // Look through casts and constant offset GEPs. These mostly come from 1427 // inalloca. 1428 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1429 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1430 1431 // Check if the variable is a static alloca or a byval or inalloca 1432 // argument passed in memory. If it is not, then we will ignore this 1433 // intrinsic and handle this during isel like dbg.value. 1434 int FI = std::numeric_limits<int>::max(); 1435 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1436 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1437 if (SI != FuncInfo.StaticAllocaMap.end()) 1438 FI = SI->second; 1439 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1440 FI = FuncInfo.getArgumentFrameIndex(Arg); 1441 1442 if (FI == std::numeric_limits<int>::max()) 1443 return false; 1444 1445 if (Offset.getBoolValue()) 1446 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1447 Offset.getZExtValue()); 1448 1449 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var 1450 << ", Expr=" << *Expr << ", FI=" << FI 1451 << ", DbgLoc=" << DbgLoc << "\n"); 1452 MF->setVariableDbgInfo(Var, Expr, FI, DbgLoc); 1453 return true; 1454 } 1455 1456 /// Collect llvm.dbg.declare information. This is done after argument lowering 1457 /// in case the declarations refer to arguments. 1458 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { 1459 for (const auto &I : instructions(*FuncInfo.Fn)) { 1460 const auto *DI = dyn_cast<DbgDeclareInst>(&I); 1461 if (DI && processDbgDeclare(FuncInfo, DI->getAddress(), DI->getExpression(), 1462 DI->getVariable(), DI->getDebugLoc())) 1463 FuncInfo.PreprocessedDbgDeclares.insert(DI); 1464 1465 for (const DPValue &DPV : I.getDbgValueRange()) { 1466 if (DPV.getType() == DPValue::LocationType::Declare && 1467 processDbgDeclare(FuncInfo, DPV.getVariableLocationOp(0), 1468 DPV.getExpression(), DPV.getVariable(), 1469 DPV.getDebugLoc())) 1470 FuncInfo.PreprocessedDPVDeclares.insert(&DPV); 1471 } 1472 } 1473 } 1474 1475 /// Collect single location variable information generated with assignment 1476 /// tracking. This is done after argument lowering in case the declarations 1477 /// refer to arguments. 1478 static void processSingleLocVars(FunctionLoweringInfo &FuncInfo, 1479 FunctionVarLocs const *FnVarLocs) { 1480 for (auto It = FnVarLocs->single_locs_begin(), 1481 End = FnVarLocs->single_locs_end(); 1482 It != End; ++It) { 1483 assert(!It->Values.hasArgList() && "Single loc variadic ops not supported"); 1484 processDbgDeclare(FuncInfo, It->Values.getVariableLocationOp(0), It->Expr, 1485 FnVarLocs->getDILocalVariable(It->VariableID), It->DL); 1486 } 1487 } 1488 1489 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1490 FastISelFailed = false; 1491 // Initialize the Fast-ISel state, if needed. 1492 FastISel *FastIS = nullptr; 1493 if (TM.Options.EnableFastISel) { 1494 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1495 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1496 } 1497 1498 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1499 1500 // Lower arguments up front. An RPO iteration always visits the entry block 1501 // first. 1502 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1503 ++NumEntryBlocks; 1504 1505 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1506 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1507 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1508 1509 CurDAG->setFunctionLoweringInfo(FuncInfo.get()); 1510 1511 if (!FastIS) { 1512 LowerArguments(Fn); 1513 } else { 1514 // See if fast isel can lower the arguments. 1515 FastIS->startNewBlock(); 1516 if (!FastIS->lowerArguments()) { 1517 FastISelFailed = true; 1518 // Fast isel failed to lower these arguments 1519 ++NumFastIselFailLowerArguments; 1520 1521 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1522 Fn.getSubprogram(), 1523 &Fn.getEntryBlock()); 1524 R << "FastISel didn't lower all arguments: " 1525 << ore::NV("Prototype", Fn.getFunctionType()); 1526 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1527 1528 // Use SelectionDAG argument lowering 1529 LowerArguments(Fn); 1530 CurDAG->setRoot(SDB->getControlRoot()); 1531 SDB->clear(); 1532 CodeGenAndEmitDAG(); 1533 } 1534 1535 // If we inserted any instructions at the beginning, make a note of 1536 // where they are, so we can be sure to emit subsequent instructions 1537 // after them. 1538 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1539 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1540 else 1541 FastIS->setLastLocalValue(nullptr); 1542 } 1543 1544 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1545 1546 if (FastIS && Inserted) 1547 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1548 1549 if (isAssignmentTrackingEnabled(*Fn.getParent())) { 1550 assert(CurDAG->getFunctionVarLocs() && 1551 "expected AssignmentTrackingAnalysis pass results"); 1552 processSingleLocVars(*FuncInfo, CurDAG->getFunctionVarLocs()); 1553 } else { 1554 processDbgDeclares(*FuncInfo); 1555 } 1556 1557 // Iterate over all basic blocks in the function. 1558 StackProtector &SP = getAnalysis<StackProtector>(); 1559 for (const BasicBlock *LLVMBB : RPOT) { 1560 if (OptLevel != CodeGenOptLevel::None) { 1561 bool AllPredsVisited = true; 1562 for (const BasicBlock *Pred : predecessors(LLVMBB)) { 1563 if (!FuncInfo->VisitedBBs.count(Pred)) { 1564 AllPredsVisited = false; 1565 break; 1566 } 1567 } 1568 1569 if (AllPredsVisited) { 1570 for (const PHINode &PN : LLVMBB->phis()) 1571 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1572 } else { 1573 for (const PHINode &PN : LLVMBB->phis()) 1574 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1575 } 1576 1577 FuncInfo->VisitedBBs.insert(LLVMBB); 1578 } 1579 1580 BasicBlock::const_iterator const Begin = 1581 LLVMBB->getFirstNonPHI()->getIterator(); 1582 BasicBlock::const_iterator const End = LLVMBB->end(); 1583 BasicBlock::const_iterator BI = End; 1584 1585 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1586 if (!FuncInfo->MBB) 1587 continue; // Some blocks like catchpads have no code or MBB. 1588 1589 // Insert new instructions after any phi or argument setup code. 1590 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1591 1592 // Setup an EH landing-pad block. 1593 FuncInfo->ExceptionPointerVirtReg = 0; 1594 FuncInfo->ExceptionSelectorVirtReg = 0; 1595 if (LLVMBB->isEHPad()) 1596 if (!PrepareEHLandingPad()) 1597 continue; 1598 1599 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1600 if (FastIS) { 1601 if (LLVMBB != &Fn.getEntryBlock()) 1602 FastIS->startNewBlock(); 1603 1604 unsigned NumFastIselRemaining = std::distance(Begin, End); 1605 1606 // Pre-assign swifterror vregs. 1607 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1608 1609 // Do FastISel on as many instructions as possible. 1610 for (; BI != Begin; --BI) { 1611 const Instruction *Inst = &*std::prev(BI); 1612 1613 // If we no longer require this instruction, skip it. 1614 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) || 1615 ElidedArgCopyInstrs.count(Inst)) { 1616 --NumFastIselRemaining; 1617 FastIS->handleDbgInfo(Inst); 1618 continue; 1619 } 1620 1621 // Bottom-up: reset the insert pos at the top, after any local-value 1622 // instructions. 1623 FastIS->recomputeInsertPt(); 1624 1625 // Try to select the instruction with FastISel. 1626 if (FastIS->selectInstruction(Inst)) { 1627 --NumFastIselRemaining; 1628 ++NumFastIselSuccess; 1629 1630 FastIS->handleDbgInfo(Inst); 1631 // If fast isel succeeded, skip over all the folded instructions, and 1632 // then see if there is a load right before the selected instructions. 1633 // Try to fold the load if so. 1634 const Instruction *BeforeInst = Inst; 1635 while (BeforeInst != &*Begin) { 1636 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1637 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo)) 1638 break; 1639 } 1640 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1641 BeforeInst->hasOneUse() && 1642 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1643 // If we succeeded, don't re-select the load. 1644 LLVM_DEBUG(dbgs() 1645 << "FastISel folded load: " << *BeforeInst << "\n"); 1646 FastIS->handleDbgInfo(BeforeInst); 1647 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1648 --NumFastIselRemaining; 1649 ++NumFastIselSuccess; 1650 } 1651 continue; 1652 } 1653 1654 FastISelFailed = true; 1655 1656 // Then handle certain instructions as single-LLVM-Instruction blocks. 1657 // We cannot separate out GCrelocates to their own blocks since we need 1658 // to keep track of gc-relocates for a particular gc-statepoint. This is 1659 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1660 // visitGCRelocate. 1661 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) && 1662 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) { 1663 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1664 Inst->getDebugLoc(), LLVMBB); 1665 1666 R << "FastISel missed call"; 1667 1668 if (R.isEnabled() || EnableFastISelAbort) { 1669 std::string InstStrStorage; 1670 raw_string_ostream InstStr(InstStrStorage); 1671 InstStr << *Inst; 1672 1673 R << ": " << InstStr.str(); 1674 } 1675 1676 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1677 1678 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1679 !Inst->use_empty()) { 1680 Register &R = FuncInfo->ValueMap[Inst]; 1681 if (!R) 1682 R = FuncInfo->CreateRegs(Inst); 1683 } 1684 1685 bool HadTailCall = false; 1686 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1687 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1688 1689 // If the call was emitted as a tail call, we're done with the block. 1690 // We also need to delete any previously emitted instructions. 1691 if (HadTailCall) { 1692 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1693 --BI; 1694 break; 1695 } 1696 1697 // Recompute NumFastIselRemaining as Selection DAG instruction 1698 // selection may have handled the call, input args, etc. 1699 unsigned RemainingNow = std::distance(Begin, BI); 1700 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1701 NumFastIselRemaining = RemainingNow; 1702 continue; 1703 } 1704 1705 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1706 Inst->getDebugLoc(), LLVMBB); 1707 1708 bool ShouldAbort = EnableFastISelAbort; 1709 if (Inst->isTerminator()) { 1710 // Use a different message for terminator misses. 1711 R << "FastISel missed terminator"; 1712 // Don't abort for terminator unless the level is really high 1713 ShouldAbort = (EnableFastISelAbort > 2); 1714 } else { 1715 R << "FastISel missed"; 1716 } 1717 1718 if (R.isEnabled() || EnableFastISelAbort) { 1719 std::string InstStrStorage; 1720 raw_string_ostream InstStr(InstStrStorage); 1721 InstStr << *Inst; 1722 R << ": " << InstStr.str(); 1723 } 1724 1725 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1726 1727 NumFastIselFailures += NumFastIselRemaining; 1728 break; 1729 } 1730 1731 FastIS->recomputeInsertPt(); 1732 } 1733 1734 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1735 bool FunctionBasedInstrumentation = 1736 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1737 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1738 FunctionBasedInstrumentation); 1739 } 1740 1741 if (Begin != BI) 1742 ++NumDAGBlocks; 1743 else 1744 ++NumFastIselBlocks; 1745 1746 if (Begin != BI) { 1747 // Run SelectionDAG instruction selection on the remainder of the block 1748 // not handled by FastISel. If FastISel is not run, this is the entire 1749 // block. 1750 bool HadTailCall; 1751 SelectBasicBlock(Begin, BI, HadTailCall); 1752 1753 // But if FastISel was run, we already selected some of the block. 1754 // If we emitted a tail-call, we need to delete any previously emitted 1755 // instruction that follows it. 1756 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1757 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1758 } 1759 1760 if (FastIS) 1761 FastIS->finishBasicBlock(); 1762 FinishBasicBlock(); 1763 FuncInfo->PHINodesToUpdate.clear(); 1764 ElidedArgCopyInstrs.clear(); 1765 } 1766 1767 // AsynchEH: Report Block State under -AsynchEH 1768 if (Fn.getParent()->getModuleFlag("eh-asynch")) 1769 reportIPToStateForBlocks(MF); 1770 1771 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1772 1773 SwiftError->propagateVRegs(); 1774 1775 delete FastIS; 1776 SDB->clearDanglingDebugInfo(); 1777 SDB->SPDescriptor.resetPerFunctionState(); 1778 } 1779 1780 void 1781 SelectionDAGISel::FinishBasicBlock() { 1782 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1783 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1784 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1785 ++i) dbgs() 1786 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1787 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1788 1789 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1790 // PHI nodes in successors. 1791 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1792 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1793 assert(PHI->isPHI() && 1794 "This is not a machine PHI node that we are updating!"); 1795 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1796 continue; 1797 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1798 } 1799 1800 // Handle stack protector. 1801 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1802 // The target provides a guard check function. There is no need to 1803 // generate error handling code or to split current basic block. 1804 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1805 1806 // Add load and check to the basicblock. 1807 FuncInfo->MBB = ParentMBB; 1808 FuncInfo->InsertPt = 1809 findSplitPointForStackProtector(ParentMBB, *TII); 1810 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1811 CurDAG->setRoot(SDB->getRoot()); 1812 SDB->clear(); 1813 CodeGenAndEmitDAG(); 1814 1815 // Clear the Per-BB State. 1816 SDB->SPDescriptor.resetPerBBState(); 1817 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1818 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1819 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1820 1821 // Find the split point to split the parent mbb. At the same time copy all 1822 // physical registers used in the tail of parent mbb into virtual registers 1823 // before the split point and back into physical registers after the split 1824 // point. This prevents us needing to deal with Live-ins and many other 1825 // register allocation issues caused by us splitting the parent mbb. The 1826 // register allocator will clean up said virtual copies later on. 1827 MachineBasicBlock::iterator SplitPoint = 1828 findSplitPointForStackProtector(ParentMBB, *TII); 1829 1830 // Splice the terminator of ParentMBB into SuccessMBB. 1831 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1832 SplitPoint, 1833 ParentMBB->end()); 1834 1835 // Add compare/jump on neq/jump to the parent BB. 1836 FuncInfo->MBB = ParentMBB; 1837 FuncInfo->InsertPt = ParentMBB->end(); 1838 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1839 CurDAG->setRoot(SDB->getRoot()); 1840 SDB->clear(); 1841 CodeGenAndEmitDAG(); 1842 1843 // CodeGen Failure MBB if we have not codegened it yet. 1844 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1845 if (FailureMBB->empty()) { 1846 FuncInfo->MBB = FailureMBB; 1847 FuncInfo->InsertPt = FailureMBB->end(); 1848 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1849 CurDAG->setRoot(SDB->getRoot()); 1850 SDB->clear(); 1851 CodeGenAndEmitDAG(); 1852 } 1853 1854 // Clear the Per-BB State. 1855 SDB->SPDescriptor.resetPerBBState(); 1856 } 1857 1858 // Lower each BitTestBlock. 1859 for (auto &BTB : SDB->SL->BitTestCases) { 1860 // Lower header first, if it wasn't already lowered 1861 if (!BTB.Emitted) { 1862 // Set the current basic block to the mbb we wish to insert the code into 1863 FuncInfo->MBB = BTB.Parent; 1864 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1865 // Emit the code 1866 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1867 CurDAG->setRoot(SDB->getRoot()); 1868 SDB->clear(); 1869 CodeGenAndEmitDAG(); 1870 } 1871 1872 BranchProbability UnhandledProb = BTB.Prob; 1873 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1874 UnhandledProb -= BTB.Cases[j].ExtraProb; 1875 // Set the current basic block to the mbb we wish to insert the code into 1876 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1877 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1878 // Emit the code 1879 1880 // If all cases cover a contiguous range, it is not necessary to jump to 1881 // the default block after the last bit test fails. This is because the 1882 // range check during bit test header creation has guaranteed that every 1883 // case here doesn't go outside the range. In this case, there is no need 1884 // to perform the last bit test, as it will always be true. Instead, make 1885 // the second-to-last bit-test fall through to the target of the last bit 1886 // test, and delete the last bit test. 1887 1888 MachineBasicBlock *NextMBB; 1889 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 1890 // Second-to-last bit-test with contiguous range or omitted range 1891 // check: fall through to the target of the final bit test. 1892 NextMBB = BTB.Cases[j + 1].TargetBB; 1893 } else if (j + 1 == ej) { 1894 // For the last bit test, fall through to Default. 1895 NextMBB = BTB.Default; 1896 } else { 1897 // Otherwise, fall through to the next bit test. 1898 NextMBB = BTB.Cases[j + 1].ThisBB; 1899 } 1900 1901 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1902 FuncInfo->MBB); 1903 1904 CurDAG->setRoot(SDB->getRoot()); 1905 SDB->clear(); 1906 CodeGenAndEmitDAG(); 1907 1908 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 1909 // Since we're not going to use the final bit test, remove it. 1910 BTB.Cases.pop_back(); 1911 break; 1912 } 1913 } 1914 1915 // Update PHI Nodes 1916 for (const std::pair<MachineInstr *, unsigned> &P : 1917 FuncInfo->PHINodesToUpdate) { 1918 MachineInstrBuilder PHI(*MF, P.first); 1919 MachineBasicBlock *PHIBB = PHI->getParent(); 1920 assert(PHI->isPHI() && 1921 "This is not a machine PHI node that we are updating!"); 1922 // This is "default" BB. We have two jumps to it. From "header" BB and 1923 // from last "case" BB, unless the latter was skipped. 1924 if (PHIBB == BTB.Default) { 1925 PHI.addReg(P.second).addMBB(BTB.Parent); 1926 if (!BTB.ContiguousRange) { 1927 PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB); 1928 } 1929 } 1930 // One of "cases" BB. 1931 for (const SwitchCG::BitTestCase &BT : BTB.Cases) { 1932 MachineBasicBlock* cBB = BT.ThisBB; 1933 if (cBB->isSuccessor(PHIBB)) 1934 PHI.addReg(P.second).addMBB(cBB); 1935 } 1936 } 1937 } 1938 SDB->SL->BitTestCases.clear(); 1939 1940 // If the JumpTable record is filled in, then we need to emit a jump table. 1941 // Updating the PHI nodes is tricky in this case, since we need to determine 1942 // whether the PHI is a successor of the range check MBB or the jump table MBB 1943 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1944 // Lower header first, if it wasn't already lowered 1945 if (!SDB->SL->JTCases[i].first.Emitted) { 1946 // Set the current basic block to the mbb we wish to insert the code into 1947 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1948 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1949 // Emit the code 1950 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1951 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1952 CurDAG->setRoot(SDB->getRoot()); 1953 SDB->clear(); 1954 CodeGenAndEmitDAG(); 1955 } 1956 1957 // Set the current basic block to the mbb we wish to insert the code into 1958 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1959 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1960 // Emit the code 1961 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1962 CurDAG->setRoot(SDB->getRoot()); 1963 SDB->clear(); 1964 CodeGenAndEmitDAG(); 1965 1966 // Update PHI Nodes 1967 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1968 pi != pe; ++pi) { 1969 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1970 MachineBasicBlock *PHIBB = PHI->getParent(); 1971 assert(PHI->isPHI() && 1972 "This is not a machine PHI node that we are updating!"); 1973 // "default" BB. We can go there only from header BB. 1974 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1975 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1976 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1977 // JT BB. Just iterate over successors here 1978 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1979 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1980 } 1981 } 1982 SDB->SL->JTCases.clear(); 1983 1984 // If we generated any switch lowering information, build and codegen any 1985 // additional DAGs necessary. 1986 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1987 // Set the current basic block to the mbb we wish to insert the code into 1988 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1989 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1990 1991 // Determine the unique successors. 1992 SmallVector<MachineBasicBlock *, 2> Succs; 1993 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1994 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1995 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1996 1997 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1998 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1999 CurDAG->setRoot(SDB->getRoot()); 2000 SDB->clear(); 2001 CodeGenAndEmitDAG(); 2002 2003 // Remember the last block, now that any splitting is done, for use in 2004 // populating PHI nodes in successors. 2005 MachineBasicBlock *ThisBB = FuncInfo->MBB; 2006 2007 // Handle any PHI nodes in successors of this chunk, as if we were coming 2008 // from the original BB before switch expansion. Note that PHI nodes can 2009 // occur multiple times in PHINodesToUpdate. We have to be very careful to 2010 // handle them the right number of times. 2011 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 2012 FuncInfo->MBB = Succs[i]; 2013 FuncInfo->InsertPt = FuncInfo->MBB->end(); 2014 // FuncInfo->MBB may have been removed from the CFG if a branch was 2015 // constant folded. 2016 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 2017 for (MachineBasicBlock::iterator 2018 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 2019 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 2020 MachineInstrBuilder PHI(*MF, MBBI); 2021 // This value for this PHI node is recorded in PHINodesToUpdate. 2022 for (unsigned pn = 0; ; ++pn) { 2023 assert(pn != FuncInfo->PHINodesToUpdate.size() && 2024 "Didn't find PHI entry!"); 2025 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 2026 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 2027 break; 2028 } 2029 } 2030 } 2031 } 2032 } 2033 } 2034 SDB->SL->SwitchCases.clear(); 2035 } 2036 2037 /// Create the scheduler. If a specific scheduler was specified 2038 /// via the SchedulerRegistry, use it, otherwise select the 2039 /// one preferred by the target. 2040 /// 2041 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 2042 return ISHeuristic(this, OptLevel); 2043 } 2044 2045 //===----------------------------------------------------------------------===// 2046 // Helper functions used by the generated instruction selector. 2047 //===----------------------------------------------------------------------===// 2048 // Calls to these methods are generated by tblgen. 2049 2050 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 2051 /// the dag combiner simplified the 255, we still want to match. RHS is the 2052 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 2053 /// specified in the .td file (e.g. 255). 2054 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 2055 int64_t DesiredMaskS) const { 2056 const APInt &ActualMask = RHS->getAPIntValue(); 2057 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2058 2059 // If the actual mask exactly matches, success! 2060 if (ActualMask == DesiredMask) 2061 return true; 2062 2063 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2064 if (!ActualMask.isSubsetOf(DesiredMask)) 2065 return false; 2066 2067 // Otherwise, the DAG Combiner may have proven that the value coming in is 2068 // either already zero or is not demanded. Check for known zero input bits. 2069 APInt NeededMask = DesiredMask & ~ActualMask; 2070 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 2071 return true; 2072 2073 // TODO: check to see if missing bits are just not demanded. 2074 2075 // Otherwise, this pattern doesn't match. 2076 return false; 2077 } 2078 2079 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 2080 /// the dag combiner simplified the 255, we still want to match. RHS is the 2081 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 2082 /// specified in the .td file (e.g. 255). 2083 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 2084 int64_t DesiredMaskS) const { 2085 const APInt &ActualMask = RHS->getAPIntValue(); 2086 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2087 2088 // If the actual mask exactly matches, success! 2089 if (ActualMask == DesiredMask) 2090 return true; 2091 2092 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2093 if (!ActualMask.isSubsetOf(DesiredMask)) 2094 return false; 2095 2096 // Otherwise, the DAG Combiner may have proven that the value coming in is 2097 // either already zero or is not demanded. Check for known zero input bits. 2098 APInt NeededMask = DesiredMask & ~ActualMask; 2099 KnownBits Known = CurDAG->computeKnownBits(LHS); 2100 2101 // If all the missing bits in the or are already known to be set, match! 2102 if (NeededMask.isSubsetOf(Known.One)) 2103 return true; 2104 2105 // TODO: check to see if missing bits are just not demanded. 2106 2107 // Otherwise, this pattern doesn't match. 2108 return false; 2109 } 2110 2111 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2112 /// by tblgen. Others should not call it. 2113 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2114 const SDLoc &DL) { 2115 std::vector<SDValue> InOps; 2116 std::swap(InOps, Ops); 2117 2118 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2119 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2120 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2121 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2122 2123 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2124 if (InOps[e-1].getValueType() == MVT::Glue) 2125 --e; // Don't process a glue operand if it is here. 2126 2127 while (i != e) { 2128 InlineAsm::Flag Flags(InOps[i]->getAsZExtVal()); 2129 if (!Flags.isMemKind() && !Flags.isFuncKind()) { 2130 // Just skip over this operand, copying the operands verbatim. 2131 Ops.insert(Ops.end(), InOps.begin() + i, 2132 InOps.begin() + i + Flags.getNumOperandRegisters() + 1); 2133 i += Flags.getNumOperandRegisters() + 1; 2134 } else { 2135 assert(Flags.getNumOperandRegisters() == 1 && 2136 "Memory operand with multiple values?"); 2137 2138 unsigned TiedToOperand; 2139 if (Flags.isUseOperandTiedToDef(TiedToOperand)) { 2140 // We need the constraint ID from the operand this is tied to. 2141 unsigned CurOp = InlineAsm::Op_FirstOperand; 2142 Flags = InlineAsm::Flag(InOps[CurOp]->getAsZExtVal()); 2143 for (; TiedToOperand; --TiedToOperand) { 2144 CurOp += Flags.getNumOperandRegisters() + 1; 2145 Flags = InlineAsm::Flag(InOps[CurOp]->getAsZExtVal()); 2146 } 2147 } 2148 2149 // Otherwise, this is a memory operand. Ask the target to select it. 2150 std::vector<SDValue> SelOps; 2151 const InlineAsm::ConstraintCode ConstraintID = 2152 Flags.getMemoryConstraintID(); 2153 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2154 report_fatal_error("Could not match memory address. Inline asm" 2155 " failure!"); 2156 2157 // Add this to the output node. 2158 Flags = InlineAsm::Flag(Flags.isMemKind() ? InlineAsm::Kind::Mem 2159 : InlineAsm::Kind::Func, 2160 SelOps.size()); 2161 Flags.setMemConstraint(ConstraintID); 2162 Ops.push_back(CurDAG->getTargetConstant(Flags, DL, MVT::i32)); 2163 llvm::append_range(Ops, SelOps); 2164 i += 2; 2165 } 2166 } 2167 2168 // Add the glue input back if present. 2169 if (e != InOps.size()) 2170 Ops.push_back(InOps.back()); 2171 } 2172 2173 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2174 /// SDNode. 2175 /// 2176 static SDNode *findGlueUse(SDNode *N) { 2177 unsigned FlagResNo = N->getNumValues()-1; 2178 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2179 SDUse &Use = I.getUse(); 2180 if (Use.getResNo() == FlagResNo) 2181 return Use.getUser(); 2182 } 2183 return nullptr; 2184 } 2185 2186 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2187 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2188 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2189 bool IgnoreChains) { 2190 SmallPtrSet<const SDNode *, 16> Visited; 2191 SmallVector<const SDNode *, 16> WorkList; 2192 // Only check if we have non-immediate uses of Def. 2193 if (ImmedUse->isOnlyUserOf(Def)) 2194 return false; 2195 2196 // We don't care about paths to Def that go through ImmedUse so mark it 2197 // visited and mark non-def operands as used. 2198 Visited.insert(ImmedUse); 2199 for (const SDValue &Op : ImmedUse->op_values()) { 2200 SDNode *N = Op.getNode(); 2201 // Ignore chain deps (they are validated by 2202 // HandleMergeInputChains) and immediate uses 2203 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2204 continue; 2205 if (!Visited.insert(N).second) 2206 continue; 2207 WorkList.push_back(N); 2208 } 2209 2210 // Initialize worklist to operands of Root. 2211 if (Root != ImmedUse) { 2212 for (const SDValue &Op : Root->op_values()) { 2213 SDNode *N = Op.getNode(); 2214 // Ignore chains (they are validated by HandleMergeInputChains) 2215 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2216 continue; 2217 if (!Visited.insert(N).second) 2218 continue; 2219 WorkList.push_back(N); 2220 } 2221 } 2222 2223 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2224 } 2225 2226 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2227 /// operand node N of U during instruction selection that starts at Root. 2228 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2229 SDNode *Root) const { 2230 if (OptLevel == CodeGenOptLevel::None) 2231 return false; 2232 return N.hasOneUse(); 2233 } 2234 2235 /// IsLegalToFold - Returns true if the specific operand node N of 2236 /// U can be folded during instruction selection that starts at Root. 2237 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2238 CodeGenOptLevel OptLevel, 2239 bool IgnoreChains) { 2240 if (OptLevel == CodeGenOptLevel::None) 2241 return false; 2242 2243 // If Root use can somehow reach N through a path that doesn't contain 2244 // U then folding N would create a cycle. e.g. In the following 2245 // diagram, Root can reach N through X. If N is folded into Root, then 2246 // X is both a predecessor and a successor of U. 2247 // 2248 // [N*] // 2249 // ^ ^ // 2250 // / \ // 2251 // [U*] [X]? // 2252 // ^ ^ // 2253 // \ / // 2254 // \ / // 2255 // [Root*] // 2256 // 2257 // * indicates nodes to be folded together. 2258 // 2259 // If Root produces glue, then it gets (even more) interesting. Since it 2260 // will be "glued" together with its glue use in the scheduler, we need to 2261 // check if it might reach N. 2262 // 2263 // [N*] // 2264 // ^ ^ // 2265 // / \ // 2266 // [U*] [X]? // 2267 // ^ ^ // 2268 // \ \ // 2269 // \ | // 2270 // [Root*] | // 2271 // ^ | // 2272 // f | // 2273 // | / // 2274 // [Y] / // 2275 // ^ / // 2276 // f / // 2277 // | / // 2278 // [GU] // 2279 // 2280 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2281 // (call it Fold), then X is a predecessor of GU and a successor of 2282 // Fold. But since Fold and GU are glued together, this will create 2283 // a cycle in the scheduling graph. 2284 2285 // If the node has glue, walk down the graph to the "lowest" node in the 2286 // glueged set. 2287 EVT VT = Root->getValueType(Root->getNumValues()-1); 2288 while (VT == MVT::Glue) { 2289 SDNode *GU = findGlueUse(Root); 2290 if (!GU) 2291 break; 2292 Root = GU; 2293 VT = Root->getValueType(Root->getNumValues()-1); 2294 2295 // If our query node has a glue result with a use, we've walked up it. If 2296 // the user (which has already been selected) has a chain or indirectly uses 2297 // the chain, HandleMergeInputChains will not consider it. Because of 2298 // this, we cannot ignore chains in this predicate. 2299 IgnoreChains = false; 2300 } 2301 2302 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2303 } 2304 2305 void SelectionDAGISel::Select_INLINEASM(SDNode *N) { 2306 SDLoc DL(N); 2307 2308 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2309 SelectInlineAsmMemoryOperands(Ops, DL); 2310 2311 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2312 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops); 2313 New->setNodeId(-1); 2314 ReplaceUses(N, New.getNode()); 2315 CurDAG->RemoveDeadNode(N); 2316 } 2317 2318 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2319 SDLoc dl(Op); 2320 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2321 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2322 2323 EVT VT = Op->getValueType(0); 2324 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2325 Register Reg = 2326 TLI->getRegisterByName(RegStr->getString().data(), Ty, 2327 CurDAG->getMachineFunction()); 2328 SDValue New = CurDAG->getCopyFromReg( 2329 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2330 New->setNodeId(-1); 2331 ReplaceUses(Op, New.getNode()); 2332 CurDAG->RemoveDeadNode(Op); 2333 } 2334 2335 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2336 SDLoc dl(Op); 2337 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2338 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2339 2340 EVT VT = Op->getOperand(2).getValueType(); 2341 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2342 2343 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, 2344 CurDAG->getMachineFunction()); 2345 SDValue New = CurDAG->getCopyToReg( 2346 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2347 New->setNodeId(-1); 2348 ReplaceUses(Op, New.getNode()); 2349 CurDAG->RemoveDeadNode(Op); 2350 } 2351 2352 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2353 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2354 } 2355 2356 void SelectionDAGISel::Select_FREEZE(SDNode *N) { 2357 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. 2358 // If FREEZE instruction is added later, the code below must be changed as 2359 // well. 2360 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0), 2361 N->getOperand(0)); 2362 } 2363 2364 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) { 2365 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0), 2366 N->getOperand(0)); 2367 } 2368 2369 void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) { 2370 CurDAG->SelectNodeTo(N, TargetOpcode::MEMBARRIER, N->getValueType(0), 2371 N->getOperand(0)); 2372 } 2373 2374 void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops, 2375 SDValue OpVal, SDLoc DL) { 2376 SDNode *OpNode = OpVal.getNode(); 2377 2378 // FrameIndex nodes should have been directly emitted to TargetFrameIndex 2379 // nodes at DAG-construction time. 2380 assert(OpNode->getOpcode() != ISD::FrameIndex); 2381 2382 if (OpNode->getOpcode() == ISD::Constant) { 2383 Ops.push_back( 2384 CurDAG->getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 2385 Ops.push_back(CurDAG->getTargetConstant(OpNode->getAsZExtVal(), DL, 2386 OpVal.getValueType())); 2387 } else { 2388 Ops.push_back(OpVal); 2389 } 2390 } 2391 2392 void SelectionDAGISel::Select_STACKMAP(SDNode *N) { 2393 SmallVector<SDValue, 32> Ops; 2394 auto *It = N->op_begin(); 2395 SDLoc DL(N); 2396 2397 // Stash the chain and glue operands so we can move them to the end. 2398 SDValue Chain = *It++; 2399 SDValue InGlue = *It++; 2400 2401 // <id> operand. 2402 SDValue ID = *It++; 2403 assert(ID.getValueType() == MVT::i64); 2404 Ops.push_back(ID); 2405 2406 // <numShadowBytes> operand. 2407 SDValue Shad = *It++; 2408 assert(Shad.getValueType() == MVT::i32); 2409 Ops.push_back(Shad); 2410 2411 // Live variable operands. 2412 for (; It != N->op_end(); It++) 2413 pushStackMapLiveVariable(Ops, *It, DL); 2414 2415 Ops.push_back(Chain); 2416 Ops.push_back(InGlue); 2417 2418 SDVTList NodeTys = CurDAG->getVTList(MVT::Other, MVT::Glue); 2419 CurDAG->SelectNodeTo(N, TargetOpcode::STACKMAP, NodeTys, Ops); 2420 } 2421 2422 void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) { 2423 SmallVector<SDValue, 32> Ops; 2424 auto *It = N->op_begin(); 2425 SDLoc DL(N); 2426 2427 // Cache arguments that will be moved to the end in the target node. 2428 SDValue Chain = *It++; 2429 std::optional<SDValue> Glue; 2430 if (It->getValueType() == MVT::Glue) 2431 Glue = *It++; 2432 SDValue RegMask = *It++; 2433 2434 // <id> operand. 2435 SDValue ID = *It++; 2436 assert(ID.getValueType() == MVT::i64); 2437 Ops.push_back(ID); 2438 2439 // <numShadowBytes> operand. 2440 SDValue Shad = *It++; 2441 assert(Shad.getValueType() == MVT::i32); 2442 Ops.push_back(Shad); 2443 2444 // Add the callee. 2445 Ops.push_back(*It++); 2446 2447 // Add <numArgs>. 2448 SDValue NumArgs = *It++; 2449 assert(NumArgs.getValueType() == MVT::i32); 2450 Ops.push_back(NumArgs); 2451 2452 // Calling convention. 2453 Ops.push_back(*It++); 2454 2455 // Push the args for the call. 2456 for (uint64_t I = NumArgs->getAsZExtVal(); I != 0; I--) 2457 Ops.push_back(*It++); 2458 2459 // Now push the live variables. 2460 for (; It != N->op_end(); It++) 2461 pushStackMapLiveVariable(Ops, *It, DL); 2462 2463 // Finally, the regmask, chain and (if present) glue are moved to the end. 2464 Ops.push_back(RegMask); 2465 Ops.push_back(Chain); 2466 if (Glue.has_value()) 2467 Ops.push_back(*Glue); 2468 2469 SDVTList NodeTys = N->getVTList(); 2470 CurDAG->SelectNodeTo(N, TargetOpcode::PATCHPOINT, NodeTys, Ops); 2471 } 2472 2473 /// GetVBR - decode a vbr encoding whose top bit is set. 2474 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 2475 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2476 assert(Val >= 128 && "Not a VBR"); 2477 Val &= 127; // Remove first vbr bit. 2478 2479 unsigned Shift = 7; 2480 uint64_t NextBits; 2481 do { 2482 NextBits = MatcherTable[Idx++]; 2483 Val |= (NextBits&127) << Shift; 2484 Shift += 7; 2485 } while (NextBits & 128); 2486 2487 return Val; 2488 } 2489 2490 void SelectionDAGISel::Select_JUMP_TABLE_DEBUG_INFO(SDNode *N) { 2491 SDLoc dl(N); 2492 CurDAG->SelectNodeTo(N, TargetOpcode::JUMP_TABLE_DEBUG_INFO, MVT::Glue, 2493 CurDAG->getTargetConstant(N->getConstantOperandVal(1), 2494 dl, MVT::i64, true)); 2495 } 2496 2497 /// When a match is complete, this method updates uses of interior chain results 2498 /// to use the new results. 2499 void SelectionDAGISel::UpdateChains( 2500 SDNode *NodeToMatch, SDValue InputChain, 2501 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2502 SmallVector<SDNode*, 4> NowDeadNodes; 2503 2504 // Now that all the normal results are replaced, we replace the chain and 2505 // glue results if present. 2506 if (!ChainNodesMatched.empty()) { 2507 assert(InputChain.getNode() && 2508 "Matched input chains but didn't produce a chain"); 2509 // Loop over all of the nodes we matched that produced a chain result. 2510 // Replace all the chain results with the final chain we ended up with. 2511 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2512 SDNode *ChainNode = ChainNodesMatched[i]; 2513 // If ChainNode is null, it's because we replaced it on a previous 2514 // iteration and we cleared it out of the map. Just skip it. 2515 if (!ChainNode) 2516 continue; 2517 2518 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2519 "Deleted node left in chain"); 2520 2521 // Don't replace the results of the root node if we're doing a 2522 // MorphNodeTo. 2523 if (ChainNode == NodeToMatch && isMorphNodeTo) 2524 continue; 2525 2526 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2527 if (ChainVal.getValueType() == MVT::Glue) 2528 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2529 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2530 SelectionDAG::DAGNodeDeletedListener NDL( 2531 *CurDAG, [&](SDNode *N, SDNode *E) { 2532 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2533 static_cast<SDNode *>(nullptr)); 2534 }); 2535 if (ChainNode->getOpcode() != ISD::TokenFactor) 2536 ReplaceUses(ChainVal, InputChain); 2537 2538 // If the node became dead and we haven't already seen it, delete it. 2539 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2540 !llvm::is_contained(NowDeadNodes, ChainNode)) 2541 NowDeadNodes.push_back(ChainNode); 2542 } 2543 } 2544 2545 if (!NowDeadNodes.empty()) 2546 CurDAG->RemoveDeadNodes(NowDeadNodes); 2547 2548 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2549 } 2550 2551 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2552 /// operation for when the pattern matched at least one node with a chains. The 2553 /// input vector contains a list of all of the chained nodes that we match. We 2554 /// must determine if this is a valid thing to cover (i.e. matching it won't 2555 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2556 /// be used as the input node chain for the generated nodes. 2557 static SDValue 2558 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2559 SelectionDAG *CurDAG) { 2560 2561 SmallPtrSet<const SDNode *, 16> Visited; 2562 SmallVector<const SDNode *, 8> Worklist; 2563 SmallVector<SDValue, 3> InputChains; 2564 unsigned int Max = 8192; 2565 2566 // Quick exit on trivial merge. 2567 if (ChainNodesMatched.size() == 1) 2568 return ChainNodesMatched[0]->getOperand(0); 2569 2570 // Add chains that aren't already added (internal). Peek through 2571 // token factors. 2572 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2573 if (V.getValueType() != MVT::Other) 2574 return; 2575 if (V->getOpcode() == ISD::EntryToken) 2576 return; 2577 if (!Visited.insert(V.getNode()).second) 2578 return; 2579 if (V->getOpcode() == ISD::TokenFactor) { 2580 for (const SDValue &Op : V->op_values()) 2581 AddChains(Op); 2582 } else 2583 InputChains.push_back(V); 2584 }; 2585 2586 for (auto *N : ChainNodesMatched) { 2587 Worklist.push_back(N); 2588 Visited.insert(N); 2589 } 2590 2591 while (!Worklist.empty()) 2592 AddChains(Worklist.pop_back_val()->getOperand(0)); 2593 2594 // Skip the search if there are no chain dependencies. 2595 if (InputChains.size() == 0) 2596 return CurDAG->getEntryNode(); 2597 2598 // If one of these chains is a successor of input, we must have a 2599 // node that is both the predecessor and successor of the 2600 // to-be-merged nodes. Fail. 2601 Visited.clear(); 2602 for (SDValue V : InputChains) 2603 Worklist.push_back(V.getNode()); 2604 2605 for (auto *N : ChainNodesMatched) 2606 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2607 return SDValue(); 2608 2609 // Return merged chain. 2610 if (InputChains.size() == 1) 2611 return InputChains[0]; 2612 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2613 MVT::Other, InputChains); 2614 } 2615 2616 /// MorphNode - Handle morphing a node in place for the selector. 2617 SDNode *SelectionDAGISel:: 2618 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2619 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2620 // It is possible we're using MorphNodeTo to replace a node with no 2621 // normal results with one that has a normal result (or we could be 2622 // adding a chain) and the input could have glue and chains as well. 2623 // In this case we need to shift the operands down. 2624 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2625 // than the old isel though. 2626 int OldGlueResultNo = -1, OldChainResultNo = -1; 2627 2628 unsigned NTMNumResults = Node->getNumValues(); 2629 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2630 OldGlueResultNo = NTMNumResults-1; 2631 if (NTMNumResults != 1 && 2632 Node->getValueType(NTMNumResults-2) == MVT::Other) 2633 OldChainResultNo = NTMNumResults-2; 2634 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2635 OldChainResultNo = NTMNumResults-1; 2636 2637 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2638 // that this deletes operands of the old node that become dead. 2639 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2640 2641 // MorphNodeTo can operate in two ways: if an existing node with the 2642 // specified operands exists, it can just return it. Otherwise, it 2643 // updates the node in place to have the requested operands. 2644 if (Res == Node) { 2645 // If we updated the node in place, reset the node ID. To the isel, 2646 // this should be just like a newly allocated machine node. 2647 Res->setNodeId(-1); 2648 } 2649 2650 unsigned ResNumResults = Res->getNumValues(); 2651 // Move the glue if needed. 2652 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2653 static_cast<unsigned>(OldGlueResultNo) != ResNumResults - 1) 2654 ReplaceUses(SDValue(Node, OldGlueResultNo), 2655 SDValue(Res, ResNumResults - 1)); 2656 2657 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2658 --ResNumResults; 2659 2660 // Move the chain reference if needed. 2661 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2662 static_cast<unsigned>(OldChainResultNo) != ResNumResults - 1) 2663 ReplaceUses(SDValue(Node, OldChainResultNo), 2664 SDValue(Res, ResNumResults - 1)); 2665 2666 // Otherwise, no replacement happened because the node already exists. Replace 2667 // Uses of the old node with the new one. 2668 if (Res != Node) { 2669 ReplaceNode(Node, Res); 2670 } else { 2671 EnforceNodeIdInvariant(Res); 2672 } 2673 2674 return Res; 2675 } 2676 2677 /// CheckSame - Implements OP_CheckSame. 2678 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2679 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2680 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { 2681 // Accept if it is exactly the same as a previously recorded node. 2682 unsigned RecNo = MatcherTable[MatcherIndex++]; 2683 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2684 return N == RecordedNodes[RecNo].first; 2685 } 2686 2687 /// CheckChildSame - Implements OP_CheckChildXSame. 2688 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( 2689 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2690 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes, 2691 unsigned ChildNo) { 2692 if (ChildNo >= N.getNumOperands()) 2693 return false; // Match fails if out of range child #. 2694 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2695 RecordedNodes); 2696 } 2697 2698 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2699 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2700 CheckPatternPredicate(unsigned Opcode, const unsigned char *MatcherTable, 2701 unsigned &MatcherIndex, const SelectionDAGISel &SDISel) { 2702 bool TwoBytePredNo = 2703 Opcode == SelectionDAGISel::OPC_CheckPatternPredicateTwoByte; 2704 unsigned PredNo = 2705 TwoBytePredNo || Opcode == SelectionDAGISel::OPC_CheckPatternPredicate 2706 ? MatcherTable[MatcherIndex++] 2707 : Opcode - SelectionDAGISel::OPC_CheckPatternPredicate0; 2708 if (TwoBytePredNo) 2709 PredNo |= MatcherTable[MatcherIndex++] << 8; 2710 return SDISel.CheckPatternPredicate(PredNo); 2711 } 2712 2713 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2714 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2715 CheckNodePredicate(unsigned Opcode, const unsigned char *MatcherTable, 2716 unsigned &MatcherIndex, const SelectionDAGISel &SDISel, 2717 SDNode *N) { 2718 unsigned PredNo = Opcode == SelectionDAGISel::OPC_CheckPredicate 2719 ? MatcherTable[MatcherIndex++] 2720 : Opcode - SelectionDAGISel::OPC_CheckPredicate0; 2721 return SDISel.CheckNodePredicate(N, PredNo); 2722 } 2723 2724 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2725 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2726 SDNode *N) { 2727 uint16_t Opc = MatcherTable[MatcherIndex++]; 2728 Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; 2729 return N->getOpcode() == Opc; 2730 } 2731 2732 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckType(MVT::SimpleValueType VT, 2733 SDValue N, 2734 const TargetLowering *TLI, 2735 const DataLayout &DL) { 2736 if (N.getValueType() == VT) 2737 return true; 2738 2739 // Handle the case when VT is iPTR. 2740 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2741 } 2742 2743 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2744 CheckChildType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, 2745 const DataLayout &DL, unsigned ChildNo) { 2746 if (ChildNo >= N.getNumOperands()) 2747 return false; // Match fails if out of range child #. 2748 return ::CheckType(VT, N.getOperand(ChildNo), TLI, DL); 2749 } 2750 2751 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2752 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2753 SDValue N) { 2754 return cast<CondCodeSDNode>(N)->get() == 2755 static_cast<ISD::CondCode>(MatcherTable[MatcherIndex++]); 2756 } 2757 2758 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2759 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2760 SDValue N) { 2761 if (2 >= N.getNumOperands()) 2762 return false; 2763 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2764 } 2765 2766 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2767 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2768 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2769 MVT::SimpleValueType VT = 2770 static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]); 2771 if (cast<VTSDNode>(N)->getVT() == VT) 2772 return true; 2773 2774 // Handle the case when VT is iPTR. 2775 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2776 } 2777 2778 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude 2779 // shifted left by 1. 2780 static uint64_t decodeSignRotatedValue(uint64_t V) { 2781 if ((V & 1) == 0) 2782 return V >> 1; 2783 if (V != 1) 2784 return -(V >> 1); 2785 // There is no such thing as -0 with integers. "-0" really means MININT. 2786 return 1ULL << 63; 2787 } 2788 2789 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2790 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2791 SDValue N) { 2792 int64_t Val = MatcherTable[MatcherIndex++]; 2793 if (Val & 128) 2794 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2795 2796 Val = decodeSignRotatedValue(Val); 2797 2798 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2799 return C && C->getAPIntValue().trySExtValue() == Val; 2800 } 2801 2802 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2803 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2804 SDValue N, unsigned ChildNo) { 2805 if (ChildNo >= N.getNumOperands()) 2806 return false; // Match fails if out of range child #. 2807 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2808 } 2809 2810 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2811 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2812 SDValue N, const SelectionDAGISel &SDISel) { 2813 int64_t Val = MatcherTable[MatcherIndex++]; 2814 if (Val & 128) 2815 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2816 2817 if (N->getOpcode() != ISD::AND) return false; 2818 2819 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2820 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2821 } 2822 2823 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2824 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2825 const SelectionDAGISel &SDISel) { 2826 int64_t Val = MatcherTable[MatcherIndex++]; 2827 if (Val & 128) 2828 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2829 2830 if (N->getOpcode() != ISD::OR) return false; 2831 2832 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2833 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2834 } 2835 2836 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2837 /// scope, evaluate the current node. If the current predicate is known to 2838 /// fail, set Result=true and return anything. If the current predicate is 2839 /// known to pass, set Result=false and return the MatcherIndex to continue 2840 /// with. If the current predicate is unknown, set Result=false and return the 2841 /// MatcherIndex to continue with. 2842 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2843 unsigned Index, SDValue N, 2844 bool &Result, 2845 const SelectionDAGISel &SDISel, 2846 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2847 unsigned Opcode = Table[Index++]; 2848 switch (Opcode) { 2849 default: 2850 Result = false; 2851 return Index-1; // Could not evaluate this predicate. 2852 case SelectionDAGISel::OPC_CheckSame: 2853 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2854 return Index; 2855 case SelectionDAGISel::OPC_CheckChild0Same: 2856 case SelectionDAGISel::OPC_CheckChild1Same: 2857 case SelectionDAGISel::OPC_CheckChild2Same: 2858 case SelectionDAGISel::OPC_CheckChild3Same: 2859 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2860 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2861 return Index; 2862 case SelectionDAGISel::OPC_CheckPatternPredicate: 2863 case SelectionDAGISel::OPC_CheckPatternPredicate0: 2864 case SelectionDAGISel::OPC_CheckPatternPredicate1: 2865 case SelectionDAGISel::OPC_CheckPatternPredicate2: 2866 case SelectionDAGISel::OPC_CheckPatternPredicate3: 2867 case SelectionDAGISel::OPC_CheckPatternPredicate4: 2868 case SelectionDAGISel::OPC_CheckPatternPredicate5: 2869 case SelectionDAGISel::OPC_CheckPatternPredicate6: 2870 case SelectionDAGISel::OPC_CheckPatternPredicate7: 2871 case SelectionDAGISel::OPC_CheckPatternPredicateTwoByte: 2872 Result = !::CheckPatternPredicate(Opcode, Table, Index, SDISel); 2873 return Index; 2874 case SelectionDAGISel::OPC_CheckPredicate: 2875 case SelectionDAGISel::OPC_CheckPredicate0: 2876 case SelectionDAGISel::OPC_CheckPredicate1: 2877 case SelectionDAGISel::OPC_CheckPredicate2: 2878 case SelectionDAGISel::OPC_CheckPredicate3: 2879 case SelectionDAGISel::OPC_CheckPredicate4: 2880 case SelectionDAGISel::OPC_CheckPredicate5: 2881 case SelectionDAGISel::OPC_CheckPredicate6: 2882 case SelectionDAGISel::OPC_CheckPredicate7: 2883 Result = !::CheckNodePredicate(Opcode, Table, Index, SDISel, N.getNode()); 2884 return Index; 2885 case SelectionDAGISel::OPC_CheckOpcode: 2886 Result = !::CheckOpcode(Table, Index, N.getNode()); 2887 return Index; 2888 case SelectionDAGISel::OPC_CheckType: 2889 case SelectionDAGISel::OPC_CheckTypeI32: 2890 case SelectionDAGISel::OPC_CheckTypeI64: { 2891 MVT::SimpleValueType VT; 2892 switch (Opcode) { 2893 case SelectionDAGISel::OPC_CheckTypeI32: 2894 VT = MVT::i32; 2895 break; 2896 case SelectionDAGISel::OPC_CheckTypeI64: 2897 VT = MVT::i64; 2898 break; 2899 default: 2900 VT = static_cast<MVT::SimpleValueType>(Table[Index++]); 2901 break; 2902 } 2903 Result = !::CheckType(VT, N, SDISel.TLI, SDISel.CurDAG->getDataLayout()); 2904 return Index; 2905 } 2906 case SelectionDAGISel::OPC_CheckTypeRes: { 2907 unsigned Res = Table[Index++]; 2908 Result = !::CheckType(static_cast<MVT::SimpleValueType>(Table[Index++]), 2909 N.getValue(Res), SDISel.TLI, 2910 SDISel.CurDAG->getDataLayout()); 2911 return Index; 2912 } 2913 case SelectionDAGISel::OPC_CheckChild0Type: 2914 case SelectionDAGISel::OPC_CheckChild1Type: 2915 case SelectionDAGISel::OPC_CheckChild2Type: 2916 case SelectionDAGISel::OPC_CheckChild3Type: 2917 case SelectionDAGISel::OPC_CheckChild4Type: 2918 case SelectionDAGISel::OPC_CheckChild5Type: 2919 case SelectionDAGISel::OPC_CheckChild6Type: 2920 case SelectionDAGISel::OPC_CheckChild7Type: 2921 case SelectionDAGISel::OPC_CheckChild0TypeI32: 2922 case SelectionDAGISel::OPC_CheckChild1TypeI32: 2923 case SelectionDAGISel::OPC_CheckChild2TypeI32: 2924 case SelectionDAGISel::OPC_CheckChild3TypeI32: 2925 case SelectionDAGISel::OPC_CheckChild4TypeI32: 2926 case SelectionDAGISel::OPC_CheckChild5TypeI32: 2927 case SelectionDAGISel::OPC_CheckChild6TypeI32: 2928 case SelectionDAGISel::OPC_CheckChild7TypeI32: 2929 case SelectionDAGISel::OPC_CheckChild0TypeI64: 2930 case SelectionDAGISel::OPC_CheckChild1TypeI64: 2931 case SelectionDAGISel::OPC_CheckChild2TypeI64: 2932 case SelectionDAGISel::OPC_CheckChild3TypeI64: 2933 case SelectionDAGISel::OPC_CheckChild4TypeI64: 2934 case SelectionDAGISel::OPC_CheckChild5TypeI64: 2935 case SelectionDAGISel::OPC_CheckChild6TypeI64: 2936 case SelectionDAGISel::OPC_CheckChild7TypeI64: { 2937 MVT::SimpleValueType VT; 2938 unsigned ChildNo; 2939 if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 && 2940 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) { 2941 VT = MVT::i32; 2942 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32; 2943 } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 && 2944 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) { 2945 VT = MVT::i64; 2946 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64; 2947 } else { 2948 VT = static_cast<MVT::SimpleValueType>(Table[Index++]); 2949 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type; 2950 } 2951 Result = !::CheckChildType(VT, N, SDISel.TLI, 2952 SDISel.CurDAG->getDataLayout(), ChildNo); 2953 return Index; 2954 } 2955 case SelectionDAGISel::OPC_CheckCondCode: 2956 Result = !::CheckCondCode(Table, Index, N); 2957 return Index; 2958 case SelectionDAGISel::OPC_CheckChild2CondCode: 2959 Result = !::CheckChild2CondCode(Table, Index, N); 2960 return Index; 2961 case SelectionDAGISel::OPC_CheckValueType: 2962 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2963 SDISel.CurDAG->getDataLayout()); 2964 return Index; 2965 case SelectionDAGISel::OPC_CheckInteger: 2966 Result = !::CheckInteger(Table, Index, N); 2967 return Index; 2968 case SelectionDAGISel::OPC_CheckChild0Integer: 2969 case SelectionDAGISel::OPC_CheckChild1Integer: 2970 case SelectionDAGISel::OPC_CheckChild2Integer: 2971 case SelectionDAGISel::OPC_CheckChild3Integer: 2972 case SelectionDAGISel::OPC_CheckChild4Integer: 2973 Result = !::CheckChildInteger(Table, Index, N, 2974 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2975 return Index; 2976 case SelectionDAGISel::OPC_CheckAndImm: 2977 Result = !::CheckAndImm(Table, Index, N, SDISel); 2978 return Index; 2979 case SelectionDAGISel::OPC_CheckOrImm: 2980 Result = !::CheckOrImm(Table, Index, N, SDISel); 2981 return Index; 2982 } 2983 } 2984 2985 namespace { 2986 2987 struct MatchScope { 2988 /// FailIndex - If this match fails, this is the index to continue with. 2989 unsigned FailIndex; 2990 2991 /// NodeStack - The node stack when the scope was formed. 2992 SmallVector<SDValue, 4> NodeStack; 2993 2994 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2995 unsigned NumRecordedNodes; 2996 2997 /// NumMatchedMemRefs - The number of matched memref entries. 2998 unsigned NumMatchedMemRefs; 2999 3000 /// InputChain/InputGlue - The current chain/glue 3001 SDValue InputChain, InputGlue; 3002 3003 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 3004 bool HasChainNodesMatched; 3005 }; 3006 3007 /// \A DAG update listener to keep the matching state 3008 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 3009 /// change the DAG while matching. X86 addressing mode matcher is an example 3010 /// for this. 3011 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 3012 { 3013 SDNode **NodeToMatch; 3014 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 3015 SmallVectorImpl<MatchScope> &MatchScopes; 3016 3017 public: 3018 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 3019 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 3020 SmallVectorImpl<MatchScope> &MS) 3021 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 3022 RecordedNodes(RN), MatchScopes(MS) {} 3023 3024 void NodeDeleted(SDNode *N, SDNode *E) override { 3025 // Some early-returns here to avoid the search if we deleted the node or 3026 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 3027 // do, so it's unnecessary to update matching state at that point). 3028 // Neither of these can occur currently because we only install this 3029 // update listener during matching a complex patterns. 3030 if (!E || E->isMachineOpcode()) 3031 return; 3032 // Check if NodeToMatch was updated. 3033 if (N == *NodeToMatch) 3034 *NodeToMatch = E; 3035 // Performing linear search here does not matter because we almost never 3036 // run this code. You'd have to have a CSE during complex pattern 3037 // matching. 3038 for (auto &I : RecordedNodes) 3039 if (I.first.getNode() == N) 3040 I.first.setNode(E); 3041 3042 for (auto &I : MatchScopes) 3043 for (auto &J : I.NodeStack) 3044 if (J.getNode() == N) 3045 J.setNode(E); 3046 } 3047 }; 3048 3049 } // end anonymous namespace 3050 3051 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 3052 const unsigned char *MatcherTable, 3053 unsigned TableSize) { 3054 // FIXME: Should these even be selected? Handle these cases in the caller? 3055 switch (NodeToMatch->getOpcode()) { 3056 default: 3057 break; 3058 case ISD::EntryToken: // These nodes remain the same. 3059 case ISD::BasicBlock: 3060 case ISD::Register: 3061 case ISD::RegisterMask: 3062 case ISD::HANDLENODE: 3063 case ISD::MDNODE_SDNODE: 3064 case ISD::TargetConstant: 3065 case ISD::TargetConstantFP: 3066 case ISD::TargetConstantPool: 3067 case ISD::TargetFrameIndex: 3068 case ISD::TargetExternalSymbol: 3069 case ISD::MCSymbol: 3070 case ISD::TargetBlockAddress: 3071 case ISD::TargetJumpTable: 3072 case ISD::TargetGlobalTLSAddress: 3073 case ISD::TargetGlobalAddress: 3074 case ISD::TokenFactor: 3075 case ISD::CopyFromReg: 3076 case ISD::CopyToReg: 3077 case ISD::EH_LABEL: 3078 case ISD::ANNOTATION_LABEL: 3079 case ISD::LIFETIME_START: 3080 case ISD::LIFETIME_END: 3081 case ISD::PSEUDO_PROBE: 3082 NodeToMatch->setNodeId(-1); // Mark selected. 3083 return; 3084 case ISD::AssertSext: 3085 case ISD::AssertZext: 3086 case ISD::AssertAlign: 3087 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 3088 CurDAG->RemoveDeadNode(NodeToMatch); 3089 return; 3090 case ISD::INLINEASM: 3091 case ISD::INLINEASM_BR: 3092 Select_INLINEASM(NodeToMatch); 3093 return; 3094 case ISD::READ_REGISTER: 3095 Select_READ_REGISTER(NodeToMatch); 3096 return; 3097 case ISD::WRITE_REGISTER: 3098 Select_WRITE_REGISTER(NodeToMatch); 3099 return; 3100 case ISD::UNDEF: 3101 Select_UNDEF(NodeToMatch); 3102 return; 3103 case ISD::FREEZE: 3104 Select_FREEZE(NodeToMatch); 3105 return; 3106 case ISD::ARITH_FENCE: 3107 Select_ARITH_FENCE(NodeToMatch); 3108 return; 3109 case ISD::MEMBARRIER: 3110 Select_MEMBARRIER(NodeToMatch); 3111 return; 3112 case ISD::STACKMAP: 3113 Select_STACKMAP(NodeToMatch); 3114 return; 3115 case ISD::PATCHPOINT: 3116 Select_PATCHPOINT(NodeToMatch); 3117 return; 3118 case ISD::JUMP_TABLE_DEBUG_INFO: 3119 Select_JUMP_TABLE_DEBUG_INFO(NodeToMatch); 3120 return; 3121 } 3122 3123 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 3124 3125 // Set up the node stack with NodeToMatch as the only node on the stack. 3126 SmallVector<SDValue, 8> NodeStack; 3127 SDValue N = SDValue(NodeToMatch, 0); 3128 NodeStack.push_back(N); 3129 3130 // MatchScopes - Scopes used when matching, if a match failure happens, this 3131 // indicates where to continue checking. 3132 SmallVector<MatchScope, 8> MatchScopes; 3133 3134 // RecordedNodes - This is the set of nodes that have been recorded by the 3135 // state machine. The second value is the parent of the node, or null if the 3136 // root is recorded. 3137 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 3138 3139 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 3140 // pattern. 3141 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 3142 3143 // These are the current input chain and glue for use when generating nodes. 3144 // Various Emit operations change these. For example, emitting a copytoreg 3145 // uses and updates these. 3146 SDValue InputChain, InputGlue; 3147 3148 // ChainNodesMatched - If a pattern matches nodes that have input/output 3149 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 3150 // which ones they are. The result is captured into this list so that we can 3151 // update the chain results when the pattern is complete. 3152 SmallVector<SDNode*, 3> ChainNodesMatched; 3153 3154 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 3155 3156 // Determine where to start the interpreter. Normally we start at opcode #0, 3157 // but if the state machine starts with an OPC_SwitchOpcode, then we 3158 // accelerate the first lookup (which is guaranteed to be hot) with the 3159 // OpcodeOffset table. 3160 unsigned MatcherIndex = 0; 3161 3162 if (!OpcodeOffset.empty()) { 3163 // Already computed the OpcodeOffset table, just index into it. 3164 if (N.getOpcode() < OpcodeOffset.size()) 3165 MatcherIndex = OpcodeOffset[N.getOpcode()]; 3166 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 3167 3168 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 3169 // Otherwise, the table isn't computed, but the state machine does start 3170 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 3171 // is the first time we're selecting an instruction. 3172 unsigned Idx = 1; 3173 while (true) { 3174 // Get the size of this case. 3175 unsigned CaseSize = MatcherTable[Idx++]; 3176 if (CaseSize & 128) 3177 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 3178 if (CaseSize == 0) break; 3179 3180 // Get the opcode, add the index to the table. 3181 uint16_t Opc = MatcherTable[Idx++]; 3182 Opc |= static_cast<uint16_t>(MatcherTable[Idx++]) << 8; 3183 if (Opc >= OpcodeOffset.size()) 3184 OpcodeOffset.resize((Opc+1)*2); 3185 OpcodeOffset[Opc] = Idx; 3186 Idx += CaseSize; 3187 } 3188 3189 // Okay, do the lookup for the first opcode. 3190 if (N.getOpcode() < OpcodeOffset.size()) 3191 MatcherIndex = OpcodeOffset[N.getOpcode()]; 3192 } 3193 3194 while (true) { 3195 assert(MatcherIndex < TableSize && "Invalid index"); 3196 #ifndef NDEBUG 3197 unsigned CurrentOpcodeIndex = MatcherIndex; 3198 #endif 3199 BuiltinOpcodes Opcode = 3200 static_cast<BuiltinOpcodes>(MatcherTable[MatcherIndex++]); 3201 switch (Opcode) { 3202 case OPC_Scope: { 3203 // Okay, the semantics of this operation are that we should push a scope 3204 // then evaluate the first child. However, pushing a scope only to have 3205 // the first check fail (which then pops it) is inefficient. If we can 3206 // determine immediately that the first check (or first several) will 3207 // immediately fail, don't even bother pushing a scope for them. 3208 unsigned FailIndex; 3209 3210 while (true) { 3211 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3212 if (NumToSkip & 128) 3213 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3214 // Found the end of the scope with no match. 3215 if (NumToSkip == 0) { 3216 FailIndex = 0; 3217 break; 3218 } 3219 3220 FailIndex = MatcherIndex+NumToSkip; 3221 3222 unsigned MatcherIndexOfPredicate = MatcherIndex; 3223 (void)MatcherIndexOfPredicate; // silence warning. 3224 3225 // If we can't evaluate this predicate without pushing a scope (e.g. if 3226 // it is a 'MoveParent') or if the predicate succeeds on this node, we 3227 // push the scope and evaluate the full predicate chain. 3228 bool Result; 3229 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 3230 Result, *this, RecordedNodes); 3231 if (!Result) 3232 break; 3233 3234 LLVM_DEBUG( 3235 dbgs() << " Skipped scope entry (due to false predicate) at " 3236 << "index " << MatcherIndexOfPredicate << ", continuing at " 3237 << FailIndex << "\n"); 3238 ++NumDAGIselRetries; 3239 3240 // Otherwise, we know that this case of the Scope is guaranteed to fail, 3241 // move to the next case. 3242 MatcherIndex = FailIndex; 3243 } 3244 3245 // If the whole scope failed to match, bail. 3246 if (FailIndex == 0) break; 3247 3248 // Push a MatchScope which indicates where to go if the first child fails 3249 // to match. 3250 MatchScope NewEntry; 3251 NewEntry.FailIndex = FailIndex; 3252 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 3253 NewEntry.NumRecordedNodes = RecordedNodes.size(); 3254 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 3255 NewEntry.InputChain = InputChain; 3256 NewEntry.InputGlue = InputGlue; 3257 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 3258 MatchScopes.push_back(NewEntry); 3259 continue; 3260 } 3261 case OPC_RecordNode: { 3262 // Remember this node, it may end up being an operand in the pattern. 3263 SDNode *Parent = nullptr; 3264 if (NodeStack.size() > 1) 3265 Parent = NodeStack[NodeStack.size()-2].getNode(); 3266 RecordedNodes.push_back(std::make_pair(N, Parent)); 3267 continue; 3268 } 3269 3270 case OPC_RecordChild0: case OPC_RecordChild1: 3271 case OPC_RecordChild2: case OPC_RecordChild3: 3272 case OPC_RecordChild4: case OPC_RecordChild5: 3273 case OPC_RecordChild6: case OPC_RecordChild7: { 3274 unsigned ChildNo = Opcode-OPC_RecordChild0; 3275 if (ChildNo >= N.getNumOperands()) 3276 break; // Match fails if out of range child #. 3277 3278 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 3279 N.getNode())); 3280 continue; 3281 } 3282 case OPC_RecordMemRef: 3283 if (auto *MN = dyn_cast<MemSDNode>(N)) 3284 MatchedMemRefs.push_back(MN->getMemOperand()); 3285 else { 3286 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 3287 dbgs() << '\n'); 3288 } 3289 3290 continue; 3291 3292 case OPC_CaptureGlueInput: 3293 // If the current node has an input glue, capture it in InputGlue. 3294 if (N->getNumOperands() != 0 && 3295 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 3296 InputGlue = N->getOperand(N->getNumOperands()-1); 3297 continue; 3298 3299 case OPC_MoveChild: { 3300 unsigned ChildNo = MatcherTable[MatcherIndex++]; 3301 if (ChildNo >= N.getNumOperands()) 3302 break; // Match fails if out of range child #. 3303 N = N.getOperand(ChildNo); 3304 NodeStack.push_back(N); 3305 continue; 3306 } 3307 3308 case OPC_MoveChild0: case OPC_MoveChild1: 3309 case OPC_MoveChild2: case OPC_MoveChild3: 3310 case OPC_MoveChild4: case OPC_MoveChild5: 3311 case OPC_MoveChild6: case OPC_MoveChild7: { 3312 unsigned ChildNo = Opcode-OPC_MoveChild0; 3313 if (ChildNo >= N.getNumOperands()) 3314 break; // Match fails if out of range child #. 3315 N = N.getOperand(ChildNo); 3316 NodeStack.push_back(N); 3317 continue; 3318 } 3319 3320 case OPC_MoveSibling: 3321 case OPC_MoveSibling0: 3322 case OPC_MoveSibling1: 3323 case OPC_MoveSibling2: 3324 case OPC_MoveSibling3: 3325 case OPC_MoveSibling4: 3326 case OPC_MoveSibling5: 3327 case OPC_MoveSibling6: 3328 case OPC_MoveSibling7: { 3329 // Pop the current node off the NodeStack. 3330 NodeStack.pop_back(); 3331 assert(!NodeStack.empty() && "Node stack imbalance!"); 3332 N = NodeStack.back(); 3333 3334 unsigned SiblingNo = Opcode == OPC_MoveSibling 3335 ? MatcherTable[MatcherIndex++] 3336 : Opcode - OPC_MoveSibling0; 3337 if (SiblingNo >= N.getNumOperands()) 3338 break; // Match fails if out of range sibling #. 3339 N = N.getOperand(SiblingNo); 3340 NodeStack.push_back(N); 3341 continue; 3342 } 3343 case OPC_MoveParent: 3344 // Pop the current node off the NodeStack. 3345 NodeStack.pop_back(); 3346 assert(!NodeStack.empty() && "Node stack imbalance!"); 3347 N = NodeStack.back(); 3348 continue; 3349 3350 case OPC_CheckSame: 3351 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 3352 continue; 3353 3354 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3355 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3356 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3357 Opcode-OPC_CheckChild0Same)) 3358 break; 3359 continue; 3360 3361 case OPC_CheckPatternPredicate: 3362 case OPC_CheckPatternPredicate0: 3363 case OPC_CheckPatternPredicate1: 3364 case OPC_CheckPatternPredicate2: 3365 case OPC_CheckPatternPredicate3: 3366 case OPC_CheckPatternPredicate4: 3367 case OPC_CheckPatternPredicate5: 3368 case OPC_CheckPatternPredicate6: 3369 case OPC_CheckPatternPredicate7: 3370 case OPC_CheckPatternPredicateTwoByte: 3371 if (!::CheckPatternPredicate(Opcode, MatcherTable, MatcherIndex, *this)) 3372 break; 3373 continue; 3374 case SelectionDAGISel::OPC_CheckPredicate0: 3375 case SelectionDAGISel::OPC_CheckPredicate1: 3376 case SelectionDAGISel::OPC_CheckPredicate2: 3377 case SelectionDAGISel::OPC_CheckPredicate3: 3378 case SelectionDAGISel::OPC_CheckPredicate4: 3379 case SelectionDAGISel::OPC_CheckPredicate5: 3380 case SelectionDAGISel::OPC_CheckPredicate6: 3381 case SelectionDAGISel::OPC_CheckPredicate7: 3382 case OPC_CheckPredicate: 3383 if (!::CheckNodePredicate(Opcode, MatcherTable, MatcherIndex, *this, 3384 N.getNode())) 3385 break; 3386 continue; 3387 case OPC_CheckPredicateWithOperands: { 3388 unsigned OpNum = MatcherTable[MatcherIndex++]; 3389 SmallVector<SDValue, 8> Operands; 3390 3391 for (unsigned i = 0; i < OpNum; ++i) 3392 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3393 3394 unsigned PredNo = MatcherTable[MatcherIndex++]; 3395 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3396 break; 3397 continue; 3398 } 3399 case OPC_CheckComplexPat: 3400 case OPC_CheckComplexPat0: 3401 case OPC_CheckComplexPat1: 3402 case OPC_CheckComplexPat2: 3403 case OPC_CheckComplexPat3: 3404 case OPC_CheckComplexPat4: 3405 case OPC_CheckComplexPat5: 3406 case OPC_CheckComplexPat6: 3407 case OPC_CheckComplexPat7: { 3408 unsigned CPNum = Opcode == OPC_CheckComplexPat 3409 ? MatcherTable[MatcherIndex++] 3410 : Opcode - OPC_CheckComplexPat0; 3411 unsigned RecNo = MatcherTable[MatcherIndex++]; 3412 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3413 3414 // If target can modify DAG during matching, keep the matching state 3415 // consistent. 3416 std::unique_ptr<MatchStateUpdater> MSU; 3417 if (ComplexPatternFuncMutatesDAG()) 3418 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3419 MatchScopes)); 3420 3421 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3422 RecordedNodes[RecNo].first, CPNum, 3423 RecordedNodes)) 3424 break; 3425 continue; 3426 } 3427 case OPC_CheckOpcode: 3428 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3429 continue; 3430 3431 case OPC_CheckType: 3432 case OPC_CheckTypeI32: 3433 case OPC_CheckTypeI64: 3434 MVT::SimpleValueType VT; 3435 switch (Opcode) { 3436 case OPC_CheckTypeI32: 3437 VT = MVT::i32; 3438 break; 3439 case OPC_CheckTypeI64: 3440 VT = MVT::i64; 3441 break; 3442 default: 3443 VT = static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]); 3444 break; 3445 } 3446 if (!::CheckType(VT, N, TLI, CurDAG->getDataLayout())) 3447 break; 3448 continue; 3449 3450 case OPC_CheckTypeRes: { 3451 unsigned Res = MatcherTable[MatcherIndex++]; 3452 if (!::CheckType( 3453 static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]), 3454 N.getValue(Res), TLI, CurDAG->getDataLayout())) 3455 break; 3456 continue; 3457 } 3458 3459 case OPC_SwitchOpcode: { 3460 unsigned CurNodeOpcode = N.getOpcode(); 3461 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3462 unsigned CaseSize; 3463 while (true) { 3464 // Get the size of this case. 3465 CaseSize = MatcherTable[MatcherIndex++]; 3466 if (CaseSize & 128) 3467 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3468 if (CaseSize == 0) break; 3469 3470 uint16_t Opc = MatcherTable[MatcherIndex++]; 3471 Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; 3472 3473 // If the opcode matches, then we will execute this case. 3474 if (CurNodeOpcode == Opc) 3475 break; 3476 3477 // Otherwise, skip over this case. 3478 MatcherIndex += CaseSize; 3479 } 3480 3481 // If no cases matched, bail out. 3482 if (CaseSize == 0) break; 3483 3484 // Otherwise, execute the case we found. 3485 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3486 << MatcherIndex << "\n"); 3487 continue; 3488 } 3489 3490 case OPC_SwitchType: { 3491 MVT CurNodeVT = N.getSimpleValueType(); 3492 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3493 unsigned CaseSize; 3494 while (true) { 3495 // Get the size of this case. 3496 CaseSize = MatcherTable[MatcherIndex++]; 3497 if (CaseSize & 128) 3498 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3499 if (CaseSize == 0) break; 3500 3501 MVT CaseVT = 3502 static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]); 3503 if (CaseVT == MVT::iPTR) 3504 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3505 3506 // If the VT matches, then we will execute this case. 3507 if (CurNodeVT == CaseVT) 3508 break; 3509 3510 // Otherwise, skip over this case. 3511 MatcherIndex += CaseSize; 3512 } 3513 3514 // If no cases matched, bail out. 3515 if (CaseSize == 0) break; 3516 3517 // Otherwise, execute the case we found. 3518 LLVM_DEBUG(dbgs() << " TypeSwitch[" << CurNodeVT 3519 << "] from " << SwitchStart << " to " << MatcherIndex 3520 << '\n'); 3521 continue; 3522 } 3523 case OPC_CheckChild0Type: 3524 case OPC_CheckChild1Type: 3525 case OPC_CheckChild2Type: 3526 case OPC_CheckChild3Type: 3527 case OPC_CheckChild4Type: 3528 case OPC_CheckChild5Type: 3529 case OPC_CheckChild6Type: 3530 case OPC_CheckChild7Type: 3531 case OPC_CheckChild0TypeI32: 3532 case OPC_CheckChild1TypeI32: 3533 case OPC_CheckChild2TypeI32: 3534 case OPC_CheckChild3TypeI32: 3535 case OPC_CheckChild4TypeI32: 3536 case OPC_CheckChild5TypeI32: 3537 case OPC_CheckChild6TypeI32: 3538 case OPC_CheckChild7TypeI32: 3539 case OPC_CheckChild0TypeI64: 3540 case OPC_CheckChild1TypeI64: 3541 case OPC_CheckChild2TypeI64: 3542 case OPC_CheckChild3TypeI64: 3543 case OPC_CheckChild4TypeI64: 3544 case OPC_CheckChild5TypeI64: 3545 case OPC_CheckChild6TypeI64: 3546 case OPC_CheckChild7TypeI64: { 3547 MVT::SimpleValueType VT; 3548 unsigned ChildNo; 3549 if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 && 3550 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) { 3551 VT = MVT::i32; 3552 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32; 3553 } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 && 3554 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) { 3555 VT = MVT::i64; 3556 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64; 3557 } else { 3558 VT = static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]); 3559 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type; 3560 } 3561 if (!::CheckChildType(VT, N, TLI, CurDAG->getDataLayout(), ChildNo)) 3562 break; 3563 continue; 3564 } 3565 case OPC_CheckCondCode: 3566 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3567 continue; 3568 case OPC_CheckChild2CondCode: 3569 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3570 continue; 3571 case OPC_CheckValueType: 3572 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3573 CurDAG->getDataLayout())) 3574 break; 3575 continue; 3576 case OPC_CheckInteger: 3577 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3578 continue; 3579 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3580 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3581 case OPC_CheckChild4Integer: 3582 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3583 Opcode-OPC_CheckChild0Integer)) break; 3584 continue; 3585 case OPC_CheckAndImm: 3586 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3587 continue; 3588 case OPC_CheckOrImm: 3589 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3590 continue; 3591 case OPC_CheckImmAllOnesV: 3592 if (!ISD::isConstantSplatVectorAllOnes(N.getNode())) 3593 break; 3594 continue; 3595 case OPC_CheckImmAllZerosV: 3596 if (!ISD::isConstantSplatVectorAllZeros(N.getNode())) 3597 break; 3598 continue; 3599 3600 case OPC_CheckFoldableChainNode: { 3601 assert(NodeStack.size() != 1 && "No parent node"); 3602 // Verify that all intermediate nodes between the root and this one have 3603 // a single use (ignoring chains, which are handled in UpdateChains). 3604 bool HasMultipleUses = false; 3605 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { 3606 unsigned NNonChainUses = 0; 3607 SDNode *NS = NodeStack[i].getNode(); 3608 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI) 3609 if (UI.getUse().getValueType() != MVT::Other) 3610 if (++NNonChainUses > 1) { 3611 HasMultipleUses = true; 3612 break; 3613 } 3614 if (HasMultipleUses) break; 3615 } 3616 if (HasMultipleUses) break; 3617 3618 // Check to see that the target thinks this is profitable to fold and that 3619 // we can fold it without inducing cycles in the graph. 3620 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3621 NodeToMatch) || 3622 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3623 NodeToMatch, OptLevel, 3624 true/*We validate our own chains*/)) 3625 break; 3626 3627 continue; 3628 } 3629 case OPC_EmitInteger: 3630 case OPC_EmitInteger8: 3631 case OPC_EmitInteger16: 3632 case OPC_EmitInteger32: 3633 case OPC_EmitInteger64: 3634 case OPC_EmitStringInteger: 3635 case OPC_EmitStringInteger32: { 3636 MVT::SimpleValueType VT; 3637 switch (Opcode) { 3638 case OPC_EmitInteger8: 3639 VT = MVT::i8; 3640 break; 3641 case OPC_EmitInteger16: 3642 VT = MVT::i16; 3643 break; 3644 case OPC_EmitInteger32: 3645 case OPC_EmitStringInteger32: 3646 VT = MVT::i32; 3647 break; 3648 case OPC_EmitInteger64: 3649 VT = MVT::i64; 3650 break; 3651 default: 3652 VT = static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]); 3653 break; 3654 } 3655 int64_t Val = MatcherTable[MatcherIndex++]; 3656 if (Val & 128) 3657 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3658 if (Opcode >= OPC_EmitInteger && Opcode <= OPC_EmitInteger64) 3659 Val = decodeSignRotatedValue(Val); 3660 RecordedNodes.push_back(std::pair<SDValue, SDNode *>( 3661 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), VT), nullptr)); 3662 continue; 3663 } 3664 case OPC_EmitRegister: 3665 case OPC_EmitRegisterI32: 3666 case OPC_EmitRegisterI64: { 3667 MVT::SimpleValueType VT; 3668 switch (Opcode) { 3669 case OPC_EmitRegisterI32: 3670 VT = MVT::i32; 3671 break; 3672 case OPC_EmitRegisterI64: 3673 VT = MVT::i64; 3674 break; 3675 default: 3676 VT = static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]); 3677 break; 3678 } 3679 unsigned RegNo = MatcherTable[MatcherIndex++]; 3680 RecordedNodes.push_back(std::pair<SDValue, SDNode *>( 3681 CurDAG->getRegister(RegNo, VT), nullptr)); 3682 continue; 3683 } 3684 case OPC_EmitRegister2: { 3685 // For targets w/ more than 256 register names, the register enum 3686 // values are stored in two bytes in the matcher table (just like 3687 // opcodes). 3688 MVT::SimpleValueType VT = 3689 static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]); 3690 unsigned RegNo = MatcherTable[MatcherIndex++]; 3691 RegNo |= MatcherTable[MatcherIndex++] << 8; 3692 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3693 CurDAG->getRegister(RegNo, VT), nullptr)); 3694 continue; 3695 } 3696 3697 case OPC_EmitConvertToTarget: 3698 case OPC_EmitConvertToTarget0: 3699 case OPC_EmitConvertToTarget1: 3700 case OPC_EmitConvertToTarget2: 3701 case OPC_EmitConvertToTarget3: 3702 case OPC_EmitConvertToTarget4: 3703 case OPC_EmitConvertToTarget5: 3704 case OPC_EmitConvertToTarget6: 3705 case OPC_EmitConvertToTarget7: { 3706 // Convert from IMM/FPIMM to target version. 3707 unsigned RecNo = Opcode == OPC_EmitConvertToTarget 3708 ? MatcherTable[MatcherIndex++] 3709 : Opcode - OPC_EmitConvertToTarget0; 3710 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3711 SDValue Imm = RecordedNodes[RecNo].first; 3712 3713 if (Imm->getOpcode() == ISD::Constant) { 3714 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3715 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3716 Imm.getValueType()); 3717 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3718 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3719 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3720 Imm.getValueType()); 3721 } 3722 3723 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3724 continue; 3725 } 3726 3727 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3728 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3729 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3730 // These are space-optimized forms of OPC_EmitMergeInputChains. 3731 assert(!InputChain.getNode() && 3732 "EmitMergeInputChains should be the first chain producing node"); 3733 assert(ChainNodesMatched.empty() && 3734 "Should only have one EmitMergeInputChains per match"); 3735 3736 // Read all of the chained nodes. 3737 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3738 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3739 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3740 3741 // If the chained node is not the root, we can't fold it if it has 3742 // multiple uses. 3743 // FIXME: What if other value results of the node have uses not matched 3744 // by this pattern? 3745 if (ChainNodesMatched.back() != NodeToMatch && 3746 !RecordedNodes[RecNo].first.hasOneUse()) { 3747 ChainNodesMatched.clear(); 3748 break; 3749 } 3750 3751 // Merge the input chains if they are not intra-pattern references. 3752 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3753 3754 if (!InputChain.getNode()) 3755 break; // Failed to merge. 3756 continue; 3757 } 3758 3759 case OPC_EmitMergeInputChains: { 3760 assert(!InputChain.getNode() && 3761 "EmitMergeInputChains should be the first chain producing node"); 3762 // This node gets a list of nodes we matched in the input that have 3763 // chains. We want to token factor all of the input chains to these nodes 3764 // together. However, if any of the input chains is actually one of the 3765 // nodes matched in this pattern, then we have an intra-match reference. 3766 // Ignore these because the newly token factored chain should not refer to 3767 // the old nodes. 3768 unsigned NumChains = MatcherTable[MatcherIndex++]; 3769 assert(NumChains != 0 && "Can't TF zero chains"); 3770 3771 assert(ChainNodesMatched.empty() && 3772 "Should only have one EmitMergeInputChains per match"); 3773 3774 // Read all of the chained nodes. 3775 for (unsigned i = 0; i != NumChains; ++i) { 3776 unsigned RecNo = MatcherTable[MatcherIndex++]; 3777 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3778 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3779 3780 // If the chained node is not the root, we can't fold it if it has 3781 // multiple uses. 3782 // FIXME: What if other value results of the node have uses not matched 3783 // by this pattern? 3784 if (ChainNodesMatched.back() != NodeToMatch && 3785 !RecordedNodes[RecNo].first.hasOneUse()) { 3786 ChainNodesMatched.clear(); 3787 break; 3788 } 3789 } 3790 3791 // If the inner loop broke out, the match fails. 3792 if (ChainNodesMatched.empty()) 3793 break; 3794 3795 // Merge the input chains if they are not intra-pattern references. 3796 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3797 3798 if (!InputChain.getNode()) 3799 break; // Failed to merge. 3800 3801 continue; 3802 } 3803 3804 case OPC_EmitCopyToReg: 3805 case OPC_EmitCopyToReg0: 3806 case OPC_EmitCopyToReg1: 3807 case OPC_EmitCopyToReg2: 3808 case OPC_EmitCopyToReg3: 3809 case OPC_EmitCopyToReg4: 3810 case OPC_EmitCopyToReg5: 3811 case OPC_EmitCopyToReg6: 3812 case OPC_EmitCopyToReg7: 3813 case OPC_EmitCopyToRegTwoByte: { 3814 unsigned RecNo = 3815 Opcode >= OPC_EmitCopyToReg0 && Opcode <= OPC_EmitCopyToReg7 3816 ? Opcode - OPC_EmitCopyToReg0 3817 : MatcherTable[MatcherIndex++]; 3818 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3819 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3820 if (Opcode == OPC_EmitCopyToRegTwoByte) 3821 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3822 3823 if (!InputChain.getNode()) 3824 InputChain = CurDAG->getEntryNode(); 3825 3826 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3827 DestPhysReg, RecordedNodes[RecNo].first, 3828 InputGlue); 3829 3830 InputGlue = InputChain.getValue(1); 3831 continue; 3832 } 3833 3834 case OPC_EmitNodeXForm: { 3835 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3836 unsigned RecNo = MatcherTable[MatcherIndex++]; 3837 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3838 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3839 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3840 continue; 3841 } 3842 case OPC_Coverage: { 3843 // This is emitted right before MorphNode/EmitNode. 3844 // So it should be safe to assume that this node has been selected 3845 unsigned index = MatcherTable[MatcherIndex++]; 3846 index |= (MatcherTable[MatcherIndex++] << 8); 3847 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3848 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3849 continue; 3850 } 3851 3852 case OPC_EmitNode: 3853 case OPC_EmitNode0: 3854 case OPC_EmitNode1: 3855 case OPC_EmitNode2: 3856 case OPC_EmitNode0None: 3857 case OPC_EmitNode1None: 3858 case OPC_EmitNode2None: 3859 case OPC_EmitNode0Chain: 3860 case OPC_EmitNode1Chain: 3861 case OPC_EmitNode2Chain: 3862 case OPC_MorphNodeTo: 3863 case OPC_MorphNodeTo0: 3864 case OPC_MorphNodeTo1: 3865 case OPC_MorphNodeTo2: 3866 case OPC_MorphNodeTo0None: 3867 case OPC_MorphNodeTo1None: 3868 case OPC_MorphNodeTo2None: 3869 case OPC_MorphNodeTo0Chain: 3870 case OPC_MorphNodeTo1Chain: 3871 case OPC_MorphNodeTo2Chain: 3872 case OPC_MorphNodeTo0GlueInput: 3873 case OPC_MorphNodeTo1GlueInput: 3874 case OPC_MorphNodeTo2GlueInput: 3875 case OPC_MorphNodeTo0GlueOutput: 3876 case OPC_MorphNodeTo1GlueOutput: 3877 case OPC_MorphNodeTo2GlueOutput: { 3878 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3879 TargetOpc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; 3880 unsigned EmitNodeInfo; 3881 if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2Chain) { 3882 if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain) 3883 EmitNodeInfo = OPFL_Chain; 3884 else 3885 EmitNodeInfo = OPFL_None; 3886 } else if (Opcode >= OPC_MorphNodeTo0None && 3887 Opcode <= OPC_MorphNodeTo2GlueOutput) { 3888 if (Opcode >= OPC_MorphNodeTo0Chain && Opcode <= OPC_MorphNodeTo2Chain) 3889 EmitNodeInfo = OPFL_Chain; 3890 else if (Opcode >= OPC_MorphNodeTo0GlueInput && 3891 Opcode <= OPC_MorphNodeTo2GlueInput) 3892 EmitNodeInfo = OPFL_GlueInput; 3893 else if (Opcode >= OPC_MorphNodeTo0GlueOutput && 3894 Opcode <= OPC_MorphNodeTo2GlueOutput) 3895 EmitNodeInfo = OPFL_GlueOutput; 3896 else 3897 EmitNodeInfo = OPFL_None; 3898 } else 3899 EmitNodeInfo = MatcherTable[MatcherIndex++]; 3900 // Get the result VT list. 3901 unsigned NumVTs; 3902 // If this is one of the compressed forms, get the number of VTs based 3903 // on the Opcode. Otherwise read the next byte from the table. 3904 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3905 NumVTs = Opcode - OPC_MorphNodeTo0; 3906 else if (Opcode >= OPC_MorphNodeTo0None && Opcode <= OPC_MorphNodeTo2None) 3907 NumVTs = Opcode - OPC_MorphNodeTo0None; 3908 else if (Opcode >= OPC_MorphNodeTo0Chain && 3909 Opcode <= OPC_MorphNodeTo2Chain) 3910 NumVTs = Opcode - OPC_MorphNodeTo0Chain; 3911 else if (Opcode >= OPC_MorphNodeTo0GlueInput && 3912 Opcode <= OPC_MorphNodeTo2GlueInput) 3913 NumVTs = Opcode - OPC_MorphNodeTo0GlueInput; 3914 else if (Opcode >= OPC_MorphNodeTo0GlueOutput && 3915 Opcode <= OPC_MorphNodeTo2GlueOutput) 3916 NumVTs = Opcode - OPC_MorphNodeTo0GlueOutput; 3917 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3918 NumVTs = Opcode - OPC_EmitNode0; 3919 else if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2None) 3920 NumVTs = Opcode - OPC_EmitNode0None; 3921 else if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain) 3922 NumVTs = Opcode - OPC_EmitNode0Chain; 3923 else 3924 NumVTs = MatcherTable[MatcherIndex++]; 3925 SmallVector<EVT, 4> VTs; 3926 for (unsigned i = 0; i != NumVTs; ++i) { 3927 MVT::SimpleValueType VT = 3928 static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]); 3929 if (VT == MVT::iPTR) 3930 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3931 VTs.push_back(VT); 3932 } 3933 3934 if (EmitNodeInfo & OPFL_Chain) 3935 VTs.push_back(MVT::Other); 3936 if (EmitNodeInfo & OPFL_GlueOutput) 3937 VTs.push_back(MVT::Glue); 3938 3939 // This is hot code, so optimize the two most common cases of 1 and 2 3940 // results. 3941 SDVTList VTList; 3942 if (VTs.size() == 1) 3943 VTList = CurDAG->getVTList(VTs[0]); 3944 else if (VTs.size() == 2) 3945 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3946 else 3947 VTList = CurDAG->getVTList(VTs); 3948 3949 // Get the operand list. 3950 unsigned NumOps = MatcherTable[MatcherIndex++]; 3951 SmallVector<SDValue, 8> Ops; 3952 for (unsigned i = 0; i != NumOps; ++i) { 3953 unsigned RecNo = MatcherTable[MatcherIndex++]; 3954 if (RecNo & 128) 3955 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3956 3957 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3958 Ops.push_back(RecordedNodes[RecNo].first); 3959 } 3960 3961 // If there are variadic operands to add, handle them now. 3962 if (EmitNodeInfo & OPFL_VariadicInfo) { 3963 // Determine the start index to copy from. 3964 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3965 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3966 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3967 "Invalid variadic node"); 3968 // Copy all of the variadic operands, not including a potential glue 3969 // input. 3970 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3971 i != e; ++i) { 3972 SDValue V = NodeToMatch->getOperand(i); 3973 if (V.getValueType() == MVT::Glue) break; 3974 Ops.push_back(V); 3975 } 3976 } 3977 3978 // If this has chain/glue inputs, add them. 3979 if (EmitNodeInfo & OPFL_Chain) 3980 Ops.push_back(InputChain); 3981 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3982 Ops.push_back(InputGlue); 3983 3984 // Check whether any matched node could raise an FP exception. Since all 3985 // such nodes must have a chain, it suffices to check ChainNodesMatched. 3986 // We need to perform this check before potentially modifying one of the 3987 // nodes via MorphNode. 3988 bool MayRaiseFPException = 3989 llvm::any_of(ChainNodesMatched, [this](SDNode *N) { 3990 return mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept(); 3991 }); 3992 3993 // Create the node. 3994 MachineSDNode *Res = nullptr; 3995 bool IsMorphNodeTo = 3996 Opcode == OPC_MorphNodeTo || 3997 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2GlueOutput); 3998 if (!IsMorphNodeTo) { 3999 // If this is a normal EmitNode command, just create the new node and 4000 // add the results to the RecordedNodes list. 4001 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 4002 VTList, Ops); 4003 4004 // Add all the non-glue/non-chain results to the RecordedNodes list. 4005 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 4006 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 4007 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 4008 nullptr)); 4009 } 4010 } else { 4011 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 4012 "NodeToMatch was removed partway through selection"); 4013 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 4014 SDNode *E) { 4015 CurDAG->salvageDebugInfo(*N); 4016 auto &Chain = ChainNodesMatched; 4017 assert((!E || !is_contained(Chain, N)) && 4018 "Chain node replaced during MorphNode"); 4019 llvm::erase(Chain, N); 4020 }); 4021 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 4022 Ops, EmitNodeInfo)); 4023 } 4024 4025 // Set the NoFPExcept flag when no original matched node could 4026 // raise an FP exception, but the new node potentially might. 4027 if (!MayRaiseFPException && mayRaiseFPException(Res)) { 4028 SDNodeFlags Flags = Res->getFlags(); 4029 Flags.setNoFPExcept(true); 4030 Res->setFlags(Flags); 4031 } 4032 4033 // If the node had chain/glue results, update our notion of the current 4034 // chain and glue. 4035 if (EmitNodeInfo & OPFL_GlueOutput) { 4036 InputGlue = SDValue(Res, VTs.size()-1); 4037 if (EmitNodeInfo & OPFL_Chain) 4038 InputChain = SDValue(Res, VTs.size()-2); 4039 } else if (EmitNodeInfo & OPFL_Chain) 4040 InputChain = SDValue(Res, VTs.size()-1); 4041 4042 // If the OPFL_MemRefs glue is set on this node, slap all of the 4043 // accumulated memrefs onto it. 4044 // 4045 // FIXME: This is vastly incorrect for patterns with multiple outputs 4046 // instructions that access memory and for ComplexPatterns that match 4047 // loads. 4048 if (EmitNodeInfo & OPFL_MemRefs) { 4049 // Only attach load or store memory operands if the generated 4050 // instruction may load or store. 4051 const MCInstrDesc &MCID = TII->get(TargetOpc); 4052 bool mayLoad = MCID.mayLoad(); 4053 bool mayStore = MCID.mayStore(); 4054 4055 // We expect to have relatively few of these so just filter them into a 4056 // temporary buffer so that we can easily add them to the instruction. 4057 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 4058 for (MachineMemOperand *MMO : MatchedMemRefs) { 4059 if (MMO->isLoad()) { 4060 if (mayLoad) 4061 FilteredMemRefs.push_back(MMO); 4062 } else if (MMO->isStore()) { 4063 if (mayStore) 4064 FilteredMemRefs.push_back(MMO); 4065 } else { 4066 FilteredMemRefs.push_back(MMO); 4067 } 4068 } 4069 4070 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 4071 } 4072 4073 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 4074 << " Dropping mem operands\n"; 4075 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 4076 << " node: "; 4077 Res->dump(CurDAG);); 4078 4079 // If this was a MorphNodeTo then we're completely done! 4080 if (IsMorphNodeTo) { 4081 // Update chain uses. 4082 UpdateChains(Res, InputChain, ChainNodesMatched, true); 4083 return; 4084 } 4085 continue; 4086 } 4087 4088 case OPC_CompleteMatch: { 4089 // The match has been completed, and any new nodes (if any) have been 4090 // created. Patch up references to the matched dag to use the newly 4091 // created nodes. 4092 unsigned NumResults = MatcherTable[MatcherIndex++]; 4093 4094 for (unsigned i = 0; i != NumResults; ++i) { 4095 unsigned ResSlot = MatcherTable[MatcherIndex++]; 4096 if (ResSlot & 128) 4097 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 4098 4099 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 4100 SDValue Res = RecordedNodes[ResSlot].first; 4101 4102 assert(i < NodeToMatch->getNumValues() && 4103 NodeToMatch->getValueType(i) != MVT::Other && 4104 NodeToMatch->getValueType(i) != MVT::Glue && 4105 "Invalid number of results to complete!"); 4106 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 4107 NodeToMatch->getValueType(i) == MVT::iPTR || 4108 Res.getValueType() == MVT::iPTR || 4109 NodeToMatch->getValueType(i).getSizeInBits() == 4110 Res.getValueSizeInBits()) && 4111 "invalid replacement"); 4112 ReplaceUses(SDValue(NodeToMatch, i), Res); 4113 } 4114 4115 // Update chain uses. 4116 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 4117 4118 // If the root node defines glue, we need to update it to the glue result. 4119 // TODO: This never happens in our tests and I think it can be removed / 4120 // replaced with an assert, but if we do it this the way the change is 4121 // NFC. 4122 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 4123 MVT::Glue && 4124 InputGlue.getNode()) 4125 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 4126 InputGlue); 4127 4128 assert(NodeToMatch->use_empty() && 4129 "Didn't replace all uses of the node?"); 4130 CurDAG->RemoveDeadNode(NodeToMatch); 4131 4132 return; 4133 } 4134 } 4135 4136 // If the code reached this point, then the match failed. See if there is 4137 // another child to try in the current 'Scope', otherwise pop it until we 4138 // find a case to check. 4139 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 4140 << "\n"); 4141 ++NumDAGIselRetries; 4142 while (true) { 4143 if (MatchScopes.empty()) { 4144 CannotYetSelect(NodeToMatch); 4145 return; 4146 } 4147 4148 // Restore the interpreter state back to the point where the scope was 4149 // formed. 4150 MatchScope &LastScope = MatchScopes.back(); 4151 RecordedNodes.resize(LastScope.NumRecordedNodes); 4152 NodeStack.clear(); 4153 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 4154 N = NodeStack.back(); 4155 4156 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 4157 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 4158 MatcherIndex = LastScope.FailIndex; 4159 4160 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 4161 4162 InputChain = LastScope.InputChain; 4163 InputGlue = LastScope.InputGlue; 4164 if (!LastScope.HasChainNodesMatched) 4165 ChainNodesMatched.clear(); 4166 4167 // Check to see what the offset is at the new MatcherIndex. If it is zero 4168 // we have reached the end of this scope, otherwise we have another child 4169 // in the current scope to try. 4170 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 4171 if (NumToSkip & 128) 4172 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 4173 4174 // If we have another child in this scope to match, update FailIndex and 4175 // try it. 4176 if (NumToSkip != 0) { 4177 LastScope.FailIndex = MatcherIndex+NumToSkip; 4178 break; 4179 } 4180 4181 // End of this scope, pop it and try the next child in the containing 4182 // scope. 4183 MatchScopes.pop_back(); 4184 } 4185 } 4186 } 4187 4188 /// Return whether the node may raise an FP exception. 4189 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { 4190 // For machine opcodes, consult the MCID flag. 4191 if (N->isMachineOpcode()) { 4192 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 4193 return MCID.mayRaiseFPException(); 4194 } 4195 4196 // For ISD opcodes, only StrictFP opcodes may raise an FP 4197 // exception. 4198 if (N->isTargetOpcode()) 4199 return N->isTargetStrictFPOpcode(); 4200 return N->isStrictFPOpcode(); 4201 } 4202 4203 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 4204 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 4205 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4206 if (!C) 4207 return false; 4208 4209 // Detect when "or" is used to add an offset to a stack object. 4210 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 4211 MachineFrameInfo &MFI = MF->getFrameInfo(); 4212 Align A = MFI.getObjectAlign(FN->getIndex()); 4213 int32_t Off = C->getSExtValue(); 4214 // If the alleged offset fits in the zero bits guaranteed by 4215 // the alignment, then this or is really an add. 4216 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); 4217 } 4218 return false; 4219 } 4220 4221 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 4222 std::string msg; 4223 raw_string_ostream Msg(msg); 4224 Msg << "Cannot select: "; 4225 4226 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 4227 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 4228 N->getOpcode() != ISD::INTRINSIC_VOID) { 4229 N->printrFull(Msg, CurDAG); 4230 Msg << "\nIn function: " << MF->getName(); 4231 } else { 4232 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 4233 unsigned iid = N->getConstantOperandVal(HasInputChain); 4234 if (iid < Intrinsic::num_intrinsics) 4235 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid); 4236 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 4237 Msg << "target intrinsic %" << TII->getName(iid); 4238 else 4239 Msg << "unknown intrinsic #" << iid; 4240 } 4241 report_fatal_error(Twine(Msg.str())); 4242 } 4243