1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBuilder.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachinePassRegistry.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/SchedulerRegistry.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/StackProtector.h" 55 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/ValueTypes.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DataLayout.h" 64 #include "llvm/IR/DebugInfoMetadata.h" 65 #include "llvm/IR/DebugLoc.h" 66 #include "llvm/IR/DiagnosticInfo.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/InlineAsm.h" 70 #include "llvm/IR/InstIterator.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instruction.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsWebAssembly.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Statepoint.h" 79 #include "llvm/IR/Type.h" 80 #include "llvm/IR/User.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/InitializePasses.h" 83 #include "llvm/MC/MCInstrDesc.h" 84 #include "llvm/MC/MCRegisterInfo.h" 85 #include "llvm/Pass.h" 86 #include "llvm/Support/BranchProbability.h" 87 #include "llvm/Support/Casting.h" 88 #include "llvm/Support/CodeGen.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Compiler.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/ErrorHandling.h" 93 #include "llvm/Support/KnownBits.h" 94 #include "llvm/Support/MachineValueType.h" 95 #include "llvm/Support/Timer.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 101 #include <algorithm> 102 #include <cassert> 103 #include <cstdint> 104 #include <iterator> 105 #include <limits> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 #include <vector> 110 111 using namespace llvm; 112 113 #define DEBUG_TYPE "isel" 114 115 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 116 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 117 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 118 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 119 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 120 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 121 STATISTIC(NumFastIselFailLowerArguments, 122 "Number of entry blocks where fast isel failed to lower arguments"); 123 124 static cl::opt<int> EnableFastISelAbort( 125 "fast-isel-abort", cl::Hidden, 126 cl::desc("Enable abort calls when \"fast\" instruction selection " 127 "fails to lower an instruction: 0 disable the abort, 1 will " 128 "abort but for args, calls and terminators, 2 will also " 129 "abort for argument lowering, and 3 will never fallback " 130 "to SelectionDAG.")); 131 132 static cl::opt<bool> EnableFastISelFallbackReport( 133 "fast-isel-report-on-fallback", cl::Hidden, 134 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 135 "falls back to SelectionDAG.")); 136 137 static cl::opt<bool> 138 UseMBPI("use-mbpi", 139 cl::desc("use Machine Branch Probability Info"), 140 cl::init(true), cl::Hidden); 141 142 #ifndef NDEBUG 143 static cl::opt<std::string> 144 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 145 cl::desc("Only display the basic block whose name " 146 "matches this for all view-*-dags options")); 147 static cl::opt<bool> 148 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 149 cl::desc("Pop up a window to show dags before the first " 150 "dag combine pass")); 151 static cl::opt<bool> 152 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 153 cl::desc("Pop up a window to show dags before legalize types")); 154 static cl::opt<bool> 155 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 156 cl::desc("Pop up a window to show dags before the post " 157 "legalize types dag combine pass")); 158 static cl::opt<bool> 159 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 160 cl::desc("Pop up a window to show dags before legalize")); 161 static cl::opt<bool> 162 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 163 cl::desc("Pop up a window to show dags before the second " 164 "dag combine pass")); 165 static cl::opt<bool> 166 ViewISelDAGs("view-isel-dags", cl::Hidden, 167 cl::desc("Pop up a window to show isel dags as they are selected")); 168 static cl::opt<bool> 169 ViewSchedDAGs("view-sched-dags", cl::Hidden, 170 cl::desc("Pop up a window to show sched dags as they are processed")); 171 static cl::opt<bool> 172 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 173 cl::desc("Pop up a window to show SUnit dags after they are processed")); 174 #else 175 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, 176 ViewDAGCombineLT = false, ViewLegalizeDAGs = false, 177 ViewDAGCombine2 = false, ViewISelDAGs = false, 178 ViewSchedDAGs = false, ViewSUnitDAGs = false; 179 #endif 180 181 //===---------------------------------------------------------------------===// 182 /// 183 /// RegisterScheduler class - Track the registration of instruction schedulers. 184 /// 185 //===---------------------------------------------------------------------===// 186 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 187 RegisterScheduler::Registry; 188 189 //===---------------------------------------------------------------------===// 190 /// 191 /// ISHeuristic command line option for instruction schedulers. 192 /// 193 //===---------------------------------------------------------------------===// 194 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 195 RegisterPassParser<RegisterScheduler>> 196 ISHeuristic("pre-RA-sched", 197 cl::init(&createDefaultScheduler), cl::Hidden, 198 cl::desc("Instruction schedulers available (before register" 199 " allocation):")); 200 201 static RegisterScheduler 202 defaultListDAGScheduler("default", "Best scheduler for the target", 203 createDefaultScheduler); 204 205 namespace llvm { 206 207 //===--------------------------------------------------------------------===// 208 /// This class is used by SelectionDAGISel to temporarily override 209 /// the optimization level on a per-function basis. 210 class OptLevelChanger { 211 SelectionDAGISel &IS; 212 CodeGenOpt::Level SavedOptLevel; 213 bool SavedFastISel; 214 215 public: 216 OptLevelChanger(SelectionDAGISel &ISel, 217 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 218 SavedOptLevel = IS.OptLevel; 219 SavedFastISel = IS.TM.Options.EnableFastISel; 220 if (NewOptLevel == SavedOptLevel) 221 return; 222 IS.OptLevel = NewOptLevel; 223 IS.TM.setOptLevel(NewOptLevel); 224 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 225 << IS.MF->getFunction().getName() << "\n"); 226 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 227 << NewOptLevel << "\n"); 228 if (NewOptLevel == CodeGenOpt::None) { 229 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 230 LLVM_DEBUG( 231 dbgs() << "\tFastISel is " 232 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 233 << "\n"); 234 } 235 } 236 237 ~OptLevelChanger() { 238 if (IS.OptLevel == SavedOptLevel) 239 return; 240 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 241 << IS.MF->getFunction().getName() << "\n"); 242 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 243 << SavedOptLevel << "\n"); 244 IS.OptLevel = SavedOptLevel; 245 IS.TM.setOptLevel(SavedOptLevel); 246 IS.TM.setFastISel(SavedFastISel); 247 } 248 }; 249 250 //===--------------------------------------------------------------------===// 251 /// createDefaultScheduler - This creates an instruction scheduler appropriate 252 /// for the target. 253 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 254 CodeGenOpt::Level OptLevel) { 255 const TargetLowering *TLI = IS->TLI; 256 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 257 258 // Try first to see if the Target has its own way of selecting a scheduler 259 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 260 return SchedulerCtor(IS, OptLevel); 261 } 262 263 if (OptLevel == CodeGenOpt::None || 264 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 265 TLI->getSchedulingPreference() == Sched::Source) 266 return createSourceListDAGScheduler(IS, OptLevel); 267 if (TLI->getSchedulingPreference() == Sched::RegPressure) 268 return createBURRListDAGScheduler(IS, OptLevel); 269 if (TLI->getSchedulingPreference() == Sched::Hybrid) 270 return createHybridListDAGScheduler(IS, OptLevel); 271 if (TLI->getSchedulingPreference() == Sched::VLIW) 272 return createVLIWDAGScheduler(IS, OptLevel); 273 assert(TLI->getSchedulingPreference() == Sched::ILP && 274 "Unknown sched type!"); 275 return createILPListDAGScheduler(IS, OptLevel); 276 } 277 278 } // end namespace llvm 279 280 // EmitInstrWithCustomInserter - This method should be implemented by targets 281 // that mark instructions with the 'usesCustomInserter' flag. These 282 // instructions are special in various ways, which require special support to 283 // insert. The specified MachineInstr is created but not inserted into any 284 // basic blocks, and this method is called to expand it into a sequence of 285 // instructions, potentially also creating new basic blocks and control flow. 286 // When new basic blocks are inserted and the edges from MBB to its successors 287 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 288 // DenseMap. 289 MachineBasicBlock * 290 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 291 MachineBasicBlock *MBB) const { 292 #ifndef NDEBUG 293 dbgs() << "If a target marks an instruction with " 294 "'usesCustomInserter', it must implement " 295 "TargetLowering::EmitInstrWithCustomInserter!"; 296 #endif 297 llvm_unreachable(nullptr); 298 } 299 300 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 301 SDNode *Node) const { 302 assert(!MI.hasPostISelHook() && 303 "If a target marks an instruction with 'hasPostISelHook', " 304 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 305 } 306 307 //===----------------------------------------------------------------------===// 308 // SelectionDAGISel code 309 //===----------------------------------------------------------------------===// 310 311 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) 312 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), 313 SwiftError(new SwiftErrorValueTracking()), 314 CurDAG(new SelectionDAG(tm, OL)), 315 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError, 316 OL)), 317 AA(), GFI(), OptLevel(OL), DAGSize(0) { 318 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 319 initializeBranchProbabilityInfoWrapperPassPass( 320 *PassRegistry::getPassRegistry()); 321 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 322 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 323 } 324 325 SelectionDAGISel::~SelectionDAGISel() { 326 delete CurDAG; 327 delete SwiftError; 328 } 329 330 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 331 if (OptLevel != CodeGenOpt::None) 332 AU.addRequired<AAResultsWrapperPass>(); 333 AU.addRequired<GCModuleInfo>(); 334 AU.addRequired<StackProtector>(); 335 AU.addPreserved<GCModuleInfo>(); 336 AU.addRequired<TargetLibraryInfoWrapperPass>(); 337 AU.addRequired<TargetTransformInfoWrapperPass>(); 338 if (UseMBPI && OptLevel != CodeGenOpt::None) 339 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 340 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 341 if (OptLevel != CodeGenOpt::None) 342 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 343 MachineFunctionPass::getAnalysisUsage(AU); 344 } 345 346 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 347 /// may trap on it. In this case we have to split the edge so that the path 348 /// through the predecessor block that doesn't go to the phi block doesn't 349 /// execute the possibly trapping instruction. If available, we pass domtree 350 /// and loop info to be updated when we split critical edges. This is because 351 /// SelectionDAGISel preserves these analyses. 352 /// This is required for correctness, so it must be done at -O0. 353 /// 354 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 355 LoopInfo *LI) { 356 // Loop for blocks with phi nodes. 357 for (BasicBlock &BB : Fn) { 358 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 359 if (!PN) continue; 360 361 ReprocessBlock: 362 // For each block with a PHI node, check to see if any of the input values 363 // are potentially trapping constant expressions. Constant expressions are 364 // the only potentially trapping value that can occur as the argument to a 365 // PHI. 366 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 367 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 368 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 369 if (!CE || !CE->canTrap()) continue; 370 371 // The only case we have to worry about is when the edge is critical. 372 // Since this block has a PHI Node, we assume it has multiple input 373 // edges: check to see if the pred has multiple successors. 374 BasicBlock *Pred = PN->getIncomingBlock(i); 375 if (Pred->getTerminator()->getNumSuccessors() == 1) 376 continue; 377 378 // Okay, we have to split this edge. 379 SplitCriticalEdge( 380 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 381 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 382 goto ReprocessBlock; 383 } 384 } 385 } 386 387 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 388 MachineModuleInfo &MMI) { 389 // Only needed for MSVC 390 if (!TT.isWindowsMSVCEnvironment()) 391 return; 392 393 // If it's already set, nothing to do. 394 if (MMI.usesMSVCFloatingPoint()) 395 return; 396 397 for (const Instruction &I : instructions(F)) { 398 if (I.getType()->isFPOrFPVectorTy()) { 399 MMI.setUsesMSVCFloatingPoint(true); 400 return; 401 } 402 for (const auto &Op : I.operands()) { 403 if (Op->getType()->isFPOrFPVectorTy()) { 404 MMI.setUsesMSVCFloatingPoint(true); 405 return; 406 } 407 } 408 } 409 } 410 411 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 412 // If we already selected that function, we do not need to run SDISel. 413 if (mf.getProperties().hasProperty( 414 MachineFunctionProperties::Property::Selected)) 415 return false; 416 // Do some sanity-checking on the command-line options. 417 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 418 "-fast-isel-abort > 0 requires -fast-isel"); 419 420 const Function &Fn = mf.getFunction(); 421 MF = &mf; 422 423 // Reset the target options before resetting the optimization 424 // level below. 425 // FIXME: This is a horrible hack and should be processed via 426 // codegen looking at the optimization level explicitly when 427 // it wants to look at it. 428 TM.resetTargetOptions(Fn); 429 // Reset OptLevel to None for optnone functions. 430 CodeGenOpt::Level NewOptLevel = OptLevel; 431 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 432 NewOptLevel = CodeGenOpt::None; 433 OptLevelChanger OLC(*this, NewOptLevel); 434 435 TII = MF->getSubtarget().getInstrInfo(); 436 TLI = MF->getSubtarget().getTargetLowering(); 437 RegInfo = &MF->getRegInfo(); 438 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 439 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 440 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 441 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 442 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 443 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 444 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 445 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 446 BlockFrequencyInfo *BFI = nullptr; 447 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None) 448 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); 449 450 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 451 452 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 453 454 CurDAG->init(*MF, *ORE, this, LibInfo, 455 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI); 456 FuncInfo->set(Fn, *MF, CurDAG); 457 SwiftError->setFunction(*MF); 458 459 // Now get the optional analyzes if we want to. 460 // This is based on the possibly changed OptLevel (after optnone is taken 461 // into account). That's unfortunate but OK because it just means we won't 462 // ask for passes that have been required anyway. 463 464 if (UseMBPI && OptLevel != CodeGenOpt::None) 465 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 466 else 467 FuncInfo->BPI = nullptr; 468 469 if (OptLevel != CodeGenOpt::None) 470 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 471 else 472 AA = nullptr; 473 474 SDB->init(GFI, AA, LibInfo); 475 476 MF->setHasInlineAsm(false); 477 478 FuncInfo->SplitCSR = false; 479 480 // We split CSR if the target supports it for the given function 481 // and the function has only return exits. 482 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 483 FuncInfo->SplitCSR = true; 484 485 // Collect all the return blocks. 486 for (const BasicBlock &BB : Fn) { 487 if (!succ_empty(&BB)) 488 continue; 489 490 const Instruction *Term = BB.getTerminator(); 491 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 492 continue; 493 494 // Bail out if the exit block is not Return nor Unreachable. 495 FuncInfo->SplitCSR = false; 496 break; 497 } 498 } 499 500 MachineBasicBlock *EntryMBB = &MF->front(); 501 if (FuncInfo->SplitCSR) 502 // This performs initialization so lowering for SplitCSR will be correct. 503 TLI->initializeSplitCSR(EntryMBB); 504 505 SelectAllBasicBlocks(Fn); 506 if (FastISelFailed && EnableFastISelFallbackReport) { 507 DiagnosticInfoISelFallback DiagFallback(Fn); 508 Fn.getContext().diagnose(DiagFallback); 509 } 510 511 // Replace forward-declared registers with the registers containing 512 // the desired value. 513 // Note: it is important that this happens **before** the call to 514 // EmitLiveInCopies, since implementations can skip copies of unused 515 // registers. If we don't apply the reg fixups before, some registers may 516 // appear as unused and will be skipped, resulting in bad MI. 517 MachineRegisterInfo &MRI = MF->getRegInfo(); 518 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), 519 E = FuncInfo->RegFixups.end(); 520 I != E; ++I) { 521 Register From = I->first; 522 Register To = I->second; 523 // If To is also scheduled to be replaced, find what its ultimate 524 // replacement is. 525 while (true) { 526 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To); 527 if (J == E) 528 break; 529 To = J->second; 530 } 531 // Make sure the new register has a sufficiently constrained register class. 532 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 533 MRI.constrainRegClass(To, MRI.getRegClass(From)); 534 // Replace it. 535 536 // Replacing one register with another won't touch the kill flags. 537 // We need to conservatively clear the kill flags as a kill on the old 538 // register might dominate existing uses of the new register. 539 if (!MRI.use_empty(To)) 540 MRI.clearKillFlags(From); 541 MRI.replaceRegWith(From, To); 542 } 543 544 // If the first basic block in the function has live ins that need to be 545 // copied into vregs, emit the copies into the top of the block before 546 // emitting the code for the block. 547 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 548 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 549 550 // Insert copies in the entry block and the return blocks. 551 if (FuncInfo->SplitCSR) { 552 SmallVector<MachineBasicBlock*, 4> Returns; 553 // Collect all the return blocks. 554 for (MachineBasicBlock &MBB : mf) { 555 if (!MBB.succ_empty()) 556 continue; 557 558 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 559 if (Term != MBB.end() && Term->isReturn()) { 560 Returns.push_back(&MBB); 561 continue; 562 } 563 } 564 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 565 } 566 567 DenseMap<unsigned, unsigned> LiveInMap; 568 if (!FuncInfo->ArgDbgValues.empty()) 569 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 570 if (LI.second) 571 LiveInMap.insert(LI); 572 573 // Insert DBG_VALUE instructions for function arguments to the entry block. 574 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 575 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 576 bool hasFI = MI->getOperand(0).isFI(); 577 Register Reg = 578 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 579 if (Register::isPhysicalRegister(Reg)) 580 EntryMBB->insert(EntryMBB->begin(), MI); 581 else { 582 MachineInstr *Def = RegInfo->getVRegDef(Reg); 583 if (Def) { 584 MachineBasicBlock::iterator InsertPos = Def; 585 // FIXME: VR def may not be in entry block. 586 Def->getParent()->insert(std::next(InsertPos), MI); 587 } else 588 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 589 << Register::virtReg2Index(Reg) << "\n"); 590 } 591 592 // If Reg is live-in then update debug info to track its copy in a vreg. 593 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 594 if (LDI != LiveInMap.end()) { 595 assert(!hasFI && "There's no handling of frame pointer updating here yet " 596 "- add if needed"); 597 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 598 MachineBasicBlock::iterator InsertPos = Def; 599 const MDNode *Variable = MI->getDebugVariable(); 600 const MDNode *Expr = MI->getDebugExpression(); 601 DebugLoc DL = MI->getDebugLoc(); 602 bool IsIndirect = MI->isIndirectDebugValue(); 603 if (IsIndirect) 604 assert(MI->getOperand(1).getImm() == 0 && 605 "DBG_VALUE with nonzero offset"); 606 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 607 "Expected inlined-at fields to agree"); 608 // Def is never a terminator here, so it is ok to increment InsertPos. 609 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 610 IsIndirect, LDI->second, Variable, Expr); 611 612 // If this vreg is directly copied into an exported register then 613 // that COPY instructions also need DBG_VALUE, if it is the only 614 // user of LDI->second. 615 MachineInstr *CopyUseMI = nullptr; 616 for (MachineRegisterInfo::use_instr_iterator 617 UI = RegInfo->use_instr_begin(LDI->second), 618 E = RegInfo->use_instr_end(); UI != E; ) { 619 MachineInstr *UseMI = &*(UI++); 620 if (UseMI->isDebugValue()) continue; 621 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 622 CopyUseMI = UseMI; continue; 623 } 624 // Otherwise this is another use or second copy use. 625 CopyUseMI = nullptr; break; 626 } 627 if (CopyUseMI && 628 TRI.getRegSizeInBits(LDI->second, MRI) == 629 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) { 630 // Use MI's debug location, which describes where Variable was 631 // declared, rather than whatever is attached to CopyUseMI. 632 MachineInstr *NewMI = 633 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 634 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 635 MachineBasicBlock::iterator Pos = CopyUseMI; 636 EntryMBB->insertAfter(Pos, NewMI); 637 } 638 } 639 } 640 641 // Determine if there are any calls in this machine function. 642 MachineFrameInfo &MFI = MF->getFrameInfo(); 643 for (const auto &MBB : *MF) { 644 if (MFI.hasCalls() && MF->hasInlineAsm()) 645 break; 646 647 for (const auto &MI : MBB) { 648 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 649 if ((MCID.isCall() && !MCID.isReturn()) || 650 MI.isStackAligningInlineAsm()) { 651 MFI.setHasCalls(true); 652 } 653 if (MI.isInlineAsm()) { 654 MF->setHasInlineAsm(true); 655 } 656 } 657 } 658 659 // Determine if there is a call to setjmp in the machine function. 660 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 661 662 // Determine if floating point is used for msvc 663 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 664 665 // Release function-specific state. SDB and CurDAG are already cleared 666 // at this point. 667 FuncInfo->clear(); 668 669 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 670 LLVM_DEBUG(MF->print(dbgs())); 671 672 return true; 673 } 674 675 static void reportFastISelFailure(MachineFunction &MF, 676 OptimizationRemarkEmitter &ORE, 677 OptimizationRemarkMissed &R, 678 bool ShouldAbort) { 679 // Print the function name explicitly if we don't have a debug location (which 680 // makes the diagnostic less useful) or if we're going to emit a raw error. 681 if (!R.getLocation().isValid() || ShouldAbort) 682 R << (" (in function: " + MF.getName() + ")").str(); 683 684 if (ShouldAbort) 685 report_fatal_error(R.getMsg()); 686 687 ORE.emit(R); 688 } 689 690 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 691 BasicBlock::const_iterator End, 692 bool &HadTailCall) { 693 // Allow creating illegal types during DAG building for the basic block. 694 CurDAG->NewNodesMustHaveLegalTypes = false; 695 696 // Lower the instructions. If a call is emitted as a tail call, cease emitting 697 // nodes for this block. 698 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 699 if (!ElidedArgCopyInstrs.count(&*I)) 700 SDB->visit(*I); 701 } 702 703 // Make sure the root of the DAG is up-to-date. 704 CurDAG->setRoot(SDB->getControlRoot()); 705 HadTailCall = SDB->HasTailCall; 706 SDB->resolveOrClearDbgInfo(); 707 SDB->clear(); 708 709 // Final step, emit the lowered DAG as machine code. 710 CodeGenAndEmitDAG(); 711 } 712 713 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 714 SmallPtrSet<SDNode *, 16> Added; 715 SmallVector<SDNode*, 128> Worklist; 716 717 Worklist.push_back(CurDAG->getRoot().getNode()); 718 Added.insert(CurDAG->getRoot().getNode()); 719 720 KnownBits Known; 721 722 do { 723 SDNode *N = Worklist.pop_back_val(); 724 725 // Otherwise, add all chain operands to the worklist. 726 for (const SDValue &Op : N->op_values()) 727 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second) 728 Worklist.push_back(Op.getNode()); 729 730 // If this is a CopyToReg with a vreg dest, process it. 731 if (N->getOpcode() != ISD::CopyToReg) 732 continue; 733 734 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 735 if (!Register::isVirtualRegister(DestReg)) 736 continue; 737 738 // Ignore non-integer values. 739 SDValue Src = N->getOperand(2); 740 EVT SrcVT = Src.getValueType(); 741 if (!SrcVT.isInteger()) 742 continue; 743 744 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 745 Known = CurDAG->computeKnownBits(Src); 746 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 747 } while (!Worklist.empty()); 748 } 749 750 void SelectionDAGISel::CodeGenAndEmitDAG() { 751 StringRef GroupName = "sdag"; 752 StringRef GroupDescription = "Instruction Selection and Scheduling"; 753 std::string BlockName; 754 bool MatchFilterBB = false; (void)MatchFilterBB; 755 #ifndef NDEBUG 756 TargetTransformInfo &TTI = 757 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 758 #endif 759 760 // Pre-type legalization allow creation of any node types. 761 CurDAG->NewNodesMustHaveLegalTypes = false; 762 763 #ifndef NDEBUG 764 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 765 FilterDAGBasicBlockName == 766 FuncInfo->MBB->getBasicBlock()->getName()); 767 #endif 768 #ifdef NDEBUG 769 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || 770 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || 771 ViewSUnitDAGs) 772 #endif 773 { 774 BlockName = 775 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 776 } 777 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 778 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 779 << "'\n"; 780 CurDAG->dump()); 781 782 #ifndef NDEBUG 783 if (TTI.hasBranchDivergence()) 784 CurDAG->VerifyDAGDiverence(); 785 #endif 786 787 if (ViewDAGCombine1 && MatchFilterBB) 788 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 789 790 // Run the DAG combiner in pre-legalize mode. 791 { 792 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 793 GroupDescription, TimePassesIsEnabled); 794 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 795 } 796 797 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 798 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 799 << "'\n"; 800 CurDAG->dump()); 801 802 #ifndef NDEBUG 803 if (TTI.hasBranchDivergence()) 804 CurDAG->VerifyDAGDiverence(); 805 #endif 806 807 // Second step, hack on the DAG until it only uses operations and types that 808 // the target supports. 809 if (ViewLegalizeTypesDAGs && MatchFilterBB) 810 CurDAG->viewGraph("legalize-types input for " + BlockName); 811 812 bool Changed; 813 { 814 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 815 GroupDescription, TimePassesIsEnabled); 816 Changed = CurDAG->LegalizeTypes(); 817 } 818 819 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 820 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 821 << "'\n"; 822 CurDAG->dump()); 823 824 #ifndef NDEBUG 825 if (TTI.hasBranchDivergence()) 826 CurDAG->VerifyDAGDiverence(); 827 #endif 828 829 // Only allow creation of legal node types. 830 CurDAG->NewNodesMustHaveLegalTypes = true; 831 832 if (Changed) { 833 if (ViewDAGCombineLT && MatchFilterBB) 834 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 835 836 // Run the DAG combiner in post-type-legalize mode. 837 { 838 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 839 GroupName, GroupDescription, TimePassesIsEnabled); 840 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 841 } 842 843 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 844 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 845 << "'\n"; 846 CurDAG->dump()); 847 848 #ifndef NDEBUG 849 if (TTI.hasBranchDivergence()) 850 CurDAG->VerifyDAGDiverence(); 851 #endif 852 } 853 854 { 855 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 856 GroupDescription, TimePassesIsEnabled); 857 Changed = CurDAG->LegalizeVectors(); 858 } 859 860 if (Changed) { 861 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 862 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 863 << "'\n"; 864 CurDAG->dump()); 865 866 #ifndef NDEBUG 867 if (TTI.hasBranchDivergence()) 868 CurDAG->VerifyDAGDiverence(); 869 #endif 870 871 { 872 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 873 GroupDescription, TimePassesIsEnabled); 874 CurDAG->LegalizeTypes(); 875 } 876 877 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 878 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 879 << "'\n"; 880 CurDAG->dump()); 881 882 #ifndef NDEBUG 883 if (TTI.hasBranchDivergence()) 884 CurDAG->VerifyDAGDiverence(); 885 #endif 886 887 if (ViewDAGCombineLT && MatchFilterBB) 888 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 889 890 // Run the DAG combiner in post-type-legalize mode. 891 { 892 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 893 GroupName, GroupDescription, TimePassesIsEnabled); 894 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 895 } 896 897 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 898 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 899 << "'\n"; 900 CurDAG->dump()); 901 902 #ifndef NDEBUG 903 if (TTI.hasBranchDivergence()) 904 CurDAG->VerifyDAGDiverence(); 905 #endif 906 } 907 908 if (ViewLegalizeDAGs && MatchFilterBB) 909 CurDAG->viewGraph("legalize input for " + BlockName); 910 911 { 912 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 913 GroupDescription, TimePassesIsEnabled); 914 CurDAG->Legalize(); 915 } 916 917 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 918 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 919 << "'\n"; 920 CurDAG->dump()); 921 922 #ifndef NDEBUG 923 if (TTI.hasBranchDivergence()) 924 CurDAG->VerifyDAGDiverence(); 925 #endif 926 927 if (ViewDAGCombine2 && MatchFilterBB) 928 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 929 930 // Run the DAG combiner in post-legalize mode. 931 { 932 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 933 GroupDescription, TimePassesIsEnabled); 934 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 935 } 936 937 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 938 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 939 << "'\n"; 940 CurDAG->dump()); 941 942 #ifndef NDEBUG 943 if (TTI.hasBranchDivergence()) 944 CurDAG->VerifyDAGDiverence(); 945 #endif 946 947 if (OptLevel != CodeGenOpt::None) 948 ComputeLiveOutVRegInfo(); 949 950 if (ViewISelDAGs && MatchFilterBB) 951 CurDAG->viewGraph("isel input for " + BlockName); 952 953 // Third, instruction select all of the operations to machine code, adding the 954 // code to the MachineBasicBlock. 955 { 956 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 957 GroupDescription, TimePassesIsEnabled); 958 DoInstructionSelection(); 959 } 960 961 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 962 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 963 << "'\n"; 964 CurDAG->dump()); 965 966 if (ViewSchedDAGs && MatchFilterBB) 967 CurDAG->viewGraph("scheduler input for " + BlockName); 968 969 // Schedule machine code. 970 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 971 { 972 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 973 GroupDescription, TimePassesIsEnabled); 974 Scheduler->Run(CurDAG, FuncInfo->MBB); 975 } 976 977 if (ViewSUnitDAGs && MatchFilterBB) 978 Scheduler->viewGraph(); 979 980 // Emit machine code to BB. This can change 'BB' to the last block being 981 // inserted into. 982 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 983 { 984 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 985 GroupDescription, TimePassesIsEnabled); 986 987 // FuncInfo->InsertPt is passed by reference and set to the end of the 988 // scheduled instructions. 989 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 990 } 991 992 // If the block was split, make sure we update any references that are used to 993 // update PHI nodes later on. 994 if (FirstMBB != LastMBB) 995 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 996 997 // Free the scheduler state. 998 { 999 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1000 GroupDescription, TimePassesIsEnabled); 1001 delete Scheduler; 1002 } 1003 1004 // Free the SelectionDAG state, now that we're finished with it. 1005 CurDAG->clear(); 1006 } 1007 1008 namespace { 1009 1010 /// ISelUpdater - helper class to handle updates of the instruction selection 1011 /// graph. 1012 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1013 SelectionDAG::allnodes_iterator &ISelPosition; 1014 1015 public: 1016 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1017 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1018 1019 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1020 /// deleted is the current ISelPosition node, update ISelPosition. 1021 /// 1022 void NodeDeleted(SDNode *N, SDNode *E) override { 1023 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1024 ++ISelPosition; 1025 } 1026 }; 1027 1028 } // end anonymous namespace 1029 1030 // This function is used to enforce the topological node id property 1031 // property leveraged during Instruction selection. Before selection all 1032 // nodes are given a non-negative id such that all nodes have a larger id than 1033 // their operands. As this holds transitively we can prune checks that a node N 1034 // is a predecessor of M another by not recursively checking through M's 1035 // operands if N's ID is larger than M's ID. This is significantly improves 1036 // performance of for various legality checks (e.g. IsLegalToFold / 1037 // UpdateChains). 1038 1039 // However, when we fuse multiple nodes into a single node 1040 // during selection we may induce a predecessor relationship between inputs and 1041 // outputs of distinct nodes being merged violating the topological property. 1042 // Should a fused node have a successor which has yet to be selected, our 1043 // legality checks would be incorrect. To avoid this we mark all unselected 1044 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => 1045 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1046 // We use bit-negation to more clearly enforce that node id -1 can only be 1047 // achieved by selected nodes). As the conversion is reversable the original Id, 1048 // topological pruning can still be leveraged when looking for unselected nodes. 1049 // This method is call internally in all ISel replacement calls. 1050 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1051 SmallVector<SDNode *, 4> Nodes; 1052 Nodes.push_back(Node); 1053 1054 while (!Nodes.empty()) { 1055 SDNode *N = Nodes.pop_back_val(); 1056 for (auto *U : N->uses()) { 1057 auto UId = U->getNodeId(); 1058 if (UId > 0) { 1059 InvalidateNodeId(U); 1060 Nodes.push_back(U); 1061 } 1062 } 1063 } 1064 } 1065 1066 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a 1067 // NodeId with the equivalent node id which is invalid for topological 1068 // pruning. 1069 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1070 int InvalidId = -(N->getNodeId() + 1); 1071 N->setNodeId(InvalidId); 1072 } 1073 1074 // getUninvalidatedNodeId - get original uninvalidated node id. 1075 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1076 int Id = N->getNodeId(); 1077 if (Id < -1) 1078 return -(Id + 1); 1079 return Id; 1080 } 1081 1082 void SelectionDAGISel::DoInstructionSelection() { 1083 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1084 << printMBBReference(*FuncInfo->MBB) << " '" 1085 << FuncInfo->MBB->getName() << "'\n"); 1086 1087 PreprocessISelDAG(); 1088 1089 // Select target instructions for the DAG. 1090 { 1091 // Number all nodes with a topological order and set DAGSize. 1092 DAGSize = CurDAG->AssignTopologicalOrder(); 1093 1094 // Create a dummy node (which is not added to allnodes), that adds 1095 // a reference to the root node, preventing it from being deleted, 1096 // and tracking any changes of the root. 1097 HandleSDNode Dummy(CurDAG->getRoot()); 1098 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1099 ++ISelPosition; 1100 1101 // Make sure that ISelPosition gets properly updated when nodes are deleted 1102 // in calls made from this function. 1103 ISelUpdater ISU(*CurDAG, ISelPosition); 1104 1105 // The AllNodes list is now topological-sorted. Visit the 1106 // nodes by starting at the end of the list (the root of the 1107 // graph) and preceding back toward the beginning (the entry 1108 // node). 1109 while (ISelPosition != CurDAG->allnodes_begin()) { 1110 SDNode *Node = &*--ISelPosition; 1111 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1112 // but there are currently some corner cases that it misses. Also, this 1113 // makes it theoretically possible to disable the DAGCombiner. 1114 if (Node->use_empty()) 1115 continue; 1116 1117 #ifndef NDEBUG 1118 SmallVector<SDNode *, 4> Nodes; 1119 Nodes.push_back(Node); 1120 1121 while (!Nodes.empty()) { 1122 auto N = Nodes.pop_back_val(); 1123 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1124 continue; 1125 for (const SDValue &Op : N->op_values()) { 1126 if (Op->getOpcode() == ISD::TokenFactor) 1127 Nodes.push_back(Op.getNode()); 1128 else { 1129 // We rely on topological ordering of node ids for checking for 1130 // cycles when fusing nodes during selection. All unselected nodes 1131 // successors of an already selected node should have a negative id. 1132 // This assertion will catch such cases. If this assertion triggers 1133 // it is likely you using DAG-level Value/Node replacement functions 1134 // (versus equivalent ISEL replacement) in backend-specific 1135 // selections. See comment in EnforceNodeIdInvariant for more 1136 // details. 1137 assert(Op->getNodeId() != -1 && 1138 "Node has already selected predecessor node"); 1139 } 1140 } 1141 } 1142 #endif 1143 1144 // When we are using non-default rounding modes or FP exception behavior 1145 // FP operations are represented by StrictFP pseudo-operations. For 1146 // targets that do not (yet) understand strict FP operations directly, 1147 // we convert them to normal FP opcodes instead at this point. This 1148 // will allow them to be handled by existing target-specific instruction 1149 // selectors. 1150 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { 1151 // For some opcodes, we need to call TLI->getOperationAction using 1152 // the first operand type instead of the result type. Note that this 1153 // must match what SelectionDAGLegalize::LegalizeOp is doing. 1154 EVT ActionVT; 1155 switch (Node->getOpcode()) { 1156 case ISD::STRICT_SINT_TO_FP: 1157 case ISD::STRICT_UINT_TO_FP: 1158 case ISD::STRICT_LRINT: 1159 case ISD::STRICT_LLRINT: 1160 case ISD::STRICT_LROUND: 1161 case ISD::STRICT_LLROUND: 1162 case ISD::STRICT_FSETCC: 1163 case ISD::STRICT_FSETCCS: 1164 ActionVT = Node->getOperand(1).getValueType(); 1165 break; 1166 default: 1167 ActionVT = Node->getValueType(0); 1168 break; 1169 } 1170 if (TLI->getOperationAction(Node->getOpcode(), ActionVT) 1171 == TargetLowering::Expand) 1172 Node = CurDAG->mutateStrictFPToFP(Node); 1173 } 1174 1175 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1176 Node->dump(CurDAG)); 1177 1178 Select(Node); 1179 } 1180 1181 CurDAG->setRoot(Dummy.getValue()); 1182 } 1183 1184 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1185 1186 PostprocessISelDAG(); 1187 } 1188 1189 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1190 for (const User *U : CPI->users()) { 1191 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1192 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1193 if (IID == Intrinsic::eh_exceptionpointer || 1194 IID == Intrinsic::eh_exceptioncode) 1195 return true; 1196 } 1197 } 1198 return false; 1199 } 1200 1201 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1202 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1203 // and store the mapping in the function. 1204 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1205 const CatchPadInst *CPI) { 1206 MachineFunction *MF = MBB->getParent(); 1207 // In case of single catch (...), we don't emit LSDA, so we don't need 1208 // this information. 1209 bool IsSingleCatchAllClause = 1210 CPI->getNumArgOperands() == 1 && 1211 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1212 if (!IsSingleCatchAllClause) { 1213 // Create a mapping from landing pad label to landing pad index. 1214 bool IntrFound = false; 1215 for (const User *U : CPI->users()) { 1216 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1217 Intrinsic::ID IID = Call->getIntrinsicID(); 1218 if (IID == Intrinsic::wasm_landingpad_index) { 1219 Value *IndexArg = Call->getArgOperand(1); 1220 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1221 MF->setWasmLandingPadIndex(MBB, Index); 1222 IntrFound = true; 1223 break; 1224 } 1225 } 1226 } 1227 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1228 (void)IntrFound; 1229 } 1230 } 1231 1232 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1233 /// do other setup for EH landing-pad blocks. 1234 bool SelectionDAGISel::PrepareEHLandingPad() { 1235 MachineBasicBlock *MBB = FuncInfo->MBB; 1236 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1237 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1238 const TargetRegisterClass *PtrRC = 1239 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1240 1241 auto Pers = classifyEHPersonality(PersonalityFn); 1242 1243 // Catchpads have one live-in register, which typically holds the exception 1244 // pointer or code. 1245 if (isFuncletEHPersonality(Pers)) { 1246 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1247 if (hasExceptionPointerOrCodeUser(CPI)) { 1248 // Get or create the virtual register to hold the pointer or code. Mark 1249 // the live in physreg and copy into the vreg. 1250 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1251 assert(EHPhysReg && "target lacks exception pointer register"); 1252 MBB->addLiveIn(EHPhysReg); 1253 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1254 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1255 TII->get(TargetOpcode::COPY), VReg) 1256 .addReg(EHPhysReg, RegState::Kill); 1257 } 1258 } 1259 return true; 1260 } 1261 1262 // Add a label to mark the beginning of the landing pad. Deletion of the 1263 // landing pad can thus be detected via the MachineModuleInfo. 1264 MCSymbol *Label = MF->addLandingPad(MBB); 1265 1266 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1267 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1268 .addSym(Label); 1269 1270 // If the unwinder does not preserve all registers, ensure that the 1271 // function marks the clobbered registers as used. 1272 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 1273 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 1274 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 1275 1276 if (Pers == EHPersonality::Wasm_CXX) { 1277 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1278 mapWasmLandingPadIndex(MBB, CPI); 1279 } else { 1280 // Assign the call site to the landing pad's begin label. 1281 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1282 // Mark exception register as live in. 1283 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1284 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1285 // Mark exception selector register as live in. 1286 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1287 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1288 } 1289 1290 return true; 1291 } 1292 1293 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1294 /// side-effect free and is either dead or folded into a generated instruction. 1295 /// Return false if it needs to be emitted. 1296 static bool isFoldedOrDeadInstruction(const Instruction *I, 1297 const FunctionLoweringInfo &FuncInfo) { 1298 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1299 !I->isTerminator() && // Terminators aren't folded. 1300 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1301 !I->isEHPad() && // EH pad instructions aren't folded. 1302 !FuncInfo.isExportedInst(I); // Exported instrs must be computed. 1303 } 1304 1305 /// Collect llvm.dbg.declare information. This is done after argument lowering 1306 /// in case the declarations refer to arguments. 1307 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { 1308 MachineFunction *MF = FuncInfo.MF; 1309 const DataLayout &DL = MF->getDataLayout(); 1310 for (const BasicBlock &BB : *FuncInfo.Fn) { 1311 for (const Instruction &I : BB) { 1312 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1313 if (!DI) 1314 continue; 1315 1316 assert(DI->getVariable() && "Missing variable"); 1317 assert(DI->getDebugLoc() && "Missing location"); 1318 const Value *Address = DI->getAddress(); 1319 if (!Address) { 1320 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI 1321 << " (bad address)\n"); 1322 continue; 1323 } 1324 1325 // Look through casts and constant offset GEPs. These mostly come from 1326 // inalloca. 1327 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1328 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1329 1330 // Check if the variable is a static alloca or a byval or inalloca 1331 // argument passed in memory. If it is not, then we will ignore this 1332 // intrinsic and handle this during isel like dbg.value. 1333 int FI = std::numeric_limits<int>::max(); 1334 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1335 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1336 if (SI != FuncInfo.StaticAllocaMap.end()) 1337 FI = SI->second; 1338 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1339 FI = FuncInfo.getArgumentFrameIndex(Arg); 1340 1341 if (FI == std::numeric_limits<int>::max()) 1342 continue; 1343 1344 DIExpression *Expr = DI->getExpression(); 1345 if (Offset.getBoolValue()) 1346 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1347 Offset.getZExtValue()); 1348 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI 1349 << ", " << *DI << "\n"); 1350 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1351 } 1352 } 1353 } 1354 1355 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1356 FastISelFailed = false; 1357 // Initialize the Fast-ISel state, if needed. 1358 FastISel *FastIS = nullptr; 1359 if (TM.Options.EnableFastISel) { 1360 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1361 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1362 } 1363 1364 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1365 1366 // Lower arguments up front. An RPO iteration always visits the entry block 1367 // first. 1368 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1369 ++NumEntryBlocks; 1370 1371 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1372 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1373 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1374 1375 CurDAG->setFunctionLoweringInfo(FuncInfo.get()); 1376 1377 if (!FastIS) { 1378 LowerArguments(Fn); 1379 } else { 1380 // See if fast isel can lower the arguments. 1381 FastIS->startNewBlock(); 1382 if (!FastIS->lowerArguments()) { 1383 FastISelFailed = true; 1384 // Fast isel failed to lower these arguments 1385 ++NumFastIselFailLowerArguments; 1386 1387 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1388 Fn.getSubprogram(), 1389 &Fn.getEntryBlock()); 1390 R << "FastISel didn't lower all arguments: " 1391 << ore::NV("Prototype", Fn.getType()); 1392 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1393 1394 // Use SelectionDAG argument lowering 1395 LowerArguments(Fn); 1396 CurDAG->setRoot(SDB->getControlRoot()); 1397 SDB->clear(); 1398 CodeGenAndEmitDAG(); 1399 } 1400 1401 // If we inserted any instructions at the beginning, make a note of 1402 // where they are, so we can be sure to emit subsequent instructions 1403 // after them. 1404 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1405 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1406 else 1407 FastIS->setLastLocalValue(nullptr); 1408 } 1409 1410 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1411 1412 if (FastIS && Inserted) 1413 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1414 1415 processDbgDeclares(*FuncInfo); 1416 1417 // Iterate over all basic blocks in the function. 1418 StackProtector &SP = getAnalysis<StackProtector>(); 1419 for (const BasicBlock *LLVMBB : RPOT) { 1420 if (OptLevel != CodeGenOpt::None) { 1421 bool AllPredsVisited = true; 1422 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1423 PI != PE; ++PI) { 1424 if (!FuncInfo->VisitedBBs.count(*PI)) { 1425 AllPredsVisited = false; 1426 break; 1427 } 1428 } 1429 1430 if (AllPredsVisited) { 1431 for (const PHINode &PN : LLVMBB->phis()) 1432 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1433 } else { 1434 for (const PHINode &PN : LLVMBB->phis()) 1435 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1436 } 1437 1438 FuncInfo->VisitedBBs.insert(LLVMBB); 1439 } 1440 1441 BasicBlock::const_iterator const Begin = 1442 LLVMBB->getFirstNonPHI()->getIterator(); 1443 BasicBlock::const_iterator const End = LLVMBB->end(); 1444 BasicBlock::const_iterator BI = End; 1445 1446 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1447 if (!FuncInfo->MBB) 1448 continue; // Some blocks like catchpads have no code or MBB. 1449 1450 // Insert new instructions after any phi or argument setup code. 1451 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1452 1453 // Setup an EH landing-pad block. 1454 FuncInfo->ExceptionPointerVirtReg = 0; 1455 FuncInfo->ExceptionSelectorVirtReg = 0; 1456 if (LLVMBB->isEHPad()) 1457 if (!PrepareEHLandingPad()) 1458 continue; 1459 1460 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1461 if (FastIS) { 1462 if (LLVMBB != &Fn.getEntryBlock()) 1463 FastIS->startNewBlock(); 1464 1465 unsigned NumFastIselRemaining = std::distance(Begin, End); 1466 1467 // Pre-assign swifterror vregs. 1468 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1469 1470 // Do FastISel on as many instructions as possible. 1471 for (; BI != Begin; --BI) { 1472 const Instruction *Inst = &*std::prev(BI); 1473 1474 // If we no longer require this instruction, skip it. 1475 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) || 1476 ElidedArgCopyInstrs.count(Inst)) { 1477 --NumFastIselRemaining; 1478 continue; 1479 } 1480 1481 // Bottom-up: reset the insert pos at the top, after any local-value 1482 // instructions. 1483 FastIS->recomputeInsertPt(); 1484 1485 // Try to select the instruction with FastISel. 1486 if (FastIS->selectInstruction(Inst)) { 1487 --NumFastIselRemaining; 1488 ++NumFastIselSuccess; 1489 // If fast isel succeeded, skip over all the folded instructions, and 1490 // then see if there is a load right before the selected instructions. 1491 // Try to fold the load if so. 1492 const Instruction *BeforeInst = Inst; 1493 while (BeforeInst != &*Begin) { 1494 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1495 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo)) 1496 break; 1497 } 1498 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1499 BeforeInst->hasOneUse() && 1500 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1501 // If we succeeded, don't re-select the load. 1502 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1503 --NumFastIselRemaining; 1504 ++NumFastIselSuccess; 1505 } 1506 continue; 1507 } 1508 1509 FastISelFailed = true; 1510 1511 // Then handle certain instructions as single-LLVM-Instruction blocks. 1512 // We cannot separate out GCrelocates to their own blocks since we need 1513 // to keep track of gc-relocates for a particular gc-statepoint. This is 1514 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1515 // visitGCRelocate. 1516 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) && 1517 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) { 1518 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1519 Inst->getDebugLoc(), LLVMBB); 1520 1521 R << "FastISel missed call"; 1522 1523 if (R.isEnabled() || EnableFastISelAbort) { 1524 std::string InstStrStorage; 1525 raw_string_ostream InstStr(InstStrStorage); 1526 InstStr << *Inst; 1527 1528 R << ": " << InstStr.str(); 1529 } 1530 1531 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1532 1533 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1534 !Inst->use_empty()) { 1535 Register &R = FuncInfo->ValueMap[Inst]; 1536 if (!R) 1537 R = FuncInfo->CreateRegs(Inst); 1538 } 1539 1540 bool HadTailCall = false; 1541 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1542 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1543 1544 // If the call was emitted as a tail call, we're done with the block. 1545 // We also need to delete any previously emitted instructions. 1546 if (HadTailCall) { 1547 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1548 --BI; 1549 break; 1550 } 1551 1552 // Recompute NumFastIselRemaining as Selection DAG instruction 1553 // selection may have handled the call, input args, etc. 1554 unsigned RemainingNow = std::distance(Begin, BI); 1555 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1556 NumFastIselRemaining = RemainingNow; 1557 continue; 1558 } 1559 1560 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1561 Inst->getDebugLoc(), LLVMBB); 1562 1563 bool ShouldAbort = EnableFastISelAbort; 1564 if (Inst->isTerminator()) { 1565 // Use a different message for terminator misses. 1566 R << "FastISel missed terminator"; 1567 // Don't abort for terminator unless the level is really high 1568 ShouldAbort = (EnableFastISelAbort > 2); 1569 } else { 1570 R << "FastISel missed"; 1571 } 1572 1573 if (R.isEnabled() || EnableFastISelAbort) { 1574 std::string InstStrStorage; 1575 raw_string_ostream InstStr(InstStrStorage); 1576 InstStr << *Inst; 1577 R << ": " << InstStr.str(); 1578 } 1579 1580 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1581 1582 NumFastIselFailures += NumFastIselRemaining; 1583 break; 1584 } 1585 1586 FastIS->recomputeInsertPt(); 1587 } 1588 1589 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1590 bool FunctionBasedInstrumentation = 1591 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1592 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1593 FunctionBasedInstrumentation); 1594 } 1595 1596 if (Begin != BI) 1597 ++NumDAGBlocks; 1598 else 1599 ++NumFastIselBlocks; 1600 1601 if (Begin != BI) { 1602 // Run SelectionDAG instruction selection on the remainder of the block 1603 // not handled by FastISel. If FastISel is not run, this is the entire 1604 // block. 1605 bool HadTailCall; 1606 SelectBasicBlock(Begin, BI, HadTailCall); 1607 1608 // But if FastISel was run, we already selected some of the block. 1609 // If we emitted a tail-call, we need to delete any previously emitted 1610 // instruction that follows it. 1611 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1612 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1613 } 1614 1615 if (FastIS) 1616 FastIS->finishBasicBlock(); 1617 FinishBasicBlock(); 1618 FuncInfo->PHINodesToUpdate.clear(); 1619 ElidedArgCopyInstrs.clear(); 1620 } 1621 1622 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1623 1624 SwiftError->propagateVRegs(); 1625 1626 delete FastIS; 1627 SDB->clearDanglingDebugInfo(); 1628 SDB->SPDescriptor.resetPerFunctionState(); 1629 } 1630 1631 /// Given that the input MI is before a partial terminator sequence TSeq, return 1632 /// true if M + TSeq also a partial terminator sequence. 1633 /// 1634 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1635 /// lowering copy vregs into physical registers, which are then passed into 1636 /// terminator instructors so we can satisfy ABI constraints. A partial 1637 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1638 /// may be the whole terminator sequence). 1639 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1640 // If we do not have a copy or an implicit def, we return true if and only if 1641 // MI is a debug value. 1642 if (!MI.isCopy() && !MI.isImplicitDef()) 1643 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1644 // physical registers if there is debug info associated with the terminator 1645 // of our mbb. We want to include said debug info in our terminator 1646 // sequence, so we return true in that case. 1647 return MI.isDebugValue(); 1648 1649 // We have left the terminator sequence if we are not doing one of the 1650 // following: 1651 // 1652 // 1. Copying a vreg into a physical register. 1653 // 2. Copying a vreg into a vreg. 1654 // 3. Defining a register via an implicit def. 1655 1656 // OPI should always be a register definition... 1657 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1658 if (!OPI->isReg() || !OPI->isDef()) 1659 return false; 1660 1661 // Defining any register via an implicit def is always ok. 1662 if (MI.isImplicitDef()) 1663 return true; 1664 1665 // Grab the copy source... 1666 MachineInstr::const_mop_iterator OPI2 = OPI; 1667 ++OPI2; 1668 assert(OPI2 != MI.operands_end() 1669 && "Should have a copy implying we should have 2 arguments."); 1670 1671 // Make sure that the copy dest is not a vreg when the copy source is a 1672 // physical register. 1673 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) && 1674 Register::isPhysicalRegister(OPI2->getReg()))) 1675 return false; 1676 1677 return true; 1678 } 1679 1680 /// Find the split point at which to splice the end of BB into its success stack 1681 /// protector check machine basic block. 1682 /// 1683 /// On many platforms, due to ABI constraints, terminators, even before register 1684 /// allocation, use physical registers. This creates an issue for us since 1685 /// physical registers at this point can not travel across basic 1686 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1687 /// when they enter functions and moves them through a sequence of copies back 1688 /// into the physical registers right before the terminator creating a 1689 /// ``Terminator Sequence''. This function is searching for the beginning of the 1690 /// terminator sequence so that we can ensure that we splice off not just the 1691 /// terminator, but additionally the copies that move the vregs into the 1692 /// physical registers. 1693 static MachineBasicBlock::iterator 1694 FindSplitPointForStackProtector(MachineBasicBlock *BB, 1695 const TargetInstrInfo &TII) { 1696 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1697 if (SplitPoint == BB->begin()) 1698 return SplitPoint; 1699 1700 MachineBasicBlock::iterator Start = BB->begin(); 1701 MachineBasicBlock::iterator Previous = SplitPoint; 1702 --Previous; 1703 1704 if (TII.isTailCall(*SplitPoint) && 1705 Previous->getOpcode() == TII.getCallFrameDestroyOpcode()) { 1706 // call itself, then we must insert before the sequence even starts. For 1707 // example: 1708 // <split point> 1709 // ADJCALLSTACKDOWN ... 1710 // <Moves> 1711 // ADJCALLSTACKUP ... 1712 // TAILJMP somewhere 1713 // On the other hand, it could be an unrelated call in which case this tail call 1714 // has to register moves of its own and should be the split point. For example: 1715 // ADJCALLSTACKDOWN 1716 // CALL something_else 1717 // ADJCALLSTACKUP 1718 // <split point> 1719 // TAILJMP somewhere 1720 do { 1721 --Previous; 1722 if (Previous->isCall()) 1723 return SplitPoint; 1724 } while(Previous->getOpcode() != TII.getCallFrameSetupOpcode()); 1725 1726 return Previous; 1727 } 1728 1729 while (MIIsInTerminatorSequence(*Previous)) { 1730 SplitPoint = Previous; 1731 if (Previous == Start) 1732 break; 1733 --Previous; 1734 } 1735 1736 return SplitPoint; 1737 } 1738 1739 void 1740 SelectionDAGISel::FinishBasicBlock() { 1741 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1742 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1743 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1744 ++i) dbgs() 1745 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1746 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1747 1748 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1749 // PHI nodes in successors. 1750 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1751 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1752 assert(PHI->isPHI() && 1753 "This is not a machine PHI node that we are updating!"); 1754 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1755 continue; 1756 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1757 } 1758 1759 // Handle stack protector. 1760 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1761 // The target provides a guard check function. There is no need to 1762 // generate error handling code or to split current basic block. 1763 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1764 1765 // Add load and check to the basicblock. 1766 FuncInfo->MBB = ParentMBB; 1767 FuncInfo->InsertPt = 1768 FindSplitPointForStackProtector(ParentMBB, *TII); 1769 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1770 CurDAG->setRoot(SDB->getRoot()); 1771 SDB->clear(); 1772 CodeGenAndEmitDAG(); 1773 1774 // Clear the Per-BB State. 1775 SDB->SPDescriptor.resetPerBBState(); 1776 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1777 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1778 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1779 1780 // Find the split point to split the parent mbb. At the same time copy all 1781 // physical registers used in the tail of parent mbb into virtual registers 1782 // before the split point and back into physical registers after the split 1783 // point. This prevents us needing to deal with Live-ins and many other 1784 // register allocation issues caused by us splitting the parent mbb. The 1785 // register allocator will clean up said virtual copies later on. 1786 MachineBasicBlock::iterator SplitPoint = 1787 FindSplitPointForStackProtector(ParentMBB, *TII); 1788 1789 // Splice the terminator of ParentMBB into SuccessMBB. 1790 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1791 SplitPoint, 1792 ParentMBB->end()); 1793 1794 // Add compare/jump on neq/jump to the parent BB. 1795 FuncInfo->MBB = ParentMBB; 1796 FuncInfo->InsertPt = ParentMBB->end(); 1797 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1798 CurDAG->setRoot(SDB->getRoot()); 1799 SDB->clear(); 1800 CodeGenAndEmitDAG(); 1801 1802 // CodeGen Failure MBB if we have not codegened it yet. 1803 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1804 if (FailureMBB->empty()) { 1805 FuncInfo->MBB = FailureMBB; 1806 FuncInfo->InsertPt = FailureMBB->end(); 1807 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1808 CurDAG->setRoot(SDB->getRoot()); 1809 SDB->clear(); 1810 CodeGenAndEmitDAG(); 1811 } 1812 1813 // Clear the Per-BB State. 1814 SDB->SPDescriptor.resetPerBBState(); 1815 } 1816 1817 // Lower each BitTestBlock. 1818 for (auto &BTB : SDB->SL->BitTestCases) { 1819 // Lower header first, if it wasn't already lowered 1820 if (!BTB.Emitted) { 1821 // Set the current basic block to the mbb we wish to insert the code into 1822 FuncInfo->MBB = BTB.Parent; 1823 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1824 // Emit the code 1825 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1826 CurDAG->setRoot(SDB->getRoot()); 1827 SDB->clear(); 1828 CodeGenAndEmitDAG(); 1829 } 1830 1831 BranchProbability UnhandledProb = BTB.Prob; 1832 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1833 UnhandledProb -= BTB.Cases[j].ExtraProb; 1834 // Set the current basic block to the mbb we wish to insert the code into 1835 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1836 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1837 // Emit the code 1838 1839 // If all cases cover a contiguous range, it is not necessary to jump to 1840 // the default block after the last bit test fails. This is because the 1841 // range check during bit test header creation has guaranteed that every 1842 // case here doesn't go outside the range. In this case, there is no need 1843 // to perform the last bit test, as it will always be true. Instead, make 1844 // the second-to-last bit-test fall through to the target of the last bit 1845 // test, and delete the last bit test. 1846 1847 MachineBasicBlock *NextMBB; 1848 if (BTB.ContiguousRange && j + 2 == ej) { 1849 // Second-to-last bit-test with contiguous range: fall through to the 1850 // target of the final bit test. 1851 NextMBB = BTB.Cases[j + 1].TargetBB; 1852 } else if (j + 1 == ej) { 1853 // For the last bit test, fall through to Default. 1854 NextMBB = BTB.Default; 1855 } else { 1856 // Otherwise, fall through to the next bit test. 1857 NextMBB = BTB.Cases[j + 1].ThisBB; 1858 } 1859 1860 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1861 FuncInfo->MBB); 1862 1863 CurDAG->setRoot(SDB->getRoot()); 1864 SDB->clear(); 1865 CodeGenAndEmitDAG(); 1866 1867 if (BTB.ContiguousRange && j + 2 == ej) { 1868 // Since we're not going to use the final bit test, remove it. 1869 BTB.Cases.pop_back(); 1870 break; 1871 } 1872 } 1873 1874 // Update PHI Nodes 1875 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1876 pi != pe; ++pi) { 1877 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1878 MachineBasicBlock *PHIBB = PHI->getParent(); 1879 assert(PHI->isPHI() && 1880 "This is not a machine PHI node that we are updating!"); 1881 // This is "default" BB. We have two jumps to it. From "header" BB and 1882 // from last "case" BB, unless the latter was skipped. 1883 if (PHIBB == BTB.Default) { 1884 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1885 if (!BTB.ContiguousRange) { 1886 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1887 .addMBB(BTB.Cases.back().ThisBB); 1888 } 1889 } 1890 // One of "cases" BB. 1891 for (unsigned j = 0, ej = BTB.Cases.size(); 1892 j != ej; ++j) { 1893 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1894 if (cBB->isSuccessor(PHIBB)) 1895 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1896 } 1897 } 1898 } 1899 SDB->SL->BitTestCases.clear(); 1900 1901 // If the JumpTable record is filled in, then we need to emit a jump table. 1902 // Updating the PHI nodes is tricky in this case, since we need to determine 1903 // whether the PHI is a successor of the range check MBB or the jump table MBB 1904 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1905 // Lower header first, if it wasn't already lowered 1906 if (!SDB->SL->JTCases[i].first.Emitted) { 1907 // Set the current basic block to the mbb we wish to insert the code into 1908 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1909 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1910 // Emit the code 1911 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1912 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1913 CurDAG->setRoot(SDB->getRoot()); 1914 SDB->clear(); 1915 CodeGenAndEmitDAG(); 1916 } 1917 1918 // Set the current basic block to the mbb we wish to insert the code into 1919 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1920 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1921 // Emit the code 1922 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1923 CurDAG->setRoot(SDB->getRoot()); 1924 SDB->clear(); 1925 CodeGenAndEmitDAG(); 1926 1927 // Update PHI Nodes 1928 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1929 pi != pe; ++pi) { 1930 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1931 MachineBasicBlock *PHIBB = PHI->getParent(); 1932 assert(PHI->isPHI() && 1933 "This is not a machine PHI node that we are updating!"); 1934 // "default" BB. We can go there only from header BB. 1935 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1936 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1937 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1938 // JT BB. Just iterate over successors here 1939 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1940 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1941 } 1942 } 1943 SDB->SL->JTCases.clear(); 1944 1945 // If we generated any switch lowering information, build and codegen any 1946 // additional DAGs necessary. 1947 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1948 // Set the current basic block to the mbb we wish to insert the code into 1949 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1950 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1951 1952 // Determine the unique successors. 1953 SmallVector<MachineBasicBlock *, 2> Succs; 1954 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1955 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1956 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1957 1958 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1959 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1960 CurDAG->setRoot(SDB->getRoot()); 1961 SDB->clear(); 1962 CodeGenAndEmitDAG(); 1963 1964 // Remember the last block, now that any splitting is done, for use in 1965 // populating PHI nodes in successors. 1966 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1967 1968 // Handle any PHI nodes in successors of this chunk, as if we were coming 1969 // from the original BB before switch expansion. Note that PHI nodes can 1970 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1971 // handle them the right number of times. 1972 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1973 FuncInfo->MBB = Succs[i]; 1974 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1975 // FuncInfo->MBB may have been removed from the CFG if a branch was 1976 // constant folded. 1977 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1978 for (MachineBasicBlock::iterator 1979 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1980 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1981 MachineInstrBuilder PHI(*MF, MBBI); 1982 // This value for this PHI node is recorded in PHINodesToUpdate. 1983 for (unsigned pn = 0; ; ++pn) { 1984 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1985 "Didn't find PHI entry!"); 1986 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1987 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1988 break; 1989 } 1990 } 1991 } 1992 } 1993 } 1994 } 1995 SDB->SL->SwitchCases.clear(); 1996 } 1997 1998 /// Create the scheduler. If a specific scheduler was specified 1999 /// via the SchedulerRegistry, use it, otherwise select the 2000 /// one preferred by the target. 2001 /// 2002 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 2003 return ISHeuristic(this, OptLevel); 2004 } 2005 2006 //===----------------------------------------------------------------------===// 2007 // Helper functions used by the generated instruction selector. 2008 //===----------------------------------------------------------------------===// 2009 // Calls to these methods are generated by tblgen. 2010 2011 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 2012 /// the dag combiner simplified the 255, we still want to match. RHS is the 2013 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 2014 /// specified in the .td file (e.g. 255). 2015 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 2016 int64_t DesiredMaskS) const { 2017 const APInt &ActualMask = RHS->getAPIntValue(); 2018 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2019 2020 // If the actual mask exactly matches, success! 2021 if (ActualMask == DesiredMask) 2022 return true; 2023 2024 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2025 if (!ActualMask.isSubsetOf(DesiredMask)) 2026 return false; 2027 2028 // Otherwise, the DAG Combiner may have proven that the value coming in is 2029 // either already zero or is not demanded. Check for known zero input bits. 2030 APInt NeededMask = DesiredMask & ~ActualMask; 2031 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 2032 return true; 2033 2034 // TODO: check to see if missing bits are just not demanded. 2035 2036 // Otherwise, this pattern doesn't match. 2037 return false; 2038 } 2039 2040 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 2041 /// the dag combiner simplified the 255, we still want to match. RHS is the 2042 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 2043 /// specified in the .td file (e.g. 255). 2044 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 2045 int64_t DesiredMaskS) const { 2046 const APInt &ActualMask = RHS->getAPIntValue(); 2047 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2048 2049 // If the actual mask exactly matches, success! 2050 if (ActualMask == DesiredMask) 2051 return true; 2052 2053 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2054 if (!ActualMask.isSubsetOf(DesiredMask)) 2055 return false; 2056 2057 // Otherwise, the DAG Combiner may have proven that the value coming in is 2058 // either already zero or is not demanded. Check for known zero input bits. 2059 APInt NeededMask = DesiredMask & ~ActualMask; 2060 KnownBits Known = CurDAG->computeKnownBits(LHS); 2061 2062 // If all the missing bits in the or are already known to be set, match! 2063 if (NeededMask.isSubsetOf(Known.One)) 2064 return true; 2065 2066 // TODO: check to see if missing bits are just not demanded. 2067 2068 // Otherwise, this pattern doesn't match. 2069 return false; 2070 } 2071 2072 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2073 /// by tblgen. Others should not call it. 2074 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2075 const SDLoc &DL) { 2076 std::vector<SDValue> InOps; 2077 std::swap(InOps, Ops); 2078 2079 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2080 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2081 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2082 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2083 2084 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2085 if (InOps[e-1].getValueType() == MVT::Glue) 2086 --e; // Don't process a glue operand if it is here. 2087 2088 while (i != e) { 2089 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2090 if (!InlineAsm::isMemKind(Flags)) { 2091 // Just skip over this operand, copying the operands verbatim. 2092 Ops.insert(Ops.end(), InOps.begin()+i, 2093 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2094 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2095 } else { 2096 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2097 "Memory operand with multiple values?"); 2098 2099 unsigned TiedToOperand; 2100 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2101 // We need the constraint ID from the operand this is tied to. 2102 unsigned CurOp = InlineAsm::Op_FirstOperand; 2103 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2104 for (; TiedToOperand; --TiedToOperand) { 2105 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2106 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2107 } 2108 } 2109 2110 // Otherwise, this is a memory operand. Ask the target to select it. 2111 std::vector<SDValue> SelOps; 2112 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2113 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2114 report_fatal_error("Could not match memory address. Inline asm" 2115 " failure!"); 2116 2117 // Add this to the output node. 2118 unsigned NewFlags = 2119 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2120 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2121 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2122 llvm::append_range(Ops, SelOps); 2123 i += 2; 2124 } 2125 } 2126 2127 // Add the glue input back if present. 2128 if (e != InOps.size()) 2129 Ops.push_back(InOps.back()); 2130 } 2131 2132 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2133 /// SDNode. 2134 /// 2135 static SDNode *findGlueUse(SDNode *N) { 2136 unsigned FlagResNo = N->getNumValues()-1; 2137 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2138 SDUse &Use = I.getUse(); 2139 if (Use.getResNo() == FlagResNo) 2140 return Use.getUser(); 2141 } 2142 return nullptr; 2143 } 2144 2145 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2146 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2147 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2148 bool IgnoreChains) { 2149 SmallPtrSet<const SDNode *, 16> Visited; 2150 SmallVector<const SDNode *, 16> WorkList; 2151 // Only check if we have non-immediate uses of Def. 2152 if (ImmedUse->isOnlyUserOf(Def)) 2153 return false; 2154 2155 // We don't care about paths to Def that go through ImmedUse so mark it 2156 // visited and mark non-def operands as used. 2157 Visited.insert(ImmedUse); 2158 for (const SDValue &Op : ImmedUse->op_values()) { 2159 SDNode *N = Op.getNode(); 2160 // Ignore chain deps (they are validated by 2161 // HandleMergeInputChains) and immediate uses 2162 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2163 continue; 2164 if (!Visited.insert(N).second) 2165 continue; 2166 WorkList.push_back(N); 2167 } 2168 2169 // Initialize worklist to operands of Root. 2170 if (Root != ImmedUse) { 2171 for (const SDValue &Op : Root->op_values()) { 2172 SDNode *N = Op.getNode(); 2173 // Ignore chains (they are validated by HandleMergeInputChains) 2174 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2175 continue; 2176 if (!Visited.insert(N).second) 2177 continue; 2178 WorkList.push_back(N); 2179 } 2180 } 2181 2182 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2183 } 2184 2185 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2186 /// operand node N of U during instruction selection that starts at Root. 2187 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2188 SDNode *Root) const { 2189 if (OptLevel == CodeGenOpt::None) return false; 2190 return N.hasOneUse(); 2191 } 2192 2193 /// IsLegalToFold - Returns true if the specific operand node N of 2194 /// U can be folded during instruction selection that starts at Root. 2195 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2196 CodeGenOpt::Level OptLevel, 2197 bool IgnoreChains) { 2198 if (OptLevel == CodeGenOpt::None) return false; 2199 2200 // If Root use can somehow reach N through a path that that doesn't contain 2201 // U then folding N would create a cycle. e.g. In the following 2202 // diagram, Root can reach N through X. If N is folded into Root, then 2203 // X is both a predecessor and a successor of U. 2204 // 2205 // [N*] // 2206 // ^ ^ // 2207 // / \ // 2208 // [U*] [X]? // 2209 // ^ ^ // 2210 // \ / // 2211 // \ / // 2212 // [Root*] // 2213 // 2214 // * indicates nodes to be folded together. 2215 // 2216 // If Root produces glue, then it gets (even more) interesting. Since it 2217 // will be "glued" together with its glue use in the scheduler, we need to 2218 // check if it might reach N. 2219 // 2220 // [N*] // 2221 // ^ ^ // 2222 // / \ // 2223 // [U*] [X]? // 2224 // ^ ^ // 2225 // \ \ // 2226 // \ | // 2227 // [Root*] | // 2228 // ^ | // 2229 // f | // 2230 // | / // 2231 // [Y] / // 2232 // ^ / // 2233 // f / // 2234 // | / // 2235 // [GU] // 2236 // 2237 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2238 // (call it Fold), then X is a predecessor of GU and a successor of 2239 // Fold. But since Fold and GU are glued together, this will create 2240 // a cycle in the scheduling graph. 2241 2242 // If the node has glue, walk down the graph to the "lowest" node in the 2243 // glueged set. 2244 EVT VT = Root->getValueType(Root->getNumValues()-1); 2245 while (VT == MVT::Glue) { 2246 SDNode *GU = findGlueUse(Root); 2247 if (!GU) 2248 break; 2249 Root = GU; 2250 VT = Root->getValueType(Root->getNumValues()-1); 2251 2252 // If our query node has a glue result with a use, we've walked up it. If 2253 // the user (which has already been selected) has a chain or indirectly uses 2254 // the chain, HandleMergeInputChains will not consider it. Because of 2255 // this, we cannot ignore chains in this predicate. 2256 IgnoreChains = false; 2257 } 2258 2259 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2260 } 2261 2262 void SelectionDAGISel::Select_INLINEASM(SDNode *N) { 2263 SDLoc DL(N); 2264 2265 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2266 SelectInlineAsmMemoryOperands(Ops, DL); 2267 2268 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2269 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops); 2270 New->setNodeId(-1); 2271 ReplaceUses(N, New.getNode()); 2272 CurDAG->RemoveDeadNode(N); 2273 } 2274 2275 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2276 SDLoc dl(Op); 2277 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2278 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2279 2280 EVT VT = Op->getValueType(0); 2281 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2282 Register Reg = 2283 TLI->getRegisterByName(RegStr->getString().data(), Ty, 2284 CurDAG->getMachineFunction()); 2285 SDValue New = CurDAG->getCopyFromReg( 2286 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2287 New->setNodeId(-1); 2288 ReplaceUses(Op, New.getNode()); 2289 CurDAG->RemoveDeadNode(Op); 2290 } 2291 2292 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2293 SDLoc dl(Op); 2294 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2295 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2296 2297 EVT VT = Op->getOperand(2).getValueType(); 2298 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2299 2300 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, 2301 CurDAG->getMachineFunction()); 2302 SDValue New = CurDAG->getCopyToReg( 2303 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2304 New->setNodeId(-1); 2305 ReplaceUses(Op, New.getNode()); 2306 CurDAG->RemoveDeadNode(Op); 2307 } 2308 2309 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2310 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2311 } 2312 2313 void SelectionDAGISel::Select_FREEZE(SDNode *N) { 2314 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. 2315 // If FREEZE instruction is added later, the code below must be changed as 2316 // well. 2317 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0), 2318 N->getOperand(0)); 2319 } 2320 2321 /// GetVBR - decode a vbr encoding whose top bit is set. 2322 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 2323 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2324 assert(Val >= 128 && "Not a VBR"); 2325 Val &= 127; // Remove first vbr bit. 2326 2327 unsigned Shift = 7; 2328 uint64_t NextBits; 2329 do { 2330 NextBits = MatcherTable[Idx++]; 2331 Val |= (NextBits&127) << Shift; 2332 Shift += 7; 2333 } while (NextBits & 128); 2334 2335 return Val; 2336 } 2337 2338 /// When a match is complete, this method updates uses of interior chain results 2339 /// to use the new results. 2340 void SelectionDAGISel::UpdateChains( 2341 SDNode *NodeToMatch, SDValue InputChain, 2342 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2343 SmallVector<SDNode*, 4> NowDeadNodes; 2344 2345 // Now that all the normal results are replaced, we replace the chain and 2346 // glue results if present. 2347 if (!ChainNodesMatched.empty()) { 2348 assert(InputChain.getNode() && 2349 "Matched input chains but didn't produce a chain"); 2350 // Loop over all of the nodes we matched that produced a chain result. 2351 // Replace all the chain results with the final chain we ended up with. 2352 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2353 SDNode *ChainNode = ChainNodesMatched[i]; 2354 // If ChainNode is null, it's because we replaced it on a previous 2355 // iteration and we cleared it out of the map. Just skip it. 2356 if (!ChainNode) 2357 continue; 2358 2359 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2360 "Deleted node left in chain"); 2361 2362 // Don't replace the results of the root node if we're doing a 2363 // MorphNodeTo. 2364 if (ChainNode == NodeToMatch && isMorphNodeTo) 2365 continue; 2366 2367 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2368 if (ChainVal.getValueType() == MVT::Glue) 2369 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2370 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2371 SelectionDAG::DAGNodeDeletedListener NDL( 2372 *CurDAG, [&](SDNode *N, SDNode *E) { 2373 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2374 static_cast<SDNode *>(nullptr)); 2375 }); 2376 if (ChainNode->getOpcode() != ISD::TokenFactor) 2377 ReplaceUses(ChainVal, InputChain); 2378 2379 // If the node became dead and we haven't already seen it, delete it. 2380 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2381 !llvm::is_contained(NowDeadNodes, ChainNode)) 2382 NowDeadNodes.push_back(ChainNode); 2383 } 2384 } 2385 2386 if (!NowDeadNodes.empty()) 2387 CurDAG->RemoveDeadNodes(NowDeadNodes); 2388 2389 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2390 } 2391 2392 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2393 /// operation for when the pattern matched at least one node with a chains. The 2394 /// input vector contains a list of all of the chained nodes that we match. We 2395 /// must determine if this is a valid thing to cover (i.e. matching it won't 2396 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2397 /// be used as the input node chain for the generated nodes. 2398 static SDValue 2399 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2400 SelectionDAG *CurDAG) { 2401 2402 SmallPtrSet<const SDNode *, 16> Visited; 2403 SmallVector<const SDNode *, 8> Worklist; 2404 SmallVector<SDValue, 3> InputChains; 2405 unsigned int Max = 8192; 2406 2407 // Quick exit on trivial merge. 2408 if (ChainNodesMatched.size() == 1) 2409 return ChainNodesMatched[0]->getOperand(0); 2410 2411 // Add chains that aren't already added (internal). Peek through 2412 // token factors. 2413 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2414 if (V.getValueType() != MVT::Other) 2415 return; 2416 if (V->getOpcode() == ISD::EntryToken) 2417 return; 2418 if (!Visited.insert(V.getNode()).second) 2419 return; 2420 if (V->getOpcode() == ISD::TokenFactor) { 2421 for (const SDValue &Op : V->op_values()) 2422 AddChains(Op); 2423 } else 2424 InputChains.push_back(V); 2425 }; 2426 2427 for (auto *N : ChainNodesMatched) { 2428 Worklist.push_back(N); 2429 Visited.insert(N); 2430 } 2431 2432 while (!Worklist.empty()) 2433 AddChains(Worklist.pop_back_val()->getOperand(0)); 2434 2435 // Skip the search if there are no chain dependencies. 2436 if (InputChains.size() == 0) 2437 return CurDAG->getEntryNode(); 2438 2439 // If one of these chains is a successor of input, we must have a 2440 // node that is both the predecessor and successor of the 2441 // to-be-merged nodes. Fail. 2442 Visited.clear(); 2443 for (SDValue V : InputChains) 2444 Worklist.push_back(V.getNode()); 2445 2446 for (auto *N : ChainNodesMatched) 2447 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2448 return SDValue(); 2449 2450 // Return merged chain. 2451 if (InputChains.size() == 1) 2452 return InputChains[0]; 2453 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2454 MVT::Other, InputChains); 2455 } 2456 2457 /// MorphNode - Handle morphing a node in place for the selector. 2458 SDNode *SelectionDAGISel:: 2459 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2460 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2461 // It is possible we're using MorphNodeTo to replace a node with no 2462 // normal results with one that has a normal result (or we could be 2463 // adding a chain) and the input could have glue and chains as well. 2464 // In this case we need to shift the operands down. 2465 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2466 // than the old isel though. 2467 int OldGlueResultNo = -1, OldChainResultNo = -1; 2468 2469 unsigned NTMNumResults = Node->getNumValues(); 2470 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2471 OldGlueResultNo = NTMNumResults-1; 2472 if (NTMNumResults != 1 && 2473 Node->getValueType(NTMNumResults-2) == MVT::Other) 2474 OldChainResultNo = NTMNumResults-2; 2475 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2476 OldChainResultNo = NTMNumResults-1; 2477 2478 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2479 // that this deletes operands of the old node that become dead. 2480 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2481 2482 // MorphNodeTo can operate in two ways: if an existing node with the 2483 // specified operands exists, it can just return it. Otherwise, it 2484 // updates the node in place to have the requested operands. 2485 if (Res == Node) { 2486 // If we updated the node in place, reset the node ID. To the isel, 2487 // this should be just like a newly allocated machine node. 2488 Res->setNodeId(-1); 2489 } 2490 2491 unsigned ResNumResults = Res->getNumValues(); 2492 // Move the glue if needed. 2493 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2494 (unsigned)OldGlueResultNo != ResNumResults-1) 2495 ReplaceUses(SDValue(Node, OldGlueResultNo), 2496 SDValue(Res, ResNumResults - 1)); 2497 2498 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2499 --ResNumResults; 2500 2501 // Move the chain reference if needed. 2502 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2503 (unsigned)OldChainResultNo != ResNumResults-1) 2504 ReplaceUses(SDValue(Node, OldChainResultNo), 2505 SDValue(Res, ResNumResults - 1)); 2506 2507 // Otherwise, no replacement happened because the node already exists. Replace 2508 // Uses of the old node with the new one. 2509 if (Res != Node) { 2510 ReplaceNode(Node, Res); 2511 } else { 2512 EnforceNodeIdInvariant(Res); 2513 } 2514 2515 return Res; 2516 } 2517 2518 /// CheckSame - Implements OP_CheckSame. 2519 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2520 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2521 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { 2522 // Accept if it is exactly the same as a previously recorded node. 2523 unsigned RecNo = MatcherTable[MatcherIndex++]; 2524 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2525 return N == RecordedNodes[RecNo].first; 2526 } 2527 2528 /// CheckChildSame - Implements OP_CheckChildXSame. 2529 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( 2530 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2531 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes, 2532 unsigned ChildNo) { 2533 if (ChildNo >= N.getNumOperands()) 2534 return false; // Match fails if out of range child #. 2535 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2536 RecordedNodes); 2537 } 2538 2539 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2540 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2541 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2542 const SelectionDAGISel &SDISel) { 2543 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2544 } 2545 2546 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2547 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2548 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2549 const SelectionDAGISel &SDISel, SDNode *N) { 2550 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2551 } 2552 2553 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2554 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2555 SDNode *N) { 2556 uint16_t Opc = MatcherTable[MatcherIndex++]; 2557 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2558 return N->getOpcode() == Opc; 2559 } 2560 2561 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2562 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2563 const TargetLowering *TLI, const DataLayout &DL) { 2564 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2565 if (N.getValueType() == VT) return true; 2566 2567 // Handle the case when VT is iPTR. 2568 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2569 } 2570 2571 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2572 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2573 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2574 unsigned ChildNo) { 2575 if (ChildNo >= N.getNumOperands()) 2576 return false; // Match fails if out of range child #. 2577 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2578 DL); 2579 } 2580 2581 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2582 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2583 SDValue N) { 2584 return cast<CondCodeSDNode>(N)->get() == 2585 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2586 } 2587 2588 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2589 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2590 SDValue N) { 2591 if (2 >= N.getNumOperands()) 2592 return false; 2593 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2594 } 2595 2596 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2597 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2598 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2599 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2600 if (cast<VTSDNode>(N)->getVT() == VT) 2601 return true; 2602 2603 // Handle the case when VT is iPTR. 2604 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2605 } 2606 2607 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2608 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2609 SDValue N) { 2610 int64_t Val = MatcherTable[MatcherIndex++]; 2611 if (Val & 128) 2612 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2613 2614 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2615 return C && C->getSExtValue() == Val; 2616 } 2617 2618 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2619 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2620 SDValue N, unsigned ChildNo) { 2621 if (ChildNo >= N.getNumOperands()) 2622 return false; // Match fails if out of range child #. 2623 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2624 } 2625 2626 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2627 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2628 SDValue N, const SelectionDAGISel &SDISel) { 2629 int64_t Val = MatcherTable[MatcherIndex++]; 2630 if (Val & 128) 2631 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2632 2633 if (N->getOpcode() != ISD::AND) return false; 2634 2635 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2636 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2637 } 2638 2639 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2640 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2641 const SelectionDAGISel &SDISel) { 2642 int64_t Val = MatcherTable[MatcherIndex++]; 2643 if (Val & 128) 2644 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2645 2646 if (N->getOpcode() != ISD::OR) return false; 2647 2648 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2649 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2650 } 2651 2652 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2653 /// scope, evaluate the current node. If the current predicate is known to 2654 /// fail, set Result=true and return anything. If the current predicate is 2655 /// known to pass, set Result=false and return the MatcherIndex to continue 2656 /// with. If the current predicate is unknown, set Result=false and return the 2657 /// MatcherIndex to continue with. 2658 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2659 unsigned Index, SDValue N, 2660 bool &Result, 2661 const SelectionDAGISel &SDISel, 2662 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2663 switch (Table[Index++]) { 2664 default: 2665 Result = false; 2666 return Index-1; // Could not evaluate this predicate. 2667 case SelectionDAGISel::OPC_CheckSame: 2668 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2669 return Index; 2670 case SelectionDAGISel::OPC_CheckChild0Same: 2671 case SelectionDAGISel::OPC_CheckChild1Same: 2672 case SelectionDAGISel::OPC_CheckChild2Same: 2673 case SelectionDAGISel::OPC_CheckChild3Same: 2674 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2675 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2676 return Index; 2677 case SelectionDAGISel::OPC_CheckPatternPredicate: 2678 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2679 return Index; 2680 case SelectionDAGISel::OPC_CheckPredicate: 2681 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2682 return Index; 2683 case SelectionDAGISel::OPC_CheckOpcode: 2684 Result = !::CheckOpcode(Table, Index, N.getNode()); 2685 return Index; 2686 case SelectionDAGISel::OPC_CheckType: 2687 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2688 SDISel.CurDAG->getDataLayout()); 2689 return Index; 2690 case SelectionDAGISel::OPC_CheckTypeRes: { 2691 unsigned Res = Table[Index++]; 2692 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2693 SDISel.CurDAG->getDataLayout()); 2694 return Index; 2695 } 2696 case SelectionDAGISel::OPC_CheckChild0Type: 2697 case SelectionDAGISel::OPC_CheckChild1Type: 2698 case SelectionDAGISel::OPC_CheckChild2Type: 2699 case SelectionDAGISel::OPC_CheckChild3Type: 2700 case SelectionDAGISel::OPC_CheckChild4Type: 2701 case SelectionDAGISel::OPC_CheckChild5Type: 2702 case SelectionDAGISel::OPC_CheckChild6Type: 2703 case SelectionDAGISel::OPC_CheckChild7Type: 2704 Result = !::CheckChildType( 2705 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2706 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2707 return Index; 2708 case SelectionDAGISel::OPC_CheckCondCode: 2709 Result = !::CheckCondCode(Table, Index, N); 2710 return Index; 2711 case SelectionDAGISel::OPC_CheckChild2CondCode: 2712 Result = !::CheckChild2CondCode(Table, Index, N); 2713 return Index; 2714 case SelectionDAGISel::OPC_CheckValueType: 2715 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2716 SDISel.CurDAG->getDataLayout()); 2717 return Index; 2718 case SelectionDAGISel::OPC_CheckInteger: 2719 Result = !::CheckInteger(Table, Index, N); 2720 return Index; 2721 case SelectionDAGISel::OPC_CheckChild0Integer: 2722 case SelectionDAGISel::OPC_CheckChild1Integer: 2723 case SelectionDAGISel::OPC_CheckChild2Integer: 2724 case SelectionDAGISel::OPC_CheckChild3Integer: 2725 case SelectionDAGISel::OPC_CheckChild4Integer: 2726 Result = !::CheckChildInteger(Table, Index, N, 2727 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2728 return Index; 2729 case SelectionDAGISel::OPC_CheckAndImm: 2730 Result = !::CheckAndImm(Table, Index, N, SDISel); 2731 return Index; 2732 case SelectionDAGISel::OPC_CheckOrImm: 2733 Result = !::CheckOrImm(Table, Index, N, SDISel); 2734 return Index; 2735 } 2736 } 2737 2738 namespace { 2739 2740 struct MatchScope { 2741 /// FailIndex - If this match fails, this is the index to continue with. 2742 unsigned FailIndex; 2743 2744 /// NodeStack - The node stack when the scope was formed. 2745 SmallVector<SDValue, 4> NodeStack; 2746 2747 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2748 unsigned NumRecordedNodes; 2749 2750 /// NumMatchedMemRefs - The number of matched memref entries. 2751 unsigned NumMatchedMemRefs; 2752 2753 /// InputChain/InputGlue - The current chain/glue 2754 SDValue InputChain, InputGlue; 2755 2756 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2757 bool HasChainNodesMatched; 2758 }; 2759 2760 /// \A DAG update listener to keep the matching state 2761 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2762 /// change the DAG while matching. X86 addressing mode matcher is an example 2763 /// for this. 2764 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2765 { 2766 SDNode **NodeToMatch; 2767 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2768 SmallVectorImpl<MatchScope> &MatchScopes; 2769 2770 public: 2771 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2772 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2773 SmallVectorImpl<MatchScope> &MS) 2774 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2775 RecordedNodes(RN), MatchScopes(MS) {} 2776 2777 void NodeDeleted(SDNode *N, SDNode *E) override { 2778 // Some early-returns here to avoid the search if we deleted the node or 2779 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2780 // do, so it's unnecessary to update matching state at that point). 2781 // Neither of these can occur currently because we only install this 2782 // update listener during matching a complex patterns. 2783 if (!E || E->isMachineOpcode()) 2784 return; 2785 // Check if NodeToMatch was updated. 2786 if (N == *NodeToMatch) 2787 *NodeToMatch = E; 2788 // Performing linear search here does not matter because we almost never 2789 // run this code. You'd have to have a CSE during complex pattern 2790 // matching. 2791 for (auto &I : RecordedNodes) 2792 if (I.first.getNode() == N) 2793 I.first.setNode(E); 2794 2795 for (auto &I : MatchScopes) 2796 for (auto &J : I.NodeStack) 2797 if (J.getNode() == N) 2798 J.setNode(E); 2799 } 2800 }; 2801 2802 } // end anonymous namespace 2803 2804 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2805 const unsigned char *MatcherTable, 2806 unsigned TableSize) { 2807 // FIXME: Should these even be selected? Handle these cases in the caller? 2808 switch (NodeToMatch->getOpcode()) { 2809 default: 2810 break; 2811 case ISD::EntryToken: // These nodes remain the same. 2812 case ISD::BasicBlock: 2813 case ISD::Register: 2814 case ISD::RegisterMask: 2815 case ISD::HANDLENODE: 2816 case ISD::MDNODE_SDNODE: 2817 case ISD::TargetConstant: 2818 case ISD::TargetConstantFP: 2819 case ISD::TargetConstantPool: 2820 case ISD::TargetFrameIndex: 2821 case ISD::TargetExternalSymbol: 2822 case ISD::MCSymbol: 2823 case ISD::TargetBlockAddress: 2824 case ISD::TargetJumpTable: 2825 case ISD::TargetGlobalTLSAddress: 2826 case ISD::TargetGlobalAddress: 2827 case ISD::TokenFactor: 2828 case ISD::CopyFromReg: 2829 case ISD::CopyToReg: 2830 case ISD::EH_LABEL: 2831 case ISD::ANNOTATION_LABEL: 2832 case ISD::LIFETIME_START: 2833 case ISD::LIFETIME_END: 2834 case ISD::PSEUDO_PROBE: 2835 NodeToMatch->setNodeId(-1); // Mark selected. 2836 return; 2837 case ISD::AssertSext: 2838 case ISD::AssertZext: 2839 case ISD::AssertAlign: 2840 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2841 CurDAG->RemoveDeadNode(NodeToMatch); 2842 return; 2843 case ISD::INLINEASM: 2844 case ISD::INLINEASM_BR: 2845 Select_INLINEASM(NodeToMatch); 2846 return; 2847 case ISD::READ_REGISTER: 2848 Select_READ_REGISTER(NodeToMatch); 2849 return; 2850 case ISD::WRITE_REGISTER: 2851 Select_WRITE_REGISTER(NodeToMatch); 2852 return; 2853 case ISD::UNDEF: 2854 Select_UNDEF(NodeToMatch); 2855 return; 2856 case ISD::FREEZE: 2857 Select_FREEZE(NodeToMatch); 2858 return; 2859 } 2860 2861 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2862 2863 // Set up the node stack with NodeToMatch as the only node on the stack. 2864 SmallVector<SDValue, 8> NodeStack; 2865 SDValue N = SDValue(NodeToMatch, 0); 2866 NodeStack.push_back(N); 2867 2868 // MatchScopes - Scopes used when matching, if a match failure happens, this 2869 // indicates where to continue checking. 2870 SmallVector<MatchScope, 8> MatchScopes; 2871 2872 // RecordedNodes - This is the set of nodes that have been recorded by the 2873 // state machine. The second value is the parent of the node, or null if the 2874 // root is recorded. 2875 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2876 2877 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2878 // pattern. 2879 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2880 2881 // These are the current input chain and glue for use when generating nodes. 2882 // Various Emit operations change these. For example, emitting a copytoreg 2883 // uses and updates these. 2884 SDValue InputChain, InputGlue; 2885 2886 // ChainNodesMatched - If a pattern matches nodes that have input/output 2887 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2888 // which ones they are. The result is captured into this list so that we can 2889 // update the chain results when the pattern is complete. 2890 SmallVector<SDNode*, 3> ChainNodesMatched; 2891 2892 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2893 2894 // Determine where to start the interpreter. Normally we start at opcode #0, 2895 // but if the state machine starts with an OPC_SwitchOpcode, then we 2896 // accelerate the first lookup (which is guaranteed to be hot) with the 2897 // OpcodeOffset table. 2898 unsigned MatcherIndex = 0; 2899 2900 if (!OpcodeOffset.empty()) { 2901 // Already computed the OpcodeOffset table, just index into it. 2902 if (N.getOpcode() < OpcodeOffset.size()) 2903 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2904 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2905 2906 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2907 // Otherwise, the table isn't computed, but the state machine does start 2908 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2909 // is the first time we're selecting an instruction. 2910 unsigned Idx = 1; 2911 while (true) { 2912 // Get the size of this case. 2913 unsigned CaseSize = MatcherTable[Idx++]; 2914 if (CaseSize & 128) 2915 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2916 if (CaseSize == 0) break; 2917 2918 // Get the opcode, add the index to the table. 2919 uint16_t Opc = MatcherTable[Idx++]; 2920 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2921 if (Opc >= OpcodeOffset.size()) 2922 OpcodeOffset.resize((Opc+1)*2); 2923 OpcodeOffset[Opc] = Idx; 2924 Idx += CaseSize; 2925 } 2926 2927 // Okay, do the lookup for the first opcode. 2928 if (N.getOpcode() < OpcodeOffset.size()) 2929 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2930 } 2931 2932 while (true) { 2933 assert(MatcherIndex < TableSize && "Invalid index"); 2934 #ifndef NDEBUG 2935 unsigned CurrentOpcodeIndex = MatcherIndex; 2936 #endif 2937 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2938 switch (Opcode) { 2939 case OPC_Scope: { 2940 // Okay, the semantics of this operation are that we should push a scope 2941 // then evaluate the first child. However, pushing a scope only to have 2942 // the first check fail (which then pops it) is inefficient. If we can 2943 // determine immediately that the first check (or first several) will 2944 // immediately fail, don't even bother pushing a scope for them. 2945 unsigned FailIndex; 2946 2947 while (true) { 2948 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2949 if (NumToSkip & 128) 2950 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2951 // Found the end of the scope with no match. 2952 if (NumToSkip == 0) { 2953 FailIndex = 0; 2954 break; 2955 } 2956 2957 FailIndex = MatcherIndex+NumToSkip; 2958 2959 unsigned MatcherIndexOfPredicate = MatcherIndex; 2960 (void)MatcherIndexOfPredicate; // silence warning. 2961 2962 // If we can't evaluate this predicate without pushing a scope (e.g. if 2963 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2964 // push the scope and evaluate the full predicate chain. 2965 bool Result; 2966 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2967 Result, *this, RecordedNodes); 2968 if (!Result) 2969 break; 2970 2971 LLVM_DEBUG( 2972 dbgs() << " Skipped scope entry (due to false predicate) at " 2973 << "index " << MatcherIndexOfPredicate << ", continuing at " 2974 << FailIndex << "\n"); 2975 ++NumDAGIselRetries; 2976 2977 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2978 // move to the next case. 2979 MatcherIndex = FailIndex; 2980 } 2981 2982 // If the whole scope failed to match, bail. 2983 if (FailIndex == 0) break; 2984 2985 // Push a MatchScope which indicates where to go if the first child fails 2986 // to match. 2987 MatchScope NewEntry; 2988 NewEntry.FailIndex = FailIndex; 2989 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2990 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2991 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2992 NewEntry.InputChain = InputChain; 2993 NewEntry.InputGlue = InputGlue; 2994 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2995 MatchScopes.push_back(NewEntry); 2996 continue; 2997 } 2998 case OPC_RecordNode: { 2999 // Remember this node, it may end up being an operand in the pattern. 3000 SDNode *Parent = nullptr; 3001 if (NodeStack.size() > 1) 3002 Parent = NodeStack[NodeStack.size()-2].getNode(); 3003 RecordedNodes.push_back(std::make_pair(N, Parent)); 3004 continue; 3005 } 3006 3007 case OPC_RecordChild0: case OPC_RecordChild1: 3008 case OPC_RecordChild2: case OPC_RecordChild3: 3009 case OPC_RecordChild4: case OPC_RecordChild5: 3010 case OPC_RecordChild6: case OPC_RecordChild7: { 3011 unsigned ChildNo = Opcode-OPC_RecordChild0; 3012 if (ChildNo >= N.getNumOperands()) 3013 break; // Match fails if out of range child #. 3014 3015 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 3016 N.getNode())); 3017 continue; 3018 } 3019 case OPC_RecordMemRef: 3020 if (auto *MN = dyn_cast<MemSDNode>(N)) 3021 MatchedMemRefs.push_back(MN->getMemOperand()); 3022 else { 3023 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 3024 dbgs() << '\n'); 3025 } 3026 3027 continue; 3028 3029 case OPC_CaptureGlueInput: 3030 // If the current node has an input glue, capture it in InputGlue. 3031 if (N->getNumOperands() != 0 && 3032 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 3033 InputGlue = N->getOperand(N->getNumOperands()-1); 3034 continue; 3035 3036 case OPC_MoveChild: { 3037 unsigned ChildNo = MatcherTable[MatcherIndex++]; 3038 if (ChildNo >= N.getNumOperands()) 3039 break; // Match fails if out of range child #. 3040 N = N.getOperand(ChildNo); 3041 NodeStack.push_back(N); 3042 continue; 3043 } 3044 3045 case OPC_MoveChild0: case OPC_MoveChild1: 3046 case OPC_MoveChild2: case OPC_MoveChild3: 3047 case OPC_MoveChild4: case OPC_MoveChild5: 3048 case OPC_MoveChild6: case OPC_MoveChild7: { 3049 unsigned ChildNo = Opcode-OPC_MoveChild0; 3050 if (ChildNo >= N.getNumOperands()) 3051 break; // Match fails if out of range child #. 3052 N = N.getOperand(ChildNo); 3053 NodeStack.push_back(N); 3054 continue; 3055 } 3056 3057 case OPC_MoveParent: 3058 // Pop the current node off the NodeStack. 3059 NodeStack.pop_back(); 3060 assert(!NodeStack.empty() && "Node stack imbalance!"); 3061 N = NodeStack.back(); 3062 continue; 3063 3064 case OPC_CheckSame: 3065 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 3066 continue; 3067 3068 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3069 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3070 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3071 Opcode-OPC_CheckChild0Same)) 3072 break; 3073 continue; 3074 3075 case OPC_CheckPatternPredicate: 3076 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3077 continue; 3078 case OPC_CheckPredicate: 3079 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3080 N.getNode())) 3081 break; 3082 continue; 3083 case OPC_CheckPredicateWithOperands: { 3084 unsigned OpNum = MatcherTable[MatcherIndex++]; 3085 SmallVector<SDValue, 8> Operands; 3086 3087 for (unsigned i = 0; i < OpNum; ++i) 3088 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3089 3090 unsigned PredNo = MatcherTable[MatcherIndex++]; 3091 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3092 break; 3093 continue; 3094 } 3095 case OPC_CheckComplexPat: { 3096 unsigned CPNum = MatcherTable[MatcherIndex++]; 3097 unsigned RecNo = MatcherTable[MatcherIndex++]; 3098 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3099 3100 // If target can modify DAG during matching, keep the matching state 3101 // consistent. 3102 std::unique_ptr<MatchStateUpdater> MSU; 3103 if (ComplexPatternFuncMutatesDAG()) 3104 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3105 MatchScopes)); 3106 3107 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3108 RecordedNodes[RecNo].first, CPNum, 3109 RecordedNodes)) 3110 break; 3111 continue; 3112 } 3113 case OPC_CheckOpcode: 3114 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3115 continue; 3116 3117 case OPC_CheckType: 3118 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3119 CurDAG->getDataLayout())) 3120 break; 3121 continue; 3122 3123 case OPC_CheckTypeRes: { 3124 unsigned Res = MatcherTable[MatcherIndex++]; 3125 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3126 CurDAG->getDataLayout())) 3127 break; 3128 continue; 3129 } 3130 3131 case OPC_SwitchOpcode: { 3132 unsigned CurNodeOpcode = N.getOpcode(); 3133 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3134 unsigned CaseSize; 3135 while (true) { 3136 // Get the size of this case. 3137 CaseSize = MatcherTable[MatcherIndex++]; 3138 if (CaseSize & 128) 3139 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3140 if (CaseSize == 0) break; 3141 3142 uint16_t Opc = MatcherTable[MatcherIndex++]; 3143 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3144 3145 // If the opcode matches, then we will execute this case. 3146 if (CurNodeOpcode == Opc) 3147 break; 3148 3149 // Otherwise, skip over this case. 3150 MatcherIndex += CaseSize; 3151 } 3152 3153 // If no cases matched, bail out. 3154 if (CaseSize == 0) break; 3155 3156 // Otherwise, execute the case we found. 3157 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3158 << MatcherIndex << "\n"); 3159 continue; 3160 } 3161 3162 case OPC_SwitchType: { 3163 MVT CurNodeVT = N.getSimpleValueType(); 3164 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3165 unsigned CaseSize; 3166 while (true) { 3167 // Get the size of this case. 3168 CaseSize = MatcherTable[MatcherIndex++]; 3169 if (CaseSize & 128) 3170 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3171 if (CaseSize == 0) break; 3172 3173 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3174 if (CaseVT == MVT::iPTR) 3175 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3176 3177 // If the VT matches, then we will execute this case. 3178 if (CurNodeVT == CaseVT) 3179 break; 3180 3181 // Otherwise, skip over this case. 3182 MatcherIndex += CaseSize; 3183 } 3184 3185 // If no cases matched, bail out. 3186 if (CaseSize == 0) break; 3187 3188 // Otherwise, execute the case we found. 3189 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3190 << "] from " << SwitchStart << " to " << MatcherIndex 3191 << '\n'); 3192 continue; 3193 } 3194 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3195 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3196 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3197 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3198 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3199 CurDAG->getDataLayout(), 3200 Opcode - OPC_CheckChild0Type)) 3201 break; 3202 continue; 3203 case OPC_CheckCondCode: 3204 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3205 continue; 3206 case OPC_CheckChild2CondCode: 3207 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3208 continue; 3209 case OPC_CheckValueType: 3210 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3211 CurDAG->getDataLayout())) 3212 break; 3213 continue; 3214 case OPC_CheckInteger: 3215 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3216 continue; 3217 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3218 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3219 case OPC_CheckChild4Integer: 3220 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3221 Opcode-OPC_CheckChild0Integer)) break; 3222 continue; 3223 case OPC_CheckAndImm: 3224 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3225 continue; 3226 case OPC_CheckOrImm: 3227 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3228 continue; 3229 case OPC_CheckImmAllOnesV: 3230 if (!ISD::isConstantSplatVectorAllOnes(N.getNode())) 3231 break; 3232 continue; 3233 case OPC_CheckImmAllZerosV: 3234 if (!ISD::isConstantSplatVectorAllZeros(N.getNode())) 3235 break; 3236 continue; 3237 3238 case OPC_CheckFoldableChainNode: { 3239 assert(NodeStack.size() != 1 && "No parent node"); 3240 // Verify that all intermediate nodes between the root and this one have 3241 // a single use (ignoring chains, which are handled in UpdateChains). 3242 bool HasMultipleUses = false; 3243 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { 3244 unsigned NNonChainUses = 0; 3245 SDNode *NS = NodeStack[i].getNode(); 3246 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI) 3247 if (UI.getUse().getValueType() != MVT::Other) 3248 if (++NNonChainUses > 1) { 3249 HasMultipleUses = true; 3250 break; 3251 } 3252 if (HasMultipleUses) break; 3253 } 3254 if (HasMultipleUses) break; 3255 3256 // Check to see that the target thinks this is profitable to fold and that 3257 // we can fold it without inducing cycles in the graph. 3258 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3259 NodeToMatch) || 3260 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3261 NodeToMatch, OptLevel, 3262 true/*We validate our own chains*/)) 3263 break; 3264 3265 continue; 3266 } 3267 case OPC_EmitInteger: { 3268 MVT::SimpleValueType VT = 3269 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3270 int64_t Val = MatcherTable[MatcherIndex++]; 3271 if (Val & 128) 3272 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3273 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3274 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3275 VT), nullptr)); 3276 continue; 3277 } 3278 case OPC_EmitRegister: { 3279 MVT::SimpleValueType VT = 3280 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3281 unsigned RegNo = MatcherTable[MatcherIndex++]; 3282 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3283 CurDAG->getRegister(RegNo, VT), nullptr)); 3284 continue; 3285 } 3286 case OPC_EmitRegister2: { 3287 // For targets w/ more than 256 register names, the register enum 3288 // values are stored in two bytes in the matcher table (just like 3289 // opcodes). 3290 MVT::SimpleValueType VT = 3291 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3292 unsigned RegNo = MatcherTable[MatcherIndex++]; 3293 RegNo |= MatcherTable[MatcherIndex++] << 8; 3294 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3295 CurDAG->getRegister(RegNo, VT), nullptr)); 3296 continue; 3297 } 3298 3299 case OPC_EmitConvertToTarget: { 3300 // Convert from IMM/FPIMM to target version. 3301 unsigned RecNo = MatcherTable[MatcherIndex++]; 3302 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3303 SDValue Imm = RecordedNodes[RecNo].first; 3304 3305 if (Imm->getOpcode() == ISD::Constant) { 3306 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3307 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3308 Imm.getValueType()); 3309 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3310 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3311 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3312 Imm.getValueType()); 3313 } 3314 3315 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3316 continue; 3317 } 3318 3319 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3320 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3321 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3322 // These are space-optimized forms of OPC_EmitMergeInputChains. 3323 assert(!InputChain.getNode() && 3324 "EmitMergeInputChains should be the first chain producing node"); 3325 assert(ChainNodesMatched.empty() && 3326 "Should only have one EmitMergeInputChains per match"); 3327 3328 // Read all of the chained nodes. 3329 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3330 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3331 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3332 3333 // FIXME: What if other value results of the node have uses not matched 3334 // by this pattern? 3335 if (ChainNodesMatched.back() != NodeToMatch && 3336 !RecordedNodes[RecNo].first.hasOneUse()) { 3337 ChainNodesMatched.clear(); 3338 break; 3339 } 3340 3341 // Merge the input chains if they are not intra-pattern references. 3342 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3343 3344 if (!InputChain.getNode()) 3345 break; // Failed to merge. 3346 continue; 3347 } 3348 3349 case OPC_EmitMergeInputChains: { 3350 assert(!InputChain.getNode() && 3351 "EmitMergeInputChains should be the first chain producing node"); 3352 // This node gets a list of nodes we matched in the input that have 3353 // chains. We want to token factor all of the input chains to these nodes 3354 // together. However, if any of the input chains is actually one of the 3355 // nodes matched in this pattern, then we have an intra-match reference. 3356 // Ignore these because the newly token factored chain should not refer to 3357 // the old nodes. 3358 unsigned NumChains = MatcherTable[MatcherIndex++]; 3359 assert(NumChains != 0 && "Can't TF zero chains"); 3360 3361 assert(ChainNodesMatched.empty() && 3362 "Should only have one EmitMergeInputChains per match"); 3363 3364 // Read all of the chained nodes. 3365 for (unsigned i = 0; i != NumChains; ++i) { 3366 unsigned RecNo = MatcherTable[MatcherIndex++]; 3367 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3368 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3369 3370 // FIXME: What if other value results of the node have uses not matched 3371 // by this pattern? 3372 if (ChainNodesMatched.back() != NodeToMatch && 3373 !RecordedNodes[RecNo].first.hasOneUse()) { 3374 ChainNodesMatched.clear(); 3375 break; 3376 } 3377 } 3378 3379 // If the inner loop broke out, the match fails. 3380 if (ChainNodesMatched.empty()) 3381 break; 3382 3383 // Merge the input chains if they are not intra-pattern references. 3384 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3385 3386 if (!InputChain.getNode()) 3387 break; // Failed to merge. 3388 3389 continue; 3390 } 3391 3392 case OPC_EmitCopyToReg: 3393 case OPC_EmitCopyToReg2: { 3394 unsigned RecNo = MatcherTable[MatcherIndex++]; 3395 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3396 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3397 if (Opcode == OPC_EmitCopyToReg2) 3398 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3399 3400 if (!InputChain.getNode()) 3401 InputChain = CurDAG->getEntryNode(); 3402 3403 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3404 DestPhysReg, RecordedNodes[RecNo].first, 3405 InputGlue); 3406 3407 InputGlue = InputChain.getValue(1); 3408 continue; 3409 } 3410 3411 case OPC_EmitNodeXForm: { 3412 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3413 unsigned RecNo = MatcherTable[MatcherIndex++]; 3414 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3415 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3416 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3417 continue; 3418 } 3419 case OPC_Coverage: { 3420 // This is emitted right before MorphNode/EmitNode. 3421 // So it should be safe to assume that this node has been selected 3422 unsigned index = MatcherTable[MatcherIndex++]; 3423 index |= (MatcherTable[MatcherIndex++] << 8); 3424 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3425 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3426 continue; 3427 } 3428 3429 case OPC_EmitNode: case OPC_MorphNodeTo: 3430 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3431 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3432 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3433 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3434 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3435 // Get the result VT list. 3436 unsigned NumVTs; 3437 // If this is one of the compressed forms, get the number of VTs based 3438 // on the Opcode. Otherwise read the next byte from the table. 3439 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3440 NumVTs = Opcode - OPC_MorphNodeTo0; 3441 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3442 NumVTs = Opcode - OPC_EmitNode0; 3443 else 3444 NumVTs = MatcherTable[MatcherIndex++]; 3445 SmallVector<EVT, 4> VTs; 3446 for (unsigned i = 0; i != NumVTs; ++i) { 3447 MVT::SimpleValueType VT = 3448 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3449 if (VT == MVT::iPTR) 3450 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3451 VTs.push_back(VT); 3452 } 3453 3454 if (EmitNodeInfo & OPFL_Chain) 3455 VTs.push_back(MVT::Other); 3456 if (EmitNodeInfo & OPFL_GlueOutput) 3457 VTs.push_back(MVT::Glue); 3458 3459 // This is hot code, so optimize the two most common cases of 1 and 2 3460 // results. 3461 SDVTList VTList; 3462 if (VTs.size() == 1) 3463 VTList = CurDAG->getVTList(VTs[0]); 3464 else if (VTs.size() == 2) 3465 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3466 else 3467 VTList = CurDAG->getVTList(VTs); 3468 3469 // Get the operand list. 3470 unsigned NumOps = MatcherTable[MatcherIndex++]; 3471 SmallVector<SDValue, 8> Ops; 3472 for (unsigned i = 0; i != NumOps; ++i) { 3473 unsigned RecNo = MatcherTable[MatcherIndex++]; 3474 if (RecNo & 128) 3475 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3476 3477 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3478 Ops.push_back(RecordedNodes[RecNo].first); 3479 } 3480 3481 // If there are variadic operands to add, handle them now. 3482 if (EmitNodeInfo & OPFL_VariadicInfo) { 3483 // Determine the start index to copy from. 3484 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3485 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3486 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3487 "Invalid variadic node"); 3488 // Copy all of the variadic operands, not including a potential glue 3489 // input. 3490 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3491 i != e; ++i) { 3492 SDValue V = NodeToMatch->getOperand(i); 3493 if (V.getValueType() == MVT::Glue) break; 3494 Ops.push_back(V); 3495 } 3496 } 3497 3498 // If this has chain/glue inputs, add them. 3499 if (EmitNodeInfo & OPFL_Chain) 3500 Ops.push_back(InputChain); 3501 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3502 Ops.push_back(InputGlue); 3503 3504 // Check whether any matched node could raise an FP exception. Since all 3505 // such nodes must have a chain, it suffices to check ChainNodesMatched. 3506 // We need to perform this check before potentially modifying one of the 3507 // nodes via MorphNode. 3508 bool MayRaiseFPException = false; 3509 for (auto *N : ChainNodesMatched) 3510 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) { 3511 MayRaiseFPException = true; 3512 break; 3513 } 3514 3515 // Create the node. 3516 MachineSDNode *Res = nullptr; 3517 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3518 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3519 if (!IsMorphNodeTo) { 3520 // If this is a normal EmitNode command, just create the new node and 3521 // add the results to the RecordedNodes list. 3522 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3523 VTList, Ops); 3524 3525 // Add all the non-glue/non-chain results to the RecordedNodes list. 3526 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3527 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3528 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3529 nullptr)); 3530 } 3531 } else { 3532 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3533 "NodeToMatch was removed partway through selection"); 3534 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3535 SDNode *E) { 3536 CurDAG->salvageDebugInfo(*N); 3537 auto &Chain = ChainNodesMatched; 3538 assert((!E || !is_contained(Chain, N)) && 3539 "Chain node replaced during MorphNode"); 3540 llvm::erase_value(Chain, N); 3541 }); 3542 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3543 Ops, EmitNodeInfo)); 3544 } 3545 3546 // Set the NoFPExcept flag when no original matched node could 3547 // raise an FP exception, but the new node potentially might. 3548 if (!MayRaiseFPException && mayRaiseFPException(Res)) { 3549 SDNodeFlags Flags = Res->getFlags(); 3550 Flags.setNoFPExcept(true); 3551 Res->setFlags(Flags); 3552 } 3553 3554 // If the node had chain/glue results, update our notion of the current 3555 // chain and glue. 3556 if (EmitNodeInfo & OPFL_GlueOutput) { 3557 InputGlue = SDValue(Res, VTs.size()-1); 3558 if (EmitNodeInfo & OPFL_Chain) 3559 InputChain = SDValue(Res, VTs.size()-2); 3560 } else if (EmitNodeInfo & OPFL_Chain) 3561 InputChain = SDValue(Res, VTs.size()-1); 3562 3563 // If the OPFL_MemRefs glue is set on this node, slap all of the 3564 // accumulated memrefs onto it. 3565 // 3566 // FIXME: This is vastly incorrect for patterns with multiple outputs 3567 // instructions that access memory and for ComplexPatterns that match 3568 // loads. 3569 if (EmitNodeInfo & OPFL_MemRefs) { 3570 // Only attach load or store memory operands if the generated 3571 // instruction may load or store. 3572 const MCInstrDesc &MCID = TII->get(TargetOpc); 3573 bool mayLoad = MCID.mayLoad(); 3574 bool mayStore = MCID.mayStore(); 3575 3576 // We expect to have relatively few of these so just filter them into a 3577 // temporary buffer so that we can easily add them to the instruction. 3578 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3579 for (MachineMemOperand *MMO : MatchedMemRefs) { 3580 if (MMO->isLoad()) { 3581 if (mayLoad) 3582 FilteredMemRefs.push_back(MMO); 3583 } else if (MMO->isStore()) { 3584 if (mayStore) 3585 FilteredMemRefs.push_back(MMO); 3586 } else { 3587 FilteredMemRefs.push_back(MMO); 3588 } 3589 } 3590 3591 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3592 } 3593 3594 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3595 << " Dropping mem operands\n"; 3596 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3597 << " node: "; 3598 Res->dump(CurDAG);); 3599 3600 // If this was a MorphNodeTo then we're completely done! 3601 if (IsMorphNodeTo) { 3602 // Update chain uses. 3603 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3604 return; 3605 } 3606 continue; 3607 } 3608 3609 case OPC_CompleteMatch: { 3610 // The match has been completed, and any new nodes (if any) have been 3611 // created. Patch up references to the matched dag to use the newly 3612 // created nodes. 3613 unsigned NumResults = MatcherTable[MatcherIndex++]; 3614 3615 for (unsigned i = 0; i != NumResults; ++i) { 3616 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3617 if (ResSlot & 128) 3618 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3619 3620 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3621 SDValue Res = RecordedNodes[ResSlot].first; 3622 3623 assert(i < NodeToMatch->getNumValues() && 3624 NodeToMatch->getValueType(i) != MVT::Other && 3625 NodeToMatch->getValueType(i) != MVT::Glue && 3626 "Invalid number of results to complete!"); 3627 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3628 NodeToMatch->getValueType(i) == MVT::iPTR || 3629 Res.getValueType() == MVT::iPTR || 3630 NodeToMatch->getValueType(i).getSizeInBits() == 3631 Res.getValueSizeInBits()) && 3632 "invalid replacement"); 3633 ReplaceUses(SDValue(NodeToMatch, i), Res); 3634 } 3635 3636 // Update chain uses. 3637 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3638 3639 // If the root node defines glue, we need to update it to the glue result. 3640 // TODO: This never happens in our tests and I think it can be removed / 3641 // replaced with an assert, but if we do it this the way the change is 3642 // NFC. 3643 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3644 MVT::Glue && 3645 InputGlue.getNode()) 3646 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3647 InputGlue); 3648 3649 assert(NodeToMatch->use_empty() && 3650 "Didn't replace all uses of the node?"); 3651 CurDAG->RemoveDeadNode(NodeToMatch); 3652 3653 return; 3654 } 3655 } 3656 3657 // If the code reached this point, then the match failed. See if there is 3658 // another child to try in the current 'Scope', otherwise pop it until we 3659 // find a case to check. 3660 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3661 << "\n"); 3662 ++NumDAGIselRetries; 3663 while (true) { 3664 if (MatchScopes.empty()) { 3665 CannotYetSelect(NodeToMatch); 3666 return; 3667 } 3668 3669 // Restore the interpreter state back to the point where the scope was 3670 // formed. 3671 MatchScope &LastScope = MatchScopes.back(); 3672 RecordedNodes.resize(LastScope.NumRecordedNodes); 3673 NodeStack.clear(); 3674 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3675 N = NodeStack.back(); 3676 3677 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3678 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3679 MatcherIndex = LastScope.FailIndex; 3680 3681 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3682 3683 InputChain = LastScope.InputChain; 3684 InputGlue = LastScope.InputGlue; 3685 if (!LastScope.HasChainNodesMatched) 3686 ChainNodesMatched.clear(); 3687 3688 // Check to see what the offset is at the new MatcherIndex. If it is zero 3689 // we have reached the end of this scope, otherwise we have another child 3690 // in the current scope to try. 3691 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3692 if (NumToSkip & 128) 3693 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3694 3695 // If we have another child in this scope to match, update FailIndex and 3696 // try it. 3697 if (NumToSkip != 0) { 3698 LastScope.FailIndex = MatcherIndex+NumToSkip; 3699 break; 3700 } 3701 3702 // End of this scope, pop it and try the next child in the containing 3703 // scope. 3704 MatchScopes.pop_back(); 3705 } 3706 } 3707 } 3708 3709 /// Return whether the node may raise an FP exception. 3710 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { 3711 // For machine opcodes, consult the MCID flag. 3712 if (N->isMachineOpcode()) { 3713 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 3714 return MCID.mayRaiseFPException(); 3715 } 3716 3717 // For ISD opcodes, only StrictFP opcodes may raise an FP 3718 // exception. 3719 if (N->isTargetOpcode()) 3720 return N->isTargetStrictFPOpcode(); 3721 return N->isStrictFPOpcode(); 3722 } 3723 3724 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3725 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3726 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3727 if (!C) 3728 return false; 3729 3730 // Detect when "or" is used to add an offset to a stack object. 3731 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3732 MachineFrameInfo &MFI = MF->getFrameInfo(); 3733 Align A = MFI.getObjectAlign(FN->getIndex()); 3734 int32_t Off = C->getSExtValue(); 3735 // If the alleged offset fits in the zero bits guaranteed by 3736 // the alignment, then this or is really an add. 3737 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); 3738 } 3739 return false; 3740 } 3741 3742 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3743 std::string msg; 3744 raw_string_ostream Msg(msg); 3745 Msg << "Cannot select: "; 3746 3747 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3748 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3749 N->getOpcode() != ISD::INTRINSIC_VOID) { 3750 N->printrFull(Msg, CurDAG); 3751 Msg << "\nIn function: " << MF->getName(); 3752 } else { 3753 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3754 unsigned iid = 3755 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3756 if (iid < Intrinsic::num_intrinsics) 3757 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); 3758 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3759 Msg << "target intrinsic %" << TII->getName(iid); 3760 else 3761 Msg << "unknown intrinsic #" << iid; 3762 } 3763 report_fatal_error(Msg.str()); 3764 } 3765 3766 char SelectionDAGISel::ID = 0; 3767