xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp (revision 130d950cafcd29c6a32cf5357bf600dcd9c1d998)
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InlineAsm.h"
70 #include "llvm/IR/InstIterator.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Type.h"
79 #include "llvm/IR/User.h"
80 #include "llvm/IR/Value.h"
81 #include "llvm/InitializePasses.h"
82 #include "llvm/MC/MCInstrDesc.h"
83 #include "llvm/MC/MCRegisterInfo.h"
84 #include "llvm/Pass.h"
85 #include "llvm/Support/BranchProbability.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/CodeGen.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Compiler.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/ErrorHandling.h"
92 #include "llvm/Support/KnownBits.h"
93 #include "llvm/Support/MachineValueType.h"
94 #include "llvm/Support/Timer.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <iterator>
104 #include <limits>
105 #include <memory>
106 #include <string>
107 #include <utility>
108 #include <vector>
109 
110 using namespace llvm;
111 
112 #define DEBUG_TYPE "isel"
113 
114 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
115 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
116 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
117 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
118 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
119 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
120 STATISTIC(NumFastIselFailLowerArguments,
121           "Number of entry blocks where fast isel failed to lower arguments");
122 
123 static cl::opt<int> EnableFastISelAbort(
124     "fast-isel-abort", cl::Hidden,
125     cl::desc("Enable abort calls when \"fast\" instruction selection "
126              "fails to lower an instruction: 0 disable the abort, 1 will "
127              "abort but for args, calls and terminators, 2 will also "
128              "abort for argument lowering, and 3 will never fallback "
129              "to SelectionDAG."));
130 
131 static cl::opt<bool> EnableFastISelFallbackReport(
132     "fast-isel-report-on-fallback", cl::Hidden,
133     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
134              "falls back to SelectionDAG."));
135 
136 static cl::opt<bool>
137 UseMBPI("use-mbpi",
138         cl::desc("use Machine Branch Probability Info"),
139         cl::init(true), cl::Hidden);
140 
141 #ifndef NDEBUG
142 static cl::opt<std::string>
143 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
144                         cl::desc("Only display the basic block whose name "
145                                  "matches this for all view-*-dags options"));
146 static cl::opt<bool>
147 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
148           cl::desc("Pop up a window to show dags before the first "
149                    "dag combine pass"));
150 static cl::opt<bool>
151 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
152           cl::desc("Pop up a window to show dags before legalize types"));
153 static cl::opt<bool>
154     ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
155                      cl::desc("Pop up a window to show dags before the post "
156                               "legalize types dag combine pass"));
157 static cl::opt<bool>
158     ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
159                      cl::desc("Pop up a window to show dags before legalize"));
160 static cl::opt<bool>
161 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
162           cl::desc("Pop up a window to show dags before the second "
163                    "dag combine pass"));
164 static cl::opt<bool>
165 ViewISelDAGs("view-isel-dags", cl::Hidden,
166           cl::desc("Pop up a window to show isel dags as they are selected"));
167 static cl::opt<bool>
168 ViewSchedDAGs("view-sched-dags", cl::Hidden,
169           cl::desc("Pop up a window to show sched dags as they are processed"));
170 static cl::opt<bool>
171 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
172       cl::desc("Pop up a window to show SUnit dags after they are processed"));
173 #else
174 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
175                   ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
176                   ViewDAGCombine2 = false, ViewISelDAGs = false,
177                   ViewSchedDAGs = false, ViewSUnitDAGs = false;
178 #endif
179 
180 //===---------------------------------------------------------------------===//
181 ///
182 /// RegisterScheduler class - Track the registration of instruction schedulers.
183 ///
184 //===---------------------------------------------------------------------===//
185 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
186     RegisterScheduler::Registry;
187 
188 //===---------------------------------------------------------------------===//
189 ///
190 /// ISHeuristic command line option for instruction schedulers.
191 ///
192 //===---------------------------------------------------------------------===//
193 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
194                RegisterPassParser<RegisterScheduler>>
195 ISHeuristic("pre-RA-sched",
196             cl::init(&createDefaultScheduler), cl::Hidden,
197             cl::desc("Instruction schedulers available (before register"
198                      " allocation):"));
199 
200 static RegisterScheduler
201 defaultListDAGScheduler("default", "Best scheduler for the target",
202                         createDefaultScheduler);
203 
204 namespace llvm {
205 
206   //===--------------------------------------------------------------------===//
207   /// This class is used by SelectionDAGISel to temporarily override
208   /// the optimization level on a per-function basis.
209   class OptLevelChanger {
210     SelectionDAGISel &IS;
211     CodeGenOpt::Level SavedOptLevel;
212     bool SavedFastISel;
213 
214   public:
215     OptLevelChanger(SelectionDAGISel &ISel,
216                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
217       SavedOptLevel = IS.OptLevel;
218       if (NewOptLevel == SavedOptLevel)
219         return;
220       IS.OptLevel = NewOptLevel;
221       IS.TM.setOptLevel(NewOptLevel);
222       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
223                         << IS.MF->getFunction().getName() << "\n");
224       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
225                         << NewOptLevel << "\n");
226       SavedFastISel = IS.TM.Options.EnableFastISel;
227       if (NewOptLevel == CodeGenOpt::None) {
228         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
229         LLVM_DEBUG(
230             dbgs() << "\tFastISel is "
231                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
232                    << "\n");
233       }
234     }
235 
236     ~OptLevelChanger() {
237       if (IS.OptLevel == SavedOptLevel)
238         return;
239       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
240                         << IS.MF->getFunction().getName() << "\n");
241       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
242                         << SavedOptLevel << "\n");
243       IS.OptLevel = SavedOptLevel;
244       IS.TM.setOptLevel(SavedOptLevel);
245       IS.TM.setFastISel(SavedFastISel);
246     }
247   };
248 
249   //===--------------------------------------------------------------------===//
250   /// createDefaultScheduler - This creates an instruction scheduler appropriate
251   /// for the target.
252   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
253                                              CodeGenOpt::Level OptLevel) {
254     const TargetLowering *TLI = IS->TLI;
255     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
256 
257     // Try first to see if the Target has its own way of selecting a scheduler
258     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
259       return SchedulerCtor(IS, OptLevel);
260     }
261 
262     if (OptLevel == CodeGenOpt::None ||
263         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
264         TLI->getSchedulingPreference() == Sched::Source)
265       return createSourceListDAGScheduler(IS, OptLevel);
266     if (TLI->getSchedulingPreference() == Sched::RegPressure)
267       return createBURRListDAGScheduler(IS, OptLevel);
268     if (TLI->getSchedulingPreference() == Sched::Hybrid)
269       return createHybridListDAGScheduler(IS, OptLevel);
270     if (TLI->getSchedulingPreference() == Sched::VLIW)
271       return createVLIWDAGScheduler(IS, OptLevel);
272     assert(TLI->getSchedulingPreference() == Sched::ILP &&
273            "Unknown sched type!");
274     return createILPListDAGScheduler(IS, OptLevel);
275   }
276 
277 } // end namespace llvm
278 
279 // EmitInstrWithCustomInserter - This method should be implemented by targets
280 // that mark instructions with the 'usesCustomInserter' flag.  These
281 // instructions are special in various ways, which require special support to
282 // insert.  The specified MachineInstr is created but not inserted into any
283 // basic blocks, and this method is called to expand it into a sequence of
284 // instructions, potentially also creating new basic blocks and control flow.
285 // When new basic blocks are inserted and the edges from MBB to its successors
286 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
287 // DenseMap.
288 MachineBasicBlock *
289 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
290                                             MachineBasicBlock *MBB) const {
291 #ifndef NDEBUG
292   dbgs() << "If a target marks an instruction with "
293           "'usesCustomInserter', it must implement "
294           "TargetLowering::EmitInstrWithCustomInserter!";
295 #endif
296   llvm_unreachable(nullptr);
297 }
298 
299 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
300                                                    SDNode *Node) const {
301   assert(!MI.hasPostISelHook() &&
302          "If a target marks an instruction with 'hasPostISelHook', "
303          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
304 }
305 
306 //===----------------------------------------------------------------------===//
307 // SelectionDAGISel code
308 //===----------------------------------------------------------------------===//
309 
310 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
311     : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
312       SwiftError(new SwiftErrorValueTracking()),
313       CurDAG(new SelectionDAG(tm, OL)),
314       SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
315                                                 OL)),
316       AA(), GFI(), OptLevel(OL), DAGSize(0) {
317   initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
318   initializeBranchProbabilityInfoWrapperPassPass(
319       *PassRegistry::getPassRegistry());
320   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
321   initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
322 }
323 
324 SelectionDAGISel::~SelectionDAGISel() {
325   delete CurDAG;
326   delete SwiftError;
327 }
328 
329 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
330   if (OptLevel != CodeGenOpt::None)
331     AU.addRequired<AAResultsWrapperPass>();
332   AU.addRequired<GCModuleInfo>();
333   AU.addRequired<StackProtector>();
334   AU.addPreserved<GCModuleInfo>();
335   AU.addRequired<TargetLibraryInfoWrapperPass>();
336   AU.addRequired<TargetTransformInfoWrapperPass>();
337   if (UseMBPI && OptLevel != CodeGenOpt::None)
338     AU.addRequired<BranchProbabilityInfoWrapperPass>();
339   AU.addRequired<ProfileSummaryInfoWrapperPass>();
340   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
341   MachineFunctionPass::getAnalysisUsage(AU);
342 }
343 
344 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
345 /// may trap on it.  In this case we have to split the edge so that the path
346 /// through the predecessor block that doesn't go to the phi block doesn't
347 /// execute the possibly trapping instruction. If available, we pass domtree
348 /// and loop info to be updated when we split critical edges. This is because
349 /// SelectionDAGISel preserves these analyses.
350 /// This is required for correctness, so it must be done at -O0.
351 ///
352 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
353                                          LoopInfo *LI) {
354   // Loop for blocks with phi nodes.
355   for (BasicBlock &BB : Fn) {
356     PHINode *PN = dyn_cast<PHINode>(BB.begin());
357     if (!PN) continue;
358 
359   ReprocessBlock:
360     // For each block with a PHI node, check to see if any of the input values
361     // are potentially trapping constant expressions.  Constant expressions are
362     // the only potentially trapping value that can occur as the argument to a
363     // PHI.
364     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
365       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
366         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
367         if (!CE || !CE->canTrap()) continue;
368 
369         // The only case we have to worry about is when the edge is critical.
370         // Since this block has a PHI Node, we assume it has multiple input
371         // edges: check to see if the pred has multiple successors.
372         BasicBlock *Pred = PN->getIncomingBlock(i);
373         if (Pred->getTerminator()->getNumSuccessors() == 1)
374           continue;
375 
376         // Okay, we have to split this edge.
377         SplitCriticalEdge(
378             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
379             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
380         goto ReprocessBlock;
381       }
382   }
383 }
384 
385 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
386                                          MachineModuleInfo &MMI) {
387   // Only needed for MSVC
388   if (!TT.isWindowsMSVCEnvironment())
389     return;
390 
391   // If it's already set, nothing to do.
392   if (MMI.usesMSVCFloatingPoint())
393     return;
394 
395   for (const Instruction &I : instructions(F)) {
396     if (I.getType()->isFPOrFPVectorTy()) {
397       MMI.setUsesMSVCFloatingPoint(true);
398       return;
399     }
400     for (const auto &Op : I.operands()) {
401       if (Op->getType()->isFPOrFPVectorTy()) {
402         MMI.setUsesMSVCFloatingPoint(true);
403         return;
404       }
405     }
406   }
407 }
408 
409 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
410   // If we already selected that function, we do not need to run SDISel.
411   if (mf.getProperties().hasProperty(
412           MachineFunctionProperties::Property::Selected))
413     return false;
414   // Do some sanity-checking on the command-line options.
415   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
416          "-fast-isel-abort > 0 requires -fast-isel");
417 
418   const Function &Fn = mf.getFunction();
419   MF = &mf;
420 
421   // Reset the target options before resetting the optimization
422   // level below.
423   // FIXME: This is a horrible hack and should be processed via
424   // codegen looking at the optimization level explicitly when
425   // it wants to look at it.
426   TM.resetTargetOptions(Fn);
427   // Reset OptLevel to None for optnone functions.
428   CodeGenOpt::Level NewOptLevel = OptLevel;
429   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
430     NewOptLevel = CodeGenOpt::None;
431   OptLevelChanger OLC(*this, NewOptLevel);
432 
433   TII = MF->getSubtarget().getInstrInfo();
434   TLI = MF->getSubtarget().getTargetLowering();
435   RegInfo = &MF->getRegInfo();
436   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
437   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
438   ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
439   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
440   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
441   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
442   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
443   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
444   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
445               &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
446               nullptr;
447 
448   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
449 
450   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
451 
452   CurDAG->init(*MF, *ORE, this, LibInfo,
453                getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
454   FuncInfo->set(Fn, *MF, CurDAG);
455   SwiftError->setFunction(*MF);
456 
457   // Now get the optional analyzes if we want to.
458   // This is based on the possibly changed OptLevel (after optnone is taken
459   // into account).  That's unfortunate but OK because it just means we won't
460   // ask for passes that have been required anyway.
461 
462   if (UseMBPI && OptLevel != CodeGenOpt::None)
463     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
464   else
465     FuncInfo->BPI = nullptr;
466 
467   if (OptLevel != CodeGenOpt::None)
468     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
469   else
470     AA = nullptr;
471 
472   SDB->init(GFI, AA, LibInfo);
473 
474   MF->setHasInlineAsm(false);
475 
476   FuncInfo->SplitCSR = false;
477 
478   // We split CSR if the target supports it for the given function
479   // and the function has only return exits.
480   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
481     FuncInfo->SplitCSR = true;
482 
483     // Collect all the return blocks.
484     for (const BasicBlock &BB : Fn) {
485       if (!succ_empty(&BB))
486         continue;
487 
488       const Instruction *Term = BB.getTerminator();
489       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
490         continue;
491 
492       // Bail out if the exit block is not Return nor Unreachable.
493       FuncInfo->SplitCSR = false;
494       break;
495     }
496   }
497 
498   MachineBasicBlock *EntryMBB = &MF->front();
499   if (FuncInfo->SplitCSR)
500     // This performs initialization so lowering for SplitCSR will be correct.
501     TLI->initializeSplitCSR(EntryMBB);
502 
503   SelectAllBasicBlocks(Fn);
504   if (FastISelFailed && EnableFastISelFallbackReport) {
505     DiagnosticInfoISelFallback DiagFallback(Fn);
506     Fn.getContext().diagnose(DiagFallback);
507   }
508 
509   // Replace forward-declared registers with the registers containing
510   // the desired value.
511   // Note: it is important that this happens **before** the call to
512   // EmitLiveInCopies, since implementations can skip copies of unused
513   // registers. If we don't apply the reg fixups before, some registers may
514   // appear as unused and will be skipped, resulting in bad MI.
515   MachineRegisterInfo &MRI = MF->getRegInfo();
516   for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(),
517                                               E = FuncInfo->RegFixups.end();
518        I != E; ++I) {
519     unsigned From = I->first;
520     unsigned To = I->second;
521     // If To is also scheduled to be replaced, find what its ultimate
522     // replacement is.
523     while (true) {
524       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
525       if (J == E)
526         break;
527       To = J->second;
528     }
529     // Make sure the new register has a sufficiently constrained register class.
530     if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
531       MRI.constrainRegClass(To, MRI.getRegClass(From));
532     // Replace it.
533 
534     // Replacing one register with another won't touch the kill flags.
535     // We need to conservatively clear the kill flags as a kill on the old
536     // register might dominate existing uses of the new register.
537     if (!MRI.use_empty(To))
538       MRI.clearKillFlags(From);
539     MRI.replaceRegWith(From, To);
540   }
541 
542   // If the first basic block in the function has live ins that need to be
543   // copied into vregs, emit the copies into the top of the block before
544   // emitting the code for the block.
545   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
546   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
547 
548   // Insert copies in the entry block and the return blocks.
549   if (FuncInfo->SplitCSR) {
550     SmallVector<MachineBasicBlock*, 4> Returns;
551     // Collect all the return blocks.
552     for (MachineBasicBlock &MBB : mf) {
553       if (!MBB.succ_empty())
554         continue;
555 
556       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
557       if (Term != MBB.end() && Term->isReturn()) {
558         Returns.push_back(&MBB);
559         continue;
560       }
561     }
562     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
563   }
564 
565   DenseMap<unsigned, unsigned> LiveInMap;
566   if (!FuncInfo->ArgDbgValues.empty())
567     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
568       if (LI.second)
569         LiveInMap.insert(LI);
570 
571   // Insert DBG_VALUE instructions for function arguments to the entry block.
572   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
573     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
574     bool hasFI = MI->getOperand(0).isFI();
575     Register Reg =
576         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
577     if (Register::isPhysicalRegister(Reg))
578       EntryMBB->insert(EntryMBB->begin(), MI);
579     else {
580       MachineInstr *Def = RegInfo->getVRegDef(Reg);
581       if (Def) {
582         MachineBasicBlock::iterator InsertPos = Def;
583         // FIXME: VR def may not be in entry block.
584         Def->getParent()->insert(std::next(InsertPos), MI);
585       } else
586         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
587                           << Register::virtReg2Index(Reg) << "\n");
588     }
589 
590     // If Reg is live-in then update debug info to track its copy in a vreg.
591     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
592     if (LDI != LiveInMap.end()) {
593       assert(!hasFI && "There's no handling of frame pointer updating here yet "
594                        "- add if needed");
595       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
596       MachineBasicBlock::iterator InsertPos = Def;
597       const MDNode *Variable = MI->getDebugVariable();
598       const MDNode *Expr = MI->getDebugExpression();
599       DebugLoc DL = MI->getDebugLoc();
600       bool IsIndirect = MI->isIndirectDebugValue();
601       if (IsIndirect)
602         assert(MI->getOperand(1).getImm() == 0 &&
603                "DBG_VALUE with nonzero offset");
604       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
605              "Expected inlined-at fields to agree");
606       // Def is never a terminator here, so it is ok to increment InsertPos.
607       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
608               IsIndirect, LDI->second, Variable, Expr);
609 
610       // If this vreg is directly copied into an exported register then
611       // that COPY instructions also need DBG_VALUE, if it is the only
612       // user of LDI->second.
613       MachineInstr *CopyUseMI = nullptr;
614       for (MachineRegisterInfo::use_instr_iterator
615            UI = RegInfo->use_instr_begin(LDI->second),
616            E = RegInfo->use_instr_end(); UI != E; ) {
617         MachineInstr *UseMI = &*(UI++);
618         if (UseMI->isDebugValue()) continue;
619         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
620           CopyUseMI = UseMI; continue;
621         }
622         // Otherwise this is another use or second copy use.
623         CopyUseMI = nullptr; break;
624       }
625       if (CopyUseMI) {
626         // Use MI's debug location, which describes where Variable was
627         // declared, rather than whatever is attached to CopyUseMI.
628         MachineInstr *NewMI =
629             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
630                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
631         MachineBasicBlock::iterator Pos = CopyUseMI;
632         EntryMBB->insertAfter(Pos, NewMI);
633       }
634     }
635   }
636 
637   // Determine if there are any calls in this machine function.
638   MachineFrameInfo &MFI = MF->getFrameInfo();
639   for (const auto &MBB : *MF) {
640     if (MFI.hasCalls() && MF->hasInlineAsm())
641       break;
642 
643     for (const auto &MI : MBB) {
644       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
645       if ((MCID.isCall() && !MCID.isReturn()) ||
646           MI.isStackAligningInlineAsm()) {
647         MFI.setHasCalls(true);
648       }
649       if (MI.isInlineAsm()) {
650         MF->setHasInlineAsm(true);
651       }
652     }
653   }
654 
655   // Determine if there is a call to setjmp in the machine function.
656   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
657 
658   // Determine if floating point is used for msvc
659   computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
660 
661   // Replace forward-declared registers with the registers containing
662   // the desired value.
663   for (DenseMap<unsigned, unsigned>::iterator
664        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
665        I != E; ++I) {
666     unsigned From = I->first;
667     unsigned To = I->second;
668     // If To is also scheduled to be replaced, find what its ultimate
669     // replacement is.
670     while (true) {
671       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
672       if (J == E) break;
673       To = J->second;
674     }
675     // Make sure the new register has a sufficiently constrained register class.
676     if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
677       MRI.constrainRegClass(To, MRI.getRegClass(From));
678     // Replace it.
679 
680 
681     // Replacing one register with another won't touch the kill flags.
682     // We need to conservatively clear the kill flags as a kill on the old
683     // register might dominate existing uses of the new register.
684     if (!MRI.use_empty(To))
685       MRI.clearKillFlags(From);
686     MRI.replaceRegWith(From, To);
687   }
688 
689   TLI->finalizeLowering(*MF);
690 
691   // Release function-specific state. SDB and CurDAG are already cleared
692   // at this point.
693   FuncInfo->clear();
694 
695   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
696   LLVM_DEBUG(MF->print(dbgs()));
697 
698   return true;
699 }
700 
701 static void reportFastISelFailure(MachineFunction &MF,
702                                   OptimizationRemarkEmitter &ORE,
703                                   OptimizationRemarkMissed &R,
704                                   bool ShouldAbort) {
705   // Print the function name explicitly if we don't have a debug location (which
706   // makes the diagnostic less useful) or if we're going to emit a raw error.
707   if (!R.getLocation().isValid() || ShouldAbort)
708     R << (" (in function: " + MF.getName() + ")").str();
709 
710   if (ShouldAbort)
711     report_fatal_error(R.getMsg());
712 
713   ORE.emit(R);
714 }
715 
716 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
717                                         BasicBlock::const_iterator End,
718                                         bool &HadTailCall) {
719   // Allow creating illegal types during DAG building for the basic block.
720   CurDAG->NewNodesMustHaveLegalTypes = false;
721 
722   // Lower the instructions. If a call is emitted as a tail call, cease emitting
723   // nodes for this block.
724   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
725     if (!ElidedArgCopyInstrs.count(&*I))
726       SDB->visit(*I);
727   }
728 
729   // Make sure the root of the DAG is up-to-date.
730   CurDAG->setRoot(SDB->getControlRoot());
731   HadTailCall = SDB->HasTailCall;
732   SDB->resolveOrClearDbgInfo();
733   SDB->clear();
734 
735   // Final step, emit the lowered DAG as machine code.
736   CodeGenAndEmitDAG();
737 }
738 
739 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
740   SmallPtrSet<SDNode *, 16> Added;
741   SmallVector<SDNode*, 128> Worklist;
742 
743   Worklist.push_back(CurDAG->getRoot().getNode());
744   Added.insert(CurDAG->getRoot().getNode());
745 
746   KnownBits Known;
747 
748   do {
749     SDNode *N = Worklist.pop_back_val();
750 
751     // Otherwise, add all chain operands to the worklist.
752     for (const SDValue &Op : N->op_values())
753       if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
754         Worklist.push_back(Op.getNode());
755 
756     // If this is a CopyToReg with a vreg dest, process it.
757     if (N->getOpcode() != ISD::CopyToReg)
758       continue;
759 
760     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
761     if (!Register::isVirtualRegister(DestReg))
762       continue;
763 
764     // Ignore non-integer values.
765     SDValue Src = N->getOperand(2);
766     EVT SrcVT = Src.getValueType();
767     if (!SrcVT.isInteger())
768       continue;
769 
770     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
771     Known = CurDAG->computeKnownBits(Src);
772     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
773   } while (!Worklist.empty());
774 }
775 
776 void SelectionDAGISel::CodeGenAndEmitDAG() {
777   StringRef GroupName = "sdag";
778   StringRef GroupDescription = "Instruction Selection and Scheduling";
779   std::string BlockName;
780   bool MatchFilterBB = false; (void)MatchFilterBB;
781 #ifndef NDEBUG
782   TargetTransformInfo &TTI =
783       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
784 #endif
785 
786   // Pre-type legalization allow creation of any node types.
787   CurDAG->NewNodesMustHaveLegalTypes = false;
788 
789 #ifndef NDEBUG
790   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
791                    FilterDAGBasicBlockName ==
792                        FuncInfo->MBB->getBasicBlock()->getName());
793 #endif
794 #ifdef NDEBUG
795   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
796       ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
797       ViewSUnitDAGs)
798 #endif
799   {
800     BlockName =
801         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
802   }
803   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
804                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
805                     << "'\n";
806              CurDAG->dump());
807 
808   if (ViewDAGCombine1 && MatchFilterBB)
809     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
810 
811   // Run the DAG combiner in pre-legalize mode.
812   {
813     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
814                        GroupDescription, TimePassesIsEnabled);
815     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
816   }
817 
818 #ifndef NDEBUG
819   if (TTI.hasBranchDivergence())
820     CurDAG->VerifyDAGDiverence();
821 #endif
822 
823   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
824                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
825                     << "'\n";
826              CurDAG->dump());
827 
828   // Second step, hack on the DAG until it only uses operations and types that
829   // the target supports.
830   if (ViewLegalizeTypesDAGs && MatchFilterBB)
831     CurDAG->viewGraph("legalize-types input for " + BlockName);
832 
833   bool Changed;
834   {
835     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
836                        GroupDescription, TimePassesIsEnabled);
837     Changed = CurDAG->LegalizeTypes();
838   }
839 
840 #ifndef NDEBUG
841   if (TTI.hasBranchDivergence())
842     CurDAG->VerifyDAGDiverence();
843 #endif
844 
845   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
846                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
847                     << "'\n";
848              CurDAG->dump());
849 
850   // Only allow creation of legal node types.
851   CurDAG->NewNodesMustHaveLegalTypes = true;
852 
853   if (Changed) {
854     if (ViewDAGCombineLT && MatchFilterBB)
855       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
856 
857     // Run the DAG combiner in post-type-legalize mode.
858     {
859       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
860                          GroupName, GroupDescription, TimePassesIsEnabled);
861       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
862     }
863 
864 #ifndef NDEBUG
865     if (TTI.hasBranchDivergence())
866       CurDAG->VerifyDAGDiverence();
867 #endif
868 
869     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
870                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
871                       << "'\n";
872                CurDAG->dump());
873   }
874 
875   {
876     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
877                        GroupDescription, TimePassesIsEnabled);
878     Changed = CurDAG->LegalizeVectors();
879   }
880 
881   if (Changed) {
882     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
883                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
884                       << "'\n";
885                CurDAG->dump());
886 
887     {
888       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
889                          GroupDescription, TimePassesIsEnabled);
890       CurDAG->LegalizeTypes();
891     }
892 
893     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
894                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
895                       << "'\n";
896                CurDAG->dump());
897 
898     if (ViewDAGCombineLT && MatchFilterBB)
899       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
900 
901     // Run the DAG combiner in post-type-legalize mode.
902     {
903       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
904                          GroupName, GroupDescription, TimePassesIsEnabled);
905       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
906     }
907 
908     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
909                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
910                       << "'\n";
911                CurDAG->dump());
912 
913 #ifndef NDEBUG
914     if (TTI.hasBranchDivergence())
915       CurDAG->VerifyDAGDiverence();
916 #endif
917   }
918 
919   if (ViewLegalizeDAGs && MatchFilterBB)
920     CurDAG->viewGraph("legalize input for " + BlockName);
921 
922   {
923     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
924                        GroupDescription, TimePassesIsEnabled);
925     CurDAG->Legalize();
926   }
927 
928 #ifndef NDEBUG
929   if (TTI.hasBranchDivergence())
930     CurDAG->VerifyDAGDiverence();
931 #endif
932 
933   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
934                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
935                     << "'\n";
936              CurDAG->dump());
937 
938   if (ViewDAGCombine2 && MatchFilterBB)
939     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
940 
941   // Run the DAG combiner in post-legalize mode.
942   {
943     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
944                        GroupDescription, TimePassesIsEnabled);
945     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
946   }
947 
948 #ifndef NDEBUG
949   if (TTI.hasBranchDivergence())
950     CurDAG->VerifyDAGDiverence();
951 #endif
952 
953   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
954                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
955                     << "'\n";
956              CurDAG->dump());
957 
958   if (OptLevel != CodeGenOpt::None)
959     ComputeLiveOutVRegInfo();
960 
961   if (ViewISelDAGs && MatchFilterBB)
962     CurDAG->viewGraph("isel input for " + BlockName);
963 
964   // Third, instruction select all of the operations to machine code, adding the
965   // code to the MachineBasicBlock.
966   {
967     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
968                        GroupDescription, TimePassesIsEnabled);
969     DoInstructionSelection();
970   }
971 
972   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
973                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
974                     << "'\n";
975              CurDAG->dump());
976 
977   if (ViewSchedDAGs && MatchFilterBB)
978     CurDAG->viewGraph("scheduler input for " + BlockName);
979 
980   // Schedule machine code.
981   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
982   {
983     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
984                        GroupDescription, TimePassesIsEnabled);
985     Scheduler->Run(CurDAG, FuncInfo->MBB);
986   }
987 
988   if (ViewSUnitDAGs && MatchFilterBB)
989     Scheduler->viewGraph();
990 
991   // Emit machine code to BB.  This can change 'BB' to the last block being
992   // inserted into.
993   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
994   {
995     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
996                        GroupDescription, TimePassesIsEnabled);
997 
998     // FuncInfo->InsertPt is passed by reference and set to the end of the
999     // scheduled instructions.
1000     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1001   }
1002 
1003   // If the block was split, make sure we update any references that are used to
1004   // update PHI nodes later on.
1005   if (FirstMBB != LastMBB)
1006     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1007 
1008   // Free the scheduler state.
1009   {
1010     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1011                        GroupDescription, TimePassesIsEnabled);
1012     delete Scheduler;
1013   }
1014 
1015   // Free the SelectionDAG state, now that we're finished with it.
1016   CurDAG->clear();
1017 }
1018 
1019 namespace {
1020 
1021 /// ISelUpdater - helper class to handle updates of the instruction selection
1022 /// graph.
1023 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1024   SelectionDAG::allnodes_iterator &ISelPosition;
1025 
1026 public:
1027   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1028     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1029 
1030   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1031   /// deleted is the current ISelPosition node, update ISelPosition.
1032   ///
1033   void NodeDeleted(SDNode *N, SDNode *E) override {
1034     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1035       ++ISelPosition;
1036   }
1037 };
1038 
1039 } // end anonymous namespace
1040 
1041 // This function is used to enforce the topological node id property
1042 // property leveraged during Instruction selection. Before selection all
1043 // nodes are given a non-negative id such that all nodes have a larger id than
1044 // their operands. As this holds transitively we can prune checks that a node N
1045 // is a predecessor of M another by not recursively checking through M's
1046 // operands if N's ID is larger than M's ID. This is significantly improves
1047 // performance of for various legality checks (e.g. IsLegalToFold /
1048 // UpdateChains).
1049 
1050 // However, when we fuse multiple nodes into a single node
1051 // during selection we may induce a predecessor relationship between inputs and
1052 // outputs of distinct nodes being merged violating the topological property.
1053 // Should a fused node have a successor which has yet to be selected, our
1054 // legality checks would be incorrect. To avoid this we mark all unselected
1055 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1056 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1057 // We use bit-negation to more clearly enforce that node id -1 can only be
1058 // achieved by selected nodes). As the conversion is reversable the original Id,
1059 // topological pruning can still be leveraged when looking for unselected nodes.
1060 // This method is call internally in all ISel replacement calls.
1061 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1062   SmallVector<SDNode *, 4> Nodes;
1063   Nodes.push_back(Node);
1064 
1065   while (!Nodes.empty()) {
1066     SDNode *N = Nodes.pop_back_val();
1067     for (auto *U : N->uses()) {
1068       auto UId = U->getNodeId();
1069       if (UId > 0) {
1070         InvalidateNodeId(U);
1071         Nodes.push_back(U);
1072       }
1073     }
1074   }
1075 }
1076 
1077 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1078 // NodeId with the equivalent node id which is invalid for topological
1079 // pruning.
1080 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1081   int InvalidId = -(N->getNodeId() + 1);
1082   N->setNodeId(InvalidId);
1083 }
1084 
1085 // getUninvalidatedNodeId - get original uninvalidated node id.
1086 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1087   int Id = N->getNodeId();
1088   if (Id < -1)
1089     return -(Id + 1);
1090   return Id;
1091 }
1092 
1093 void SelectionDAGISel::DoInstructionSelection() {
1094   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1095                     << printMBBReference(*FuncInfo->MBB) << " '"
1096                     << FuncInfo->MBB->getName() << "'\n");
1097 
1098   PreprocessISelDAG();
1099 
1100   // Select target instructions for the DAG.
1101   {
1102     // Number all nodes with a topological order and set DAGSize.
1103     DAGSize = CurDAG->AssignTopologicalOrder();
1104 
1105     // Create a dummy node (which is not added to allnodes), that adds
1106     // a reference to the root node, preventing it from being deleted,
1107     // and tracking any changes of the root.
1108     HandleSDNode Dummy(CurDAG->getRoot());
1109     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1110     ++ISelPosition;
1111 
1112     // Make sure that ISelPosition gets properly updated when nodes are deleted
1113     // in calls made from this function.
1114     ISelUpdater ISU(*CurDAG, ISelPosition);
1115 
1116     // The AllNodes list is now topological-sorted. Visit the
1117     // nodes by starting at the end of the list (the root of the
1118     // graph) and preceding back toward the beginning (the entry
1119     // node).
1120     while (ISelPosition != CurDAG->allnodes_begin()) {
1121       SDNode *Node = &*--ISelPosition;
1122       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1123       // but there are currently some corner cases that it misses. Also, this
1124       // makes it theoretically possible to disable the DAGCombiner.
1125       if (Node->use_empty())
1126         continue;
1127 
1128 #ifndef NDEBUG
1129       SmallVector<SDNode *, 4> Nodes;
1130       Nodes.push_back(Node);
1131 
1132       while (!Nodes.empty()) {
1133         auto N = Nodes.pop_back_val();
1134         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1135           continue;
1136         for (const SDValue &Op : N->op_values()) {
1137           if (Op->getOpcode() == ISD::TokenFactor)
1138             Nodes.push_back(Op.getNode());
1139           else {
1140             // We rely on topological ordering of node ids for checking for
1141             // cycles when fusing nodes during selection. All unselected nodes
1142             // successors of an already selected node should have a negative id.
1143             // This assertion will catch such cases. If this assertion triggers
1144             // it is likely you using DAG-level Value/Node replacement functions
1145             // (versus equivalent ISEL replacement) in backend-specific
1146             // selections. See comment in EnforceNodeIdInvariant for more
1147             // details.
1148             assert(Op->getNodeId() != -1 &&
1149                    "Node has already selected predecessor node");
1150           }
1151         }
1152       }
1153 #endif
1154 
1155       // When we are using non-default rounding modes or FP exception behavior
1156       // FP operations are represented by StrictFP pseudo-operations.  For
1157       // targets that do not (yet) understand strict FP operations directly,
1158       // we convert them to normal FP opcodes instead at this point.  This
1159       // will allow them to be handled by existing target-specific instruction
1160       // selectors.
1161       if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1162         // For some opcodes, we need to call TLI->getOperationAction using
1163         // the first operand type instead of the result type.  Note that this
1164         // must match what SelectionDAGLegalize::LegalizeOp is doing.
1165         EVT ActionVT;
1166         switch (Node->getOpcode()) {
1167         case ISD::STRICT_SINT_TO_FP:
1168         case ISD::STRICT_UINT_TO_FP:
1169         case ISD::STRICT_LRINT:
1170         case ISD::STRICT_LLRINT:
1171         case ISD::STRICT_LROUND:
1172         case ISD::STRICT_LLROUND:
1173         case ISD::STRICT_FSETCC:
1174         case ISD::STRICT_FSETCCS:
1175           ActionVT = Node->getOperand(1).getValueType();
1176           break;
1177         default:
1178           ActionVT = Node->getValueType(0);
1179           break;
1180         }
1181         if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1182             == TargetLowering::Expand)
1183           Node = CurDAG->mutateStrictFPToFP(Node);
1184       }
1185 
1186       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1187                  Node->dump(CurDAG));
1188 
1189       Select(Node);
1190     }
1191 
1192     CurDAG->setRoot(Dummy.getValue());
1193   }
1194 
1195   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1196 
1197   PostprocessISelDAG();
1198 }
1199 
1200 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1201   for (const User *U : CPI->users()) {
1202     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1203       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1204       if (IID == Intrinsic::eh_exceptionpointer ||
1205           IID == Intrinsic::eh_exceptioncode)
1206         return true;
1207     }
1208   }
1209   return false;
1210 }
1211 
1212 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1213 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1214 // and store the mapping in the function.
1215 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1216                                    const CatchPadInst *CPI) {
1217   MachineFunction *MF = MBB->getParent();
1218   // In case of single catch (...), we don't emit LSDA, so we don't need
1219   // this information.
1220   bool IsSingleCatchAllClause =
1221       CPI->getNumArgOperands() == 1 &&
1222       cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1223   if (!IsSingleCatchAllClause) {
1224     // Create a mapping from landing pad label to landing pad index.
1225     bool IntrFound = false;
1226     for (const User *U : CPI->users()) {
1227       if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1228         Intrinsic::ID IID = Call->getIntrinsicID();
1229         if (IID == Intrinsic::wasm_landingpad_index) {
1230           Value *IndexArg = Call->getArgOperand(1);
1231           int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1232           MF->setWasmLandingPadIndex(MBB, Index);
1233           IntrFound = true;
1234           break;
1235         }
1236       }
1237     }
1238     assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1239     (void)IntrFound;
1240   }
1241 }
1242 
1243 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1244 /// do other setup for EH landing-pad blocks.
1245 bool SelectionDAGISel::PrepareEHLandingPad() {
1246   MachineBasicBlock *MBB = FuncInfo->MBB;
1247   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1248   const BasicBlock *LLVMBB = MBB->getBasicBlock();
1249   const TargetRegisterClass *PtrRC =
1250       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1251 
1252   auto Pers = classifyEHPersonality(PersonalityFn);
1253 
1254   // Catchpads have one live-in register, which typically holds the exception
1255   // pointer or code.
1256   if (isFuncletEHPersonality(Pers)) {
1257     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1258       if (hasExceptionPointerOrCodeUser(CPI)) {
1259         // Get or create the virtual register to hold the pointer or code.  Mark
1260         // the live in physreg and copy into the vreg.
1261         MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1262         assert(EHPhysReg && "target lacks exception pointer register");
1263         MBB->addLiveIn(EHPhysReg);
1264         unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1265         BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1266                 TII->get(TargetOpcode::COPY), VReg)
1267             .addReg(EHPhysReg, RegState::Kill);
1268       }
1269     }
1270     return true;
1271   }
1272 
1273   // Add a label to mark the beginning of the landing pad.  Deletion of the
1274   // landing pad can thus be detected via the MachineModuleInfo.
1275   MCSymbol *Label = MF->addLandingPad(MBB);
1276 
1277   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1278   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1279     .addSym(Label);
1280 
1281   if (Pers == EHPersonality::Wasm_CXX) {
1282     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1283       mapWasmLandingPadIndex(MBB, CPI);
1284   } else {
1285     // Assign the call site to the landing pad's begin label.
1286     MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1287     // Mark exception register as live in.
1288     if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1289       FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1290     // Mark exception selector register as live in.
1291     if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1292       FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1293   }
1294 
1295   return true;
1296 }
1297 
1298 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1299 /// side-effect free and is either dead or folded into a generated instruction.
1300 /// Return false if it needs to be emitted.
1301 static bool isFoldedOrDeadInstruction(const Instruction *I,
1302                                       const FunctionLoweringInfo &FuncInfo) {
1303   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1304          !I->isTerminator() &&     // Terminators aren't folded.
1305          !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1306          !I->isEHPad() &&             // EH pad instructions aren't folded.
1307          !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1308 }
1309 
1310 /// Collect llvm.dbg.declare information. This is done after argument lowering
1311 /// in case the declarations refer to arguments.
1312 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1313   MachineFunction *MF = FuncInfo.MF;
1314   const DataLayout &DL = MF->getDataLayout();
1315   for (const BasicBlock &BB : *FuncInfo.Fn) {
1316     for (const Instruction &I : BB) {
1317       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1318       if (!DI)
1319         continue;
1320 
1321       assert(DI->getVariable() && "Missing variable");
1322       assert(DI->getDebugLoc() && "Missing location");
1323       const Value *Address = DI->getAddress();
1324       if (!Address)
1325         continue;
1326 
1327       // Look through casts and constant offset GEPs. These mostly come from
1328       // inalloca.
1329       APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1330       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1331 
1332       // Check if the variable is a static alloca or a byval or inalloca
1333       // argument passed in memory. If it is not, then we will ignore this
1334       // intrinsic and handle this during isel like dbg.value.
1335       int FI = std::numeric_limits<int>::max();
1336       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1337         auto SI = FuncInfo.StaticAllocaMap.find(AI);
1338         if (SI != FuncInfo.StaticAllocaMap.end())
1339           FI = SI->second;
1340       } else if (const auto *Arg = dyn_cast<Argument>(Address))
1341         FI = FuncInfo.getArgumentFrameIndex(Arg);
1342 
1343       if (FI == std::numeric_limits<int>::max())
1344         continue;
1345 
1346       DIExpression *Expr = DI->getExpression();
1347       if (Offset.getBoolValue())
1348         Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1349                                      Offset.getZExtValue());
1350       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1351     }
1352   }
1353 }
1354 
1355 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1356   FastISelFailed = false;
1357   // Initialize the Fast-ISel state, if needed.
1358   FastISel *FastIS = nullptr;
1359   if (TM.Options.EnableFastISel) {
1360     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1361     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1362   }
1363 
1364   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1365 
1366   // Lower arguments up front. An RPO iteration always visits the entry block
1367   // first.
1368   assert(*RPOT.begin() == &Fn.getEntryBlock());
1369   ++NumEntryBlocks;
1370 
1371   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1372   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1373   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1374 
1375   CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1376 
1377   if (!FastIS) {
1378     LowerArguments(Fn);
1379   } else {
1380     // See if fast isel can lower the arguments.
1381     FastIS->startNewBlock();
1382     if (!FastIS->lowerArguments()) {
1383       FastISelFailed = true;
1384       // Fast isel failed to lower these arguments
1385       ++NumFastIselFailLowerArguments;
1386 
1387       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1388                                  Fn.getSubprogram(),
1389                                  &Fn.getEntryBlock());
1390       R << "FastISel didn't lower all arguments: "
1391         << ore::NV("Prototype", Fn.getType());
1392       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1393 
1394       // Use SelectionDAG argument lowering
1395       LowerArguments(Fn);
1396       CurDAG->setRoot(SDB->getControlRoot());
1397       SDB->clear();
1398       CodeGenAndEmitDAG();
1399     }
1400 
1401     // If we inserted any instructions at the beginning, make a note of
1402     // where they are, so we can be sure to emit subsequent instructions
1403     // after them.
1404     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1405       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1406     else
1407       FastIS->setLastLocalValue(nullptr);
1408   }
1409 
1410   bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1411 
1412   if (FastIS && Inserted)
1413     FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1414 
1415   processDbgDeclares(*FuncInfo);
1416 
1417   // Iterate over all basic blocks in the function.
1418   StackProtector &SP = getAnalysis<StackProtector>();
1419   for (const BasicBlock *LLVMBB : RPOT) {
1420     if (OptLevel != CodeGenOpt::None) {
1421       bool AllPredsVisited = true;
1422       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1423            PI != PE; ++PI) {
1424         if (!FuncInfo->VisitedBBs.count(*PI)) {
1425           AllPredsVisited = false;
1426           break;
1427         }
1428       }
1429 
1430       if (AllPredsVisited) {
1431         for (const PHINode &PN : LLVMBB->phis())
1432           FuncInfo->ComputePHILiveOutRegInfo(&PN);
1433       } else {
1434         for (const PHINode &PN : LLVMBB->phis())
1435           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1436       }
1437 
1438       FuncInfo->VisitedBBs.insert(LLVMBB);
1439     }
1440 
1441     BasicBlock::const_iterator const Begin =
1442         LLVMBB->getFirstNonPHI()->getIterator();
1443     BasicBlock::const_iterator const End = LLVMBB->end();
1444     BasicBlock::const_iterator BI = End;
1445 
1446     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1447     if (!FuncInfo->MBB)
1448       continue; // Some blocks like catchpads have no code or MBB.
1449 
1450     // Insert new instructions after any phi or argument setup code.
1451     FuncInfo->InsertPt = FuncInfo->MBB->end();
1452 
1453     // Setup an EH landing-pad block.
1454     FuncInfo->ExceptionPointerVirtReg = 0;
1455     FuncInfo->ExceptionSelectorVirtReg = 0;
1456     if (LLVMBB->isEHPad())
1457       if (!PrepareEHLandingPad())
1458         continue;
1459 
1460     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1461     if (FastIS) {
1462       if (LLVMBB != &Fn.getEntryBlock())
1463         FastIS->startNewBlock();
1464 
1465       unsigned NumFastIselRemaining = std::distance(Begin, End);
1466 
1467       // Pre-assign swifterror vregs.
1468       SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1469 
1470       // Do FastISel on as many instructions as possible.
1471       for (; BI != Begin; --BI) {
1472         const Instruction *Inst = &*std::prev(BI);
1473 
1474         // If we no longer require this instruction, skip it.
1475         if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1476             ElidedArgCopyInstrs.count(Inst)) {
1477           --NumFastIselRemaining;
1478           continue;
1479         }
1480 
1481         // Bottom-up: reset the insert pos at the top, after any local-value
1482         // instructions.
1483         FastIS->recomputeInsertPt();
1484 
1485         // Try to select the instruction with FastISel.
1486         if (FastIS->selectInstruction(Inst)) {
1487           --NumFastIselRemaining;
1488           ++NumFastIselSuccess;
1489           // If fast isel succeeded, skip over all the folded instructions, and
1490           // then see if there is a load right before the selected instructions.
1491           // Try to fold the load if so.
1492           const Instruction *BeforeInst = Inst;
1493           while (BeforeInst != &*Begin) {
1494             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1495             if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1496               break;
1497           }
1498           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1499               BeforeInst->hasOneUse() &&
1500               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1501             // If we succeeded, don't re-select the load.
1502             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1503             --NumFastIselRemaining;
1504             ++NumFastIselSuccess;
1505           }
1506           continue;
1507         }
1508 
1509         FastISelFailed = true;
1510 
1511         // Then handle certain instructions as single-LLVM-Instruction blocks.
1512         // We cannot separate out GCrelocates to their own blocks since we need
1513         // to keep track of gc-relocates for a particular gc-statepoint. This is
1514         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1515         // visitGCRelocate.
1516         if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
1517             !isGCResult(Inst)) {
1518           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1519                                      Inst->getDebugLoc(), LLVMBB);
1520 
1521           R << "FastISel missed call";
1522 
1523           if (R.isEnabled() || EnableFastISelAbort) {
1524             std::string InstStrStorage;
1525             raw_string_ostream InstStr(InstStrStorage);
1526             InstStr << *Inst;
1527 
1528             R << ": " << InstStr.str();
1529           }
1530 
1531           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1532 
1533           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1534               !Inst->use_empty()) {
1535             unsigned &R = FuncInfo->ValueMap[Inst];
1536             if (!R)
1537               R = FuncInfo->CreateRegs(Inst);
1538           }
1539 
1540           bool HadTailCall = false;
1541           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1542           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1543 
1544           // If the call was emitted as a tail call, we're done with the block.
1545           // We also need to delete any previously emitted instructions.
1546           if (HadTailCall) {
1547             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1548             --BI;
1549             break;
1550           }
1551 
1552           // Recompute NumFastIselRemaining as Selection DAG instruction
1553           // selection may have handled the call, input args, etc.
1554           unsigned RemainingNow = std::distance(Begin, BI);
1555           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1556           NumFastIselRemaining = RemainingNow;
1557           continue;
1558         }
1559 
1560         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1561                                    Inst->getDebugLoc(), LLVMBB);
1562 
1563         bool ShouldAbort = EnableFastISelAbort;
1564         if (Inst->isTerminator()) {
1565           // Use a different message for terminator misses.
1566           R << "FastISel missed terminator";
1567           // Don't abort for terminator unless the level is really high
1568           ShouldAbort = (EnableFastISelAbort > 2);
1569         } else {
1570           R << "FastISel missed";
1571         }
1572 
1573         if (R.isEnabled() || EnableFastISelAbort) {
1574           std::string InstStrStorage;
1575           raw_string_ostream InstStr(InstStrStorage);
1576           InstStr << *Inst;
1577           R << ": " << InstStr.str();
1578         }
1579 
1580         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1581 
1582         NumFastIselFailures += NumFastIselRemaining;
1583         break;
1584       }
1585 
1586       FastIS->recomputeInsertPt();
1587     }
1588 
1589     if (SP.shouldEmitSDCheck(*LLVMBB)) {
1590       bool FunctionBasedInstrumentation =
1591           TLI->getSSPStackGuardCheck(*Fn.getParent());
1592       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1593                                    FunctionBasedInstrumentation);
1594     }
1595 
1596     if (Begin != BI)
1597       ++NumDAGBlocks;
1598     else
1599       ++NumFastIselBlocks;
1600 
1601     if (Begin != BI) {
1602       // Run SelectionDAG instruction selection on the remainder of the block
1603       // not handled by FastISel. If FastISel is not run, this is the entire
1604       // block.
1605       bool HadTailCall;
1606       SelectBasicBlock(Begin, BI, HadTailCall);
1607 
1608       // But if FastISel was run, we already selected some of the block.
1609       // If we emitted a tail-call, we need to delete any previously emitted
1610       // instruction that follows it.
1611       if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1612         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1613     }
1614 
1615     if (FastIS)
1616       FastIS->finishBasicBlock();
1617     FinishBasicBlock();
1618     FuncInfo->PHINodesToUpdate.clear();
1619     ElidedArgCopyInstrs.clear();
1620   }
1621 
1622   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1623 
1624   SwiftError->propagateVRegs();
1625 
1626   delete FastIS;
1627   SDB->clearDanglingDebugInfo();
1628   SDB->SPDescriptor.resetPerFunctionState();
1629 }
1630 
1631 /// Given that the input MI is before a partial terminator sequence TSeq, return
1632 /// true if M + TSeq also a partial terminator sequence.
1633 ///
1634 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1635 /// lowering copy vregs into physical registers, which are then passed into
1636 /// terminator instructors so we can satisfy ABI constraints. A partial
1637 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1638 /// may be the whole terminator sequence).
1639 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1640   // If we do not have a copy or an implicit def, we return true if and only if
1641   // MI is a debug value.
1642   if (!MI.isCopy() && !MI.isImplicitDef())
1643     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1644     // physical registers if there is debug info associated with the terminator
1645     // of our mbb. We want to include said debug info in our terminator
1646     // sequence, so we return true in that case.
1647     return MI.isDebugValue();
1648 
1649   // We have left the terminator sequence if we are not doing one of the
1650   // following:
1651   //
1652   // 1. Copying a vreg into a physical register.
1653   // 2. Copying a vreg into a vreg.
1654   // 3. Defining a register via an implicit def.
1655 
1656   // OPI should always be a register definition...
1657   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1658   if (!OPI->isReg() || !OPI->isDef())
1659     return false;
1660 
1661   // Defining any register via an implicit def is always ok.
1662   if (MI.isImplicitDef())
1663     return true;
1664 
1665   // Grab the copy source...
1666   MachineInstr::const_mop_iterator OPI2 = OPI;
1667   ++OPI2;
1668   assert(OPI2 != MI.operands_end()
1669          && "Should have a copy implying we should have 2 arguments.");
1670 
1671   // Make sure that the copy dest is not a vreg when the copy source is a
1672   // physical register.
1673   if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1674                          Register::isPhysicalRegister(OPI2->getReg())))
1675     return false;
1676 
1677   return true;
1678 }
1679 
1680 /// Find the split point at which to splice the end of BB into its success stack
1681 /// protector check machine basic block.
1682 ///
1683 /// On many platforms, due to ABI constraints, terminators, even before register
1684 /// allocation, use physical registers. This creates an issue for us since
1685 /// physical registers at this point can not travel across basic
1686 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1687 /// when they enter functions and moves them through a sequence of copies back
1688 /// into the physical registers right before the terminator creating a
1689 /// ``Terminator Sequence''. This function is searching for the beginning of the
1690 /// terminator sequence so that we can ensure that we splice off not just the
1691 /// terminator, but additionally the copies that move the vregs into the
1692 /// physical registers.
1693 static MachineBasicBlock::iterator
1694 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1695   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1696   //
1697   if (SplitPoint == BB->begin())
1698     return SplitPoint;
1699 
1700   MachineBasicBlock::iterator Start = BB->begin();
1701   MachineBasicBlock::iterator Previous = SplitPoint;
1702   --Previous;
1703 
1704   while (MIIsInTerminatorSequence(*Previous)) {
1705     SplitPoint = Previous;
1706     if (Previous == Start)
1707       break;
1708     --Previous;
1709   }
1710 
1711   return SplitPoint;
1712 }
1713 
1714 void
1715 SelectionDAGISel::FinishBasicBlock() {
1716   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1717                     << FuncInfo->PHINodesToUpdate.size() << "\n";
1718              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1719                   ++i) dbgs()
1720              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1721              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1722 
1723   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1724   // PHI nodes in successors.
1725   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1726     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1727     assert(PHI->isPHI() &&
1728            "This is not a machine PHI node that we are updating!");
1729     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1730       continue;
1731     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1732   }
1733 
1734   // Handle stack protector.
1735   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1736     // The target provides a guard check function. There is no need to
1737     // generate error handling code or to split current basic block.
1738     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1739 
1740     // Add load and check to the basicblock.
1741     FuncInfo->MBB = ParentMBB;
1742     FuncInfo->InsertPt =
1743         FindSplitPointForStackProtector(ParentMBB);
1744     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1745     CurDAG->setRoot(SDB->getRoot());
1746     SDB->clear();
1747     CodeGenAndEmitDAG();
1748 
1749     // Clear the Per-BB State.
1750     SDB->SPDescriptor.resetPerBBState();
1751   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1752     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1753     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1754 
1755     // Find the split point to split the parent mbb. At the same time copy all
1756     // physical registers used in the tail of parent mbb into virtual registers
1757     // before the split point and back into physical registers after the split
1758     // point. This prevents us needing to deal with Live-ins and many other
1759     // register allocation issues caused by us splitting the parent mbb. The
1760     // register allocator will clean up said virtual copies later on.
1761     MachineBasicBlock::iterator SplitPoint =
1762         FindSplitPointForStackProtector(ParentMBB);
1763 
1764     // Splice the terminator of ParentMBB into SuccessMBB.
1765     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1766                        SplitPoint,
1767                        ParentMBB->end());
1768 
1769     // Add compare/jump on neq/jump to the parent BB.
1770     FuncInfo->MBB = ParentMBB;
1771     FuncInfo->InsertPt = ParentMBB->end();
1772     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1773     CurDAG->setRoot(SDB->getRoot());
1774     SDB->clear();
1775     CodeGenAndEmitDAG();
1776 
1777     // CodeGen Failure MBB if we have not codegened it yet.
1778     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1779     if (FailureMBB->empty()) {
1780       FuncInfo->MBB = FailureMBB;
1781       FuncInfo->InsertPt = FailureMBB->end();
1782       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1783       CurDAG->setRoot(SDB->getRoot());
1784       SDB->clear();
1785       CodeGenAndEmitDAG();
1786     }
1787 
1788     // Clear the Per-BB State.
1789     SDB->SPDescriptor.resetPerBBState();
1790   }
1791 
1792   // Lower each BitTestBlock.
1793   for (auto &BTB : SDB->SL->BitTestCases) {
1794     // Lower header first, if it wasn't already lowered
1795     if (!BTB.Emitted) {
1796       // Set the current basic block to the mbb we wish to insert the code into
1797       FuncInfo->MBB = BTB.Parent;
1798       FuncInfo->InsertPt = FuncInfo->MBB->end();
1799       // Emit the code
1800       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1801       CurDAG->setRoot(SDB->getRoot());
1802       SDB->clear();
1803       CodeGenAndEmitDAG();
1804     }
1805 
1806     BranchProbability UnhandledProb = BTB.Prob;
1807     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1808       UnhandledProb -= BTB.Cases[j].ExtraProb;
1809       // Set the current basic block to the mbb we wish to insert the code into
1810       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1811       FuncInfo->InsertPt = FuncInfo->MBB->end();
1812       // Emit the code
1813 
1814       // If all cases cover a contiguous range, it is not necessary to jump to
1815       // the default block after the last bit test fails. This is because the
1816       // range check during bit test header creation has guaranteed that every
1817       // case here doesn't go outside the range. In this case, there is no need
1818       // to perform the last bit test, as it will always be true. Instead, make
1819       // the second-to-last bit-test fall through to the target of the last bit
1820       // test, and delete the last bit test.
1821 
1822       MachineBasicBlock *NextMBB;
1823       if (BTB.ContiguousRange && j + 2 == ej) {
1824         // Second-to-last bit-test with contiguous range: fall through to the
1825         // target of the final bit test.
1826         NextMBB = BTB.Cases[j + 1].TargetBB;
1827       } else if (j + 1 == ej) {
1828         // For the last bit test, fall through to Default.
1829         NextMBB = BTB.Default;
1830       } else {
1831         // Otherwise, fall through to the next bit test.
1832         NextMBB = BTB.Cases[j + 1].ThisBB;
1833       }
1834 
1835       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1836                             FuncInfo->MBB);
1837 
1838       CurDAG->setRoot(SDB->getRoot());
1839       SDB->clear();
1840       CodeGenAndEmitDAG();
1841 
1842       if (BTB.ContiguousRange && j + 2 == ej) {
1843         // Since we're not going to use the final bit test, remove it.
1844         BTB.Cases.pop_back();
1845         break;
1846       }
1847     }
1848 
1849     // Update PHI Nodes
1850     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1851          pi != pe; ++pi) {
1852       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1853       MachineBasicBlock *PHIBB = PHI->getParent();
1854       assert(PHI->isPHI() &&
1855              "This is not a machine PHI node that we are updating!");
1856       // This is "default" BB. We have two jumps to it. From "header" BB and
1857       // from last "case" BB, unless the latter was skipped.
1858       if (PHIBB == BTB.Default) {
1859         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1860         if (!BTB.ContiguousRange) {
1861           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1862               .addMBB(BTB.Cases.back().ThisBB);
1863          }
1864       }
1865       // One of "cases" BB.
1866       for (unsigned j = 0, ej = BTB.Cases.size();
1867            j != ej; ++j) {
1868         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1869         if (cBB->isSuccessor(PHIBB))
1870           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1871       }
1872     }
1873   }
1874   SDB->SL->BitTestCases.clear();
1875 
1876   // If the JumpTable record is filled in, then we need to emit a jump table.
1877   // Updating the PHI nodes is tricky in this case, since we need to determine
1878   // whether the PHI is a successor of the range check MBB or the jump table MBB
1879   for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1880     // Lower header first, if it wasn't already lowered
1881     if (!SDB->SL->JTCases[i].first.Emitted) {
1882       // Set the current basic block to the mbb we wish to insert the code into
1883       FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1884       FuncInfo->InsertPt = FuncInfo->MBB->end();
1885       // Emit the code
1886       SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1887                                 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1888       CurDAG->setRoot(SDB->getRoot());
1889       SDB->clear();
1890       CodeGenAndEmitDAG();
1891     }
1892 
1893     // Set the current basic block to the mbb we wish to insert the code into
1894     FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1895     FuncInfo->InsertPt = FuncInfo->MBB->end();
1896     // Emit the code
1897     SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1898     CurDAG->setRoot(SDB->getRoot());
1899     SDB->clear();
1900     CodeGenAndEmitDAG();
1901 
1902     // Update PHI Nodes
1903     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1904          pi != pe; ++pi) {
1905       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1906       MachineBasicBlock *PHIBB = PHI->getParent();
1907       assert(PHI->isPHI() &&
1908              "This is not a machine PHI node that we are updating!");
1909       // "default" BB. We can go there only from header BB.
1910       if (PHIBB == SDB->SL->JTCases[i].second.Default)
1911         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1912            .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1913       // JT BB. Just iterate over successors here
1914       if (FuncInfo->MBB->isSuccessor(PHIBB))
1915         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1916     }
1917   }
1918   SDB->SL->JTCases.clear();
1919 
1920   // If we generated any switch lowering information, build and codegen any
1921   // additional DAGs necessary.
1922   for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1923     // Set the current basic block to the mbb we wish to insert the code into
1924     FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1925     FuncInfo->InsertPt = FuncInfo->MBB->end();
1926 
1927     // Determine the unique successors.
1928     SmallVector<MachineBasicBlock *, 2> Succs;
1929     Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1930     if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1931       Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1932 
1933     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1934     SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1935     CurDAG->setRoot(SDB->getRoot());
1936     SDB->clear();
1937     CodeGenAndEmitDAG();
1938 
1939     // Remember the last block, now that any splitting is done, for use in
1940     // populating PHI nodes in successors.
1941     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1942 
1943     // Handle any PHI nodes in successors of this chunk, as if we were coming
1944     // from the original BB before switch expansion.  Note that PHI nodes can
1945     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1946     // handle them the right number of times.
1947     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1948       FuncInfo->MBB = Succs[i];
1949       FuncInfo->InsertPt = FuncInfo->MBB->end();
1950       // FuncInfo->MBB may have been removed from the CFG if a branch was
1951       // constant folded.
1952       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1953         for (MachineBasicBlock::iterator
1954              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1955              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1956           MachineInstrBuilder PHI(*MF, MBBI);
1957           // This value for this PHI node is recorded in PHINodesToUpdate.
1958           for (unsigned pn = 0; ; ++pn) {
1959             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1960                    "Didn't find PHI entry!");
1961             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1962               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1963               break;
1964             }
1965           }
1966         }
1967       }
1968     }
1969   }
1970   SDB->SL->SwitchCases.clear();
1971 }
1972 
1973 /// Create the scheduler. If a specific scheduler was specified
1974 /// via the SchedulerRegistry, use it, otherwise select the
1975 /// one preferred by the target.
1976 ///
1977 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1978   return ISHeuristic(this, OptLevel);
1979 }
1980 
1981 //===----------------------------------------------------------------------===//
1982 // Helper functions used by the generated instruction selector.
1983 //===----------------------------------------------------------------------===//
1984 // Calls to these methods are generated by tblgen.
1985 
1986 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1987 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1988 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1989 /// specified in the .td file (e.g. 255).
1990 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1991                                     int64_t DesiredMaskS) const {
1992   const APInt &ActualMask = RHS->getAPIntValue();
1993   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1994 
1995   // If the actual mask exactly matches, success!
1996   if (ActualMask == DesiredMask)
1997     return true;
1998 
1999   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2000   if (!ActualMask.isSubsetOf(DesiredMask))
2001     return false;
2002 
2003   // Otherwise, the DAG Combiner may have proven that the value coming in is
2004   // either already zero or is not demanded.  Check for known zero input bits.
2005   APInt NeededMask = DesiredMask & ~ActualMask;
2006   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2007     return true;
2008 
2009   // TODO: check to see if missing bits are just not demanded.
2010 
2011   // Otherwise, this pattern doesn't match.
2012   return false;
2013 }
2014 
2015 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2016 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2017 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2018 /// specified in the .td file (e.g. 255).
2019 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2020                                    int64_t DesiredMaskS) const {
2021   const APInt &ActualMask = RHS->getAPIntValue();
2022   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2023 
2024   // If the actual mask exactly matches, success!
2025   if (ActualMask == DesiredMask)
2026     return true;
2027 
2028   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2029   if (!ActualMask.isSubsetOf(DesiredMask))
2030     return false;
2031 
2032   // Otherwise, the DAG Combiner may have proven that the value coming in is
2033   // either already zero or is not demanded.  Check for known zero input bits.
2034   APInt NeededMask = DesiredMask & ~ActualMask;
2035   KnownBits Known = CurDAG->computeKnownBits(LHS);
2036 
2037   // If all the missing bits in the or are already known to be set, match!
2038   if (NeededMask.isSubsetOf(Known.One))
2039     return true;
2040 
2041   // TODO: check to see if missing bits are just not demanded.
2042 
2043   // Otherwise, this pattern doesn't match.
2044   return false;
2045 }
2046 
2047 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2048 /// by tblgen.  Others should not call it.
2049 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2050                                                      const SDLoc &DL) {
2051   std::vector<SDValue> InOps;
2052   std::swap(InOps, Ops);
2053 
2054   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2055   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2056   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2057   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2058 
2059   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2060   if (InOps[e-1].getValueType() == MVT::Glue)
2061     --e;  // Don't process a glue operand if it is here.
2062 
2063   while (i != e) {
2064     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2065     if (!InlineAsm::isMemKind(Flags)) {
2066       // Just skip over this operand, copying the operands verbatim.
2067       Ops.insert(Ops.end(), InOps.begin()+i,
2068                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2069       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2070     } else {
2071       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2072              "Memory operand with multiple values?");
2073 
2074       unsigned TiedToOperand;
2075       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2076         // We need the constraint ID from the operand this is tied to.
2077         unsigned CurOp = InlineAsm::Op_FirstOperand;
2078         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2079         for (; TiedToOperand; --TiedToOperand) {
2080           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2081           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2082         }
2083       }
2084 
2085       // Otherwise, this is a memory operand.  Ask the target to select it.
2086       std::vector<SDValue> SelOps;
2087       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2088       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2089         report_fatal_error("Could not match memory address.  Inline asm"
2090                            " failure!");
2091 
2092       // Add this to the output node.
2093       unsigned NewFlags =
2094         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2095       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2096       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2097       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2098       i += 2;
2099     }
2100   }
2101 
2102   // Add the glue input back if present.
2103   if (e != InOps.size())
2104     Ops.push_back(InOps.back());
2105 }
2106 
2107 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2108 /// SDNode.
2109 ///
2110 static SDNode *findGlueUse(SDNode *N) {
2111   unsigned FlagResNo = N->getNumValues()-1;
2112   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2113     SDUse &Use = I.getUse();
2114     if (Use.getResNo() == FlagResNo)
2115       return Use.getUser();
2116   }
2117   return nullptr;
2118 }
2119 
2120 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2121 /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2122 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2123                           bool IgnoreChains) {
2124   SmallPtrSet<const SDNode *, 16> Visited;
2125   SmallVector<const SDNode *, 16> WorkList;
2126   // Only check if we have non-immediate uses of Def.
2127   if (ImmedUse->isOnlyUserOf(Def))
2128     return false;
2129 
2130   // We don't care about paths to Def that go through ImmedUse so mark it
2131   // visited and mark non-def operands as used.
2132   Visited.insert(ImmedUse);
2133   for (const SDValue &Op : ImmedUse->op_values()) {
2134     SDNode *N = Op.getNode();
2135     // Ignore chain deps (they are validated by
2136     // HandleMergeInputChains) and immediate uses
2137     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2138       continue;
2139     if (!Visited.insert(N).second)
2140       continue;
2141     WorkList.push_back(N);
2142   }
2143 
2144   // Initialize worklist to operands of Root.
2145   if (Root != ImmedUse) {
2146     for (const SDValue &Op : Root->op_values()) {
2147       SDNode *N = Op.getNode();
2148       // Ignore chains (they are validated by HandleMergeInputChains)
2149       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2150         continue;
2151       if (!Visited.insert(N).second)
2152         continue;
2153       WorkList.push_back(N);
2154     }
2155   }
2156 
2157   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2158 }
2159 
2160 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2161 /// operand node N of U during instruction selection that starts at Root.
2162 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2163                                           SDNode *Root) const {
2164   if (OptLevel == CodeGenOpt::None) return false;
2165   return N.hasOneUse();
2166 }
2167 
2168 /// IsLegalToFold - Returns true if the specific operand node N of
2169 /// U can be folded during instruction selection that starts at Root.
2170 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2171                                      CodeGenOpt::Level OptLevel,
2172                                      bool IgnoreChains) {
2173   if (OptLevel == CodeGenOpt::None) return false;
2174 
2175   // If Root use can somehow reach N through a path that that doesn't contain
2176   // U then folding N would create a cycle. e.g. In the following
2177   // diagram, Root can reach N through X. If N is folded into Root, then
2178   // X is both a predecessor and a successor of U.
2179   //
2180   //          [N*]           //
2181   //         ^   ^           //
2182   //        /     \          //
2183   //      [U*]    [X]?       //
2184   //        ^     ^          //
2185   //         \   /           //
2186   //          \ /            //
2187   //         [Root*]         //
2188   //
2189   // * indicates nodes to be folded together.
2190   //
2191   // If Root produces glue, then it gets (even more) interesting. Since it
2192   // will be "glued" together with its glue use in the scheduler, we need to
2193   // check if it might reach N.
2194   //
2195   //          [N*]           //
2196   //         ^   ^           //
2197   //        /     \          //
2198   //      [U*]    [X]?       //
2199   //        ^       ^        //
2200   //         \       \       //
2201   //          \      |       //
2202   //         [Root*] |       //
2203   //          ^      |       //
2204   //          f      |       //
2205   //          |      /       //
2206   //         [Y]    /        //
2207   //           ^   /         //
2208   //           f  /          //
2209   //           | /           //
2210   //          [GU]           //
2211   //
2212   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2213   // (call it Fold), then X is a predecessor of GU and a successor of
2214   // Fold. But since Fold and GU are glued together, this will create
2215   // a cycle in the scheduling graph.
2216 
2217   // If the node has glue, walk down the graph to the "lowest" node in the
2218   // glueged set.
2219   EVT VT = Root->getValueType(Root->getNumValues()-1);
2220   while (VT == MVT::Glue) {
2221     SDNode *GU = findGlueUse(Root);
2222     if (!GU)
2223       break;
2224     Root = GU;
2225     VT = Root->getValueType(Root->getNumValues()-1);
2226 
2227     // If our query node has a glue result with a use, we've walked up it.  If
2228     // the user (which has already been selected) has a chain or indirectly uses
2229     // the chain, HandleMergeInputChains will not consider it.  Because of
2230     // this, we cannot ignore chains in this predicate.
2231     IgnoreChains = false;
2232   }
2233 
2234   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2235 }
2236 
2237 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
2238   SDLoc DL(N);
2239 
2240   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2241   SelectInlineAsmMemoryOperands(Ops, DL);
2242 
2243   const EVT VTs[] = {MVT::Other, MVT::Glue};
2244   SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
2245   New->setNodeId(-1);
2246   ReplaceUses(N, New.getNode());
2247   CurDAG->RemoveDeadNode(N);
2248 }
2249 
2250 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2251   SDLoc dl(Op);
2252   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2253   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2254 
2255   EVT VT = Op->getValueType(0);
2256   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2257   Register Reg =
2258       TLI->getRegisterByName(RegStr->getString().data(), Ty,
2259                              CurDAG->getMachineFunction());
2260   SDValue New = CurDAG->getCopyFromReg(
2261                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2262   New->setNodeId(-1);
2263   ReplaceUses(Op, New.getNode());
2264   CurDAG->RemoveDeadNode(Op);
2265 }
2266 
2267 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2268   SDLoc dl(Op);
2269   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2270   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2271 
2272   EVT VT = Op->getOperand(2).getValueType();
2273   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2274 
2275   Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2276                                         CurDAG->getMachineFunction());
2277   SDValue New = CurDAG->getCopyToReg(
2278                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2279   New->setNodeId(-1);
2280   ReplaceUses(Op, New.getNode());
2281   CurDAG->RemoveDeadNode(Op);
2282 }
2283 
2284 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2285   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2286 }
2287 
2288 /// GetVBR - decode a vbr encoding whose top bit is set.
2289 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2290 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2291   assert(Val >= 128 && "Not a VBR");
2292   Val &= 127;  // Remove first vbr bit.
2293 
2294   unsigned Shift = 7;
2295   uint64_t NextBits;
2296   do {
2297     NextBits = MatcherTable[Idx++];
2298     Val |= (NextBits&127) << Shift;
2299     Shift += 7;
2300   } while (NextBits & 128);
2301 
2302   return Val;
2303 }
2304 
2305 /// When a match is complete, this method updates uses of interior chain results
2306 /// to use the new results.
2307 void SelectionDAGISel::UpdateChains(
2308     SDNode *NodeToMatch, SDValue InputChain,
2309     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2310   SmallVector<SDNode*, 4> NowDeadNodes;
2311 
2312   // Now that all the normal results are replaced, we replace the chain and
2313   // glue results if present.
2314   if (!ChainNodesMatched.empty()) {
2315     assert(InputChain.getNode() &&
2316            "Matched input chains but didn't produce a chain");
2317     // Loop over all of the nodes we matched that produced a chain result.
2318     // Replace all the chain results with the final chain we ended up with.
2319     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2320       SDNode *ChainNode = ChainNodesMatched[i];
2321       // If ChainNode is null, it's because we replaced it on a previous
2322       // iteration and we cleared it out of the map. Just skip it.
2323       if (!ChainNode)
2324         continue;
2325 
2326       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2327              "Deleted node left in chain");
2328 
2329       // Don't replace the results of the root node if we're doing a
2330       // MorphNodeTo.
2331       if (ChainNode == NodeToMatch && isMorphNodeTo)
2332         continue;
2333 
2334       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2335       if (ChainVal.getValueType() == MVT::Glue)
2336         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2337       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2338       SelectionDAG::DAGNodeDeletedListener NDL(
2339           *CurDAG, [&](SDNode *N, SDNode *E) {
2340             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2341                          static_cast<SDNode *>(nullptr));
2342           });
2343       if (ChainNode->getOpcode() != ISD::TokenFactor)
2344         ReplaceUses(ChainVal, InputChain);
2345 
2346       // If the node became dead and we haven't already seen it, delete it.
2347       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2348           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2349         NowDeadNodes.push_back(ChainNode);
2350     }
2351   }
2352 
2353   if (!NowDeadNodes.empty())
2354     CurDAG->RemoveDeadNodes(NowDeadNodes);
2355 
2356   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2357 }
2358 
2359 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2360 /// operation for when the pattern matched at least one node with a chains.  The
2361 /// input vector contains a list of all of the chained nodes that we match.  We
2362 /// must determine if this is a valid thing to cover (i.e. matching it won't
2363 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2364 /// be used as the input node chain for the generated nodes.
2365 static SDValue
2366 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2367                        SelectionDAG *CurDAG) {
2368 
2369   SmallPtrSet<const SDNode *, 16> Visited;
2370   SmallVector<const SDNode *, 8> Worklist;
2371   SmallVector<SDValue, 3> InputChains;
2372   unsigned int Max = 8192;
2373 
2374   // Quick exit on trivial merge.
2375   if (ChainNodesMatched.size() == 1)
2376     return ChainNodesMatched[0]->getOperand(0);
2377 
2378   // Add chains that aren't already added (internal). Peek through
2379   // token factors.
2380   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2381     if (V.getValueType() != MVT::Other)
2382       return;
2383     if (V->getOpcode() == ISD::EntryToken)
2384       return;
2385     if (!Visited.insert(V.getNode()).second)
2386       return;
2387     if (V->getOpcode() == ISD::TokenFactor) {
2388       for (const SDValue &Op : V->op_values())
2389         AddChains(Op);
2390     } else
2391       InputChains.push_back(V);
2392   };
2393 
2394   for (auto *N : ChainNodesMatched) {
2395     Worklist.push_back(N);
2396     Visited.insert(N);
2397   }
2398 
2399   while (!Worklist.empty())
2400     AddChains(Worklist.pop_back_val()->getOperand(0));
2401 
2402   // Skip the search if there are no chain dependencies.
2403   if (InputChains.size() == 0)
2404     return CurDAG->getEntryNode();
2405 
2406   // If one of these chains is a successor of input, we must have a
2407   // node that is both the predecessor and successor of the
2408   // to-be-merged nodes. Fail.
2409   Visited.clear();
2410   for (SDValue V : InputChains)
2411     Worklist.push_back(V.getNode());
2412 
2413   for (auto *N : ChainNodesMatched)
2414     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2415       return SDValue();
2416 
2417   // Return merged chain.
2418   if (InputChains.size() == 1)
2419     return InputChains[0];
2420   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2421                          MVT::Other, InputChains);
2422 }
2423 
2424 /// MorphNode - Handle morphing a node in place for the selector.
2425 SDNode *SelectionDAGISel::
2426 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2427           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2428   // It is possible we're using MorphNodeTo to replace a node with no
2429   // normal results with one that has a normal result (or we could be
2430   // adding a chain) and the input could have glue and chains as well.
2431   // In this case we need to shift the operands down.
2432   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2433   // than the old isel though.
2434   int OldGlueResultNo = -1, OldChainResultNo = -1;
2435 
2436   unsigned NTMNumResults = Node->getNumValues();
2437   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2438     OldGlueResultNo = NTMNumResults-1;
2439     if (NTMNumResults != 1 &&
2440         Node->getValueType(NTMNumResults-2) == MVT::Other)
2441       OldChainResultNo = NTMNumResults-2;
2442   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2443     OldChainResultNo = NTMNumResults-1;
2444 
2445   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2446   // that this deletes operands of the old node that become dead.
2447   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2448 
2449   // MorphNodeTo can operate in two ways: if an existing node with the
2450   // specified operands exists, it can just return it.  Otherwise, it
2451   // updates the node in place to have the requested operands.
2452   if (Res == Node) {
2453     // If we updated the node in place, reset the node ID.  To the isel,
2454     // this should be just like a newly allocated machine node.
2455     Res->setNodeId(-1);
2456   }
2457 
2458   unsigned ResNumResults = Res->getNumValues();
2459   // Move the glue if needed.
2460   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2461       (unsigned)OldGlueResultNo != ResNumResults-1)
2462     ReplaceUses(SDValue(Node, OldGlueResultNo),
2463                 SDValue(Res, ResNumResults - 1));
2464 
2465   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2466     --ResNumResults;
2467 
2468   // Move the chain reference if needed.
2469   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2470       (unsigned)OldChainResultNo != ResNumResults-1)
2471     ReplaceUses(SDValue(Node, OldChainResultNo),
2472                 SDValue(Res, ResNumResults - 1));
2473 
2474   // Otherwise, no replacement happened because the node already exists. Replace
2475   // Uses of the old node with the new one.
2476   if (Res != Node) {
2477     ReplaceNode(Node, Res);
2478   } else {
2479     EnforceNodeIdInvariant(Res);
2480   }
2481 
2482   return Res;
2483 }
2484 
2485 /// CheckSame - Implements OP_CheckSame.
2486 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2487 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2488           SDValue N,
2489           const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2490   // Accept if it is exactly the same as a previously recorded node.
2491   unsigned RecNo = MatcherTable[MatcherIndex++];
2492   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2493   return N == RecordedNodes[RecNo].first;
2494 }
2495 
2496 /// CheckChildSame - Implements OP_CheckChildXSame.
2497 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2498 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2499               SDValue N,
2500               const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2501               unsigned ChildNo) {
2502   if (ChildNo >= N.getNumOperands())
2503     return false;  // Match fails if out of range child #.
2504   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2505                      RecordedNodes);
2506 }
2507 
2508 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2509 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2510 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2511                       const SelectionDAGISel &SDISel) {
2512   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2513 }
2514 
2515 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2516 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2517 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2518                    const SelectionDAGISel &SDISel, SDNode *N) {
2519   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2520 }
2521 
2522 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2523 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2524             SDNode *N) {
2525   uint16_t Opc = MatcherTable[MatcherIndex++];
2526   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2527   return N->getOpcode() == Opc;
2528 }
2529 
2530 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2531 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2532           const TargetLowering *TLI, const DataLayout &DL) {
2533   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2534   if (N.getValueType() == VT) return true;
2535 
2536   // Handle the case when VT is iPTR.
2537   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2538 }
2539 
2540 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2541 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2542                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2543                unsigned ChildNo) {
2544   if (ChildNo >= N.getNumOperands())
2545     return false;  // Match fails if out of range child #.
2546   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2547                      DL);
2548 }
2549 
2550 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2551 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2552               SDValue N) {
2553   return cast<CondCodeSDNode>(N)->get() ==
2554       (ISD::CondCode)MatcherTable[MatcherIndex++];
2555 }
2556 
2557 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2558 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2559                     SDValue N) {
2560   if (2 >= N.getNumOperands())
2561     return false;
2562   return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2563 }
2564 
2565 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2566 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2567                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2568   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2569   if (cast<VTSDNode>(N)->getVT() == VT)
2570     return true;
2571 
2572   // Handle the case when VT is iPTR.
2573   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2574 }
2575 
2576 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2577 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2578              SDValue N) {
2579   int64_t Val = MatcherTable[MatcherIndex++];
2580   if (Val & 128)
2581     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2582 
2583   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2584   return C && C->getSExtValue() == Val;
2585 }
2586 
2587 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2588 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2589                   SDValue N, unsigned ChildNo) {
2590   if (ChildNo >= N.getNumOperands())
2591     return false;  // Match fails if out of range child #.
2592   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2593 }
2594 
2595 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2596 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2597             SDValue N, const SelectionDAGISel &SDISel) {
2598   int64_t Val = MatcherTable[MatcherIndex++];
2599   if (Val & 128)
2600     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2601 
2602   if (N->getOpcode() != ISD::AND) return false;
2603 
2604   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2605   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2606 }
2607 
2608 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2609 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2610            SDValue N, const SelectionDAGISel &SDISel) {
2611   int64_t Val = MatcherTable[MatcherIndex++];
2612   if (Val & 128)
2613     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2614 
2615   if (N->getOpcode() != ISD::OR) return false;
2616 
2617   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2618   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2619 }
2620 
2621 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2622 /// scope, evaluate the current node.  If the current predicate is known to
2623 /// fail, set Result=true and return anything.  If the current predicate is
2624 /// known to pass, set Result=false and return the MatcherIndex to continue
2625 /// with.  If the current predicate is unknown, set Result=false and return the
2626 /// MatcherIndex to continue with.
2627 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2628                                        unsigned Index, SDValue N,
2629                                        bool &Result,
2630                                        const SelectionDAGISel &SDISel,
2631                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2632   switch (Table[Index++]) {
2633   default:
2634     Result = false;
2635     return Index-1;  // Could not evaluate this predicate.
2636   case SelectionDAGISel::OPC_CheckSame:
2637     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2638     return Index;
2639   case SelectionDAGISel::OPC_CheckChild0Same:
2640   case SelectionDAGISel::OPC_CheckChild1Same:
2641   case SelectionDAGISel::OPC_CheckChild2Same:
2642   case SelectionDAGISel::OPC_CheckChild3Same:
2643     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2644                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2645     return Index;
2646   case SelectionDAGISel::OPC_CheckPatternPredicate:
2647     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2648     return Index;
2649   case SelectionDAGISel::OPC_CheckPredicate:
2650     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2651     return Index;
2652   case SelectionDAGISel::OPC_CheckOpcode:
2653     Result = !::CheckOpcode(Table, Index, N.getNode());
2654     return Index;
2655   case SelectionDAGISel::OPC_CheckType:
2656     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2657                           SDISel.CurDAG->getDataLayout());
2658     return Index;
2659   case SelectionDAGISel::OPC_CheckTypeRes: {
2660     unsigned Res = Table[Index++];
2661     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2662                           SDISel.CurDAG->getDataLayout());
2663     return Index;
2664   }
2665   case SelectionDAGISel::OPC_CheckChild0Type:
2666   case SelectionDAGISel::OPC_CheckChild1Type:
2667   case SelectionDAGISel::OPC_CheckChild2Type:
2668   case SelectionDAGISel::OPC_CheckChild3Type:
2669   case SelectionDAGISel::OPC_CheckChild4Type:
2670   case SelectionDAGISel::OPC_CheckChild5Type:
2671   case SelectionDAGISel::OPC_CheckChild6Type:
2672   case SelectionDAGISel::OPC_CheckChild7Type:
2673     Result = !::CheckChildType(
2674                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2675                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2676     return Index;
2677   case SelectionDAGISel::OPC_CheckCondCode:
2678     Result = !::CheckCondCode(Table, Index, N);
2679     return Index;
2680   case SelectionDAGISel::OPC_CheckChild2CondCode:
2681     Result = !::CheckChild2CondCode(Table, Index, N);
2682     return Index;
2683   case SelectionDAGISel::OPC_CheckValueType:
2684     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2685                                SDISel.CurDAG->getDataLayout());
2686     return Index;
2687   case SelectionDAGISel::OPC_CheckInteger:
2688     Result = !::CheckInteger(Table, Index, N);
2689     return Index;
2690   case SelectionDAGISel::OPC_CheckChild0Integer:
2691   case SelectionDAGISel::OPC_CheckChild1Integer:
2692   case SelectionDAGISel::OPC_CheckChild2Integer:
2693   case SelectionDAGISel::OPC_CheckChild3Integer:
2694   case SelectionDAGISel::OPC_CheckChild4Integer:
2695     Result = !::CheckChildInteger(Table, Index, N,
2696                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2697     return Index;
2698   case SelectionDAGISel::OPC_CheckAndImm:
2699     Result = !::CheckAndImm(Table, Index, N, SDISel);
2700     return Index;
2701   case SelectionDAGISel::OPC_CheckOrImm:
2702     Result = !::CheckOrImm(Table, Index, N, SDISel);
2703     return Index;
2704   }
2705 }
2706 
2707 namespace {
2708 
2709 struct MatchScope {
2710   /// FailIndex - If this match fails, this is the index to continue with.
2711   unsigned FailIndex;
2712 
2713   /// NodeStack - The node stack when the scope was formed.
2714   SmallVector<SDValue, 4> NodeStack;
2715 
2716   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2717   unsigned NumRecordedNodes;
2718 
2719   /// NumMatchedMemRefs - The number of matched memref entries.
2720   unsigned NumMatchedMemRefs;
2721 
2722   /// InputChain/InputGlue - The current chain/glue
2723   SDValue InputChain, InputGlue;
2724 
2725   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2726   bool HasChainNodesMatched;
2727 };
2728 
2729 /// \A DAG update listener to keep the matching state
2730 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2731 /// change the DAG while matching.  X86 addressing mode matcher is an example
2732 /// for this.
2733 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2734 {
2735   SDNode **NodeToMatch;
2736   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2737   SmallVectorImpl<MatchScope> &MatchScopes;
2738 
2739 public:
2740   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2741                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2742                     SmallVectorImpl<MatchScope> &MS)
2743       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2744         RecordedNodes(RN), MatchScopes(MS) {}
2745 
2746   void NodeDeleted(SDNode *N, SDNode *E) override {
2747     // Some early-returns here to avoid the search if we deleted the node or
2748     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2749     // do, so it's unnecessary to update matching state at that point).
2750     // Neither of these can occur currently because we only install this
2751     // update listener during matching a complex patterns.
2752     if (!E || E->isMachineOpcode())
2753       return;
2754     // Check if NodeToMatch was updated.
2755     if (N == *NodeToMatch)
2756       *NodeToMatch = E;
2757     // Performing linear search here does not matter because we almost never
2758     // run this code.  You'd have to have a CSE during complex pattern
2759     // matching.
2760     for (auto &I : RecordedNodes)
2761       if (I.first.getNode() == N)
2762         I.first.setNode(E);
2763 
2764     for (auto &I : MatchScopes)
2765       for (auto &J : I.NodeStack)
2766         if (J.getNode() == N)
2767           J.setNode(E);
2768   }
2769 };
2770 
2771 } // end anonymous namespace
2772 
2773 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2774                                         const unsigned char *MatcherTable,
2775                                         unsigned TableSize) {
2776   // FIXME: Should these even be selected?  Handle these cases in the caller?
2777   switch (NodeToMatch->getOpcode()) {
2778   default:
2779     break;
2780   case ISD::EntryToken:       // These nodes remain the same.
2781   case ISD::BasicBlock:
2782   case ISD::Register:
2783   case ISD::RegisterMask:
2784   case ISD::HANDLENODE:
2785   case ISD::MDNODE_SDNODE:
2786   case ISD::TargetConstant:
2787   case ISD::TargetConstantFP:
2788   case ISD::TargetConstantPool:
2789   case ISD::TargetFrameIndex:
2790   case ISD::TargetExternalSymbol:
2791   case ISD::MCSymbol:
2792   case ISD::TargetBlockAddress:
2793   case ISD::TargetJumpTable:
2794   case ISD::TargetGlobalTLSAddress:
2795   case ISD::TargetGlobalAddress:
2796   case ISD::TokenFactor:
2797   case ISD::CopyFromReg:
2798   case ISD::CopyToReg:
2799   case ISD::EH_LABEL:
2800   case ISD::ANNOTATION_LABEL:
2801   case ISD::LIFETIME_START:
2802   case ISD::LIFETIME_END:
2803     NodeToMatch->setNodeId(-1); // Mark selected.
2804     return;
2805   case ISD::AssertSext:
2806   case ISD::AssertZext:
2807     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2808     CurDAG->RemoveDeadNode(NodeToMatch);
2809     return;
2810   case ISD::INLINEASM:
2811   case ISD::INLINEASM_BR:
2812     Select_INLINEASM(NodeToMatch,
2813                      NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
2814     return;
2815   case ISD::READ_REGISTER:
2816     Select_READ_REGISTER(NodeToMatch);
2817     return;
2818   case ISD::WRITE_REGISTER:
2819     Select_WRITE_REGISTER(NodeToMatch);
2820     return;
2821   case ISD::UNDEF:
2822     Select_UNDEF(NodeToMatch);
2823     return;
2824   }
2825 
2826   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2827 
2828   // Set up the node stack with NodeToMatch as the only node on the stack.
2829   SmallVector<SDValue, 8> NodeStack;
2830   SDValue N = SDValue(NodeToMatch, 0);
2831   NodeStack.push_back(N);
2832 
2833   // MatchScopes - Scopes used when matching, if a match failure happens, this
2834   // indicates where to continue checking.
2835   SmallVector<MatchScope, 8> MatchScopes;
2836 
2837   // RecordedNodes - This is the set of nodes that have been recorded by the
2838   // state machine.  The second value is the parent of the node, or null if the
2839   // root is recorded.
2840   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2841 
2842   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2843   // pattern.
2844   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2845 
2846   // These are the current input chain and glue for use when generating nodes.
2847   // Various Emit operations change these.  For example, emitting a copytoreg
2848   // uses and updates these.
2849   SDValue InputChain, InputGlue;
2850 
2851   // ChainNodesMatched - If a pattern matches nodes that have input/output
2852   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2853   // which ones they are.  The result is captured into this list so that we can
2854   // update the chain results when the pattern is complete.
2855   SmallVector<SDNode*, 3> ChainNodesMatched;
2856 
2857   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2858 
2859   // Determine where to start the interpreter.  Normally we start at opcode #0,
2860   // but if the state machine starts with an OPC_SwitchOpcode, then we
2861   // accelerate the first lookup (which is guaranteed to be hot) with the
2862   // OpcodeOffset table.
2863   unsigned MatcherIndex = 0;
2864 
2865   if (!OpcodeOffset.empty()) {
2866     // Already computed the OpcodeOffset table, just index into it.
2867     if (N.getOpcode() < OpcodeOffset.size())
2868       MatcherIndex = OpcodeOffset[N.getOpcode()];
2869     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2870 
2871   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2872     // Otherwise, the table isn't computed, but the state machine does start
2873     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2874     // is the first time we're selecting an instruction.
2875     unsigned Idx = 1;
2876     while (true) {
2877       // Get the size of this case.
2878       unsigned CaseSize = MatcherTable[Idx++];
2879       if (CaseSize & 128)
2880         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2881       if (CaseSize == 0) break;
2882 
2883       // Get the opcode, add the index to the table.
2884       uint16_t Opc = MatcherTable[Idx++];
2885       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2886       if (Opc >= OpcodeOffset.size())
2887         OpcodeOffset.resize((Opc+1)*2);
2888       OpcodeOffset[Opc] = Idx;
2889       Idx += CaseSize;
2890     }
2891 
2892     // Okay, do the lookup for the first opcode.
2893     if (N.getOpcode() < OpcodeOffset.size())
2894       MatcherIndex = OpcodeOffset[N.getOpcode()];
2895   }
2896 
2897   while (true) {
2898     assert(MatcherIndex < TableSize && "Invalid index");
2899 #ifndef NDEBUG
2900     unsigned CurrentOpcodeIndex = MatcherIndex;
2901 #endif
2902     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2903     switch (Opcode) {
2904     case OPC_Scope: {
2905       // Okay, the semantics of this operation are that we should push a scope
2906       // then evaluate the first child.  However, pushing a scope only to have
2907       // the first check fail (which then pops it) is inefficient.  If we can
2908       // determine immediately that the first check (or first several) will
2909       // immediately fail, don't even bother pushing a scope for them.
2910       unsigned FailIndex;
2911 
2912       while (true) {
2913         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2914         if (NumToSkip & 128)
2915           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2916         // Found the end of the scope with no match.
2917         if (NumToSkip == 0) {
2918           FailIndex = 0;
2919           break;
2920         }
2921 
2922         FailIndex = MatcherIndex+NumToSkip;
2923 
2924         unsigned MatcherIndexOfPredicate = MatcherIndex;
2925         (void)MatcherIndexOfPredicate; // silence warning.
2926 
2927         // If we can't evaluate this predicate without pushing a scope (e.g. if
2928         // it is a 'MoveParent') or if the predicate succeeds on this node, we
2929         // push the scope and evaluate the full predicate chain.
2930         bool Result;
2931         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2932                                               Result, *this, RecordedNodes);
2933         if (!Result)
2934           break;
2935 
2936         LLVM_DEBUG(
2937             dbgs() << "  Skipped scope entry (due to false predicate) at "
2938                    << "index " << MatcherIndexOfPredicate << ", continuing at "
2939                    << FailIndex << "\n");
2940         ++NumDAGIselRetries;
2941 
2942         // Otherwise, we know that this case of the Scope is guaranteed to fail,
2943         // move to the next case.
2944         MatcherIndex = FailIndex;
2945       }
2946 
2947       // If the whole scope failed to match, bail.
2948       if (FailIndex == 0) break;
2949 
2950       // Push a MatchScope which indicates where to go if the first child fails
2951       // to match.
2952       MatchScope NewEntry;
2953       NewEntry.FailIndex = FailIndex;
2954       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2955       NewEntry.NumRecordedNodes = RecordedNodes.size();
2956       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2957       NewEntry.InputChain = InputChain;
2958       NewEntry.InputGlue = InputGlue;
2959       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2960       MatchScopes.push_back(NewEntry);
2961       continue;
2962     }
2963     case OPC_RecordNode: {
2964       // Remember this node, it may end up being an operand in the pattern.
2965       SDNode *Parent = nullptr;
2966       if (NodeStack.size() > 1)
2967         Parent = NodeStack[NodeStack.size()-2].getNode();
2968       RecordedNodes.push_back(std::make_pair(N, Parent));
2969       continue;
2970     }
2971 
2972     case OPC_RecordChild0: case OPC_RecordChild1:
2973     case OPC_RecordChild2: case OPC_RecordChild3:
2974     case OPC_RecordChild4: case OPC_RecordChild5:
2975     case OPC_RecordChild6: case OPC_RecordChild7: {
2976       unsigned ChildNo = Opcode-OPC_RecordChild0;
2977       if (ChildNo >= N.getNumOperands())
2978         break;  // Match fails if out of range child #.
2979 
2980       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2981                                              N.getNode()));
2982       continue;
2983     }
2984     case OPC_RecordMemRef:
2985       if (auto *MN = dyn_cast<MemSDNode>(N))
2986         MatchedMemRefs.push_back(MN->getMemOperand());
2987       else {
2988         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2989                    dbgs() << '\n');
2990       }
2991 
2992       continue;
2993 
2994     case OPC_CaptureGlueInput:
2995       // If the current node has an input glue, capture it in InputGlue.
2996       if (N->getNumOperands() != 0 &&
2997           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2998         InputGlue = N->getOperand(N->getNumOperands()-1);
2999       continue;
3000 
3001     case OPC_MoveChild: {
3002       unsigned ChildNo = MatcherTable[MatcherIndex++];
3003       if (ChildNo >= N.getNumOperands())
3004         break;  // Match fails if out of range child #.
3005       N = N.getOperand(ChildNo);
3006       NodeStack.push_back(N);
3007       continue;
3008     }
3009 
3010     case OPC_MoveChild0: case OPC_MoveChild1:
3011     case OPC_MoveChild2: case OPC_MoveChild3:
3012     case OPC_MoveChild4: case OPC_MoveChild5:
3013     case OPC_MoveChild6: case OPC_MoveChild7: {
3014       unsigned ChildNo = Opcode-OPC_MoveChild0;
3015       if (ChildNo >= N.getNumOperands())
3016         break;  // Match fails if out of range child #.
3017       N = N.getOperand(ChildNo);
3018       NodeStack.push_back(N);
3019       continue;
3020     }
3021 
3022     case OPC_MoveParent:
3023       // Pop the current node off the NodeStack.
3024       NodeStack.pop_back();
3025       assert(!NodeStack.empty() && "Node stack imbalance!");
3026       N = NodeStack.back();
3027       continue;
3028 
3029     case OPC_CheckSame:
3030       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3031       continue;
3032 
3033     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3034     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3035       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3036                             Opcode-OPC_CheckChild0Same))
3037         break;
3038       continue;
3039 
3040     case OPC_CheckPatternPredicate:
3041       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3042       continue;
3043     case OPC_CheckPredicate:
3044       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3045                                 N.getNode()))
3046         break;
3047       continue;
3048     case OPC_CheckPredicateWithOperands: {
3049       unsigned OpNum = MatcherTable[MatcherIndex++];
3050       SmallVector<SDValue, 8> Operands;
3051 
3052       for (unsigned i = 0; i < OpNum; ++i)
3053         Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3054 
3055       unsigned PredNo = MatcherTable[MatcherIndex++];
3056       if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3057         break;
3058       continue;
3059     }
3060     case OPC_CheckComplexPat: {
3061       unsigned CPNum = MatcherTable[MatcherIndex++];
3062       unsigned RecNo = MatcherTable[MatcherIndex++];
3063       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3064 
3065       // If target can modify DAG during matching, keep the matching state
3066       // consistent.
3067       std::unique_ptr<MatchStateUpdater> MSU;
3068       if (ComplexPatternFuncMutatesDAG())
3069         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3070                                         MatchScopes));
3071 
3072       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3073                                RecordedNodes[RecNo].first, CPNum,
3074                                RecordedNodes))
3075         break;
3076       continue;
3077     }
3078     case OPC_CheckOpcode:
3079       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3080       continue;
3081 
3082     case OPC_CheckType:
3083       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3084                        CurDAG->getDataLayout()))
3085         break;
3086       continue;
3087 
3088     case OPC_CheckTypeRes: {
3089       unsigned Res = MatcherTable[MatcherIndex++];
3090       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3091                        CurDAG->getDataLayout()))
3092         break;
3093       continue;
3094     }
3095 
3096     case OPC_SwitchOpcode: {
3097       unsigned CurNodeOpcode = N.getOpcode();
3098       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3099       unsigned CaseSize;
3100       while (true) {
3101         // Get the size of this case.
3102         CaseSize = MatcherTable[MatcherIndex++];
3103         if (CaseSize & 128)
3104           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3105         if (CaseSize == 0) break;
3106 
3107         uint16_t Opc = MatcherTable[MatcherIndex++];
3108         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3109 
3110         // If the opcode matches, then we will execute this case.
3111         if (CurNodeOpcode == Opc)
3112           break;
3113 
3114         // Otherwise, skip over this case.
3115         MatcherIndex += CaseSize;
3116       }
3117 
3118       // If no cases matched, bail out.
3119       if (CaseSize == 0) break;
3120 
3121       // Otherwise, execute the case we found.
3122       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3123                         << MatcherIndex << "\n");
3124       continue;
3125     }
3126 
3127     case OPC_SwitchType: {
3128       MVT CurNodeVT = N.getSimpleValueType();
3129       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3130       unsigned CaseSize;
3131       while (true) {
3132         // Get the size of this case.
3133         CaseSize = MatcherTable[MatcherIndex++];
3134         if (CaseSize & 128)
3135           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3136         if (CaseSize == 0) break;
3137 
3138         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3139         if (CaseVT == MVT::iPTR)
3140           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3141 
3142         // If the VT matches, then we will execute this case.
3143         if (CurNodeVT == CaseVT)
3144           break;
3145 
3146         // Otherwise, skip over this case.
3147         MatcherIndex += CaseSize;
3148       }
3149 
3150       // If no cases matched, bail out.
3151       if (CaseSize == 0) break;
3152 
3153       // Otherwise, execute the case we found.
3154       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3155                         << "] from " << SwitchStart << " to " << MatcherIndex
3156                         << '\n');
3157       continue;
3158     }
3159     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3160     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3161     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3162     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3163       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3164                             CurDAG->getDataLayout(),
3165                             Opcode - OPC_CheckChild0Type))
3166         break;
3167       continue;
3168     case OPC_CheckCondCode:
3169       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3170       continue;
3171     case OPC_CheckChild2CondCode:
3172       if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3173       continue;
3174     case OPC_CheckValueType:
3175       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3176                             CurDAG->getDataLayout()))
3177         break;
3178       continue;
3179     case OPC_CheckInteger:
3180       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3181       continue;
3182     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3183     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3184     case OPC_CheckChild4Integer:
3185       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3186                                Opcode-OPC_CheckChild0Integer)) break;
3187       continue;
3188     case OPC_CheckAndImm:
3189       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3190       continue;
3191     case OPC_CheckOrImm:
3192       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3193       continue;
3194     case OPC_CheckImmAllOnesV:
3195       if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3196       continue;
3197     case OPC_CheckImmAllZerosV:
3198       if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3199       continue;
3200 
3201     case OPC_CheckFoldableChainNode: {
3202       assert(NodeStack.size() != 1 && "No parent node");
3203       // Verify that all intermediate nodes between the root and this one have
3204       // a single use (ignoring chains, which are handled in UpdateChains).
3205       bool HasMultipleUses = false;
3206       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3207         unsigned NNonChainUses = 0;
3208         SDNode *NS = NodeStack[i].getNode();
3209         for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3210           if (UI.getUse().getValueType() != MVT::Other)
3211             if (++NNonChainUses > 1) {
3212               HasMultipleUses = true;
3213               break;
3214             }
3215         if (HasMultipleUses) break;
3216       }
3217       if (HasMultipleUses) break;
3218 
3219       // Check to see that the target thinks this is profitable to fold and that
3220       // we can fold it without inducing cycles in the graph.
3221       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3222                               NodeToMatch) ||
3223           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3224                          NodeToMatch, OptLevel,
3225                          true/*We validate our own chains*/))
3226         break;
3227 
3228       continue;
3229     }
3230     case OPC_EmitInteger: {
3231       MVT::SimpleValueType VT =
3232         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3233       int64_t Val = MatcherTable[MatcherIndex++];
3234       if (Val & 128)
3235         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3236       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3237                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3238                                                         VT), nullptr));
3239       continue;
3240     }
3241     case OPC_EmitRegister: {
3242       MVT::SimpleValueType VT =
3243         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3244       unsigned RegNo = MatcherTable[MatcherIndex++];
3245       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3246                               CurDAG->getRegister(RegNo, VT), nullptr));
3247       continue;
3248     }
3249     case OPC_EmitRegister2: {
3250       // For targets w/ more than 256 register names, the register enum
3251       // values are stored in two bytes in the matcher table (just like
3252       // opcodes).
3253       MVT::SimpleValueType VT =
3254         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3255       unsigned RegNo = MatcherTable[MatcherIndex++];
3256       RegNo |= MatcherTable[MatcherIndex++] << 8;
3257       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3258                               CurDAG->getRegister(RegNo, VT), nullptr));
3259       continue;
3260     }
3261 
3262     case OPC_EmitConvertToTarget:  {
3263       // Convert from IMM/FPIMM to target version.
3264       unsigned RecNo = MatcherTable[MatcherIndex++];
3265       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3266       SDValue Imm = RecordedNodes[RecNo].first;
3267 
3268       if (Imm->getOpcode() == ISD::Constant) {
3269         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3270         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3271                                         Imm.getValueType());
3272       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3273         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3274         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3275                                           Imm.getValueType());
3276       }
3277 
3278       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3279       continue;
3280     }
3281 
3282     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3283     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3284     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3285       // These are space-optimized forms of OPC_EmitMergeInputChains.
3286       assert(!InputChain.getNode() &&
3287              "EmitMergeInputChains should be the first chain producing node");
3288       assert(ChainNodesMatched.empty() &&
3289              "Should only have one EmitMergeInputChains per match");
3290 
3291       // Read all of the chained nodes.
3292       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3293       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3294       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3295 
3296       // FIXME: What if other value results of the node have uses not matched
3297       // by this pattern?
3298       if (ChainNodesMatched.back() != NodeToMatch &&
3299           !RecordedNodes[RecNo].first.hasOneUse()) {
3300         ChainNodesMatched.clear();
3301         break;
3302       }
3303 
3304       // Merge the input chains if they are not intra-pattern references.
3305       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3306 
3307       if (!InputChain.getNode())
3308         break;  // Failed to merge.
3309       continue;
3310     }
3311 
3312     case OPC_EmitMergeInputChains: {
3313       assert(!InputChain.getNode() &&
3314              "EmitMergeInputChains should be the first chain producing node");
3315       // This node gets a list of nodes we matched in the input that have
3316       // chains.  We want to token factor all of the input chains to these nodes
3317       // together.  However, if any of the input chains is actually one of the
3318       // nodes matched in this pattern, then we have an intra-match reference.
3319       // Ignore these because the newly token factored chain should not refer to
3320       // the old nodes.
3321       unsigned NumChains = MatcherTable[MatcherIndex++];
3322       assert(NumChains != 0 && "Can't TF zero chains");
3323 
3324       assert(ChainNodesMatched.empty() &&
3325              "Should only have one EmitMergeInputChains per match");
3326 
3327       // Read all of the chained nodes.
3328       for (unsigned i = 0; i != NumChains; ++i) {
3329         unsigned RecNo = MatcherTable[MatcherIndex++];
3330         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3331         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3332 
3333         // FIXME: What if other value results of the node have uses not matched
3334         // by this pattern?
3335         if (ChainNodesMatched.back() != NodeToMatch &&
3336             !RecordedNodes[RecNo].first.hasOneUse()) {
3337           ChainNodesMatched.clear();
3338           break;
3339         }
3340       }
3341 
3342       // If the inner loop broke out, the match fails.
3343       if (ChainNodesMatched.empty())
3344         break;
3345 
3346       // Merge the input chains if they are not intra-pattern references.
3347       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3348 
3349       if (!InputChain.getNode())
3350         break;  // Failed to merge.
3351 
3352       continue;
3353     }
3354 
3355     case OPC_EmitCopyToReg:
3356     case OPC_EmitCopyToReg2: {
3357       unsigned RecNo = MatcherTable[MatcherIndex++];
3358       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3359       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3360       if (Opcode == OPC_EmitCopyToReg2)
3361         DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3362 
3363       if (!InputChain.getNode())
3364         InputChain = CurDAG->getEntryNode();
3365 
3366       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3367                                         DestPhysReg, RecordedNodes[RecNo].first,
3368                                         InputGlue);
3369 
3370       InputGlue = InputChain.getValue(1);
3371       continue;
3372     }
3373 
3374     case OPC_EmitNodeXForm: {
3375       unsigned XFormNo = MatcherTable[MatcherIndex++];
3376       unsigned RecNo = MatcherTable[MatcherIndex++];
3377       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3378       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3379       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3380       continue;
3381     }
3382     case OPC_Coverage: {
3383       // This is emitted right before MorphNode/EmitNode.
3384       // So it should be safe to assume that this node has been selected
3385       unsigned index = MatcherTable[MatcherIndex++];
3386       index |= (MatcherTable[MatcherIndex++] << 8);
3387       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3388       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3389       continue;
3390     }
3391 
3392     case OPC_EmitNode:     case OPC_MorphNodeTo:
3393     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3394     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3395       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3396       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3397       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3398       // Get the result VT list.
3399       unsigned NumVTs;
3400       // If this is one of the compressed forms, get the number of VTs based
3401       // on the Opcode. Otherwise read the next byte from the table.
3402       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3403         NumVTs = Opcode - OPC_MorphNodeTo0;
3404       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3405         NumVTs = Opcode - OPC_EmitNode0;
3406       else
3407         NumVTs = MatcherTable[MatcherIndex++];
3408       SmallVector<EVT, 4> VTs;
3409       for (unsigned i = 0; i != NumVTs; ++i) {
3410         MVT::SimpleValueType VT =
3411           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3412         if (VT == MVT::iPTR)
3413           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3414         VTs.push_back(VT);
3415       }
3416 
3417       if (EmitNodeInfo & OPFL_Chain)
3418         VTs.push_back(MVT::Other);
3419       if (EmitNodeInfo & OPFL_GlueOutput)
3420         VTs.push_back(MVT::Glue);
3421 
3422       // This is hot code, so optimize the two most common cases of 1 and 2
3423       // results.
3424       SDVTList VTList;
3425       if (VTs.size() == 1)
3426         VTList = CurDAG->getVTList(VTs[0]);
3427       else if (VTs.size() == 2)
3428         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3429       else
3430         VTList = CurDAG->getVTList(VTs);
3431 
3432       // Get the operand list.
3433       unsigned NumOps = MatcherTable[MatcherIndex++];
3434       SmallVector<SDValue, 8> Ops;
3435       for (unsigned i = 0; i != NumOps; ++i) {
3436         unsigned RecNo = MatcherTable[MatcherIndex++];
3437         if (RecNo & 128)
3438           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3439 
3440         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3441         Ops.push_back(RecordedNodes[RecNo].first);
3442       }
3443 
3444       // If there are variadic operands to add, handle them now.
3445       if (EmitNodeInfo & OPFL_VariadicInfo) {
3446         // Determine the start index to copy from.
3447         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3448         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3449         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3450                "Invalid variadic node");
3451         // Copy all of the variadic operands, not including a potential glue
3452         // input.
3453         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3454              i != e; ++i) {
3455           SDValue V = NodeToMatch->getOperand(i);
3456           if (V.getValueType() == MVT::Glue) break;
3457           Ops.push_back(V);
3458         }
3459       }
3460 
3461       // If this has chain/glue inputs, add them.
3462       if (EmitNodeInfo & OPFL_Chain)
3463         Ops.push_back(InputChain);
3464       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3465         Ops.push_back(InputGlue);
3466 
3467       // Check whether any matched node could raise an FP exception.  Since all
3468       // such nodes must have a chain, it suffices to check ChainNodesMatched.
3469       // We need to perform this check before potentially modifying one of the
3470       // nodes via MorphNode.
3471       bool MayRaiseFPException = false;
3472       for (auto *N : ChainNodesMatched)
3473         if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3474           MayRaiseFPException = true;
3475           break;
3476         }
3477 
3478       // Create the node.
3479       MachineSDNode *Res = nullptr;
3480       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3481                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3482       if (!IsMorphNodeTo) {
3483         // If this is a normal EmitNode command, just create the new node and
3484         // add the results to the RecordedNodes list.
3485         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3486                                      VTList, Ops);
3487 
3488         // Add all the non-glue/non-chain results to the RecordedNodes list.
3489         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3490           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3491           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3492                                                              nullptr));
3493         }
3494       } else {
3495         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3496                "NodeToMatch was removed partway through selection");
3497         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3498                                                               SDNode *E) {
3499           CurDAG->salvageDebugInfo(*N);
3500           auto &Chain = ChainNodesMatched;
3501           assert((!E || !is_contained(Chain, N)) &&
3502                  "Chain node replaced during MorphNode");
3503           Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3504         });
3505         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3506                                             Ops, EmitNodeInfo));
3507       }
3508 
3509       // Set the NoFPExcept flag when no original matched node could
3510       // raise an FP exception, but the new node potentially might.
3511       if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3512         SDNodeFlags Flags = Res->getFlags();
3513         Flags.setNoFPExcept(true);
3514         Res->setFlags(Flags);
3515       }
3516 
3517       // If the node had chain/glue results, update our notion of the current
3518       // chain and glue.
3519       if (EmitNodeInfo & OPFL_GlueOutput) {
3520         InputGlue = SDValue(Res, VTs.size()-1);
3521         if (EmitNodeInfo & OPFL_Chain)
3522           InputChain = SDValue(Res, VTs.size()-2);
3523       } else if (EmitNodeInfo & OPFL_Chain)
3524         InputChain = SDValue(Res, VTs.size()-1);
3525 
3526       // If the OPFL_MemRefs glue is set on this node, slap all of the
3527       // accumulated memrefs onto it.
3528       //
3529       // FIXME: This is vastly incorrect for patterns with multiple outputs
3530       // instructions that access memory and for ComplexPatterns that match
3531       // loads.
3532       if (EmitNodeInfo & OPFL_MemRefs) {
3533         // Only attach load or store memory operands if the generated
3534         // instruction may load or store.
3535         const MCInstrDesc &MCID = TII->get(TargetOpc);
3536         bool mayLoad = MCID.mayLoad();
3537         bool mayStore = MCID.mayStore();
3538 
3539         // We expect to have relatively few of these so just filter them into a
3540         // temporary buffer so that we can easily add them to the instruction.
3541         SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3542         for (MachineMemOperand *MMO : MatchedMemRefs) {
3543           if (MMO->isLoad()) {
3544             if (mayLoad)
3545               FilteredMemRefs.push_back(MMO);
3546           } else if (MMO->isStore()) {
3547             if (mayStore)
3548               FilteredMemRefs.push_back(MMO);
3549           } else {
3550             FilteredMemRefs.push_back(MMO);
3551           }
3552         }
3553 
3554         CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3555       }
3556 
3557       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3558                      << "  Dropping mem operands\n";
3559                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3560                         << " node: ";
3561                  Res->dump(CurDAG););
3562 
3563       // If this was a MorphNodeTo then we're completely done!
3564       if (IsMorphNodeTo) {
3565         // Update chain uses.
3566         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3567         return;
3568       }
3569       continue;
3570     }
3571 
3572     case OPC_CompleteMatch: {
3573       // The match has been completed, and any new nodes (if any) have been
3574       // created.  Patch up references to the matched dag to use the newly
3575       // created nodes.
3576       unsigned NumResults = MatcherTable[MatcherIndex++];
3577 
3578       for (unsigned i = 0; i != NumResults; ++i) {
3579         unsigned ResSlot = MatcherTable[MatcherIndex++];
3580         if (ResSlot & 128)
3581           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3582 
3583         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3584         SDValue Res = RecordedNodes[ResSlot].first;
3585 
3586         assert(i < NodeToMatch->getNumValues() &&
3587                NodeToMatch->getValueType(i) != MVT::Other &&
3588                NodeToMatch->getValueType(i) != MVT::Glue &&
3589                "Invalid number of results to complete!");
3590         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3591                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3592                 Res.getValueType() == MVT::iPTR ||
3593                 NodeToMatch->getValueType(i).getSizeInBits() ==
3594                     Res.getValueSizeInBits()) &&
3595                "invalid replacement");
3596         ReplaceUses(SDValue(NodeToMatch, i), Res);
3597       }
3598 
3599       // Update chain uses.
3600       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3601 
3602       // If the root node defines glue, we need to update it to the glue result.
3603       // TODO: This never happens in our tests and I think it can be removed /
3604       // replaced with an assert, but if we do it this the way the change is
3605       // NFC.
3606       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3607               MVT::Glue &&
3608           InputGlue.getNode())
3609         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3610                     InputGlue);
3611 
3612       assert(NodeToMatch->use_empty() &&
3613              "Didn't replace all uses of the node?");
3614       CurDAG->RemoveDeadNode(NodeToMatch);
3615 
3616       return;
3617     }
3618     }
3619 
3620     // If the code reached this point, then the match failed.  See if there is
3621     // another child to try in the current 'Scope', otherwise pop it until we
3622     // find a case to check.
3623     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3624                       << "\n");
3625     ++NumDAGIselRetries;
3626     while (true) {
3627       if (MatchScopes.empty()) {
3628         CannotYetSelect(NodeToMatch);
3629         return;
3630       }
3631 
3632       // Restore the interpreter state back to the point where the scope was
3633       // formed.
3634       MatchScope &LastScope = MatchScopes.back();
3635       RecordedNodes.resize(LastScope.NumRecordedNodes);
3636       NodeStack.clear();
3637       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3638       N = NodeStack.back();
3639 
3640       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3641         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3642       MatcherIndex = LastScope.FailIndex;
3643 
3644       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3645 
3646       InputChain = LastScope.InputChain;
3647       InputGlue = LastScope.InputGlue;
3648       if (!LastScope.HasChainNodesMatched)
3649         ChainNodesMatched.clear();
3650 
3651       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3652       // we have reached the end of this scope, otherwise we have another child
3653       // in the current scope to try.
3654       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3655       if (NumToSkip & 128)
3656         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3657 
3658       // If we have another child in this scope to match, update FailIndex and
3659       // try it.
3660       if (NumToSkip != 0) {
3661         LastScope.FailIndex = MatcherIndex+NumToSkip;
3662         break;
3663       }
3664 
3665       // End of this scope, pop it and try the next child in the containing
3666       // scope.
3667       MatchScopes.pop_back();
3668     }
3669   }
3670 }
3671 
3672 /// Return whether the node may raise an FP exception.
3673 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3674   // For machine opcodes, consult the MCID flag.
3675   if (N->isMachineOpcode()) {
3676     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3677     return MCID.mayRaiseFPException();
3678   }
3679 
3680   // For ISD opcodes, only StrictFP opcodes may raise an FP
3681   // exception.
3682   if (N->isTargetOpcode())
3683     return N->isTargetStrictFPOpcode();
3684   return N->isStrictFPOpcode();
3685 }
3686 
3687 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3688   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3689   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3690   if (!C)
3691     return false;
3692 
3693   // Detect when "or" is used to add an offset to a stack object.
3694   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3695     MachineFrameInfo &MFI = MF->getFrameInfo();
3696     unsigned A = MFI.getObjectAlignment(FN->getIndex());
3697     assert(isPowerOf2_32(A) && "Unexpected alignment");
3698     int32_t Off = C->getSExtValue();
3699     // If the alleged offset fits in the zero bits guaranteed by
3700     // the alignment, then this or is really an add.
3701     return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3702   }
3703   return false;
3704 }
3705 
3706 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3707   std::string msg;
3708   raw_string_ostream Msg(msg);
3709   Msg << "Cannot select: ";
3710 
3711   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3712       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3713       N->getOpcode() != ISD::INTRINSIC_VOID) {
3714     N->printrFull(Msg, CurDAG);
3715     Msg << "\nIn function: " << MF->getName();
3716   } else {
3717     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3718     unsigned iid =
3719       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3720     if (iid < Intrinsic::num_intrinsics)
3721       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3722     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3723       Msg << "target intrinsic %" << TII->getName(iid);
3724     else
3725       Msg << "unknown intrinsic #" << iid;
3726   }
3727   report_fatal_error(Msg.str());
3728 }
3729 
3730 char SelectionDAGISel::ID = 0;
3731