xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e40139ff33b48b56a24c808b166b04b8ee6f5b21)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstddef>
116 #include <cstdint>
117 #include <cstring>
118 #include <iterator>
119 #include <limits>
120 #include <numeric>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace PatternMatch;
127 using namespace SwitchCG;
128 
129 #define DEBUG_TYPE "isel"
130 
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision;
134 
135 static cl::opt<unsigned, true>
136     LimitFPPrecision("limit-float-precision",
137                      cl::desc("Generate low-precision inline sequences "
138                               "for some float libcalls"),
139                      cl::location(LimitFloatPrecision), cl::Hidden,
140                      cl::init(0));
141 
142 static cl::opt<unsigned> SwitchPeelThreshold(
143     "switch-peel-threshold", cl::Hidden, cl::init(66),
144     cl::desc("Set the case probability threshold for peeling the case from a "
145              "switch statement. A value greater than 100 will void this "
146              "optimization"));
147 
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
154 //
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains = 64;
163 
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
166 // an intrinsic.
167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
168   if (auto *R = dyn_cast<ReturnInst>(V))
169     return R->getParent()->getParent()->getCallingConv();
170 
171   if (auto *CI = dyn_cast<CallInst>(V)) {
172     const bool IsInlineAsm = CI->isInlineAsm();
173     const bool IsIndirectFunctionCall =
174         !IsInlineAsm && !CI->getCalledFunction();
175 
176     // It is possible that the call instruction is an inline asm statement or an
177     // indirect function call in which case the return value of
178     // getCalledFunction() would be nullptr.
179     const bool IsInstrinsicCall =
180         !IsInlineAsm && !IsIndirectFunctionCall &&
181         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
182 
183     if (!IsInlineAsm && !IsInstrinsicCall)
184       return CI->getCallingConv();
185   }
186 
187   return None;
188 }
189 
190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
191                                       const SDValue *Parts, unsigned NumParts,
192                                       MVT PartVT, EVT ValueVT, const Value *V,
193                                       Optional<CallingConv::ID> CC);
194 
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent.  If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
201                                 const SDValue *Parts, unsigned NumParts,
202                                 MVT PartVT, EVT ValueVT, const Value *V,
203                                 Optional<CallingConv::ID> CC = None,
204                                 Optional<ISD::NodeType> AssertOp = None) {
205   if (ValueVT.isVector())
206     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
207                                   CC);
208 
209   assert(NumParts > 0 && "No parts to assemble!");
210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
211   SDValue Val = Parts[0];
212 
213   if (NumParts > 1) {
214     // Assemble the value from multiple parts.
215     if (ValueVT.isInteger()) {
216       unsigned PartBits = PartVT.getSizeInBits();
217       unsigned ValueBits = ValueVT.getSizeInBits();
218 
219       // Assemble the power of 2 part.
220       unsigned RoundParts =
221           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
222       unsigned RoundBits = PartBits * RoundParts;
223       EVT RoundVT = RoundBits == ValueBits ?
224         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
225       SDValue Lo, Hi;
226 
227       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
228 
229       if (RoundParts > 2) {
230         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
231                               PartVT, HalfVT, V);
232         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
233                               RoundParts / 2, PartVT, HalfVT, V);
234       } else {
235         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
236         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
237       }
238 
239       if (DAG.getDataLayout().isBigEndian())
240         std::swap(Lo, Hi);
241 
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
243 
244       if (RoundParts < NumParts) {
245         // Assemble the trailing non-power-of-2 part.
246         unsigned OddParts = NumParts - RoundParts;
247         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
248         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
249                               OddVT, V, CC);
250 
251         // Combine the round and odd parts.
252         Lo = Val;
253         if (DAG.getDataLayout().isBigEndian())
254           std::swap(Lo, Hi);
255         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
256         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
257         Hi =
258             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
259                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
260                                         TLI.getPointerTy(DAG.getDataLayout())));
261         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
262         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
263       }
264     } else if (PartVT.isFloatingPoint()) {
265       // FP split into multiple FP parts (for ppcf128)
266       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
267              "Unexpected split");
268       SDValue Lo, Hi;
269       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
270       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
271       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
272         std::swap(Lo, Hi);
273       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
274     } else {
275       // FP split into integer parts (soft fp)
276       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
277              !PartVT.isVector() && "Unexpected split");
278       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
279       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
280     }
281   }
282 
283   // There is now one part, held in Val.  Correct it to match ValueVT.
284   // PartEVT is the type of the register class that holds the value.
285   // ValueVT is the type of the inline asm operation.
286   EVT PartEVT = Val.getValueType();
287 
288   if (PartEVT == ValueVT)
289     return Val;
290 
291   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
292       ValueVT.bitsLT(PartEVT)) {
293     // For an FP value in an integer part, we need to truncate to the right
294     // width first.
295     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
296     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
297   }
298 
299   // Handle types that have the same size.
300   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
301     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
302 
303   // Handle types with different sizes.
304   if (PartEVT.isInteger() && ValueVT.isInteger()) {
305     if (ValueVT.bitsLT(PartEVT)) {
306       // For a truncate, see if we have any information to
307       // indicate whether the truncated bits will always be
308       // zero or sign-extension.
309       if (AssertOp.hasValue())
310         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
311                           DAG.getValueType(ValueVT));
312       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313     }
314     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
315   }
316 
317   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
318     // FP_ROUND's are always exact here.
319     if (ValueVT.bitsLT(Val.getValueType()))
320       return DAG.getNode(
321           ISD::FP_ROUND, DL, ValueVT, Val,
322           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
323 
324     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
325   }
326 
327   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
328   // then truncating.
329   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
330       ValueVT.bitsLT(PartEVT)) {
331     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
332     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333   }
334 
335   report_fatal_error("Unknown mismatch in getCopyFromParts!");
336 }
337 
338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
339                                               const Twine &ErrMsg) {
340   const Instruction *I = dyn_cast_or_null<Instruction>(V);
341   if (!V)
342     return Ctx.emitError(ErrMsg);
343 
344   const char *AsmError = ", possible invalid constraint for vector type";
345   if (const CallInst *CI = dyn_cast<CallInst>(I))
346     if (isa<InlineAsm>(CI->getCalledValue()))
347       return Ctx.emitError(I, ErrMsg + AsmError);
348 
349   return Ctx.emitError(I, ErrMsg);
350 }
351 
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent.  If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
358                                       const SDValue *Parts, unsigned NumParts,
359                                       MVT PartVT, EVT ValueVT, const Value *V,
360                                       Optional<CallingConv::ID> CallConv) {
361   assert(ValueVT.isVector() && "Not a vector value");
362   assert(NumParts > 0 && "No parts to assemble!");
363   const bool IsABIRegCopy = CallConv.hasValue();
364 
365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
366   SDValue Val = Parts[0];
367 
368   // Handle a multi-element vector.
369   if (NumParts > 1) {
370     EVT IntermediateVT;
371     MVT RegisterVT;
372     unsigned NumIntermediates;
373     unsigned NumRegs;
374 
375     if (IsABIRegCopy) {
376       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
377           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
378           NumIntermediates, RegisterVT);
379     } else {
380       NumRegs =
381           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
382                                      NumIntermediates, RegisterVT);
383     }
384 
385     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
386     NumParts = NumRegs; // Silence a compiler warning.
387     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
388     assert(RegisterVT.getSizeInBits() ==
389            Parts[0].getSimpleValueType().getSizeInBits() &&
390            "Part type sizes don't match!");
391 
392     // Assemble the parts into intermediate operands.
393     SmallVector<SDValue, 8> Ops(NumIntermediates);
394     if (NumIntermediates == NumParts) {
395       // If the register was not expanded, truncate or copy the value,
396       // as appropriate.
397       for (unsigned i = 0; i != NumParts; ++i)
398         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
399                                   PartVT, IntermediateVT, V);
400     } else if (NumParts > 0) {
401       // If the intermediate type was expanded, build the intermediate
402       // operands from the parts.
403       assert(NumParts % NumIntermediates == 0 &&
404              "Must expand into a divisible number of parts!");
405       unsigned Factor = NumParts / NumIntermediates;
406       for (unsigned i = 0; i != NumIntermediates; ++i)
407         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
408                                   PartVT, IntermediateVT, V);
409     }
410 
411     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412     // intermediate operands.
413     EVT BuiltVectorTy =
414         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
415                          (IntermediateVT.isVector()
416                               ? IntermediateVT.getVectorNumElements() * NumParts
417                               : NumIntermediates));
418     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
419                                                 : ISD::BUILD_VECTOR,
420                       DL, BuiltVectorTy, Ops);
421   }
422 
423   // There is now one part, held in Val.  Correct it to match ValueVT.
424   EVT PartEVT = Val.getValueType();
425 
426   if (PartEVT == ValueVT)
427     return Val;
428 
429   if (PartEVT.isVector()) {
430     // If the element type of the source/dest vectors are the same, but the
431     // parts vector has more elements than the value vector, then we have a
432     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
433     // elements we want.
434     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
435       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
436              "Cannot narrow, it would be a lossy transformation");
437       return DAG.getNode(
438           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
439           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
440     }
441 
442     // Vector/Vector bitcast.
443     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
444       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445 
446     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
447       "Cannot handle this kind of promotion");
448     // Promoted vector extract
449     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
450 
451   }
452 
453   // Trivial bitcast if the types are the same size and the destination
454   // vector type is legal.
455   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
456       TLI.isTypeLegal(ValueVT))
457     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 
459   if (ValueVT.getVectorNumElements() != 1) {
460      // Certain ABIs require that vectors are passed as integers. For vectors
461      // are the same size, this is an obvious bitcast.
462      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
463        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
465        // Bitcast Val back the original type and extract the corresponding
466        // vector we want.
467        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
468        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
469                                            ValueVT.getVectorElementType(), Elts);
470        Val = DAG.getBitcast(WiderVecType, Val);
471        return DAG.getNode(
472            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
473            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
474      }
475 
476      diagnosePossiblyInvalidConstraint(
477          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
478      return DAG.getUNDEF(ValueVT);
479   }
480 
481   // Handle cases such as i8 -> <1 x i1>
482   EVT ValueSVT = ValueVT.getVectorElementType();
483   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
484     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
485                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
486 
487   return DAG.getBuildVector(ValueVT, DL, Val);
488 }
489 
490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
491                                  SDValue Val, SDValue *Parts, unsigned NumParts,
492                                  MVT PartVT, const Value *V,
493                                  Optional<CallingConv::ID> CallConv);
494 
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts.  If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
499                            SDValue *Parts, unsigned NumParts, MVT PartVT,
500                            const Value *V,
501                            Optional<CallingConv::ID> CallConv = None,
502                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
503   EVT ValueVT = Val.getValueType();
504 
505   // Handle the vector case separately.
506   if (ValueVT.isVector())
507     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
508                                 CallConv);
509 
510   unsigned PartBits = PartVT.getSizeInBits();
511   unsigned OrigNumParts = NumParts;
512   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
513          "Copying to an illegal type!");
514 
515   if (NumParts == 0)
516     return;
517 
518   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
519   EVT PartEVT = PartVT;
520   if (PartEVT == ValueVT) {
521     assert(NumParts == 1 && "No-op copy with multiple parts!");
522     Parts[0] = Val;
523     return;
524   }
525 
526   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
527     // If the parts cover more bits than the value has, promote the value.
528     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
529       assert(NumParts == 1 && "Do not know what to promote to!");
530       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
531     } else {
532       if (ValueVT.isFloatingPoint()) {
533         // FP values need to be bitcast, then extended if they are being put
534         // into a larger container.
535         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
536         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
537       }
538       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
539              ValueVT.isInteger() &&
540              "Unknown mismatch!");
541       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
542       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
543       if (PartVT == MVT::x86mmx)
544         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
545     }
546   } else if (PartBits == ValueVT.getSizeInBits()) {
547     // Different types of the same size.
548     assert(NumParts == 1 && PartEVT != ValueVT);
549     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
551     // If the parts cover less bits than value has, truncate the value.
552     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
553            ValueVT.isInteger() &&
554            "Unknown mismatch!");
555     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
556     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
557     if (PartVT == MVT::x86mmx)
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   }
560 
561   // The value may have changed - recompute ValueVT.
562   ValueVT = Val.getValueType();
563   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
564          "Failed to tile the value with PartVT!");
565 
566   if (NumParts == 1) {
567     if (PartEVT != ValueVT) {
568       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
569                                         "scalar-to-vector conversion failed");
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571     }
572 
573     Parts[0] = Val;
574     return;
575   }
576 
577   // Expand the value into multiple parts.
578   if (NumParts & (NumParts - 1)) {
579     // The number of parts is not a power of 2.  Split off and copy the tail.
580     assert(PartVT.isInteger() && ValueVT.isInteger() &&
581            "Do not know what to expand to!");
582     unsigned RoundParts = 1 << Log2_32(NumParts);
583     unsigned RoundBits = RoundParts * PartBits;
584     unsigned OddParts = NumParts - RoundParts;
585     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
586       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
587 
588     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
589                    CallConv);
590 
591     if (DAG.getDataLayout().isBigEndian())
592       // The odd parts were reversed by getCopyToParts - unreverse them.
593       std::reverse(Parts + RoundParts, Parts + NumParts);
594 
595     NumParts = RoundParts;
596     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
597     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
598   }
599 
600   // The number of parts is a power of 2.  Repeatedly bisect the value using
601   // EXTRACT_ELEMENT.
602   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
603                          EVT::getIntegerVT(*DAG.getContext(),
604                                            ValueVT.getSizeInBits()),
605                          Val);
606 
607   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
608     for (unsigned i = 0; i < NumParts; i += StepSize) {
609       unsigned ThisBits = StepSize * PartBits / 2;
610       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
611       SDValue &Part0 = Parts[i];
612       SDValue &Part1 = Parts[i+StepSize/2];
613 
614       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
616       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
617                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
618 
619       if (ThisBits == PartBits && ThisVT != PartVT) {
620         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
621         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
622       }
623     }
624   }
625 
626   if (DAG.getDataLayout().isBigEndian())
627     std::reverse(Parts, Parts + OrigNumParts);
628 }
629 
630 static SDValue widenVectorToPartType(SelectionDAG &DAG,
631                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
632   if (!PartVT.isVector())
633     return SDValue();
634 
635   EVT ValueVT = Val.getValueType();
636   unsigned PartNumElts = PartVT.getVectorNumElements();
637   unsigned ValueNumElts = ValueVT.getVectorNumElements();
638   if (PartNumElts > ValueNumElts &&
639       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
640     EVT ElementVT = PartVT.getVectorElementType();
641     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
642     // undef elements.
643     SmallVector<SDValue, 16> Ops;
644     DAG.ExtractVectorElements(Val, Ops);
645     SDValue EltUndef = DAG.getUNDEF(ElementVT);
646     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
647       Ops.push_back(EltUndef);
648 
649     // FIXME: Use CONCAT for 2x -> 4x.
650     return DAG.getBuildVector(PartVT, DL, Ops);
651   }
652 
653   return SDValue();
654 }
655 
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
659                                  SDValue Val, SDValue *Parts, unsigned NumParts,
660                                  MVT PartVT, const Value *V,
661                                  Optional<CallingConv::ID> CallConv) {
662   EVT ValueVT = Val.getValueType();
663   assert(ValueVT.isVector() && "Not a vector");
664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
665   const bool IsABIRegCopy = CallConv.hasValue();
666 
667   if (NumParts == 1) {
668     EVT PartEVT = PartVT;
669     if (PartEVT == ValueVT) {
670       // Nothing to do.
671     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
672       // Bitconvert vector->vector case.
673       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
674     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
675       Val = Widened;
676     } else if (PartVT.isVector() &&
677                PartEVT.getVectorElementType().bitsGE(
678                  ValueVT.getVectorElementType()) &&
679                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
680 
681       // Promoted vector extract
682       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683     } else {
684       if (ValueVT.getVectorNumElements() == 1) {
685         Val = DAG.getNode(
686             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
687             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
688       } else {
689         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
690                "lossy conversion of vector to scalar type");
691         EVT IntermediateType =
692             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
693         Val = DAG.getBitcast(IntermediateType, Val);
694         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
695       }
696     }
697 
698     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
699     Parts[0] = Val;
700     return;
701   }
702 
703   // Handle a multi-element vector.
704   EVT IntermediateVT;
705   MVT RegisterVT;
706   unsigned NumIntermediates;
707   unsigned NumRegs;
708   if (IsABIRegCopy) {
709     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
710         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
711         NumIntermediates, RegisterVT);
712   } else {
713     NumRegs =
714         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
715                                    NumIntermediates, RegisterVT);
716   }
717 
718   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
719   NumParts = NumRegs; // Silence a compiler warning.
720   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
721 
722   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
723     IntermediateVT.getVectorNumElements() : 1;
724 
725   // Convert the vector to the appropiate type if necessary.
726   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
730   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
731   if (ValueVT != BuiltVectorTy) {
732     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
733       Val = Widened;
734 
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   }
737 
738   // Split the vector into intermediate operands.
739   SmallVector<SDValue, 8> Ops(NumIntermediates);
740   for (unsigned i = 0; i != NumIntermediates; ++i) {
741     if (IntermediateVT.isVector()) {
742       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
743                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
744     } else {
745       Ops[i] = DAG.getNode(
746           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
747           DAG.getConstant(i, DL, IdxVT));
748     }
749   }
750 
751   // Split the intermediate operands into legal parts.
752   if (NumParts == NumIntermediates) {
753     // If the register was not expanded, promote or copy the value,
754     // as appropriate.
755     for (unsigned i = 0; i != NumParts; ++i)
756       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
757   } else if (NumParts > 0) {
758     // If the intermediate type was expanded, split each the value into
759     // legal parts.
760     assert(NumIntermediates != 0 && "division by zero");
761     assert(NumParts % NumIntermediates == 0 &&
762            "Must expand into a divisible number of parts!");
763     unsigned Factor = NumParts / NumIntermediates;
764     for (unsigned i = 0; i != NumIntermediates; ++i)
765       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
766                      CallConv);
767   }
768 }
769 
770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
771                            EVT valuevt, Optional<CallingConv::ID> CC)
772     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
773       RegCount(1, regs.size()), CallConv(CC) {}
774 
775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
776                            const DataLayout &DL, unsigned Reg, Type *Ty,
777                            Optional<CallingConv::ID> CC) {
778   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
779 
780   CallConv = CC;
781 
782   for (EVT ValueVT : ValueVTs) {
783     unsigned NumRegs =
784         isABIMangled()
785             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
786             : TLI.getNumRegisters(Context, ValueVT);
787     MVT RegisterVT =
788         isABIMangled()
789             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getRegisterType(Context, ValueVT);
791     for (unsigned i = 0; i != NumRegs; ++i)
792       Regs.push_back(Reg + i);
793     RegVTs.push_back(RegisterVT);
794     RegCount.push_back(NumRegs);
795     Reg += NumRegs;
796   }
797 }
798 
799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
800                                       FunctionLoweringInfo &FuncInfo,
801                                       const SDLoc &dl, SDValue &Chain,
802                                       SDValue *Flag, const Value *V) const {
803   // A Value with type {} or [0 x %t] needs no registers.
804   if (ValueVTs.empty())
805     return SDValue();
806 
807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
808 
809   // Assemble the legal parts into the final values.
810   SmallVector<SDValue, 4> Values(ValueVTs.size());
811   SmallVector<SDValue, 8> Parts;
812   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
813     // Copy the legal parts from the registers.
814     EVT ValueVT = ValueVTs[Value];
815     unsigned NumRegs = RegCount[Value];
816     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
817                                           *DAG.getContext(),
818                                           CallConv.getValue(), RegVTs[Value])
819                                     : RegVTs[Value];
820 
821     Parts.resize(NumRegs);
822     for (unsigned i = 0; i != NumRegs; ++i) {
823       SDValue P;
824       if (!Flag) {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
826       } else {
827         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
828         *Flag = P.getValue(2);
829       }
830 
831       Chain = P.getValue(1);
832       Parts[i] = P;
833 
834       // If the source register was virtual and if we know something about it,
835       // add an assert node.
836       if (!Register::isVirtualRegister(Regs[Part + i]) ||
837           !RegisterVT.isInteger())
838         continue;
839 
840       const FunctionLoweringInfo::LiveOutInfo *LOI =
841         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
842       if (!LOI)
843         continue;
844 
845       unsigned RegSize = RegisterVT.getScalarSizeInBits();
846       unsigned NumSignBits = LOI->NumSignBits;
847       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
848 
849       if (NumZeroBits == RegSize) {
850         // The current value is a zero.
851         // Explicitly express that as it would be easier for
852         // optimizations to kick in.
853         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
854         continue;
855       }
856 
857       // FIXME: We capture more information than the dag can represent.  For
858       // now, just use the tightest assertzext/assertsext possible.
859       bool isSExt;
860       EVT FromVT(MVT::Other);
861       if (NumZeroBits) {
862         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
863         isSExt = false;
864       } else if (NumSignBits > 1) {
865         FromVT =
866             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
867         isSExt = true;
868       } else {
869         continue;
870       }
871       // Add an assertion node.
872       assert(FromVT != MVT::Other);
873       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
874                              RegisterVT, P, DAG.getValueType(FromVT));
875     }
876 
877     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
878                                      RegisterVT, ValueVT, V, CallConv);
879     Part += NumRegs;
880     Parts.clear();
881   }
882 
883   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
884 }
885 
886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
887                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
888                                  const Value *V,
889                                  ISD::NodeType PreferredExtendType) const {
890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
891   ISD::NodeType ExtendKind = PreferredExtendType;
892 
893   // Get the list of the values's legal parts.
894   unsigned NumRegs = Regs.size();
895   SmallVector<SDValue, 8> Parts(NumRegs);
896   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
897     unsigned NumParts = RegCount[Value];
898 
899     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
900                                           *DAG.getContext(),
901                                           CallConv.getValue(), RegVTs[Value])
902                                     : RegVTs[Value];
903 
904     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
905       ExtendKind = ISD::ZERO_EXTEND;
906 
907     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
908                    NumParts, RegisterVT, V, CallConv, ExtendKind);
909     Part += NumParts;
910   }
911 
912   // Copy the parts into the registers.
913   SmallVector<SDValue, 8> Chains(NumRegs);
914   for (unsigned i = 0; i != NumRegs; ++i) {
915     SDValue Part;
916     if (!Flag) {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
918     } else {
919       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
920       *Flag = Part.getValue(1);
921     }
922 
923     Chains[i] = Part.getValue(0);
924   }
925 
926   if (NumRegs == 1 || Flag)
927     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928     // flagged to it. That is the CopyToReg nodes and the user are considered
929     // a single scheduling unit. If we create a TokenFactor and return it as
930     // chain, then the TokenFactor is both a predecessor (operand) of the
931     // user as well as a successor (the TF operands are flagged to the user).
932     // c1, f1 = CopyToReg
933     // c2, f2 = CopyToReg
934     // c3     = TokenFactor c1, c2
935     // ...
936     //        = op c3, ..., f2
937     Chain = Chains[NumRegs-1];
938   else
939     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
940 }
941 
942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
943                                         unsigned MatchingIdx, const SDLoc &dl,
944                                         SelectionDAG &DAG,
945                                         std::vector<SDValue> &Ops) const {
946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
947 
948   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
949   if (HasMatching)
950     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
951   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
952     // Put the register class of the virtual registers in the flag word.  That
953     // way, later passes can recompute register class constraints for inline
954     // assembly as well as normal instructions.
955     // Don't do this for tied operands that can use the regclass information
956     // from the def.
957     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
958     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
959     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
960   }
961 
962   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
963   Ops.push_back(Res);
964 
965   if (Code == InlineAsm::Kind_Clobber) {
966     // Clobbers should always have a 1:1 mapping with registers, and may
967     // reference registers that have illegal (e.g. vector) types. Hence, we
968     // shouldn't try to apply any sort of splitting logic to them.
969     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
970            "No 1:1 mapping from clobbers to regs?");
971     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
972     (void)SP;
973     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
974       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
975       assert(
976           (Regs[I] != SP ||
977            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978           "If we clobbered the stack pointer, MFI should know about it.");
979     }
980     return;
981   }
982 
983   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
984     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
985     MVT RegisterVT = RegVTs[Value];
986     for (unsigned i = 0; i != NumRegs; ++i) {
987       assert(Reg < Regs.size() && "Mismatch in # registers expected");
988       unsigned TheReg = Regs[Reg++];
989       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
990     }
991   }
992 }
993 
994 SmallVector<std::pair<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
997   unsigned I = 0;
998   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
999     unsigned RegCount = std::get<0>(CountAndVT);
1000     MVT RegisterVT = std::get<1>(CountAndVT);
1001     unsigned RegisterSize = RegisterVT.getSizeInBits();
1002     for (unsigned E = I + RegCount; I != E; ++I)
1003       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1004   }
1005   return OutVec;
1006 }
1007 
1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1009                                const TargetLibraryInfo *li) {
1010   AA = aa;
1011   GFI = gfi;
1012   LibInfo = li;
1013   DL = &DAG.getDataLayout();
1014   Context = DAG.getContext();
1015   LPadToCallSiteMap.clear();
1016   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1017 }
1018 
1019 void SelectionDAGBuilder::clear() {
1020   NodeMap.clear();
1021   UnusedArgNodeMap.clear();
1022   PendingLoads.clear();
1023   PendingExports.clear();
1024   CurInst = nullptr;
1025   HasTailCall = false;
1026   SDNodeOrder = LowestSDNodeOrder;
1027   StatepointLowering.clear();
1028 }
1029 
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031   DanglingDebugInfoMap.clear();
1032 }
1033 
1034 SDValue SelectionDAGBuilder::getRoot() {
1035   if (PendingLoads.empty())
1036     return DAG.getRoot();
1037 
1038   if (PendingLoads.size() == 1) {
1039     SDValue Root = PendingLoads[0];
1040     DAG.setRoot(Root);
1041     PendingLoads.clear();
1042     return Root;
1043   }
1044 
1045   // Otherwise, we have to make a token factor node.
1046   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1047   PendingLoads.clear();
1048   DAG.setRoot(Root);
1049   return Root;
1050 }
1051 
1052 SDValue SelectionDAGBuilder::getControlRoot() {
1053   SDValue Root = DAG.getRoot();
1054 
1055   if (PendingExports.empty())
1056     return Root;
1057 
1058   // Turn all of the CopyToReg chains into one factored node.
1059   if (Root.getOpcode() != ISD::EntryToken) {
1060     unsigned i = 0, e = PendingExports.size();
1061     for (; i != e; ++i) {
1062       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1063       if (PendingExports[i].getNode()->getOperand(0) == Root)
1064         break;  // Don't add the root if we already indirectly depend on it.
1065     }
1066 
1067     if (i == e)
1068       PendingExports.push_back(Root);
1069   }
1070 
1071   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1072                      PendingExports);
1073   PendingExports.clear();
1074   DAG.setRoot(Root);
1075   return Root;
1076 }
1077 
1078 void SelectionDAGBuilder::visit(const Instruction &I) {
1079   // Set up outgoing PHI node register values before emitting the terminator.
1080   if (I.isTerminator()) {
1081     HandlePHINodesInSuccessorBlocks(I.getParent());
1082   }
1083 
1084   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085   if (!isa<DbgInfoIntrinsic>(I))
1086     ++SDNodeOrder;
1087 
1088   CurInst = &I;
1089 
1090   visit(I.getOpcode(), I);
1091 
1092   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1093     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094     // maps to this instruction.
1095     // TODO: We could handle all flags (nsw, etc) here.
1096     // TODO: If an IR instruction maps to >1 node, only the final node will have
1097     //       flags set.
1098     if (SDNode *Node = getNodeForIRValue(&I)) {
1099       SDNodeFlags IncomingFlags;
1100       IncomingFlags.copyFMF(*FPMO);
1101       if (!Node->getFlags().isDefined())
1102         Node->setFlags(IncomingFlags);
1103       else
1104         Node->intersectFlagsWith(IncomingFlags);
1105     }
1106   }
1107 
1108   if (!I.isTerminator() && !HasTailCall &&
1109       !isStatepoint(&I)) // statepoints handle their exports internally
1110     CopyToExportRegsIfNeeded(&I);
1111 
1112   CurInst = nullptr;
1113 }
1114 
1115 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1116   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1117 }
1118 
1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1120   // Note: this doesn't use InstVisitor, because it has to work with
1121   // ConstantExpr's in addition to instructions.
1122   switch (Opcode) {
1123   default: llvm_unreachable("Unknown instruction type encountered!");
1124     // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1128   }
1129 }
1130 
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1132                                                 const DIExpression *Expr) {
1133   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1134     const DbgValueInst *DI = DDI.getDI();
1135     DIVariable *DanglingVariable = DI->getVariable();
1136     DIExpression *DanglingExpr = DI->getExpression();
1137     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1138       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1139       return true;
1140     }
1141     return false;
1142   };
1143 
1144   for (auto &DDIMI : DanglingDebugInfoMap) {
1145     DanglingDebugInfoVector &DDIV = DDIMI.second;
1146 
1147     // If debug info is to be dropped, run it through final checks to see
1148     // whether it can be salvaged.
1149     for (auto &DDI : DDIV)
1150       if (isMatchingDbgValue(DDI))
1151         salvageUnresolvedDbgValue(DDI);
1152 
1153     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1154   }
1155 }
1156 
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1160                                                    SDValue Val) {
1161   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1162   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1163     return;
1164 
1165   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1166   for (auto &DDI : DDIV) {
1167     const DbgValueInst *DI = DDI.getDI();
1168     assert(DI && "Ill-formed DanglingDebugInfo");
1169     DebugLoc dl = DDI.getdl();
1170     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1171     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1172     DILocalVariable *Variable = DI->getVariable();
1173     DIExpression *Expr = DI->getExpression();
1174     assert(Variable->isValidLocationForIntrinsic(dl) &&
1175            "Expected inlined-at fields to agree");
1176     SDDbgValue *SDV;
1177     if (Val.getNode()) {
1178       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180       // we couldn't resolve it directly when examining the DbgValue intrinsic
1181       // in the first place we should not be more successful here). Unless we
1182       // have some test case that prove this to be correct we should avoid
1183       // calling EmitFuncArgumentDbgValue here.
1184       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1185         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1187         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1188         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189         // inserted after the definition of Val when emitting the instructions
1190         // after ISel. An alternative could be to teach
1191         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1193                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1194                    << ValSDNodeOrder << "\n");
1195         SDV = getDbgValue(Val, Variable, Expr, dl,
1196                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1197         DAG.AddDbgValue(SDV, Val.getNode(), false);
1198       } else
1199         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200                           << "in EmitFuncArgumentDbgValue\n");
1201     } else {
1202       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1203       auto Undef =
1204           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1205       auto SDV =
1206           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1207       DAG.AddDbgValue(SDV, nullptr, false);
1208     }
1209   }
1210   DDIV.clear();
1211 }
1212 
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1214   Value *V = DDI.getDI()->getValue();
1215   DILocalVariable *Var = DDI.getDI()->getVariable();
1216   DIExpression *Expr = DDI.getDI()->getExpression();
1217   DebugLoc DL = DDI.getdl();
1218   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1219   unsigned SDOrder = DDI.getSDNodeOrder();
1220 
1221   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222   // that DW_OP_stack_value is desired.
1223   assert(isa<DbgValueInst>(DDI.getDI()));
1224   bool StackValue = true;
1225 
1226   // Can this Value can be encoded without any further work?
1227   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1228     return;
1229 
1230   // Attempt to salvage back through as many instructions as possible. Bail if
1231   // a non-instruction is seen, such as a constant expression or global
1232   // variable. FIXME: Further work could recover those too.
1233   while (isa<Instruction>(V)) {
1234     Instruction &VAsInst = *cast<Instruction>(V);
1235     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1236 
1237     // If we cannot salvage any further, and haven't yet found a suitable debug
1238     // expression, bail out.
1239     if (!NewExpr)
1240       break;
1241 
1242     // New value and expr now represent this debuginfo.
1243     V = VAsInst.getOperand(0);
1244     Expr = NewExpr;
1245 
1246     // Some kind of simplification occurred: check whether the operand of the
1247     // salvaged debug expression can be encoded in this DAG.
1248     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1249       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1250                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1251       return;
1252     }
1253   }
1254 
1255   // This was the final opportunity to salvage this debug information, and it
1256   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257   // any earlier variable location.
1258   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1259   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1260   DAG.AddDbgValue(SDV, nullptr, false);
1261 
1262   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1263                     << "\n");
1264   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1265                     << "\n");
1266 }
1267 
1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1269                                            DIExpression *Expr, DebugLoc dl,
1270                                            DebugLoc InstDL, unsigned Order) {
1271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1272   SDDbgValue *SDV;
1273   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1274       isa<ConstantPointerNull>(V)) {
1275     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1276     DAG.AddDbgValue(SDV, nullptr, false);
1277     return true;
1278   }
1279 
1280   // If the Value is a frame index, we can create a FrameIndex debug value
1281   // without relying on the DAG at all.
1282   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1283     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1284     if (SI != FuncInfo.StaticAllocaMap.end()) {
1285       auto SDV =
1286           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1287                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1288       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289       // is still available even if the SDNode gets optimized out.
1290       DAG.AddDbgValue(SDV, nullptr, false);
1291       return true;
1292     }
1293   }
1294 
1295   // Do not use getValue() in here; we don't want to generate code at
1296   // this point if it hasn't been done yet.
1297   SDValue N = NodeMap[V];
1298   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1299     N = UnusedArgNodeMap[V];
1300   if (N.getNode()) {
1301     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1302       return true;
1303     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1304     DAG.AddDbgValue(SDV, N.getNode(), false);
1305     return true;
1306   }
1307 
1308   // Special rules apply for the first dbg.values of parameter variables in a
1309   // function. Identify them by the fact they reference Argument Values, that
1310   // they're parameters, and they are parameters of the current function. We
1311   // need to let them dangle until they get an SDNode.
1312   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1313                        !InstDL.getInlinedAt();
1314   if (!IsParamOfFunc) {
1315     // The value is not used in this block yet (or it would have an SDNode).
1316     // We still want the value to appear for the user if possible -- if it has
1317     // an associated VReg, we can refer to that instead.
1318     auto VMI = FuncInfo.ValueMap.find(V);
1319     if (VMI != FuncInfo.ValueMap.end()) {
1320       unsigned Reg = VMI->second;
1321       // If this is a PHI node, it may be split up into several MI PHI nodes
1322       // (in FunctionLoweringInfo::set).
1323       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1324                        V->getType(), None);
1325       if (RFV.occupiesMultipleRegs()) {
1326         unsigned Offset = 0;
1327         unsigned BitsToDescribe = 0;
1328         if (auto VarSize = Var->getSizeInBits())
1329           BitsToDescribe = *VarSize;
1330         if (auto Fragment = Expr->getFragmentInfo())
1331           BitsToDescribe = Fragment->SizeInBits;
1332         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1333           unsigned RegisterSize = RegAndSize.second;
1334           // Bail out if all bits are described already.
1335           if (Offset >= BitsToDescribe)
1336             break;
1337           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1338               ? BitsToDescribe - Offset
1339               : RegisterSize;
1340           auto FragmentExpr = DIExpression::createFragmentExpression(
1341               Expr, Offset, FragmentSize);
1342           if (!FragmentExpr)
1343               continue;
1344           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1345                                     false, dl, SDNodeOrder);
1346           DAG.AddDbgValue(SDV, nullptr, false);
1347           Offset += RegisterSize;
1348         }
1349       } else {
1350         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1351         DAG.AddDbgValue(SDV, nullptr, false);
1352       }
1353       return true;
1354     }
1355   }
1356 
1357   return false;
1358 }
1359 
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362   for (auto &Pair : DanglingDebugInfoMap)
1363     for (auto &DDI : Pair.second)
1364       salvageUnresolvedDbgValue(DDI);
1365   clearDanglingDebugInfo();
1366 }
1367 
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1371   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1372   SDValue Result;
1373 
1374   if (It != FuncInfo.ValueMap.end()) {
1375     unsigned InReg = It->second;
1376 
1377     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1378                      DAG.getDataLayout(), InReg, Ty,
1379                      None); // This is not an ABI copy.
1380     SDValue Chain = DAG.getEntryNode();
1381     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1382                                  V);
1383     resolveDanglingDebugInfo(V, Result);
1384   }
1385 
1386   return Result;
1387 }
1388 
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1391   // If we already have an SDValue for this value, use it. It's important
1392   // to do this first, so that we don't create a CopyFromReg if we already
1393   // have a regular SDValue.
1394   SDValue &N = NodeMap[V];
1395   if (N.getNode()) return N;
1396 
1397   // If there's a virtual register allocated and initialized for this
1398   // value, use it.
1399   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1400     return copyFromReg;
1401 
1402   // Otherwise create a new SDValue and remember it.
1403   SDValue Val = getValueImpl(V);
1404   NodeMap[V] = Val;
1405   resolveDanglingDebugInfo(V, Val);
1406   return Val;
1407 }
1408 
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value *V) const {
1411   return (NodeMap.find(V) != NodeMap.end()) ||
1412     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1413 }
1414 
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1418   // If we already have an SDValue for this value, use it.
1419   SDValue &N = NodeMap[V];
1420   if (N.getNode()) {
1421     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1422       // Remove the debug location from the node as the node is about to be used
1423       // in a location which may differ from the original debug location.  This
1424       // is relevant to Constant and ConstantFP nodes because they can appear
1425       // as constant expressions inside PHI nodes.
1426       N->setDebugLoc(DebugLoc());
1427     }
1428     return N;
1429   }
1430 
1431   // Otherwise create a new SDValue and remember it.
1432   SDValue Val = getValueImpl(V);
1433   NodeMap[V] = Val;
1434   resolveDanglingDebugInfo(V, Val);
1435   return Val;
1436 }
1437 
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1442 
1443   if (const Constant *C = dyn_cast<Constant>(V)) {
1444     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1445 
1446     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1447       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1448 
1449     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1450       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1451 
1452     if (isa<ConstantPointerNull>(C)) {
1453       unsigned AS = V->getType()->getPointerAddressSpace();
1454       return DAG.getConstant(0, getCurSDLoc(),
1455                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1456     }
1457 
1458     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1459       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1460 
1461     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1462       return DAG.getUNDEF(VT);
1463 
1464     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1465       visit(CE->getOpcode(), *CE);
1466       SDValue N1 = NodeMap[V];
1467       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1468       return N1;
1469     }
1470 
1471     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1472       SmallVector<SDValue, 4> Constants;
1473       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1474            OI != OE; ++OI) {
1475         SDNode *Val = getValue(*OI).getNode();
1476         // If the operand is an empty aggregate, there are no values.
1477         if (!Val) continue;
1478         // Add each leaf value from the operand to the Constants list
1479         // to form a flattened list of all the values.
1480         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1481           Constants.push_back(SDValue(Val, i));
1482       }
1483 
1484       return DAG.getMergeValues(Constants, getCurSDLoc());
1485     }
1486 
1487     if (const ConstantDataSequential *CDS =
1488           dyn_cast<ConstantDataSequential>(C)) {
1489       SmallVector<SDValue, 4> Ops;
1490       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1491         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1492         // Add each leaf value from the operand to the Constants list
1493         // to form a flattened list of all the values.
1494         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1495           Ops.push_back(SDValue(Val, i));
1496       }
1497 
1498       if (isa<ArrayType>(CDS->getType()))
1499         return DAG.getMergeValues(Ops, getCurSDLoc());
1500       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1501     }
1502 
1503     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1504       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1505              "Unknown struct or array constant!");
1506 
1507       SmallVector<EVT, 4> ValueVTs;
1508       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1509       unsigned NumElts = ValueVTs.size();
1510       if (NumElts == 0)
1511         return SDValue(); // empty struct
1512       SmallVector<SDValue, 4> Constants(NumElts);
1513       for (unsigned i = 0; i != NumElts; ++i) {
1514         EVT EltVT = ValueVTs[i];
1515         if (isa<UndefValue>(C))
1516           Constants[i] = DAG.getUNDEF(EltVT);
1517         else if (EltVT.isFloatingPoint())
1518           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1519         else
1520           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1521       }
1522 
1523       return DAG.getMergeValues(Constants, getCurSDLoc());
1524     }
1525 
1526     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1527       return DAG.getBlockAddress(BA, VT);
1528 
1529     VectorType *VecTy = cast<VectorType>(V->getType());
1530     unsigned NumElements = VecTy->getNumElements();
1531 
1532     // Now that we know the number and type of the elements, get that number of
1533     // elements into the Ops array based on what kind of constant it is.
1534     SmallVector<SDValue, 16> Ops;
1535     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1536       for (unsigned i = 0; i != NumElements; ++i)
1537         Ops.push_back(getValue(CV->getOperand(i)));
1538     } else {
1539       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1540       EVT EltVT =
1541           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1542 
1543       SDValue Op;
1544       if (EltVT.isFloatingPoint())
1545         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1546       else
1547         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1548       Ops.assign(NumElements, Op);
1549     }
1550 
1551     // Create a BUILD_VECTOR node.
1552     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1553   }
1554 
1555   // If this is a static alloca, generate it as the frameindex instead of
1556   // computation.
1557   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558     DenseMap<const AllocaInst*, int>::iterator SI =
1559       FuncInfo.StaticAllocaMap.find(AI);
1560     if (SI != FuncInfo.StaticAllocaMap.end())
1561       return DAG.getFrameIndex(SI->second,
1562                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1563   }
1564 
1565   // If this is an instruction which fast-isel has deferred, select it now.
1566   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1567     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1568 
1569     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1570                      Inst->getType(), getABIRegCopyCC(V));
1571     SDValue Chain = DAG.getEntryNode();
1572     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1573   }
1574 
1575   llvm_unreachable("Can't get register for value!");
1576 }
1577 
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582   bool IsSEH = isAsynchronousEHPersonality(Pers);
1583   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1584   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1585   if (!IsSEH)
1586     CatchPadMBB->setIsEHScopeEntry();
1587   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588   if (IsMSVCCXX || IsCoreCLR)
1589     CatchPadMBB->setIsEHFuncletEntry();
1590   // Wasm does not need catchpads anymore
1591   if (!IsWasmCXX)
1592     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1593                             getControlRoot()));
1594 }
1595 
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1597   // Update machine-CFG edge.
1598   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1599   FuncInfo.MBB->addSuccessor(TargetMBB);
1600 
1601   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1602   bool IsSEH = isAsynchronousEHPersonality(Pers);
1603   if (IsSEH) {
1604     // If this is not a fall-through branch or optimizations are switched off,
1605     // emit the branch.
1606     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1607         TM.getOptLevel() == CodeGenOpt::None)
1608       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1609                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1610     return;
1611   }
1612 
1613   // Figure out the funclet membership for the catchret's successor.
1614   // This will be used by the FuncletLayout pass to determine how to order the
1615   // BB's.
1616   // A 'catchret' returns to the outer scope's color.
1617   Value *ParentPad = I.getCatchSwitchParentPad();
1618   const BasicBlock *SuccessorColor;
1619   if (isa<ConstantTokenNone>(ParentPad))
1620     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1621   else
1622     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1623   assert(SuccessorColor && "No parent funclet for catchret!");
1624   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1625   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1626 
1627   // Create the terminator node.
1628   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1629                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1630                             DAG.getBasicBlock(SuccessorColorMBB));
1631   DAG.setRoot(Ret);
1632 }
1633 
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1635   // Don't emit any special code for the cleanuppad instruction. It just marks
1636   // the start of an EH scope/funclet.
1637   FuncInfo.MBB->setIsEHScopeEntry();
1638   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639   if (Pers != EHPersonality::Wasm_CXX) {
1640     FuncInfo.MBB->setIsEHFuncletEntry();
1641     FuncInfo.MBB->setIsCleanupFuncletEntry();
1642   }
1643 }
1644 
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1651     BranchProbability Prob,
1652     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1653         &UnwindDests) {
1654   while (EHPadBB) {
1655     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1656     if (isa<CleanupPadInst>(Pad)) {
1657       // Stop on cleanup pads.
1658       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1659       UnwindDests.back().first->setIsEHScopeEntry();
1660       break;
1661     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1662       // Add the catchpad handlers to the possible destinations. We don't
1663       // continue to the unwind destination of the catchswitch for wasm.
1664       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1665         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1666         UnwindDests.back().first->setIsEHScopeEntry();
1667       }
1668       break;
1669     } else {
1670       continue;
1671     }
1672   }
1673 }
1674 
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1685     BranchProbability Prob,
1686     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1687         &UnwindDests) {
1688   EHPersonality Personality =
1689     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1690   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1691   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1692   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1693   bool IsSEH = isAsynchronousEHPersonality(Personality);
1694 
1695   if (IsWasmCXX) {
1696     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1697     assert(UnwindDests.size() <= 1 &&
1698            "There should be at most one unwind destination for wasm");
1699     return;
1700   }
1701 
1702   while (EHPadBB) {
1703     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1704     BasicBlock *NewEHPadBB = nullptr;
1705     if (isa<LandingPadInst>(Pad)) {
1706       // Stop on landingpads. They are not funclets.
1707       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708       break;
1709     } else if (isa<CleanupPadInst>(Pad)) {
1710       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1711       // personalities.
1712       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1713       UnwindDests.back().first->setIsEHScopeEntry();
1714       UnwindDests.back().first->setIsEHFuncletEntry();
1715       break;
1716     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1717       // Add the catchpad handlers to the possible destinations.
1718       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1719         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1720         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721         if (IsMSVCCXX || IsCoreCLR)
1722           UnwindDests.back().first->setIsEHFuncletEntry();
1723         if (!IsSEH)
1724           UnwindDests.back().first->setIsEHScopeEntry();
1725       }
1726       NewEHPadBB = CatchSwitch->getUnwindDest();
1727     } else {
1728       continue;
1729     }
1730 
1731     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1732     if (BPI && NewEHPadBB)
1733       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1734     EHPadBB = NewEHPadBB;
1735   }
1736 }
1737 
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1739   // Update successor info.
1740   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1741   auto UnwindDest = I.getUnwindDest();
1742   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1743   BranchProbability UnwindDestProb =
1744       (BPI && UnwindDest)
1745           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1746           : BranchProbability::getZero();
1747   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1748   for (auto &UnwindDest : UnwindDests) {
1749     UnwindDest.first->setIsEHPad();
1750     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1751   }
1752   FuncInfo.MBB->normalizeSuccProbs();
1753 
1754   // Create the terminator node.
1755   SDValue Ret =
1756       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1757   DAG.setRoot(Ret);
1758 }
1759 
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1761   report_fatal_error("visitCatchSwitch not yet implemented!");
1762 }
1763 
1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1766   auto &DL = DAG.getDataLayout();
1767   SDValue Chain = getControlRoot();
1768   SmallVector<ISD::OutputArg, 8> Outs;
1769   SmallVector<SDValue, 8> OutVals;
1770 
1771   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1772   // lower
1773   //
1774   //   %val = call <ty> @llvm.experimental.deoptimize()
1775   //   ret <ty> %val
1776   //
1777   // differently.
1778   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1779     LowerDeoptimizingReturn();
1780     return;
1781   }
1782 
1783   if (!FuncInfo.CanLowerReturn) {
1784     unsigned DemoteReg = FuncInfo.DemoteRegister;
1785     const Function *F = I.getParent()->getParent();
1786 
1787     // Emit a store of the return value through the virtual register.
1788     // Leave Outs empty so that LowerReturn won't try to load return
1789     // registers the usual way.
1790     SmallVector<EVT, 1> PtrValueVTs;
1791     ComputeValueVTs(TLI, DL,
1792                     F->getReturnType()->getPointerTo(
1793                         DAG.getDataLayout().getAllocaAddrSpace()),
1794                     PtrValueVTs);
1795 
1796     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1797                                         DemoteReg, PtrValueVTs[0]);
1798     SDValue RetOp = getValue(I.getOperand(0));
1799 
1800     SmallVector<EVT, 4> ValueVTs, MemVTs;
1801     SmallVector<uint64_t, 4> Offsets;
1802     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1803                     &Offsets);
1804     unsigned NumValues = ValueVTs.size();
1805 
1806     SmallVector<SDValue, 4> Chains(NumValues);
1807     for (unsigned i = 0; i != NumValues; ++i) {
1808       // An aggregate return value cannot wrap around the address space, so
1809       // offsets to its parts don't wrap either.
1810       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1811 
1812       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1813       if (MemVTs[i] != ValueVTs[i])
1814         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1815       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1816           // FIXME: better loc info would be nice.
1817           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1818     }
1819 
1820     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1821                         MVT::Other, Chains);
1822   } else if (I.getNumOperands() != 0) {
1823     SmallVector<EVT, 4> ValueVTs;
1824     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1825     unsigned NumValues = ValueVTs.size();
1826     if (NumValues) {
1827       SDValue RetOp = getValue(I.getOperand(0));
1828 
1829       const Function *F = I.getParent()->getParent();
1830 
1831       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1832           I.getOperand(0)->getType(), F->getCallingConv(),
1833           /*IsVarArg*/ false);
1834 
1835       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1836       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1837                                           Attribute::SExt))
1838         ExtendKind = ISD::SIGN_EXTEND;
1839       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1840                                                Attribute::ZExt))
1841         ExtendKind = ISD::ZERO_EXTEND;
1842 
1843       LLVMContext &Context = F->getContext();
1844       bool RetInReg = F->getAttributes().hasAttribute(
1845           AttributeList::ReturnIndex, Attribute::InReg);
1846 
1847       for (unsigned j = 0; j != NumValues; ++j) {
1848         EVT VT = ValueVTs[j];
1849 
1850         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1851           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1852 
1853         CallingConv::ID CC = F->getCallingConv();
1854 
1855         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1856         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1857         SmallVector<SDValue, 4> Parts(NumParts);
1858         getCopyToParts(DAG, getCurSDLoc(),
1859                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1860                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1861 
1862         // 'inreg' on function refers to return value
1863         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1864         if (RetInReg)
1865           Flags.setInReg();
1866 
1867         if (I.getOperand(0)->getType()->isPointerTy()) {
1868           Flags.setPointer();
1869           Flags.setPointerAddrSpace(
1870               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1871         }
1872 
1873         if (NeedsRegBlock) {
1874           Flags.setInConsecutiveRegs();
1875           if (j == NumValues - 1)
1876             Flags.setInConsecutiveRegsLast();
1877         }
1878 
1879         // Propagate extension type if any
1880         if (ExtendKind == ISD::SIGN_EXTEND)
1881           Flags.setSExt();
1882         else if (ExtendKind == ISD::ZERO_EXTEND)
1883           Flags.setZExt();
1884 
1885         for (unsigned i = 0; i < NumParts; ++i) {
1886           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1887                                         VT, /*isfixed=*/true, 0, 0));
1888           OutVals.push_back(Parts[i]);
1889         }
1890       }
1891     }
1892   }
1893 
1894   // Push in swifterror virtual register as the last element of Outs. This makes
1895   // sure swifterror virtual register will be returned in the swifterror
1896   // physical register.
1897   const Function *F = I.getParent()->getParent();
1898   if (TLI.supportSwiftError() &&
1899       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1900     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1901     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902     Flags.setSwiftError();
1903     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1904                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1905                                   true /*isfixed*/, 1 /*origidx*/,
1906                                   0 /*partOffs*/));
1907     // Create SDNode for the swifterror virtual register.
1908     OutVals.push_back(
1909         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1910                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1911                         EVT(TLI.getPointerTy(DL))));
1912   }
1913 
1914   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1915   CallingConv::ID CallConv =
1916     DAG.getMachineFunction().getFunction().getCallingConv();
1917   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1918       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1919 
1920   // Verify that the target's LowerReturn behaved as expected.
1921   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1922          "LowerReturn didn't return a valid chain!");
1923 
1924   // Update the DAG with the new chain value resulting from return lowering.
1925   DAG.setRoot(Chain);
1926 }
1927 
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1930 /// registers.
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1932   // Skip empty types
1933   if (V->getType()->isEmptyTy())
1934     return;
1935 
1936   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1937   if (VMI != FuncInfo.ValueMap.end()) {
1938     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1939     CopyValueToVirtualRegister(V, VMI->second);
1940   }
1941 }
1942 
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1945 /// CopyTo/FromReg.
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1947   // No need to export constants.
1948   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1949 
1950   // Already exported?
1951   if (FuncInfo.isExportedInst(V)) return;
1952 
1953   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1954   CopyValueToVirtualRegister(V, Reg);
1955 }
1956 
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1958                                                      const BasicBlock *FromBB) {
1959   // The operands of the setcc have to be in this block.  We don't know
1960   // how to export them from some other block.
1961   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1962     // Can export from current BB.
1963     if (VI->getParent() == FromBB)
1964       return true;
1965 
1966     // Is already exported, noop.
1967     return FuncInfo.isExportedInst(V);
1968   }
1969 
1970   // If this is an argument, we can export it if the BB is the entry block or
1971   // if it is already exported.
1972   if (isa<Argument>(V)) {
1973     if (FromBB == &FromBB->getParent()->getEntryBlock())
1974       return true;
1975 
1976     // Otherwise, can only export this if it is already exported.
1977     return FuncInfo.isExportedInst(V);
1978   }
1979 
1980   // Otherwise, constants can always be exported.
1981   return true;
1982 }
1983 
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1985 BranchProbability
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1987                                         const MachineBasicBlock *Dst) const {
1988   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1989   const BasicBlock *SrcBB = Src->getBasicBlock();
1990   const BasicBlock *DstBB = Dst->getBasicBlock();
1991   if (!BPI) {
1992     // If BPI is not available, set the default probability as 1 / N, where N is
1993     // the number of successors.
1994     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1995     return BranchProbability(1, SuccSize);
1996   }
1997   return BPI->getEdgeProbability(SrcBB, DstBB);
1998 }
1999 
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2001                                                MachineBasicBlock *Dst,
2002                                                BranchProbability Prob) {
2003   if (!FuncInfo.BPI)
2004     Src->addSuccessorWithoutProb(Dst);
2005   else {
2006     if (Prob.isUnknown())
2007       Prob = getEdgeProbability(Src, Dst);
2008     Src->addSuccessor(Dst, Prob);
2009   }
2010 }
2011 
2012 static bool InBlock(const Value *V, const BasicBlock *BB) {
2013   if (const Instruction *I = dyn_cast<Instruction>(V))
2014     return I->getParent() == BB;
2015   return true;
2016 }
2017 
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2021 void
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2023                                                   MachineBasicBlock *TBB,
2024                                                   MachineBasicBlock *FBB,
2025                                                   MachineBasicBlock *CurBB,
2026                                                   MachineBasicBlock *SwitchBB,
2027                                                   BranchProbability TProb,
2028                                                   BranchProbability FProb,
2029                                                   bool InvertCond) {
2030   const BasicBlock *BB = CurBB->getBasicBlock();
2031 
2032   // If the leaf of the tree is a comparison, merge the condition into
2033   // the caseblock.
2034   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2035     // The operands of the cmp have to be in this block.  We don't know
2036     // how to export them from some other block.  If this is the first block
2037     // of the sequence, no exporting is needed.
2038     if (CurBB == SwitchBB ||
2039         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2040          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2041       ISD::CondCode Condition;
2042       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2043         ICmpInst::Predicate Pred =
2044             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2045         Condition = getICmpCondCode(Pred);
2046       } else {
2047         const FCmpInst *FC = cast<FCmpInst>(Cond);
2048         FCmpInst::Predicate Pred =
2049             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2050         Condition = getFCmpCondCode(Pred);
2051         if (TM.Options.NoNaNsFPMath)
2052           Condition = getFCmpCodeWithoutNaN(Condition);
2053       }
2054 
2055       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2056                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2057       SL->SwitchCases.push_back(CB);
2058       return;
2059     }
2060   }
2061 
2062   // Create a CaseBlock record representing this branch.
2063   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2064   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2065                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2066   SL->SwitchCases.push_back(CB);
2067 }
2068 
2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2070                                                MachineBasicBlock *TBB,
2071                                                MachineBasicBlock *FBB,
2072                                                MachineBasicBlock *CurBB,
2073                                                MachineBasicBlock *SwitchBB,
2074                                                Instruction::BinaryOps Opc,
2075                                                BranchProbability TProb,
2076                                                BranchProbability FProb,
2077                                                bool InvertCond) {
2078   // Skip over not part of the tree and remember to invert op and operands at
2079   // next level.
2080   Value *NotCond;
2081   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2082       InBlock(NotCond, CurBB->getBasicBlock())) {
2083     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2084                          !InvertCond);
2085     return;
2086   }
2087 
2088   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2089   // Compute the effective opcode for Cond, taking into account whether it needs
2090   // to be inverted, e.g.
2091   //   and (not (or A, B)), C
2092   // gets lowered as
2093   //   and (and (not A, not B), C)
2094   unsigned BOpc = 0;
2095   if (BOp) {
2096     BOpc = BOp->getOpcode();
2097     if (InvertCond) {
2098       if (BOpc == Instruction::And)
2099         BOpc = Instruction::Or;
2100       else if (BOpc == Instruction::Or)
2101         BOpc = Instruction::And;
2102     }
2103   }
2104 
2105   // If this node is not part of the or/and tree, emit it as a branch.
2106   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2107       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2108       BOp->getParent() != CurBB->getBasicBlock() ||
2109       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2110       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2111     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2112                                  TProb, FProb, InvertCond);
2113     return;
2114   }
2115 
2116   //  Create TmpBB after CurBB.
2117   MachineFunction::iterator BBI(CurBB);
2118   MachineFunction &MF = DAG.getMachineFunction();
2119   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2120   CurBB->getParent()->insert(++BBI, TmpBB);
2121 
2122   if (Opc == Instruction::Or) {
2123     // Codegen X | Y as:
2124     // BB1:
2125     //   jmp_if_X TBB
2126     //   jmp TmpBB
2127     // TmpBB:
2128     //   jmp_if_Y TBB
2129     //   jmp FBB
2130     //
2131 
2132     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133     // The requirement is that
2134     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135     //     = TrueProb for original BB.
2136     // Assuming the original probabilities are A and B, one choice is to set
2137     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138     // A/(1+B) and 2B/(1+B). This choice assumes that
2139     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141     // TmpBB, but the math is more complicated.
2142 
2143     auto NewTrueProb = TProb / 2;
2144     auto NewFalseProb = TProb / 2 + FProb;
2145     // Emit the LHS condition.
2146     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2147                          NewTrueProb, NewFalseProb, InvertCond);
2148 
2149     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2151     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2152     // Emit the RHS condition into TmpBB.
2153     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2154                          Probs[0], Probs[1], InvertCond);
2155   } else {
2156     assert(Opc == Instruction::And && "Unknown merge op!");
2157     // Codegen X & Y as:
2158     // BB1:
2159     //   jmp_if_X TmpBB
2160     //   jmp FBB
2161     // TmpBB:
2162     //   jmp_if_Y TBB
2163     //   jmp FBB
2164     //
2165     //  This requires creation of TmpBB after CurBB.
2166 
2167     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168     // The requirement is that
2169     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170     //     = FalseProb for original BB.
2171     // Assuming the original probabilities are A and B, one choice is to set
2172     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174     // TrueProb for BB1 * FalseProb for TmpBB.
2175 
2176     auto NewTrueProb = TProb + FProb / 2;
2177     auto NewFalseProb = FProb / 2;
2178     // Emit the LHS condition.
2179     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2180                          NewTrueProb, NewFalseProb, InvertCond);
2181 
2182     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2184     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2185     // Emit the RHS condition into TmpBB.
2186     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2187                          Probs[0], Probs[1], InvertCond);
2188   }
2189 }
2190 
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2193 /// false.
2194 bool
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2196   if (Cases.size() != 2) return true;
2197 
2198   // If this is two comparisons of the same values or'd or and'd together, they
2199   // will get folded into a single comparison, so don't emit two blocks.
2200   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2201        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2202       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2203        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2204     return false;
2205   }
2206 
2207   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2210       Cases[0].CC == Cases[1].CC &&
2211       isa<Constant>(Cases[0].CmpRHS) &&
2212       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2213     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2214       return false;
2215     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2216       return false;
2217   }
2218 
2219   return true;
2220 }
2221 
2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2223   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2224 
2225   // Update machine-CFG edges.
2226   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2227 
2228   if (I.isUnconditional()) {
2229     // Update machine-CFG edges.
2230     BrMBB->addSuccessor(Succ0MBB);
2231 
2232     // If this is not a fall-through branch or optimizations are switched off,
2233     // emit the branch.
2234     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2235       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2236                               MVT::Other, getControlRoot(),
2237                               DAG.getBasicBlock(Succ0MBB)));
2238 
2239     return;
2240   }
2241 
2242   // If this condition is one of the special cases we handle, do special stuff
2243   // now.
2244   const Value *CondVal = I.getCondition();
2245   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2246 
2247   // If this is a series of conditions that are or'd or and'd together, emit
2248   // this as a sequence of branches instead of setcc's with and/or operations.
2249   // As long as jumps are not expensive, this should improve performance.
2250   // For example, instead of something like:
2251   //     cmp A, B
2252   //     C = seteq
2253   //     cmp D, E
2254   //     F = setle
2255   //     or C, F
2256   //     jnz foo
2257   // Emit:
2258   //     cmp A, B
2259   //     je foo
2260   //     cmp D, E
2261   //     jle foo
2262   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2263     Instruction::BinaryOps Opcode = BOp->getOpcode();
2264     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2265         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2266         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2267       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2268                            Opcode,
2269                            getEdgeProbability(BrMBB, Succ0MBB),
2270                            getEdgeProbability(BrMBB, Succ1MBB),
2271                            /*InvertCond=*/false);
2272       // If the compares in later blocks need to use values not currently
2273       // exported from this block, export them now.  This block should always
2274       // be the first entry.
2275       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2276 
2277       // Allow some cases to be rejected.
2278       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2279         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2280           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2281           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2282         }
2283 
2284         // Emit the branch for this block.
2285         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2286         SL->SwitchCases.erase(SL->SwitchCases.begin());
2287         return;
2288       }
2289 
2290       // Okay, we decided not to do this, remove any inserted MBB's and clear
2291       // SwitchCases.
2292       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2293         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2294 
2295       SL->SwitchCases.clear();
2296     }
2297   }
2298 
2299   // Create a CaseBlock record representing this branch.
2300   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2301                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2302 
2303   // Use visitSwitchCase to actually insert the fast branch sequence for this
2304   // cond branch.
2305   visitSwitchCase(CB, BrMBB);
2306 }
2307 
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2311                                           MachineBasicBlock *SwitchBB) {
2312   SDValue Cond;
2313   SDValue CondLHS = getValue(CB.CmpLHS);
2314   SDLoc dl = CB.DL;
2315 
2316   if (CB.CC == ISD::SETTRUE) {
2317     // Branch or fall through to TrueBB.
2318     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2319     SwitchBB->normalizeSuccProbs();
2320     if (CB.TrueBB != NextBlock(SwitchBB)) {
2321       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2322                               DAG.getBasicBlock(CB.TrueBB)));
2323     }
2324     return;
2325   }
2326 
2327   auto &TLI = DAG.getTargetLoweringInfo();
2328   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2329 
2330   // Build the setcc now.
2331   if (!CB.CmpMHS) {
2332     // Fold "(X == true)" to X and "(X == false)" to !X to
2333     // handle common cases produced by branch lowering.
2334     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2335         CB.CC == ISD::SETEQ)
2336       Cond = CondLHS;
2337     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2338              CB.CC == ISD::SETEQ) {
2339       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2340       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2341     } else {
2342       SDValue CondRHS = getValue(CB.CmpRHS);
2343 
2344       // If a pointer's DAG type is larger than its memory type then the DAG
2345       // values are zero-extended. This breaks signed comparisons so truncate
2346       // back to the underlying type before doing the compare.
2347       if (CondLHS.getValueType() != MemVT) {
2348         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2349         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2350       }
2351       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2352     }
2353   } else {
2354     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2355 
2356     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2357     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2358 
2359     SDValue CmpOp = getValue(CB.CmpMHS);
2360     EVT VT = CmpOp.getValueType();
2361 
2362     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2363       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2364                           ISD::SETLE);
2365     } else {
2366       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2367                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2368       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2369                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2370     }
2371   }
2372 
2373   // Update successor info
2374   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2375   // TrueBB and FalseBB are always different unless the incoming IR is
2376   // degenerate. This only happens when running llc on weird IR.
2377   if (CB.TrueBB != CB.FalseBB)
2378     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2379   SwitchBB->normalizeSuccProbs();
2380 
2381   // If the lhs block is the next block, invert the condition so that we can
2382   // fall through to the lhs instead of the rhs block.
2383   if (CB.TrueBB == NextBlock(SwitchBB)) {
2384     std::swap(CB.TrueBB, CB.FalseBB);
2385     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2386     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2387   }
2388 
2389   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2390                                MVT::Other, getControlRoot(), Cond,
2391                                DAG.getBasicBlock(CB.TrueBB));
2392 
2393   // Insert the false branch. Do this even if it's a fall through branch,
2394   // this makes it easier to do DAG optimizations which require inverting
2395   // the branch condition.
2396   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2397                        DAG.getBasicBlock(CB.FalseBB));
2398 
2399   DAG.setRoot(BrCond);
2400 }
2401 
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2404   // Emit the code for the jump table
2405   assert(JT.Reg != -1U && "Should lower JT Header first!");
2406   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2407   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2408                                      JT.Reg, PTy);
2409   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2410   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2411                                     MVT::Other, Index.getValue(1),
2412                                     Table, Index);
2413   DAG.setRoot(BrJumpTable);
2414 }
2415 
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2419                                                JumpTableHeader &JTH,
2420                                                MachineBasicBlock *SwitchBB) {
2421   SDLoc dl = getCurSDLoc();
2422 
2423   // Subtract the lowest switch case value from the value being switched on.
2424   SDValue SwitchOp = getValue(JTH.SValue);
2425   EVT VT = SwitchOp.getValueType();
2426   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2427                             DAG.getConstant(JTH.First, dl, VT));
2428 
2429   // The SDNode we just created, which holds the value being switched on minus
2430   // the smallest case value, needs to be copied to a virtual register so it
2431   // can be used as an index into the jump table in a subsequent basic block.
2432   // This value may be smaller or larger than the target's pointer type, and
2433   // therefore require extension or truncating.
2434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2435   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2436 
2437   unsigned JumpTableReg =
2438       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2439   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2440                                     JumpTableReg, SwitchOp);
2441   JT.Reg = JumpTableReg;
2442 
2443   if (!JTH.OmitRangeCheck) {
2444     // Emit the range check for the jump table, and branch to the default block
2445     // for the switch statement if the value being switched on exceeds the
2446     // largest case in the switch.
2447     SDValue CMP = DAG.getSetCC(
2448         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2449                                    Sub.getValueType()),
2450         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2451 
2452     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2453                                  MVT::Other, CopyTo, CMP,
2454                                  DAG.getBasicBlock(JT.Default));
2455 
2456     // Avoid emitting unnecessary branches to the next block.
2457     if (JT.MBB != NextBlock(SwitchBB))
2458       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2459                            DAG.getBasicBlock(JT.MBB));
2460 
2461     DAG.setRoot(BrCond);
2462   } else {
2463     // Avoid emitting unnecessary branches to the next block.
2464     if (JT.MBB != NextBlock(SwitchBB))
2465       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2466                               DAG.getBasicBlock(JT.MBB)));
2467     else
2468       DAG.setRoot(CopyTo);
2469   }
2470 }
2471 
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2475                                  SDValue &Chain) {
2476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2477   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2478   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2479   MachineFunction &MF = DAG.getMachineFunction();
2480   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2481   MachineSDNode *Node =
2482       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2483   if (Global) {
2484     MachinePointerInfo MPInfo(Global);
2485     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2486                  MachineMemOperand::MODereferenceable;
2487     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2488         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2489     DAG.setNodeMemRefs(Node, {MemRef});
2490   }
2491   if (PtrTy != PtrMemTy)
2492     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2493   return SDValue(Node, 0);
2494 }
2495 
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2498 ///
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2503                                                   MachineBasicBlock *ParentBB) {
2504 
2505   // First create the loads to the guard/stack slot for the comparison.
2506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2509 
2510   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2511   int FI = MFI.getStackProtectorIndex();
2512 
2513   SDValue Guard;
2514   SDLoc dl = getCurSDLoc();
2515   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2516   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2517   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2518 
2519   // Generate code to load the content of the guard slot.
2520   SDValue GuardVal = DAG.getLoad(
2521       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2522       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2523       MachineMemOperand::MOVolatile);
2524 
2525   if (TLI.useStackGuardXorFP())
2526     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2527 
2528   // Retrieve guard check function, nullptr if instrumentation is inlined.
2529   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2530     // The target provides a guard check function to validate the guard value.
2531     // Generate a call to that function with the content of the guard slot as
2532     // argument.
2533     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2534     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2535 
2536     TargetLowering::ArgListTy Args;
2537     TargetLowering::ArgListEntry Entry;
2538     Entry.Node = GuardVal;
2539     Entry.Ty = FnTy->getParamType(0);
2540     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2541       Entry.IsInReg = true;
2542     Args.push_back(Entry);
2543 
2544     TargetLowering::CallLoweringInfo CLI(DAG);
2545     CLI.setDebugLoc(getCurSDLoc())
2546         .setChain(DAG.getEntryNode())
2547         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2548                    getValue(GuardCheckFn), std::move(Args));
2549 
2550     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2551     DAG.setRoot(Result.second);
2552     return;
2553   }
2554 
2555   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556   // Otherwise, emit a volatile load to retrieve the stack guard value.
2557   SDValue Chain = DAG.getEntryNode();
2558   if (TLI.useLoadStackGuardNode()) {
2559     Guard = getLoadStackGuard(DAG, dl, Chain);
2560   } else {
2561     const Value *IRGuard = TLI.getSDagStackGuard(M);
2562     SDValue GuardPtr = getValue(IRGuard);
2563 
2564     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2565                         MachinePointerInfo(IRGuard, 0), Align,
2566                         MachineMemOperand::MOVolatile);
2567   }
2568 
2569   // Perform the comparison via a subtract/getsetcc.
2570   EVT VT = Guard.getValueType();
2571   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2572 
2573   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2574                                                         *DAG.getContext(),
2575                                                         Sub.getValueType()),
2576                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2577 
2578   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579   // branch to failure MBB.
2580   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581                                MVT::Other, GuardVal.getOperand(0),
2582                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583   // Otherwise branch to success MBB.
2584   SDValue Br = DAG.getNode(ISD::BR, dl,
2585                            MVT::Other, BrCond,
2586                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2587 
2588   DAG.setRoot(Br);
2589 }
2590 
2591 /// Codegen the failure basic block for a stack protector check.
2592 ///
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2595 ///
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602   TargetLowering::MakeLibCallOptions CallOptions;
2603   CallOptions.setDiscardResult(true);
2604   SDValue Chain =
2605       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2606                       None, CallOptions, getCurSDLoc()).second;
2607   // On PS4, the "return address" must still be within the calling function,
2608   // even if it's at the very end, so emit an explicit TRAP here.
2609   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610   if (TM.getTargetTriple().isPS4CPU())
2611     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2612 
2613   DAG.setRoot(Chain);
2614 }
2615 
2616 /// visitBitTestHeader - This function emits necessary code to produce value
2617 /// suitable for "bit tests"
2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2619                                              MachineBasicBlock *SwitchBB) {
2620   SDLoc dl = getCurSDLoc();
2621 
2622   // Subtract the minimum value.
2623   SDValue SwitchOp = getValue(B.SValue);
2624   EVT VT = SwitchOp.getValueType();
2625   SDValue RangeSub =
2626       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2627 
2628   // Determine the type of the test operands.
2629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630   bool UsePtrType = false;
2631   if (!TLI.isTypeLegal(VT)) {
2632     UsePtrType = true;
2633   } else {
2634     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2635       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2636         // Switch table case range are encoded into series of masks.
2637         // Just use pointer type, it's guaranteed to fit.
2638         UsePtrType = true;
2639         break;
2640       }
2641   }
2642   SDValue Sub = RangeSub;
2643   if (UsePtrType) {
2644     VT = TLI.getPointerTy(DAG.getDataLayout());
2645     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2646   }
2647 
2648   B.RegVT = VT.getSimpleVT();
2649   B.Reg = FuncInfo.CreateReg(B.RegVT);
2650   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2651 
2652   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2653 
2654   if (!B.OmitRangeCheck)
2655     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2656   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2657   SwitchBB->normalizeSuccProbs();
2658 
2659   SDValue Root = CopyTo;
2660   if (!B.OmitRangeCheck) {
2661     // Conditional branch to the default block.
2662     SDValue RangeCmp = DAG.getSetCC(dl,
2663         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2664                                RangeSub.getValueType()),
2665         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2666         ISD::SETUGT);
2667 
2668     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2669                        DAG.getBasicBlock(B.Default));
2670   }
2671 
2672   // Avoid emitting unnecessary branches to the next block.
2673   if (MBB != NextBlock(SwitchBB))
2674     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2675 
2676   DAG.setRoot(Root);
2677 }
2678 
2679 /// visitBitTestCase - this function produces one "bit test"
2680 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2681                                            MachineBasicBlock* NextMBB,
2682                                            BranchProbability BranchProbToNext,
2683                                            unsigned Reg,
2684                                            BitTestCase &B,
2685                                            MachineBasicBlock *SwitchBB) {
2686   SDLoc dl = getCurSDLoc();
2687   MVT VT = BB.RegVT;
2688   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2689   SDValue Cmp;
2690   unsigned PopCount = countPopulation(B.Mask);
2691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2692   if (PopCount == 1) {
2693     // Testing for a single bit; just compare the shift count with what it
2694     // would need to be to shift a 1 bit in that position.
2695     Cmp = DAG.getSetCC(
2696         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2697         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2698         ISD::SETEQ);
2699   } else if (PopCount == BB.Range) {
2700     // There is only one zero bit in the range, test for it directly.
2701     Cmp = DAG.getSetCC(
2702         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2703         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2704         ISD::SETNE);
2705   } else {
2706     // Make desired shift
2707     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2708                                     DAG.getConstant(1, dl, VT), ShiftOp);
2709 
2710     // Emit bit tests and jumps
2711     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2712                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2713     Cmp = DAG.getSetCC(
2714         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2715         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2716   }
2717 
2718   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2719   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2720   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2721   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2722   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2723   // one as they are relative probabilities (and thus work more like weights),
2724   // and hence we need to normalize them to let the sum of them become one.
2725   SwitchBB->normalizeSuccProbs();
2726 
2727   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2728                               MVT::Other, getControlRoot(),
2729                               Cmp, DAG.getBasicBlock(B.TargetBB));
2730 
2731   // Avoid emitting unnecessary branches to the next block.
2732   if (NextMBB != NextBlock(SwitchBB))
2733     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2734                         DAG.getBasicBlock(NextMBB));
2735 
2736   DAG.setRoot(BrAnd);
2737 }
2738 
2739 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2740   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2741 
2742   // Retrieve successors. Look through artificial IR level blocks like
2743   // catchswitch for successors.
2744   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2745   const BasicBlock *EHPadBB = I.getSuccessor(1);
2746 
2747   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2748   // have to do anything here to lower funclet bundles.
2749   assert(!I.hasOperandBundlesOtherThan(
2750              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2751          "Cannot lower invokes with arbitrary operand bundles yet!");
2752 
2753   const Value *Callee(I.getCalledValue());
2754   const Function *Fn = dyn_cast<Function>(Callee);
2755   if (isa<InlineAsm>(Callee))
2756     visitInlineAsm(&I);
2757   else if (Fn && Fn->isIntrinsic()) {
2758     switch (Fn->getIntrinsicID()) {
2759     default:
2760       llvm_unreachable("Cannot invoke this intrinsic");
2761     case Intrinsic::donothing:
2762       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2763       break;
2764     case Intrinsic::experimental_patchpoint_void:
2765     case Intrinsic::experimental_patchpoint_i64:
2766       visitPatchpoint(&I, EHPadBB);
2767       break;
2768     case Intrinsic::experimental_gc_statepoint:
2769       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2770       break;
2771     case Intrinsic::wasm_rethrow_in_catch: {
2772       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2773       // special because it can be invoked, so we manually lower it to a DAG
2774       // node here.
2775       SmallVector<SDValue, 8> Ops;
2776       Ops.push_back(getRoot()); // inchain
2777       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2778       Ops.push_back(
2779           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2780                                 TLI.getPointerTy(DAG.getDataLayout())));
2781       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2782       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2783       break;
2784     }
2785     }
2786   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2787     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2788     // Eventually we will support lowering the @llvm.experimental.deoptimize
2789     // intrinsic, and right now there are no plans to support other intrinsics
2790     // with deopt state.
2791     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2792   } else {
2793     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2794   }
2795 
2796   // If the value of the invoke is used outside of its defining block, make it
2797   // available as a virtual register.
2798   // We already took care of the exported value for the statepoint instruction
2799   // during call to the LowerStatepoint.
2800   if (!isStatepoint(I)) {
2801     CopyToExportRegsIfNeeded(&I);
2802   }
2803 
2804   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2805   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2806   BranchProbability EHPadBBProb =
2807       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2808           : BranchProbability::getZero();
2809   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2810 
2811   // Update successor info.
2812   addSuccessorWithProb(InvokeMBB, Return);
2813   for (auto &UnwindDest : UnwindDests) {
2814     UnwindDest.first->setIsEHPad();
2815     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2816   }
2817   InvokeMBB->normalizeSuccProbs();
2818 
2819   // Drop into normal successor.
2820   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2821                           DAG.getBasicBlock(Return)));
2822 }
2823 
2824 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2825   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2826 
2827   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2828   // have to do anything here to lower funclet bundles.
2829   assert(!I.hasOperandBundlesOtherThan(
2830              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2831          "Cannot lower callbrs with arbitrary operand bundles yet!");
2832 
2833   assert(isa<InlineAsm>(I.getCalledValue()) &&
2834          "Only know how to handle inlineasm callbr");
2835   visitInlineAsm(&I);
2836 
2837   // Retrieve successors.
2838   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2839 
2840   // Update successor info.
2841   addSuccessorWithProb(CallBrMBB, Return);
2842   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2843     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2844     addSuccessorWithProb(CallBrMBB, Target);
2845   }
2846   CallBrMBB->normalizeSuccProbs();
2847 
2848   // Drop into default successor.
2849   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2850                           MVT::Other, getControlRoot(),
2851                           DAG.getBasicBlock(Return)));
2852 }
2853 
2854 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2855   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2856 }
2857 
2858 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2859   assert(FuncInfo.MBB->isEHPad() &&
2860          "Call to landingpad not in landing pad!");
2861 
2862   // If there aren't registers to copy the values into (e.g., during SjLj
2863   // exceptions), then don't bother to create these DAG nodes.
2864   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2865   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2866   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2867       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2868     return;
2869 
2870   // If landingpad's return type is token type, we don't create DAG nodes
2871   // for its exception pointer and selector value. The extraction of exception
2872   // pointer or selector value from token type landingpads is not currently
2873   // supported.
2874   if (LP.getType()->isTokenTy())
2875     return;
2876 
2877   SmallVector<EVT, 2> ValueVTs;
2878   SDLoc dl = getCurSDLoc();
2879   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2880   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2881 
2882   // Get the two live-in registers as SDValues. The physregs have already been
2883   // copied into virtual registers.
2884   SDValue Ops[2];
2885   if (FuncInfo.ExceptionPointerVirtReg) {
2886     Ops[0] = DAG.getZExtOrTrunc(
2887         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2888                            FuncInfo.ExceptionPointerVirtReg,
2889                            TLI.getPointerTy(DAG.getDataLayout())),
2890         dl, ValueVTs[0]);
2891   } else {
2892     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2893   }
2894   Ops[1] = DAG.getZExtOrTrunc(
2895       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2896                          FuncInfo.ExceptionSelectorVirtReg,
2897                          TLI.getPointerTy(DAG.getDataLayout())),
2898       dl, ValueVTs[1]);
2899 
2900   // Merge into one.
2901   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2902                             DAG.getVTList(ValueVTs), Ops);
2903   setValue(&LP, Res);
2904 }
2905 
2906 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2907                                            MachineBasicBlock *Last) {
2908   // Update JTCases.
2909   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2910     if (SL->JTCases[i].first.HeaderBB == First)
2911       SL->JTCases[i].first.HeaderBB = Last;
2912 
2913   // Update BitTestCases.
2914   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2915     if (SL->BitTestCases[i].Parent == First)
2916       SL->BitTestCases[i].Parent = Last;
2917 }
2918 
2919 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2920   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2921 
2922   // Update machine-CFG edges with unique successors.
2923   SmallSet<BasicBlock*, 32> Done;
2924   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2925     BasicBlock *BB = I.getSuccessor(i);
2926     bool Inserted = Done.insert(BB).second;
2927     if (!Inserted)
2928         continue;
2929 
2930     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2931     addSuccessorWithProb(IndirectBrMBB, Succ);
2932   }
2933   IndirectBrMBB->normalizeSuccProbs();
2934 
2935   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2936                           MVT::Other, getControlRoot(),
2937                           getValue(I.getAddress())));
2938 }
2939 
2940 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2941   if (!DAG.getTarget().Options.TrapUnreachable)
2942     return;
2943 
2944   // We may be able to ignore unreachable behind a noreturn call.
2945   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2946     const BasicBlock &BB = *I.getParent();
2947     if (&I != &BB.front()) {
2948       BasicBlock::const_iterator PredI =
2949         std::prev(BasicBlock::const_iterator(&I));
2950       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2951         if (Call->doesNotReturn())
2952           return;
2953       }
2954     }
2955   }
2956 
2957   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2958 }
2959 
2960 void SelectionDAGBuilder::visitFSub(const User &I) {
2961   // -0.0 - X --> fneg
2962   Type *Ty = I.getType();
2963   if (isa<Constant>(I.getOperand(0)) &&
2964       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2965     SDValue Op2 = getValue(I.getOperand(1));
2966     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2967                              Op2.getValueType(), Op2));
2968     return;
2969   }
2970 
2971   visitBinary(I, ISD::FSUB);
2972 }
2973 
2974 /// Checks if the given instruction performs a vector reduction, in which case
2975 /// we have the freedom to alter the elements in the result as long as the
2976 /// reduction of them stays unchanged.
2977 static bool isVectorReductionOp(const User *I) {
2978   const Instruction *Inst = dyn_cast<Instruction>(I);
2979   if (!Inst || !Inst->getType()->isVectorTy())
2980     return false;
2981 
2982   auto OpCode = Inst->getOpcode();
2983   switch (OpCode) {
2984   case Instruction::Add:
2985   case Instruction::Mul:
2986   case Instruction::And:
2987   case Instruction::Or:
2988   case Instruction::Xor:
2989     break;
2990   case Instruction::FAdd:
2991   case Instruction::FMul:
2992     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2993       if (FPOp->getFastMathFlags().isFast())
2994         break;
2995     LLVM_FALLTHROUGH;
2996   default:
2997     return false;
2998   }
2999 
3000   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3001   // Ensure the reduction size is a power of 2.
3002   if (!isPowerOf2_32(ElemNum))
3003     return false;
3004 
3005   unsigned ElemNumToReduce = ElemNum;
3006 
3007   // Do DFS search on the def-use chain from the given instruction. We only
3008   // allow four kinds of operations during the search until we reach the
3009   // instruction that extracts the first element from the vector:
3010   //
3011   //   1. The reduction operation of the same opcode as the given instruction.
3012   //
3013   //   2. PHI node.
3014   //
3015   //   3. ShuffleVector instruction together with a reduction operation that
3016   //      does a partial reduction.
3017   //
3018   //   4. ExtractElement that extracts the first element from the vector, and we
3019   //      stop searching the def-use chain here.
3020   //
3021   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3022   // from 1-3 to the stack to continue the DFS. The given instruction is not
3023   // a reduction operation if we meet any other instructions other than those
3024   // listed above.
3025 
3026   SmallVector<const User *, 16> UsersToVisit{Inst};
3027   SmallPtrSet<const User *, 16> Visited;
3028   bool ReduxExtracted = false;
3029 
3030   while (!UsersToVisit.empty()) {
3031     auto User = UsersToVisit.back();
3032     UsersToVisit.pop_back();
3033     if (!Visited.insert(User).second)
3034       continue;
3035 
3036     for (const auto &U : User->users()) {
3037       auto Inst = dyn_cast<Instruction>(U);
3038       if (!Inst)
3039         return false;
3040 
3041       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3042         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3043           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3044             return false;
3045         UsersToVisit.push_back(U);
3046       } else if (const ShuffleVectorInst *ShufInst =
3047                      dyn_cast<ShuffleVectorInst>(U)) {
3048         // Detect the following pattern: A ShuffleVector instruction together
3049         // with a reduction that do partial reduction on the first and second
3050         // ElemNumToReduce / 2 elements, and store the result in
3051         // ElemNumToReduce / 2 elements in another vector.
3052 
3053         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3054         if (ResultElements < ElemNum)
3055           return false;
3056 
3057         if (ElemNumToReduce == 1)
3058           return false;
3059         if (!isa<UndefValue>(U->getOperand(1)))
3060           return false;
3061         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3062           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3063             return false;
3064         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3065           if (ShufInst->getMaskValue(i) != -1)
3066             return false;
3067 
3068         // There is only one user of this ShuffleVector instruction, which
3069         // must be a reduction operation.
3070         if (!U->hasOneUse())
3071           return false;
3072 
3073         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3074         if (!U2 || U2->getOpcode() != OpCode)
3075           return false;
3076 
3077         // Check operands of the reduction operation.
3078         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3079             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3080           UsersToVisit.push_back(U2);
3081           ElemNumToReduce /= 2;
3082         } else
3083           return false;
3084       } else if (isa<ExtractElementInst>(U)) {
3085         // At this moment we should have reduced all elements in the vector.
3086         if (ElemNumToReduce != 1)
3087           return false;
3088 
3089         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3090         if (!Val || !Val->isZero())
3091           return false;
3092 
3093         ReduxExtracted = true;
3094       } else
3095         return false;
3096     }
3097   }
3098   return ReduxExtracted;
3099 }
3100 
3101 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3102   SDNodeFlags Flags;
3103 
3104   SDValue Op = getValue(I.getOperand(0));
3105   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3106                                     Op, Flags);
3107   setValue(&I, UnNodeValue);
3108 }
3109 
3110 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3111   SDNodeFlags Flags;
3112   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3113     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3114     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3115   }
3116   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3117     Flags.setExact(ExactOp->isExact());
3118   }
3119   if (isVectorReductionOp(&I)) {
3120     Flags.setVectorReduction(true);
3121     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3122   }
3123 
3124   SDValue Op1 = getValue(I.getOperand(0));
3125   SDValue Op2 = getValue(I.getOperand(1));
3126   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3127                                      Op1, Op2, Flags);
3128   setValue(&I, BinNodeValue);
3129 }
3130 
3131 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3132   SDValue Op1 = getValue(I.getOperand(0));
3133   SDValue Op2 = getValue(I.getOperand(1));
3134 
3135   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3136       Op1.getValueType(), DAG.getDataLayout());
3137 
3138   // Coerce the shift amount to the right type if we can.
3139   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3140     unsigned ShiftSize = ShiftTy.getSizeInBits();
3141     unsigned Op2Size = Op2.getValueSizeInBits();
3142     SDLoc DL = getCurSDLoc();
3143 
3144     // If the operand is smaller than the shift count type, promote it.
3145     if (ShiftSize > Op2Size)
3146       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3147 
3148     // If the operand is larger than the shift count type but the shift
3149     // count type has enough bits to represent any shift value, truncate
3150     // it now. This is a common case and it exposes the truncate to
3151     // optimization early.
3152     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3153       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3154     // Otherwise we'll need to temporarily settle for some other convenient
3155     // type.  Type legalization will make adjustments once the shiftee is split.
3156     else
3157       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3158   }
3159 
3160   bool nuw = false;
3161   bool nsw = false;
3162   bool exact = false;
3163 
3164   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3165 
3166     if (const OverflowingBinaryOperator *OFBinOp =
3167             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3168       nuw = OFBinOp->hasNoUnsignedWrap();
3169       nsw = OFBinOp->hasNoSignedWrap();
3170     }
3171     if (const PossiblyExactOperator *ExactOp =
3172             dyn_cast<const PossiblyExactOperator>(&I))
3173       exact = ExactOp->isExact();
3174   }
3175   SDNodeFlags Flags;
3176   Flags.setExact(exact);
3177   Flags.setNoSignedWrap(nsw);
3178   Flags.setNoUnsignedWrap(nuw);
3179   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3180                             Flags);
3181   setValue(&I, Res);
3182 }
3183 
3184 void SelectionDAGBuilder::visitSDiv(const User &I) {
3185   SDValue Op1 = getValue(I.getOperand(0));
3186   SDValue Op2 = getValue(I.getOperand(1));
3187 
3188   SDNodeFlags Flags;
3189   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3190                  cast<PossiblyExactOperator>(&I)->isExact());
3191   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3192                            Op2, Flags));
3193 }
3194 
3195 void SelectionDAGBuilder::visitICmp(const User &I) {
3196   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3197   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3198     predicate = IC->getPredicate();
3199   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3200     predicate = ICmpInst::Predicate(IC->getPredicate());
3201   SDValue Op1 = getValue(I.getOperand(0));
3202   SDValue Op2 = getValue(I.getOperand(1));
3203   ISD::CondCode Opcode = getICmpCondCode(predicate);
3204 
3205   auto &TLI = DAG.getTargetLoweringInfo();
3206   EVT MemVT =
3207       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3208 
3209   // If a pointer's DAG type is larger than its memory type then the DAG values
3210   // are zero-extended. This breaks signed comparisons so truncate back to the
3211   // underlying type before doing the compare.
3212   if (Op1.getValueType() != MemVT) {
3213     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3214     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3215   }
3216 
3217   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3218                                                         I.getType());
3219   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3220 }
3221 
3222 void SelectionDAGBuilder::visitFCmp(const User &I) {
3223   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3224   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3225     predicate = FC->getPredicate();
3226   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3227     predicate = FCmpInst::Predicate(FC->getPredicate());
3228   SDValue Op1 = getValue(I.getOperand(0));
3229   SDValue Op2 = getValue(I.getOperand(1));
3230 
3231   ISD::CondCode Condition = getFCmpCondCode(predicate);
3232   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3233   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3234     Condition = getFCmpCodeWithoutNaN(Condition);
3235 
3236   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3237                                                         I.getType());
3238   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3239 }
3240 
3241 // Check if the condition of the select has one use or two users that are both
3242 // selects with the same condition.
3243 static bool hasOnlySelectUsers(const Value *Cond) {
3244   return llvm::all_of(Cond->users(), [](const Value *V) {
3245     return isa<SelectInst>(V);
3246   });
3247 }
3248 
3249 void SelectionDAGBuilder::visitSelect(const User &I) {
3250   SmallVector<EVT, 4> ValueVTs;
3251   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3252                   ValueVTs);
3253   unsigned NumValues = ValueVTs.size();
3254   if (NumValues == 0) return;
3255 
3256   SmallVector<SDValue, 4> Values(NumValues);
3257   SDValue Cond     = getValue(I.getOperand(0));
3258   SDValue LHSVal   = getValue(I.getOperand(1));
3259   SDValue RHSVal   = getValue(I.getOperand(2));
3260   auto BaseOps = {Cond};
3261   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3262     ISD::VSELECT : ISD::SELECT;
3263 
3264   bool IsUnaryAbs = false;
3265 
3266   // Min/max matching is only viable if all output VTs are the same.
3267   if (is_splat(ValueVTs)) {
3268     EVT VT = ValueVTs[0];
3269     LLVMContext &Ctx = *DAG.getContext();
3270     auto &TLI = DAG.getTargetLoweringInfo();
3271 
3272     // We care about the legality of the operation after it has been type
3273     // legalized.
3274     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3275       VT = TLI.getTypeToTransformTo(Ctx, VT);
3276 
3277     // If the vselect is legal, assume we want to leave this as a vector setcc +
3278     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3279     // min/max is legal on the scalar type.
3280     bool UseScalarMinMax = VT.isVector() &&
3281       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3282 
3283     Value *LHS, *RHS;
3284     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3285     ISD::NodeType Opc = ISD::DELETED_NODE;
3286     switch (SPR.Flavor) {
3287     case SPF_UMAX:    Opc = ISD::UMAX; break;
3288     case SPF_UMIN:    Opc = ISD::UMIN; break;
3289     case SPF_SMAX:    Opc = ISD::SMAX; break;
3290     case SPF_SMIN:    Opc = ISD::SMIN; break;
3291     case SPF_FMINNUM:
3292       switch (SPR.NaNBehavior) {
3293       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3294       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3295       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3296       case SPNB_RETURNS_ANY: {
3297         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3298           Opc = ISD::FMINNUM;
3299         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3300           Opc = ISD::FMINIMUM;
3301         else if (UseScalarMinMax)
3302           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3303             ISD::FMINNUM : ISD::FMINIMUM;
3304         break;
3305       }
3306       }
3307       break;
3308     case SPF_FMAXNUM:
3309       switch (SPR.NaNBehavior) {
3310       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3311       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3312       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3313       case SPNB_RETURNS_ANY:
3314 
3315         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3316           Opc = ISD::FMAXNUM;
3317         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3318           Opc = ISD::FMAXIMUM;
3319         else if (UseScalarMinMax)
3320           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3321             ISD::FMAXNUM : ISD::FMAXIMUM;
3322         break;
3323       }
3324       break;
3325     case SPF_ABS:
3326       IsUnaryAbs = true;
3327       Opc = ISD::ABS;
3328       break;
3329     case SPF_NABS:
3330       // TODO: we need to produce sub(0, abs(X)).
3331     default: break;
3332     }
3333 
3334     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3335         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3336          (UseScalarMinMax &&
3337           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3338         // If the underlying comparison instruction is used by any other
3339         // instruction, the consumed instructions won't be destroyed, so it is
3340         // not profitable to convert to a min/max.
3341         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3342       OpCode = Opc;
3343       LHSVal = getValue(LHS);
3344       RHSVal = getValue(RHS);
3345       BaseOps = {};
3346     }
3347 
3348     if (IsUnaryAbs) {
3349       OpCode = Opc;
3350       LHSVal = getValue(LHS);
3351       BaseOps = {};
3352     }
3353   }
3354 
3355   if (IsUnaryAbs) {
3356     for (unsigned i = 0; i != NumValues; ++i) {
3357       Values[i] =
3358           DAG.getNode(OpCode, getCurSDLoc(),
3359                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3360                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3361     }
3362   } else {
3363     for (unsigned i = 0; i != NumValues; ++i) {
3364       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3365       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3366       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3367       Values[i] = DAG.getNode(
3368           OpCode, getCurSDLoc(),
3369           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3370     }
3371   }
3372 
3373   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3374                            DAG.getVTList(ValueVTs), Values));
3375 }
3376 
3377 void SelectionDAGBuilder::visitTrunc(const User &I) {
3378   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3379   SDValue N = getValue(I.getOperand(0));
3380   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3381                                                         I.getType());
3382   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3383 }
3384 
3385 void SelectionDAGBuilder::visitZExt(const User &I) {
3386   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3387   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3388   SDValue N = getValue(I.getOperand(0));
3389   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3390                                                         I.getType());
3391   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3392 }
3393 
3394 void SelectionDAGBuilder::visitSExt(const User &I) {
3395   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3396   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3397   SDValue N = getValue(I.getOperand(0));
3398   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3399                                                         I.getType());
3400   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3401 }
3402 
3403 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3404   // FPTrunc is never a no-op cast, no need to check
3405   SDValue N = getValue(I.getOperand(0));
3406   SDLoc dl = getCurSDLoc();
3407   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3408   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3409   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3410                            DAG.getTargetConstant(
3411                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3412 }
3413 
3414 void SelectionDAGBuilder::visitFPExt(const User &I) {
3415   // FPExt is never a no-op cast, no need to check
3416   SDValue N = getValue(I.getOperand(0));
3417   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3418                                                         I.getType());
3419   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3420 }
3421 
3422 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3423   // FPToUI is never a no-op cast, no need to check
3424   SDValue N = getValue(I.getOperand(0));
3425   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3426                                                         I.getType());
3427   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3428 }
3429 
3430 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3431   // FPToSI is never a no-op cast, no need to check
3432   SDValue N = getValue(I.getOperand(0));
3433   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3434                                                         I.getType());
3435   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3436 }
3437 
3438 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3439   // UIToFP is never a no-op cast, no need to check
3440   SDValue N = getValue(I.getOperand(0));
3441   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3442                                                         I.getType());
3443   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3444 }
3445 
3446 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3447   // SIToFP is never a no-op cast, no need to check
3448   SDValue N = getValue(I.getOperand(0));
3449   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3450                                                         I.getType());
3451   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3452 }
3453 
3454 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3455   // What to do depends on the size of the integer and the size of the pointer.
3456   // We can either truncate, zero extend, or no-op, accordingly.
3457   SDValue N = getValue(I.getOperand(0));
3458   auto &TLI = DAG.getTargetLoweringInfo();
3459   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3460                                                         I.getType());
3461   EVT PtrMemVT =
3462       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3463   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3464   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3465   setValue(&I, N);
3466 }
3467 
3468 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3469   // What to do depends on the size of the integer and the size of the pointer.
3470   // We can either truncate, zero extend, or no-op, accordingly.
3471   SDValue N = getValue(I.getOperand(0));
3472   auto &TLI = DAG.getTargetLoweringInfo();
3473   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3474   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3475   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3476   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3477   setValue(&I, N);
3478 }
3479 
3480 void SelectionDAGBuilder::visitBitCast(const User &I) {
3481   SDValue N = getValue(I.getOperand(0));
3482   SDLoc dl = getCurSDLoc();
3483   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3484                                                         I.getType());
3485 
3486   // BitCast assures us that source and destination are the same size so this is
3487   // either a BITCAST or a no-op.
3488   if (DestVT != N.getValueType())
3489     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3490                              DestVT, N)); // convert types.
3491   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3492   // might fold any kind of constant expression to an integer constant and that
3493   // is not what we are looking for. Only recognize a bitcast of a genuine
3494   // constant integer as an opaque constant.
3495   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3496     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3497                                  /*isOpaque*/true));
3498   else
3499     setValue(&I, N);            // noop cast.
3500 }
3501 
3502 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3504   const Value *SV = I.getOperand(0);
3505   SDValue N = getValue(SV);
3506   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3507 
3508   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3509   unsigned DestAS = I.getType()->getPointerAddressSpace();
3510 
3511   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3512     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3513 
3514   setValue(&I, N);
3515 }
3516 
3517 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3519   SDValue InVec = getValue(I.getOperand(0));
3520   SDValue InVal = getValue(I.getOperand(1));
3521   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3522                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3523   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3524                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3525                            InVec, InVal, InIdx));
3526 }
3527 
3528 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3529   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3530   SDValue InVec = getValue(I.getOperand(0));
3531   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3532                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3533   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3534                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3535                            InVec, InIdx));
3536 }
3537 
3538 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3539   SDValue Src1 = getValue(I.getOperand(0));
3540   SDValue Src2 = getValue(I.getOperand(1));
3541   Constant *MaskV = cast<Constant>(I.getOperand(2));
3542   SDLoc DL = getCurSDLoc();
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3545   EVT SrcVT = Src1.getValueType();
3546   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3547 
3548   if (MaskV->isNullValue() && VT.isScalableVector()) {
3549     // Canonical splat form of first element of first input vector.
3550     SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3551                                    SrcVT.getScalarType(), Src1,
3552                                    DAG.getConstant(0, DL,
3553                                    TLI.getVectorIdxTy(DAG.getDataLayout())));
3554     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3555     return;
3556   }
3557 
3558   // For now, we only handle splats for scalable vectors.
3559   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3560   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3561   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3562 
3563   SmallVector<int, 8> Mask;
3564   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3565   unsigned MaskNumElts = Mask.size();
3566 
3567   if (SrcNumElts == MaskNumElts) {
3568     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3569     return;
3570   }
3571 
3572   // Normalize the shuffle vector since mask and vector length don't match.
3573   if (SrcNumElts < MaskNumElts) {
3574     // Mask is longer than the source vectors. We can use concatenate vector to
3575     // make the mask and vectors lengths match.
3576 
3577     if (MaskNumElts % SrcNumElts == 0) {
3578       // Mask length is a multiple of the source vector length.
3579       // Check if the shuffle is some kind of concatenation of the input
3580       // vectors.
3581       unsigned NumConcat = MaskNumElts / SrcNumElts;
3582       bool IsConcat = true;
3583       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3584       for (unsigned i = 0; i != MaskNumElts; ++i) {
3585         int Idx = Mask[i];
3586         if (Idx < 0)
3587           continue;
3588         // Ensure the indices in each SrcVT sized piece are sequential and that
3589         // the same source is used for the whole piece.
3590         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3591             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3592              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3593           IsConcat = false;
3594           break;
3595         }
3596         // Remember which source this index came from.
3597         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3598       }
3599 
3600       // The shuffle is concatenating multiple vectors together. Just emit
3601       // a CONCAT_VECTORS operation.
3602       if (IsConcat) {
3603         SmallVector<SDValue, 8> ConcatOps;
3604         for (auto Src : ConcatSrcs) {
3605           if (Src < 0)
3606             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3607           else if (Src == 0)
3608             ConcatOps.push_back(Src1);
3609           else
3610             ConcatOps.push_back(Src2);
3611         }
3612         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3613         return;
3614       }
3615     }
3616 
3617     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3618     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3619     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3620                                     PaddedMaskNumElts);
3621 
3622     // Pad both vectors with undefs to make them the same length as the mask.
3623     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3624 
3625     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3626     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3627     MOps1[0] = Src1;
3628     MOps2[0] = Src2;
3629 
3630     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3631     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3632 
3633     // Readjust mask for new input vector length.
3634     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3635     for (unsigned i = 0; i != MaskNumElts; ++i) {
3636       int Idx = Mask[i];
3637       if (Idx >= (int)SrcNumElts)
3638         Idx -= SrcNumElts - PaddedMaskNumElts;
3639       MappedOps[i] = Idx;
3640     }
3641 
3642     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3643 
3644     // If the concatenated vector was padded, extract a subvector with the
3645     // correct number of elements.
3646     if (MaskNumElts != PaddedMaskNumElts)
3647       Result = DAG.getNode(
3648           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3649           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3650 
3651     setValue(&I, Result);
3652     return;
3653   }
3654 
3655   if (SrcNumElts > MaskNumElts) {
3656     // Analyze the access pattern of the vector to see if we can extract
3657     // two subvectors and do the shuffle.
3658     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3659     bool CanExtract = true;
3660     for (int Idx : Mask) {
3661       unsigned Input = 0;
3662       if (Idx < 0)
3663         continue;
3664 
3665       if (Idx >= (int)SrcNumElts) {
3666         Input = 1;
3667         Idx -= SrcNumElts;
3668       }
3669 
3670       // If all the indices come from the same MaskNumElts sized portion of
3671       // the sources we can use extract. Also make sure the extract wouldn't
3672       // extract past the end of the source.
3673       int NewStartIdx = alignDown(Idx, MaskNumElts);
3674       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3675           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3676         CanExtract = false;
3677       // Make sure we always update StartIdx as we use it to track if all
3678       // elements are undef.
3679       StartIdx[Input] = NewStartIdx;
3680     }
3681 
3682     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3683       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3684       return;
3685     }
3686     if (CanExtract) {
3687       // Extract appropriate subvector and generate a vector shuffle
3688       for (unsigned Input = 0; Input < 2; ++Input) {
3689         SDValue &Src = Input == 0 ? Src1 : Src2;
3690         if (StartIdx[Input] < 0)
3691           Src = DAG.getUNDEF(VT);
3692         else {
3693           Src = DAG.getNode(
3694               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3695               DAG.getConstant(StartIdx[Input], DL,
3696                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3697         }
3698       }
3699 
3700       // Calculate new mask.
3701       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3702       for (int &Idx : MappedOps) {
3703         if (Idx >= (int)SrcNumElts)
3704           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3705         else if (Idx >= 0)
3706           Idx -= StartIdx[0];
3707       }
3708 
3709       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3710       return;
3711     }
3712   }
3713 
3714   // We can't use either concat vectors or extract subvectors so fall back to
3715   // replacing the shuffle with extract and build vector.
3716   // to insert and build vector.
3717   EVT EltVT = VT.getVectorElementType();
3718   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3719   SmallVector<SDValue,8> Ops;
3720   for (int Idx : Mask) {
3721     SDValue Res;
3722 
3723     if (Idx < 0) {
3724       Res = DAG.getUNDEF(EltVT);
3725     } else {
3726       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3727       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3728 
3729       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3730                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3731     }
3732 
3733     Ops.push_back(Res);
3734   }
3735 
3736   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3737 }
3738 
3739 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3740   ArrayRef<unsigned> Indices;
3741   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3742     Indices = IV->getIndices();
3743   else
3744     Indices = cast<ConstantExpr>(&I)->getIndices();
3745 
3746   const Value *Op0 = I.getOperand(0);
3747   const Value *Op1 = I.getOperand(1);
3748   Type *AggTy = I.getType();
3749   Type *ValTy = Op1->getType();
3750   bool IntoUndef = isa<UndefValue>(Op0);
3751   bool FromUndef = isa<UndefValue>(Op1);
3752 
3753   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3754 
3755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3756   SmallVector<EVT, 4> AggValueVTs;
3757   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3758   SmallVector<EVT, 4> ValValueVTs;
3759   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3760 
3761   unsigned NumAggValues = AggValueVTs.size();
3762   unsigned NumValValues = ValValueVTs.size();
3763   SmallVector<SDValue, 4> Values(NumAggValues);
3764 
3765   // Ignore an insertvalue that produces an empty object
3766   if (!NumAggValues) {
3767     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3768     return;
3769   }
3770 
3771   SDValue Agg = getValue(Op0);
3772   unsigned i = 0;
3773   // Copy the beginning value(s) from the original aggregate.
3774   for (; i != LinearIndex; ++i)
3775     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3776                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3777   // Copy values from the inserted value(s).
3778   if (NumValValues) {
3779     SDValue Val = getValue(Op1);
3780     for (; i != LinearIndex + NumValValues; ++i)
3781       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3782                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3783   }
3784   // Copy remaining value(s) from the original aggregate.
3785   for (; i != NumAggValues; ++i)
3786     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3787                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3788 
3789   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3790                            DAG.getVTList(AggValueVTs), Values));
3791 }
3792 
3793 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3794   ArrayRef<unsigned> Indices;
3795   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3796     Indices = EV->getIndices();
3797   else
3798     Indices = cast<ConstantExpr>(&I)->getIndices();
3799 
3800   const Value *Op0 = I.getOperand(0);
3801   Type *AggTy = Op0->getType();
3802   Type *ValTy = I.getType();
3803   bool OutOfUndef = isa<UndefValue>(Op0);
3804 
3805   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3806 
3807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3808   SmallVector<EVT, 4> ValValueVTs;
3809   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3810 
3811   unsigned NumValValues = ValValueVTs.size();
3812 
3813   // Ignore a extractvalue that produces an empty object
3814   if (!NumValValues) {
3815     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3816     return;
3817   }
3818 
3819   SmallVector<SDValue, 4> Values(NumValValues);
3820 
3821   SDValue Agg = getValue(Op0);
3822   // Copy out the selected value(s).
3823   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3824     Values[i - LinearIndex] =
3825       OutOfUndef ?
3826         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3827         SDValue(Agg.getNode(), Agg.getResNo() + i);
3828 
3829   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3830                            DAG.getVTList(ValValueVTs), Values));
3831 }
3832 
3833 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3834   Value *Op0 = I.getOperand(0);
3835   // Note that the pointer operand may be a vector of pointers. Take the scalar
3836   // element which holds a pointer.
3837   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3838   SDValue N = getValue(Op0);
3839   SDLoc dl = getCurSDLoc();
3840   auto &TLI = DAG.getTargetLoweringInfo();
3841   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3842   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3843 
3844   // Normalize Vector GEP - all scalar operands should be converted to the
3845   // splat vector.
3846   unsigned VectorWidth = I.getType()->isVectorTy() ?
3847     I.getType()->getVectorNumElements() : 0;
3848 
3849   if (VectorWidth && !N.getValueType().isVector()) {
3850     LLVMContext &Context = *DAG.getContext();
3851     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3852     N = DAG.getSplatBuildVector(VT, dl, N);
3853   }
3854 
3855   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3856        GTI != E; ++GTI) {
3857     const Value *Idx = GTI.getOperand();
3858     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3859       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3860       if (Field) {
3861         // N = N + Offset
3862         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3863 
3864         // In an inbounds GEP with an offset that is nonnegative even when
3865         // interpreted as signed, assume there is no unsigned overflow.
3866         SDNodeFlags Flags;
3867         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3868           Flags.setNoUnsignedWrap(true);
3869 
3870         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3871                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3872       }
3873     } else {
3874       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3875       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3876       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3877 
3878       // If this is a scalar constant or a splat vector of constants,
3879       // handle it quickly.
3880       const auto *C = dyn_cast<Constant>(Idx);
3881       if (C && isa<VectorType>(C->getType()))
3882         C = C->getSplatValue();
3883 
3884       if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3885         if (CI->isZero())
3886           continue;
3887         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3888         LLVMContext &Context = *DAG.getContext();
3889         SDValue OffsVal = VectorWidth ?
3890           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3891           DAG.getConstant(Offs, dl, IdxTy);
3892 
3893         // In an inbounds GEP with an offset that is nonnegative even when
3894         // interpreted as signed, assume there is no unsigned overflow.
3895         SDNodeFlags Flags;
3896         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3897           Flags.setNoUnsignedWrap(true);
3898 
3899         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3900 
3901         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3902         continue;
3903       }
3904 
3905       // N = N + Idx * ElementSize;
3906       SDValue IdxN = getValue(Idx);
3907 
3908       if (!IdxN.getValueType().isVector() && VectorWidth) {
3909         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3910         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3911       }
3912 
3913       // If the index is smaller or larger than intptr_t, truncate or extend
3914       // it.
3915       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3916 
3917       // If this is a multiply by a power of two, turn it into a shl
3918       // immediately.  This is a very common case.
3919       if (ElementSize != 1) {
3920         if (ElementSize.isPowerOf2()) {
3921           unsigned Amt = ElementSize.logBase2();
3922           IdxN = DAG.getNode(ISD::SHL, dl,
3923                              N.getValueType(), IdxN,
3924                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3925         } else {
3926           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3927                                           IdxN.getValueType());
3928           IdxN = DAG.getNode(ISD::MUL, dl,
3929                              N.getValueType(), IdxN, Scale);
3930         }
3931       }
3932 
3933       N = DAG.getNode(ISD::ADD, dl,
3934                       N.getValueType(), N, IdxN);
3935     }
3936   }
3937 
3938   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3939     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3940 
3941   setValue(&I, N);
3942 }
3943 
3944 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3945   // If this is a fixed sized alloca in the entry block of the function,
3946   // allocate it statically on the stack.
3947   if (FuncInfo.StaticAllocaMap.count(&I))
3948     return;   // getValue will auto-populate this.
3949 
3950   SDLoc dl = getCurSDLoc();
3951   Type *Ty = I.getAllocatedType();
3952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3953   auto &DL = DAG.getDataLayout();
3954   uint64_t TySize = DL.getTypeAllocSize(Ty);
3955   unsigned Align =
3956       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3957 
3958   SDValue AllocSize = getValue(I.getArraySize());
3959 
3960   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3961   if (AllocSize.getValueType() != IntPtr)
3962     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3963 
3964   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3965                           AllocSize,
3966                           DAG.getConstant(TySize, dl, IntPtr));
3967 
3968   // Handle alignment.  If the requested alignment is less than or equal to
3969   // the stack alignment, ignore it.  If the size is greater than or equal to
3970   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3971   unsigned StackAlign =
3972       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3973   if (Align <= StackAlign)
3974     Align = 0;
3975 
3976   // Round the size of the allocation up to the stack alignment size
3977   // by add SA-1 to the size. This doesn't overflow because we're computing
3978   // an address inside an alloca.
3979   SDNodeFlags Flags;
3980   Flags.setNoUnsignedWrap(true);
3981   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3982                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3983 
3984   // Mask out the low bits for alignment purposes.
3985   AllocSize =
3986       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3987                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3988 
3989   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3990   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3991   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3992   setValue(&I, DSA);
3993   DAG.setRoot(DSA.getValue(1));
3994 
3995   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3996 }
3997 
3998 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3999   if (I.isAtomic())
4000     return visitAtomicLoad(I);
4001 
4002   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4003   const Value *SV = I.getOperand(0);
4004   if (TLI.supportSwiftError()) {
4005     // Swifterror values can come from either a function parameter with
4006     // swifterror attribute or an alloca with swifterror attribute.
4007     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4008       if (Arg->hasSwiftErrorAttr())
4009         return visitLoadFromSwiftError(I);
4010     }
4011 
4012     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4013       if (Alloca->isSwiftError())
4014         return visitLoadFromSwiftError(I);
4015     }
4016   }
4017 
4018   SDValue Ptr = getValue(SV);
4019 
4020   Type *Ty = I.getType();
4021 
4022   bool isVolatile = I.isVolatile();
4023   bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4024   bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4025   bool isDereferenceable =
4026       isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4027   unsigned Alignment = I.getAlignment();
4028 
4029   AAMDNodes AAInfo;
4030   I.getAAMetadata(AAInfo);
4031   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4032 
4033   SmallVector<EVT, 4> ValueVTs, MemVTs;
4034   SmallVector<uint64_t, 4> Offsets;
4035   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4036   unsigned NumValues = ValueVTs.size();
4037   if (NumValues == 0)
4038     return;
4039 
4040   SDValue Root;
4041   bool ConstantMemory = false;
4042   if (isVolatile || NumValues > MaxParallelChains)
4043     // Serialize volatile loads with other side effects.
4044     Root = getRoot();
4045   else if (AA &&
4046            AA->pointsToConstantMemory(MemoryLocation(
4047                SV,
4048                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4049                AAInfo))) {
4050     // Do not serialize (non-volatile) loads of constant memory with anything.
4051     Root = DAG.getEntryNode();
4052     ConstantMemory = true;
4053   } else {
4054     // Do not serialize non-volatile loads against each other.
4055     Root = DAG.getRoot();
4056   }
4057 
4058   SDLoc dl = getCurSDLoc();
4059 
4060   if (isVolatile)
4061     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4062 
4063   // An aggregate load cannot wrap around the address space, so offsets to its
4064   // parts don't wrap either.
4065   SDNodeFlags Flags;
4066   Flags.setNoUnsignedWrap(true);
4067 
4068   SmallVector<SDValue, 4> Values(NumValues);
4069   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4070   EVT PtrVT = Ptr.getValueType();
4071   unsigned ChainI = 0;
4072   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4073     // Serializing loads here may result in excessive register pressure, and
4074     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4075     // could recover a bit by hoisting nodes upward in the chain by recognizing
4076     // they are side-effect free or do not alias. The optimizer should really
4077     // avoid this case by converting large object/array copies to llvm.memcpy
4078     // (MaxParallelChains should always remain as failsafe).
4079     if (ChainI == MaxParallelChains) {
4080       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4081       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4082                                   makeArrayRef(Chains.data(), ChainI));
4083       Root = Chain;
4084       ChainI = 0;
4085     }
4086     SDValue A = DAG.getNode(ISD::ADD, dl,
4087                             PtrVT, Ptr,
4088                             DAG.getConstant(Offsets[i], dl, PtrVT),
4089                             Flags);
4090     auto MMOFlags = MachineMemOperand::MONone;
4091     if (isVolatile)
4092       MMOFlags |= MachineMemOperand::MOVolatile;
4093     if (isNonTemporal)
4094       MMOFlags |= MachineMemOperand::MONonTemporal;
4095     if (isInvariant)
4096       MMOFlags |= MachineMemOperand::MOInvariant;
4097     if (isDereferenceable)
4098       MMOFlags |= MachineMemOperand::MODereferenceable;
4099     MMOFlags |= TLI.getMMOFlags(I);
4100 
4101     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4102                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4103                             MMOFlags, AAInfo, Ranges);
4104     Chains[ChainI] = L.getValue(1);
4105 
4106     if (MemVTs[i] != ValueVTs[i])
4107       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4108 
4109     Values[i] = L;
4110   }
4111 
4112   if (!ConstantMemory) {
4113     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4114                                 makeArrayRef(Chains.data(), ChainI));
4115     if (isVolatile)
4116       DAG.setRoot(Chain);
4117     else
4118       PendingLoads.push_back(Chain);
4119   }
4120 
4121   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4122                            DAG.getVTList(ValueVTs), Values));
4123 }
4124 
4125 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4126   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4127          "call visitStoreToSwiftError when backend supports swifterror");
4128 
4129   SmallVector<EVT, 4> ValueVTs;
4130   SmallVector<uint64_t, 4> Offsets;
4131   const Value *SrcV = I.getOperand(0);
4132   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4133                   SrcV->getType(), ValueVTs, &Offsets);
4134   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4135          "expect a single EVT for swifterror");
4136 
4137   SDValue Src = getValue(SrcV);
4138   // Create a virtual register, then update the virtual register.
4139   Register VReg =
4140       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4141   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4142   // Chain can be getRoot or getControlRoot.
4143   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4144                                       SDValue(Src.getNode(), Src.getResNo()));
4145   DAG.setRoot(CopyNode);
4146 }
4147 
4148 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4149   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4150          "call visitLoadFromSwiftError when backend supports swifterror");
4151 
4152   assert(!I.isVolatile() &&
4153          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4154          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4155          "Support volatile, non temporal, invariant for load_from_swift_error");
4156 
4157   const Value *SV = I.getOperand(0);
4158   Type *Ty = I.getType();
4159   AAMDNodes AAInfo;
4160   I.getAAMetadata(AAInfo);
4161   assert(
4162       (!AA ||
4163        !AA->pointsToConstantMemory(MemoryLocation(
4164            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4165            AAInfo))) &&
4166       "load_from_swift_error should not be constant memory");
4167 
4168   SmallVector<EVT, 4> ValueVTs;
4169   SmallVector<uint64_t, 4> Offsets;
4170   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4171                   ValueVTs, &Offsets);
4172   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4173          "expect a single EVT for swifterror");
4174 
4175   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4176   SDValue L = DAG.getCopyFromReg(
4177       getRoot(), getCurSDLoc(),
4178       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4179 
4180   setValue(&I, L);
4181 }
4182 
4183 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4184   if (I.isAtomic())
4185     return visitAtomicStore(I);
4186 
4187   const Value *SrcV = I.getOperand(0);
4188   const Value *PtrV = I.getOperand(1);
4189 
4190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4191   if (TLI.supportSwiftError()) {
4192     // Swifterror values can come from either a function parameter with
4193     // swifterror attribute or an alloca with swifterror attribute.
4194     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4195       if (Arg->hasSwiftErrorAttr())
4196         return visitStoreToSwiftError(I);
4197     }
4198 
4199     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4200       if (Alloca->isSwiftError())
4201         return visitStoreToSwiftError(I);
4202     }
4203   }
4204 
4205   SmallVector<EVT, 4> ValueVTs, MemVTs;
4206   SmallVector<uint64_t, 4> Offsets;
4207   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4208                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4209   unsigned NumValues = ValueVTs.size();
4210   if (NumValues == 0)
4211     return;
4212 
4213   // Get the lowered operands. Note that we do this after
4214   // checking if NumResults is zero, because with zero results
4215   // the operands won't have values in the map.
4216   SDValue Src = getValue(SrcV);
4217   SDValue Ptr = getValue(PtrV);
4218 
4219   SDValue Root = getRoot();
4220   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4221   SDLoc dl = getCurSDLoc();
4222   EVT PtrVT = Ptr.getValueType();
4223   unsigned Alignment = I.getAlignment();
4224   AAMDNodes AAInfo;
4225   I.getAAMetadata(AAInfo);
4226 
4227   auto MMOFlags = MachineMemOperand::MONone;
4228   if (I.isVolatile())
4229     MMOFlags |= MachineMemOperand::MOVolatile;
4230   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4231     MMOFlags |= MachineMemOperand::MONonTemporal;
4232   MMOFlags |= TLI.getMMOFlags(I);
4233 
4234   // An aggregate load cannot wrap around the address space, so offsets to its
4235   // parts don't wrap either.
4236   SDNodeFlags Flags;
4237   Flags.setNoUnsignedWrap(true);
4238 
4239   unsigned ChainI = 0;
4240   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4241     // See visitLoad comments.
4242     if (ChainI == MaxParallelChains) {
4243       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4244                                   makeArrayRef(Chains.data(), ChainI));
4245       Root = Chain;
4246       ChainI = 0;
4247     }
4248     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4249                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4250     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4251     if (MemVTs[i] != ValueVTs[i])
4252       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4253     SDValue St =
4254         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4255                      Alignment, MMOFlags, AAInfo);
4256     Chains[ChainI] = St;
4257   }
4258 
4259   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4260                                   makeArrayRef(Chains.data(), ChainI));
4261   DAG.setRoot(StoreNode);
4262 }
4263 
4264 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4265                                            bool IsCompressing) {
4266   SDLoc sdl = getCurSDLoc();
4267 
4268   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4269                            unsigned& Alignment) {
4270     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4271     Src0 = I.getArgOperand(0);
4272     Ptr = I.getArgOperand(1);
4273     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4274     Mask = I.getArgOperand(3);
4275   };
4276   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4277                            unsigned& Alignment) {
4278     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4279     Src0 = I.getArgOperand(0);
4280     Ptr = I.getArgOperand(1);
4281     Mask = I.getArgOperand(2);
4282     Alignment = 0;
4283   };
4284 
4285   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4286   unsigned Alignment;
4287   if (IsCompressing)
4288     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4289   else
4290     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4291 
4292   SDValue Ptr = getValue(PtrOperand);
4293   SDValue Src0 = getValue(Src0Operand);
4294   SDValue Mask = getValue(MaskOperand);
4295 
4296   EVT VT = Src0.getValueType();
4297   if (!Alignment)
4298     Alignment = DAG.getEVTAlignment(VT);
4299 
4300   AAMDNodes AAInfo;
4301   I.getAAMetadata(AAInfo);
4302 
4303   MachineMemOperand *MMO =
4304     DAG.getMachineFunction().
4305     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4306                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4307                           Alignment, AAInfo);
4308   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4309                                          MMO, false /* Truncating */,
4310                                          IsCompressing);
4311   DAG.setRoot(StoreNode);
4312   setValue(&I, StoreNode);
4313 }
4314 
4315 // Get a uniform base for the Gather/Scatter intrinsic.
4316 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4317 // We try to represent it as a base pointer + vector of indices.
4318 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4319 // The first operand of the GEP may be a single pointer or a vector of pointers
4320 // Example:
4321 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4322 //  or
4323 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4324 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4325 //
4326 // When the first GEP operand is a single pointer - it is the uniform base we
4327 // are looking for. If first operand of the GEP is a splat vector - we
4328 // extract the splat value and use it as a uniform base.
4329 // In all other cases the function returns 'false'.
4330 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4331                            ISD::MemIndexType &IndexType, SDValue &Scale,
4332                            SelectionDAGBuilder *SDB) {
4333   SelectionDAG& DAG = SDB->DAG;
4334   LLVMContext &Context = *DAG.getContext();
4335 
4336   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4337   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4338   if (!GEP)
4339     return false;
4340 
4341   const Value *GEPPtr = GEP->getPointerOperand();
4342   if (!GEPPtr->getType()->isVectorTy())
4343     Ptr = GEPPtr;
4344   else if (!(Ptr = getSplatValue(GEPPtr)))
4345     return false;
4346 
4347   unsigned FinalIndex = GEP->getNumOperands() - 1;
4348   Value *IndexVal = GEP->getOperand(FinalIndex);
4349 
4350   // Ensure all the other indices are 0.
4351   for (unsigned i = 1; i < FinalIndex; ++i) {
4352     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4353     if (!C)
4354       return false;
4355     if (isa<VectorType>(C->getType()))
4356       C = C->getSplatValue();
4357     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4358     if (!CI || !CI->isZero())
4359       return false;
4360   }
4361 
4362   // The operands of the GEP may be defined in another basic block.
4363   // In this case we'll not find nodes for the operands.
4364   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4365     return false;
4366 
4367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4368   const DataLayout &DL = DAG.getDataLayout();
4369   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4370                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4371   Base = SDB->getValue(Ptr);
4372   Index = SDB->getValue(IndexVal);
4373   IndexType = ISD::SIGNED_SCALED;
4374 
4375   if (!Index.getValueType().isVector()) {
4376     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4377     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4378     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4379   }
4380   return true;
4381 }
4382 
4383 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4384   SDLoc sdl = getCurSDLoc();
4385 
4386   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4387   const Value *Ptr = I.getArgOperand(1);
4388   SDValue Src0 = getValue(I.getArgOperand(0));
4389   SDValue Mask = getValue(I.getArgOperand(3));
4390   EVT VT = Src0.getValueType();
4391   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4392   if (!Alignment)
4393     Alignment = DAG.getEVTAlignment(VT);
4394   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4395 
4396   AAMDNodes AAInfo;
4397   I.getAAMetadata(AAInfo);
4398 
4399   SDValue Base;
4400   SDValue Index;
4401   ISD::MemIndexType IndexType;
4402   SDValue Scale;
4403   const Value *BasePtr = Ptr;
4404   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4405                                     this);
4406 
4407   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4408   MachineMemOperand *MMO = DAG.getMachineFunction().
4409     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4410                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4411                          Alignment, AAInfo);
4412   if (!UniformBase) {
4413     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4414     Index = getValue(Ptr);
4415     IndexType = ISD::SIGNED_SCALED;
4416     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4417   }
4418   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4419   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4420                                          Ops, MMO, IndexType);
4421   DAG.setRoot(Scatter);
4422   setValue(&I, Scatter);
4423 }
4424 
4425 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4426   SDLoc sdl = getCurSDLoc();
4427 
4428   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4429                            unsigned& Alignment) {
4430     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4431     Ptr = I.getArgOperand(0);
4432     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4433     Mask = I.getArgOperand(2);
4434     Src0 = I.getArgOperand(3);
4435   };
4436   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4437                            unsigned& Alignment) {
4438     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4439     Ptr = I.getArgOperand(0);
4440     Alignment = 0;
4441     Mask = I.getArgOperand(1);
4442     Src0 = I.getArgOperand(2);
4443   };
4444 
4445   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4446   unsigned Alignment;
4447   if (IsExpanding)
4448     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4449   else
4450     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4451 
4452   SDValue Ptr = getValue(PtrOperand);
4453   SDValue Src0 = getValue(Src0Operand);
4454   SDValue Mask = getValue(MaskOperand);
4455 
4456   EVT VT = Src0.getValueType();
4457   if (!Alignment)
4458     Alignment = DAG.getEVTAlignment(VT);
4459 
4460   AAMDNodes AAInfo;
4461   I.getAAMetadata(AAInfo);
4462   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4463 
4464   // Do not serialize masked loads of constant memory with anything.
4465   bool AddToChain =
4466       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4467                  PtrOperand,
4468                  LocationSize::precise(
4469                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4470                  AAInfo));
4471   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4472 
4473   MachineMemOperand *MMO =
4474     DAG.getMachineFunction().
4475     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4476                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4477                           Alignment, AAInfo, Ranges);
4478 
4479   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4480                                    ISD::NON_EXTLOAD, IsExpanding);
4481   if (AddToChain)
4482     PendingLoads.push_back(Load.getValue(1));
4483   setValue(&I, Load);
4484 }
4485 
4486 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4487   SDLoc sdl = getCurSDLoc();
4488 
4489   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4490   const Value *Ptr = I.getArgOperand(0);
4491   SDValue Src0 = getValue(I.getArgOperand(3));
4492   SDValue Mask = getValue(I.getArgOperand(2));
4493 
4494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4495   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4496   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4497   if (!Alignment)
4498     Alignment = DAG.getEVTAlignment(VT);
4499 
4500   AAMDNodes AAInfo;
4501   I.getAAMetadata(AAInfo);
4502   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4503 
4504   SDValue Root = DAG.getRoot();
4505   SDValue Base;
4506   SDValue Index;
4507   ISD::MemIndexType IndexType;
4508   SDValue Scale;
4509   const Value *BasePtr = Ptr;
4510   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4511                                     this);
4512   bool ConstantMemory = false;
4513   if (UniformBase && AA &&
4514       AA->pointsToConstantMemory(
4515           MemoryLocation(BasePtr,
4516                          LocationSize::precise(
4517                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4518                          AAInfo))) {
4519     // Do not serialize (non-volatile) loads of constant memory with anything.
4520     Root = DAG.getEntryNode();
4521     ConstantMemory = true;
4522   }
4523 
4524   MachineMemOperand *MMO =
4525     DAG.getMachineFunction().
4526     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4527                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4528                          Alignment, AAInfo, Ranges);
4529 
4530   if (!UniformBase) {
4531     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4532     Index = getValue(Ptr);
4533     IndexType = ISD::SIGNED_SCALED;
4534     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4535   }
4536   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4537   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4538                                        Ops, MMO, IndexType);
4539 
4540   SDValue OutChain = Gather.getValue(1);
4541   if (!ConstantMemory)
4542     PendingLoads.push_back(OutChain);
4543   setValue(&I, Gather);
4544 }
4545 
4546 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4547   SDLoc dl = getCurSDLoc();
4548   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4549   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4550   SyncScope::ID SSID = I.getSyncScopeID();
4551 
4552   SDValue InChain = getRoot();
4553 
4554   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4555   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4556 
4557   auto Alignment = DAG.getEVTAlignment(MemVT);
4558 
4559   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4560   if (I.isVolatile())
4561     Flags |= MachineMemOperand::MOVolatile;
4562   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4563 
4564   MachineFunction &MF = DAG.getMachineFunction();
4565   MachineMemOperand *MMO =
4566     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4567                             Flags, MemVT.getStoreSize(), Alignment,
4568                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4569                             FailureOrdering);
4570 
4571   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4572                                    dl, MemVT, VTs, InChain,
4573                                    getValue(I.getPointerOperand()),
4574                                    getValue(I.getCompareOperand()),
4575                                    getValue(I.getNewValOperand()), MMO);
4576 
4577   SDValue OutChain = L.getValue(2);
4578 
4579   setValue(&I, L);
4580   DAG.setRoot(OutChain);
4581 }
4582 
4583 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4584   SDLoc dl = getCurSDLoc();
4585   ISD::NodeType NT;
4586   switch (I.getOperation()) {
4587   default: llvm_unreachable("Unknown atomicrmw operation");
4588   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4589   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4590   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4591   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4592   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4593   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4594   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4595   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4596   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4597   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4598   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4599   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4600   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4601   }
4602   AtomicOrdering Ordering = I.getOrdering();
4603   SyncScope::ID SSID = I.getSyncScopeID();
4604 
4605   SDValue InChain = getRoot();
4606 
4607   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4608   auto Alignment = DAG.getEVTAlignment(MemVT);
4609 
4610   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4611   if (I.isVolatile())
4612     Flags |= MachineMemOperand::MOVolatile;
4613   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4614 
4615   MachineFunction &MF = DAG.getMachineFunction();
4616   MachineMemOperand *MMO =
4617     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4618                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4619                             nullptr, SSID, Ordering);
4620 
4621   SDValue L =
4622     DAG.getAtomic(NT, dl, MemVT, InChain,
4623                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4624                   MMO);
4625 
4626   SDValue OutChain = L.getValue(1);
4627 
4628   setValue(&I, L);
4629   DAG.setRoot(OutChain);
4630 }
4631 
4632 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4633   SDLoc dl = getCurSDLoc();
4634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4635   SDValue Ops[3];
4636   Ops[0] = getRoot();
4637   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4638                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4639   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4640                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4641   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4642 }
4643 
4644 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4645   SDLoc dl = getCurSDLoc();
4646   AtomicOrdering Order = I.getOrdering();
4647   SyncScope::ID SSID = I.getSyncScopeID();
4648 
4649   SDValue InChain = getRoot();
4650 
4651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4652   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4653   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4654 
4655   if (!TLI.supportsUnalignedAtomics() &&
4656       I.getAlignment() < MemVT.getSizeInBits() / 8)
4657     report_fatal_error("Cannot generate unaligned atomic load");
4658 
4659   auto Flags = MachineMemOperand::MOLoad;
4660   if (I.isVolatile())
4661     Flags |= MachineMemOperand::MOVolatile;
4662   if (I.hasMetadata(LLVMContext::MD_invariant_load))
4663     Flags |= MachineMemOperand::MOInvariant;
4664   if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4665                                DAG.getDataLayout()))
4666     Flags |= MachineMemOperand::MODereferenceable;
4667 
4668   Flags |= TLI.getMMOFlags(I);
4669 
4670   MachineMemOperand *MMO =
4671       DAG.getMachineFunction().
4672       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4673                            Flags, MemVT.getStoreSize(),
4674                            I.getAlignment() ? I.getAlignment() :
4675                                               DAG.getEVTAlignment(MemVT),
4676                            AAMDNodes(), nullptr, SSID, Order);
4677 
4678   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4679 
4680   SDValue Ptr = getValue(I.getPointerOperand());
4681 
4682   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4683     // TODO: Once this is better exercised by tests, it should be merged with
4684     // the normal path for loads to prevent future divergence.
4685     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4686     if (MemVT != VT)
4687       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4688 
4689     setValue(&I, L);
4690     SDValue OutChain = L.getValue(1);
4691     if (!I.isUnordered())
4692       DAG.setRoot(OutChain);
4693     else
4694       PendingLoads.push_back(OutChain);
4695     return;
4696   }
4697 
4698   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4699                             Ptr, MMO);
4700 
4701   SDValue OutChain = L.getValue(1);
4702   if (MemVT != VT)
4703     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4704 
4705   setValue(&I, L);
4706   DAG.setRoot(OutChain);
4707 }
4708 
4709 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4710   SDLoc dl = getCurSDLoc();
4711 
4712   AtomicOrdering Ordering = I.getOrdering();
4713   SyncScope::ID SSID = I.getSyncScopeID();
4714 
4715   SDValue InChain = getRoot();
4716 
4717   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4718   EVT MemVT =
4719       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4720 
4721   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4722     report_fatal_error("Cannot generate unaligned atomic store");
4723 
4724   auto Flags = MachineMemOperand::MOStore;
4725   if (I.isVolatile())
4726     Flags |= MachineMemOperand::MOVolatile;
4727   Flags |= TLI.getMMOFlags(I);
4728 
4729   MachineFunction &MF = DAG.getMachineFunction();
4730   MachineMemOperand *MMO =
4731     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4732                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4733                             nullptr, SSID, Ordering);
4734 
4735   SDValue Val = getValue(I.getValueOperand());
4736   if (Val.getValueType() != MemVT)
4737     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4738   SDValue Ptr = getValue(I.getPointerOperand());
4739 
4740   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4741     // TODO: Once this is better exercised by tests, it should be merged with
4742     // the normal path for stores to prevent future divergence.
4743     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4744     DAG.setRoot(S);
4745     return;
4746   }
4747   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4748                                    Ptr, Val, MMO);
4749 
4750 
4751   DAG.setRoot(OutChain);
4752 }
4753 
4754 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4755 /// node.
4756 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4757                                                unsigned Intrinsic) {
4758   // Ignore the callsite's attributes. A specific call site may be marked with
4759   // readnone, but the lowering code will expect the chain based on the
4760   // definition.
4761   const Function *F = I.getCalledFunction();
4762   bool HasChain = !F->doesNotAccessMemory();
4763   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4764 
4765   // Build the operand list.
4766   SmallVector<SDValue, 8> Ops;
4767   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4768     if (OnlyLoad) {
4769       // We don't need to serialize loads against other loads.
4770       Ops.push_back(DAG.getRoot());
4771     } else {
4772       Ops.push_back(getRoot());
4773     }
4774   }
4775 
4776   // Info is set by getTgtMemInstrinsic
4777   TargetLowering::IntrinsicInfo Info;
4778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4779   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4780                                                DAG.getMachineFunction(),
4781                                                Intrinsic);
4782 
4783   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4784   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4785       Info.opc == ISD::INTRINSIC_W_CHAIN)
4786     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4787                                         TLI.getPointerTy(DAG.getDataLayout())));
4788 
4789   // Add all operands of the call to the operand list.
4790   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4791     const Value *Arg = I.getArgOperand(i);
4792     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4793       Ops.push_back(getValue(Arg));
4794       continue;
4795     }
4796 
4797     // Use TargetConstant instead of a regular constant for immarg.
4798     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4799     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4800       assert(CI->getBitWidth() <= 64 &&
4801              "large intrinsic immediates not handled");
4802       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4803     } else {
4804       Ops.push_back(
4805           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4806     }
4807   }
4808 
4809   SmallVector<EVT, 4> ValueVTs;
4810   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4811 
4812   if (HasChain)
4813     ValueVTs.push_back(MVT::Other);
4814 
4815   SDVTList VTs = DAG.getVTList(ValueVTs);
4816 
4817   // Create the node.
4818   SDValue Result;
4819   if (IsTgtIntrinsic) {
4820     // This is target intrinsic that touches memory
4821     AAMDNodes AAInfo;
4822     I.getAAMetadata(AAInfo);
4823     Result = DAG.getMemIntrinsicNode(
4824         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4825         MachinePointerInfo(Info.ptrVal, Info.offset),
4826         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4827   } else if (!HasChain) {
4828     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4829   } else if (!I.getType()->isVoidTy()) {
4830     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4831   } else {
4832     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4833   }
4834 
4835   if (HasChain) {
4836     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4837     if (OnlyLoad)
4838       PendingLoads.push_back(Chain);
4839     else
4840       DAG.setRoot(Chain);
4841   }
4842 
4843   if (!I.getType()->isVoidTy()) {
4844     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4845       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4846       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4847     } else
4848       Result = lowerRangeToAssertZExt(DAG, I, Result);
4849 
4850     setValue(&I, Result);
4851   }
4852 }
4853 
4854 /// GetSignificand - Get the significand and build it into a floating-point
4855 /// number with exponent of 1:
4856 ///
4857 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4858 ///
4859 /// where Op is the hexadecimal representation of floating point value.
4860 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4861   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4862                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4863   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4864                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4865   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4866 }
4867 
4868 /// GetExponent - Get the exponent:
4869 ///
4870 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4871 ///
4872 /// where Op is the hexadecimal representation of floating point value.
4873 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4874                            const TargetLowering &TLI, const SDLoc &dl) {
4875   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4876                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4877   SDValue t1 = DAG.getNode(
4878       ISD::SRL, dl, MVT::i32, t0,
4879       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4880   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4881                            DAG.getConstant(127, dl, MVT::i32));
4882   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4883 }
4884 
4885 /// getF32Constant - Get 32-bit floating point constant.
4886 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4887                               const SDLoc &dl) {
4888   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4889                            MVT::f32);
4890 }
4891 
4892 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4893                                        SelectionDAG &DAG) {
4894   // TODO: What fast-math-flags should be set on the floating-point nodes?
4895 
4896   //   IntegerPartOfX = ((int32_t)(t0);
4897   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4898 
4899   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4900   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4901   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4902 
4903   //   IntegerPartOfX <<= 23;
4904   IntegerPartOfX = DAG.getNode(
4905       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4906       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4907                                   DAG.getDataLayout())));
4908 
4909   SDValue TwoToFractionalPartOfX;
4910   if (LimitFloatPrecision <= 6) {
4911     // For floating-point precision of 6:
4912     //
4913     //   TwoToFractionalPartOfX =
4914     //     0.997535578f +
4915     //       (0.735607626f + 0.252464424f * x) * x;
4916     //
4917     // error 0.0144103317, which is 6 bits
4918     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4919                              getF32Constant(DAG, 0x3e814304, dl));
4920     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4921                              getF32Constant(DAG, 0x3f3c50c8, dl));
4922     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4923     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4924                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4925   } else if (LimitFloatPrecision <= 12) {
4926     // For floating-point precision of 12:
4927     //
4928     //   TwoToFractionalPartOfX =
4929     //     0.999892986f +
4930     //       (0.696457318f +
4931     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4932     //
4933     // error 0.000107046256, which is 13 to 14 bits
4934     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4935                              getF32Constant(DAG, 0x3da235e3, dl));
4936     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4937                              getF32Constant(DAG, 0x3e65b8f3, dl));
4938     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4939     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4940                              getF32Constant(DAG, 0x3f324b07, dl));
4941     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4942     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4943                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4944   } else { // LimitFloatPrecision <= 18
4945     // For floating-point precision of 18:
4946     //
4947     //   TwoToFractionalPartOfX =
4948     //     0.999999982f +
4949     //       (0.693148872f +
4950     //         (0.240227044f +
4951     //           (0.554906021e-1f +
4952     //             (0.961591928e-2f +
4953     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4954     // error 2.47208000*10^(-7), which is better than 18 bits
4955     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4956                              getF32Constant(DAG, 0x3924b03e, dl));
4957     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4958                              getF32Constant(DAG, 0x3ab24b87, dl));
4959     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4960     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4961                              getF32Constant(DAG, 0x3c1d8c17, dl));
4962     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4963     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4964                              getF32Constant(DAG, 0x3d634a1d, dl));
4965     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4966     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4967                              getF32Constant(DAG, 0x3e75fe14, dl));
4968     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4969     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4970                               getF32Constant(DAG, 0x3f317234, dl));
4971     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4972     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4973                                          getF32Constant(DAG, 0x3f800000, dl));
4974   }
4975 
4976   // Add the exponent into the result in integer domain.
4977   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4978   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4979                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4980 }
4981 
4982 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4983 /// limited-precision mode.
4984 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4985                          const TargetLowering &TLI) {
4986   if (Op.getValueType() == MVT::f32 &&
4987       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4988 
4989     // Put the exponent in the right bit position for later addition to the
4990     // final result:
4991     //
4992     // t0 = Op * log2(e)
4993 
4994     // TODO: What fast-math-flags should be set here?
4995     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4996                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4997     return getLimitedPrecisionExp2(t0, dl, DAG);
4998   }
4999 
5000   // No special expansion.
5001   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5002 }
5003 
5004 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5005 /// limited-precision mode.
5006 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5007                          const TargetLowering &TLI) {
5008   // TODO: What fast-math-flags should be set on the floating-point nodes?
5009 
5010   if (Op.getValueType() == MVT::f32 &&
5011       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5012     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5013 
5014     // Scale the exponent by log(2).
5015     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5016     SDValue LogOfExponent =
5017         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5018                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5019 
5020     // Get the significand and build it into a floating-point number with
5021     // exponent of 1.
5022     SDValue X = GetSignificand(DAG, Op1, dl);
5023 
5024     SDValue LogOfMantissa;
5025     if (LimitFloatPrecision <= 6) {
5026       // For floating-point precision of 6:
5027       //
5028       //   LogofMantissa =
5029       //     -1.1609546f +
5030       //       (1.4034025f - 0.23903021f * x) * x;
5031       //
5032       // error 0.0034276066, which is better than 8 bits
5033       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5034                                getF32Constant(DAG, 0xbe74c456, dl));
5035       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5036                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5037       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5038       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5039                                   getF32Constant(DAG, 0x3f949a29, dl));
5040     } else if (LimitFloatPrecision <= 12) {
5041       // For floating-point precision of 12:
5042       //
5043       //   LogOfMantissa =
5044       //     -1.7417939f +
5045       //       (2.8212026f +
5046       //         (-1.4699568f +
5047       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5048       //
5049       // error 0.000061011436, which is 14 bits
5050       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5051                                getF32Constant(DAG, 0xbd67b6d6, dl));
5052       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5053                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5054       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5055       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5056                                getF32Constant(DAG, 0x3fbc278b, dl));
5057       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5058       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5059                                getF32Constant(DAG, 0x40348e95, dl));
5060       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5061       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5062                                   getF32Constant(DAG, 0x3fdef31a, dl));
5063     } else { // LimitFloatPrecision <= 18
5064       // For floating-point precision of 18:
5065       //
5066       //   LogOfMantissa =
5067       //     -2.1072184f +
5068       //       (4.2372794f +
5069       //         (-3.7029485f +
5070       //           (2.2781945f +
5071       //             (-0.87823314f +
5072       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5073       //
5074       // error 0.0000023660568, which is better than 18 bits
5075       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5076                                getF32Constant(DAG, 0xbc91e5ac, dl));
5077       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5078                                getF32Constant(DAG, 0x3e4350aa, dl));
5079       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5080       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5081                                getF32Constant(DAG, 0x3f60d3e3, dl));
5082       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5083       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5084                                getF32Constant(DAG, 0x4011cdf0, dl));
5085       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5086       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5087                                getF32Constant(DAG, 0x406cfd1c, dl));
5088       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5089       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5090                                getF32Constant(DAG, 0x408797cb, dl));
5091       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5092       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5093                                   getF32Constant(DAG, 0x4006dcab, dl));
5094     }
5095 
5096     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5097   }
5098 
5099   // No special expansion.
5100   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5101 }
5102 
5103 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5104 /// limited-precision mode.
5105 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5106                           const TargetLowering &TLI) {
5107   // TODO: What fast-math-flags should be set on the floating-point nodes?
5108 
5109   if (Op.getValueType() == MVT::f32 &&
5110       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5111     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5112 
5113     // Get the exponent.
5114     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5115 
5116     // Get the significand and build it into a floating-point number with
5117     // exponent of 1.
5118     SDValue X = GetSignificand(DAG, Op1, dl);
5119 
5120     // Different possible minimax approximations of significand in
5121     // floating-point for various degrees of accuracy over [1,2].
5122     SDValue Log2ofMantissa;
5123     if (LimitFloatPrecision <= 6) {
5124       // For floating-point precision of 6:
5125       //
5126       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5127       //
5128       // error 0.0049451742, which is more than 7 bits
5129       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5130                                getF32Constant(DAG, 0xbeb08fe0, dl));
5131       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5132                                getF32Constant(DAG, 0x40019463, dl));
5133       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5134       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5135                                    getF32Constant(DAG, 0x3fd6633d, dl));
5136     } else if (LimitFloatPrecision <= 12) {
5137       // For floating-point precision of 12:
5138       //
5139       //   Log2ofMantissa =
5140       //     -2.51285454f +
5141       //       (4.07009056f +
5142       //         (-2.12067489f +
5143       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5144       //
5145       // error 0.0000876136000, which is better than 13 bits
5146       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5147                                getF32Constant(DAG, 0xbda7262e, dl));
5148       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5149                                getF32Constant(DAG, 0x3f25280b, dl));
5150       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5151       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5152                                getF32Constant(DAG, 0x4007b923, dl));
5153       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5154       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5155                                getF32Constant(DAG, 0x40823e2f, dl));
5156       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5157       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5158                                    getF32Constant(DAG, 0x4020d29c, dl));
5159     } else { // LimitFloatPrecision <= 18
5160       // For floating-point precision of 18:
5161       //
5162       //   Log2ofMantissa =
5163       //     -3.0400495f +
5164       //       (6.1129976f +
5165       //         (-5.3420409f +
5166       //           (3.2865683f +
5167       //             (-1.2669343f +
5168       //               (0.27515199f -
5169       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5170       //
5171       // error 0.0000018516, which is better than 18 bits
5172       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5173                                getF32Constant(DAG, 0xbcd2769e, dl));
5174       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5175                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5176       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5177       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5178                                getF32Constant(DAG, 0x3fa22ae7, dl));
5179       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5180       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5181                                getF32Constant(DAG, 0x40525723, dl));
5182       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5183       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5184                                getF32Constant(DAG, 0x40aaf200, dl));
5185       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5186       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5187                                getF32Constant(DAG, 0x40c39dad, dl));
5188       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5189       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5190                                    getF32Constant(DAG, 0x4042902c, dl));
5191     }
5192 
5193     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5194   }
5195 
5196   // No special expansion.
5197   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5198 }
5199 
5200 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5201 /// limited-precision mode.
5202 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5203                            const TargetLowering &TLI) {
5204   // TODO: What fast-math-flags should be set on the floating-point nodes?
5205 
5206   if (Op.getValueType() == MVT::f32 &&
5207       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5208     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5209 
5210     // Scale the exponent by log10(2) [0.30102999f].
5211     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5212     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5213                                         getF32Constant(DAG, 0x3e9a209a, dl));
5214 
5215     // Get the significand and build it into a floating-point number with
5216     // exponent of 1.
5217     SDValue X = GetSignificand(DAG, Op1, dl);
5218 
5219     SDValue Log10ofMantissa;
5220     if (LimitFloatPrecision <= 6) {
5221       // For floating-point precision of 6:
5222       //
5223       //   Log10ofMantissa =
5224       //     -0.50419619f +
5225       //       (0.60948995f - 0.10380950f * x) * x;
5226       //
5227       // error 0.0014886165, which is 6 bits
5228       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5229                                getF32Constant(DAG, 0xbdd49a13, dl));
5230       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5231                                getF32Constant(DAG, 0x3f1c0789, dl));
5232       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5233       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5234                                     getF32Constant(DAG, 0x3f011300, dl));
5235     } else if (LimitFloatPrecision <= 12) {
5236       // For floating-point precision of 12:
5237       //
5238       //   Log10ofMantissa =
5239       //     -0.64831180f +
5240       //       (0.91751397f +
5241       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5242       //
5243       // error 0.00019228036, which is better than 12 bits
5244       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5245                                getF32Constant(DAG, 0x3d431f31, dl));
5246       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5247                                getF32Constant(DAG, 0x3ea21fb2, dl));
5248       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5249       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5250                                getF32Constant(DAG, 0x3f6ae232, dl));
5251       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5252       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5253                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5254     } else { // LimitFloatPrecision <= 18
5255       // For floating-point precision of 18:
5256       //
5257       //   Log10ofMantissa =
5258       //     -0.84299375f +
5259       //       (1.5327582f +
5260       //         (-1.0688956f +
5261       //           (0.49102474f +
5262       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5263       //
5264       // error 0.0000037995730, which is better than 18 bits
5265       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5266                                getF32Constant(DAG, 0x3c5d51ce, dl));
5267       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5268                                getF32Constant(DAG, 0x3e00685a, dl));
5269       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5270       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5271                                getF32Constant(DAG, 0x3efb6798, dl));
5272       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5273       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5274                                getF32Constant(DAG, 0x3f88d192, dl));
5275       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5276       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5277                                getF32Constant(DAG, 0x3fc4316c, dl));
5278       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5279       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5280                                     getF32Constant(DAG, 0x3f57ce70, dl));
5281     }
5282 
5283     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5284   }
5285 
5286   // No special expansion.
5287   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5288 }
5289 
5290 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5291 /// limited-precision mode.
5292 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5293                           const TargetLowering &TLI) {
5294   if (Op.getValueType() == MVT::f32 &&
5295       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5296     return getLimitedPrecisionExp2(Op, dl, DAG);
5297 
5298   // No special expansion.
5299   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5300 }
5301 
5302 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5303 /// limited-precision mode with x == 10.0f.
5304 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5305                          SelectionDAG &DAG, const TargetLowering &TLI) {
5306   bool IsExp10 = false;
5307   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5308       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5309     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5310       APFloat Ten(10.0f);
5311       IsExp10 = LHSC->isExactlyValue(Ten);
5312     }
5313   }
5314 
5315   // TODO: What fast-math-flags should be set on the FMUL node?
5316   if (IsExp10) {
5317     // Put the exponent in the right bit position for later addition to the
5318     // final result:
5319     //
5320     //   #define LOG2OF10 3.3219281f
5321     //   t0 = Op * LOG2OF10;
5322     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5323                              getF32Constant(DAG, 0x40549a78, dl));
5324     return getLimitedPrecisionExp2(t0, dl, DAG);
5325   }
5326 
5327   // No special expansion.
5328   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5329 }
5330 
5331 /// ExpandPowI - Expand a llvm.powi intrinsic.
5332 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5333                           SelectionDAG &DAG) {
5334   // If RHS is a constant, we can expand this out to a multiplication tree,
5335   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5336   // optimizing for size, we only want to do this if the expansion would produce
5337   // a small number of multiplies, otherwise we do the full expansion.
5338   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5339     // Get the exponent as a positive value.
5340     unsigned Val = RHSC->getSExtValue();
5341     if ((int)Val < 0) Val = -Val;
5342 
5343     // powi(x, 0) -> 1.0
5344     if (Val == 0)
5345       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5346 
5347     const Function &F = DAG.getMachineFunction().getFunction();
5348     if (!F.hasOptSize() ||
5349         // If optimizing for size, don't insert too many multiplies.
5350         // This inserts up to 5 multiplies.
5351         countPopulation(Val) + Log2_32(Val) < 7) {
5352       // We use the simple binary decomposition method to generate the multiply
5353       // sequence.  There are more optimal ways to do this (for example,
5354       // powi(x,15) generates one more multiply than it should), but this has
5355       // the benefit of being both really simple and much better than a libcall.
5356       SDValue Res;  // Logically starts equal to 1.0
5357       SDValue CurSquare = LHS;
5358       // TODO: Intrinsics should have fast-math-flags that propagate to these
5359       // nodes.
5360       while (Val) {
5361         if (Val & 1) {
5362           if (Res.getNode())
5363             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5364           else
5365             Res = CurSquare;  // 1.0*CurSquare.
5366         }
5367 
5368         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5369                                 CurSquare, CurSquare);
5370         Val >>= 1;
5371       }
5372 
5373       // If the original was negative, invert the result, producing 1/(x*x*x).
5374       if (RHSC->getSExtValue() < 0)
5375         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5376                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5377       return Res;
5378     }
5379   }
5380 
5381   // Otherwise, expand to a libcall.
5382   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5383 }
5384 
5385 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5386 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5387 static void
5388 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5389                      const SDValue &N) {
5390   switch (N.getOpcode()) {
5391   case ISD::CopyFromReg: {
5392     SDValue Op = N.getOperand(1);
5393     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5394                       Op.getValueType().getSizeInBits());
5395     return;
5396   }
5397   case ISD::BITCAST:
5398   case ISD::AssertZext:
5399   case ISD::AssertSext:
5400   case ISD::TRUNCATE:
5401     getUnderlyingArgRegs(Regs, N.getOperand(0));
5402     return;
5403   case ISD::BUILD_PAIR:
5404   case ISD::BUILD_VECTOR:
5405   case ISD::CONCAT_VECTORS:
5406     for (SDValue Op : N->op_values())
5407       getUnderlyingArgRegs(Regs, Op);
5408     return;
5409   default:
5410     return;
5411   }
5412 }
5413 
5414 /// If the DbgValueInst is a dbg_value of a function argument, create the
5415 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5416 /// instruction selection, they will be inserted to the entry BB.
5417 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5418     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5419     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5420   const Argument *Arg = dyn_cast<Argument>(V);
5421   if (!Arg)
5422     return false;
5423 
5424   if (!IsDbgDeclare) {
5425     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5426     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5427     // the entry block.
5428     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5429     if (!IsInEntryBlock)
5430       return false;
5431 
5432     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5433     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5434     // variable that also is a param.
5435     //
5436     // Although, if we are at the top of the entry block already, we can still
5437     // emit using ArgDbgValue. This might catch some situations when the
5438     // dbg.value refers to an argument that isn't used in the entry block, so
5439     // any CopyToReg node would be optimized out and the only way to express
5440     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5441     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5442     // we should only emit as ArgDbgValue if the Variable is an argument to the
5443     // current function, and the dbg.value intrinsic is found in the entry
5444     // block.
5445     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5446         !DL->getInlinedAt();
5447     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5448     if (!IsInPrologue && !VariableIsFunctionInputArg)
5449       return false;
5450 
5451     // Here we assume that a function argument on IR level only can be used to
5452     // describe one input parameter on source level. If we for example have
5453     // source code like this
5454     //
5455     //    struct A { long x, y; };
5456     //    void foo(struct A a, long b) {
5457     //      ...
5458     //      b = a.x;
5459     //      ...
5460     //    }
5461     //
5462     // and IR like this
5463     //
5464     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5465     //  entry:
5466     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5467     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5468     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5469     //    ...
5470     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5471     //    ...
5472     //
5473     // then the last dbg.value is describing a parameter "b" using a value that
5474     // is an argument. But since we already has used %a1 to describe a parameter
5475     // we should not handle that last dbg.value here (that would result in an
5476     // incorrect hoisting of the DBG_VALUE to the function entry).
5477     // Notice that we allow one dbg.value per IR level argument, to accomodate
5478     // for the situation with fragments above.
5479     if (VariableIsFunctionInputArg) {
5480       unsigned ArgNo = Arg->getArgNo();
5481       if (ArgNo >= FuncInfo.DescribedArgs.size())
5482         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5483       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5484         return false;
5485       FuncInfo.DescribedArgs.set(ArgNo);
5486     }
5487   }
5488 
5489   MachineFunction &MF = DAG.getMachineFunction();
5490   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5491 
5492   bool IsIndirect = false;
5493   Optional<MachineOperand> Op;
5494   // Some arguments' frame index is recorded during argument lowering.
5495   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5496   if (FI != std::numeric_limits<int>::max())
5497     Op = MachineOperand::CreateFI(FI);
5498 
5499   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5500   if (!Op && N.getNode()) {
5501     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5502     Register Reg;
5503     if (ArgRegsAndSizes.size() == 1)
5504       Reg = ArgRegsAndSizes.front().first;
5505 
5506     if (Reg && Reg.isVirtual()) {
5507       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5508       Register PR = RegInfo.getLiveInPhysReg(Reg);
5509       if (PR)
5510         Reg = PR;
5511     }
5512     if (Reg) {
5513       Op = MachineOperand::CreateReg(Reg, false);
5514       IsIndirect = IsDbgDeclare;
5515     }
5516   }
5517 
5518   if (!Op && N.getNode()) {
5519     // Check if frame index is available.
5520     SDValue LCandidate = peekThroughBitcasts(N);
5521     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5522       if (FrameIndexSDNode *FINode =
5523           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5524         Op = MachineOperand::CreateFI(FINode->getIndex());
5525   }
5526 
5527   if (!Op) {
5528     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5529     auto splitMultiRegDbgValue
5530       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5531       unsigned Offset = 0;
5532       for (auto RegAndSize : SplitRegs) {
5533         auto FragmentExpr = DIExpression::createFragmentExpression(
5534           Expr, Offset, RegAndSize.second);
5535         if (!FragmentExpr)
5536           continue;
5537         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5538         FuncInfo.ArgDbgValues.push_back(
5539           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5540                   RegAndSize.first, Variable, *FragmentExpr));
5541         Offset += RegAndSize.second;
5542       }
5543     };
5544 
5545     // Check if ValueMap has reg number.
5546     DenseMap<const Value *, unsigned>::const_iterator
5547       VMI = FuncInfo.ValueMap.find(V);
5548     if (VMI != FuncInfo.ValueMap.end()) {
5549       const auto &TLI = DAG.getTargetLoweringInfo();
5550       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5551                        V->getType(), getABIRegCopyCC(V));
5552       if (RFV.occupiesMultipleRegs()) {
5553         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5554         return true;
5555       }
5556 
5557       Op = MachineOperand::CreateReg(VMI->second, false);
5558       IsIndirect = IsDbgDeclare;
5559     } else if (ArgRegsAndSizes.size() > 1) {
5560       // This was split due to the calling convention, and no virtual register
5561       // mapping exists for the value.
5562       splitMultiRegDbgValue(ArgRegsAndSizes);
5563       return true;
5564     }
5565   }
5566 
5567   if (!Op)
5568     return false;
5569 
5570   assert(Variable->isValidLocationForIntrinsic(DL) &&
5571          "Expected inlined-at fields to agree");
5572   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5573   if (IsIndirect)
5574     Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
5575   FuncInfo.ArgDbgValues.push_back(
5576       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5577               *Op, Variable, Expr));
5578 
5579   return true;
5580 }
5581 
5582 /// Return the appropriate SDDbgValue based on N.
5583 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5584                                              DILocalVariable *Variable,
5585                                              DIExpression *Expr,
5586                                              const DebugLoc &dl,
5587                                              unsigned DbgSDNodeOrder) {
5588   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5589     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5590     // stack slot locations.
5591     //
5592     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5593     // debug values here after optimization:
5594     //
5595     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5596     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5597     //
5598     // Both describe the direct values of their associated variables.
5599     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5600                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5601   }
5602   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5603                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5604 }
5605 
5606 // VisualStudio defines setjmp as _setjmp
5607 #if defined(_MSC_VER) && defined(setjmp) && \
5608                          !defined(setjmp_undefined_for_msvc)
5609 #  pragma push_macro("setjmp")
5610 #  undef setjmp
5611 #  define setjmp_undefined_for_msvc
5612 #endif
5613 
5614 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5615   switch (Intrinsic) {
5616   case Intrinsic::smul_fix:
5617     return ISD::SMULFIX;
5618   case Intrinsic::umul_fix:
5619     return ISD::UMULFIX;
5620   default:
5621     llvm_unreachable("Unhandled fixed point intrinsic");
5622   }
5623 }
5624 
5625 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5626                                            const char *FunctionName) {
5627   assert(FunctionName && "FunctionName must not be nullptr");
5628   SDValue Callee = DAG.getExternalSymbol(
5629       FunctionName,
5630       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5631   LowerCallTo(&I, Callee, I.isTailCall());
5632 }
5633 
5634 /// Lower the call to the specified intrinsic function.
5635 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5636                                              unsigned Intrinsic) {
5637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5638   SDLoc sdl = getCurSDLoc();
5639   DebugLoc dl = getCurDebugLoc();
5640   SDValue Res;
5641 
5642   switch (Intrinsic) {
5643   default:
5644     // By default, turn this into a target intrinsic node.
5645     visitTargetIntrinsic(I, Intrinsic);
5646     return;
5647   case Intrinsic::vastart:  visitVAStart(I); return;
5648   case Intrinsic::vaend:    visitVAEnd(I); return;
5649   case Intrinsic::vacopy:   visitVACopy(I); return;
5650   case Intrinsic::returnaddress:
5651     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5652                              TLI.getPointerTy(DAG.getDataLayout()),
5653                              getValue(I.getArgOperand(0))));
5654     return;
5655   case Intrinsic::addressofreturnaddress:
5656     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5657                              TLI.getPointerTy(DAG.getDataLayout())));
5658     return;
5659   case Intrinsic::sponentry:
5660     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5661                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5662     return;
5663   case Intrinsic::frameaddress:
5664     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5665                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5666                              getValue(I.getArgOperand(0))));
5667     return;
5668   case Intrinsic::read_register: {
5669     Value *Reg = I.getArgOperand(0);
5670     SDValue Chain = getRoot();
5671     SDValue RegName =
5672         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5673     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5674     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5675       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5676     setValue(&I, Res);
5677     DAG.setRoot(Res.getValue(1));
5678     return;
5679   }
5680   case Intrinsic::write_register: {
5681     Value *Reg = I.getArgOperand(0);
5682     Value *RegValue = I.getArgOperand(1);
5683     SDValue Chain = getRoot();
5684     SDValue RegName =
5685         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5686     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5687                             RegName, getValue(RegValue)));
5688     return;
5689   }
5690   case Intrinsic::setjmp:
5691     lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5692     return;
5693   case Intrinsic::longjmp:
5694     lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5695     return;
5696   case Intrinsic::memcpy: {
5697     const auto &MCI = cast<MemCpyInst>(I);
5698     SDValue Op1 = getValue(I.getArgOperand(0));
5699     SDValue Op2 = getValue(I.getArgOperand(1));
5700     SDValue Op3 = getValue(I.getArgOperand(2));
5701     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5702     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5703     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5704     unsigned Align = MinAlign(DstAlign, SrcAlign);
5705     bool isVol = MCI.isVolatile();
5706     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5707     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5708     // node.
5709     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5710                                false, isTC,
5711                                MachinePointerInfo(I.getArgOperand(0)),
5712                                MachinePointerInfo(I.getArgOperand(1)));
5713     updateDAGForMaybeTailCall(MC);
5714     return;
5715   }
5716   case Intrinsic::memset: {
5717     const auto &MSI = cast<MemSetInst>(I);
5718     SDValue Op1 = getValue(I.getArgOperand(0));
5719     SDValue Op2 = getValue(I.getArgOperand(1));
5720     SDValue Op3 = getValue(I.getArgOperand(2));
5721     // @llvm.memset defines 0 and 1 to both mean no alignment.
5722     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5723     bool isVol = MSI.isVolatile();
5724     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5725     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5726                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5727     updateDAGForMaybeTailCall(MS);
5728     return;
5729   }
5730   case Intrinsic::memmove: {
5731     const auto &MMI = cast<MemMoveInst>(I);
5732     SDValue Op1 = getValue(I.getArgOperand(0));
5733     SDValue Op2 = getValue(I.getArgOperand(1));
5734     SDValue Op3 = getValue(I.getArgOperand(2));
5735     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5736     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5737     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5738     unsigned Align = MinAlign(DstAlign, SrcAlign);
5739     bool isVol = MMI.isVolatile();
5740     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5741     // FIXME: Support passing different dest/src alignments to the memmove DAG
5742     // node.
5743     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5744                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5745                                 MachinePointerInfo(I.getArgOperand(1)));
5746     updateDAGForMaybeTailCall(MM);
5747     return;
5748   }
5749   case Intrinsic::memcpy_element_unordered_atomic: {
5750     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5751     SDValue Dst = getValue(MI.getRawDest());
5752     SDValue Src = getValue(MI.getRawSource());
5753     SDValue Length = getValue(MI.getLength());
5754 
5755     unsigned DstAlign = MI.getDestAlignment();
5756     unsigned SrcAlign = MI.getSourceAlignment();
5757     Type *LengthTy = MI.getLength()->getType();
5758     unsigned ElemSz = MI.getElementSizeInBytes();
5759     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5760     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5761                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5762                                      MachinePointerInfo(MI.getRawDest()),
5763                                      MachinePointerInfo(MI.getRawSource()));
5764     updateDAGForMaybeTailCall(MC);
5765     return;
5766   }
5767   case Intrinsic::memmove_element_unordered_atomic: {
5768     auto &MI = cast<AtomicMemMoveInst>(I);
5769     SDValue Dst = getValue(MI.getRawDest());
5770     SDValue Src = getValue(MI.getRawSource());
5771     SDValue Length = getValue(MI.getLength());
5772 
5773     unsigned DstAlign = MI.getDestAlignment();
5774     unsigned SrcAlign = MI.getSourceAlignment();
5775     Type *LengthTy = MI.getLength()->getType();
5776     unsigned ElemSz = MI.getElementSizeInBytes();
5777     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5778     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5779                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5780                                       MachinePointerInfo(MI.getRawDest()),
5781                                       MachinePointerInfo(MI.getRawSource()));
5782     updateDAGForMaybeTailCall(MC);
5783     return;
5784   }
5785   case Intrinsic::memset_element_unordered_atomic: {
5786     auto &MI = cast<AtomicMemSetInst>(I);
5787     SDValue Dst = getValue(MI.getRawDest());
5788     SDValue Val = getValue(MI.getValue());
5789     SDValue Length = getValue(MI.getLength());
5790 
5791     unsigned DstAlign = MI.getDestAlignment();
5792     Type *LengthTy = MI.getLength()->getType();
5793     unsigned ElemSz = MI.getElementSizeInBytes();
5794     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5795     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5796                                      LengthTy, ElemSz, isTC,
5797                                      MachinePointerInfo(MI.getRawDest()));
5798     updateDAGForMaybeTailCall(MC);
5799     return;
5800   }
5801   case Intrinsic::dbg_addr:
5802   case Intrinsic::dbg_declare: {
5803     const auto &DI = cast<DbgVariableIntrinsic>(I);
5804     DILocalVariable *Variable = DI.getVariable();
5805     DIExpression *Expression = DI.getExpression();
5806     dropDanglingDebugInfo(Variable, Expression);
5807     assert(Variable && "Missing variable");
5808 
5809     // Check if address has undef value.
5810     const Value *Address = DI.getVariableLocation();
5811     if (!Address || isa<UndefValue>(Address) ||
5812         (Address->use_empty() && !isa<Argument>(Address))) {
5813       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5814       return;
5815     }
5816 
5817     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5818 
5819     // Check if this variable can be described by a frame index, typically
5820     // either as a static alloca or a byval parameter.
5821     int FI = std::numeric_limits<int>::max();
5822     if (const auto *AI =
5823             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5824       if (AI->isStaticAlloca()) {
5825         auto I = FuncInfo.StaticAllocaMap.find(AI);
5826         if (I != FuncInfo.StaticAllocaMap.end())
5827           FI = I->second;
5828       }
5829     } else if (const auto *Arg = dyn_cast<Argument>(
5830                    Address->stripInBoundsConstantOffsets())) {
5831       FI = FuncInfo.getArgumentFrameIndex(Arg);
5832     }
5833 
5834     // llvm.dbg.addr is control dependent and always generates indirect
5835     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5836     // the MachineFunction variable table.
5837     if (FI != std::numeric_limits<int>::max()) {
5838       if (Intrinsic == Intrinsic::dbg_addr) {
5839         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5840             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5841         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5842       }
5843       return;
5844     }
5845 
5846     SDValue &N = NodeMap[Address];
5847     if (!N.getNode() && isa<Argument>(Address))
5848       // Check unused arguments map.
5849       N = UnusedArgNodeMap[Address];
5850     SDDbgValue *SDV;
5851     if (N.getNode()) {
5852       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5853         Address = BCI->getOperand(0);
5854       // Parameters are handled specially.
5855       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5856       if (isParameter && FINode) {
5857         // Byval parameter. We have a frame index at this point.
5858         SDV =
5859             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5860                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5861       } else if (isa<Argument>(Address)) {
5862         // Address is an argument, so try to emit its dbg value using
5863         // virtual register info from the FuncInfo.ValueMap.
5864         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5865         return;
5866       } else {
5867         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5868                               true, dl, SDNodeOrder);
5869       }
5870       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5871     } else {
5872       // If Address is an argument then try to emit its dbg value using
5873       // virtual register info from the FuncInfo.ValueMap.
5874       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5875                                     N)) {
5876         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5877       }
5878     }
5879     return;
5880   }
5881   case Intrinsic::dbg_label: {
5882     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5883     DILabel *Label = DI.getLabel();
5884     assert(Label && "Missing label");
5885 
5886     SDDbgLabel *SDV;
5887     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5888     DAG.AddDbgLabel(SDV);
5889     return;
5890   }
5891   case Intrinsic::dbg_value: {
5892     const DbgValueInst &DI = cast<DbgValueInst>(I);
5893     assert(DI.getVariable() && "Missing variable");
5894 
5895     DILocalVariable *Variable = DI.getVariable();
5896     DIExpression *Expression = DI.getExpression();
5897     dropDanglingDebugInfo(Variable, Expression);
5898     const Value *V = DI.getValue();
5899     if (!V)
5900       return;
5901 
5902     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5903         SDNodeOrder))
5904       return;
5905 
5906     // TODO: Dangling debug info will eventually either be resolved or produce
5907     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5908     // between the original dbg.value location and its resolved DBG_VALUE, which
5909     // we should ideally fill with an extra Undef DBG_VALUE.
5910 
5911     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5912     return;
5913   }
5914 
5915   case Intrinsic::eh_typeid_for: {
5916     // Find the type id for the given typeinfo.
5917     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5918     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5919     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5920     setValue(&I, Res);
5921     return;
5922   }
5923 
5924   case Intrinsic::eh_return_i32:
5925   case Intrinsic::eh_return_i64:
5926     DAG.getMachineFunction().setCallsEHReturn(true);
5927     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5928                             MVT::Other,
5929                             getControlRoot(),
5930                             getValue(I.getArgOperand(0)),
5931                             getValue(I.getArgOperand(1))));
5932     return;
5933   case Intrinsic::eh_unwind_init:
5934     DAG.getMachineFunction().setCallsUnwindInit(true);
5935     return;
5936   case Intrinsic::eh_dwarf_cfa:
5937     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5938                              TLI.getPointerTy(DAG.getDataLayout()),
5939                              getValue(I.getArgOperand(0))));
5940     return;
5941   case Intrinsic::eh_sjlj_callsite: {
5942     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5943     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5944     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5945     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5946 
5947     MMI.setCurrentCallSite(CI->getZExtValue());
5948     return;
5949   }
5950   case Intrinsic::eh_sjlj_functioncontext: {
5951     // Get and store the index of the function context.
5952     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5953     AllocaInst *FnCtx =
5954       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5955     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5956     MFI.setFunctionContextIndex(FI);
5957     return;
5958   }
5959   case Intrinsic::eh_sjlj_setjmp: {
5960     SDValue Ops[2];
5961     Ops[0] = getRoot();
5962     Ops[1] = getValue(I.getArgOperand(0));
5963     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5964                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5965     setValue(&I, Op.getValue(0));
5966     DAG.setRoot(Op.getValue(1));
5967     return;
5968   }
5969   case Intrinsic::eh_sjlj_longjmp:
5970     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5971                             getRoot(), getValue(I.getArgOperand(0))));
5972     return;
5973   case Intrinsic::eh_sjlj_setup_dispatch:
5974     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5975                             getRoot()));
5976     return;
5977   case Intrinsic::masked_gather:
5978     visitMaskedGather(I);
5979     return;
5980   case Intrinsic::masked_load:
5981     visitMaskedLoad(I);
5982     return;
5983   case Intrinsic::masked_scatter:
5984     visitMaskedScatter(I);
5985     return;
5986   case Intrinsic::masked_store:
5987     visitMaskedStore(I);
5988     return;
5989   case Intrinsic::masked_expandload:
5990     visitMaskedLoad(I, true /* IsExpanding */);
5991     return;
5992   case Intrinsic::masked_compressstore:
5993     visitMaskedStore(I, true /* IsCompressing */);
5994     return;
5995   case Intrinsic::powi:
5996     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5997                             getValue(I.getArgOperand(1)), DAG));
5998     return;
5999   case Intrinsic::log:
6000     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6001     return;
6002   case Intrinsic::log2:
6003     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6004     return;
6005   case Intrinsic::log10:
6006     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6007     return;
6008   case Intrinsic::exp:
6009     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6010     return;
6011   case Intrinsic::exp2:
6012     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6013     return;
6014   case Intrinsic::pow:
6015     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6016                            getValue(I.getArgOperand(1)), DAG, TLI));
6017     return;
6018   case Intrinsic::sqrt:
6019   case Intrinsic::fabs:
6020   case Intrinsic::sin:
6021   case Intrinsic::cos:
6022   case Intrinsic::floor:
6023   case Intrinsic::ceil:
6024   case Intrinsic::trunc:
6025   case Intrinsic::rint:
6026   case Intrinsic::nearbyint:
6027   case Intrinsic::round:
6028   case Intrinsic::canonicalize: {
6029     unsigned Opcode;
6030     switch (Intrinsic) {
6031     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6032     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6033     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6034     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6035     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6036     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6037     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6038     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6039     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6040     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6041     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6042     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6043     }
6044 
6045     setValue(&I, DAG.getNode(Opcode, sdl,
6046                              getValue(I.getArgOperand(0)).getValueType(),
6047                              getValue(I.getArgOperand(0))));
6048     return;
6049   }
6050   case Intrinsic::lround:
6051   case Intrinsic::llround:
6052   case Intrinsic::lrint:
6053   case Intrinsic::llrint: {
6054     unsigned Opcode;
6055     switch (Intrinsic) {
6056     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6057     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6058     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6059     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6060     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6061     }
6062 
6063     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6064     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6065                              getValue(I.getArgOperand(0))));
6066     return;
6067   }
6068   case Intrinsic::minnum:
6069     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6070                              getValue(I.getArgOperand(0)).getValueType(),
6071                              getValue(I.getArgOperand(0)),
6072                              getValue(I.getArgOperand(1))));
6073     return;
6074   case Intrinsic::maxnum:
6075     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6076                              getValue(I.getArgOperand(0)).getValueType(),
6077                              getValue(I.getArgOperand(0)),
6078                              getValue(I.getArgOperand(1))));
6079     return;
6080   case Intrinsic::minimum:
6081     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6082                              getValue(I.getArgOperand(0)).getValueType(),
6083                              getValue(I.getArgOperand(0)),
6084                              getValue(I.getArgOperand(1))));
6085     return;
6086   case Intrinsic::maximum:
6087     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6088                              getValue(I.getArgOperand(0)).getValueType(),
6089                              getValue(I.getArgOperand(0)),
6090                              getValue(I.getArgOperand(1))));
6091     return;
6092   case Intrinsic::copysign:
6093     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6094                              getValue(I.getArgOperand(0)).getValueType(),
6095                              getValue(I.getArgOperand(0)),
6096                              getValue(I.getArgOperand(1))));
6097     return;
6098   case Intrinsic::fma:
6099     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6100                              getValue(I.getArgOperand(0)).getValueType(),
6101                              getValue(I.getArgOperand(0)),
6102                              getValue(I.getArgOperand(1)),
6103                              getValue(I.getArgOperand(2))));
6104     return;
6105   case Intrinsic::experimental_constrained_fadd:
6106   case Intrinsic::experimental_constrained_fsub:
6107   case Intrinsic::experimental_constrained_fmul:
6108   case Intrinsic::experimental_constrained_fdiv:
6109   case Intrinsic::experimental_constrained_frem:
6110   case Intrinsic::experimental_constrained_fma:
6111   case Intrinsic::experimental_constrained_fptosi:
6112   case Intrinsic::experimental_constrained_fptoui:
6113   case Intrinsic::experimental_constrained_fptrunc:
6114   case Intrinsic::experimental_constrained_fpext:
6115   case Intrinsic::experimental_constrained_sqrt:
6116   case Intrinsic::experimental_constrained_pow:
6117   case Intrinsic::experimental_constrained_powi:
6118   case Intrinsic::experimental_constrained_sin:
6119   case Intrinsic::experimental_constrained_cos:
6120   case Intrinsic::experimental_constrained_exp:
6121   case Intrinsic::experimental_constrained_exp2:
6122   case Intrinsic::experimental_constrained_log:
6123   case Intrinsic::experimental_constrained_log10:
6124   case Intrinsic::experimental_constrained_log2:
6125   case Intrinsic::experimental_constrained_lrint:
6126   case Intrinsic::experimental_constrained_llrint:
6127   case Intrinsic::experimental_constrained_rint:
6128   case Intrinsic::experimental_constrained_nearbyint:
6129   case Intrinsic::experimental_constrained_maxnum:
6130   case Intrinsic::experimental_constrained_minnum:
6131   case Intrinsic::experimental_constrained_ceil:
6132   case Intrinsic::experimental_constrained_floor:
6133   case Intrinsic::experimental_constrained_lround:
6134   case Intrinsic::experimental_constrained_llround:
6135   case Intrinsic::experimental_constrained_round:
6136   case Intrinsic::experimental_constrained_trunc:
6137     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6138     return;
6139   case Intrinsic::fmuladd: {
6140     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6141     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6142         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6143       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6144                                getValue(I.getArgOperand(0)).getValueType(),
6145                                getValue(I.getArgOperand(0)),
6146                                getValue(I.getArgOperand(1)),
6147                                getValue(I.getArgOperand(2))));
6148     } else {
6149       // TODO: Intrinsic calls should have fast-math-flags.
6150       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6151                                 getValue(I.getArgOperand(0)).getValueType(),
6152                                 getValue(I.getArgOperand(0)),
6153                                 getValue(I.getArgOperand(1)));
6154       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6155                                 getValue(I.getArgOperand(0)).getValueType(),
6156                                 Mul,
6157                                 getValue(I.getArgOperand(2)));
6158       setValue(&I, Add);
6159     }
6160     return;
6161   }
6162   case Intrinsic::convert_to_fp16:
6163     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6164                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6165                                          getValue(I.getArgOperand(0)),
6166                                          DAG.getTargetConstant(0, sdl,
6167                                                                MVT::i32))));
6168     return;
6169   case Intrinsic::convert_from_fp16:
6170     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6171                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6172                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6173                                          getValue(I.getArgOperand(0)))));
6174     return;
6175   case Intrinsic::pcmarker: {
6176     SDValue Tmp = getValue(I.getArgOperand(0));
6177     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6178     return;
6179   }
6180   case Intrinsic::readcyclecounter: {
6181     SDValue Op = getRoot();
6182     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6183                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6184     setValue(&I, Res);
6185     DAG.setRoot(Res.getValue(1));
6186     return;
6187   }
6188   case Intrinsic::bitreverse:
6189     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6190                              getValue(I.getArgOperand(0)).getValueType(),
6191                              getValue(I.getArgOperand(0))));
6192     return;
6193   case Intrinsic::bswap:
6194     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6195                              getValue(I.getArgOperand(0)).getValueType(),
6196                              getValue(I.getArgOperand(0))));
6197     return;
6198   case Intrinsic::cttz: {
6199     SDValue Arg = getValue(I.getArgOperand(0));
6200     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6201     EVT Ty = Arg.getValueType();
6202     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6203                              sdl, Ty, Arg));
6204     return;
6205   }
6206   case Intrinsic::ctlz: {
6207     SDValue Arg = getValue(I.getArgOperand(0));
6208     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6209     EVT Ty = Arg.getValueType();
6210     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6211                              sdl, Ty, Arg));
6212     return;
6213   }
6214   case Intrinsic::ctpop: {
6215     SDValue Arg = getValue(I.getArgOperand(0));
6216     EVT Ty = Arg.getValueType();
6217     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6218     return;
6219   }
6220   case Intrinsic::fshl:
6221   case Intrinsic::fshr: {
6222     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6223     SDValue X = getValue(I.getArgOperand(0));
6224     SDValue Y = getValue(I.getArgOperand(1));
6225     SDValue Z = getValue(I.getArgOperand(2));
6226     EVT VT = X.getValueType();
6227     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6228     SDValue Zero = DAG.getConstant(0, sdl, VT);
6229     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6230 
6231     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6232     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6233       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6234       return;
6235     }
6236 
6237     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6238     // avoid the select that is necessary in the general case to filter out
6239     // the 0-shift possibility that leads to UB.
6240     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6241       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6242       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6243         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6244         return;
6245       }
6246 
6247       // Some targets only rotate one way. Try the opposite direction.
6248       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6249       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6250         // Negate the shift amount because it is safe to ignore the high bits.
6251         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6252         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6253         return;
6254       }
6255 
6256       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6257       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6258       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6259       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6260       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6261       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6262       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6263       return;
6264     }
6265 
6266     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6267     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6268     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6269     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6270     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6271     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6272 
6273     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6274     // and that is undefined. We must compare and select to avoid UB.
6275     EVT CCVT = MVT::i1;
6276     if (VT.isVector())
6277       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6278 
6279     // For fshl, 0-shift returns the 1st arg (X).
6280     // For fshr, 0-shift returns the 2nd arg (Y).
6281     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6282     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6283     return;
6284   }
6285   case Intrinsic::sadd_sat: {
6286     SDValue Op1 = getValue(I.getArgOperand(0));
6287     SDValue Op2 = getValue(I.getArgOperand(1));
6288     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6289     return;
6290   }
6291   case Intrinsic::uadd_sat: {
6292     SDValue Op1 = getValue(I.getArgOperand(0));
6293     SDValue Op2 = getValue(I.getArgOperand(1));
6294     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6295     return;
6296   }
6297   case Intrinsic::ssub_sat: {
6298     SDValue Op1 = getValue(I.getArgOperand(0));
6299     SDValue Op2 = getValue(I.getArgOperand(1));
6300     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6301     return;
6302   }
6303   case Intrinsic::usub_sat: {
6304     SDValue Op1 = getValue(I.getArgOperand(0));
6305     SDValue Op2 = getValue(I.getArgOperand(1));
6306     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6307     return;
6308   }
6309   case Intrinsic::smul_fix:
6310   case Intrinsic::umul_fix: {
6311     SDValue Op1 = getValue(I.getArgOperand(0));
6312     SDValue Op2 = getValue(I.getArgOperand(1));
6313     SDValue Op3 = getValue(I.getArgOperand(2));
6314     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6315                              Op1.getValueType(), Op1, Op2, Op3));
6316     return;
6317   }
6318   case Intrinsic::smul_fix_sat: {
6319     SDValue Op1 = getValue(I.getArgOperand(0));
6320     SDValue Op2 = getValue(I.getArgOperand(1));
6321     SDValue Op3 = getValue(I.getArgOperand(2));
6322     setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6323                              Op3));
6324     return;
6325   }
6326   case Intrinsic::umul_fix_sat: {
6327     SDValue Op1 = getValue(I.getArgOperand(0));
6328     SDValue Op2 = getValue(I.getArgOperand(1));
6329     SDValue Op3 = getValue(I.getArgOperand(2));
6330     setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6331                              Op3));
6332     return;
6333   }
6334   case Intrinsic::stacksave: {
6335     SDValue Op = getRoot();
6336     Res = DAG.getNode(
6337         ISD::STACKSAVE, sdl,
6338         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6339     setValue(&I, Res);
6340     DAG.setRoot(Res.getValue(1));
6341     return;
6342   }
6343   case Intrinsic::stackrestore:
6344     Res = getValue(I.getArgOperand(0));
6345     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6346     return;
6347   case Intrinsic::get_dynamic_area_offset: {
6348     SDValue Op = getRoot();
6349     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6350     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6351     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6352     // target.
6353     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6354       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6355                          " intrinsic!");
6356     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6357                       Op);
6358     DAG.setRoot(Op);
6359     setValue(&I, Res);
6360     return;
6361   }
6362   case Intrinsic::stackguard: {
6363     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6364     MachineFunction &MF = DAG.getMachineFunction();
6365     const Module &M = *MF.getFunction().getParent();
6366     SDValue Chain = getRoot();
6367     if (TLI.useLoadStackGuardNode()) {
6368       Res = getLoadStackGuard(DAG, sdl, Chain);
6369     } else {
6370       const Value *Global = TLI.getSDagStackGuard(M);
6371       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6372       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6373                         MachinePointerInfo(Global, 0), Align,
6374                         MachineMemOperand::MOVolatile);
6375     }
6376     if (TLI.useStackGuardXorFP())
6377       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6378     DAG.setRoot(Chain);
6379     setValue(&I, Res);
6380     return;
6381   }
6382   case Intrinsic::stackprotector: {
6383     // Emit code into the DAG to store the stack guard onto the stack.
6384     MachineFunction &MF = DAG.getMachineFunction();
6385     MachineFrameInfo &MFI = MF.getFrameInfo();
6386     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6387     SDValue Src, Chain = getRoot();
6388 
6389     if (TLI.useLoadStackGuardNode())
6390       Src = getLoadStackGuard(DAG, sdl, Chain);
6391     else
6392       Src = getValue(I.getArgOperand(0));   // The guard's value.
6393 
6394     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6395 
6396     int FI = FuncInfo.StaticAllocaMap[Slot];
6397     MFI.setStackProtectorIndex(FI);
6398 
6399     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6400 
6401     // Store the stack protector onto the stack.
6402     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6403                                                  DAG.getMachineFunction(), FI),
6404                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6405     setValue(&I, Res);
6406     DAG.setRoot(Res);
6407     return;
6408   }
6409   case Intrinsic::objectsize:
6410     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6411 
6412   case Intrinsic::is_constant:
6413     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6414 
6415   case Intrinsic::annotation:
6416   case Intrinsic::ptr_annotation:
6417   case Intrinsic::launder_invariant_group:
6418   case Intrinsic::strip_invariant_group:
6419     // Drop the intrinsic, but forward the value
6420     setValue(&I, getValue(I.getOperand(0)));
6421     return;
6422   case Intrinsic::assume:
6423   case Intrinsic::var_annotation:
6424   case Intrinsic::sideeffect:
6425     // Discard annotate attributes, assumptions, and artificial side-effects.
6426     return;
6427 
6428   case Intrinsic::codeview_annotation: {
6429     // Emit a label associated with this metadata.
6430     MachineFunction &MF = DAG.getMachineFunction();
6431     MCSymbol *Label =
6432         MF.getMMI().getContext().createTempSymbol("annotation", true);
6433     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6434     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6435     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6436     DAG.setRoot(Res);
6437     return;
6438   }
6439 
6440   case Intrinsic::init_trampoline: {
6441     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6442 
6443     SDValue Ops[6];
6444     Ops[0] = getRoot();
6445     Ops[1] = getValue(I.getArgOperand(0));
6446     Ops[2] = getValue(I.getArgOperand(1));
6447     Ops[3] = getValue(I.getArgOperand(2));
6448     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6449     Ops[5] = DAG.getSrcValue(F);
6450 
6451     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6452 
6453     DAG.setRoot(Res);
6454     return;
6455   }
6456   case Intrinsic::adjust_trampoline:
6457     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6458                              TLI.getPointerTy(DAG.getDataLayout()),
6459                              getValue(I.getArgOperand(0))));
6460     return;
6461   case Intrinsic::gcroot: {
6462     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6463            "only valid in functions with gc specified, enforced by Verifier");
6464     assert(GFI && "implied by previous");
6465     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6466     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6467 
6468     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6469     GFI->addStackRoot(FI->getIndex(), TypeMap);
6470     return;
6471   }
6472   case Intrinsic::gcread:
6473   case Intrinsic::gcwrite:
6474     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6475   case Intrinsic::flt_rounds:
6476     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6477     return;
6478 
6479   case Intrinsic::expect:
6480     // Just replace __builtin_expect(exp, c) with EXP.
6481     setValue(&I, getValue(I.getArgOperand(0)));
6482     return;
6483 
6484   case Intrinsic::debugtrap:
6485   case Intrinsic::trap: {
6486     StringRef TrapFuncName =
6487         I.getAttributes()
6488             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6489             .getValueAsString();
6490     if (TrapFuncName.empty()) {
6491       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6492         ISD::TRAP : ISD::DEBUGTRAP;
6493       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6494       return;
6495     }
6496     TargetLowering::ArgListTy Args;
6497 
6498     TargetLowering::CallLoweringInfo CLI(DAG);
6499     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6500         CallingConv::C, I.getType(),
6501         DAG.getExternalSymbol(TrapFuncName.data(),
6502                               TLI.getPointerTy(DAG.getDataLayout())),
6503         std::move(Args));
6504 
6505     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6506     DAG.setRoot(Result.second);
6507     return;
6508   }
6509 
6510   case Intrinsic::uadd_with_overflow:
6511   case Intrinsic::sadd_with_overflow:
6512   case Intrinsic::usub_with_overflow:
6513   case Intrinsic::ssub_with_overflow:
6514   case Intrinsic::umul_with_overflow:
6515   case Intrinsic::smul_with_overflow: {
6516     ISD::NodeType Op;
6517     switch (Intrinsic) {
6518     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6519     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6520     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6521     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6522     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6523     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6524     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6525     }
6526     SDValue Op1 = getValue(I.getArgOperand(0));
6527     SDValue Op2 = getValue(I.getArgOperand(1));
6528 
6529     EVT ResultVT = Op1.getValueType();
6530     EVT OverflowVT = MVT::i1;
6531     if (ResultVT.isVector())
6532       OverflowVT = EVT::getVectorVT(
6533           *Context, OverflowVT, ResultVT.getVectorNumElements());
6534 
6535     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6536     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6537     return;
6538   }
6539   case Intrinsic::prefetch: {
6540     SDValue Ops[5];
6541     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6542     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6543     Ops[0] = DAG.getRoot();
6544     Ops[1] = getValue(I.getArgOperand(0));
6545     Ops[2] = getValue(I.getArgOperand(1));
6546     Ops[3] = getValue(I.getArgOperand(2));
6547     Ops[4] = getValue(I.getArgOperand(3));
6548     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6549                                              DAG.getVTList(MVT::Other), Ops,
6550                                              EVT::getIntegerVT(*Context, 8),
6551                                              MachinePointerInfo(I.getArgOperand(0)),
6552                                              0, /* align */
6553                                              Flags);
6554 
6555     // Chain the prefetch in parallell with any pending loads, to stay out of
6556     // the way of later optimizations.
6557     PendingLoads.push_back(Result);
6558     Result = getRoot();
6559     DAG.setRoot(Result);
6560     return;
6561   }
6562   case Intrinsic::lifetime_start:
6563   case Intrinsic::lifetime_end: {
6564     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6565     // Stack coloring is not enabled in O0, discard region information.
6566     if (TM.getOptLevel() == CodeGenOpt::None)
6567       return;
6568 
6569     const int64_t ObjectSize =
6570         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6571     Value *const ObjectPtr = I.getArgOperand(1);
6572     SmallVector<const Value *, 4> Allocas;
6573     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6574 
6575     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6576            E = Allocas.end(); Object != E; ++Object) {
6577       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6578 
6579       // Could not find an Alloca.
6580       if (!LifetimeObject)
6581         continue;
6582 
6583       // First check that the Alloca is static, otherwise it won't have a
6584       // valid frame index.
6585       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6586       if (SI == FuncInfo.StaticAllocaMap.end())
6587         return;
6588 
6589       const int FrameIndex = SI->second;
6590       int64_t Offset;
6591       if (GetPointerBaseWithConstantOffset(
6592               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6593         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6594       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6595                                 Offset);
6596       DAG.setRoot(Res);
6597     }
6598     return;
6599   }
6600   case Intrinsic::invariant_start:
6601     // Discard region information.
6602     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6603     return;
6604   case Intrinsic::invariant_end:
6605     // Discard region information.
6606     return;
6607   case Intrinsic::clear_cache:
6608     /// FunctionName may be null.
6609     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6610       lowerCallToExternalSymbol(I, FunctionName);
6611     return;
6612   case Intrinsic::donothing:
6613     // ignore
6614     return;
6615   case Intrinsic::experimental_stackmap:
6616     visitStackmap(I);
6617     return;
6618   case Intrinsic::experimental_patchpoint_void:
6619   case Intrinsic::experimental_patchpoint_i64:
6620     visitPatchpoint(&I);
6621     return;
6622   case Intrinsic::experimental_gc_statepoint:
6623     LowerStatepoint(ImmutableStatepoint(&I));
6624     return;
6625   case Intrinsic::experimental_gc_result:
6626     visitGCResult(cast<GCResultInst>(I));
6627     return;
6628   case Intrinsic::experimental_gc_relocate:
6629     visitGCRelocate(cast<GCRelocateInst>(I));
6630     return;
6631   case Intrinsic::instrprof_increment:
6632     llvm_unreachable("instrprof failed to lower an increment");
6633   case Intrinsic::instrprof_value_profile:
6634     llvm_unreachable("instrprof failed to lower a value profiling call");
6635   case Intrinsic::localescape: {
6636     MachineFunction &MF = DAG.getMachineFunction();
6637     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6638 
6639     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6640     // is the same on all targets.
6641     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6642       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6643       if (isa<ConstantPointerNull>(Arg))
6644         continue; // Skip null pointers. They represent a hole in index space.
6645       AllocaInst *Slot = cast<AllocaInst>(Arg);
6646       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6647              "can only escape static allocas");
6648       int FI = FuncInfo.StaticAllocaMap[Slot];
6649       MCSymbol *FrameAllocSym =
6650           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6651               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6652       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6653               TII->get(TargetOpcode::LOCAL_ESCAPE))
6654           .addSym(FrameAllocSym)
6655           .addFrameIndex(FI);
6656     }
6657 
6658     return;
6659   }
6660 
6661   case Intrinsic::localrecover: {
6662     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6663     MachineFunction &MF = DAG.getMachineFunction();
6664     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6665 
6666     // Get the symbol that defines the frame offset.
6667     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6668     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6669     unsigned IdxVal =
6670         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6671     MCSymbol *FrameAllocSym =
6672         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6673             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6674 
6675     // Create a MCSymbol for the label to avoid any target lowering
6676     // that would make this PC relative.
6677     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6678     SDValue OffsetVal =
6679         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6680 
6681     // Add the offset to the FP.
6682     Value *FP = I.getArgOperand(1);
6683     SDValue FPVal = getValue(FP);
6684     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6685     setValue(&I, Add);
6686 
6687     return;
6688   }
6689 
6690   case Intrinsic::eh_exceptionpointer:
6691   case Intrinsic::eh_exceptioncode: {
6692     // Get the exception pointer vreg, copy from it, and resize it to fit.
6693     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6694     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6695     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6696     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6697     SDValue N =
6698         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6699     if (Intrinsic == Intrinsic::eh_exceptioncode)
6700       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6701     setValue(&I, N);
6702     return;
6703   }
6704   case Intrinsic::xray_customevent: {
6705     // Here we want to make sure that the intrinsic behaves as if it has a
6706     // specific calling convention, and only for x86_64.
6707     // FIXME: Support other platforms later.
6708     const auto &Triple = DAG.getTarget().getTargetTriple();
6709     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6710       return;
6711 
6712     SDLoc DL = getCurSDLoc();
6713     SmallVector<SDValue, 8> Ops;
6714 
6715     // We want to say that we always want the arguments in registers.
6716     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6717     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6718     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6719     SDValue Chain = getRoot();
6720     Ops.push_back(LogEntryVal);
6721     Ops.push_back(StrSizeVal);
6722     Ops.push_back(Chain);
6723 
6724     // We need to enforce the calling convention for the callsite, so that
6725     // argument ordering is enforced correctly, and that register allocation can
6726     // see that some registers may be assumed clobbered and have to preserve
6727     // them across calls to the intrinsic.
6728     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6729                                            DL, NodeTys, Ops);
6730     SDValue patchableNode = SDValue(MN, 0);
6731     DAG.setRoot(patchableNode);
6732     setValue(&I, patchableNode);
6733     return;
6734   }
6735   case Intrinsic::xray_typedevent: {
6736     // Here we want to make sure that the intrinsic behaves as if it has a
6737     // specific calling convention, and only for x86_64.
6738     // FIXME: Support other platforms later.
6739     const auto &Triple = DAG.getTarget().getTargetTriple();
6740     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6741       return;
6742 
6743     SDLoc DL = getCurSDLoc();
6744     SmallVector<SDValue, 8> Ops;
6745 
6746     // We want to say that we always want the arguments in registers.
6747     // It's unclear to me how manipulating the selection DAG here forces callers
6748     // to provide arguments in registers instead of on the stack.
6749     SDValue LogTypeId = getValue(I.getArgOperand(0));
6750     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6751     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6752     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6753     SDValue Chain = getRoot();
6754     Ops.push_back(LogTypeId);
6755     Ops.push_back(LogEntryVal);
6756     Ops.push_back(StrSizeVal);
6757     Ops.push_back(Chain);
6758 
6759     // We need to enforce the calling convention for the callsite, so that
6760     // argument ordering is enforced correctly, and that register allocation can
6761     // see that some registers may be assumed clobbered and have to preserve
6762     // them across calls to the intrinsic.
6763     MachineSDNode *MN = DAG.getMachineNode(
6764         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6765     SDValue patchableNode = SDValue(MN, 0);
6766     DAG.setRoot(patchableNode);
6767     setValue(&I, patchableNode);
6768     return;
6769   }
6770   case Intrinsic::experimental_deoptimize:
6771     LowerDeoptimizeCall(&I);
6772     return;
6773 
6774   case Intrinsic::experimental_vector_reduce_v2_fadd:
6775   case Intrinsic::experimental_vector_reduce_v2_fmul:
6776   case Intrinsic::experimental_vector_reduce_add:
6777   case Intrinsic::experimental_vector_reduce_mul:
6778   case Intrinsic::experimental_vector_reduce_and:
6779   case Intrinsic::experimental_vector_reduce_or:
6780   case Intrinsic::experimental_vector_reduce_xor:
6781   case Intrinsic::experimental_vector_reduce_smax:
6782   case Intrinsic::experimental_vector_reduce_smin:
6783   case Intrinsic::experimental_vector_reduce_umax:
6784   case Intrinsic::experimental_vector_reduce_umin:
6785   case Intrinsic::experimental_vector_reduce_fmax:
6786   case Intrinsic::experimental_vector_reduce_fmin:
6787     visitVectorReduce(I, Intrinsic);
6788     return;
6789 
6790   case Intrinsic::icall_branch_funnel: {
6791     SmallVector<SDValue, 16> Ops;
6792     Ops.push_back(getValue(I.getArgOperand(0)));
6793 
6794     int64_t Offset;
6795     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6796         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6797     if (!Base)
6798       report_fatal_error(
6799           "llvm.icall.branch.funnel operand must be a GlobalValue");
6800     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6801 
6802     struct BranchFunnelTarget {
6803       int64_t Offset;
6804       SDValue Target;
6805     };
6806     SmallVector<BranchFunnelTarget, 8> Targets;
6807 
6808     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6809       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6810           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6811       if (ElemBase != Base)
6812         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6813                            "to the same GlobalValue");
6814 
6815       SDValue Val = getValue(I.getArgOperand(Op + 1));
6816       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6817       if (!GA)
6818         report_fatal_error(
6819             "llvm.icall.branch.funnel operand must be a GlobalValue");
6820       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6821                                      GA->getGlobal(), getCurSDLoc(),
6822                                      Val.getValueType(), GA->getOffset())});
6823     }
6824     llvm::sort(Targets,
6825                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6826                  return T1.Offset < T2.Offset;
6827                });
6828 
6829     for (auto &T : Targets) {
6830       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6831       Ops.push_back(T.Target);
6832     }
6833 
6834     Ops.push_back(DAG.getRoot()); // Chain
6835     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6836                                  getCurSDLoc(), MVT::Other, Ops),
6837               0);
6838     DAG.setRoot(N);
6839     setValue(&I, N);
6840     HasTailCall = true;
6841     return;
6842   }
6843 
6844   case Intrinsic::wasm_landingpad_index:
6845     // Information this intrinsic contained has been transferred to
6846     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6847     // delete it now.
6848     return;
6849 
6850   case Intrinsic::aarch64_settag:
6851   case Intrinsic::aarch64_settag_zero: {
6852     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6853     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6854     SDValue Val = TSI.EmitTargetCodeForSetTag(
6855         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6856         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6857         ZeroMemory);
6858     DAG.setRoot(Val);
6859     setValue(&I, Val);
6860     return;
6861   }
6862   case Intrinsic::ptrmask: {
6863     SDValue Ptr = getValue(I.getOperand(0));
6864     SDValue Const = getValue(I.getOperand(1));
6865 
6866     EVT DestVT =
6867         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6868 
6869     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6870                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6871     return;
6872   }
6873   }
6874 }
6875 
6876 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6877     const ConstrainedFPIntrinsic &FPI) {
6878   SDLoc sdl = getCurSDLoc();
6879   unsigned Opcode;
6880   switch (FPI.getIntrinsicID()) {
6881   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6882   case Intrinsic::experimental_constrained_fadd:
6883     Opcode = ISD::STRICT_FADD;
6884     break;
6885   case Intrinsic::experimental_constrained_fsub:
6886     Opcode = ISD::STRICT_FSUB;
6887     break;
6888   case Intrinsic::experimental_constrained_fmul:
6889     Opcode = ISD::STRICT_FMUL;
6890     break;
6891   case Intrinsic::experimental_constrained_fdiv:
6892     Opcode = ISD::STRICT_FDIV;
6893     break;
6894   case Intrinsic::experimental_constrained_frem:
6895     Opcode = ISD::STRICT_FREM;
6896     break;
6897   case Intrinsic::experimental_constrained_fma:
6898     Opcode = ISD::STRICT_FMA;
6899     break;
6900   case Intrinsic::experimental_constrained_fptosi:
6901     Opcode = ISD::STRICT_FP_TO_SINT;
6902     break;
6903   case Intrinsic::experimental_constrained_fptoui:
6904     Opcode = ISD::STRICT_FP_TO_UINT;
6905     break;
6906   case Intrinsic::experimental_constrained_fptrunc:
6907     Opcode = ISD::STRICT_FP_ROUND;
6908     break;
6909   case Intrinsic::experimental_constrained_fpext:
6910     Opcode = ISD::STRICT_FP_EXTEND;
6911     break;
6912   case Intrinsic::experimental_constrained_sqrt:
6913     Opcode = ISD::STRICT_FSQRT;
6914     break;
6915   case Intrinsic::experimental_constrained_pow:
6916     Opcode = ISD::STRICT_FPOW;
6917     break;
6918   case Intrinsic::experimental_constrained_powi:
6919     Opcode = ISD::STRICT_FPOWI;
6920     break;
6921   case Intrinsic::experimental_constrained_sin:
6922     Opcode = ISD::STRICT_FSIN;
6923     break;
6924   case Intrinsic::experimental_constrained_cos:
6925     Opcode = ISD::STRICT_FCOS;
6926     break;
6927   case Intrinsic::experimental_constrained_exp:
6928     Opcode = ISD::STRICT_FEXP;
6929     break;
6930   case Intrinsic::experimental_constrained_exp2:
6931     Opcode = ISD::STRICT_FEXP2;
6932     break;
6933   case Intrinsic::experimental_constrained_log:
6934     Opcode = ISD::STRICT_FLOG;
6935     break;
6936   case Intrinsic::experimental_constrained_log10:
6937     Opcode = ISD::STRICT_FLOG10;
6938     break;
6939   case Intrinsic::experimental_constrained_log2:
6940     Opcode = ISD::STRICT_FLOG2;
6941     break;
6942   case Intrinsic::experimental_constrained_lrint:
6943     Opcode = ISD::STRICT_LRINT;
6944     break;
6945   case Intrinsic::experimental_constrained_llrint:
6946     Opcode = ISD::STRICT_LLRINT;
6947     break;
6948   case Intrinsic::experimental_constrained_rint:
6949     Opcode = ISD::STRICT_FRINT;
6950     break;
6951   case Intrinsic::experimental_constrained_nearbyint:
6952     Opcode = ISD::STRICT_FNEARBYINT;
6953     break;
6954   case Intrinsic::experimental_constrained_maxnum:
6955     Opcode = ISD::STRICT_FMAXNUM;
6956     break;
6957   case Intrinsic::experimental_constrained_minnum:
6958     Opcode = ISD::STRICT_FMINNUM;
6959     break;
6960   case Intrinsic::experimental_constrained_ceil:
6961     Opcode = ISD::STRICT_FCEIL;
6962     break;
6963   case Intrinsic::experimental_constrained_floor:
6964     Opcode = ISD::STRICT_FFLOOR;
6965     break;
6966   case Intrinsic::experimental_constrained_lround:
6967     Opcode = ISD::STRICT_LROUND;
6968     break;
6969   case Intrinsic::experimental_constrained_llround:
6970     Opcode = ISD::STRICT_LLROUND;
6971     break;
6972   case Intrinsic::experimental_constrained_round:
6973     Opcode = ISD::STRICT_FROUND;
6974     break;
6975   case Intrinsic::experimental_constrained_trunc:
6976     Opcode = ISD::STRICT_FTRUNC;
6977     break;
6978   }
6979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6980   SDValue Chain = getRoot();
6981   SmallVector<EVT, 4> ValueVTs;
6982   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6983   ValueVTs.push_back(MVT::Other); // Out chain
6984 
6985   SDVTList VTs = DAG.getVTList(ValueVTs);
6986   SDValue Result;
6987   if (Opcode == ISD::STRICT_FP_ROUND)
6988     Result = DAG.getNode(Opcode, sdl, VTs,
6989                           { Chain, getValue(FPI.getArgOperand(0)),
6990                                DAG.getTargetConstant(0, sdl,
6991                                TLI.getPointerTy(DAG.getDataLayout())) });
6992   else if (FPI.isUnaryOp())
6993     Result = DAG.getNode(Opcode, sdl, VTs,
6994                          { Chain, getValue(FPI.getArgOperand(0)) });
6995   else if (FPI.isTernaryOp())
6996     Result = DAG.getNode(Opcode, sdl, VTs,
6997                          { Chain, getValue(FPI.getArgOperand(0)),
6998                                   getValue(FPI.getArgOperand(1)),
6999                                   getValue(FPI.getArgOperand(2)) });
7000   else
7001     Result = DAG.getNode(Opcode, sdl, VTs,
7002                          { Chain, getValue(FPI.getArgOperand(0)),
7003                            getValue(FPI.getArgOperand(1))  });
7004 
7005   if (FPI.getExceptionBehavior() !=
7006       ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) {
7007     SDNodeFlags Flags;
7008     Flags.setFPExcept(true);
7009     Result->setFlags(Flags);
7010   }
7011 
7012   assert(Result.getNode()->getNumValues() == 2);
7013   SDValue OutChain = Result.getValue(1);
7014   DAG.setRoot(OutChain);
7015   SDValue FPResult = Result.getValue(0);
7016   setValue(&FPI, FPResult);
7017 }
7018 
7019 std::pair<SDValue, SDValue>
7020 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7021                                     const BasicBlock *EHPadBB) {
7022   MachineFunction &MF = DAG.getMachineFunction();
7023   MachineModuleInfo &MMI = MF.getMMI();
7024   MCSymbol *BeginLabel = nullptr;
7025 
7026   if (EHPadBB) {
7027     // Insert a label before the invoke call to mark the try range.  This can be
7028     // used to detect deletion of the invoke via the MachineModuleInfo.
7029     BeginLabel = MMI.getContext().createTempSymbol();
7030 
7031     // For SjLj, keep track of which landing pads go with which invokes
7032     // so as to maintain the ordering of pads in the LSDA.
7033     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7034     if (CallSiteIndex) {
7035       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7036       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7037 
7038       // Now that the call site is handled, stop tracking it.
7039       MMI.setCurrentCallSite(0);
7040     }
7041 
7042     // Both PendingLoads and PendingExports must be flushed here;
7043     // this call might not return.
7044     (void)getRoot();
7045     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7046 
7047     CLI.setChain(getRoot());
7048   }
7049   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7050   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7051 
7052   assert((CLI.IsTailCall || Result.second.getNode()) &&
7053          "Non-null chain expected with non-tail call!");
7054   assert((Result.second.getNode() || !Result.first.getNode()) &&
7055          "Null value expected with tail call!");
7056 
7057   if (!Result.second.getNode()) {
7058     // As a special case, a null chain means that a tail call has been emitted
7059     // and the DAG root is already updated.
7060     HasTailCall = true;
7061 
7062     // Since there's no actual continuation from this block, nothing can be
7063     // relying on us setting vregs for them.
7064     PendingExports.clear();
7065   } else {
7066     DAG.setRoot(Result.second);
7067   }
7068 
7069   if (EHPadBB) {
7070     // Insert a label at the end of the invoke call to mark the try range.  This
7071     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7072     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7073     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7074 
7075     // Inform MachineModuleInfo of range.
7076     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7077     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7078     // actually use outlined funclets and their LSDA info style.
7079     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7080       assert(CLI.CS);
7081       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7082       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7083                                 BeginLabel, EndLabel);
7084     } else if (!isScopedEHPersonality(Pers)) {
7085       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7086     }
7087   }
7088 
7089   return Result;
7090 }
7091 
7092 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7093                                       bool isTailCall,
7094                                       const BasicBlock *EHPadBB) {
7095   auto &DL = DAG.getDataLayout();
7096   FunctionType *FTy = CS.getFunctionType();
7097   Type *RetTy = CS.getType();
7098 
7099   TargetLowering::ArgListTy Args;
7100   Args.reserve(CS.arg_size());
7101 
7102   const Value *SwiftErrorVal = nullptr;
7103   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7104 
7105   // We can't tail call inside a function with a swifterror argument. Lowering
7106   // does not support this yet. It would have to move into the swifterror
7107   // register before the call.
7108   auto *Caller = CS.getInstruction()->getParent()->getParent();
7109   if (TLI.supportSwiftError() &&
7110       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7111     isTailCall = false;
7112 
7113   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7114        i != e; ++i) {
7115     TargetLowering::ArgListEntry Entry;
7116     const Value *V = *i;
7117 
7118     // Skip empty types
7119     if (V->getType()->isEmptyTy())
7120       continue;
7121 
7122     SDValue ArgNode = getValue(V);
7123     Entry.Node = ArgNode; Entry.Ty = V->getType();
7124 
7125     Entry.setAttributes(&CS, i - CS.arg_begin());
7126 
7127     // Use swifterror virtual register as input to the call.
7128     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7129       SwiftErrorVal = V;
7130       // We find the virtual register for the actual swifterror argument.
7131       // Instead of using the Value, we use the virtual register instead.
7132       Entry.Node = DAG.getRegister(
7133           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7134           EVT(TLI.getPointerTy(DL)));
7135     }
7136 
7137     Args.push_back(Entry);
7138 
7139     // If we have an explicit sret argument that is an Instruction, (i.e., it
7140     // might point to function-local memory), we can't meaningfully tail-call.
7141     if (Entry.IsSRet && isa<Instruction>(V))
7142       isTailCall = false;
7143   }
7144 
7145   // Check if target-independent constraints permit a tail call here.
7146   // Target-dependent constraints are checked within TLI->LowerCallTo.
7147   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7148     isTailCall = false;
7149 
7150   // Disable tail calls if there is an swifterror argument. Targets have not
7151   // been updated to support tail calls.
7152   if (TLI.supportSwiftError() && SwiftErrorVal)
7153     isTailCall = false;
7154 
7155   TargetLowering::CallLoweringInfo CLI(DAG);
7156   CLI.setDebugLoc(getCurSDLoc())
7157       .setChain(getRoot())
7158       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7159       .setTailCall(isTailCall)
7160       .setConvergent(CS.isConvergent());
7161   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7162 
7163   if (Result.first.getNode()) {
7164     const Instruction *Inst = CS.getInstruction();
7165     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7166     setValue(Inst, Result.first);
7167   }
7168 
7169   // The last element of CLI.InVals has the SDValue for swifterror return.
7170   // Here we copy it to a virtual register and update SwiftErrorMap for
7171   // book-keeping.
7172   if (SwiftErrorVal && TLI.supportSwiftError()) {
7173     // Get the last element of InVals.
7174     SDValue Src = CLI.InVals.back();
7175     Register VReg = SwiftError.getOrCreateVRegDefAt(
7176         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7177     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7178     DAG.setRoot(CopyNode);
7179   }
7180 }
7181 
7182 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7183                              SelectionDAGBuilder &Builder) {
7184   // Check to see if this load can be trivially constant folded, e.g. if the
7185   // input is from a string literal.
7186   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7187     // Cast pointer to the type we really want to load.
7188     Type *LoadTy =
7189         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7190     if (LoadVT.isVector())
7191       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7192 
7193     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7194                                          PointerType::getUnqual(LoadTy));
7195 
7196     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7197             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7198       return Builder.getValue(LoadCst);
7199   }
7200 
7201   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7202   // still constant memory, the input chain can be the entry node.
7203   SDValue Root;
7204   bool ConstantMemory = false;
7205 
7206   // Do not serialize (non-volatile) loads of constant memory with anything.
7207   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7208     Root = Builder.DAG.getEntryNode();
7209     ConstantMemory = true;
7210   } else {
7211     // Do not serialize non-volatile loads against each other.
7212     Root = Builder.DAG.getRoot();
7213   }
7214 
7215   SDValue Ptr = Builder.getValue(PtrVal);
7216   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7217                                         Ptr, MachinePointerInfo(PtrVal),
7218                                         /* Alignment = */ 1);
7219 
7220   if (!ConstantMemory)
7221     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7222   return LoadVal;
7223 }
7224 
7225 /// Record the value for an instruction that produces an integer result,
7226 /// converting the type where necessary.
7227 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7228                                                   SDValue Value,
7229                                                   bool IsSigned) {
7230   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7231                                                     I.getType(), true);
7232   if (IsSigned)
7233     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7234   else
7235     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7236   setValue(&I, Value);
7237 }
7238 
7239 /// See if we can lower a memcmp call into an optimized form. If so, return
7240 /// true and lower it. Otherwise return false, and it will be lowered like a
7241 /// normal call.
7242 /// The caller already checked that \p I calls the appropriate LibFunc with a
7243 /// correct prototype.
7244 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7245   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7246   const Value *Size = I.getArgOperand(2);
7247   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7248   if (CSize && CSize->getZExtValue() == 0) {
7249     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7250                                                           I.getType(), true);
7251     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7252     return true;
7253   }
7254 
7255   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7256   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7257       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7258       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7259   if (Res.first.getNode()) {
7260     processIntegerCallValue(I, Res.first, true);
7261     PendingLoads.push_back(Res.second);
7262     return true;
7263   }
7264 
7265   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7266   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7267   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7268     return false;
7269 
7270   // If the target has a fast compare for the given size, it will return a
7271   // preferred load type for that size. Require that the load VT is legal and
7272   // that the target supports unaligned loads of that type. Otherwise, return
7273   // INVALID.
7274   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7275     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7276     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7277     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7278       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7279       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7280       // TODO: Check alignment of src and dest ptrs.
7281       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7282       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7283       if (!TLI.isTypeLegal(LVT) ||
7284           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7285           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7286         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7287     }
7288 
7289     return LVT;
7290   };
7291 
7292   // This turns into unaligned loads. We only do this if the target natively
7293   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7294   // we'll only produce a small number of byte loads.
7295   MVT LoadVT;
7296   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7297   switch (NumBitsToCompare) {
7298   default:
7299     return false;
7300   case 16:
7301     LoadVT = MVT::i16;
7302     break;
7303   case 32:
7304     LoadVT = MVT::i32;
7305     break;
7306   case 64:
7307   case 128:
7308   case 256:
7309     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7310     break;
7311   }
7312 
7313   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7314     return false;
7315 
7316   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7317   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7318 
7319   // Bitcast to a wide integer type if the loads are vectors.
7320   if (LoadVT.isVector()) {
7321     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7322     LoadL = DAG.getBitcast(CmpVT, LoadL);
7323     LoadR = DAG.getBitcast(CmpVT, LoadR);
7324   }
7325 
7326   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7327   processIntegerCallValue(I, Cmp, false);
7328   return true;
7329 }
7330 
7331 /// See if we can lower a memchr call into an optimized form. If so, return
7332 /// true and lower it. Otherwise return false, and it will be lowered like a
7333 /// normal call.
7334 /// The caller already checked that \p I calls the appropriate LibFunc with a
7335 /// correct prototype.
7336 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7337   const Value *Src = I.getArgOperand(0);
7338   const Value *Char = I.getArgOperand(1);
7339   const Value *Length = I.getArgOperand(2);
7340 
7341   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7342   std::pair<SDValue, SDValue> Res =
7343     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7344                                 getValue(Src), getValue(Char), getValue(Length),
7345                                 MachinePointerInfo(Src));
7346   if (Res.first.getNode()) {
7347     setValue(&I, Res.first);
7348     PendingLoads.push_back(Res.second);
7349     return true;
7350   }
7351 
7352   return false;
7353 }
7354 
7355 /// See if we can lower a mempcpy call into an optimized form. If so, return
7356 /// true and lower it. Otherwise return false, and it will be lowered like a
7357 /// normal call.
7358 /// The caller already checked that \p I calls the appropriate LibFunc with a
7359 /// correct prototype.
7360 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7361   SDValue Dst = getValue(I.getArgOperand(0));
7362   SDValue Src = getValue(I.getArgOperand(1));
7363   SDValue Size = getValue(I.getArgOperand(2));
7364 
7365   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7366   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7367   unsigned Align = std::min(DstAlign, SrcAlign);
7368   if (Align == 0) // Alignment of one or both could not be inferred.
7369     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7370 
7371   bool isVol = false;
7372   SDLoc sdl = getCurSDLoc();
7373 
7374   // In the mempcpy context we need to pass in a false value for isTailCall
7375   // because the return pointer needs to be adjusted by the size of
7376   // the copied memory.
7377   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7378                              false, /*isTailCall=*/false,
7379                              MachinePointerInfo(I.getArgOperand(0)),
7380                              MachinePointerInfo(I.getArgOperand(1)));
7381   assert(MC.getNode() != nullptr &&
7382          "** memcpy should not be lowered as TailCall in mempcpy context **");
7383   DAG.setRoot(MC);
7384 
7385   // Check if Size needs to be truncated or extended.
7386   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7387 
7388   // Adjust return pointer to point just past the last dst byte.
7389   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7390                                     Dst, Size);
7391   setValue(&I, DstPlusSize);
7392   return true;
7393 }
7394 
7395 /// See if we can lower a strcpy call into an optimized form.  If so, return
7396 /// true and lower it, otherwise return false and it will be lowered like a
7397 /// normal call.
7398 /// The caller already checked that \p I calls the appropriate LibFunc with a
7399 /// correct prototype.
7400 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7401   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7402 
7403   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7404   std::pair<SDValue, SDValue> Res =
7405     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7406                                 getValue(Arg0), getValue(Arg1),
7407                                 MachinePointerInfo(Arg0),
7408                                 MachinePointerInfo(Arg1), isStpcpy);
7409   if (Res.first.getNode()) {
7410     setValue(&I, Res.first);
7411     DAG.setRoot(Res.second);
7412     return true;
7413   }
7414 
7415   return false;
7416 }
7417 
7418 /// See if we can lower a strcmp call into an optimized form.  If so, return
7419 /// true and lower it, otherwise return false and it will be lowered like a
7420 /// normal call.
7421 /// The caller already checked that \p I calls the appropriate LibFunc with a
7422 /// correct prototype.
7423 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7424   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7425 
7426   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7427   std::pair<SDValue, SDValue> Res =
7428     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7429                                 getValue(Arg0), getValue(Arg1),
7430                                 MachinePointerInfo(Arg0),
7431                                 MachinePointerInfo(Arg1));
7432   if (Res.first.getNode()) {
7433     processIntegerCallValue(I, Res.first, true);
7434     PendingLoads.push_back(Res.second);
7435     return true;
7436   }
7437 
7438   return false;
7439 }
7440 
7441 /// See if we can lower a strlen call into an optimized form.  If so, return
7442 /// true and lower it, otherwise return false and it will be lowered like a
7443 /// normal call.
7444 /// The caller already checked that \p I calls the appropriate LibFunc with a
7445 /// correct prototype.
7446 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7447   const Value *Arg0 = I.getArgOperand(0);
7448 
7449   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7450   std::pair<SDValue, SDValue> Res =
7451     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7452                                 getValue(Arg0), MachinePointerInfo(Arg0));
7453   if (Res.first.getNode()) {
7454     processIntegerCallValue(I, Res.first, false);
7455     PendingLoads.push_back(Res.second);
7456     return true;
7457   }
7458 
7459   return false;
7460 }
7461 
7462 /// See if we can lower a strnlen call into an optimized form.  If so, return
7463 /// true and lower it, otherwise return false and it will be lowered like a
7464 /// normal call.
7465 /// The caller already checked that \p I calls the appropriate LibFunc with a
7466 /// correct prototype.
7467 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7468   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7469 
7470   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7471   std::pair<SDValue, SDValue> Res =
7472     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7473                                  getValue(Arg0), getValue(Arg1),
7474                                  MachinePointerInfo(Arg0));
7475   if (Res.first.getNode()) {
7476     processIntegerCallValue(I, Res.first, false);
7477     PendingLoads.push_back(Res.second);
7478     return true;
7479   }
7480 
7481   return false;
7482 }
7483 
7484 /// See if we can lower a unary floating-point operation into an SDNode with
7485 /// the specified Opcode.  If so, return true and lower it, otherwise return
7486 /// false and it will be lowered like a normal call.
7487 /// The caller already checked that \p I calls the appropriate LibFunc with a
7488 /// correct prototype.
7489 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7490                                               unsigned Opcode) {
7491   // We already checked this call's prototype; verify it doesn't modify errno.
7492   if (!I.onlyReadsMemory())
7493     return false;
7494 
7495   SDValue Tmp = getValue(I.getArgOperand(0));
7496   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7497   return true;
7498 }
7499 
7500 /// See if we can lower a binary floating-point operation into an SDNode with
7501 /// the specified Opcode. If so, return true and lower it. Otherwise return
7502 /// false, and it will be lowered like a normal call.
7503 /// The caller already checked that \p I calls the appropriate LibFunc with a
7504 /// correct prototype.
7505 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7506                                                unsigned Opcode) {
7507   // We already checked this call's prototype; verify it doesn't modify errno.
7508   if (!I.onlyReadsMemory())
7509     return false;
7510 
7511   SDValue Tmp0 = getValue(I.getArgOperand(0));
7512   SDValue Tmp1 = getValue(I.getArgOperand(1));
7513   EVT VT = Tmp0.getValueType();
7514   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7515   return true;
7516 }
7517 
7518 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7519   // Handle inline assembly differently.
7520   if (isa<InlineAsm>(I.getCalledValue())) {
7521     visitInlineAsm(&I);
7522     return;
7523   }
7524 
7525   if (Function *F = I.getCalledFunction()) {
7526     if (F->isDeclaration()) {
7527       // Is this an LLVM intrinsic or a target-specific intrinsic?
7528       unsigned IID = F->getIntrinsicID();
7529       if (!IID)
7530         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7531           IID = II->getIntrinsicID(F);
7532 
7533       if (IID) {
7534         visitIntrinsicCall(I, IID);
7535         return;
7536       }
7537     }
7538 
7539     // Check for well-known libc/libm calls.  If the function is internal, it
7540     // can't be a library call.  Don't do the check if marked as nobuiltin for
7541     // some reason or the call site requires strict floating point semantics.
7542     LibFunc Func;
7543     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7544         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7545         LibInfo->hasOptimizedCodeGen(Func)) {
7546       switch (Func) {
7547       default: break;
7548       case LibFunc_copysign:
7549       case LibFunc_copysignf:
7550       case LibFunc_copysignl:
7551         // We already checked this call's prototype; verify it doesn't modify
7552         // errno.
7553         if (I.onlyReadsMemory()) {
7554           SDValue LHS = getValue(I.getArgOperand(0));
7555           SDValue RHS = getValue(I.getArgOperand(1));
7556           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7557                                    LHS.getValueType(), LHS, RHS));
7558           return;
7559         }
7560         break;
7561       case LibFunc_fabs:
7562       case LibFunc_fabsf:
7563       case LibFunc_fabsl:
7564         if (visitUnaryFloatCall(I, ISD::FABS))
7565           return;
7566         break;
7567       case LibFunc_fmin:
7568       case LibFunc_fminf:
7569       case LibFunc_fminl:
7570         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7571           return;
7572         break;
7573       case LibFunc_fmax:
7574       case LibFunc_fmaxf:
7575       case LibFunc_fmaxl:
7576         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7577           return;
7578         break;
7579       case LibFunc_sin:
7580       case LibFunc_sinf:
7581       case LibFunc_sinl:
7582         if (visitUnaryFloatCall(I, ISD::FSIN))
7583           return;
7584         break;
7585       case LibFunc_cos:
7586       case LibFunc_cosf:
7587       case LibFunc_cosl:
7588         if (visitUnaryFloatCall(I, ISD::FCOS))
7589           return;
7590         break;
7591       case LibFunc_sqrt:
7592       case LibFunc_sqrtf:
7593       case LibFunc_sqrtl:
7594       case LibFunc_sqrt_finite:
7595       case LibFunc_sqrtf_finite:
7596       case LibFunc_sqrtl_finite:
7597         if (visitUnaryFloatCall(I, ISD::FSQRT))
7598           return;
7599         break;
7600       case LibFunc_floor:
7601       case LibFunc_floorf:
7602       case LibFunc_floorl:
7603         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7604           return;
7605         break;
7606       case LibFunc_nearbyint:
7607       case LibFunc_nearbyintf:
7608       case LibFunc_nearbyintl:
7609         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7610           return;
7611         break;
7612       case LibFunc_ceil:
7613       case LibFunc_ceilf:
7614       case LibFunc_ceill:
7615         if (visitUnaryFloatCall(I, ISD::FCEIL))
7616           return;
7617         break;
7618       case LibFunc_rint:
7619       case LibFunc_rintf:
7620       case LibFunc_rintl:
7621         if (visitUnaryFloatCall(I, ISD::FRINT))
7622           return;
7623         break;
7624       case LibFunc_round:
7625       case LibFunc_roundf:
7626       case LibFunc_roundl:
7627         if (visitUnaryFloatCall(I, ISD::FROUND))
7628           return;
7629         break;
7630       case LibFunc_trunc:
7631       case LibFunc_truncf:
7632       case LibFunc_truncl:
7633         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7634           return;
7635         break;
7636       case LibFunc_log2:
7637       case LibFunc_log2f:
7638       case LibFunc_log2l:
7639         if (visitUnaryFloatCall(I, ISD::FLOG2))
7640           return;
7641         break;
7642       case LibFunc_exp2:
7643       case LibFunc_exp2f:
7644       case LibFunc_exp2l:
7645         if (visitUnaryFloatCall(I, ISD::FEXP2))
7646           return;
7647         break;
7648       case LibFunc_memcmp:
7649         if (visitMemCmpCall(I))
7650           return;
7651         break;
7652       case LibFunc_mempcpy:
7653         if (visitMemPCpyCall(I))
7654           return;
7655         break;
7656       case LibFunc_memchr:
7657         if (visitMemChrCall(I))
7658           return;
7659         break;
7660       case LibFunc_strcpy:
7661         if (visitStrCpyCall(I, false))
7662           return;
7663         break;
7664       case LibFunc_stpcpy:
7665         if (visitStrCpyCall(I, true))
7666           return;
7667         break;
7668       case LibFunc_strcmp:
7669         if (visitStrCmpCall(I))
7670           return;
7671         break;
7672       case LibFunc_strlen:
7673         if (visitStrLenCall(I))
7674           return;
7675         break;
7676       case LibFunc_strnlen:
7677         if (visitStrNLenCall(I))
7678           return;
7679         break;
7680       }
7681     }
7682   }
7683 
7684   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7685   // have to do anything here to lower funclet bundles.
7686   assert(!I.hasOperandBundlesOtherThan(
7687              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7688          "Cannot lower calls with arbitrary operand bundles!");
7689 
7690   SDValue Callee = getValue(I.getCalledValue());
7691 
7692   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7693     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7694   else
7695     // Check if we can potentially perform a tail call. More detailed checking
7696     // is be done within LowerCallTo, after more information about the call is
7697     // known.
7698     LowerCallTo(&I, Callee, I.isTailCall());
7699 }
7700 
7701 namespace {
7702 
7703 /// AsmOperandInfo - This contains information for each constraint that we are
7704 /// lowering.
7705 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7706 public:
7707   /// CallOperand - If this is the result output operand or a clobber
7708   /// this is null, otherwise it is the incoming operand to the CallInst.
7709   /// This gets modified as the asm is processed.
7710   SDValue CallOperand;
7711 
7712   /// AssignedRegs - If this is a register or register class operand, this
7713   /// contains the set of register corresponding to the operand.
7714   RegsForValue AssignedRegs;
7715 
7716   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7717     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7718   }
7719 
7720   /// Whether or not this operand accesses memory
7721   bool hasMemory(const TargetLowering &TLI) const {
7722     // Indirect operand accesses access memory.
7723     if (isIndirect)
7724       return true;
7725 
7726     for (const auto &Code : Codes)
7727       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7728         return true;
7729 
7730     return false;
7731   }
7732 
7733   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7734   /// corresponds to.  If there is no Value* for this operand, it returns
7735   /// MVT::Other.
7736   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7737                            const DataLayout &DL) const {
7738     if (!CallOperandVal) return MVT::Other;
7739 
7740     if (isa<BasicBlock>(CallOperandVal))
7741       return TLI.getPointerTy(DL);
7742 
7743     llvm::Type *OpTy = CallOperandVal->getType();
7744 
7745     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7746     // If this is an indirect operand, the operand is a pointer to the
7747     // accessed type.
7748     if (isIndirect) {
7749       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7750       if (!PtrTy)
7751         report_fatal_error("Indirect operand for inline asm not a pointer!");
7752       OpTy = PtrTy->getElementType();
7753     }
7754 
7755     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7756     if (StructType *STy = dyn_cast<StructType>(OpTy))
7757       if (STy->getNumElements() == 1)
7758         OpTy = STy->getElementType(0);
7759 
7760     // If OpTy is not a single value, it may be a struct/union that we
7761     // can tile with integers.
7762     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7763       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7764       switch (BitSize) {
7765       default: break;
7766       case 1:
7767       case 8:
7768       case 16:
7769       case 32:
7770       case 64:
7771       case 128:
7772         OpTy = IntegerType::get(Context, BitSize);
7773         break;
7774       }
7775     }
7776 
7777     return TLI.getValueType(DL, OpTy, true);
7778   }
7779 };
7780 
7781 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7782 
7783 } // end anonymous namespace
7784 
7785 /// Make sure that the output operand \p OpInfo and its corresponding input
7786 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7787 /// out).
7788 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7789                                SDISelAsmOperandInfo &MatchingOpInfo,
7790                                SelectionDAG &DAG) {
7791   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7792     return;
7793 
7794   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7795   const auto &TLI = DAG.getTargetLoweringInfo();
7796 
7797   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7798       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7799                                        OpInfo.ConstraintVT);
7800   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7801       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7802                                        MatchingOpInfo.ConstraintVT);
7803   if ((OpInfo.ConstraintVT.isInteger() !=
7804        MatchingOpInfo.ConstraintVT.isInteger()) ||
7805       (MatchRC.second != InputRC.second)) {
7806     // FIXME: error out in a more elegant fashion
7807     report_fatal_error("Unsupported asm: input constraint"
7808                        " with a matching output constraint of"
7809                        " incompatible type!");
7810   }
7811   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7812 }
7813 
7814 /// Get a direct memory input to behave well as an indirect operand.
7815 /// This may introduce stores, hence the need for a \p Chain.
7816 /// \return The (possibly updated) chain.
7817 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7818                                         SDISelAsmOperandInfo &OpInfo,
7819                                         SelectionDAG &DAG) {
7820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7821 
7822   // If we don't have an indirect input, put it in the constpool if we can,
7823   // otherwise spill it to a stack slot.
7824   // TODO: This isn't quite right. We need to handle these according to
7825   // the addressing mode that the constraint wants. Also, this may take
7826   // an additional register for the computation and we don't want that
7827   // either.
7828 
7829   // If the operand is a float, integer, or vector constant, spill to a
7830   // constant pool entry to get its address.
7831   const Value *OpVal = OpInfo.CallOperandVal;
7832   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7833       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7834     OpInfo.CallOperand = DAG.getConstantPool(
7835         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7836     return Chain;
7837   }
7838 
7839   // Otherwise, create a stack slot and emit a store to it before the asm.
7840   Type *Ty = OpVal->getType();
7841   auto &DL = DAG.getDataLayout();
7842   uint64_t TySize = DL.getTypeAllocSize(Ty);
7843   unsigned Align = DL.getPrefTypeAlignment(Ty);
7844   MachineFunction &MF = DAG.getMachineFunction();
7845   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7846   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7847   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7848                             MachinePointerInfo::getFixedStack(MF, SSFI),
7849                             TLI.getMemValueType(DL, Ty));
7850   OpInfo.CallOperand = StackSlot;
7851 
7852   return Chain;
7853 }
7854 
7855 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7856 /// specified operand.  We prefer to assign virtual registers, to allow the
7857 /// register allocator to handle the assignment process.  However, if the asm
7858 /// uses features that we can't model on machineinstrs, we have SDISel do the
7859 /// allocation.  This produces generally horrible, but correct, code.
7860 ///
7861 ///   OpInfo describes the operand
7862 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7863 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7864                                  SDISelAsmOperandInfo &OpInfo,
7865                                  SDISelAsmOperandInfo &RefOpInfo) {
7866   LLVMContext &Context = *DAG.getContext();
7867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7868 
7869   MachineFunction &MF = DAG.getMachineFunction();
7870   SmallVector<unsigned, 4> Regs;
7871   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7872 
7873   // No work to do for memory operations.
7874   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7875     return;
7876 
7877   // If this is a constraint for a single physreg, or a constraint for a
7878   // register class, find it.
7879   unsigned AssignedReg;
7880   const TargetRegisterClass *RC;
7881   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7882       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7883   // RC is unset only on failure. Return immediately.
7884   if (!RC)
7885     return;
7886 
7887   // Get the actual register value type.  This is important, because the user
7888   // may have asked for (e.g.) the AX register in i32 type.  We need to
7889   // remember that AX is actually i16 to get the right extension.
7890   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7891 
7892   if (OpInfo.ConstraintVT != MVT::Other) {
7893     // If this is an FP operand in an integer register (or visa versa), or more
7894     // generally if the operand value disagrees with the register class we plan
7895     // to stick it in, fix the operand type.
7896     //
7897     // If this is an input value, the bitcast to the new type is done now.
7898     // Bitcast for output value is done at the end of visitInlineAsm().
7899     if ((OpInfo.Type == InlineAsm::isOutput ||
7900          OpInfo.Type == InlineAsm::isInput) &&
7901         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7902       // Try to convert to the first EVT that the reg class contains.  If the
7903       // types are identical size, use a bitcast to convert (e.g. two differing
7904       // vector types).  Note: output bitcast is done at the end of
7905       // visitInlineAsm().
7906       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7907         // Exclude indirect inputs while they are unsupported because the code
7908         // to perform the load is missing and thus OpInfo.CallOperand still
7909         // refers to the input address rather than the pointed-to value.
7910         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7911           OpInfo.CallOperand =
7912               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7913         OpInfo.ConstraintVT = RegVT;
7914         // If the operand is an FP value and we want it in integer registers,
7915         // use the corresponding integer type. This turns an f64 value into
7916         // i64, which can be passed with two i32 values on a 32-bit machine.
7917       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7918         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7919         if (OpInfo.Type == InlineAsm::isInput)
7920           OpInfo.CallOperand =
7921               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7922         OpInfo.ConstraintVT = VT;
7923       }
7924     }
7925   }
7926 
7927   // No need to allocate a matching input constraint since the constraint it's
7928   // matching to has already been allocated.
7929   if (OpInfo.isMatchingInputConstraint())
7930     return;
7931 
7932   EVT ValueVT = OpInfo.ConstraintVT;
7933   if (OpInfo.ConstraintVT == MVT::Other)
7934     ValueVT = RegVT;
7935 
7936   // Initialize NumRegs.
7937   unsigned NumRegs = 1;
7938   if (OpInfo.ConstraintVT != MVT::Other)
7939     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7940 
7941   // If this is a constraint for a specific physical register, like {r17},
7942   // assign it now.
7943 
7944   // If this associated to a specific register, initialize iterator to correct
7945   // place. If virtual, make sure we have enough registers
7946 
7947   // Initialize iterator if necessary
7948   TargetRegisterClass::iterator I = RC->begin();
7949   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7950 
7951   // Do not check for single registers.
7952   if (AssignedReg) {
7953       for (; *I != AssignedReg; ++I)
7954         assert(I != RC->end() && "AssignedReg should be member of RC");
7955   }
7956 
7957   for (; NumRegs; --NumRegs, ++I) {
7958     assert(I != RC->end() && "Ran out of registers to allocate!");
7959     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7960     Regs.push_back(R);
7961   }
7962 
7963   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7964 }
7965 
7966 static unsigned
7967 findMatchingInlineAsmOperand(unsigned OperandNo,
7968                              const std::vector<SDValue> &AsmNodeOperands) {
7969   // Scan until we find the definition we already emitted of this operand.
7970   unsigned CurOp = InlineAsm::Op_FirstOperand;
7971   for (; OperandNo; --OperandNo) {
7972     // Advance to the next operand.
7973     unsigned OpFlag =
7974         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7975     assert((InlineAsm::isRegDefKind(OpFlag) ||
7976             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7977             InlineAsm::isMemKind(OpFlag)) &&
7978            "Skipped past definitions?");
7979     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7980   }
7981   return CurOp;
7982 }
7983 
7984 namespace {
7985 
7986 class ExtraFlags {
7987   unsigned Flags = 0;
7988 
7989 public:
7990   explicit ExtraFlags(ImmutableCallSite CS) {
7991     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7992     if (IA->hasSideEffects())
7993       Flags |= InlineAsm::Extra_HasSideEffects;
7994     if (IA->isAlignStack())
7995       Flags |= InlineAsm::Extra_IsAlignStack;
7996     if (CS.isConvergent())
7997       Flags |= InlineAsm::Extra_IsConvergent;
7998     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7999   }
8000 
8001   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8002     // Ideally, we would only check against memory constraints.  However, the
8003     // meaning of an Other constraint can be target-specific and we can't easily
8004     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8005     // for Other constraints as well.
8006     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8007         OpInfo.ConstraintType == TargetLowering::C_Other) {
8008       if (OpInfo.Type == InlineAsm::isInput)
8009         Flags |= InlineAsm::Extra_MayLoad;
8010       else if (OpInfo.Type == InlineAsm::isOutput)
8011         Flags |= InlineAsm::Extra_MayStore;
8012       else if (OpInfo.Type == InlineAsm::isClobber)
8013         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8014     }
8015   }
8016 
8017   unsigned get() const { return Flags; }
8018 };
8019 
8020 } // end anonymous namespace
8021 
8022 /// visitInlineAsm - Handle a call to an InlineAsm object.
8023 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8024   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8025 
8026   /// ConstraintOperands - Information about all of the constraints.
8027   SDISelAsmOperandInfoVector ConstraintOperands;
8028 
8029   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8030   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8031       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8032 
8033   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8034   // AsmDialect, MayLoad, MayStore).
8035   bool HasSideEffect = IA->hasSideEffects();
8036   ExtraFlags ExtraInfo(CS);
8037 
8038   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8039   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8040   for (auto &T : TargetConstraints) {
8041     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8042     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8043 
8044     // Compute the value type for each operand.
8045     if (OpInfo.Type == InlineAsm::isInput ||
8046         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8047       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8048 
8049       // Process the call argument. BasicBlocks are labels, currently appearing
8050       // only in asm's.
8051       const Instruction *I = CS.getInstruction();
8052       if (isa<CallBrInst>(I) &&
8053           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8054                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8055         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8056         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8057         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8058       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8059         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8060       } else {
8061         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8062       }
8063 
8064       OpInfo.ConstraintVT =
8065           OpInfo
8066               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8067               .getSimpleVT();
8068     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8069       // The return value of the call is this value.  As such, there is no
8070       // corresponding argument.
8071       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8072       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8073         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8074             DAG.getDataLayout(), STy->getElementType(ResNo));
8075       } else {
8076         assert(ResNo == 0 && "Asm only has one result!");
8077         OpInfo.ConstraintVT =
8078             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8079       }
8080       ++ResNo;
8081     } else {
8082       OpInfo.ConstraintVT = MVT::Other;
8083     }
8084 
8085     if (!HasSideEffect)
8086       HasSideEffect = OpInfo.hasMemory(TLI);
8087 
8088     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8089     // FIXME: Could we compute this on OpInfo rather than T?
8090 
8091     // Compute the constraint code and ConstraintType to use.
8092     TLI.ComputeConstraintToUse(T, SDValue());
8093 
8094     if (T.ConstraintType == TargetLowering::C_Immediate &&
8095         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8096       // We've delayed emitting a diagnostic like the "n" constraint because
8097       // inlining could cause an integer showing up.
8098       return emitInlineAsmError(
8099           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8100                   "integer constant expression");
8101 
8102     ExtraInfo.update(T);
8103   }
8104 
8105 
8106   // We won't need to flush pending loads if this asm doesn't touch
8107   // memory and is nonvolatile.
8108   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8109 
8110   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8111   if (IsCallBr) {
8112     // If this is a callbr we need to flush pending exports since inlineasm_br
8113     // is a terminator. We need to do this before nodes are glued to
8114     // the inlineasm_br node.
8115     Chain = getControlRoot();
8116   }
8117 
8118   // Second pass over the constraints: compute which constraint option to use.
8119   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8120     // If this is an output operand with a matching input operand, look up the
8121     // matching input. If their types mismatch, e.g. one is an integer, the
8122     // other is floating point, or their sizes are different, flag it as an
8123     // error.
8124     if (OpInfo.hasMatchingInput()) {
8125       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8126       patchMatchingInput(OpInfo, Input, DAG);
8127     }
8128 
8129     // Compute the constraint code and ConstraintType to use.
8130     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8131 
8132     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8133         OpInfo.Type == InlineAsm::isClobber)
8134       continue;
8135 
8136     // If this is a memory input, and if the operand is not indirect, do what we
8137     // need to provide an address for the memory input.
8138     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8139         !OpInfo.isIndirect) {
8140       assert((OpInfo.isMultipleAlternative ||
8141               (OpInfo.Type == InlineAsm::isInput)) &&
8142              "Can only indirectify direct input operands!");
8143 
8144       // Memory operands really want the address of the value.
8145       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8146 
8147       // There is no longer a Value* corresponding to this operand.
8148       OpInfo.CallOperandVal = nullptr;
8149 
8150       // It is now an indirect operand.
8151       OpInfo.isIndirect = true;
8152     }
8153 
8154   }
8155 
8156   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8157   std::vector<SDValue> AsmNodeOperands;
8158   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8159   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8160       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8161 
8162   // If we have a !srcloc metadata node associated with it, we want to attach
8163   // this to the ultimately generated inline asm machineinstr.  To do this, we
8164   // pass in the third operand as this (potentially null) inline asm MDNode.
8165   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8166   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8167 
8168   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8169   // bits as operand 3.
8170   AsmNodeOperands.push_back(DAG.getTargetConstant(
8171       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8172 
8173   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8174   // this, assign virtual and physical registers for inputs and otput.
8175   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8176     // Assign Registers.
8177     SDISelAsmOperandInfo &RefOpInfo =
8178         OpInfo.isMatchingInputConstraint()
8179             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8180             : OpInfo;
8181     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8182 
8183     switch (OpInfo.Type) {
8184     case InlineAsm::isOutput:
8185       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8186           ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8187             OpInfo.ConstraintType == TargetLowering::C_Other) &&
8188            OpInfo.isIndirect)) {
8189         unsigned ConstraintID =
8190             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8191         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8192                "Failed to convert memory constraint code to constraint id.");
8193 
8194         // Add information to the INLINEASM node to know about this output.
8195         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8196         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8197         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8198                                                         MVT::i32));
8199         AsmNodeOperands.push_back(OpInfo.CallOperand);
8200         break;
8201       } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8202                    OpInfo.ConstraintType == TargetLowering::C_Other) &&
8203                   !OpInfo.isIndirect) ||
8204                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8205                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8206         // Otherwise, this outputs to a register (directly for C_Register /
8207         // C_RegisterClass, and a target-defined fashion for
8208         // C_Immediate/C_Other). Find a register that we can use.
8209         if (OpInfo.AssignedRegs.Regs.empty()) {
8210           emitInlineAsmError(
8211               CS, "couldn't allocate output register for constraint '" +
8212                       Twine(OpInfo.ConstraintCode) + "'");
8213           return;
8214         }
8215 
8216         // Add information to the INLINEASM node to know that this register is
8217         // set.
8218         OpInfo.AssignedRegs.AddInlineAsmOperands(
8219             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8220                                   : InlineAsm::Kind_RegDef,
8221             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8222       }
8223       break;
8224 
8225     case InlineAsm::isInput: {
8226       SDValue InOperandVal = OpInfo.CallOperand;
8227 
8228       if (OpInfo.isMatchingInputConstraint()) {
8229         // If this is required to match an output register we have already set,
8230         // just use its register.
8231         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8232                                                   AsmNodeOperands);
8233         unsigned OpFlag =
8234           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8235         if (InlineAsm::isRegDefKind(OpFlag) ||
8236             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8237           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8238           if (OpInfo.isIndirect) {
8239             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8240             emitInlineAsmError(CS, "inline asm not supported yet:"
8241                                    " don't know how to handle tied "
8242                                    "indirect register inputs");
8243             return;
8244           }
8245 
8246           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8247           SmallVector<unsigned, 4> Regs;
8248 
8249           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8250             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8251             MachineRegisterInfo &RegInfo =
8252                 DAG.getMachineFunction().getRegInfo();
8253             for (unsigned i = 0; i != NumRegs; ++i)
8254               Regs.push_back(RegInfo.createVirtualRegister(RC));
8255           } else {
8256             emitInlineAsmError(CS, "inline asm error: This value type register "
8257                                    "class is not natively supported!");
8258             return;
8259           }
8260 
8261           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8262 
8263           SDLoc dl = getCurSDLoc();
8264           // Use the produced MatchedRegs object to
8265           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8266                                     CS.getInstruction());
8267           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8268                                            true, OpInfo.getMatchedOperand(), dl,
8269                                            DAG, AsmNodeOperands);
8270           break;
8271         }
8272 
8273         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8274         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8275                "Unexpected number of operands");
8276         // Add information to the INLINEASM node to know about this input.
8277         // See InlineAsm.h isUseOperandTiedToDef.
8278         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8279         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8280                                                     OpInfo.getMatchedOperand());
8281         AsmNodeOperands.push_back(DAG.getTargetConstant(
8282             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8283         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8284         break;
8285       }
8286 
8287       // Treat indirect 'X' constraint as memory.
8288       if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8289            OpInfo.ConstraintType == TargetLowering::C_Other) &&
8290           OpInfo.isIndirect)
8291         OpInfo.ConstraintType = TargetLowering::C_Memory;
8292 
8293       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8294           OpInfo.ConstraintType == TargetLowering::C_Other) {
8295         std::vector<SDValue> Ops;
8296         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8297                                           Ops, DAG);
8298         if (Ops.empty()) {
8299           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8300             if (isa<ConstantSDNode>(InOperandVal)) {
8301               emitInlineAsmError(CS, "value out of range for constraint '" +
8302                                  Twine(OpInfo.ConstraintCode) + "'");
8303               return;
8304             }
8305 
8306           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8307                                      Twine(OpInfo.ConstraintCode) + "'");
8308           return;
8309         }
8310 
8311         // Add information to the INLINEASM node to know about this input.
8312         unsigned ResOpType =
8313           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8314         AsmNodeOperands.push_back(DAG.getTargetConstant(
8315             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8316         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8317         break;
8318       }
8319 
8320       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8321         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8322         assert(InOperandVal.getValueType() ==
8323                    TLI.getPointerTy(DAG.getDataLayout()) &&
8324                "Memory operands expect pointer values");
8325 
8326         unsigned ConstraintID =
8327             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8328         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8329                "Failed to convert memory constraint code to constraint id.");
8330 
8331         // Add information to the INLINEASM node to know about this input.
8332         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8333         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8334         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8335                                                         getCurSDLoc(),
8336                                                         MVT::i32));
8337         AsmNodeOperands.push_back(InOperandVal);
8338         break;
8339       }
8340 
8341       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8342               OpInfo.ConstraintType == TargetLowering::C_Register ||
8343               OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8344              "Unknown constraint type!");
8345 
8346       // TODO: Support this.
8347       if (OpInfo.isIndirect) {
8348         emitInlineAsmError(
8349             CS, "Don't know how to handle indirect register inputs yet "
8350                 "for constraint '" +
8351                     Twine(OpInfo.ConstraintCode) + "'");
8352         return;
8353       }
8354 
8355       // Copy the input into the appropriate registers.
8356       if (OpInfo.AssignedRegs.Regs.empty()) {
8357         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8358                                    Twine(OpInfo.ConstraintCode) + "'");
8359         return;
8360       }
8361 
8362       SDLoc dl = getCurSDLoc();
8363 
8364       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8365                                         Chain, &Flag, CS.getInstruction());
8366 
8367       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8368                                                dl, DAG, AsmNodeOperands);
8369       break;
8370     }
8371     case InlineAsm::isClobber:
8372       // Add the clobbered value to the operand list, so that the register
8373       // allocator is aware that the physreg got clobbered.
8374       if (!OpInfo.AssignedRegs.Regs.empty())
8375         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8376                                                  false, 0, getCurSDLoc(), DAG,
8377                                                  AsmNodeOperands);
8378       break;
8379     }
8380   }
8381 
8382   // Finish up input operands.  Set the input chain and add the flag last.
8383   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8384   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8385 
8386   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8387   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8388                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8389   Flag = Chain.getValue(1);
8390 
8391   // Do additional work to generate outputs.
8392 
8393   SmallVector<EVT, 1> ResultVTs;
8394   SmallVector<SDValue, 1> ResultValues;
8395   SmallVector<SDValue, 8> OutChains;
8396 
8397   llvm::Type *CSResultType = CS.getType();
8398   ArrayRef<Type *> ResultTypes;
8399   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8400     ResultTypes = StructResult->elements();
8401   else if (!CSResultType->isVoidTy())
8402     ResultTypes = makeArrayRef(CSResultType);
8403 
8404   auto CurResultType = ResultTypes.begin();
8405   auto handleRegAssign = [&](SDValue V) {
8406     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8407     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8408     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8409     ++CurResultType;
8410     // If the type of the inline asm call site return value is different but has
8411     // same size as the type of the asm output bitcast it.  One example of this
8412     // is for vectors with different width / number of elements.  This can
8413     // happen for register classes that can contain multiple different value
8414     // types.  The preg or vreg allocated may not have the same VT as was
8415     // expected.
8416     //
8417     // This can also happen for a return value that disagrees with the register
8418     // class it is put in, eg. a double in a general-purpose register on a
8419     // 32-bit machine.
8420     if (ResultVT != V.getValueType() &&
8421         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8422       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8423     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8424              V.getValueType().isInteger()) {
8425       // If a result value was tied to an input value, the computed result
8426       // may have a wider width than the expected result.  Extract the
8427       // relevant portion.
8428       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8429     }
8430     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8431     ResultVTs.push_back(ResultVT);
8432     ResultValues.push_back(V);
8433   };
8434 
8435   // Deal with output operands.
8436   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8437     if (OpInfo.Type == InlineAsm::isOutput) {
8438       SDValue Val;
8439       // Skip trivial output operands.
8440       if (OpInfo.AssignedRegs.Regs.empty())
8441         continue;
8442 
8443       switch (OpInfo.ConstraintType) {
8444       case TargetLowering::C_Register:
8445       case TargetLowering::C_RegisterClass:
8446         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8447             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8448         break;
8449       case TargetLowering::C_Immediate:
8450       case TargetLowering::C_Other:
8451         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8452                                               OpInfo, DAG);
8453         break;
8454       case TargetLowering::C_Memory:
8455         break; // Already handled.
8456       case TargetLowering::C_Unknown:
8457         assert(false && "Unexpected unknown constraint");
8458       }
8459 
8460       // Indirect output manifest as stores. Record output chains.
8461       if (OpInfo.isIndirect) {
8462         const Value *Ptr = OpInfo.CallOperandVal;
8463         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8464         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8465                                      MachinePointerInfo(Ptr));
8466         OutChains.push_back(Store);
8467       } else {
8468         // generate CopyFromRegs to associated registers.
8469         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8470         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8471           for (const SDValue &V : Val->op_values())
8472             handleRegAssign(V);
8473         } else
8474           handleRegAssign(Val);
8475       }
8476     }
8477   }
8478 
8479   // Set results.
8480   if (!ResultValues.empty()) {
8481     assert(CurResultType == ResultTypes.end() &&
8482            "Mismatch in number of ResultTypes");
8483     assert(ResultValues.size() == ResultTypes.size() &&
8484            "Mismatch in number of output operands in asm result");
8485 
8486     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8487                             DAG.getVTList(ResultVTs), ResultValues);
8488     setValue(CS.getInstruction(), V);
8489   }
8490 
8491   // Collect store chains.
8492   if (!OutChains.empty())
8493     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8494 
8495   // Only Update Root if inline assembly has a memory effect.
8496   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8497     DAG.setRoot(Chain);
8498 }
8499 
8500 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8501                                              const Twine &Message) {
8502   LLVMContext &Ctx = *DAG.getContext();
8503   Ctx.emitError(CS.getInstruction(), Message);
8504 
8505   // Make sure we leave the DAG in a valid state
8506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8507   SmallVector<EVT, 1> ValueVTs;
8508   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8509 
8510   if (ValueVTs.empty())
8511     return;
8512 
8513   SmallVector<SDValue, 1> Ops;
8514   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8515     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8516 
8517   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8518 }
8519 
8520 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8521   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8522                           MVT::Other, getRoot(),
8523                           getValue(I.getArgOperand(0)),
8524                           DAG.getSrcValue(I.getArgOperand(0))));
8525 }
8526 
8527 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8529   const DataLayout &DL = DAG.getDataLayout();
8530   SDValue V = DAG.getVAArg(
8531       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8532       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8533       DL.getABITypeAlignment(I.getType()));
8534   DAG.setRoot(V.getValue(1));
8535 
8536   if (I.getType()->isPointerTy())
8537     V = DAG.getPtrExtOrTrunc(
8538         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8539   setValue(&I, V);
8540 }
8541 
8542 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8543   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8544                           MVT::Other, getRoot(),
8545                           getValue(I.getArgOperand(0)),
8546                           DAG.getSrcValue(I.getArgOperand(0))));
8547 }
8548 
8549 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8550   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8551                           MVT::Other, getRoot(),
8552                           getValue(I.getArgOperand(0)),
8553                           getValue(I.getArgOperand(1)),
8554                           DAG.getSrcValue(I.getArgOperand(0)),
8555                           DAG.getSrcValue(I.getArgOperand(1))));
8556 }
8557 
8558 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8559                                                     const Instruction &I,
8560                                                     SDValue Op) {
8561   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8562   if (!Range)
8563     return Op;
8564 
8565   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8566   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8567     return Op;
8568 
8569   APInt Lo = CR.getUnsignedMin();
8570   if (!Lo.isMinValue())
8571     return Op;
8572 
8573   APInt Hi = CR.getUnsignedMax();
8574   unsigned Bits = std::max(Hi.getActiveBits(),
8575                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8576 
8577   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8578 
8579   SDLoc SL = getCurSDLoc();
8580 
8581   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8582                              DAG.getValueType(SmallVT));
8583   unsigned NumVals = Op.getNode()->getNumValues();
8584   if (NumVals == 1)
8585     return ZExt;
8586 
8587   SmallVector<SDValue, 4> Ops;
8588 
8589   Ops.push_back(ZExt);
8590   for (unsigned I = 1; I != NumVals; ++I)
8591     Ops.push_back(Op.getValue(I));
8592 
8593   return DAG.getMergeValues(Ops, SL);
8594 }
8595 
8596 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8597 /// the call being lowered.
8598 ///
8599 /// This is a helper for lowering intrinsics that follow a target calling
8600 /// convention or require stack pointer adjustment. Only a subset of the
8601 /// intrinsic's operands need to participate in the calling convention.
8602 void SelectionDAGBuilder::populateCallLoweringInfo(
8603     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8604     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8605     bool IsPatchPoint) {
8606   TargetLowering::ArgListTy Args;
8607   Args.reserve(NumArgs);
8608 
8609   // Populate the argument list.
8610   // Attributes for args start at offset 1, after the return attribute.
8611   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8612        ArgI != ArgE; ++ArgI) {
8613     const Value *V = Call->getOperand(ArgI);
8614 
8615     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8616 
8617     TargetLowering::ArgListEntry Entry;
8618     Entry.Node = getValue(V);
8619     Entry.Ty = V->getType();
8620     Entry.setAttributes(Call, ArgI);
8621     Args.push_back(Entry);
8622   }
8623 
8624   CLI.setDebugLoc(getCurSDLoc())
8625       .setChain(getRoot())
8626       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8627       .setDiscardResult(Call->use_empty())
8628       .setIsPatchPoint(IsPatchPoint);
8629 }
8630 
8631 /// Add a stack map intrinsic call's live variable operands to a stackmap
8632 /// or patchpoint target node's operand list.
8633 ///
8634 /// Constants are converted to TargetConstants purely as an optimization to
8635 /// avoid constant materialization and register allocation.
8636 ///
8637 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8638 /// generate addess computation nodes, and so FinalizeISel can convert the
8639 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8640 /// address materialization and register allocation, but may also be required
8641 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8642 /// alloca in the entry block, then the runtime may assume that the alloca's
8643 /// StackMap location can be read immediately after compilation and that the
8644 /// location is valid at any point during execution (this is similar to the
8645 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8646 /// only available in a register, then the runtime would need to trap when
8647 /// execution reaches the StackMap in order to read the alloca's location.
8648 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8649                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8650                                 SelectionDAGBuilder &Builder) {
8651   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8652     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8653     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8654       Ops.push_back(
8655         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8656       Ops.push_back(
8657         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8658     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8659       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8660       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8661           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8662     } else
8663       Ops.push_back(OpVal);
8664   }
8665 }
8666 
8667 /// Lower llvm.experimental.stackmap directly to its target opcode.
8668 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8669   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8670   //                                  [live variables...])
8671 
8672   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8673 
8674   SDValue Chain, InFlag, Callee, NullPtr;
8675   SmallVector<SDValue, 32> Ops;
8676 
8677   SDLoc DL = getCurSDLoc();
8678   Callee = getValue(CI.getCalledValue());
8679   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8680 
8681   // The stackmap intrinsic only records the live variables (the arguemnts
8682   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8683   // intrinsic, this won't be lowered to a function call. This means we don't
8684   // have to worry about calling conventions and target specific lowering code.
8685   // Instead we perform the call lowering right here.
8686   //
8687   // chain, flag = CALLSEQ_START(chain, 0, 0)
8688   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8689   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8690   //
8691   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8692   InFlag = Chain.getValue(1);
8693 
8694   // Add the <id> and <numBytes> constants.
8695   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8696   Ops.push_back(DAG.getTargetConstant(
8697                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8698   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8699   Ops.push_back(DAG.getTargetConstant(
8700                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8701                   MVT::i32));
8702 
8703   // Push live variables for the stack map.
8704   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8705 
8706   // We are not pushing any register mask info here on the operands list,
8707   // because the stackmap doesn't clobber anything.
8708 
8709   // Push the chain and the glue flag.
8710   Ops.push_back(Chain);
8711   Ops.push_back(InFlag);
8712 
8713   // Create the STACKMAP node.
8714   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8715   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8716   Chain = SDValue(SM, 0);
8717   InFlag = Chain.getValue(1);
8718 
8719   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8720 
8721   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8722 
8723   // Set the root to the target-lowered call chain.
8724   DAG.setRoot(Chain);
8725 
8726   // Inform the Frame Information that we have a stackmap in this function.
8727   FuncInfo.MF->getFrameInfo().setHasStackMap();
8728 }
8729 
8730 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8731 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8732                                           const BasicBlock *EHPadBB) {
8733   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8734   //                                                 i32 <numBytes>,
8735   //                                                 i8* <target>,
8736   //                                                 i32 <numArgs>,
8737   //                                                 [Args...],
8738   //                                                 [live variables...])
8739 
8740   CallingConv::ID CC = CS.getCallingConv();
8741   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8742   bool HasDef = !CS->getType()->isVoidTy();
8743   SDLoc dl = getCurSDLoc();
8744   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8745 
8746   // Handle immediate and symbolic callees.
8747   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8748     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8749                                    /*isTarget=*/true);
8750   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8751     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8752                                          SDLoc(SymbolicCallee),
8753                                          SymbolicCallee->getValueType(0));
8754 
8755   // Get the real number of arguments participating in the call <numArgs>
8756   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8757   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8758 
8759   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8760   // Intrinsics include all meta-operands up to but not including CC.
8761   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8762   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8763          "Not enough arguments provided to the patchpoint intrinsic");
8764 
8765   // For AnyRegCC the arguments are lowered later on manually.
8766   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8767   Type *ReturnTy =
8768     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8769 
8770   TargetLowering::CallLoweringInfo CLI(DAG);
8771   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8772                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8773   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8774 
8775   SDNode *CallEnd = Result.second.getNode();
8776   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8777     CallEnd = CallEnd->getOperand(0).getNode();
8778 
8779   /// Get a call instruction from the call sequence chain.
8780   /// Tail calls are not allowed.
8781   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8782          "Expected a callseq node.");
8783   SDNode *Call = CallEnd->getOperand(0).getNode();
8784   bool HasGlue = Call->getGluedNode();
8785 
8786   // Replace the target specific call node with the patchable intrinsic.
8787   SmallVector<SDValue, 8> Ops;
8788 
8789   // Add the <id> and <numBytes> constants.
8790   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8791   Ops.push_back(DAG.getTargetConstant(
8792                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8793   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8794   Ops.push_back(DAG.getTargetConstant(
8795                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8796                   MVT::i32));
8797 
8798   // Add the callee.
8799   Ops.push_back(Callee);
8800 
8801   // Adjust <numArgs> to account for any arguments that have been passed on the
8802   // stack instead.
8803   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8804   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8805   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8806   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8807 
8808   // Add the calling convention
8809   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8810 
8811   // Add the arguments we omitted previously. The register allocator should
8812   // place these in any free register.
8813   if (IsAnyRegCC)
8814     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8815       Ops.push_back(getValue(CS.getArgument(i)));
8816 
8817   // Push the arguments from the call instruction up to the register mask.
8818   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8819   Ops.append(Call->op_begin() + 2, e);
8820 
8821   // Push live variables for the stack map.
8822   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8823 
8824   // Push the register mask info.
8825   if (HasGlue)
8826     Ops.push_back(*(Call->op_end()-2));
8827   else
8828     Ops.push_back(*(Call->op_end()-1));
8829 
8830   // Push the chain (this is originally the first operand of the call, but
8831   // becomes now the last or second to last operand).
8832   Ops.push_back(*(Call->op_begin()));
8833 
8834   // Push the glue flag (last operand).
8835   if (HasGlue)
8836     Ops.push_back(*(Call->op_end()-1));
8837 
8838   SDVTList NodeTys;
8839   if (IsAnyRegCC && HasDef) {
8840     // Create the return types based on the intrinsic definition
8841     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8842     SmallVector<EVT, 3> ValueVTs;
8843     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8844     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8845 
8846     // There is always a chain and a glue type at the end
8847     ValueVTs.push_back(MVT::Other);
8848     ValueVTs.push_back(MVT::Glue);
8849     NodeTys = DAG.getVTList(ValueVTs);
8850   } else
8851     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8852 
8853   // Replace the target specific call node with a PATCHPOINT node.
8854   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8855                                          dl, NodeTys, Ops);
8856 
8857   // Update the NodeMap.
8858   if (HasDef) {
8859     if (IsAnyRegCC)
8860       setValue(CS.getInstruction(), SDValue(MN, 0));
8861     else
8862       setValue(CS.getInstruction(), Result.first);
8863   }
8864 
8865   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8866   // call sequence. Furthermore the location of the chain and glue can change
8867   // when the AnyReg calling convention is used and the intrinsic returns a
8868   // value.
8869   if (IsAnyRegCC && HasDef) {
8870     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8871     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8872     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8873   } else
8874     DAG.ReplaceAllUsesWith(Call, MN);
8875   DAG.DeleteNode(Call);
8876 
8877   // Inform the Frame Information that we have a patchpoint in this function.
8878   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8879 }
8880 
8881 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8882                                             unsigned Intrinsic) {
8883   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8884   SDValue Op1 = getValue(I.getArgOperand(0));
8885   SDValue Op2;
8886   if (I.getNumArgOperands() > 1)
8887     Op2 = getValue(I.getArgOperand(1));
8888   SDLoc dl = getCurSDLoc();
8889   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8890   SDValue Res;
8891   FastMathFlags FMF;
8892   if (isa<FPMathOperator>(I))
8893     FMF = I.getFastMathFlags();
8894 
8895   switch (Intrinsic) {
8896   case Intrinsic::experimental_vector_reduce_v2_fadd:
8897     if (FMF.allowReassoc())
8898       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8899                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8900     else
8901       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8902     break;
8903   case Intrinsic::experimental_vector_reduce_v2_fmul:
8904     if (FMF.allowReassoc())
8905       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8906                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8907     else
8908       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8909     break;
8910   case Intrinsic::experimental_vector_reduce_add:
8911     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8912     break;
8913   case Intrinsic::experimental_vector_reduce_mul:
8914     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8915     break;
8916   case Intrinsic::experimental_vector_reduce_and:
8917     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8918     break;
8919   case Intrinsic::experimental_vector_reduce_or:
8920     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8921     break;
8922   case Intrinsic::experimental_vector_reduce_xor:
8923     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8924     break;
8925   case Intrinsic::experimental_vector_reduce_smax:
8926     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8927     break;
8928   case Intrinsic::experimental_vector_reduce_smin:
8929     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8930     break;
8931   case Intrinsic::experimental_vector_reduce_umax:
8932     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8933     break;
8934   case Intrinsic::experimental_vector_reduce_umin:
8935     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8936     break;
8937   case Intrinsic::experimental_vector_reduce_fmax:
8938     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8939     break;
8940   case Intrinsic::experimental_vector_reduce_fmin:
8941     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8942     break;
8943   default:
8944     llvm_unreachable("Unhandled vector reduce intrinsic");
8945   }
8946   setValue(&I, Res);
8947 }
8948 
8949 /// Returns an AttributeList representing the attributes applied to the return
8950 /// value of the given call.
8951 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8952   SmallVector<Attribute::AttrKind, 2> Attrs;
8953   if (CLI.RetSExt)
8954     Attrs.push_back(Attribute::SExt);
8955   if (CLI.RetZExt)
8956     Attrs.push_back(Attribute::ZExt);
8957   if (CLI.IsInReg)
8958     Attrs.push_back(Attribute::InReg);
8959 
8960   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8961                             Attrs);
8962 }
8963 
8964 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8965 /// implementation, which just calls LowerCall.
8966 /// FIXME: When all targets are
8967 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8968 std::pair<SDValue, SDValue>
8969 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8970   // Handle the incoming return values from the call.
8971   CLI.Ins.clear();
8972   Type *OrigRetTy = CLI.RetTy;
8973   SmallVector<EVT, 4> RetTys;
8974   SmallVector<uint64_t, 4> Offsets;
8975   auto &DL = CLI.DAG.getDataLayout();
8976   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8977 
8978   if (CLI.IsPostTypeLegalization) {
8979     // If we are lowering a libcall after legalization, split the return type.
8980     SmallVector<EVT, 4> OldRetTys;
8981     SmallVector<uint64_t, 4> OldOffsets;
8982     RetTys.swap(OldRetTys);
8983     Offsets.swap(OldOffsets);
8984 
8985     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8986       EVT RetVT = OldRetTys[i];
8987       uint64_t Offset = OldOffsets[i];
8988       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8989       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8990       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8991       RetTys.append(NumRegs, RegisterVT);
8992       for (unsigned j = 0; j != NumRegs; ++j)
8993         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8994     }
8995   }
8996 
8997   SmallVector<ISD::OutputArg, 4> Outs;
8998   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8999 
9000   bool CanLowerReturn =
9001       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9002                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9003 
9004   SDValue DemoteStackSlot;
9005   int DemoteStackIdx = -100;
9006   if (!CanLowerReturn) {
9007     // FIXME: equivalent assert?
9008     // assert(!CS.hasInAllocaArgument() &&
9009     //        "sret demotion is incompatible with inalloca");
9010     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9011     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9012     MachineFunction &MF = CLI.DAG.getMachineFunction();
9013     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9014     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9015                                               DL.getAllocaAddrSpace());
9016 
9017     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9018     ArgListEntry Entry;
9019     Entry.Node = DemoteStackSlot;
9020     Entry.Ty = StackSlotPtrType;
9021     Entry.IsSExt = false;
9022     Entry.IsZExt = false;
9023     Entry.IsInReg = false;
9024     Entry.IsSRet = true;
9025     Entry.IsNest = false;
9026     Entry.IsByVal = false;
9027     Entry.IsReturned = false;
9028     Entry.IsSwiftSelf = false;
9029     Entry.IsSwiftError = false;
9030     Entry.Alignment = Align;
9031     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9032     CLI.NumFixedArgs += 1;
9033     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9034 
9035     // sret demotion isn't compatible with tail-calls, since the sret argument
9036     // points into the callers stack frame.
9037     CLI.IsTailCall = false;
9038   } else {
9039     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9040         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9041     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9042       ISD::ArgFlagsTy Flags;
9043       if (NeedsRegBlock) {
9044         Flags.setInConsecutiveRegs();
9045         if (I == RetTys.size() - 1)
9046           Flags.setInConsecutiveRegsLast();
9047       }
9048       EVT VT = RetTys[I];
9049       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9050                                                      CLI.CallConv, VT);
9051       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9052                                                        CLI.CallConv, VT);
9053       for (unsigned i = 0; i != NumRegs; ++i) {
9054         ISD::InputArg MyFlags;
9055         MyFlags.Flags = Flags;
9056         MyFlags.VT = RegisterVT;
9057         MyFlags.ArgVT = VT;
9058         MyFlags.Used = CLI.IsReturnValueUsed;
9059         if (CLI.RetTy->isPointerTy()) {
9060           MyFlags.Flags.setPointer();
9061           MyFlags.Flags.setPointerAddrSpace(
9062               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9063         }
9064         if (CLI.RetSExt)
9065           MyFlags.Flags.setSExt();
9066         if (CLI.RetZExt)
9067           MyFlags.Flags.setZExt();
9068         if (CLI.IsInReg)
9069           MyFlags.Flags.setInReg();
9070         CLI.Ins.push_back(MyFlags);
9071       }
9072     }
9073   }
9074 
9075   // We push in swifterror return as the last element of CLI.Ins.
9076   ArgListTy &Args = CLI.getArgs();
9077   if (supportSwiftError()) {
9078     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9079       if (Args[i].IsSwiftError) {
9080         ISD::InputArg MyFlags;
9081         MyFlags.VT = getPointerTy(DL);
9082         MyFlags.ArgVT = EVT(getPointerTy(DL));
9083         MyFlags.Flags.setSwiftError();
9084         CLI.Ins.push_back(MyFlags);
9085       }
9086     }
9087   }
9088 
9089   // Handle all of the outgoing arguments.
9090   CLI.Outs.clear();
9091   CLI.OutVals.clear();
9092   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9093     SmallVector<EVT, 4> ValueVTs;
9094     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9095     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9096     Type *FinalType = Args[i].Ty;
9097     if (Args[i].IsByVal)
9098       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9099     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9100         FinalType, CLI.CallConv, CLI.IsVarArg);
9101     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9102          ++Value) {
9103       EVT VT = ValueVTs[Value];
9104       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9105       SDValue Op = SDValue(Args[i].Node.getNode(),
9106                            Args[i].Node.getResNo() + Value);
9107       ISD::ArgFlagsTy Flags;
9108 
9109       // Certain targets (such as MIPS), may have a different ABI alignment
9110       // for a type depending on the context. Give the target a chance to
9111       // specify the alignment it wants.
9112       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9113 
9114       if (Args[i].Ty->isPointerTy()) {
9115         Flags.setPointer();
9116         Flags.setPointerAddrSpace(
9117             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9118       }
9119       if (Args[i].IsZExt)
9120         Flags.setZExt();
9121       if (Args[i].IsSExt)
9122         Flags.setSExt();
9123       if (Args[i].IsInReg) {
9124         // If we are using vectorcall calling convention, a structure that is
9125         // passed InReg - is surely an HVA
9126         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9127             isa<StructType>(FinalType)) {
9128           // The first value of a structure is marked
9129           if (0 == Value)
9130             Flags.setHvaStart();
9131           Flags.setHva();
9132         }
9133         // Set InReg Flag
9134         Flags.setInReg();
9135       }
9136       if (Args[i].IsSRet)
9137         Flags.setSRet();
9138       if (Args[i].IsSwiftSelf)
9139         Flags.setSwiftSelf();
9140       if (Args[i].IsSwiftError)
9141         Flags.setSwiftError();
9142       if (Args[i].IsByVal)
9143         Flags.setByVal();
9144       if (Args[i].IsInAlloca) {
9145         Flags.setInAlloca();
9146         // Set the byval flag for CCAssignFn callbacks that don't know about
9147         // inalloca.  This way we can know how many bytes we should've allocated
9148         // and how many bytes a callee cleanup function will pop.  If we port
9149         // inalloca to more targets, we'll have to add custom inalloca handling
9150         // in the various CC lowering callbacks.
9151         Flags.setByVal();
9152       }
9153       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9154         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9155         Type *ElementTy = Ty->getElementType();
9156 
9157         unsigned FrameSize = DL.getTypeAllocSize(
9158             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9159         Flags.setByValSize(FrameSize);
9160 
9161         // info is not there but there are cases it cannot get right.
9162         unsigned FrameAlign;
9163         if (Args[i].Alignment)
9164           FrameAlign = Args[i].Alignment;
9165         else
9166           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9167         Flags.setByValAlign(Align(FrameAlign));
9168       }
9169       if (Args[i].IsNest)
9170         Flags.setNest();
9171       if (NeedsRegBlock)
9172         Flags.setInConsecutiveRegs();
9173       Flags.setOrigAlign(OriginalAlignment);
9174 
9175       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9176                                                  CLI.CallConv, VT);
9177       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9178                                                         CLI.CallConv, VT);
9179       SmallVector<SDValue, 4> Parts(NumParts);
9180       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9181 
9182       if (Args[i].IsSExt)
9183         ExtendKind = ISD::SIGN_EXTEND;
9184       else if (Args[i].IsZExt)
9185         ExtendKind = ISD::ZERO_EXTEND;
9186 
9187       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9188       // for now.
9189       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9190           CanLowerReturn) {
9191         assert((CLI.RetTy == Args[i].Ty ||
9192                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9193                  CLI.RetTy->getPointerAddressSpace() ==
9194                      Args[i].Ty->getPointerAddressSpace())) &&
9195                RetTys.size() == NumValues && "unexpected use of 'returned'");
9196         // Before passing 'returned' to the target lowering code, ensure that
9197         // either the register MVT and the actual EVT are the same size or that
9198         // the return value and argument are extended in the same way; in these
9199         // cases it's safe to pass the argument register value unchanged as the
9200         // return register value (although it's at the target's option whether
9201         // to do so)
9202         // TODO: allow code generation to take advantage of partially preserved
9203         // registers rather than clobbering the entire register when the
9204         // parameter extension method is not compatible with the return
9205         // extension method
9206         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9207             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9208              CLI.RetZExt == Args[i].IsZExt))
9209           Flags.setReturned();
9210       }
9211 
9212       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9213                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9214 
9215       for (unsigned j = 0; j != NumParts; ++j) {
9216         // if it isn't first piece, alignment must be 1
9217         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9218                                i < CLI.NumFixedArgs,
9219                                i, j*Parts[j].getValueType().getStoreSize());
9220         if (NumParts > 1 && j == 0)
9221           MyFlags.Flags.setSplit();
9222         else if (j != 0) {
9223           MyFlags.Flags.setOrigAlign(Align::None());
9224           if (j == NumParts - 1)
9225             MyFlags.Flags.setSplitEnd();
9226         }
9227 
9228         CLI.Outs.push_back(MyFlags);
9229         CLI.OutVals.push_back(Parts[j]);
9230       }
9231 
9232       if (NeedsRegBlock && Value == NumValues - 1)
9233         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9234     }
9235   }
9236 
9237   SmallVector<SDValue, 4> InVals;
9238   CLI.Chain = LowerCall(CLI, InVals);
9239 
9240   // Update CLI.InVals to use outside of this function.
9241   CLI.InVals = InVals;
9242 
9243   // Verify that the target's LowerCall behaved as expected.
9244   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9245          "LowerCall didn't return a valid chain!");
9246   assert((!CLI.IsTailCall || InVals.empty()) &&
9247          "LowerCall emitted a return value for a tail call!");
9248   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9249          "LowerCall didn't emit the correct number of values!");
9250 
9251   // For a tail call, the return value is merely live-out and there aren't
9252   // any nodes in the DAG representing it. Return a special value to
9253   // indicate that a tail call has been emitted and no more Instructions
9254   // should be processed in the current block.
9255   if (CLI.IsTailCall) {
9256     CLI.DAG.setRoot(CLI.Chain);
9257     return std::make_pair(SDValue(), SDValue());
9258   }
9259 
9260 #ifndef NDEBUG
9261   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9262     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9263     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9264            "LowerCall emitted a value with the wrong type!");
9265   }
9266 #endif
9267 
9268   SmallVector<SDValue, 4> ReturnValues;
9269   if (!CanLowerReturn) {
9270     // The instruction result is the result of loading from the
9271     // hidden sret parameter.
9272     SmallVector<EVT, 1> PVTs;
9273     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9274 
9275     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9276     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9277     EVT PtrVT = PVTs[0];
9278 
9279     unsigned NumValues = RetTys.size();
9280     ReturnValues.resize(NumValues);
9281     SmallVector<SDValue, 4> Chains(NumValues);
9282 
9283     // An aggregate return value cannot wrap around the address space, so
9284     // offsets to its parts don't wrap either.
9285     SDNodeFlags Flags;
9286     Flags.setNoUnsignedWrap(true);
9287 
9288     for (unsigned i = 0; i < NumValues; ++i) {
9289       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9290                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9291                                                         PtrVT), Flags);
9292       SDValue L = CLI.DAG.getLoad(
9293           RetTys[i], CLI.DL, CLI.Chain, Add,
9294           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9295                                             DemoteStackIdx, Offsets[i]),
9296           /* Alignment = */ 1);
9297       ReturnValues[i] = L;
9298       Chains[i] = L.getValue(1);
9299     }
9300 
9301     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9302   } else {
9303     // Collect the legal value parts into potentially illegal values
9304     // that correspond to the original function's return values.
9305     Optional<ISD::NodeType> AssertOp;
9306     if (CLI.RetSExt)
9307       AssertOp = ISD::AssertSext;
9308     else if (CLI.RetZExt)
9309       AssertOp = ISD::AssertZext;
9310     unsigned CurReg = 0;
9311     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9312       EVT VT = RetTys[I];
9313       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9314                                                      CLI.CallConv, VT);
9315       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9316                                                        CLI.CallConv, VT);
9317 
9318       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9319                                               NumRegs, RegisterVT, VT, nullptr,
9320                                               CLI.CallConv, AssertOp));
9321       CurReg += NumRegs;
9322     }
9323 
9324     // For a function returning void, there is no return value. We can't create
9325     // such a node, so we just return a null return value in that case. In
9326     // that case, nothing will actually look at the value.
9327     if (ReturnValues.empty())
9328       return std::make_pair(SDValue(), CLI.Chain);
9329   }
9330 
9331   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9332                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9333   return std::make_pair(Res, CLI.Chain);
9334 }
9335 
9336 void TargetLowering::LowerOperationWrapper(SDNode *N,
9337                                            SmallVectorImpl<SDValue> &Results,
9338                                            SelectionDAG &DAG) const {
9339   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9340     Results.push_back(Res);
9341 }
9342 
9343 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9344   llvm_unreachable("LowerOperation not implemented for this target!");
9345 }
9346 
9347 void
9348 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9349   SDValue Op = getNonRegisterValue(V);
9350   assert((Op.getOpcode() != ISD::CopyFromReg ||
9351           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9352          "Copy from a reg to the same reg!");
9353   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9354 
9355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9356   // If this is an InlineAsm we have to match the registers required, not the
9357   // notional registers required by the type.
9358 
9359   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9360                    None); // This is not an ABI copy.
9361   SDValue Chain = DAG.getEntryNode();
9362 
9363   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9364                               FuncInfo.PreferredExtendType.end())
9365                                  ? ISD::ANY_EXTEND
9366                                  : FuncInfo.PreferredExtendType[V];
9367   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9368   PendingExports.push_back(Chain);
9369 }
9370 
9371 #include "llvm/CodeGen/SelectionDAGISel.h"
9372 
9373 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9374 /// entry block, return true.  This includes arguments used by switches, since
9375 /// the switch may expand into multiple basic blocks.
9376 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9377   // With FastISel active, we may be splitting blocks, so force creation
9378   // of virtual registers for all non-dead arguments.
9379   if (FastISel)
9380     return A->use_empty();
9381 
9382   const BasicBlock &Entry = A->getParent()->front();
9383   for (const User *U : A->users())
9384     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9385       return false;  // Use not in entry block.
9386 
9387   return true;
9388 }
9389 
9390 using ArgCopyElisionMapTy =
9391     DenseMap<const Argument *,
9392              std::pair<const AllocaInst *, const StoreInst *>>;
9393 
9394 /// Scan the entry block of the function in FuncInfo for arguments that look
9395 /// like copies into a local alloca. Record any copied arguments in
9396 /// ArgCopyElisionCandidates.
9397 static void
9398 findArgumentCopyElisionCandidates(const DataLayout &DL,
9399                                   FunctionLoweringInfo *FuncInfo,
9400                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9401   // Record the state of every static alloca used in the entry block. Argument
9402   // allocas are all used in the entry block, so we need approximately as many
9403   // entries as we have arguments.
9404   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9405   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9406   unsigned NumArgs = FuncInfo->Fn->arg_size();
9407   StaticAllocas.reserve(NumArgs * 2);
9408 
9409   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9410     if (!V)
9411       return nullptr;
9412     V = V->stripPointerCasts();
9413     const auto *AI = dyn_cast<AllocaInst>(V);
9414     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9415       return nullptr;
9416     auto Iter = StaticAllocas.insert({AI, Unknown});
9417     return &Iter.first->second;
9418   };
9419 
9420   // Look for stores of arguments to static allocas. Look through bitcasts and
9421   // GEPs to handle type coercions, as long as the alloca is fully initialized
9422   // by the store. Any non-store use of an alloca escapes it and any subsequent
9423   // unanalyzed store might write it.
9424   // FIXME: Handle structs initialized with multiple stores.
9425   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9426     // Look for stores, and handle non-store uses conservatively.
9427     const auto *SI = dyn_cast<StoreInst>(&I);
9428     if (!SI) {
9429       // We will look through cast uses, so ignore them completely.
9430       if (I.isCast())
9431         continue;
9432       // Ignore debug info intrinsics, they don't escape or store to allocas.
9433       if (isa<DbgInfoIntrinsic>(I))
9434         continue;
9435       // This is an unknown instruction. Assume it escapes or writes to all
9436       // static alloca operands.
9437       for (const Use &U : I.operands()) {
9438         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9439           *Info = StaticAllocaInfo::Clobbered;
9440       }
9441       continue;
9442     }
9443 
9444     // If the stored value is a static alloca, mark it as escaped.
9445     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9446       *Info = StaticAllocaInfo::Clobbered;
9447 
9448     // Check if the destination is a static alloca.
9449     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9450     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9451     if (!Info)
9452       continue;
9453     const AllocaInst *AI = cast<AllocaInst>(Dst);
9454 
9455     // Skip allocas that have been initialized or clobbered.
9456     if (*Info != StaticAllocaInfo::Unknown)
9457       continue;
9458 
9459     // Check if the stored value is an argument, and that this store fully
9460     // initializes the alloca. Don't elide copies from the same argument twice.
9461     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9462     const auto *Arg = dyn_cast<Argument>(Val);
9463     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9464         Arg->getType()->isEmptyTy() ||
9465         DL.getTypeStoreSize(Arg->getType()) !=
9466             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9467         ArgCopyElisionCandidates.count(Arg)) {
9468       *Info = StaticAllocaInfo::Clobbered;
9469       continue;
9470     }
9471 
9472     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9473                       << '\n');
9474 
9475     // Mark this alloca and store for argument copy elision.
9476     *Info = StaticAllocaInfo::Elidable;
9477     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9478 
9479     // Stop scanning if we've seen all arguments. This will happen early in -O0
9480     // builds, which is useful, because -O0 builds have large entry blocks and
9481     // many allocas.
9482     if (ArgCopyElisionCandidates.size() == NumArgs)
9483       break;
9484   }
9485 }
9486 
9487 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9488 /// ArgVal is a load from a suitable fixed stack object.
9489 static void tryToElideArgumentCopy(
9490     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9491     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9492     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9493     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9494     SDValue ArgVal, bool &ArgHasUses) {
9495   // Check if this is a load from a fixed stack object.
9496   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9497   if (!LNode)
9498     return;
9499   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9500   if (!FINode)
9501     return;
9502 
9503   // Check that the fixed stack object is the right size and alignment.
9504   // Look at the alignment that the user wrote on the alloca instead of looking
9505   // at the stack object.
9506   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9507   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9508   const AllocaInst *AI = ArgCopyIter->second.first;
9509   int FixedIndex = FINode->getIndex();
9510   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9511   int OldIndex = AllocaIndex;
9512   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9513   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9514     LLVM_DEBUG(
9515         dbgs() << "  argument copy elision failed due to bad fixed stack "
9516                   "object size\n");
9517     return;
9518   }
9519   unsigned RequiredAlignment = AI->getAlignment();
9520   if (!RequiredAlignment) {
9521     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9522         AI->getAllocatedType());
9523   }
9524   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9525     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9526                          "greater than stack argument alignment ("
9527                       << RequiredAlignment << " vs "
9528                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9529     return;
9530   }
9531 
9532   // Perform the elision. Delete the old stack object and replace its only use
9533   // in the variable info map. Mark the stack object as mutable.
9534   LLVM_DEBUG({
9535     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9536            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9537            << '\n';
9538   });
9539   MFI.RemoveStackObject(OldIndex);
9540   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9541   AllocaIndex = FixedIndex;
9542   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9543   Chains.push_back(ArgVal.getValue(1));
9544 
9545   // Avoid emitting code for the store implementing the copy.
9546   const StoreInst *SI = ArgCopyIter->second.second;
9547   ElidedArgCopyInstrs.insert(SI);
9548 
9549   // Check for uses of the argument again so that we can avoid exporting ArgVal
9550   // if it is't used by anything other than the store.
9551   for (const Value *U : Arg.users()) {
9552     if (U != SI) {
9553       ArgHasUses = true;
9554       break;
9555     }
9556   }
9557 }
9558 
9559 void SelectionDAGISel::LowerArguments(const Function &F) {
9560   SelectionDAG &DAG = SDB->DAG;
9561   SDLoc dl = SDB->getCurSDLoc();
9562   const DataLayout &DL = DAG.getDataLayout();
9563   SmallVector<ISD::InputArg, 16> Ins;
9564 
9565   if (!FuncInfo->CanLowerReturn) {
9566     // Put in an sret pointer parameter before all the other parameters.
9567     SmallVector<EVT, 1> ValueVTs;
9568     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9569                     F.getReturnType()->getPointerTo(
9570                         DAG.getDataLayout().getAllocaAddrSpace()),
9571                     ValueVTs);
9572 
9573     // NOTE: Assuming that a pointer will never break down to more than one VT
9574     // or one register.
9575     ISD::ArgFlagsTy Flags;
9576     Flags.setSRet();
9577     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9578     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9579                          ISD::InputArg::NoArgIndex, 0);
9580     Ins.push_back(RetArg);
9581   }
9582 
9583   // Look for stores of arguments to static allocas. Mark such arguments with a
9584   // flag to ask the target to give us the memory location of that argument if
9585   // available.
9586   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9587   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9588 
9589   // Set up the incoming argument description vector.
9590   for (const Argument &Arg : F.args()) {
9591     unsigned ArgNo = Arg.getArgNo();
9592     SmallVector<EVT, 4> ValueVTs;
9593     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9594     bool isArgValueUsed = !Arg.use_empty();
9595     unsigned PartBase = 0;
9596     Type *FinalType = Arg.getType();
9597     if (Arg.hasAttribute(Attribute::ByVal))
9598       FinalType = Arg.getParamByValType();
9599     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9600         FinalType, F.getCallingConv(), F.isVarArg());
9601     for (unsigned Value = 0, NumValues = ValueVTs.size();
9602          Value != NumValues; ++Value) {
9603       EVT VT = ValueVTs[Value];
9604       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9605       ISD::ArgFlagsTy Flags;
9606 
9607       // Certain targets (such as MIPS), may have a different ABI alignment
9608       // for a type depending on the context. Give the target a chance to
9609       // specify the alignment it wants.
9610       const Align OriginalAlignment(
9611           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9612 
9613       if (Arg.getType()->isPointerTy()) {
9614         Flags.setPointer();
9615         Flags.setPointerAddrSpace(
9616             cast<PointerType>(Arg.getType())->getAddressSpace());
9617       }
9618       if (Arg.hasAttribute(Attribute::ZExt))
9619         Flags.setZExt();
9620       if (Arg.hasAttribute(Attribute::SExt))
9621         Flags.setSExt();
9622       if (Arg.hasAttribute(Attribute::InReg)) {
9623         // If we are using vectorcall calling convention, a structure that is
9624         // passed InReg - is surely an HVA
9625         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9626             isa<StructType>(Arg.getType())) {
9627           // The first value of a structure is marked
9628           if (0 == Value)
9629             Flags.setHvaStart();
9630           Flags.setHva();
9631         }
9632         // Set InReg Flag
9633         Flags.setInReg();
9634       }
9635       if (Arg.hasAttribute(Attribute::StructRet))
9636         Flags.setSRet();
9637       if (Arg.hasAttribute(Attribute::SwiftSelf))
9638         Flags.setSwiftSelf();
9639       if (Arg.hasAttribute(Attribute::SwiftError))
9640         Flags.setSwiftError();
9641       if (Arg.hasAttribute(Attribute::ByVal))
9642         Flags.setByVal();
9643       if (Arg.hasAttribute(Attribute::InAlloca)) {
9644         Flags.setInAlloca();
9645         // Set the byval flag for CCAssignFn callbacks that don't know about
9646         // inalloca.  This way we can know how many bytes we should've allocated
9647         // and how many bytes a callee cleanup function will pop.  If we port
9648         // inalloca to more targets, we'll have to add custom inalloca handling
9649         // in the various CC lowering callbacks.
9650         Flags.setByVal();
9651       }
9652       if (F.getCallingConv() == CallingConv::X86_INTR) {
9653         // IA Interrupt passes frame (1st parameter) by value in the stack.
9654         if (ArgNo == 0)
9655           Flags.setByVal();
9656       }
9657       if (Flags.isByVal() || Flags.isInAlloca()) {
9658         Type *ElementTy = Arg.getParamByValType();
9659 
9660         // For ByVal, size and alignment should be passed from FE.  BE will
9661         // guess if this info is not there but there are cases it cannot get
9662         // right.
9663         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9664         Flags.setByValSize(FrameSize);
9665 
9666         unsigned FrameAlign;
9667         if (Arg.getParamAlignment())
9668           FrameAlign = Arg.getParamAlignment();
9669         else
9670           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9671         Flags.setByValAlign(Align(FrameAlign));
9672       }
9673       if (Arg.hasAttribute(Attribute::Nest))
9674         Flags.setNest();
9675       if (NeedsRegBlock)
9676         Flags.setInConsecutiveRegs();
9677       Flags.setOrigAlign(OriginalAlignment);
9678       if (ArgCopyElisionCandidates.count(&Arg))
9679         Flags.setCopyElisionCandidate();
9680       if (Arg.hasAttribute(Attribute::Returned))
9681         Flags.setReturned();
9682 
9683       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9684           *CurDAG->getContext(), F.getCallingConv(), VT);
9685       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9686           *CurDAG->getContext(), F.getCallingConv(), VT);
9687       for (unsigned i = 0; i != NumRegs; ++i) {
9688         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9689                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9690         if (NumRegs > 1 && i == 0)
9691           MyFlags.Flags.setSplit();
9692         // if it isn't first piece, alignment must be 1
9693         else if (i > 0) {
9694           MyFlags.Flags.setOrigAlign(Align::None());
9695           if (i == NumRegs - 1)
9696             MyFlags.Flags.setSplitEnd();
9697         }
9698         Ins.push_back(MyFlags);
9699       }
9700       if (NeedsRegBlock && Value == NumValues - 1)
9701         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9702       PartBase += VT.getStoreSize();
9703     }
9704   }
9705 
9706   // Call the target to set up the argument values.
9707   SmallVector<SDValue, 8> InVals;
9708   SDValue NewRoot = TLI->LowerFormalArguments(
9709       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9710 
9711   // Verify that the target's LowerFormalArguments behaved as expected.
9712   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9713          "LowerFormalArguments didn't return a valid chain!");
9714   assert(InVals.size() == Ins.size() &&
9715          "LowerFormalArguments didn't emit the correct number of values!");
9716   LLVM_DEBUG({
9717     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9718       assert(InVals[i].getNode() &&
9719              "LowerFormalArguments emitted a null value!");
9720       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9721              "LowerFormalArguments emitted a value with the wrong type!");
9722     }
9723   });
9724 
9725   // Update the DAG with the new chain value resulting from argument lowering.
9726   DAG.setRoot(NewRoot);
9727 
9728   // Set up the argument values.
9729   unsigned i = 0;
9730   if (!FuncInfo->CanLowerReturn) {
9731     // Create a virtual register for the sret pointer, and put in a copy
9732     // from the sret argument into it.
9733     SmallVector<EVT, 1> ValueVTs;
9734     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9735                     F.getReturnType()->getPointerTo(
9736                         DAG.getDataLayout().getAllocaAddrSpace()),
9737                     ValueVTs);
9738     MVT VT = ValueVTs[0].getSimpleVT();
9739     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9740     Optional<ISD::NodeType> AssertOp = None;
9741     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9742                                         nullptr, F.getCallingConv(), AssertOp);
9743 
9744     MachineFunction& MF = SDB->DAG.getMachineFunction();
9745     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9746     Register SRetReg =
9747         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9748     FuncInfo->DemoteRegister = SRetReg;
9749     NewRoot =
9750         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9751     DAG.setRoot(NewRoot);
9752 
9753     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9754     ++i;
9755   }
9756 
9757   SmallVector<SDValue, 4> Chains;
9758   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9759   for (const Argument &Arg : F.args()) {
9760     SmallVector<SDValue, 4> ArgValues;
9761     SmallVector<EVT, 4> ValueVTs;
9762     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9763     unsigned NumValues = ValueVTs.size();
9764     if (NumValues == 0)
9765       continue;
9766 
9767     bool ArgHasUses = !Arg.use_empty();
9768 
9769     // Elide the copying store if the target loaded this argument from a
9770     // suitable fixed stack object.
9771     if (Ins[i].Flags.isCopyElisionCandidate()) {
9772       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9773                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9774                              InVals[i], ArgHasUses);
9775     }
9776 
9777     // If this argument is unused then remember its value. It is used to generate
9778     // debugging information.
9779     bool isSwiftErrorArg =
9780         TLI->supportSwiftError() &&
9781         Arg.hasAttribute(Attribute::SwiftError);
9782     if (!ArgHasUses && !isSwiftErrorArg) {
9783       SDB->setUnusedArgValue(&Arg, InVals[i]);
9784 
9785       // Also remember any frame index for use in FastISel.
9786       if (FrameIndexSDNode *FI =
9787           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9788         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9789     }
9790 
9791     for (unsigned Val = 0; Val != NumValues; ++Val) {
9792       EVT VT = ValueVTs[Val];
9793       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9794                                                       F.getCallingConv(), VT);
9795       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9796           *CurDAG->getContext(), F.getCallingConv(), VT);
9797 
9798       // Even an apparant 'unused' swifterror argument needs to be returned. So
9799       // we do generate a copy for it that can be used on return from the
9800       // function.
9801       if (ArgHasUses || isSwiftErrorArg) {
9802         Optional<ISD::NodeType> AssertOp;
9803         if (Arg.hasAttribute(Attribute::SExt))
9804           AssertOp = ISD::AssertSext;
9805         else if (Arg.hasAttribute(Attribute::ZExt))
9806           AssertOp = ISD::AssertZext;
9807 
9808         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9809                                              PartVT, VT, nullptr,
9810                                              F.getCallingConv(), AssertOp));
9811       }
9812 
9813       i += NumParts;
9814     }
9815 
9816     // We don't need to do anything else for unused arguments.
9817     if (ArgValues.empty())
9818       continue;
9819 
9820     // Note down frame index.
9821     if (FrameIndexSDNode *FI =
9822         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9823       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9824 
9825     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9826                                      SDB->getCurSDLoc());
9827 
9828     SDB->setValue(&Arg, Res);
9829     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9830       // We want to associate the argument with the frame index, among
9831       // involved operands, that correspond to the lowest address. The
9832       // getCopyFromParts function, called earlier, is swapping the order of
9833       // the operands to BUILD_PAIR depending on endianness. The result of
9834       // that swapping is that the least significant bits of the argument will
9835       // be in the first operand of the BUILD_PAIR node, and the most
9836       // significant bits will be in the second operand.
9837       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9838       if (LoadSDNode *LNode =
9839           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9840         if (FrameIndexSDNode *FI =
9841             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9842           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9843     }
9844 
9845     // Analyses past this point are naive and don't expect an assertion.
9846     if (Res.getOpcode() == ISD::AssertZext)
9847       Res = Res.getOperand(0);
9848 
9849     // Update the SwiftErrorVRegDefMap.
9850     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9851       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9852       if (Register::isVirtualRegister(Reg))
9853         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9854                                    Reg);
9855     }
9856 
9857     // If this argument is live outside of the entry block, insert a copy from
9858     // wherever we got it to the vreg that other BB's will reference it as.
9859     if (Res.getOpcode() == ISD::CopyFromReg) {
9860       // If we can, though, try to skip creating an unnecessary vreg.
9861       // FIXME: This isn't very clean... it would be nice to make this more
9862       // general.
9863       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9864       if (Register::isVirtualRegister(Reg)) {
9865         FuncInfo->ValueMap[&Arg] = Reg;
9866         continue;
9867       }
9868     }
9869     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9870       FuncInfo->InitializeRegForValue(&Arg);
9871       SDB->CopyToExportRegsIfNeeded(&Arg);
9872     }
9873   }
9874 
9875   if (!Chains.empty()) {
9876     Chains.push_back(NewRoot);
9877     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9878   }
9879 
9880   DAG.setRoot(NewRoot);
9881 
9882   assert(i == InVals.size() && "Argument register count mismatch!");
9883 
9884   // If any argument copy elisions occurred and we have debug info, update the
9885   // stale frame indices used in the dbg.declare variable info table.
9886   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9887   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9888     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9889       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9890       if (I != ArgCopyElisionFrameIndexMap.end())
9891         VI.Slot = I->second;
9892     }
9893   }
9894 
9895   // Finally, if the target has anything special to do, allow it to do so.
9896   EmitFunctionEntryCode();
9897 }
9898 
9899 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9900 /// ensure constants are generated when needed.  Remember the virtual registers
9901 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9902 /// directly add them, because expansion might result in multiple MBB's for one
9903 /// BB.  As such, the start of the BB might correspond to a different MBB than
9904 /// the end.
9905 void
9906 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9907   const Instruction *TI = LLVMBB->getTerminator();
9908 
9909   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9910 
9911   // Check PHI nodes in successors that expect a value to be available from this
9912   // block.
9913   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9914     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9915     if (!isa<PHINode>(SuccBB->begin())) continue;
9916     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9917 
9918     // If this terminator has multiple identical successors (common for
9919     // switches), only handle each succ once.
9920     if (!SuccsHandled.insert(SuccMBB).second)
9921       continue;
9922 
9923     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9924 
9925     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9926     // nodes and Machine PHI nodes, but the incoming operands have not been
9927     // emitted yet.
9928     for (const PHINode &PN : SuccBB->phis()) {
9929       // Ignore dead phi's.
9930       if (PN.use_empty())
9931         continue;
9932 
9933       // Skip empty types
9934       if (PN.getType()->isEmptyTy())
9935         continue;
9936 
9937       unsigned Reg;
9938       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9939 
9940       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9941         unsigned &RegOut = ConstantsOut[C];
9942         if (RegOut == 0) {
9943           RegOut = FuncInfo.CreateRegs(C);
9944           CopyValueToVirtualRegister(C, RegOut);
9945         }
9946         Reg = RegOut;
9947       } else {
9948         DenseMap<const Value *, unsigned>::iterator I =
9949           FuncInfo.ValueMap.find(PHIOp);
9950         if (I != FuncInfo.ValueMap.end())
9951           Reg = I->second;
9952         else {
9953           assert(isa<AllocaInst>(PHIOp) &&
9954                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9955                  "Didn't codegen value into a register!??");
9956           Reg = FuncInfo.CreateRegs(PHIOp);
9957           CopyValueToVirtualRegister(PHIOp, Reg);
9958         }
9959       }
9960 
9961       // Remember that this register needs to added to the machine PHI node as
9962       // the input for this MBB.
9963       SmallVector<EVT, 4> ValueVTs;
9964       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9965       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9966       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9967         EVT VT = ValueVTs[vti];
9968         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9969         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9970           FuncInfo.PHINodesToUpdate.push_back(
9971               std::make_pair(&*MBBI++, Reg + i));
9972         Reg += NumRegisters;
9973       }
9974     }
9975   }
9976 
9977   ConstantsOut.clear();
9978 }
9979 
9980 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9981 /// is 0.
9982 MachineBasicBlock *
9983 SelectionDAGBuilder::StackProtectorDescriptor::
9984 AddSuccessorMBB(const BasicBlock *BB,
9985                 MachineBasicBlock *ParentMBB,
9986                 bool IsLikely,
9987                 MachineBasicBlock *SuccMBB) {
9988   // If SuccBB has not been created yet, create it.
9989   if (!SuccMBB) {
9990     MachineFunction *MF = ParentMBB->getParent();
9991     MachineFunction::iterator BBI(ParentMBB);
9992     SuccMBB = MF->CreateMachineBasicBlock(BB);
9993     MF->insert(++BBI, SuccMBB);
9994   }
9995   // Add it as a successor of ParentMBB.
9996   ParentMBB->addSuccessor(
9997       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9998   return SuccMBB;
9999 }
10000 
10001 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10002   MachineFunction::iterator I(MBB);
10003   if (++I == FuncInfo.MF->end())
10004     return nullptr;
10005   return &*I;
10006 }
10007 
10008 /// During lowering new call nodes can be created (such as memset, etc.).
10009 /// Those will become new roots of the current DAG, but complications arise
10010 /// when they are tail calls. In such cases, the call lowering will update
10011 /// the root, but the builder still needs to know that a tail call has been
10012 /// lowered in order to avoid generating an additional return.
10013 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10014   // If the node is null, we do have a tail call.
10015   if (MaybeTC.getNode() != nullptr)
10016     DAG.setRoot(MaybeTC);
10017   else
10018     HasTailCall = true;
10019 }
10020 
10021 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10022                                         MachineBasicBlock *SwitchMBB,
10023                                         MachineBasicBlock *DefaultMBB) {
10024   MachineFunction *CurMF = FuncInfo.MF;
10025   MachineBasicBlock *NextMBB = nullptr;
10026   MachineFunction::iterator BBI(W.MBB);
10027   if (++BBI != FuncInfo.MF->end())
10028     NextMBB = &*BBI;
10029 
10030   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10031 
10032   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10033 
10034   if (Size == 2 && W.MBB == SwitchMBB) {
10035     // If any two of the cases has the same destination, and if one value
10036     // is the same as the other, but has one bit unset that the other has set,
10037     // use bit manipulation to do two compares at once.  For example:
10038     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10039     // TODO: This could be extended to merge any 2 cases in switches with 3
10040     // cases.
10041     // TODO: Handle cases where W.CaseBB != SwitchBB.
10042     CaseCluster &Small = *W.FirstCluster;
10043     CaseCluster &Big = *W.LastCluster;
10044 
10045     if (Small.Low == Small.High && Big.Low == Big.High &&
10046         Small.MBB == Big.MBB) {
10047       const APInt &SmallValue = Small.Low->getValue();
10048       const APInt &BigValue = Big.Low->getValue();
10049 
10050       // Check that there is only one bit different.
10051       APInt CommonBit = BigValue ^ SmallValue;
10052       if (CommonBit.isPowerOf2()) {
10053         SDValue CondLHS = getValue(Cond);
10054         EVT VT = CondLHS.getValueType();
10055         SDLoc DL = getCurSDLoc();
10056 
10057         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10058                                  DAG.getConstant(CommonBit, DL, VT));
10059         SDValue Cond = DAG.getSetCC(
10060             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10061             ISD::SETEQ);
10062 
10063         // Update successor info.
10064         // Both Small and Big will jump to Small.BB, so we sum up the
10065         // probabilities.
10066         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10067         if (BPI)
10068           addSuccessorWithProb(
10069               SwitchMBB, DefaultMBB,
10070               // The default destination is the first successor in IR.
10071               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10072         else
10073           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10074 
10075         // Insert the true branch.
10076         SDValue BrCond =
10077             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10078                         DAG.getBasicBlock(Small.MBB));
10079         // Insert the false branch.
10080         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10081                              DAG.getBasicBlock(DefaultMBB));
10082 
10083         DAG.setRoot(BrCond);
10084         return;
10085       }
10086     }
10087   }
10088 
10089   if (TM.getOptLevel() != CodeGenOpt::None) {
10090     // Here, we order cases by probability so the most likely case will be
10091     // checked first. However, two clusters can have the same probability in
10092     // which case their relative ordering is non-deterministic. So we use Low
10093     // as a tie-breaker as clusters are guaranteed to never overlap.
10094     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10095                [](const CaseCluster &a, const CaseCluster &b) {
10096       return a.Prob != b.Prob ?
10097              a.Prob > b.Prob :
10098              a.Low->getValue().slt(b.Low->getValue());
10099     });
10100 
10101     // Rearrange the case blocks so that the last one falls through if possible
10102     // without changing the order of probabilities.
10103     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10104       --I;
10105       if (I->Prob > W.LastCluster->Prob)
10106         break;
10107       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10108         std::swap(*I, *W.LastCluster);
10109         break;
10110       }
10111     }
10112   }
10113 
10114   // Compute total probability.
10115   BranchProbability DefaultProb = W.DefaultProb;
10116   BranchProbability UnhandledProbs = DefaultProb;
10117   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10118     UnhandledProbs += I->Prob;
10119 
10120   MachineBasicBlock *CurMBB = W.MBB;
10121   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10122     bool FallthroughUnreachable = false;
10123     MachineBasicBlock *Fallthrough;
10124     if (I == W.LastCluster) {
10125       // For the last cluster, fall through to the default destination.
10126       Fallthrough = DefaultMBB;
10127       FallthroughUnreachable = isa<UnreachableInst>(
10128           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10129     } else {
10130       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10131       CurMF->insert(BBI, Fallthrough);
10132       // Put Cond in a virtual register to make it available from the new blocks.
10133       ExportFromCurrentBlock(Cond);
10134     }
10135     UnhandledProbs -= I->Prob;
10136 
10137     switch (I->Kind) {
10138       case CC_JumpTable: {
10139         // FIXME: Optimize away range check based on pivot comparisons.
10140         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10141         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10142 
10143         // The jump block hasn't been inserted yet; insert it here.
10144         MachineBasicBlock *JumpMBB = JT->MBB;
10145         CurMF->insert(BBI, JumpMBB);
10146 
10147         auto JumpProb = I->Prob;
10148         auto FallthroughProb = UnhandledProbs;
10149 
10150         // If the default statement is a target of the jump table, we evenly
10151         // distribute the default probability to successors of CurMBB. Also
10152         // update the probability on the edge from JumpMBB to Fallthrough.
10153         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10154                                               SE = JumpMBB->succ_end();
10155              SI != SE; ++SI) {
10156           if (*SI == DefaultMBB) {
10157             JumpProb += DefaultProb / 2;
10158             FallthroughProb -= DefaultProb / 2;
10159             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10160             JumpMBB->normalizeSuccProbs();
10161             break;
10162           }
10163         }
10164 
10165         if (FallthroughUnreachable) {
10166           // Skip the range check if the fallthrough block is unreachable.
10167           JTH->OmitRangeCheck = true;
10168         }
10169 
10170         if (!JTH->OmitRangeCheck)
10171           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10172         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10173         CurMBB->normalizeSuccProbs();
10174 
10175         // The jump table header will be inserted in our current block, do the
10176         // range check, and fall through to our fallthrough block.
10177         JTH->HeaderBB = CurMBB;
10178         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10179 
10180         // If we're in the right place, emit the jump table header right now.
10181         if (CurMBB == SwitchMBB) {
10182           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10183           JTH->Emitted = true;
10184         }
10185         break;
10186       }
10187       case CC_BitTests: {
10188         // FIXME: Optimize away range check based on pivot comparisons.
10189         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10190 
10191         // The bit test blocks haven't been inserted yet; insert them here.
10192         for (BitTestCase &BTC : BTB->Cases)
10193           CurMF->insert(BBI, BTC.ThisBB);
10194 
10195         // Fill in fields of the BitTestBlock.
10196         BTB->Parent = CurMBB;
10197         BTB->Default = Fallthrough;
10198 
10199         BTB->DefaultProb = UnhandledProbs;
10200         // If the cases in bit test don't form a contiguous range, we evenly
10201         // distribute the probability on the edge to Fallthrough to two
10202         // successors of CurMBB.
10203         if (!BTB->ContiguousRange) {
10204           BTB->Prob += DefaultProb / 2;
10205           BTB->DefaultProb -= DefaultProb / 2;
10206         }
10207 
10208         if (FallthroughUnreachable) {
10209           // Skip the range check if the fallthrough block is unreachable.
10210           BTB->OmitRangeCheck = true;
10211         }
10212 
10213         // If we're in the right place, emit the bit test header right now.
10214         if (CurMBB == SwitchMBB) {
10215           visitBitTestHeader(*BTB, SwitchMBB);
10216           BTB->Emitted = true;
10217         }
10218         break;
10219       }
10220       case CC_Range: {
10221         const Value *RHS, *LHS, *MHS;
10222         ISD::CondCode CC;
10223         if (I->Low == I->High) {
10224           // Check Cond == I->Low.
10225           CC = ISD::SETEQ;
10226           LHS = Cond;
10227           RHS=I->Low;
10228           MHS = nullptr;
10229         } else {
10230           // Check I->Low <= Cond <= I->High.
10231           CC = ISD::SETLE;
10232           LHS = I->Low;
10233           MHS = Cond;
10234           RHS = I->High;
10235         }
10236 
10237         // If Fallthrough is unreachable, fold away the comparison.
10238         if (FallthroughUnreachable)
10239           CC = ISD::SETTRUE;
10240 
10241         // The false probability is the sum of all unhandled cases.
10242         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10243                      getCurSDLoc(), I->Prob, UnhandledProbs);
10244 
10245         if (CurMBB == SwitchMBB)
10246           visitSwitchCase(CB, SwitchMBB);
10247         else
10248           SL->SwitchCases.push_back(CB);
10249 
10250         break;
10251       }
10252     }
10253     CurMBB = Fallthrough;
10254   }
10255 }
10256 
10257 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10258                                               CaseClusterIt First,
10259                                               CaseClusterIt Last) {
10260   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10261     if (X.Prob != CC.Prob)
10262       return X.Prob > CC.Prob;
10263 
10264     // Ties are broken by comparing the case value.
10265     return X.Low->getValue().slt(CC.Low->getValue());
10266   });
10267 }
10268 
10269 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10270                                         const SwitchWorkListItem &W,
10271                                         Value *Cond,
10272                                         MachineBasicBlock *SwitchMBB) {
10273   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10274          "Clusters not sorted?");
10275 
10276   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10277 
10278   // Balance the tree based on branch probabilities to create a near-optimal (in
10279   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10280   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10281   CaseClusterIt LastLeft = W.FirstCluster;
10282   CaseClusterIt FirstRight = W.LastCluster;
10283   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10284   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10285 
10286   // Move LastLeft and FirstRight towards each other from opposite directions to
10287   // find a partitioning of the clusters which balances the probability on both
10288   // sides. If LeftProb and RightProb are equal, alternate which side is
10289   // taken to ensure 0-probability nodes are distributed evenly.
10290   unsigned I = 0;
10291   while (LastLeft + 1 < FirstRight) {
10292     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10293       LeftProb += (++LastLeft)->Prob;
10294     else
10295       RightProb += (--FirstRight)->Prob;
10296     I++;
10297   }
10298 
10299   while (true) {
10300     // Our binary search tree differs from a typical BST in that ours can have up
10301     // to three values in each leaf. The pivot selection above doesn't take that
10302     // into account, which means the tree might require more nodes and be less
10303     // efficient. We compensate for this here.
10304 
10305     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10306     unsigned NumRight = W.LastCluster - FirstRight + 1;
10307 
10308     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10309       // If one side has less than 3 clusters, and the other has more than 3,
10310       // consider taking a cluster from the other side.
10311 
10312       if (NumLeft < NumRight) {
10313         // Consider moving the first cluster on the right to the left side.
10314         CaseCluster &CC = *FirstRight;
10315         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10316         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10317         if (LeftSideRank <= RightSideRank) {
10318           // Moving the cluster to the left does not demote it.
10319           ++LastLeft;
10320           ++FirstRight;
10321           continue;
10322         }
10323       } else {
10324         assert(NumRight < NumLeft);
10325         // Consider moving the last element on the left to the right side.
10326         CaseCluster &CC = *LastLeft;
10327         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10328         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10329         if (RightSideRank <= LeftSideRank) {
10330           // Moving the cluster to the right does not demot it.
10331           --LastLeft;
10332           --FirstRight;
10333           continue;
10334         }
10335       }
10336     }
10337     break;
10338   }
10339 
10340   assert(LastLeft + 1 == FirstRight);
10341   assert(LastLeft >= W.FirstCluster);
10342   assert(FirstRight <= W.LastCluster);
10343 
10344   // Use the first element on the right as pivot since we will make less-than
10345   // comparisons against it.
10346   CaseClusterIt PivotCluster = FirstRight;
10347   assert(PivotCluster > W.FirstCluster);
10348   assert(PivotCluster <= W.LastCluster);
10349 
10350   CaseClusterIt FirstLeft = W.FirstCluster;
10351   CaseClusterIt LastRight = W.LastCluster;
10352 
10353   const ConstantInt *Pivot = PivotCluster->Low;
10354 
10355   // New blocks will be inserted immediately after the current one.
10356   MachineFunction::iterator BBI(W.MBB);
10357   ++BBI;
10358 
10359   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10360   // we can branch to its destination directly if it's squeezed exactly in
10361   // between the known lower bound and Pivot - 1.
10362   MachineBasicBlock *LeftMBB;
10363   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10364       FirstLeft->Low == W.GE &&
10365       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10366     LeftMBB = FirstLeft->MBB;
10367   } else {
10368     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10369     FuncInfo.MF->insert(BBI, LeftMBB);
10370     WorkList.push_back(
10371         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10372     // Put Cond in a virtual register to make it available from the new blocks.
10373     ExportFromCurrentBlock(Cond);
10374   }
10375 
10376   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10377   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10378   // directly if RHS.High equals the current upper bound.
10379   MachineBasicBlock *RightMBB;
10380   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10381       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10382     RightMBB = FirstRight->MBB;
10383   } else {
10384     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10385     FuncInfo.MF->insert(BBI, RightMBB);
10386     WorkList.push_back(
10387         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10388     // Put Cond in a virtual register to make it available from the new blocks.
10389     ExportFromCurrentBlock(Cond);
10390   }
10391 
10392   // Create the CaseBlock record that will be used to lower the branch.
10393   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10394                getCurSDLoc(), LeftProb, RightProb);
10395 
10396   if (W.MBB == SwitchMBB)
10397     visitSwitchCase(CB, SwitchMBB);
10398   else
10399     SL->SwitchCases.push_back(CB);
10400 }
10401 
10402 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10403 // from the swith statement.
10404 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10405                                             BranchProbability PeeledCaseProb) {
10406   if (PeeledCaseProb == BranchProbability::getOne())
10407     return BranchProbability::getZero();
10408   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10409 
10410   uint32_t Numerator = CaseProb.getNumerator();
10411   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10412   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10413 }
10414 
10415 // Try to peel the top probability case if it exceeds the threshold.
10416 // Return current MachineBasicBlock for the switch statement if the peeling
10417 // does not occur.
10418 // If the peeling is performed, return the newly created MachineBasicBlock
10419 // for the peeled switch statement. Also update Clusters to remove the peeled
10420 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10421 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10422     const SwitchInst &SI, CaseClusterVector &Clusters,
10423     BranchProbability &PeeledCaseProb) {
10424   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10425   // Don't perform if there is only one cluster or optimizing for size.
10426   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10427       TM.getOptLevel() == CodeGenOpt::None ||
10428       SwitchMBB->getParent()->getFunction().hasMinSize())
10429     return SwitchMBB;
10430 
10431   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10432   unsigned PeeledCaseIndex = 0;
10433   bool SwitchPeeled = false;
10434   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10435     CaseCluster &CC = Clusters[Index];
10436     if (CC.Prob < TopCaseProb)
10437       continue;
10438     TopCaseProb = CC.Prob;
10439     PeeledCaseIndex = Index;
10440     SwitchPeeled = true;
10441   }
10442   if (!SwitchPeeled)
10443     return SwitchMBB;
10444 
10445   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10446                     << TopCaseProb << "\n");
10447 
10448   // Record the MBB for the peeled switch statement.
10449   MachineFunction::iterator BBI(SwitchMBB);
10450   ++BBI;
10451   MachineBasicBlock *PeeledSwitchMBB =
10452       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10453   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10454 
10455   ExportFromCurrentBlock(SI.getCondition());
10456   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10457   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10458                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10459   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10460 
10461   Clusters.erase(PeeledCaseIt);
10462   for (CaseCluster &CC : Clusters) {
10463     LLVM_DEBUG(
10464         dbgs() << "Scale the probablity for one cluster, before scaling: "
10465                << CC.Prob << "\n");
10466     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10467     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10468   }
10469   PeeledCaseProb = TopCaseProb;
10470   return PeeledSwitchMBB;
10471 }
10472 
10473 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10474   // Extract cases from the switch.
10475   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10476   CaseClusterVector Clusters;
10477   Clusters.reserve(SI.getNumCases());
10478   for (auto I : SI.cases()) {
10479     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10480     const ConstantInt *CaseVal = I.getCaseValue();
10481     BranchProbability Prob =
10482         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10483             : BranchProbability(1, SI.getNumCases() + 1);
10484     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10485   }
10486 
10487   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10488 
10489   // Cluster adjacent cases with the same destination. We do this at all
10490   // optimization levels because it's cheap to do and will make codegen faster
10491   // if there are many clusters.
10492   sortAndRangeify(Clusters);
10493 
10494   // The branch probablity of the peeled case.
10495   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10496   MachineBasicBlock *PeeledSwitchMBB =
10497       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10498 
10499   // If there is only the default destination, jump there directly.
10500   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10501   if (Clusters.empty()) {
10502     assert(PeeledSwitchMBB == SwitchMBB);
10503     SwitchMBB->addSuccessor(DefaultMBB);
10504     if (DefaultMBB != NextBlock(SwitchMBB)) {
10505       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10506                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10507     }
10508     return;
10509   }
10510 
10511   SL->findJumpTables(Clusters, &SI, DefaultMBB);
10512   SL->findBitTestClusters(Clusters, &SI);
10513 
10514   LLVM_DEBUG({
10515     dbgs() << "Case clusters: ";
10516     for (const CaseCluster &C : Clusters) {
10517       if (C.Kind == CC_JumpTable)
10518         dbgs() << "JT:";
10519       if (C.Kind == CC_BitTests)
10520         dbgs() << "BT:";
10521 
10522       C.Low->getValue().print(dbgs(), true);
10523       if (C.Low != C.High) {
10524         dbgs() << '-';
10525         C.High->getValue().print(dbgs(), true);
10526       }
10527       dbgs() << ' ';
10528     }
10529     dbgs() << '\n';
10530   });
10531 
10532   assert(!Clusters.empty());
10533   SwitchWorkList WorkList;
10534   CaseClusterIt First = Clusters.begin();
10535   CaseClusterIt Last = Clusters.end() - 1;
10536   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10537   // Scale the branchprobability for DefaultMBB if the peel occurs and
10538   // DefaultMBB is not replaced.
10539   if (PeeledCaseProb != BranchProbability::getZero() &&
10540       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10541     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10542   WorkList.push_back(
10543       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10544 
10545   while (!WorkList.empty()) {
10546     SwitchWorkListItem W = WorkList.back();
10547     WorkList.pop_back();
10548     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10549 
10550     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10551         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10552       // For optimized builds, lower large range as a balanced binary tree.
10553       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10554       continue;
10555     }
10556 
10557     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10558   }
10559 }
10560