1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/CodeGen/CodeGenCommonISel.h" 37 #include "llvm/CodeGen/FastISel.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/ISDOpcodes.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineModuleInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachinePassRegistry.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/SchedulerRegistry.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/StackProtector.h" 56 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/CodeGen/ValueTypes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DebugInfoMetadata.h" 66 #include "llvm/IR/DebugLoc.h" 67 #include "llvm/IR/DiagnosticInfo.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/InlineAsm.h" 71 #include "llvm/IR/InstIterator.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instruction.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Statepoint.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/User.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/InitializePasses.h" 84 #include "llvm/MC/MCInstrDesc.h" 85 #include "llvm/MC/MCRegisterInfo.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CodeGen.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/ErrorHandling.h" 94 #include "llvm/Support/KnownBits.h" 95 #include "llvm/Support/MachineValueType.h" 96 #include "llvm/Support/Timer.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Target/TargetIntrinsicInfo.h" 99 #include "llvm/Target/TargetMachine.h" 100 #include "llvm/Target/TargetOptions.h" 101 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 102 #include <algorithm> 103 #include <cassert> 104 #include <cstdint> 105 #include <iterator> 106 #include <limits> 107 #include <memory> 108 #include <string> 109 #include <utility> 110 #include <vector> 111 112 using namespace llvm; 113 114 #define DEBUG_TYPE "isel" 115 116 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 117 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 118 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 119 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 120 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 121 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 122 STATISTIC(NumFastIselFailLowerArguments, 123 "Number of entry blocks where fast isel failed to lower arguments"); 124 125 static cl::opt<int> EnableFastISelAbort( 126 "fast-isel-abort", cl::Hidden, 127 cl::desc("Enable abort calls when \"fast\" instruction selection " 128 "fails to lower an instruction: 0 disable the abort, 1 will " 129 "abort but for args, calls and terminators, 2 will also " 130 "abort for argument lowering, and 3 will never fallback " 131 "to SelectionDAG.")); 132 133 static cl::opt<bool> EnableFastISelFallbackReport( 134 "fast-isel-report-on-fallback", cl::Hidden, 135 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 136 "falls back to SelectionDAG.")); 137 138 static cl::opt<bool> 139 UseMBPI("use-mbpi", 140 cl::desc("use Machine Branch Probability Info"), 141 cl::init(true), cl::Hidden); 142 143 #ifndef NDEBUG 144 static cl::opt<std::string> 145 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 146 cl::desc("Only display the basic block whose name " 147 "matches this for all view-*-dags options")); 148 static cl::opt<bool> 149 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 150 cl::desc("Pop up a window to show dags before the first " 151 "dag combine pass")); 152 static cl::opt<bool> 153 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 154 cl::desc("Pop up a window to show dags before legalize types")); 155 static cl::opt<bool> 156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 157 cl::desc("Pop up a window to show dags before the post " 158 "legalize types dag combine pass")); 159 static cl::opt<bool> 160 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 161 cl::desc("Pop up a window to show dags before legalize")); 162 static cl::opt<bool> 163 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 164 cl::desc("Pop up a window to show dags before the second " 165 "dag combine pass")); 166 static cl::opt<bool> 167 ViewISelDAGs("view-isel-dags", cl::Hidden, 168 cl::desc("Pop up a window to show isel dags as they are selected")); 169 static cl::opt<bool> 170 ViewSchedDAGs("view-sched-dags", cl::Hidden, 171 cl::desc("Pop up a window to show sched dags as they are processed")); 172 static cl::opt<bool> 173 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 174 cl::desc("Pop up a window to show SUnit dags after they are processed")); 175 #else 176 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, 177 ViewDAGCombineLT = false, ViewLegalizeDAGs = false, 178 ViewDAGCombine2 = false, ViewISelDAGs = false, 179 ViewSchedDAGs = false, ViewSUnitDAGs = false; 180 #endif 181 182 //===---------------------------------------------------------------------===// 183 /// 184 /// RegisterScheduler class - Track the registration of instruction schedulers. 185 /// 186 //===---------------------------------------------------------------------===// 187 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 188 RegisterScheduler::Registry; 189 190 //===---------------------------------------------------------------------===// 191 /// 192 /// ISHeuristic command line option for instruction schedulers. 193 /// 194 //===---------------------------------------------------------------------===// 195 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 196 RegisterPassParser<RegisterScheduler>> 197 ISHeuristic("pre-RA-sched", 198 cl::init(&createDefaultScheduler), cl::Hidden, 199 cl::desc("Instruction schedulers available (before register" 200 " allocation):")); 201 202 static RegisterScheduler 203 defaultListDAGScheduler("default", "Best scheduler for the target", 204 createDefaultScheduler); 205 206 namespace llvm { 207 208 //===--------------------------------------------------------------------===// 209 /// This class is used by SelectionDAGISel to temporarily override 210 /// the optimization level on a per-function basis. 211 class OptLevelChanger { 212 SelectionDAGISel &IS; 213 CodeGenOpt::Level SavedOptLevel; 214 bool SavedFastISel; 215 216 public: 217 OptLevelChanger(SelectionDAGISel &ISel, 218 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 219 SavedOptLevel = IS.OptLevel; 220 SavedFastISel = IS.TM.Options.EnableFastISel; 221 if (NewOptLevel == SavedOptLevel) 222 return; 223 IS.OptLevel = NewOptLevel; 224 IS.TM.setOptLevel(NewOptLevel); 225 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 226 << IS.MF->getFunction().getName() << "\n"); 227 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 228 << NewOptLevel << "\n"); 229 if (NewOptLevel == CodeGenOpt::None) { 230 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 231 LLVM_DEBUG( 232 dbgs() << "\tFastISel is " 233 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 234 << "\n"); 235 } 236 } 237 238 ~OptLevelChanger() { 239 if (IS.OptLevel == SavedOptLevel) 240 return; 241 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 242 << IS.MF->getFunction().getName() << "\n"); 243 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 244 << SavedOptLevel << "\n"); 245 IS.OptLevel = SavedOptLevel; 246 IS.TM.setOptLevel(SavedOptLevel); 247 IS.TM.setFastISel(SavedFastISel); 248 } 249 }; 250 251 //===--------------------------------------------------------------------===// 252 /// createDefaultScheduler - This creates an instruction scheduler appropriate 253 /// for the target. 254 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 255 CodeGenOpt::Level OptLevel) { 256 const TargetLowering *TLI = IS->TLI; 257 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 258 259 // Try first to see if the Target has its own way of selecting a scheduler 260 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 261 return SchedulerCtor(IS, OptLevel); 262 } 263 264 if (OptLevel == CodeGenOpt::None || 265 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 266 TLI->getSchedulingPreference() == Sched::Source) 267 return createSourceListDAGScheduler(IS, OptLevel); 268 if (TLI->getSchedulingPreference() == Sched::RegPressure) 269 return createBURRListDAGScheduler(IS, OptLevel); 270 if (TLI->getSchedulingPreference() == Sched::Hybrid) 271 return createHybridListDAGScheduler(IS, OptLevel); 272 if (TLI->getSchedulingPreference() == Sched::VLIW) 273 return createVLIWDAGScheduler(IS, OptLevel); 274 if (TLI->getSchedulingPreference() == Sched::Fast) 275 return createFastDAGScheduler(IS, OptLevel); 276 if (TLI->getSchedulingPreference() == Sched::Linearize) 277 return createDAGLinearizer(IS, OptLevel); 278 assert(TLI->getSchedulingPreference() == Sched::ILP && 279 "Unknown sched type!"); 280 return createILPListDAGScheduler(IS, OptLevel); 281 } 282 283 } // end namespace llvm 284 285 // EmitInstrWithCustomInserter - This method should be implemented by targets 286 // that mark instructions with the 'usesCustomInserter' flag. These 287 // instructions are special in various ways, which require special support to 288 // insert. The specified MachineInstr is created but not inserted into any 289 // basic blocks, and this method is called to expand it into a sequence of 290 // instructions, potentially also creating new basic blocks and control flow. 291 // When new basic blocks are inserted and the edges from MBB to its successors 292 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 293 // DenseMap. 294 MachineBasicBlock * 295 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 296 MachineBasicBlock *MBB) const { 297 #ifndef NDEBUG 298 dbgs() << "If a target marks an instruction with " 299 "'usesCustomInserter', it must implement " 300 "TargetLowering::EmitInstrWithCustomInserter!"; 301 #endif 302 llvm_unreachable(nullptr); 303 } 304 305 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 306 SDNode *Node) const { 307 assert(!MI.hasPostISelHook() && 308 "If a target marks an instruction with 'hasPostISelHook', " 309 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 310 } 311 312 //===----------------------------------------------------------------------===// 313 // SelectionDAGISel code 314 //===----------------------------------------------------------------------===// 315 316 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) 317 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), 318 SwiftError(new SwiftErrorValueTracking()), 319 CurDAG(new SelectionDAG(tm, OL)), 320 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError, 321 OL)), 322 AA(), GFI(), OptLevel(OL), DAGSize(0) { 323 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 324 initializeBranchProbabilityInfoWrapperPassPass( 325 *PassRegistry::getPassRegistry()); 326 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 327 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 328 } 329 330 SelectionDAGISel::~SelectionDAGISel() { 331 delete CurDAG; 332 delete SwiftError; 333 } 334 335 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 336 if (OptLevel != CodeGenOpt::None) 337 AU.addRequired<AAResultsWrapperPass>(); 338 AU.addRequired<GCModuleInfo>(); 339 AU.addRequired<StackProtector>(); 340 AU.addPreserved<GCModuleInfo>(); 341 AU.addRequired<TargetLibraryInfoWrapperPass>(); 342 AU.addRequired<TargetTransformInfoWrapperPass>(); 343 if (UseMBPI && OptLevel != CodeGenOpt::None) 344 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 345 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 346 if (OptLevel != CodeGenOpt::None) 347 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 348 MachineFunctionPass::getAnalysisUsage(AU); 349 } 350 351 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 352 /// may trap on it. In this case we have to split the edge so that the path 353 /// through the predecessor block that doesn't go to the phi block doesn't 354 /// execute the possibly trapping instruction. If available, we pass domtree 355 /// and loop info to be updated when we split critical edges. This is because 356 /// SelectionDAGISel preserves these analyses. 357 /// This is required for correctness, so it must be done at -O0. 358 /// 359 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 360 LoopInfo *LI) { 361 // Loop for blocks with phi nodes. 362 for (BasicBlock &BB : Fn) { 363 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 364 if (!PN) continue; 365 366 ReprocessBlock: 367 // For each block with a PHI node, check to see if any of the input values 368 // are potentially trapping constant expressions. Constant expressions are 369 // the only potentially trapping value that can occur as the argument to a 370 // PHI. 371 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 372 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 373 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 374 if (!CE || !CE->canTrap()) continue; 375 376 // The only case we have to worry about is when the edge is critical. 377 // Since this block has a PHI Node, we assume it has multiple input 378 // edges: check to see if the pred has multiple successors. 379 BasicBlock *Pred = PN->getIncomingBlock(i); 380 if (Pred->getTerminator()->getNumSuccessors() == 1) 381 continue; 382 383 // Okay, we have to split this edge. 384 SplitCriticalEdge( 385 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 386 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 387 goto ReprocessBlock; 388 } 389 } 390 } 391 392 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 393 MachineModuleInfo &MMI) { 394 // Only needed for MSVC 395 if (!TT.isWindowsMSVCEnvironment()) 396 return; 397 398 // If it's already set, nothing to do. 399 if (MMI.usesMSVCFloatingPoint()) 400 return; 401 402 for (const Instruction &I : instructions(F)) { 403 if (I.getType()->isFPOrFPVectorTy()) { 404 MMI.setUsesMSVCFloatingPoint(true); 405 return; 406 } 407 for (const auto &Op : I.operands()) { 408 if (Op->getType()->isFPOrFPVectorTy()) { 409 MMI.setUsesMSVCFloatingPoint(true); 410 return; 411 } 412 } 413 } 414 } 415 416 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 417 // If we already selected that function, we do not need to run SDISel. 418 if (mf.getProperties().hasProperty( 419 MachineFunctionProperties::Property::Selected)) 420 return false; 421 // Do some sanity-checking on the command-line options. 422 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 423 "-fast-isel-abort > 0 requires -fast-isel"); 424 425 const Function &Fn = mf.getFunction(); 426 MF = &mf; 427 428 // Reset the target options before resetting the optimization 429 // level below. 430 // FIXME: This is a horrible hack and should be processed via 431 // codegen looking at the optimization level explicitly when 432 // it wants to look at it. 433 TM.resetTargetOptions(Fn); 434 // Reset OptLevel to None for optnone functions. 435 CodeGenOpt::Level NewOptLevel = OptLevel; 436 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 437 NewOptLevel = CodeGenOpt::None; 438 OptLevelChanger OLC(*this, NewOptLevel); 439 440 TII = MF->getSubtarget().getInstrInfo(); 441 TLI = MF->getSubtarget().getTargetLowering(); 442 RegInfo = &MF->getRegInfo(); 443 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 444 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 445 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 446 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 447 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 448 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 449 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 450 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 451 BlockFrequencyInfo *BFI = nullptr; 452 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None) 453 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); 454 455 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 456 457 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 458 459 CurDAG->init(*MF, *ORE, this, LibInfo, 460 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI); 461 FuncInfo->set(Fn, *MF, CurDAG); 462 SwiftError->setFunction(*MF); 463 464 // Now get the optional analyzes if we want to. 465 // This is based on the possibly changed OptLevel (after optnone is taken 466 // into account). That's unfortunate but OK because it just means we won't 467 // ask for passes that have been required anyway. 468 469 if (UseMBPI && OptLevel != CodeGenOpt::None) 470 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 471 else 472 FuncInfo->BPI = nullptr; 473 474 if (OptLevel != CodeGenOpt::None) 475 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 476 else 477 AA = nullptr; 478 479 SDB->init(GFI, AA, LibInfo); 480 481 MF->setHasInlineAsm(false); 482 483 FuncInfo->SplitCSR = false; 484 485 // We split CSR if the target supports it for the given function 486 // and the function has only return exits. 487 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 488 FuncInfo->SplitCSR = true; 489 490 // Collect all the return blocks. 491 for (const BasicBlock &BB : Fn) { 492 if (!succ_empty(&BB)) 493 continue; 494 495 const Instruction *Term = BB.getTerminator(); 496 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 497 continue; 498 499 // Bail out if the exit block is not Return nor Unreachable. 500 FuncInfo->SplitCSR = false; 501 break; 502 } 503 } 504 505 MachineBasicBlock *EntryMBB = &MF->front(); 506 if (FuncInfo->SplitCSR) 507 // This performs initialization so lowering for SplitCSR will be correct. 508 TLI->initializeSplitCSR(EntryMBB); 509 510 SelectAllBasicBlocks(Fn); 511 if (FastISelFailed && EnableFastISelFallbackReport) { 512 DiagnosticInfoISelFallback DiagFallback(Fn); 513 Fn.getContext().diagnose(DiagFallback); 514 } 515 516 // Replace forward-declared registers with the registers containing 517 // the desired value. 518 // Note: it is important that this happens **before** the call to 519 // EmitLiveInCopies, since implementations can skip copies of unused 520 // registers. If we don't apply the reg fixups before, some registers may 521 // appear as unused and will be skipped, resulting in bad MI. 522 MachineRegisterInfo &MRI = MF->getRegInfo(); 523 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), 524 E = FuncInfo->RegFixups.end(); 525 I != E; ++I) { 526 Register From = I->first; 527 Register To = I->second; 528 // If To is also scheduled to be replaced, find what its ultimate 529 // replacement is. 530 while (true) { 531 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To); 532 if (J == E) 533 break; 534 To = J->second; 535 } 536 // Make sure the new register has a sufficiently constrained register class. 537 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 538 MRI.constrainRegClass(To, MRI.getRegClass(From)); 539 // Replace it. 540 541 // Replacing one register with another won't touch the kill flags. 542 // We need to conservatively clear the kill flags as a kill on the old 543 // register might dominate existing uses of the new register. 544 if (!MRI.use_empty(To)) 545 MRI.clearKillFlags(From); 546 MRI.replaceRegWith(From, To); 547 } 548 549 // If the first basic block in the function has live ins that need to be 550 // copied into vregs, emit the copies into the top of the block before 551 // emitting the code for the block. 552 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 553 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 554 555 // Insert copies in the entry block and the return blocks. 556 if (FuncInfo->SplitCSR) { 557 SmallVector<MachineBasicBlock*, 4> Returns; 558 // Collect all the return blocks. 559 for (MachineBasicBlock &MBB : mf) { 560 if (!MBB.succ_empty()) 561 continue; 562 563 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 564 if (Term != MBB.end() && Term->isReturn()) { 565 Returns.push_back(&MBB); 566 continue; 567 } 568 } 569 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 570 } 571 572 DenseMap<unsigned, unsigned> LiveInMap; 573 if (!FuncInfo->ArgDbgValues.empty()) 574 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 575 if (LI.second) 576 LiveInMap.insert(LI); 577 578 // Insert DBG_VALUE instructions for function arguments to the entry block. 579 bool InstrRef = MF->useDebugInstrRef(); 580 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 581 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1]; 582 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && 583 "Function parameters should not be described by DBG_VALUE_LIST."); 584 bool hasFI = MI->getOperand(0).isFI(); 585 Register Reg = 586 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 587 if (Register::isPhysicalRegister(Reg)) 588 EntryMBB->insert(EntryMBB->begin(), MI); 589 else { 590 MachineInstr *Def = RegInfo->getVRegDef(Reg); 591 if (Def) { 592 MachineBasicBlock::iterator InsertPos = Def; 593 // FIXME: VR def may not be in entry block. 594 Def->getParent()->insert(std::next(InsertPos), MI); 595 } else 596 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 597 << Register::virtReg2Index(Reg) << "\n"); 598 } 599 600 // Don't try and extend through copies in instruction referencing mode. 601 if (InstrRef) 602 continue; 603 604 // If Reg is live-in then update debug info to track its copy in a vreg. 605 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 606 if (LDI != LiveInMap.end()) { 607 assert(!hasFI && "There's no handling of frame pointer updating here yet " 608 "- add if needed"); 609 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 610 MachineBasicBlock::iterator InsertPos = Def; 611 const MDNode *Variable = MI->getDebugVariable(); 612 const MDNode *Expr = MI->getDebugExpression(); 613 DebugLoc DL = MI->getDebugLoc(); 614 bool IsIndirect = MI->isIndirectDebugValue(); 615 if (IsIndirect) 616 assert(MI->getOperand(1).getImm() == 0 && 617 "DBG_VALUE with nonzero offset"); 618 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 619 "Expected inlined-at fields to agree"); 620 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && 621 "Didn't expect to see a DBG_VALUE_LIST here"); 622 // Def is never a terminator here, so it is ok to increment InsertPos. 623 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 624 IsIndirect, LDI->second, Variable, Expr); 625 626 // If this vreg is directly copied into an exported register then 627 // that COPY instructions also need DBG_VALUE, if it is the only 628 // user of LDI->second. 629 MachineInstr *CopyUseMI = nullptr; 630 for (MachineRegisterInfo::use_instr_iterator 631 UI = RegInfo->use_instr_begin(LDI->second), 632 E = RegInfo->use_instr_end(); UI != E; ) { 633 MachineInstr *UseMI = &*(UI++); 634 if (UseMI->isDebugValue()) continue; 635 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 636 CopyUseMI = UseMI; continue; 637 } 638 // Otherwise this is another use or second copy use. 639 CopyUseMI = nullptr; break; 640 } 641 if (CopyUseMI && 642 TRI.getRegSizeInBits(LDI->second, MRI) == 643 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) { 644 // Use MI's debug location, which describes where Variable was 645 // declared, rather than whatever is attached to CopyUseMI. 646 MachineInstr *NewMI = 647 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 648 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 649 MachineBasicBlock::iterator Pos = CopyUseMI; 650 EntryMBB->insertAfter(Pos, NewMI); 651 } 652 } 653 } 654 655 // For debug-info, in instruction referencing mode, we need to perform some 656 // post-isel maintenence. 657 MF->finalizeDebugInstrRefs(); 658 659 // Determine if there are any calls in this machine function. 660 MachineFrameInfo &MFI = MF->getFrameInfo(); 661 for (const auto &MBB : *MF) { 662 if (MFI.hasCalls() && MF->hasInlineAsm()) 663 break; 664 665 for (const auto &MI : MBB) { 666 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 667 if ((MCID.isCall() && !MCID.isReturn()) || 668 MI.isStackAligningInlineAsm()) { 669 MFI.setHasCalls(true); 670 } 671 if (MI.isInlineAsm()) { 672 MF->setHasInlineAsm(true); 673 } 674 } 675 } 676 677 // Determine if there is a call to setjmp in the machine function. 678 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 679 680 // Determine if floating point is used for msvc 681 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 682 683 // Release function-specific state. SDB and CurDAG are already cleared 684 // at this point. 685 FuncInfo->clear(); 686 687 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 688 LLVM_DEBUG(MF->print(dbgs())); 689 690 return true; 691 } 692 693 static void reportFastISelFailure(MachineFunction &MF, 694 OptimizationRemarkEmitter &ORE, 695 OptimizationRemarkMissed &R, 696 bool ShouldAbort) { 697 // Print the function name explicitly if we don't have a debug location (which 698 // makes the diagnostic less useful) or if we're going to emit a raw error. 699 if (!R.getLocation().isValid() || ShouldAbort) 700 R << (" (in function: " + MF.getName() + ")").str(); 701 702 if (ShouldAbort) 703 report_fatal_error(Twine(R.getMsg())); 704 705 ORE.emit(R); 706 } 707 708 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 709 BasicBlock::const_iterator End, 710 bool &HadTailCall) { 711 // Allow creating illegal types during DAG building for the basic block. 712 CurDAG->NewNodesMustHaveLegalTypes = false; 713 714 // Lower the instructions. If a call is emitted as a tail call, cease emitting 715 // nodes for this block. 716 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 717 if (!ElidedArgCopyInstrs.count(&*I)) 718 SDB->visit(*I); 719 } 720 721 // Make sure the root of the DAG is up-to-date. 722 CurDAG->setRoot(SDB->getControlRoot()); 723 HadTailCall = SDB->HasTailCall; 724 SDB->resolveOrClearDbgInfo(); 725 SDB->clear(); 726 727 // Final step, emit the lowered DAG as machine code. 728 CodeGenAndEmitDAG(); 729 } 730 731 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 732 SmallPtrSet<SDNode *, 16> Added; 733 SmallVector<SDNode*, 128> Worklist; 734 735 Worklist.push_back(CurDAG->getRoot().getNode()); 736 Added.insert(CurDAG->getRoot().getNode()); 737 738 KnownBits Known; 739 740 do { 741 SDNode *N = Worklist.pop_back_val(); 742 743 // Otherwise, add all chain operands to the worklist. 744 for (const SDValue &Op : N->op_values()) 745 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second) 746 Worklist.push_back(Op.getNode()); 747 748 // If this is a CopyToReg with a vreg dest, process it. 749 if (N->getOpcode() != ISD::CopyToReg) 750 continue; 751 752 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 753 if (!Register::isVirtualRegister(DestReg)) 754 continue; 755 756 // Ignore non-integer values. 757 SDValue Src = N->getOperand(2); 758 EVT SrcVT = Src.getValueType(); 759 if (!SrcVT.isInteger()) 760 continue; 761 762 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 763 Known = CurDAG->computeKnownBits(Src); 764 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 765 } while (!Worklist.empty()); 766 } 767 768 void SelectionDAGISel::CodeGenAndEmitDAG() { 769 StringRef GroupName = "sdag"; 770 StringRef GroupDescription = "Instruction Selection and Scheduling"; 771 std::string BlockName; 772 bool MatchFilterBB = false; (void)MatchFilterBB; 773 #ifndef NDEBUG 774 TargetTransformInfo &TTI = 775 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 776 #endif 777 778 // Pre-type legalization allow creation of any node types. 779 CurDAG->NewNodesMustHaveLegalTypes = false; 780 781 #ifndef NDEBUG 782 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 783 FilterDAGBasicBlockName == 784 FuncInfo->MBB->getBasicBlock()->getName()); 785 #endif 786 #ifdef NDEBUG 787 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || 788 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || 789 ViewSUnitDAGs) 790 #endif 791 { 792 BlockName = 793 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 794 } 795 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 796 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 797 << "'\n"; 798 CurDAG->dump()); 799 800 #ifndef NDEBUG 801 if (TTI.hasBranchDivergence()) 802 CurDAG->VerifyDAGDivergence(); 803 #endif 804 805 if (ViewDAGCombine1 && MatchFilterBB) 806 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 807 808 // Run the DAG combiner in pre-legalize mode. 809 { 810 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 811 GroupDescription, TimePassesIsEnabled); 812 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 813 } 814 815 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 816 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 817 << "'\n"; 818 CurDAG->dump()); 819 820 #ifndef NDEBUG 821 if (TTI.hasBranchDivergence()) 822 CurDAG->VerifyDAGDivergence(); 823 #endif 824 825 // Second step, hack on the DAG until it only uses operations and types that 826 // the target supports. 827 if (ViewLegalizeTypesDAGs && MatchFilterBB) 828 CurDAG->viewGraph("legalize-types input for " + BlockName); 829 830 bool Changed; 831 { 832 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 833 GroupDescription, TimePassesIsEnabled); 834 Changed = CurDAG->LegalizeTypes(); 835 } 836 837 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 838 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 839 << "'\n"; 840 CurDAG->dump()); 841 842 #ifndef NDEBUG 843 if (TTI.hasBranchDivergence()) 844 CurDAG->VerifyDAGDivergence(); 845 #endif 846 847 // Only allow creation of legal node types. 848 CurDAG->NewNodesMustHaveLegalTypes = true; 849 850 if (Changed) { 851 if (ViewDAGCombineLT && MatchFilterBB) 852 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 853 854 // Run the DAG combiner in post-type-legalize mode. 855 { 856 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 857 GroupName, GroupDescription, TimePassesIsEnabled); 858 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 859 } 860 861 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 862 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 863 << "'\n"; 864 CurDAG->dump()); 865 866 #ifndef NDEBUG 867 if (TTI.hasBranchDivergence()) 868 CurDAG->VerifyDAGDivergence(); 869 #endif 870 } 871 872 { 873 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 874 GroupDescription, TimePassesIsEnabled); 875 Changed = CurDAG->LegalizeVectors(); 876 } 877 878 if (Changed) { 879 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 880 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 881 << "'\n"; 882 CurDAG->dump()); 883 884 #ifndef NDEBUG 885 if (TTI.hasBranchDivergence()) 886 CurDAG->VerifyDAGDivergence(); 887 #endif 888 889 { 890 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 891 GroupDescription, TimePassesIsEnabled); 892 CurDAG->LegalizeTypes(); 893 } 894 895 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 896 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 897 << "'\n"; 898 CurDAG->dump()); 899 900 #ifndef NDEBUG 901 if (TTI.hasBranchDivergence()) 902 CurDAG->VerifyDAGDivergence(); 903 #endif 904 905 if (ViewDAGCombineLT && MatchFilterBB) 906 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 907 908 // Run the DAG combiner in post-type-legalize mode. 909 { 910 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 911 GroupName, GroupDescription, TimePassesIsEnabled); 912 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 913 } 914 915 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 916 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 917 << "'\n"; 918 CurDAG->dump()); 919 920 #ifndef NDEBUG 921 if (TTI.hasBranchDivergence()) 922 CurDAG->VerifyDAGDivergence(); 923 #endif 924 } 925 926 if (ViewLegalizeDAGs && MatchFilterBB) 927 CurDAG->viewGraph("legalize input for " + BlockName); 928 929 { 930 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 931 GroupDescription, TimePassesIsEnabled); 932 CurDAG->Legalize(); 933 } 934 935 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 936 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 937 << "'\n"; 938 CurDAG->dump()); 939 940 #ifndef NDEBUG 941 if (TTI.hasBranchDivergence()) 942 CurDAG->VerifyDAGDivergence(); 943 #endif 944 945 if (ViewDAGCombine2 && MatchFilterBB) 946 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 947 948 // Run the DAG combiner in post-legalize mode. 949 { 950 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 951 GroupDescription, TimePassesIsEnabled); 952 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 953 } 954 955 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 956 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 957 << "'\n"; 958 CurDAG->dump()); 959 960 #ifndef NDEBUG 961 if (TTI.hasBranchDivergence()) 962 CurDAG->VerifyDAGDivergence(); 963 #endif 964 965 if (OptLevel != CodeGenOpt::None) 966 ComputeLiveOutVRegInfo(); 967 968 if (ViewISelDAGs && MatchFilterBB) 969 CurDAG->viewGraph("isel input for " + BlockName); 970 971 // Third, instruction select all of the operations to machine code, adding the 972 // code to the MachineBasicBlock. 973 { 974 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 975 GroupDescription, TimePassesIsEnabled); 976 DoInstructionSelection(); 977 } 978 979 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 980 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 981 << "'\n"; 982 CurDAG->dump()); 983 984 if (ViewSchedDAGs && MatchFilterBB) 985 CurDAG->viewGraph("scheduler input for " + BlockName); 986 987 // Schedule machine code. 988 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 989 { 990 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 991 GroupDescription, TimePassesIsEnabled); 992 Scheduler->Run(CurDAG, FuncInfo->MBB); 993 } 994 995 if (ViewSUnitDAGs && MatchFilterBB) 996 Scheduler->viewGraph(); 997 998 // Emit machine code to BB. This can change 'BB' to the last block being 999 // inserted into. 1000 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 1001 { 1002 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 1003 GroupDescription, TimePassesIsEnabled); 1004 1005 // FuncInfo->InsertPt is passed by reference and set to the end of the 1006 // scheduled instructions. 1007 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 1008 } 1009 1010 // If the block was split, make sure we update any references that are used to 1011 // update PHI nodes later on. 1012 if (FirstMBB != LastMBB) 1013 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 1014 1015 // Free the scheduler state. 1016 { 1017 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1018 GroupDescription, TimePassesIsEnabled); 1019 delete Scheduler; 1020 } 1021 1022 // Free the SelectionDAG state, now that we're finished with it. 1023 CurDAG->clear(); 1024 } 1025 1026 namespace { 1027 1028 /// ISelUpdater - helper class to handle updates of the instruction selection 1029 /// graph. 1030 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1031 SelectionDAG::allnodes_iterator &ISelPosition; 1032 1033 public: 1034 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1035 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1036 1037 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1038 /// deleted is the current ISelPosition node, update ISelPosition. 1039 /// 1040 void NodeDeleted(SDNode *N, SDNode *E) override { 1041 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1042 ++ISelPosition; 1043 } 1044 }; 1045 1046 } // end anonymous namespace 1047 1048 // This function is used to enforce the topological node id property 1049 // leveraged during instruction selection. Before the selection process all 1050 // nodes are given a non-negative id such that all nodes have a greater id than 1051 // their operands. As this holds transitively we can prune checks that a node N 1052 // is a predecessor of M another by not recursively checking through M's 1053 // operands if N's ID is larger than M's ID. This significantly improves 1054 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains). 1055 1056 // However, when we fuse multiple nodes into a single node during the 1057 // selection we may induce a predecessor relationship between inputs and 1058 // outputs of distinct nodes being merged, violating the topological property. 1059 // Should a fused node have a successor which has yet to be selected, 1060 // our legality checks would be incorrect. To avoid this we mark all unselected 1061 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x => 1062 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1063 // We use bit-negation to more clearly enforce that node id -1 can only be 1064 // achieved by selected nodes. As the conversion is reversable to the original 1065 // Id, topological pruning can still be leveraged when looking for unselected 1066 // nodes. This method is called internally in all ISel replacement related 1067 // functions. 1068 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1069 SmallVector<SDNode *, 4> Nodes; 1070 Nodes.push_back(Node); 1071 1072 while (!Nodes.empty()) { 1073 SDNode *N = Nodes.pop_back_val(); 1074 for (auto *U : N->uses()) { 1075 auto UId = U->getNodeId(); 1076 if (UId > 0) { 1077 InvalidateNodeId(U); 1078 Nodes.push_back(U); 1079 } 1080 } 1081 } 1082 } 1083 1084 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a 1085 // NodeId with the equivalent node id which is invalid for topological 1086 // pruning. 1087 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1088 int InvalidId = -(N->getNodeId() + 1); 1089 N->setNodeId(InvalidId); 1090 } 1091 1092 // getUninvalidatedNodeId - get original uninvalidated node id. 1093 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1094 int Id = N->getNodeId(); 1095 if (Id < -1) 1096 return -(Id + 1); 1097 return Id; 1098 } 1099 1100 void SelectionDAGISel::DoInstructionSelection() { 1101 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1102 << printMBBReference(*FuncInfo->MBB) << " '" 1103 << FuncInfo->MBB->getName() << "'\n"); 1104 1105 PreprocessISelDAG(); 1106 1107 // Select target instructions for the DAG. 1108 { 1109 // Number all nodes with a topological order and set DAGSize. 1110 DAGSize = CurDAG->AssignTopologicalOrder(); 1111 1112 // Create a dummy node (which is not added to allnodes), that adds 1113 // a reference to the root node, preventing it from being deleted, 1114 // and tracking any changes of the root. 1115 HandleSDNode Dummy(CurDAG->getRoot()); 1116 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1117 ++ISelPosition; 1118 1119 // Make sure that ISelPosition gets properly updated when nodes are deleted 1120 // in calls made from this function. 1121 ISelUpdater ISU(*CurDAG, ISelPosition); 1122 1123 // The AllNodes list is now topological-sorted. Visit the 1124 // nodes by starting at the end of the list (the root of the 1125 // graph) and preceding back toward the beginning (the entry 1126 // node). 1127 while (ISelPosition != CurDAG->allnodes_begin()) { 1128 SDNode *Node = &*--ISelPosition; 1129 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1130 // but there are currently some corner cases that it misses. Also, this 1131 // makes it theoretically possible to disable the DAGCombiner. 1132 if (Node->use_empty()) 1133 continue; 1134 1135 #ifndef NDEBUG 1136 SmallVector<SDNode *, 4> Nodes; 1137 Nodes.push_back(Node); 1138 1139 while (!Nodes.empty()) { 1140 auto N = Nodes.pop_back_val(); 1141 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1142 continue; 1143 for (const SDValue &Op : N->op_values()) { 1144 if (Op->getOpcode() == ISD::TokenFactor) 1145 Nodes.push_back(Op.getNode()); 1146 else { 1147 // We rely on topological ordering of node ids for checking for 1148 // cycles when fusing nodes during selection. All unselected nodes 1149 // successors of an already selected node should have a negative id. 1150 // This assertion will catch such cases. If this assertion triggers 1151 // it is likely you using DAG-level Value/Node replacement functions 1152 // (versus equivalent ISEL replacement) in backend-specific 1153 // selections. See comment in EnforceNodeIdInvariant for more 1154 // details. 1155 assert(Op->getNodeId() != -1 && 1156 "Node has already selected predecessor node"); 1157 } 1158 } 1159 } 1160 #endif 1161 1162 // When we are using non-default rounding modes or FP exception behavior 1163 // FP operations are represented by StrictFP pseudo-operations. For 1164 // targets that do not (yet) understand strict FP operations directly, 1165 // we convert them to normal FP opcodes instead at this point. This 1166 // will allow them to be handled by existing target-specific instruction 1167 // selectors. 1168 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { 1169 // For some opcodes, we need to call TLI->getOperationAction using 1170 // the first operand type instead of the result type. Note that this 1171 // must match what SelectionDAGLegalize::LegalizeOp is doing. 1172 EVT ActionVT; 1173 switch (Node->getOpcode()) { 1174 case ISD::STRICT_SINT_TO_FP: 1175 case ISD::STRICT_UINT_TO_FP: 1176 case ISD::STRICT_LRINT: 1177 case ISD::STRICT_LLRINT: 1178 case ISD::STRICT_LROUND: 1179 case ISD::STRICT_LLROUND: 1180 case ISD::STRICT_FSETCC: 1181 case ISD::STRICT_FSETCCS: 1182 ActionVT = Node->getOperand(1).getValueType(); 1183 break; 1184 default: 1185 ActionVT = Node->getValueType(0); 1186 break; 1187 } 1188 if (TLI->getOperationAction(Node->getOpcode(), ActionVT) 1189 == TargetLowering::Expand) 1190 Node = CurDAG->mutateStrictFPToFP(Node); 1191 } 1192 1193 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1194 Node->dump(CurDAG)); 1195 1196 Select(Node); 1197 } 1198 1199 CurDAG->setRoot(Dummy.getValue()); 1200 } 1201 1202 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1203 1204 PostprocessISelDAG(); 1205 } 1206 1207 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1208 for (const User *U : CPI->users()) { 1209 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1210 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1211 if (IID == Intrinsic::eh_exceptionpointer || 1212 IID == Intrinsic::eh_exceptioncode) 1213 return true; 1214 } 1215 } 1216 return false; 1217 } 1218 1219 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1220 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1221 // and store the mapping in the function. 1222 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1223 const CatchPadInst *CPI) { 1224 MachineFunction *MF = MBB->getParent(); 1225 // In case of single catch (...), we don't emit LSDA, so we don't need 1226 // this information. 1227 bool IsSingleCatchAllClause = 1228 CPI->getNumArgOperands() == 1 && 1229 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1230 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 [] 1231 // and they don't need LSDA info 1232 bool IsCatchLongjmp = CPI->getNumArgOperands() == 0; 1233 if (!IsSingleCatchAllClause && !IsCatchLongjmp) { 1234 // Create a mapping from landing pad label to landing pad index. 1235 bool IntrFound = false; 1236 for (const User *U : CPI->users()) { 1237 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1238 Intrinsic::ID IID = Call->getIntrinsicID(); 1239 if (IID == Intrinsic::wasm_landingpad_index) { 1240 Value *IndexArg = Call->getArgOperand(1); 1241 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1242 MF->setWasmLandingPadIndex(MBB, Index); 1243 IntrFound = true; 1244 break; 1245 } 1246 } 1247 } 1248 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1249 (void)IntrFound; 1250 } 1251 } 1252 1253 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1254 /// do other setup for EH landing-pad blocks. 1255 bool SelectionDAGISel::PrepareEHLandingPad() { 1256 MachineBasicBlock *MBB = FuncInfo->MBB; 1257 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1258 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1259 const TargetRegisterClass *PtrRC = 1260 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1261 1262 auto Pers = classifyEHPersonality(PersonalityFn); 1263 1264 // Catchpads have one live-in register, which typically holds the exception 1265 // pointer or code. 1266 if (isFuncletEHPersonality(Pers)) { 1267 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1268 if (hasExceptionPointerOrCodeUser(CPI)) { 1269 // Get or create the virtual register to hold the pointer or code. Mark 1270 // the live in physreg and copy into the vreg. 1271 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1272 assert(EHPhysReg && "target lacks exception pointer register"); 1273 MBB->addLiveIn(EHPhysReg); 1274 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1275 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1276 TII->get(TargetOpcode::COPY), VReg) 1277 .addReg(EHPhysReg, RegState::Kill); 1278 } 1279 } 1280 return true; 1281 } 1282 1283 // Add a label to mark the beginning of the landing pad. Deletion of the 1284 // landing pad can thus be detected via the MachineModuleInfo. 1285 MCSymbol *Label = MF->addLandingPad(MBB); 1286 1287 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1288 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1289 .addSym(Label); 1290 1291 // If the unwinder does not preserve all registers, ensure that the 1292 // function marks the clobbered registers as used. 1293 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 1294 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 1295 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 1296 1297 if (Pers == EHPersonality::Wasm_CXX) { 1298 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1299 mapWasmLandingPadIndex(MBB, CPI); 1300 } else { 1301 // Assign the call site to the landing pad's begin label. 1302 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1303 // Mark exception register as live in. 1304 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1305 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1306 // Mark exception selector register as live in. 1307 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1308 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1309 } 1310 1311 return true; 1312 } 1313 1314 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1315 /// side-effect free and is either dead or folded into a generated instruction. 1316 /// Return false if it needs to be emitted. 1317 static bool isFoldedOrDeadInstruction(const Instruction *I, 1318 const FunctionLoweringInfo &FuncInfo) { 1319 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1320 !I->isTerminator() && // Terminators aren't folded. 1321 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1322 !I->isEHPad() && // EH pad instructions aren't folded. 1323 !FuncInfo.isExportedInst(I); // Exported instrs must be computed. 1324 } 1325 1326 /// Collect llvm.dbg.declare information. This is done after argument lowering 1327 /// in case the declarations refer to arguments. 1328 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { 1329 MachineFunction *MF = FuncInfo.MF; 1330 const DataLayout &DL = MF->getDataLayout(); 1331 for (const BasicBlock &BB : *FuncInfo.Fn) { 1332 for (const Instruction &I : BB) { 1333 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1334 if (!DI) 1335 continue; 1336 1337 assert(DI->getVariable() && "Missing variable"); 1338 assert(DI->getDebugLoc() && "Missing location"); 1339 const Value *Address = DI->getAddress(); 1340 if (!Address) { 1341 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI 1342 << " (bad address)\n"); 1343 continue; 1344 } 1345 1346 // Look through casts and constant offset GEPs. These mostly come from 1347 // inalloca. 1348 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1349 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1350 1351 // Check if the variable is a static alloca or a byval or inalloca 1352 // argument passed in memory. If it is not, then we will ignore this 1353 // intrinsic and handle this during isel like dbg.value. 1354 int FI = std::numeric_limits<int>::max(); 1355 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1356 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1357 if (SI != FuncInfo.StaticAllocaMap.end()) 1358 FI = SI->second; 1359 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1360 FI = FuncInfo.getArgumentFrameIndex(Arg); 1361 1362 if (FI == std::numeric_limits<int>::max()) 1363 continue; 1364 1365 DIExpression *Expr = DI->getExpression(); 1366 if (Offset.getBoolValue()) 1367 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1368 Offset.getZExtValue()); 1369 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI 1370 << ", " << *DI << "\n"); 1371 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1372 } 1373 } 1374 } 1375 1376 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1377 FastISelFailed = false; 1378 // Initialize the Fast-ISel state, if needed. 1379 FastISel *FastIS = nullptr; 1380 if (TM.Options.EnableFastISel) { 1381 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1382 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1383 } 1384 1385 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1386 1387 // Lower arguments up front. An RPO iteration always visits the entry block 1388 // first. 1389 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1390 ++NumEntryBlocks; 1391 1392 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1393 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1394 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1395 1396 CurDAG->setFunctionLoweringInfo(FuncInfo.get()); 1397 1398 if (!FastIS) { 1399 LowerArguments(Fn); 1400 } else { 1401 // See if fast isel can lower the arguments. 1402 FastIS->startNewBlock(); 1403 if (!FastIS->lowerArguments()) { 1404 FastISelFailed = true; 1405 // Fast isel failed to lower these arguments 1406 ++NumFastIselFailLowerArguments; 1407 1408 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1409 Fn.getSubprogram(), 1410 &Fn.getEntryBlock()); 1411 R << "FastISel didn't lower all arguments: " 1412 << ore::NV("Prototype", Fn.getType()); 1413 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1414 1415 // Use SelectionDAG argument lowering 1416 LowerArguments(Fn); 1417 CurDAG->setRoot(SDB->getControlRoot()); 1418 SDB->clear(); 1419 CodeGenAndEmitDAG(); 1420 } 1421 1422 // If we inserted any instructions at the beginning, make a note of 1423 // where they are, so we can be sure to emit subsequent instructions 1424 // after them. 1425 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1426 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1427 else 1428 FastIS->setLastLocalValue(nullptr); 1429 } 1430 1431 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1432 1433 if (FastIS && Inserted) 1434 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1435 1436 processDbgDeclares(*FuncInfo); 1437 1438 // Iterate over all basic blocks in the function. 1439 StackProtector &SP = getAnalysis<StackProtector>(); 1440 for (const BasicBlock *LLVMBB : RPOT) { 1441 if (OptLevel != CodeGenOpt::None) { 1442 bool AllPredsVisited = true; 1443 for (const BasicBlock *Pred : predecessors(LLVMBB)) { 1444 if (!FuncInfo->VisitedBBs.count(Pred)) { 1445 AllPredsVisited = false; 1446 break; 1447 } 1448 } 1449 1450 if (AllPredsVisited) { 1451 for (const PHINode &PN : LLVMBB->phis()) 1452 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1453 } else { 1454 for (const PHINode &PN : LLVMBB->phis()) 1455 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1456 } 1457 1458 FuncInfo->VisitedBBs.insert(LLVMBB); 1459 } 1460 1461 BasicBlock::const_iterator const Begin = 1462 LLVMBB->getFirstNonPHI()->getIterator(); 1463 BasicBlock::const_iterator const End = LLVMBB->end(); 1464 BasicBlock::const_iterator BI = End; 1465 1466 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1467 if (!FuncInfo->MBB) 1468 continue; // Some blocks like catchpads have no code or MBB. 1469 1470 // Insert new instructions after any phi or argument setup code. 1471 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1472 1473 // Setup an EH landing-pad block. 1474 FuncInfo->ExceptionPointerVirtReg = 0; 1475 FuncInfo->ExceptionSelectorVirtReg = 0; 1476 if (LLVMBB->isEHPad()) 1477 if (!PrepareEHLandingPad()) 1478 continue; 1479 1480 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1481 if (FastIS) { 1482 if (LLVMBB != &Fn.getEntryBlock()) 1483 FastIS->startNewBlock(); 1484 1485 unsigned NumFastIselRemaining = std::distance(Begin, End); 1486 1487 // Pre-assign swifterror vregs. 1488 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1489 1490 // Do FastISel on as many instructions as possible. 1491 for (; BI != Begin; --BI) { 1492 const Instruction *Inst = &*std::prev(BI); 1493 1494 // If we no longer require this instruction, skip it. 1495 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) || 1496 ElidedArgCopyInstrs.count(Inst)) { 1497 --NumFastIselRemaining; 1498 continue; 1499 } 1500 1501 // Bottom-up: reset the insert pos at the top, after any local-value 1502 // instructions. 1503 FastIS->recomputeInsertPt(); 1504 1505 // Try to select the instruction with FastISel. 1506 if (FastIS->selectInstruction(Inst)) { 1507 --NumFastIselRemaining; 1508 ++NumFastIselSuccess; 1509 // If fast isel succeeded, skip over all the folded instructions, and 1510 // then see if there is a load right before the selected instructions. 1511 // Try to fold the load if so. 1512 const Instruction *BeforeInst = Inst; 1513 while (BeforeInst != &*Begin) { 1514 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1515 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo)) 1516 break; 1517 } 1518 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1519 BeforeInst->hasOneUse() && 1520 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1521 // If we succeeded, don't re-select the load. 1522 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1523 --NumFastIselRemaining; 1524 ++NumFastIselSuccess; 1525 } 1526 continue; 1527 } 1528 1529 FastISelFailed = true; 1530 1531 // Then handle certain instructions as single-LLVM-Instruction blocks. 1532 // We cannot separate out GCrelocates to their own blocks since we need 1533 // to keep track of gc-relocates for a particular gc-statepoint. This is 1534 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1535 // visitGCRelocate. 1536 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) && 1537 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) { 1538 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1539 Inst->getDebugLoc(), LLVMBB); 1540 1541 R << "FastISel missed call"; 1542 1543 if (R.isEnabled() || EnableFastISelAbort) { 1544 std::string InstStrStorage; 1545 raw_string_ostream InstStr(InstStrStorage); 1546 InstStr << *Inst; 1547 1548 R << ": " << InstStr.str(); 1549 } 1550 1551 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1552 1553 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1554 !Inst->use_empty()) { 1555 Register &R = FuncInfo->ValueMap[Inst]; 1556 if (!R) 1557 R = FuncInfo->CreateRegs(Inst); 1558 } 1559 1560 bool HadTailCall = false; 1561 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1562 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1563 1564 // If the call was emitted as a tail call, we're done with the block. 1565 // We also need to delete any previously emitted instructions. 1566 if (HadTailCall) { 1567 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1568 --BI; 1569 break; 1570 } 1571 1572 // Recompute NumFastIselRemaining as Selection DAG instruction 1573 // selection may have handled the call, input args, etc. 1574 unsigned RemainingNow = std::distance(Begin, BI); 1575 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1576 NumFastIselRemaining = RemainingNow; 1577 continue; 1578 } 1579 1580 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1581 Inst->getDebugLoc(), LLVMBB); 1582 1583 bool ShouldAbort = EnableFastISelAbort; 1584 if (Inst->isTerminator()) { 1585 // Use a different message for terminator misses. 1586 R << "FastISel missed terminator"; 1587 // Don't abort for terminator unless the level is really high 1588 ShouldAbort = (EnableFastISelAbort > 2); 1589 } else { 1590 R << "FastISel missed"; 1591 } 1592 1593 if (R.isEnabled() || EnableFastISelAbort) { 1594 std::string InstStrStorage; 1595 raw_string_ostream InstStr(InstStrStorage); 1596 InstStr << *Inst; 1597 R << ": " << InstStr.str(); 1598 } 1599 1600 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1601 1602 NumFastIselFailures += NumFastIselRemaining; 1603 break; 1604 } 1605 1606 FastIS->recomputeInsertPt(); 1607 } 1608 1609 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1610 bool FunctionBasedInstrumentation = 1611 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1612 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1613 FunctionBasedInstrumentation); 1614 } 1615 1616 if (Begin != BI) 1617 ++NumDAGBlocks; 1618 else 1619 ++NumFastIselBlocks; 1620 1621 if (Begin != BI) { 1622 // Run SelectionDAG instruction selection on the remainder of the block 1623 // not handled by FastISel. If FastISel is not run, this is the entire 1624 // block. 1625 bool HadTailCall; 1626 SelectBasicBlock(Begin, BI, HadTailCall); 1627 1628 // But if FastISel was run, we already selected some of the block. 1629 // If we emitted a tail-call, we need to delete any previously emitted 1630 // instruction that follows it. 1631 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1632 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1633 } 1634 1635 if (FastIS) 1636 FastIS->finishBasicBlock(); 1637 FinishBasicBlock(); 1638 FuncInfo->PHINodesToUpdate.clear(); 1639 ElidedArgCopyInstrs.clear(); 1640 } 1641 1642 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1643 1644 SwiftError->propagateVRegs(); 1645 1646 delete FastIS; 1647 SDB->clearDanglingDebugInfo(); 1648 SDB->SPDescriptor.resetPerFunctionState(); 1649 } 1650 1651 void 1652 SelectionDAGISel::FinishBasicBlock() { 1653 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1654 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1655 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1656 ++i) dbgs() 1657 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1658 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1659 1660 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1661 // PHI nodes in successors. 1662 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1663 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1664 assert(PHI->isPHI() && 1665 "This is not a machine PHI node that we are updating!"); 1666 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1667 continue; 1668 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1669 } 1670 1671 // Handle stack protector. 1672 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1673 // The target provides a guard check function. There is no need to 1674 // generate error handling code or to split current basic block. 1675 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1676 1677 // Add load and check to the basicblock. 1678 FuncInfo->MBB = ParentMBB; 1679 FuncInfo->InsertPt = 1680 findSplitPointForStackProtector(ParentMBB, *TII); 1681 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1682 CurDAG->setRoot(SDB->getRoot()); 1683 SDB->clear(); 1684 CodeGenAndEmitDAG(); 1685 1686 // Clear the Per-BB State. 1687 SDB->SPDescriptor.resetPerBBState(); 1688 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1689 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1690 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1691 1692 // Find the split point to split the parent mbb. At the same time copy all 1693 // physical registers used in the tail of parent mbb into virtual registers 1694 // before the split point and back into physical registers after the split 1695 // point. This prevents us needing to deal with Live-ins and many other 1696 // register allocation issues caused by us splitting the parent mbb. The 1697 // register allocator will clean up said virtual copies later on. 1698 MachineBasicBlock::iterator SplitPoint = 1699 findSplitPointForStackProtector(ParentMBB, *TII); 1700 1701 // Splice the terminator of ParentMBB into SuccessMBB. 1702 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1703 SplitPoint, 1704 ParentMBB->end()); 1705 1706 // Add compare/jump on neq/jump to the parent BB. 1707 FuncInfo->MBB = ParentMBB; 1708 FuncInfo->InsertPt = ParentMBB->end(); 1709 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1710 CurDAG->setRoot(SDB->getRoot()); 1711 SDB->clear(); 1712 CodeGenAndEmitDAG(); 1713 1714 // CodeGen Failure MBB if we have not codegened it yet. 1715 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1716 if (FailureMBB->empty()) { 1717 FuncInfo->MBB = FailureMBB; 1718 FuncInfo->InsertPt = FailureMBB->end(); 1719 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1720 CurDAG->setRoot(SDB->getRoot()); 1721 SDB->clear(); 1722 CodeGenAndEmitDAG(); 1723 } 1724 1725 // Clear the Per-BB State. 1726 SDB->SPDescriptor.resetPerBBState(); 1727 } 1728 1729 // Lower each BitTestBlock. 1730 for (auto &BTB : SDB->SL->BitTestCases) { 1731 // Lower header first, if it wasn't already lowered 1732 if (!BTB.Emitted) { 1733 // Set the current basic block to the mbb we wish to insert the code into 1734 FuncInfo->MBB = BTB.Parent; 1735 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1736 // Emit the code 1737 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1738 CurDAG->setRoot(SDB->getRoot()); 1739 SDB->clear(); 1740 CodeGenAndEmitDAG(); 1741 } 1742 1743 BranchProbability UnhandledProb = BTB.Prob; 1744 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1745 UnhandledProb -= BTB.Cases[j].ExtraProb; 1746 // Set the current basic block to the mbb we wish to insert the code into 1747 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1748 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1749 // Emit the code 1750 1751 // If all cases cover a contiguous range, it is not necessary to jump to 1752 // the default block after the last bit test fails. This is because the 1753 // range check during bit test header creation has guaranteed that every 1754 // case here doesn't go outside the range. In this case, there is no need 1755 // to perform the last bit test, as it will always be true. Instead, make 1756 // the second-to-last bit-test fall through to the target of the last bit 1757 // test, and delete the last bit test. 1758 1759 MachineBasicBlock *NextMBB; 1760 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 1761 // Second-to-last bit-test with contiguous range or omitted range 1762 // check: fall through to the target of the final bit test. 1763 NextMBB = BTB.Cases[j + 1].TargetBB; 1764 } else if (j + 1 == ej) { 1765 // For the last bit test, fall through to Default. 1766 NextMBB = BTB.Default; 1767 } else { 1768 // Otherwise, fall through to the next bit test. 1769 NextMBB = BTB.Cases[j + 1].ThisBB; 1770 } 1771 1772 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1773 FuncInfo->MBB); 1774 1775 CurDAG->setRoot(SDB->getRoot()); 1776 SDB->clear(); 1777 CodeGenAndEmitDAG(); 1778 1779 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 1780 // Since we're not going to use the final bit test, remove it. 1781 BTB.Cases.pop_back(); 1782 break; 1783 } 1784 } 1785 1786 // Update PHI Nodes 1787 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1788 pi != pe; ++pi) { 1789 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1790 MachineBasicBlock *PHIBB = PHI->getParent(); 1791 assert(PHI->isPHI() && 1792 "This is not a machine PHI node that we are updating!"); 1793 // This is "default" BB. We have two jumps to it. From "header" BB and 1794 // from last "case" BB, unless the latter was skipped. 1795 if (PHIBB == BTB.Default) { 1796 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1797 if (!BTB.ContiguousRange) { 1798 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1799 .addMBB(BTB.Cases.back().ThisBB); 1800 } 1801 } 1802 // One of "cases" BB. 1803 for (unsigned j = 0, ej = BTB.Cases.size(); 1804 j != ej; ++j) { 1805 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1806 if (cBB->isSuccessor(PHIBB)) 1807 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1808 } 1809 } 1810 } 1811 SDB->SL->BitTestCases.clear(); 1812 1813 // If the JumpTable record is filled in, then we need to emit a jump table. 1814 // Updating the PHI nodes is tricky in this case, since we need to determine 1815 // whether the PHI is a successor of the range check MBB or the jump table MBB 1816 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1817 // Lower header first, if it wasn't already lowered 1818 if (!SDB->SL->JTCases[i].first.Emitted) { 1819 // Set the current basic block to the mbb we wish to insert the code into 1820 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1821 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1822 // Emit the code 1823 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1824 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1825 CurDAG->setRoot(SDB->getRoot()); 1826 SDB->clear(); 1827 CodeGenAndEmitDAG(); 1828 } 1829 1830 // Set the current basic block to the mbb we wish to insert the code into 1831 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1832 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1833 // Emit the code 1834 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1835 CurDAG->setRoot(SDB->getRoot()); 1836 SDB->clear(); 1837 CodeGenAndEmitDAG(); 1838 1839 // Update PHI Nodes 1840 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1841 pi != pe; ++pi) { 1842 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1843 MachineBasicBlock *PHIBB = PHI->getParent(); 1844 assert(PHI->isPHI() && 1845 "This is not a machine PHI node that we are updating!"); 1846 // "default" BB. We can go there only from header BB. 1847 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1848 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1849 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1850 // JT BB. Just iterate over successors here 1851 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1852 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1853 } 1854 } 1855 SDB->SL->JTCases.clear(); 1856 1857 // If we generated any switch lowering information, build and codegen any 1858 // additional DAGs necessary. 1859 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1860 // Set the current basic block to the mbb we wish to insert the code into 1861 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1862 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1863 1864 // Determine the unique successors. 1865 SmallVector<MachineBasicBlock *, 2> Succs; 1866 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1867 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1868 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1869 1870 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1871 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1872 CurDAG->setRoot(SDB->getRoot()); 1873 SDB->clear(); 1874 CodeGenAndEmitDAG(); 1875 1876 // Remember the last block, now that any splitting is done, for use in 1877 // populating PHI nodes in successors. 1878 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1879 1880 // Handle any PHI nodes in successors of this chunk, as if we were coming 1881 // from the original BB before switch expansion. Note that PHI nodes can 1882 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1883 // handle them the right number of times. 1884 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1885 FuncInfo->MBB = Succs[i]; 1886 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1887 // FuncInfo->MBB may have been removed from the CFG if a branch was 1888 // constant folded. 1889 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1890 for (MachineBasicBlock::iterator 1891 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1892 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1893 MachineInstrBuilder PHI(*MF, MBBI); 1894 // This value for this PHI node is recorded in PHINodesToUpdate. 1895 for (unsigned pn = 0; ; ++pn) { 1896 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1897 "Didn't find PHI entry!"); 1898 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1899 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1900 break; 1901 } 1902 } 1903 } 1904 } 1905 } 1906 } 1907 SDB->SL->SwitchCases.clear(); 1908 } 1909 1910 /// Create the scheduler. If a specific scheduler was specified 1911 /// via the SchedulerRegistry, use it, otherwise select the 1912 /// one preferred by the target. 1913 /// 1914 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1915 return ISHeuristic(this, OptLevel); 1916 } 1917 1918 //===----------------------------------------------------------------------===// 1919 // Helper functions used by the generated instruction selector. 1920 //===----------------------------------------------------------------------===// 1921 // Calls to these methods are generated by tblgen. 1922 1923 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1924 /// the dag combiner simplified the 255, we still want to match. RHS is the 1925 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1926 /// specified in the .td file (e.g. 255). 1927 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1928 int64_t DesiredMaskS) const { 1929 const APInt &ActualMask = RHS->getAPIntValue(); 1930 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1931 1932 // If the actual mask exactly matches, success! 1933 if (ActualMask == DesiredMask) 1934 return true; 1935 1936 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1937 if (!ActualMask.isSubsetOf(DesiredMask)) 1938 return false; 1939 1940 // Otherwise, the DAG Combiner may have proven that the value coming in is 1941 // either already zero or is not demanded. Check for known zero input bits. 1942 APInt NeededMask = DesiredMask & ~ActualMask; 1943 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1944 return true; 1945 1946 // TODO: check to see if missing bits are just not demanded. 1947 1948 // Otherwise, this pattern doesn't match. 1949 return false; 1950 } 1951 1952 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1953 /// the dag combiner simplified the 255, we still want to match. RHS is the 1954 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1955 /// specified in the .td file (e.g. 255). 1956 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1957 int64_t DesiredMaskS) const { 1958 const APInt &ActualMask = RHS->getAPIntValue(); 1959 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1960 1961 // If the actual mask exactly matches, success! 1962 if (ActualMask == DesiredMask) 1963 return true; 1964 1965 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1966 if (!ActualMask.isSubsetOf(DesiredMask)) 1967 return false; 1968 1969 // Otherwise, the DAG Combiner may have proven that the value coming in is 1970 // either already zero or is not demanded. Check for known zero input bits. 1971 APInt NeededMask = DesiredMask & ~ActualMask; 1972 KnownBits Known = CurDAG->computeKnownBits(LHS); 1973 1974 // If all the missing bits in the or are already known to be set, match! 1975 if (NeededMask.isSubsetOf(Known.One)) 1976 return true; 1977 1978 // TODO: check to see if missing bits are just not demanded. 1979 1980 // Otherwise, this pattern doesn't match. 1981 return false; 1982 } 1983 1984 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1985 /// by tblgen. Others should not call it. 1986 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 1987 const SDLoc &DL) { 1988 std::vector<SDValue> InOps; 1989 std::swap(InOps, Ops); 1990 1991 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1992 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1993 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1994 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1995 1996 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1997 if (InOps[e-1].getValueType() == MVT::Glue) 1998 --e; // Don't process a glue operand if it is here. 1999 2000 while (i != e) { 2001 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2002 if (!InlineAsm::isMemKind(Flags)) { 2003 // Just skip over this operand, copying the operands verbatim. 2004 Ops.insert(Ops.end(), InOps.begin()+i, 2005 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2006 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2007 } else { 2008 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2009 "Memory operand with multiple values?"); 2010 2011 unsigned TiedToOperand; 2012 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2013 // We need the constraint ID from the operand this is tied to. 2014 unsigned CurOp = InlineAsm::Op_FirstOperand; 2015 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2016 for (; TiedToOperand; --TiedToOperand) { 2017 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2018 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2019 } 2020 } 2021 2022 // Otherwise, this is a memory operand. Ask the target to select it. 2023 std::vector<SDValue> SelOps; 2024 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2025 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2026 report_fatal_error("Could not match memory address. Inline asm" 2027 " failure!"); 2028 2029 // Add this to the output node. 2030 unsigned NewFlags = 2031 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2032 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2033 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2034 llvm::append_range(Ops, SelOps); 2035 i += 2; 2036 } 2037 } 2038 2039 // Add the glue input back if present. 2040 if (e != InOps.size()) 2041 Ops.push_back(InOps.back()); 2042 } 2043 2044 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2045 /// SDNode. 2046 /// 2047 static SDNode *findGlueUse(SDNode *N) { 2048 unsigned FlagResNo = N->getNumValues()-1; 2049 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2050 SDUse &Use = I.getUse(); 2051 if (Use.getResNo() == FlagResNo) 2052 return Use.getUser(); 2053 } 2054 return nullptr; 2055 } 2056 2057 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2058 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2059 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2060 bool IgnoreChains) { 2061 SmallPtrSet<const SDNode *, 16> Visited; 2062 SmallVector<const SDNode *, 16> WorkList; 2063 // Only check if we have non-immediate uses of Def. 2064 if (ImmedUse->isOnlyUserOf(Def)) 2065 return false; 2066 2067 // We don't care about paths to Def that go through ImmedUse so mark it 2068 // visited and mark non-def operands as used. 2069 Visited.insert(ImmedUse); 2070 for (const SDValue &Op : ImmedUse->op_values()) { 2071 SDNode *N = Op.getNode(); 2072 // Ignore chain deps (they are validated by 2073 // HandleMergeInputChains) and immediate uses 2074 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2075 continue; 2076 if (!Visited.insert(N).second) 2077 continue; 2078 WorkList.push_back(N); 2079 } 2080 2081 // Initialize worklist to operands of Root. 2082 if (Root != ImmedUse) { 2083 for (const SDValue &Op : Root->op_values()) { 2084 SDNode *N = Op.getNode(); 2085 // Ignore chains (they are validated by HandleMergeInputChains) 2086 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2087 continue; 2088 if (!Visited.insert(N).second) 2089 continue; 2090 WorkList.push_back(N); 2091 } 2092 } 2093 2094 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2095 } 2096 2097 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2098 /// operand node N of U during instruction selection that starts at Root. 2099 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2100 SDNode *Root) const { 2101 if (OptLevel == CodeGenOpt::None) return false; 2102 return N.hasOneUse(); 2103 } 2104 2105 /// IsLegalToFold - Returns true if the specific operand node N of 2106 /// U can be folded during instruction selection that starts at Root. 2107 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2108 CodeGenOpt::Level OptLevel, 2109 bool IgnoreChains) { 2110 if (OptLevel == CodeGenOpt::None) return false; 2111 2112 // If Root use can somehow reach N through a path that that doesn't contain 2113 // U then folding N would create a cycle. e.g. In the following 2114 // diagram, Root can reach N through X. If N is folded into Root, then 2115 // X is both a predecessor and a successor of U. 2116 // 2117 // [N*] // 2118 // ^ ^ // 2119 // / \ // 2120 // [U*] [X]? // 2121 // ^ ^ // 2122 // \ / // 2123 // \ / // 2124 // [Root*] // 2125 // 2126 // * indicates nodes to be folded together. 2127 // 2128 // If Root produces glue, then it gets (even more) interesting. Since it 2129 // will be "glued" together with its glue use in the scheduler, we need to 2130 // check if it might reach N. 2131 // 2132 // [N*] // 2133 // ^ ^ // 2134 // / \ // 2135 // [U*] [X]? // 2136 // ^ ^ // 2137 // \ \ // 2138 // \ | // 2139 // [Root*] | // 2140 // ^ | // 2141 // f | // 2142 // | / // 2143 // [Y] / // 2144 // ^ / // 2145 // f / // 2146 // | / // 2147 // [GU] // 2148 // 2149 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2150 // (call it Fold), then X is a predecessor of GU and a successor of 2151 // Fold. But since Fold and GU are glued together, this will create 2152 // a cycle in the scheduling graph. 2153 2154 // If the node has glue, walk down the graph to the "lowest" node in the 2155 // glueged set. 2156 EVT VT = Root->getValueType(Root->getNumValues()-1); 2157 while (VT == MVT::Glue) { 2158 SDNode *GU = findGlueUse(Root); 2159 if (!GU) 2160 break; 2161 Root = GU; 2162 VT = Root->getValueType(Root->getNumValues()-1); 2163 2164 // If our query node has a glue result with a use, we've walked up it. If 2165 // the user (which has already been selected) has a chain or indirectly uses 2166 // the chain, HandleMergeInputChains will not consider it. Because of 2167 // this, we cannot ignore chains in this predicate. 2168 IgnoreChains = false; 2169 } 2170 2171 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2172 } 2173 2174 void SelectionDAGISel::Select_INLINEASM(SDNode *N) { 2175 SDLoc DL(N); 2176 2177 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2178 SelectInlineAsmMemoryOperands(Ops, DL); 2179 2180 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2181 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops); 2182 New->setNodeId(-1); 2183 ReplaceUses(N, New.getNode()); 2184 CurDAG->RemoveDeadNode(N); 2185 } 2186 2187 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2188 SDLoc dl(Op); 2189 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2190 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2191 2192 EVT VT = Op->getValueType(0); 2193 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2194 Register Reg = 2195 TLI->getRegisterByName(RegStr->getString().data(), Ty, 2196 CurDAG->getMachineFunction()); 2197 SDValue New = CurDAG->getCopyFromReg( 2198 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2199 New->setNodeId(-1); 2200 ReplaceUses(Op, New.getNode()); 2201 CurDAG->RemoveDeadNode(Op); 2202 } 2203 2204 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2205 SDLoc dl(Op); 2206 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2207 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2208 2209 EVT VT = Op->getOperand(2).getValueType(); 2210 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2211 2212 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, 2213 CurDAG->getMachineFunction()); 2214 SDValue New = CurDAG->getCopyToReg( 2215 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2216 New->setNodeId(-1); 2217 ReplaceUses(Op, New.getNode()); 2218 CurDAG->RemoveDeadNode(Op); 2219 } 2220 2221 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2222 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2223 } 2224 2225 void SelectionDAGISel::Select_FREEZE(SDNode *N) { 2226 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. 2227 // If FREEZE instruction is added later, the code below must be changed as 2228 // well. 2229 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0), 2230 N->getOperand(0)); 2231 } 2232 2233 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) { 2234 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0), 2235 N->getOperand(0)); 2236 } 2237 2238 /// GetVBR - decode a vbr encoding whose top bit is set. 2239 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 2240 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2241 assert(Val >= 128 && "Not a VBR"); 2242 Val &= 127; // Remove first vbr bit. 2243 2244 unsigned Shift = 7; 2245 uint64_t NextBits; 2246 do { 2247 NextBits = MatcherTable[Idx++]; 2248 Val |= (NextBits&127) << Shift; 2249 Shift += 7; 2250 } while (NextBits & 128); 2251 2252 return Val; 2253 } 2254 2255 /// When a match is complete, this method updates uses of interior chain results 2256 /// to use the new results. 2257 void SelectionDAGISel::UpdateChains( 2258 SDNode *NodeToMatch, SDValue InputChain, 2259 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2260 SmallVector<SDNode*, 4> NowDeadNodes; 2261 2262 // Now that all the normal results are replaced, we replace the chain and 2263 // glue results if present. 2264 if (!ChainNodesMatched.empty()) { 2265 assert(InputChain.getNode() && 2266 "Matched input chains but didn't produce a chain"); 2267 // Loop over all of the nodes we matched that produced a chain result. 2268 // Replace all the chain results with the final chain we ended up with. 2269 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2270 SDNode *ChainNode = ChainNodesMatched[i]; 2271 // If ChainNode is null, it's because we replaced it on a previous 2272 // iteration and we cleared it out of the map. Just skip it. 2273 if (!ChainNode) 2274 continue; 2275 2276 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2277 "Deleted node left in chain"); 2278 2279 // Don't replace the results of the root node if we're doing a 2280 // MorphNodeTo. 2281 if (ChainNode == NodeToMatch && isMorphNodeTo) 2282 continue; 2283 2284 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2285 if (ChainVal.getValueType() == MVT::Glue) 2286 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2287 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2288 SelectionDAG::DAGNodeDeletedListener NDL( 2289 *CurDAG, [&](SDNode *N, SDNode *E) { 2290 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2291 static_cast<SDNode *>(nullptr)); 2292 }); 2293 if (ChainNode->getOpcode() != ISD::TokenFactor) 2294 ReplaceUses(ChainVal, InputChain); 2295 2296 // If the node became dead and we haven't already seen it, delete it. 2297 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2298 !llvm::is_contained(NowDeadNodes, ChainNode)) 2299 NowDeadNodes.push_back(ChainNode); 2300 } 2301 } 2302 2303 if (!NowDeadNodes.empty()) 2304 CurDAG->RemoveDeadNodes(NowDeadNodes); 2305 2306 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2307 } 2308 2309 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2310 /// operation for when the pattern matched at least one node with a chains. The 2311 /// input vector contains a list of all of the chained nodes that we match. We 2312 /// must determine if this is a valid thing to cover (i.e. matching it won't 2313 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2314 /// be used as the input node chain for the generated nodes. 2315 static SDValue 2316 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2317 SelectionDAG *CurDAG) { 2318 2319 SmallPtrSet<const SDNode *, 16> Visited; 2320 SmallVector<const SDNode *, 8> Worklist; 2321 SmallVector<SDValue, 3> InputChains; 2322 unsigned int Max = 8192; 2323 2324 // Quick exit on trivial merge. 2325 if (ChainNodesMatched.size() == 1) 2326 return ChainNodesMatched[0]->getOperand(0); 2327 2328 // Add chains that aren't already added (internal). Peek through 2329 // token factors. 2330 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2331 if (V.getValueType() != MVT::Other) 2332 return; 2333 if (V->getOpcode() == ISD::EntryToken) 2334 return; 2335 if (!Visited.insert(V.getNode()).second) 2336 return; 2337 if (V->getOpcode() == ISD::TokenFactor) { 2338 for (const SDValue &Op : V->op_values()) 2339 AddChains(Op); 2340 } else 2341 InputChains.push_back(V); 2342 }; 2343 2344 for (auto *N : ChainNodesMatched) { 2345 Worklist.push_back(N); 2346 Visited.insert(N); 2347 } 2348 2349 while (!Worklist.empty()) 2350 AddChains(Worklist.pop_back_val()->getOperand(0)); 2351 2352 // Skip the search if there are no chain dependencies. 2353 if (InputChains.size() == 0) 2354 return CurDAG->getEntryNode(); 2355 2356 // If one of these chains is a successor of input, we must have a 2357 // node that is both the predecessor and successor of the 2358 // to-be-merged nodes. Fail. 2359 Visited.clear(); 2360 for (SDValue V : InputChains) 2361 Worklist.push_back(V.getNode()); 2362 2363 for (auto *N : ChainNodesMatched) 2364 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2365 return SDValue(); 2366 2367 // Return merged chain. 2368 if (InputChains.size() == 1) 2369 return InputChains[0]; 2370 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2371 MVT::Other, InputChains); 2372 } 2373 2374 /// MorphNode - Handle morphing a node in place for the selector. 2375 SDNode *SelectionDAGISel:: 2376 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2377 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2378 // It is possible we're using MorphNodeTo to replace a node with no 2379 // normal results with one that has a normal result (or we could be 2380 // adding a chain) and the input could have glue and chains as well. 2381 // In this case we need to shift the operands down. 2382 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2383 // than the old isel though. 2384 int OldGlueResultNo = -1, OldChainResultNo = -1; 2385 2386 unsigned NTMNumResults = Node->getNumValues(); 2387 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2388 OldGlueResultNo = NTMNumResults-1; 2389 if (NTMNumResults != 1 && 2390 Node->getValueType(NTMNumResults-2) == MVT::Other) 2391 OldChainResultNo = NTMNumResults-2; 2392 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2393 OldChainResultNo = NTMNumResults-1; 2394 2395 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2396 // that this deletes operands of the old node that become dead. 2397 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2398 2399 // MorphNodeTo can operate in two ways: if an existing node with the 2400 // specified operands exists, it can just return it. Otherwise, it 2401 // updates the node in place to have the requested operands. 2402 if (Res == Node) { 2403 // If we updated the node in place, reset the node ID. To the isel, 2404 // this should be just like a newly allocated machine node. 2405 Res->setNodeId(-1); 2406 } 2407 2408 unsigned ResNumResults = Res->getNumValues(); 2409 // Move the glue if needed. 2410 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2411 (unsigned)OldGlueResultNo != ResNumResults-1) 2412 ReplaceUses(SDValue(Node, OldGlueResultNo), 2413 SDValue(Res, ResNumResults - 1)); 2414 2415 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2416 --ResNumResults; 2417 2418 // Move the chain reference if needed. 2419 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2420 (unsigned)OldChainResultNo != ResNumResults-1) 2421 ReplaceUses(SDValue(Node, OldChainResultNo), 2422 SDValue(Res, ResNumResults - 1)); 2423 2424 // Otherwise, no replacement happened because the node already exists. Replace 2425 // Uses of the old node with the new one. 2426 if (Res != Node) { 2427 ReplaceNode(Node, Res); 2428 } else { 2429 EnforceNodeIdInvariant(Res); 2430 } 2431 2432 return Res; 2433 } 2434 2435 /// CheckSame - Implements OP_CheckSame. 2436 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2437 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2438 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { 2439 // Accept if it is exactly the same as a previously recorded node. 2440 unsigned RecNo = MatcherTable[MatcherIndex++]; 2441 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2442 return N == RecordedNodes[RecNo].first; 2443 } 2444 2445 /// CheckChildSame - Implements OP_CheckChildXSame. 2446 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( 2447 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2448 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes, 2449 unsigned ChildNo) { 2450 if (ChildNo >= N.getNumOperands()) 2451 return false; // Match fails if out of range child #. 2452 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2453 RecordedNodes); 2454 } 2455 2456 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2457 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2458 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2459 const SelectionDAGISel &SDISel) { 2460 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2461 } 2462 2463 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2464 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2465 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2466 const SelectionDAGISel &SDISel, SDNode *N) { 2467 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2468 } 2469 2470 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2471 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2472 SDNode *N) { 2473 uint16_t Opc = MatcherTable[MatcherIndex++]; 2474 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2475 return N->getOpcode() == Opc; 2476 } 2477 2478 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2479 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2480 const TargetLowering *TLI, const DataLayout &DL) { 2481 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2482 if (N.getValueType() == VT) return true; 2483 2484 // Handle the case when VT is iPTR. 2485 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2486 } 2487 2488 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2489 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2490 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2491 unsigned ChildNo) { 2492 if (ChildNo >= N.getNumOperands()) 2493 return false; // Match fails if out of range child #. 2494 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2495 DL); 2496 } 2497 2498 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2499 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2500 SDValue N) { 2501 return cast<CondCodeSDNode>(N)->get() == 2502 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2503 } 2504 2505 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2506 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2507 SDValue N) { 2508 if (2 >= N.getNumOperands()) 2509 return false; 2510 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2511 } 2512 2513 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2514 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2515 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2516 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2517 if (cast<VTSDNode>(N)->getVT() == VT) 2518 return true; 2519 2520 // Handle the case when VT is iPTR. 2521 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2522 } 2523 2524 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude 2525 // shifted left by 1. 2526 static uint64_t decodeSignRotatedValue(uint64_t V) { 2527 if ((V & 1) == 0) 2528 return V >> 1; 2529 if (V != 1) 2530 return -(V >> 1); 2531 // There is no such thing as -0 with integers. "-0" really means MININT. 2532 return 1ULL << 63; 2533 } 2534 2535 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2536 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2537 SDValue N) { 2538 int64_t Val = MatcherTable[MatcherIndex++]; 2539 if (Val & 128) 2540 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2541 2542 Val = decodeSignRotatedValue(Val); 2543 2544 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2545 return C && C->getSExtValue() == Val; 2546 } 2547 2548 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2549 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2550 SDValue N, unsigned ChildNo) { 2551 if (ChildNo >= N.getNumOperands()) 2552 return false; // Match fails if out of range child #. 2553 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2554 } 2555 2556 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2557 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2558 SDValue N, const SelectionDAGISel &SDISel) { 2559 int64_t Val = MatcherTable[MatcherIndex++]; 2560 if (Val & 128) 2561 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2562 2563 if (N->getOpcode() != ISD::AND) return false; 2564 2565 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2566 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2567 } 2568 2569 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2570 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2571 const SelectionDAGISel &SDISel) { 2572 int64_t Val = MatcherTable[MatcherIndex++]; 2573 if (Val & 128) 2574 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2575 2576 if (N->getOpcode() != ISD::OR) return false; 2577 2578 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2579 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2580 } 2581 2582 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2583 /// scope, evaluate the current node. If the current predicate is known to 2584 /// fail, set Result=true and return anything. If the current predicate is 2585 /// known to pass, set Result=false and return the MatcherIndex to continue 2586 /// with. If the current predicate is unknown, set Result=false and return the 2587 /// MatcherIndex to continue with. 2588 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2589 unsigned Index, SDValue N, 2590 bool &Result, 2591 const SelectionDAGISel &SDISel, 2592 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2593 switch (Table[Index++]) { 2594 default: 2595 Result = false; 2596 return Index-1; // Could not evaluate this predicate. 2597 case SelectionDAGISel::OPC_CheckSame: 2598 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2599 return Index; 2600 case SelectionDAGISel::OPC_CheckChild0Same: 2601 case SelectionDAGISel::OPC_CheckChild1Same: 2602 case SelectionDAGISel::OPC_CheckChild2Same: 2603 case SelectionDAGISel::OPC_CheckChild3Same: 2604 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2605 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2606 return Index; 2607 case SelectionDAGISel::OPC_CheckPatternPredicate: 2608 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2609 return Index; 2610 case SelectionDAGISel::OPC_CheckPredicate: 2611 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2612 return Index; 2613 case SelectionDAGISel::OPC_CheckOpcode: 2614 Result = !::CheckOpcode(Table, Index, N.getNode()); 2615 return Index; 2616 case SelectionDAGISel::OPC_CheckType: 2617 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2618 SDISel.CurDAG->getDataLayout()); 2619 return Index; 2620 case SelectionDAGISel::OPC_CheckTypeRes: { 2621 unsigned Res = Table[Index++]; 2622 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2623 SDISel.CurDAG->getDataLayout()); 2624 return Index; 2625 } 2626 case SelectionDAGISel::OPC_CheckChild0Type: 2627 case SelectionDAGISel::OPC_CheckChild1Type: 2628 case SelectionDAGISel::OPC_CheckChild2Type: 2629 case SelectionDAGISel::OPC_CheckChild3Type: 2630 case SelectionDAGISel::OPC_CheckChild4Type: 2631 case SelectionDAGISel::OPC_CheckChild5Type: 2632 case SelectionDAGISel::OPC_CheckChild6Type: 2633 case SelectionDAGISel::OPC_CheckChild7Type: 2634 Result = !::CheckChildType( 2635 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2636 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2637 return Index; 2638 case SelectionDAGISel::OPC_CheckCondCode: 2639 Result = !::CheckCondCode(Table, Index, N); 2640 return Index; 2641 case SelectionDAGISel::OPC_CheckChild2CondCode: 2642 Result = !::CheckChild2CondCode(Table, Index, N); 2643 return Index; 2644 case SelectionDAGISel::OPC_CheckValueType: 2645 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2646 SDISel.CurDAG->getDataLayout()); 2647 return Index; 2648 case SelectionDAGISel::OPC_CheckInteger: 2649 Result = !::CheckInteger(Table, Index, N); 2650 return Index; 2651 case SelectionDAGISel::OPC_CheckChild0Integer: 2652 case SelectionDAGISel::OPC_CheckChild1Integer: 2653 case SelectionDAGISel::OPC_CheckChild2Integer: 2654 case SelectionDAGISel::OPC_CheckChild3Integer: 2655 case SelectionDAGISel::OPC_CheckChild4Integer: 2656 Result = !::CheckChildInteger(Table, Index, N, 2657 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2658 return Index; 2659 case SelectionDAGISel::OPC_CheckAndImm: 2660 Result = !::CheckAndImm(Table, Index, N, SDISel); 2661 return Index; 2662 case SelectionDAGISel::OPC_CheckOrImm: 2663 Result = !::CheckOrImm(Table, Index, N, SDISel); 2664 return Index; 2665 } 2666 } 2667 2668 namespace { 2669 2670 struct MatchScope { 2671 /// FailIndex - If this match fails, this is the index to continue with. 2672 unsigned FailIndex; 2673 2674 /// NodeStack - The node stack when the scope was formed. 2675 SmallVector<SDValue, 4> NodeStack; 2676 2677 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2678 unsigned NumRecordedNodes; 2679 2680 /// NumMatchedMemRefs - The number of matched memref entries. 2681 unsigned NumMatchedMemRefs; 2682 2683 /// InputChain/InputGlue - The current chain/glue 2684 SDValue InputChain, InputGlue; 2685 2686 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2687 bool HasChainNodesMatched; 2688 }; 2689 2690 /// \A DAG update listener to keep the matching state 2691 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2692 /// change the DAG while matching. X86 addressing mode matcher is an example 2693 /// for this. 2694 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2695 { 2696 SDNode **NodeToMatch; 2697 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2698 SmallVectorImpl<MatchScope> &MatchScopes; 2699 2700 public: 2701 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2702 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2703 SmallVectorImpl<MatchScope> &MS) 2704 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2705 RecordedNodes(RN), MatchScopes(MS) {} 2706 2707 void NodeDeleted(SDNode *N, SDNode *E) override { 2708 // Some early-returns here to avoid the search if we deleted the node or 2709 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2710 // do, so it's unnecessary to update matching state at that point). 2711 // Neither of these can occur currently because we only install this 2712 // update listener during matching a complex patterns. 2713 if (!E || E->isMachineOpcode()) 2714 return; 2715 // Check if NodeToMatch was updated. 2716 if (N == *NodeToMatch) 2717 *NodeToMatch = E; 2718 // Performing linear search here does not matter because we almost never 2719 // run this code. You'd have to have a CSE during complex pattern 2720 // matching. 2721 for (auto &I : RecordedNodes) 2722 if (I.first.getNode() == N) 2723 I.first.setNode(E); 2724 2725 for (auto &I : MatchScopes) 2726 for (auto &J : I.NodeStack) 2727 if (J.getNode() == N) 2728 J.setNode(E); 2729 } 2730 }; 2731 2732 } // end anonymous namespace 2733 2734 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2735 const unsigned char *MatcherTable, 2736 unsigned TableSize) { 2737 // FIXME: Should these even be selected? Handle these cases in the caller? 2738 switch (NodeToMatch->getOpcode()) { 2739 default: 2740 break; 2741 case ISD::EntryToken: // These nodes remain the same. 2742 case ISD::BasicBlock: 2743 case ISD::Register: 2744 case ISD::RegisterMask: 2745 case ISD::HANDLENODE: 2746 case ISD::MDNODE_SDNODE: 2747 case ISD::TargetConstant: 2748 case ISD::TargetConstantFP: 2749 case ISD::TargetConstantPool: 2750 case ISD::TargetFrameIndex: 2751 case ISD::TargetExternalSymbol: 2752 case ISD::MCSymbol: 2753 case ISD::TargetBlockAddress: 2754 case ISD::TargetJumpTable: 2755 case ISD::TargetGlobalTLSAddress: 2756 case ISD::TargetGlobalAddress: 2757 case ISD::TokenFactor: 2758 case ISD::CopyFromReg: 2759 case ISD::CopyToReg: 2760 case ISD::EH_LABEL: 2761 case ISD::ANNOTATION_LABEL: 2762 case ISD::LIFETIME_START: 2763 case ISD::LIFETIME_END: 2764 case ISD::PSEUDO_PROBE: 2765 NodeToMatch->setNodeId(-1); // Mark selected. 2766 return; 2767 case ISD::AssertSext: 2768 case ISD::AssertZext: 2769 case ISD::AssertAlign: 2770 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2771 CurDAG->RemoveDeadNode(NodeToMatch); 2772 return; 2773 case ISD::INLINEASM: 2774 case ISD::INLINEASM_BR: 2775 Select_INLINEASM(NodeToMatch); 2776 return; 2777 case ISD::READ_REGISTER: 2778 Select_READ_REGISTER(NodeToMatch); 2779 return; 2780 case ISD::WRITE_REGISTER: 2781 Select_WRITE_REGISTER(NodeToMatch); 2782 return; 2783 case ISD::UNDEF: 2784 Select_UNDEF(NodeToMatch); 2785 return; 2786 case ISD::FREEZE: 2787 Select_FREEZE(NodeToMatch); 2788 return; 2789 case ISD::ARITH_FENCE: 2790 Select_ARITH_FENCE(NodeToMatch); 2791 return; 2792 } 2793 2794 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2795 2796 // Set up the node stack with NodeToMatch as the only node on the stack. 2797 SmallVector<SDValue, 8> NodeStack; 2798 SDValue N = SDValue(NodeToMatch, 0); 2799 NodeStack.push_back(N); 2800 2801 // MatchScopes - Scopes used when matching, if a match failure happens, this 2802 // indicates where to continue checking. 2803 SmallVector<MatchScope, 8> MatchScopes; 2804 2805 // RecordedNodes - This is the set of nodes that have been recorded by the 2806 // state machine. The second value is the parent of the node, or null if the 2807 // root is recorded. 2808 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2809 2810 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2811 // pattern. 2812 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2813 2814 // These are the current input chain and glue for use when generating nodes. 2815 // Various Emit operations change these. For example, emitting a copytoreg 2816 // uses and updates these. 2817 SDValue InputChain, InputGlue; 2818 2819 // ChainNodesMatched - If a pattern matches nodes that have input/output 2820 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2821 // which ones they are. The result is captured into this list so that we can 2822 // update the chain results when the pattern is complete. 2823 SmallVector<SDNode*, 3> ChainNodesMatched; 2824 2825 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2826 2827 // Determine where to start the interpreter. Normally we start at opcode #0, 2828 // but if the state machine starts with an OPC_SwitchOpcode, then we 2829 // accelerate the first lookup (which is guaranteed to be hot) with the 2830 // OpcodeOffset table. 2831 unsigned MatcherIndex = 0; 2832 2833 if (!OpcodeOffset.empty()) { 2834 // Already computed the OpcodeOffset table, just index into it. 2835 if (N.getOpcode() < OpcodeOffset.size()) 2836 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2837 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2838 2839 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2840 // Otherwise, the table isn't computed, but the state machine does start 2841 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2842 // is the first time we're selecting an instruction. 2843 unsigned Idx = 1; 2844 while (true) { 2845 // Get the size of this case. 2846 unsigned CaseSize = MatcherTable[Idx++]; 2847 if (CaseSize & 128) 2848 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2849 if (CaseSize == 0) break; 2850 2851 // Get the opcode, add the index to the table. 2852 uint16_t Opc = MatcherTable[Idx++]; 2853 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2854 if (Opc >= OpcodeOffset.size()) 2855 OpcodeOffset.resize((Opc+1)*2); 2856 OpcodeOffset[Opc] = Idx; 2857 Idx += CaseSize; 2858 } 2859 2860 // Okay, do the lookup for the first opcode. 2861 if (N.getOpcode() < OpcodeOffset.size()) 2862 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2863 } 2864 2865 while (true) { 2866 assert(MatcherIndex < TableSize && "Invalid index"); 2867 #ifndef NDEBUG 2868 unsigned CurrentOpcodeIndex = MatcherIndex; 2869 #endif 2870 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2871 switch (Opcode) { 2872 case OPC_Scope: { 2873 // Okay, the semantics of this operation are that we should push a scope 2874 // then evaluate the first child. However, pushing a scope only to have 2875 // the first check fail (which then pops it) is inefficient. If we can 2876 // determine immediately that the first check (or first several) will 2877 // immediately fail, don't even bother pushing a scope for them. 2878 unsigned FailIndex; 2879 2880 while (true) { 2881 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2882 if (NumToSkip & 128) 2883 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2884 // Found the end of the scope with no match. 2885 if (NumToSkip == 0) { 2886 FailIndex = 0; 2887 break; 2888 } 2889 2890 FailIndex = MatcherIndex+NumToSkip; 2891 2892 unsigned MatcherIndexOfPredicate = MatcherIndex; 2893 (void)MatcherIndexOfPredicate; // silence warning. 2894 2895 // If we can't evaluate this predicate without pushing a scope (e.g. if 2896 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2897 // push the scope and evaluate the full predicate chain. 2898 bool Result; 2899 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2900 Result, *this, RecordedNodes); 2901 if (!Result) 2902 break; 2903 2904 LLVM_DEBUG( 2905 dbgs() << " Skipped scope entry (due to false predicate) at " 2906 << "index " << MatcherIndexOfPredicate << ", continuing at " 2907 << FailIndex << "\n"); 2908 ++NumDAGIselRetries; 2909 2910 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2911 // move to the next case. 2912 MatcherIndex = FailIndex; 2913 } 2914 2915 // If the whole scope failed to match, bail. 2916 if (FailIndex == 0) break; 2917 2918 // Push a MatchScope which indicates where to go if the first child fails 2919 // to match. 2920 MatchScope NewEntry; 2921 NewEntry.FailIndex = FailIndex; 2922 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2923 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2924 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2925 NewEntry.InputChain = InputChain; 2926 NewEntry.InputGlue = InputGlue; 2927 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2928 MatchScopes.push_back(NewEntry); 2929 continue; 2930 } 2931 case OPC_RecordNode: { 2932 // Remember this node, it may end up being an operand in the pattern. 2933 SDNode *Parent = nullptr; 2934 if (NodeStack.size() > 1) 2935 Parent = NodeStack[NodeStack.size()-2].getNode(); 2936 RecordedNodes.push_back(std::make_pair(N, Parent)); 2937 continue; 2938 } 2939 2940 case OPC_RecordChild0: case OPC_RecordChild1: 2941 case OPC_RecordChild2: case OPC_RecordChild3: 2942 case OPC_RecordChild4: case OPC_RecordChild5: 2943 case OPC_RecordChild6: case OPC_RecordChild7: { 2944 unsigned ChildNo = Opcode-OPC_RecordChild0; 2945 if (ChildNo >= N.getNumOperands()) 2946 break; // Match fails if out of range child #. 2947 2948 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2949 N.getNode())); 2950 continue; 2951 } 2952 case OPC_RecordMemRef: 2953 if (auto *MN = dyn_cast<MemSDNode>(N)) 2954 MatchedMemRefs.push_back(MN->getMemOperand()); 2955 else { 2956 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 2957 dbgs() << '\n'); 2958 } 2959 2960 continue; 2961 2962 case OPC_CaptureGlueInput: 2963 // If the current node has an input glue, capture it in InputGlue. 2964 if (N->getNumOperands() != 0 && 2965 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2966 InputGlue = N->getOperand(N->getNumOperands()-1); 2967 continue; 2968 2969 case OPC_MoveChild: { 2970 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2971 if (ChildNo >= N.getNumOperands()) 2972 break; // Match fails if out of range child #. 2973 N = N.getOperand(ChildNo); 2974 NodeStack.push_back(N); 2975 continue; 2976 } 2977 2978 case OPC_MoveChild0: case OPC_MoveChild1: 2979 case OPC_MoveChild2: case OPC_MoveChild3: 2980 case OPC_MoveChild4: case OPC_MoveChild5: 2981 case OPC_MoveChild6: case OPC_MoveChild7: { 2982 unsigned ChildNo = Opcode-OPC_MoveChild0; 2983 if (ChildNo >= N.getNumOperands()) 2984 break; // Match fails if out of range child #. 2985 N = N.getOperand(ChildNo); 2986 NodeStack.push_back(N); 2987 continue; 2988 } 2989 2990 case OPC_MoveParent: 2991 // Pop the current node off the NodeStack. 2992 NodeStack.pop_back(); 2993 assert(!NodeStack.empty() && "Node stack imbalance!"); 2994 N = NodeStack.back(); 2995 continue; 2996 2997 case OPC_CheckSame: 2998 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2999 continue; 3000 3001 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3002 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3003 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3004 Opcode-OPC_CheckChild0Same)) 3005 break; 3006 continue; 3007 3008 case OPC_CheckPatternPredicate: 3009 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3010 continue; 3011 case OPC_CheckPredicate: 3012 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3013 N.getNode())) 3014 break; 3015 continue; 3016 case OPC_CheckPredicateWithOperands: { 3017 unsigned OpNum = MatcherTable[MatcherIndex++]; 3018 SmallVector<SDValue, 8> Operands; 3019 3020 for (unsigned i = 0; i < OpNum; ++i) 3021 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3022 3023 unsigned PredNo = MatcherTable[MatcherIndex++]; 3024 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3025 break; 3026 continue; 3027 } 3028 case OPC_CheckComplexPat: { 3029 unsigned CPNum = MatcherTable[MatcherIndex++]; 3030 unsigned RecNo = MatcherTable[MatcherIndex++]; 3031 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3032 3033 // If target can modify DAG during matching, keep the matching state 3034 // consistent. 3035 std::unique_ptr<MatchStateUpdater> MSU; 3036 if (ComplexPatternFuncMutatesDAG()) 3037 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3038 MatchScopes)); 3039 3040 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3041 RecordedNodes[RecNo].first, CPNum, 3042 RecordedNodes)) 3043 break; 3044 continue; 3045 } 3046 case OPC_CheckOpcode: 3047 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3048 continue; 3049 3050 case OPC_CheckType: 3051 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3052 CurDAG->getDataLayout())) 3053 break; 3054 continue; 3055 3056 case OPC_CheckTypeRes: { 3057 unsigned Res = MatcherTable[MatcherIndex++]; 3058 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3059 CurDAG->getDataLayout())) 3060 break; 3061 continue; 3062 } 3063 3064 case OPC_SwitchOpcode: { 3065 unsigned CurNodeOpcode = N.getOpcode(); 3066 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3067 unsigned CaseSize; 3068 while (true) { 3069 // Get the size of this case. 3070 CaseSize = MatcherTable[MatcherIndex++]; 3071 if (CaseSize & 128) 3072 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3073 if (CaseSize == 0) break; 3074 3075 uint16_t Opc = MatcherTable[MatcherIndex++]; 3076 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3077 3078 // If the opcode matches, then we will execute this case. 3079 if (CurNodeOpcode == Opc) 3080 break; 3081 3082 // Otherwise, skip over this case. 3083 MatcherIndex += CaseSize; 3084 } 3085 3086 // If no cases matched, bail out. 3087 if (CaseSize == 0) break; 3088 3089 // Otherwise, execute the case we found. 3090 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3091 << MatcherIndex << "\n"); 3092 continue; 3093 } 3094 3095 case OPC_SwitchType: { 3096 MVT CurNodeVT = N.getSimpleValueType(); 3097 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3098 unsigned CaseSize; 3099 while (true) { 3100 // Get the size of this case. 3101 CaseSize = MatcherTable[MatcherIndex++]; 3102 if (CaseSize & 128) 3103 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3104 if (CaseSize == 0) break; 3105 3106 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3107 if (CaseVT == MVT::iPTR) 3108 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3109 3110 // If the VT matches, then we will execute this case. 3111 if (CurNodeVT == CaseVT) 3112 break; 3113 3114 // Otherwise, skip over this case. 3115 MatcherIndex += CaseSize; 3116 } 3117 3118 // If no cases matched, bail out. 3119 if (CaseSize == 0) break; 3120 3121 // Otherwise, execute the case we found. 3122 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3123 << "] from " << SwitchStart << " to " << MatcherIndex 3124 << '\n'); 3125 continue; 3126 } 3127 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3128 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3129 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3130 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3131 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3132 CurDAG->getDataLayout(), 3133 Opcode - OPC_CheckChild0Type)) 3134 break; 3135 continue; 3136 case OPC_CheckCondCode: 3137 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3138 continue; 3139 case OPC_CheckChild2CondCode: 3140 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3141 continue; 3142 case OPC_CheckValueType: 3143 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3144 CurDAG->getDataLayout())) 3145 break; 3146 continue; 3147 case OPC_CheckInteger: 3148 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3149 continue; 3150 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3151 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3152 case OPC_CheckChild4Integer: 3153 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3154 Opcode-OPC_CheckChild0Integer)) break; 3155 continue; 3156 case OPC_CheckAndImm: 3157 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3158 continue; 3159 case OPC_CheckOrImm: 3160 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3161 continue; 3162 case OPC_CheckImmAllOnesV: 3163 if (!ISD::isConstantSplatVectorAllOnes(N.getNode())) 3164 break; 3165 continue; 3166 case OPC_CheckImmAllZerosV: 3167 if (!ISD::isConstantSplatVectorAllZeros(N.getNode())) 3168 break; 3169 continue; 3170 3171 case OPC_CheckFoldableChainNode: { 3172 assert(NodeStack.size() != 1 && "No parent node"); 3173 // Verify that all intermediate nodes between the root and this one have 3174 // a single use (ignoring chains, which are handled in UpdateChains). 3175 bool HasMultipleUses = false; 3176 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { 3177 unsigned NNonChainUses = 0; 3178 SDNode *NS = NodeStack[i].getNode(); 3179 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI) 3180 if (UI.getUse().getValueType() != MVT::Other) 3181 if (++NNonChainUses > 1) { 3182 HasMultipleUses = true; 3183 break; 3184 } 3185 if (HasMultipleUses) break; 3186 } 3187 if (HasMultipleUses) break; 3188 3189 // Check to see that the target thinks this is profitable to fold and that 3190 // we can fold it without inducing cycles in the graph. 3191 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3192 NodeToMatch) || 3193 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3194 NodeToMatch, OptLevel, 3195 true/*We validate our own chains*/)) 3196 break; 3197 3198 continue; 3199 } 3200 case OPC_EmitInteger: 3201 case OPC_EmitStringInteger: { 3202 MVT::SimpleValueType VT = 3203 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3204 int64_t Val = MatcherTable[MatcherIndex++]; 3205 if (Val & 128) 3206 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3207 if (Opcode == OPC_EmitInteger) 3208 Val = decodeSignRotatedValue(Val); 3209 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3210 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3211 VT), nullptr)); 3212 continue; 3213 } 3214 case OPC_EmitRegister: { 3215 MVT::SimpleValueType VT = 3216 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3217 unsigned RegNo = MatcherTable[MatcherIndex++]; 3218 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3219 CurDAG->getRegister(RegNo, VT), nullptr)); 3220 continue; 3221 } 3222 case OPC_EmitRegister2: { 3223 // For targets w/ more than 256 register names, the register enum 3224 // values are stored in two bytes in the matcher table (just like 3225 // opcodes). 3226 MVT::SimpleValueType VT = 3227 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3228 unsigned RegNo = MatcherTable[MatcherIndex++]; 3229 RegNo |= MatcherTable[MatcherIndex++] << 8; 3230 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3231 CurDAG->getRegister(RegNo, VT), nullptr)); 3232 continue; 3233 } 3234 3235 case OPC_EmitConvertToTarget: { 3236 // Convert from IMM/FPIMM to target version. 3237 unsigned RecNo = MatcherTable[MatcherIndex++]; 3238 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3239 SDValue Imm = RecordedNodes[RecNo].first; 3240 3241 if (Imm->getOpcode() == ISD::Constant) { 3242 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3243 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3244 Imm.getValueType()); 3245 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3246 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3247 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3248 Imm.getValueType()); 3249 } 3250 3251 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3252 continue; 3253 } 3254 3255 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3256 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3257 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3258 // These are space-optimized forms of OPC_EmitMergeInputChains. 3259 assert(!InputChain.getNode() && 3260 "EmitMergeInputChains should be the first chain producing node"); 3261 assert(ChainNodesMatched.empty() && 3262 "Should only have one EmitMergeInputChains per match"); 3263 3264 // Read all of the chained nodes. 3265 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3266 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3267 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3268 3269 // FIXME: What if other value results of the node have uses not matched 3270 // by this pattern? 3271 if (ChainNodesMatched.back() != NodeToMatch && 3272 !RecordedNodes[RecNo].first.hasOneUse()) { 3273 ChainNodesMatched.clear(); 3274 break; 3275 } 3276 3277 // Merge the input chains if they are not intra-pattern references. 3278 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3279 3280 if (!InputChain.getNode()) 3281 break; // Failed to merge. 3282 continue; 3283 } 3284 3285 case OPC_EmitMergeInputChains: { 3286 assert(!InputChain.getNode() && 3287 "EmitMergeInputChains should be the first chain producing node"); 3288 // This node gets a list of nodes we matched in the input that have 3289 // chains. We want to token factor all of the input chains to these nodes 3290 // together. However, if any of the input chains is actually one of the 3291 // nodes matched in this pattern, then we have an intra-match reference. 3292 // Ignore these because the newly token factored chain should not refer to 3293 // the old nodes. 3294 unsigned NumChains = MatcherTable[MatcherIndex++]; 3295 assert(NumChains != 0 && "Can't TF zero chains"); 3296 3297 assert(ChainNodesMatched.empty() && 3298 "Should only have one EmitMergeInputChains per match"); 3299 3300 // Read all of the chained nodes. 3301 for (unsigned i = 0; i != NumChains; ++i) { 3302 unsigned RecNo = MatcherTable[MatcherIndex++]; 3303 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3304 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3305 3306 // FIXME: What if other value results of the node have uses not matched 3307 // by this pattern? 3308 if (ChainNodesMatched.back() != NodeToMatch && 3309 !RecordedNodes[RecNo].first.hasOneUse()) { 3310 ChainNodesMatched.clear(); 3311 break; 3312 } 3313 } 3314 3315 // If the inner loop broke out, the match fails. 3316 if (ChainNodesMatched.empty()) 3317 break; 3318 3319 // Merge the input chains if they are not intra-pattern references. 3320 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3321 3322 if (!InputChain.getNode()) 3323 break; // Failed to merge. 3324 3325 continue; 3326 } 3327 3328 case OPC_EmitCopyToReg: 3329 case OPC_EmitCopyToReg2: { 3330 unsigned RecNo = MatcherTable[MatcherIndex++]; 3331 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3332 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3333 if (Opcode == OPC_EmitCopyToReg2) 3334 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3335 3336 if (!InputChain.getNode()) 3337 InputChain = CurDAG->getEntryNode(); 3338 3339 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3340 DestPhysReg, RecordedNodes[RecNo].first, 3341 InputGlue); 3342 3343 InputGlue = InputChain.getValue(1); 3344 continue; 3345 } 3346 3347 case OPC_EmitNodeXForm: { 3348 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3349 unsigned RecNo = MatcherTable[MatcherIndex++]; 3350 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3351 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3352 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3353 continue; 3354 } 3355 case OPC_Coverage: { 3356 // This is emitted right before MorphNode/EmitNode. 3357 // So it should be safe to assume that this node has been selected 3358 unsigned index = MatcherTable[MatcherIndex++]; 3359 index |= (MatcherTable[MatcherIndex++] << 8); 3360 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3361 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3362 continue; 3363 } 3364 3365 case OPC_EmitNode: case OPC_MorphNodeTo: 3366 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3367 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3368 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3369 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3370 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3371 // Get the result VT list. 3372 unsigned NumVTs; 3373 // If this is one of the compressed forms, get the number of VTs based 3374 // on the Opcode. Otherwise read the next byte from the table. 3375 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3376 NumVTs = Opcode - OPC_MorphNodeTo0; 3377 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3378 NumVTs = Opcode - OPC_EmitNode0; 3379 else 3380 NumVTs = MatcherTable[MatcherIndex++]; 3381 SmallVector<EVT, 4> VTs; 3382 for (unsigned i = 0; i != NumVTs; ++i) { 3383 MVT::SimpleValueType VT = 3384 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3385 if (VT == MVT::iPTR) 3386 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3387 VTs.push_back(VT); 3388 } 3389 3390 if (EmitNodeInfo & OPFL_Chain) 3391 VTs.push_back(MVT::Other); 3392 if (EmitNodeInfo & OPFL_GlueOutput) 3393 VTs.push_back(MVT::Glue); 3394 3395 // This is hot code, so optimize the two most common cases of 1 and 2 3396 // results. 3397 SDVTList VTList; 3398 if (VTs.size() == 1) 3399 VTList = CurDAG->getVTList(VTs[0]); 3400 else if (VTs.size() == 2) 3401 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3402 else 3403 VTList = CurDAG->getVTList(VTs); 3404 3405 // Get the operand list. 3406 unsigned NumOps = MatcherTable[MatcherIndex++]; 3407 SmallVector<SDValue, 8> Ops; 3408 for (unsigned i = 0; i != NumOps; ++i) { 3409 unsigned RecNo = MatcherTable[MatcherIndex++]; 3410 if (RecNo & 128) 3411 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3412 3413 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3414 Ops.push_back(RecordedNodes[RecNo].first); 3415 } 3416 3417 // If there are variadic operands to add, handle them now. 3418 if (EmitNodeInfo & OPFL_VariadicInfo) { 3419 // Determine the start index to copy from. 3420 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3421 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3422 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3423 "Invalid variadic node"); 3424 // Copy all of the variadic operands, not including a potential glue 3425 // input. 3426 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3427 i != e; ++i) { 3428 SDValue V = NodeToMatch->getOperand(i); 3429 if (V.getValueType() == MVT::Glue) break; 3430 Ops.push_back(V); 3431 } 3432 } 3433 3434 // If this has chain/glue inputs, add them. 3435 if (EmitNodeInfo & OPFL_Chain) 3436 Ops.push_back(InputChain); 3437 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3438 Ops.push_back(InputGlue); 3439 3440 // Check whether any matched node could raise an FP exception. Since all 3441 // such nodes must have a chain, it suffices to check ChainNodesMatched. 3442 // We need to perform this check before potentially modifying one of the 3443 // nodes via MorphNode. 3444 bool MayRaiseFPException = false; 3445 for (auto *N : ChainNodesMatched) 3446 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) { 3447 MayRaiseFPException = true; 3448 break; 3449 } 3450 3451 // Create the node. 3452 MachineSDNode *Res = nullptr; 3453 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3454 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3455 if (!IsMorphNodeTo) { 3456 // If this is a normal EmitNode command, just create the new node and 3457 // add the results to the RecordedNodes list. 3458 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3459 VTList, Ops); 3460 3461 // Add all the non-glue/non-chain results to the RecordedNodes list. 3462 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3463 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3464 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3465 nullptr)); 3466 } 3467 } else { 3468 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3469 "NodeToMatch was removed partway through selection"); 3470 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3471 SDNode *E) { 3472 CurDAG->salvageDebugInfo(*N); 3473 auto &Chain = ChainNodesMatched; 3474 assert((!E || !is_contained(Chain, N)) && 3475 "Chain node replaced during MorphNode"); 3476 llvm::erase_value(Chain, N); 3477 }); 3478 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3479 Ops, EmitNodeInfo)); 3480 } 3481 3482 // Set the NoFPExcept flag when no original matched node could 3483 // raise an FP exception, but the new node potentially might. 3484 if (!MayRaiseFPException && mayRaiseFPException(Res)) { 3485 SDNodeFlags Flags = Res->getFlags(); 3486 Flags.setNoFPExcept(true); 3487 Res->setFlags(Flags); 3488 } 3489 3490 // If the node had chain/glue results, update our notion of the current 3491 // chain and glue. 3492 if (EmitNodeInfo & OPFL_GlueOutput) { 3493 InputGlue = SDValue(Res, VTs.size()-1); 3494 if (EmitNodeInfo & OPFL_Chain) 3495 InputChain = SDValue(Res, VTs.size()-2); 3496 } else if (EmitNodeInfo & OPFL_Chain) 3497 InputChain = SDValue(Res, VTs.size()-1); 3498 3499 // If the OPFL_MemRefs glue is set on this node, slap all of the 3500 // accumulated memrefs onto it. 3501 // 3502 // FIXME: This is vastly incorrect for patterns with multiple outputs 3503 // instructions that access memory and for ComplexPatterns that match 3504 // loads. 3505 if (EmitNodeInfo & OPFL_MemRefs) { 3506 // Only attach load or store memory operands if the generated 3507 // instruction may load or store. 3508 const MCInstrDesc &MCID = TII->get(TargetOpc); 3509 bool mayLoad = MCID.mayLoad(); 3510 bool mayStore = MCID.mayStore(); 3511 3512 // We expect to have relatively few of these so just filter them into a 3513 // temporary buffer so that we can easily add them to the instruction. 3514 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3515 for (MachineMemOperand *MMO : MatchedMemRefs) { 3516 if (MMO->isLoad()) { 3517 if (mayLoad) 3518 FilteredMemRefs.push_back(MMO); 3519 } else if (MMO->isStore()) { 3520 if (mayStore) 3521 FilteredMemRefs.push_back(MMO); 3522 } else { 3523 FilteredMemRefs.push_back(MMO); 3524 } 3525 } 3526 3527 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3528 } 3529 3530 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3531 << " Dropping mem operands\n"; 3532 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3533 << " node: "; 3534 Res->dump(CurDAG);); 3535 3536 // If this was a MorphNodeTo then we're completely done! 3537 if (IsMorphNodeTo) { 3538 // Update chain uses. 3539 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3540 return; 3541 } 3542 continue; 3543 } 3544 3545 case OPC_CompleteMatch: { 3546 // The match has been completed, and any new nodes (if any) have been 3547 // created. Patch up references to the matched dag to use the newly 3548 // created nodes. 3549 unsigned NumResults = MatcherTable[MatcherIndex++]; 3550 3551 for (unsigned i = 0; i != NumResults; ++i) { 3552 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3553 if (ResSlot & 128) 3554 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3555 3556 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3557 SDValue Res = RecordedNodes[ResSlot].first; 3558 3559 assert(i < NodeToMatch->getNumValues() && 3560 NodeToMatch->getValueType(i) != MVT::Other && 3561 NodeToMatch->getValueType(i) != MVT::Glue && 3562 "Invalid number of results to complete!"); 3563 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3564 NodeToMatch->getValueType(i) == MVT::iPTR || 3565 Res.getValueType() == MVT::iPTR || 3566 NodeToMatch->getValueType(i).getSizeInBits() == 3567 Res.getValueSizeInBits()) && 3568 "invalid replacement"); 3569 ReplaceUses(SDValue(NodeToMatch, i), Res); 3570 } 3571 3572 // Update chain uses. 3573 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3574 3575 // If the root node defines glue, we need to update it to the glue result. 3576 // TODO: This never happens in our tests and I think it can be removed / 3577 // replaced with an assert, but if we do it this the way the change is 3578 // NFC. 3579 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3580 MVT::Glue && 3581 InputGlue.getNode()) 3582 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3583 InputGlue); 3584 3585 assert(NodeToMatch->use_empty() && 3586 "Didn't replace all uses of the node?"); 3587 CurDAG->RemoveDeadNode(NodeToMatch); 3588 3589 return; 3590 } 3591 } 3592 3593 // If the code reached this point, then the match failed. See if there is 3594 // another child to try in the current 'Scope', otherwise pop it until we 3595 // find a case to check. 3596 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3597 << "\n"); 3598 ++NumDAGIselRetries; 3599 while (true) { 3600 if (MatchScopes.empty()) { 3601 CannotYetSelect(NodeToMatch); 3602 return; 3603 } 3604 3605 // Restore the interpreter state back to the point where the scope was 3606 // formed. 3607 MatchScope &LastScope = MatchScopes.back(); 3608 RecordedNodes.resize(LastScope.NumRecordedNodes); 3609 NodeStack.clear(); 3610 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3611 N = NodeStack.back(); 3612 3613 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3614 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3615 MatcherIndex = LastScope.FailIndex; 3616 3617 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3618 3619 InputChain = LastScope.InputChain; 3620 InputGlue = LastScope.InputGlue; 3621 if (!LastScope.HasChainNodesMatched) 3622 ChainNodesMatched.clear(); 3623 3624 // Check to see what the offset is at the new MatcherIndex. If it is zero 3625 // we have reached the end of this scope, otherwise we have another child 3626 // in the current scope to try. 3627 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3628 if (NumToSkip & 128) 3629 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3630 3631 // If we have another child in this scope to match, update FailIndex and 3632 // try it. 3633 if (NumToSkip != 0) { 3634 LastScope.FailIndex = MatcherIndex+NumToSkip; 3635 break; 3636 } 3637 3638 // End of this scope, pop it and try the next child in the containing 3639 // scope. 3640 MatchScopes.pop_back(); 3641 } 3642 } 3643 } 3644 3645 /// Return whether the node may raise an FP exception. 3646 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { 3647 // For machine opcodes, consult the MCID flag. 3648 if (N->isMachineOpcode()) { 3649 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 3650 return MCID.mayRaiseFPException(); 3651 } 3652 3653 // For ISD opcodes, only StrictFP opcodes may raise an FP 3654 // exception. 3655 if (N->isTargetOpcode()) 3656 return N->isTargetStrictFPOpcode(); 3657 return N->isStrictFPOpcode(); 3658 } 3659 3660 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3661 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3662 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3663 if (!C) 3664 return false; 3665 3666 // Detect when "or" is used to add an offset to a stack object. 3667 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3668 MachineFrameInfo &MFI = MF->getFrameInfo(); 3669 Align A = MFI.getObjectAlign(FN->getIndex()); 3670 int32_t Off = C->getSExtValue(); 3671 // If the alleged offset fits in the zero bits guaranteed by 3672 // the alignment, then this or is really an add. 3673 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); 3674 } 3675 return false; 3676 } 3677 3678 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3679 std::string msg; 3680 raw_string_ostream Msg(msg); 3681 Msg << "Cannot select: "; 3682 3683 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3684 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3685 N->getOpcode() != ISD::INTRINSIC_VOID) { 3686 N->printrFull(Msg, CurDAG); 3687 Msg << "\nIn function: " << MF->getName(); 3688 } else { 3689 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3690 unsigned iid = 3691 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3692 if (iid < Intrinsic::num_intrinsics) 3693 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid); 3694 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3695 Msg << "target intrinsic %" << TII->getName(iid); 3696 else 3697 Msg << "unknown intrinsic #" << iid; 3698 } 3699 report_fatal_error(Twine(Msg.str())); 3700 } 3701 3702 char SelectionDAGISel::ID = 0; 3703