xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h (revision 61898cde69374d5a9994e2074605bc4101aff72d)
1 //===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
14 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
15 
16 #include "StatepointLowering.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/CodeGen/SwitchLoweringUtils.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Statepoint.h"
33 #include "llvm/Support/BranchProbability.h"
34 #include "llvm/Support/CodeGen.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MachineValueType.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <utility>
41 #include <vector>
42 
43 namespace llvm {
44 
45 class AllocaInst;
46 class AtomicCmpXchgInst;
47 class AtomicRMWInst;
48 class BasicBlock;
49 class BranchInst;
50 class CallInst;
51 class CallBrInst;
52 class CatchPadInst;
53 class CatchReturnInst;
54 class CatchSwitchInst;
55 class CleanupPadInst;
56 class CleanupReturnInst;
57 class Constant;
58 class ConstantInt;
59 class ConstrainedFPIntrinsic;
60 class DbgValueInst;
61 class DataLayout;
62 class DIExpression;
63 class DILocalVariable;
64 class DILocation;
65 class FenceInst;
66 class FunctionLoweringInfo;
67 class GCFunctionInfo;
68 class GCRelocateInst;
69 class GCResultInst;
70 class IndirectBrInst;
71 class InvokeInst;
72 class LandingPadInst;
73 class LLVMContext;
74 class LoadInst;
75 class MachineBasicBlock;
76 class PHINode;
77 class ResumeInst;
78 class ReturnInst;
79 class SDDbgValue;
80 class StoreInst;
81 class SwiftErrorValueTracking;
82 class SwitchInst;
83 class TargetLibraryInfo;
84 class TargetMachine;
85 class Type;
86 class VAArgInst;
87 class UnreachableInst;
88 class Use;
89 class User;
90 class Value;
91 
92 //===----------------------------------------------------------------------===//
93 /// SelectionDAGBuilder - This is the common target-independent lowering
94 /// implementation that is parameterized by a TargetLowering object.
95 ///
96 class SelectionDAGBuilder {
97   /// The current instruction being visited.
98   const Instruction *CurInst = nullptr;
99 
100   DenseMap<const Value*, SDValue> NodeMap;
101 
102   /// Maps argument value for unused arguments. This is used
103   /// to preserve debug information for incoming arguments.
104   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
105 
106   /// Helper type for DanglingDebugInfoMap.
107   class DanglingDebugInfo {
108     const DbgValueInst* DI = nullptr;
109     DebugLoc dl;
110     unsigned SDNodeOrder = 0;
111 
112   public:
113     DanglingDebugInfo() = default;
114     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
115         : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}
116 
117     const DbgValueInst* getDI() { return DI; }
118     DebugLoc getdl() { return dl; }
119     unsigned getSDNodeOrder() { return SDNodeOrder; }
120   };
121 
122   /// Helper type for DanglingDebugInfoMap.
123   typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector;
124 
125   /// Keeps track of dbg_values for which we have not yet seen the referent.
126   /// We defer handling these until we do see it.
127   MapVector<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap;
128 
129 public:
130   /// Loads are not emitted to the program immediately.  We bunch them up and
131   /// then emit token factor nodes when possible.  This allows us to get simple
132   /// disambiguation between loads without worrying about alias analysis.
133   SmallVector<SDValue, 8> PendingLoads;
134 
135   /// State used while lowering a statepoint sequence (gc_statepoint,
136   /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
137   StatepointLoweringState StatepointLowering;
138 
139 private:
140   /// CopyToReg nodes that copy values to virtual registers for export to other
141   /// blocks need to be emitted before any terminator instruction, but they have
142   /// no other ordering requirements. We bunch them up and the emit a single
143   /// tokenfactor for them just before terminator instructions.
144   SmallVector<SDValue, 8> PendingExports;
145 
146   /// Similar to loads, nodes corresponding to constrained FP intrinsics are
147   /// bunched up and emitted when necessary.  These can be moved across each
148   /// other and any (normal) memory operation (load or store), but not across
149   /// calls or instructions having unspecified side effects.  As a special
150   /// case, constrained FP intrinsics using fpexcept.strict may not be deleted
151   /// even if otherwise unused, so they need to be chained before any
152   /// terminator instruction (like PendingExports).  We track the latter
153   /// set of nodes in a separate list.
154   SmallVector<SDValue, 8> PendingConstrainedFP;
155   SmallVector<SDValue, 8> PendingConstrainedFPStrict;
156 
157   /// Update root to include all chains from the Pending list.
158   SDValue updateRoot(SmallVectorImpl<SDValue> &Pending);
159 
160   /// A unique monotonically increasing number used to order the SDNodes we
161   /// create.
162   unsigned SDNodeOrder;
163 
164   /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
165   /// than each cluster in the range, its rank is 0.
166   unsigned caseClusterRank(const SwitchCG::CaseCluster &CC,
167                            SwitchCG::CaseClusterIt First,
168                            SwitchCG::CaseClusterIt Last);
169 
170   /// Emit comparison and split W into two subtrees.
171   void splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
172                      const SwitchCG::SwitchWorkListItem &W, Value *Cond,
173                      MachineBasicBlock *SwitchMBB);
174 
175   /// Lower W.
176   void lowerWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond,
177                      MachineBasicBlock *SwitchMBB,
178                      MachineBasicBlock *DefaultMBB);
179 
180   /// Peel the top probability case if it exceeds the threshold
181   MachineBasicBlock *
182   peelDominantCaseCluster(const SwitchInst &SI,
183                           SwitchCG::CaseClusterVector &Clusters,
184                           BranchProbability &PeeledCaseProb);
185 
186   /// A class which encapsulates all of the information needed to generate a
187   /// stack protector check and signals to isel via its state being initialized
188   /// that a stack protector needs to be generated.
189   ///
190   /// *NOTE* The following is a high level documentation of SelectionDAG Stack
191   /// Protector Generation. The reason that it is placed here is for a lack of
192   /// other good places to stick it.
193   ///
194   /// High Level Overview of SelectionDAG Stack Protector Generation:
195   ///
196   /// Previously, generation of stack protectors was done exclusively in the
197   /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
198   /// splitting basic blocks at the IR level to create the success/failure basic
199   /// blocks in the tail of the basic block in question. As a result of this,
200   /// calls that would have qualified for the sibling call optimization were no
201   /// longer eligible for optimization since said calls were no longer right in
202   /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
203   /// instruction).
204   ///
205   /// Then it was noticed that since the sibling call optimization causes the
206   /// callee to reuse the caller's stack, if we could delay the generation of
207   /// the stack protector check until later in CodeGen after the sibling call
208   /// decision was made, we get both the tail call optimization and the stack
209   /// protector check!
210   ///
211   /// A few goals in solving this problem were:
212   ///
213   ///   1. Preserve the architecture independence of stack protector generation.
214   ///
215   ///   2. Preserve the normal IR level stack protector check for platforms like
216   ///      OpenBSD for which we support platform-specific stack protector
217   ///      generation.
218   ///
219   /// The main problem that guided the present solution is that one can not
220   /// solve this problem in an architecture independent manner at the IR level
221   /// only. This is because:
222   ///
223   ///   1. The decision on whether or not to perform a sibling call on certain
224   ///      platforms (for instance i386) requires lower level information
225   ///      related to available registers that can not be known at the IR level.
226   ///
227   ///   2. Even if the previous point were not true, the decision on whether to
228   ///      perform a tail call is done in LowerCallTo in SelectionDAG which
229   ///      occurs after the Stack Protector Pass. As a result, one would need to
230   ///      put the relevant callinst into the stack protector check success
231   ///      basic block (where the return inst is placed) and then move it back
232   ///      later at SelectionDAG/MI time before the stack protector check if the
233   ///      tail call optimization failed. The MI level option was nixed
234   ///      immediately since it would require platform-specific pattern
235   ///      matching. The SelectionDAG level option was nixed because
236   ///      SelectionDAG only processes one IR level basic block at a time
237   ///      implying one could not create a DAG Combine to move the callinst.
238   ///
239   /// To get around this problem a few things were realized:
240   ///
241   ///   1. While one can not handle multiple IR level basic blocks at the
242   ///      SelectionDAG Level, one can generate multiple machine basic blocks
243   ///      for one IR level basic block. This is how we handle bit tests and
244   ///      switches.
245   ///
246   ///   2. At the MI level, tail calls are represented via a special return
247   ///      MIInst called "tcreturn". Thus if we know the basic block in which we
248   ///      wish to insert the stack protector check, we get the correct behavior
249   ///      by always inserting the stack protector check right before the return
250   ///      statement. This is a "magical transformation" since no matter where
251   ///      the stack protector check intrinsic is, we always insert the stack
252   ///      protector check code at the end of the BB.
253   ///
254   /// Given the aforementioned constraints, the following solution was devised:
255   ///
256   ///   1. On platforms that do not support SelectionDAG stack protector check
257   ///      generation, allow for the normal IR level stack protector check
258   ///      generation to continue.
259   ///
260   ///   2. On platforms that do support SelectionDAG stack protector check
261   ///      generation:
262   ///
263   ///     a. Use the IR level stack protector pass to decide if a stack
264   ///        protector is required/which BB we insert the stack protector check
265   ///        in by reusing the logic already therein. If we wish to generate a
266   ///        stack protector check in a basic block, we place a special IR
267   ///        intrinsic called llvm.stackprotectorcheck right before the BB's
268   ///        returninst or if there is a callinst that could potentially be
269   ///        sibling call optimized, before the call inst.
270   ///
271   ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
272   ///        normally via SelectBasicBlock. In said process, when we visit the
273   ///        stack protector check, we do not actually emit anything into the
274   ///        BB. Instead, we just initialize the stack protector descriptor
275   ///        class (which involves stashing information/creating the success
276   ///        mbbb and the failure mbb if we have not created one for this
277   ///        function yet) and export the guard variable that we are going to
278   ///        compare.
279   ///
280   ///     c. After we finish selecting the basic block, in FinishBasicBlock if
281   ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
282   ///        initialized, we produce the validation code with one of these
283   ///        techniques:
284   ///          1) with a call to a guard check function
285   ///          2) with inlined instrumentation
286   ///
287   ///        1) We insert a call to the check function before the terminator.
288   ///
289   ///        2) We first find a splice point in the parent basic block
290   ///        before the terminator and then splice the terminator of said basic
291   ///        block into the success basic block. Then we code-gen a new tail for
292   ///        the parent basic block consisting of the two loads, the comparison,
293   ///        and finally two branches to the success/failure basic blocks. We
294   ///        conclude by code-gening the failure basic block if we have not
295   ///        code-gened it already (all stack protector checks we generate in
296   ///        the same function, use the same failure basic block).
297   class StackProtectorDescriptor {
298   public:
299     StackProtectorDescriptor() = default;
300 
301     /// Returns true if all fields of the stack protector descriptor are
302     /// initialized implying that we should/are ready to emit a stack protector.
303     bool shouldEmitStackProtector() const {
304       return ParentMBB && SuccessMBB && FailureMBB;
305     }
306 
307     bool shouldEmitFunctionBasedCheckStackProtector() const {
308       return ParentMBB && !SuccessMBB && !FailureMBB;
309     }
310 
311     /// Initialize the stack protector descriptor structure for a new basic
312     /// block.
313     void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
314                     bool FunctionBasedInstrumentation) {
315       // Make sure we are not initialized yet.
316       assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
317              "already initialized!");
318       ParentMBB = MBB;
319       if (!FunctionBasedInstrumentation) {
320         SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
321         FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
322       }
323     }
324 
325     /// Reset state that changes when we handle different basic blocks.
326     ///
327     /// This currently includes:
328     ///
329     /// 1. The specific basic block we are generating a
330     /// stack protector for (ParentMBB).
331     ///
332     /// 2. The successor machine basic block that will contain the tail of
333     /// parent mbb after we create the stack protector check (SuccessMBB). This
334     /// BB is visited only on stack protector check success.
335     void resetPerBBState() {
336       ParentMBB = nullptr;
337       SuccessMBB = nullptr;
338     }
339 
340     /// Reset state that only changes when we switch functions.
341     ///
342     /// This currently includes:
343     ///
344     /// 1. FailureMBB since we reuse the failure code path for all stack
345     /// protector checks created in an individual function.
346     ///
347     /// 2.The guard variable since the guard variable we are checking against is
348     /// always the same.
349     void resetPerFunctionState() {
350       FailureMBB = nullptr;
351     }
352 
353     MachineBasicBlock *getParentMBB() { return ParentMBB; }
354     MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
355     MachineBasicBlock *getFailureMBB() { return FailureMBB; }
356 
357   private:
358     /// The basic block for which we are generating the stack protector.
359     ///
360     /// As a result of stack protector generation, we will splice the
361     /// terminators of this basic block into the successor mbb SuccessMBB and
362     /// replace it with a compare/branch to the successor mbbs
363     /// SuccessMBB/FailureMBB depending on whether or not the stack protector
364     /// was violated.
365     MachineBasicBlock *ParentMBB = nullptr;
366 
367     /// A basic block visited on stack protector check success that contains the
368     /// terminators of ParentMBB.
369     MachineBasicBlock *SuccessMBB = nullptr;
370 
371     /// This basic block visited on stack protector check failure that will
372     /// contain a call to __stack_chk_fail().
373     MachineBasicBlock *FailureMBB = nullptr;
374 
375     /// Add a successor machine basic block to ParentMBB. If the successor mbb
376     /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
377     /// block will be created. Assign a large weight if IsLikely is true.
378     MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
379                                        MachineBasicBlock *ParentMBB,
380                                        bool IsLikely,
381                                        MachineBasicBlock *SuccMBB = nullptr);
382   };
383 
384 private:
385   const TargetMachine &TM;
386 
387 public:
388   /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
389   /// nodes without a corresponding SDNode.
390   static const unsigned LowestSDNodeOrder = 1;
391 
392   SelectionDAG &DAG;
393   const DataLayout *DL = nullptr;
394   AliasAnalysis *AA = nullptr;
395   const TargetLibraryInfo *LibInfo;
396 
397   class SDAGSwitchLowering : public SwitchCG::SwitchLowering {
398   public:
399     SDAGSwitchLowering(SelectionDAGBuilder *sdb, FunctionLoweringInfo &funcinfo)
400         : SwitchCG::SwitchLowering(funcinfo), SDB(sdb) {}
401 
402     virtual void addSuccessorWithProb(
403         MachineBasicBlock *Src, MachineBasicBlock *Dst,
404         BranchProbability Prob = BranchProbability::getUnknown()) override {
405       SDB->addSuccessorWithProb(Src, Dst, Prob);
406     }
407 
408   private:
409     SelectionDAGBuilder *SDB;
410   };
411 
412   std::unique_ptr<SDAGSwitchLowering> SL;
413 
414   /// A StackProtectorDescriptor structure used to communicate stack protector
415   /// information in between SelectBasicBlock and FinishBasicBlock.
416   StackProtectorDescriptor SPDescriptor;
417 
418   // Emit PHI-node-operand constants only once even if used by multiple
419   // PHI nodes.
420   DenseMap<const Constant *, unsigned> ConstantsOut;
421 
422   /// Information about the function as a whole.
423   FunctionLoweringInfo &FuncInfo;
424 
425   /// Information about the swifterror values used throughout the function.
426   SwiftErrorValueTracking &SwiftError;
427 
428   /// Garbage collection metadata for the function.
429   GCFunctionInfo *GFI;
430 
431   /// Map a landing pad to the call site indexes.
432   DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap;
433 
434   /// This is set to true if a call in the current block has been translated as
435   /// a tail call. In this case, no subsequent DAG nodes should be created.
436   bool HasTailCall = false;
437 
438   LLVMContext *Context;
439 
440   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
441                       SwiftErrorValueTracking &swifterror, CodeGenOpt::Level ol)
442       : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag),
443         SL(std::make_unique<SDAGSwitchLowering>(this, funcinfo)), FuncInfo(funcinfo),
444         SwiftError(swifterror) {}
445 
446   void init(GCFunctionInfo *gfi, AliasAnalysis *AA,
447             const TargetLibraryInfo *li);
448 
449   /// Clear out the current SelectionDAG and the associated state and prepare
450   /// this SelectionDAGBuilder object to be used for a new block. This doesn't
451   /// clear out information about additional blocks that are needed to complete
452   /// switch lowering or PHI node updating; that information is cleared out as
453   /// it is consumed.
454   void clear();
455 
456   /// Clear the dangling debug information map. This function is separated from
457   /// the clear so that debug information that is dangling in a basic block can
458   /// be properly resolved in a different basic block. This allows the
459   /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
460   void clearDanglingDebugInfo();
461 
462   /// Return the current virtual root of the Selection DAG, flushing any
463   /// PendingLoad items. This must be done before emitting a store or any other
464   /// memory node that may need to be ordered after any prior load instructions.
465   SDValue getMemoryRoot();
466 
467   /// Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict)
468   /// items. This must be done before emitting any call other any other node
469   /// that may need to be ordered after FP instructions due to other side
470   /// effects.
471   SDValue getRoot();
472 
473   /// Similar to getRoot, but instead of flushing all the PendingLoad items,
474   /// flush all the PendingExports (and PendingConstrainedFPStrict) items.
475   /// It is necessary to do this before emitting a terminator instruction.
476   SDValue getControlRoot();
477 
478   SDLoc getCurSDLoc() const {
479     return SDLoc(CurInst, SDNodeOrder);
480   }
481 
482   DebugLoc getCurDebugLoc() const {
483     return CurInst ? CurInst->getDebugLoc() : DebugLoc();
484   }
485 
486   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
487 
488   void visit(const Instruction &I);
489 
490   void visit(unsigned Opcode, const User &I);
491 
492   /// If there was virtual register allocated for the value V emit CopyFromReg
493   /// of the specified type Ty. Return empty SDValue() otherwise.
494   SDValue getCopyFromRegs(const Value *V, Type *Ty);
495 
496   /// If we have dangling debug info that describes \p Variable, or an
497   /// overlapping part of variable considering the \p Expr, then this method
498   /// will drop that debug info as it isn't valid any longer.
499   void dropDanglingDebugInfo(const DILocalVariable *Variable,
500                              const DIExpression *Expr);
501 
502   /// If we saw an earlier dbg_value referring to V, generate the debug data
503   /// structures now that we've seen its definition.
504   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
505 
506   /// For the given dangling debuginfo record, perform last-ditch efforts to
507   /// resolve the debuginfo to something that is represented in this DAG. If
508   /// this cannot be done, produce an Undef debug value record.
509   void salvageUnresolvedDbgValue(DanglingDebugInfo &DDI);
510 
511   /// For a given Value, attempt to create and record a SDDbgValue in the
512   /// SelectionDAG.
513   bool handleDebugValue(const Value *V, DILocalVariable *Var,
514                         DIExpression *Expr, DebugLoc CurDL,
515                         DebugLoc InstDL, unsigned Order);
516 
517   /// Evict any dangling debug information, attempting to salvage it first.
518   void resolveOrClearDbgInfo();
519 
520   SDValue getValue(const Value *V);
521   bool findValue(const Value *V) const;
522 
523   /// Return the SDNode for the specified IR value if it exists.
524   SDNode *getNodeForIRValue(const Value *V) {
525     if (NodeMap.find(V) == NodeMap.end())
526       return nullptr;
527     return NodeMap[V].getNode();
528   }
529 
530   SDValue getNonRegisterValue(const Value *V);
531   SDValue getValueImpl(const Value *V);
532 
533   void setValue(const Value *V, SDValue NewN) {
534     SDValue &N = NodeMap[V];
535     assert(!N.getNode() && "Already set a value for this node!");
536     N = NewN;
537   }
538 
539   void setUnusedArgValue(const Value *V, SDValue NewN) {
540     SDValue &N = UnusedArgNodeMap[V];
541     assert(!N.getNode() && "Already set a value for this node!");
542     N = NewN;
543   }
544 
545   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
546                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
547                             MachineBasicBlock *SwitchBB,
548                             Instruction::BinaryOps Opc, BranchProbability TProb,
549                             BranchProbability FProb, bool InvertCond);
550   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
551                                     MachineBasicBlock *FBB,
552                                     MachineBasicBlock *CurBB,
553                                     MachineBasicBlock *SwitchBB,
554                                     BranchProbability TProb, BranchProbability FProb,
555                                     bool InvertCond);
556   bool ShouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases);
557   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
558   void CopyToExportRegsIfNeeded(const Value *V);
559   void ExportFromCurrentBlock(const Value *V);
560   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
561                    const BasicBlock *EHPadBB = nullptr);
562 
563   // Lower range metadata from 0 to N to assert zext to an integer of nearest
564   // floor power of two.
565   SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
566                                  SDValue Op);
567 
568   void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
569                                 const CallBase *Call, unsigned ArgIdx,
570                                 unsigned NumArgs, SDValue Callee,
571                                 Type *ReturnTy, bool IsPatchPoint);
572 
573   std::pair<SDValue, SDValue>
574   lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
575                  const BasicBlock *EHPadBB = nullptr);
576 
577   /// When an MBB was split during scheduling, update the
578   /// references that need to refer to the last resulting block.
579   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
580 
581   /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
582   /// of lowering into a STATEPOINT node.
583   struct StatepointLoweringInfo {
584     /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set
585     /// of gc pointers this STATEPOINT has to relocate.
586     SmallVector<const Value *, 16> Bases;
587     SmallVector<const Value *, 16> Ptrs;
588 
589     /// The set of gc.relocate calls associated with this gc.statepoint.
590     SmallVector<const GCRelocateInst *, 16> GCRelocates;
591 
592     /// The full list of gc arguments to the gc.statepoint being lowered.
593     ArrayRef<const Use> GCArgs;
594 
595     /// The gc.statepoint instruction.
596     const Instruction *StatepointInstr = nullptr;
597 
598     /// The list of gc transition arguments present in the gc.statepoint being
599     /// lowered.
600     ArrayRef<const Use> GCTransitionArgs;
601 
602     /// The ID that the resulting STATEPOINT instruction has to report.
603     unsigned ID = -1;
604 
605     /// Information regarding the underlying call instruction.
606     TargetLowering::CallLoweringInfo CLI;
607 
608     /// The deoptimization state associated with this gc.statepoint call, if
609     /// any.
610     ArrayRef<const Use> DeoptState;
611 
612     /// Flags associated with the meta arguments being lowered.
613     uint64_t StatepointFlags = -1;
614 
615     /// The number of patchable bytes the call needs to get lowered into.
616     unsigned NumPatchBytes = -1;
617 
618     /// The exception handling unwind destination, in case this represents an
619     /// invoke of gc.statepoint.
620     const BasicBlock *EHPadBB = nullptr;
621 
622     explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
623   };
624 
625   /// Lower \p SLI into a STATEPOINT instruction.
626   SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI);
627 
628   // This function is responsible for the whole statepoint lowering process.
629   // It uniformly handles invoke and call statepoints.
630   void LowerStatepoint(ImmutableStatepoint ISP,
631                        const BasicBlock *EHPadBB = nullptr);
632 
633   void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee,
634                                     const BasicBlock *EHPadBB);
635 
636   void LowerDeoptimizeCall(const CallInst *CI);
637   void LowerDeoptimizingReturn();
638 
639   void LowerCallSiteWithDeoptBundleImpl(const CallBase *Call, SDValue Callee,
640                                         const BasicBlock *EHPadBB,
641                                         bool VarArgDisallowed,
642                                         bool ForceVoidReturnTy);
643 
644   /// Returns the type of FrameIndex and TargetFrameIndex nodes.
645   MVT getFrameIndexTy() {
646     return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout());
647   }
648 
649 private:
650   // Terminator instructions.
651   void visitRet(const ReturnInst &I);
652   void visitBr(const BranchInst &I);
653   void visitSwitch(const SwitchInst &I);
654   void visitIndirectBr(const IndirectBrInst &I);
655   void visitUnreachable(const UnreachableInst &I);
656   void visitCleanupRet(const CleanupReturnInst &I);
657   void visitCatchSwitch(const CatchSwitchInst &I);
658   void visitCatchRet(const CatchReturnInst &I);
659   void visitCatchPad(const CatchPadInst &I);
660   void visitCleanupPad(const CleanupPadInst &CPI);
661 
662   BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
663                                        const MachineBasicBlock *Dst) const;
664   void addSuccessorWithProb(
665       MachineBasicBlock *Src, MachineBasicBlock *Dst,
666       BranchProbability Prob = BranchProbability::getUnknown());
667 
668 public:
669   void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB);
670   void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
671                                MachineBasicBlock *ParentBB);
672   void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
673   void visitBitTestHeader(SwitchCG::BitTestBlock &B,
674                           MachineBasicBlock *SwitchBB);
675   void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB,
676                         BranchProbability BranchProbToNext, unsigned Reg,
677                         SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB);
678   void visitJumpTable(SwitchCG::JumpTable &JT);
679   void visitJumpTableHeader(SwitchCG::JumpTable &JT,
680                             SwitchCG::JumpTableHeader &JTH,
681                             MachineBasicBlock *SwitchBB);
682 
683 private:
684   // These all get lowered before this pass.
685   void visitInvoke(const InvokeInst &I);
686   void visitCallBr(const CallBrInst &I);
687   void visitResume(const ResumeInst &I);
688 
689   void visitUnary(const User &I, unsigned Opcode);
690   void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); }
691 
692   void visitBinary(const User &I, unsigned Opcode);
693   void visitShift(const User &I, unsigned Opcode);
694   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
695   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
696   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
697   void visitFSub(const User &I);
698   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
699   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
700   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
701   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
702   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
703   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
704   void visitSDiv(const User &I);
705   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
706   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
707   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
708   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
709   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
710   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
711   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
712   void visitICmp(const User &I);
713   void visitFCmp(const User &I);
714   // Visit the conversion instructions
715   void visitTrunc(const User &I);
716   void visitZExt(const User &I);
717   void visitSExt(const User &I);
718   void visitFPTrunc(const User &I);
719   void visitFPExt(const User &I);
720   void visitFPToUI(const User &I);
721   void visitFPToSI(const User &I);
722   void visitUIToFP(const User &I);
723   void visitSIToFP(const User &I);
724   void visitPtrToInt(const User &I);
725   void visitIntToPtr(const User &I);
726   void visitBitCast(const User &I);
727   void visitAddrSpaceCast(const User &I);
728 
729   void visitExtractElement(const User &I);
730   void visitInsertElement(const User &I);
731   void visitShuffleVector(const User &I);
732 
733   void visitExtractValue(const User &I);
734   void visitInsertValue(const User &I);
735   void visitLandingPad(const LandingPadInst &LP);
736 
737   void visitGetElementPtr(const User &I);
738   void visitSelect(const User &I);
739 
740   void visitAlloca(const AllocaInst &I);
741   void visitLoad(const LoadInst &I);
742   void visitStore(const StoreInst &I);
743   void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
744   void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
745   void visitMaskedGather(const CallInst &I);
746   void visitMaskedScatter(const CallInst &I);
747   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
748   void visitAtomicRMW(const AtomicRMWInst &I);
749   void visitFence(const FenceInst &I);
750   void visitPHI(const PHINode &I);
751   void visitCall(const CallInst &I);
752   bool visitMemCmpCall(const CallInst &I);
753   bool visitMemPCpyCall(const CallInst &I);
754   bool visitMemChrCall(const CallInst &I);
755   bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
756   bool visitStrCmpCall(const CallInst &I);
757   bool visitStrLenCall(const CallInst &I);
758   bool visitStrNLenCall(const CallInst &I);
759   bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
760   bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
761   void visitAtomicLoad(const LoadInst &I);
762   void visitAtomicStore(const StoreInst &I);
763   void visitLoadFromSwiftError(const LoadInst &I);
764   void visitStoreToSwiftError(const StoreInst &I);
765   void visitFreeze(const FreezeInst &I);
766 
767   void visitInlineAsm(ImmutableCallSite CS);
768   void visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
769   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
770   void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI);
771 
772   void visitVAStart(const CallInst &I);
773   void visitVAArg(const VAArgInst &I);
774   void visitVAEnd(const CallInst &I);
775   void visitVACopy(const CallInst &I);
776   void visitStackmap(const CallInst &I);
777   void visitPatchpoint(ImmutableCallSite CS,
778                        const BasicBlock *EHPadBB = nullptr);
779 
780   // These two are implemented in StatepointLowering.cpp
781   void visitGCRelocate(const GCRelocateInst &Relocate);
782   void visitGCResult(const GCResultInst &I);
783 
784   void visitVectorReduce(const CallInst &I, unsigned Intrinsic);
785 
786   void visitUserOp1(const Instruction &I) {
787     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
788   }
789   void visitUserOp2(const Instruction &I) {
790     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
791   }
792 
793   void processIntegerCallValue(const Instruction &I,
794                                SDValue Value, bool IsSigned);
795 
796   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
797 
798   void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message);
799 
800   /// If V is an function argument then create corresponding DBG_VALUE machine
801   /// instruction for it now. At the end of instruction selection, they will be
802   /// inserted to the entry BB.
803   bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
804                                 DIExpression *Expr, DILocation *DL,
805                                 bool IsDbgDeclare, const SDValue &N);
806 
807   /// Return the next block after MBB, or nullptr if there is none.
808   MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
809 
810   /// Update the DAG and DAG builder with the relevant information after
811   /// a new root node has been created which could be a tail call.
812   void updateDAGForMaybeTailCall(SDValue MaybeTC);
813 
814   /// Return the appropriate SDDbgValue based on N.
815   SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
816                           DIExpression *Expr, const DebugLoc &dl,
817                           unsigned DbgSDNodeOrder);
818 
819   /// Lowers CallInst to an external symbol.
820   void lowerCallToExternalSymbol(const CallInst &I, const char *FunctionName);
821 };
822 
823 /// This struct represents the registers (physical or virtual)
824 /// that a particular set of values is assigned, and the type information about
825 /// the value. The most common situation is to represent one value at a time,
826 /// but struct or array values are handled element-wise as multiple values.  The
827 /// splitting of aggregates is performed recursively, so that we never have
828 /// aggregate-typed registers. The values at this point do not necessarily have
829 /// legal types, so each value may require one or more registers of some legal
830 /// type.
831 ///
832 struct RegsForValue {
833   /// The value types of the values, which may not be legal, and
834   /// may need be promoted or synthesized from one or more registers.
835   SmallVector<EVT, 4> ValueVTs;
836 
837   /// The value types of the registers. This is the same size as ValueVTs and it
838   /// records, for each value, what the type of the assigned register or
839   /// registers are. (Individual values are never synthesized from more than one
840   /// type of register.)
841   ///
842   /// With virtual registers, the contents of RegVTs is redundant with TLI's
843   /// getRegisterType member function, however when with physical registers
844   /// it is necessary to have a separate record of the types.
845   SmallVector<MVT, 4> RegVTs;
846 
847   /// This list holds the registers assigned to the values.
848   /// Each legal or promoted value requires one register, and each
849   /// expanded value requires multiple registers.
850   SmallVector<unsigned, 4> Regs;
851 
852   /// This list holds the number of registers for each value.
853   SmallVector<unsigned, 4> RegCount;
854 
855   /// Records if this value needs to be treated in an ABI dependant manner,
856   /// different to normal type legalization.
857   Optional<CallingConv::ID> CallConv;
858 
859   RegsForValue() = default;
860   RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt,
861                Optional<CallingConv::ID> CC = None);
862   RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
863                const DataLayout &DL, unsigned Reg, Type *Ty,
864                Optional<CallingConv::ID> CC);
865 
866   bool isABIMangled() const {
867     return CallConv.hasValue();
868   }
869 
870   /// Add the specified values to this one.
871   void append(const RegsForValue &RHS) {
872     ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
873     RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
874     Regs.append(RHS.Regs.begin(), RHS.Regs.end());
875     RegCount.push_back(RHS.Regs.size());
876   }
877 
878   /// Emit a series of CopyFromReg nodes that copies from this value and returns
879   /// the result as a ValueVTs value. This uses Chain/Flag as the input and
880   /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
881   /// flag is used.
882   SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
883                           const SDLoc &dl, SDValue &Chain, SDValue *Flag,
884                           const Value *V = nullptr) const;
885 
886   /// Emit a series of CopyToReg nodes that copies the specified value into the
887   /// registers specified by this object. This uses Chain/Flag as the input and
888   /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
889   /// flag is used. If V is not nullptr, then it is used in printing better
890   /// diagnostic messages on error.
891   void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
892                      SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
893                      ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
894 
895   /// Add this value to the specified inlineasm node operand list. This adds the
896   /// code marker, matching input operand index (if applicable), and includes
897   /// the number of values added into it.
898   void AddInlineAsmOperands(unsigned Code, bool HasMatching,
899                             unsigned MatchingIdx, const SDLoc &dl,
900                             SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
901 
902   /// Check if the total RegCount is greater than one.
903   bool occupiesMultipleRegs() const {
904     return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1;
905   }
906 
907   /// Return a list of registers and their sizes.
908   SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const;
909 };
910 
911 } // end namespace llvm
912 
913 #endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
914