xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e0c4386e7e71d93b0edc0c8fa156263fc4a8b0b6)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsWebAssembly.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Statepoint.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCContext.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/TargetParser/Triple.h"
101 #include "llvm/Transforms/Utils/Local.h"
102 #include <cstddef>
103 #include <iterator>
104 #include <limits>
105 #include <optional>
106 #include <tuple>
107 
108 using namespace llvm;
109 using namespace PatternMatch;
110 using namespace SwitchCG;
111 
112 #define DEBUG_TYPE "isel"
113 
114 /// LimitFloatPrecision - Generate low-precision inline sequences for
115 /// some float libcalls (6, 8 or 12 bits).
116 static unsigned LimitFloatPrecision;
117 
118 static cl::opt<bool>
119     InsertAssertAlign("insert-assert-align", cl::init(true),
120                       cl::desc("Insert the experimental `assertalign` node."),
121                       cl::ReallyHidden);
122 
123 static cl::opt<unsigned, true>
124     LimitFPPrecision("limit-float-precision",
125                      cl::desc("Generate low-precision inline sequences "
126                               "for some float libcalls"),
127                      cl::location(LimitFloatPrecision), cl::Hidden,
128                      cl::init(0));
129 
130 static cl::opt<unsigned> SwitchPeelThreshold(
131     "switch-peel-threshold", cl::Hidden, cl::init(66),
132     cl::desc("Set the case probability threshold for peeling the case from a "
133              "switch statement. A value greater than 100 will void this "
134              "optimization"));
135 
136 // Limit the width of DAG chains. This is important in general to prevent
137 // DAG-based analysis from blowing up. For example, alias analysis and
138 // load clustering may not complete in reasonable time. It is difficult to
139 // recognize and avoid this situation within each individual analysis, and
140 // future analyses are likely to have the same behavior. Limiting DAG width is
141 // the safe approach and will be especially important with global DAGs.
142 //
143 // MaxParallelChains default is arbitrarily high to avoid affecting
144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145 // sequence over this should have been converted to llvm.memcpy by the
146 // frontend. It is easy to induce this behavior with .ll code such as:
147 // %buffer = alloca [4096 x i8]
148 // %data = load [4096 x i8]* %argPtr
149 // store [4096 x i8] %data, [4096 x i8]* %buffer
150 static const unsigned MaxParallelChains = 64;
151 
152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
153                                       const SDValue *Parts, unsigned NumParts,
154                                       MVT PartVT, EVT ValueVT, const Value *V,
155                                       std::optional<CallingConv::ID> CC);
156 
157 /// getCopyFromParts - Create a value that contains the specified legal parts
158 /// combined into the value they represent.  If the parts combine to a type
159 /// larger than ValueVT then AssertOp can be used to specify whether the extra
160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
161 /// (ISD::AssertSext).
162 static SDValue
163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
164                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
165                  std::optional<CallingConv::ID> CC = std::nullopt,
166                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
167   // Let the target assemble the parts if it wants to
168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
169   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
170                                                    PartVT, ValueVT, CC))
171     return Val;
172 
173   if (ValueVT.isVector())
174     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
175                                   CC);
176 
177   assert(NumParts > 0 && "No parts to assemble!");
178   SDValue Val = Parts[0];
179 
180   if (NumParts > 1) {
181     // Assemble the value from multiple parts.
182     if (ValueVT.isInteger()) {
183       unsigned PartBits = PartVT.getSizeInBits();
184       unsigned ValueBits = ValueVT.getSizeInBits();
185 
186       // Assemble the power of 2 part.
187       unsigned RoundParts = llvm::bit_floor(NumParts);
188       unsigned RoundBits = PartBits * RoundParts;
189       EVT RoundVT = RoundBits == ValueBits ?
190         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
191       SDValue Lo, Hi;
192 
193       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
194 
195       if (RoundParts > 2) {
196         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
197                               PartVT, HalfVT, V);
198         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
199                               RoundParts / 2, PartVT, HalfVT, V);
200       } else {
201         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
202         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
203       }
204 
205       if (DAG.getDataLayout().isBigEndian())
206         std::swap(Lo, Hi);
207 
208       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
209 
210       if (RoundParts < NumParts) {
211         // Assemble the trailing non-power-of-2 part.
212         unsigned OddParts = NumParts - RoundParts;
213         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
214         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
215                               OddVT, V, CC);
216 
217         // Combine the round and odd parts.
218         Lo = Val;
219         if (DAG.getDataLayout().isBigEndian())
220           std::swap(Lo, Hi);
221         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
222         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
223         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
224                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
225                                          TLI.getShiftAmountTy(
226                                              TotalVT, DAG.getDataLayout())));
227         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
228         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
229       }
230     } else if (PartVT.isFloatingPoint()) {
231       // FP split into multiple FP parts (for ppcf128)
232       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
233              "Unexpected split");
234       SDValue Lo, Hi;
235       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
236       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
237       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
238         std::swap(Lo, Hi);
239       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
240     } else {
241       // FP split into integer parts (soft fp)
242       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
243              !PartVT.isVector() && "Unexpected split");
244       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
245       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
246     }
247   }
248 
249   // There is now one part, held in Val.  Correct it to match ValueVT.
250   // PartEVT is the type of the register class that holds the value.
251   // ValueVT is the type of the inline asm operation.
252   EVT PartEVT = Val.getValueType();
253 
254   if (PartEVT == ValueVT)
255     return Val;
256 
257   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
258       ValueVT.bitsLT(PartEVT)) {
259     // For an FP value in an integer part, we need to truncate to the right
260     // width first.
261     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
262     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
263   }
264 
265   // Handle types that have the same size.
266   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
267     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
268 
269   // Handle types with different sizes.
270   if (PartEVT.isInteger() && ValueVT.isInteger()) {
271     if (ValueVT.bitsLT(PartEVT)) {
272       // For a truncate, see if we have any information to
273       // indicate whether the truncated bits will always be
274       // zero or sign-extension.
275       if (AssertOp)
276         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
277                           DAG.getValueType(ValueVT));
278       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
279     }
280     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
281   }
282 
283   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
284     // FP_ROUND's are always exact here.
285     if (ValueVT.bitsLT(Val.getValueType()))
286       return DAG.getNode(
287           ISD::FP_ROUND, DL, ValueVT, Val,
288           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
289 
290     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
291   }
292 
293   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
294   // then truncating.
295   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
296       ValueVT.bitsLT(PartEVT)) {
297     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
298     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
299   }
300 
301   report_fatal_error("Unknown mismatch in getCopyFromParts!");
302 }
303 
304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
305                                               const Twine &ErrMsg) {
306   const Instruction *I = dyn_cast_or_null<Instruction>(V);
307   if (!V)
308     return Ctx.emitError(ErrMsg);
309 
310   const char *AsmError = ", possible invalid constraint for vector type";
311   if (const CallInst *CI = dyn_cast<CallInst>(I))
312     if (CI->isInlineAsm())
313       return Ctx.emitError(I, ErrMsg + AsmError);
314 
315   return Ctx.emitError(I, ErrMsg);
316 }
317 
318 /// getCopyFromPartsVector - Create a value that contains the specified legal
319 /// parts combined into the value they represent.  If the parts combine to a
320 /// type larger than ValueVT then AssertOp can be used to specify whether the
321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
322 /// ValueVT (ISD::AssertSext).
323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
324                                       const SDValue *Parts, unsigned NumParts,
325                                       MVT PartVT, EVT ValueVT, const Value *V,
326                                       std::optional<CallingConv::ID> CallConv) {
327   assert(ValueVT.isVector() && "Not a vector value");
328   assert(NumParts > 0 && "No parts to assemble!");
329   const bool IsABIRegCopy = CallConv.has_value();
330 
331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
332   SDValue Val = Parts[0];
333 
334   // Handle a multi-element vector.
335   if (NumParts > 1) {
336     EVT IntermediateVT;
337     MVT RegisterVT;
338     unsigned NumIntermediates;
339     unsigned NumRegs;
340 
341     if (IsABIRegCopy) {
342       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
343           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
344           NumIntermediates, RegisterVT);
345     } else {
346       NumRegs =
347           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
348                                      NumIntermediates, RegisterVT);
349     }
350 
351     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
352     NumParts = NumRegs; // Silence a compiler warning.
353     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
354     assert(RegisterVT.getSizeInBits() ==
355            Parts[0].getSimpleValueType().getSizeInBits() &&
356            "Part type sizes don't match!");
357 
358     // Assemble the parts into intermediate operands.
359     SmallVector<SDValue, 8> Ops(NumIntermediates);
360     if (NumIntermediates == NumParts) {
361       // If the register was not expanded, truncate or copy the value,
362       // as appropriate.
363       for (unsigned i = 0; i != NumParts; ++i)
364         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
365                                   PartVT, IntermediateVT, V, CallConv);
366     } else if (NumParts > 0) {
367       // If the intermediate type was expanded, build the intermediate
368       // operands from the parts.
369       assert(NumParts % NumIntermediates == 0 &&
370              "Must expand into a divisible number of parts!");
371       unsigned Factor = NumParts / NumIntermediates;
372       for (unsigned i = 0; i != NumIntermediates; ++i)
373         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
374                                   PartVT, IntermediateVT, V, CallConv);
375     }
376 
377     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
378     // intermediate operands.
379     EVT BuiltVectorTy =
380         IntermediateVT.isVector()
381             ? EVT::getVectorVT(
382                   *DAG.getContext(), IntermediateVT.getScalarType(),
383                   IntermediateVT.getVectorElementCount() * NumParts)
384             : EVT::getVectorVT(*DAG.getContext(),
385                                IntermediateVT.getScalarType(),
386                                NumIntermediates);
387     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
388                                                 : ISD::BUILD_VECTOR,
389                       DL, BuiltVectorTy, Ops);
390   }
391 
392   // There is now one part, held in Val.  Correct it to match ValueVT.
393   EVT PartEVT = Val.getValueType();
394 
395   if (PartEVT == ValueVT)
396     return Val;
397 
398   if (PartEVT.isVector()) {
399     // Vector/Vector bitcast.
400     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
401       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
402 
403     // If the parts vector has more elements than the value vector, then we
404     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
405     // Extract the elements we want.
406     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       PartEVT =
413           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
414                            ValueVT.getVectorElementCount());
415       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
416                         DAG.getVectorIdxConstant(0, DL));
417       if (PartEVT == ValueVT)
418         return Val;
419       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
420         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
423       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
424         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
425     }
426 
427     // Promoted vector extract
428     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
429   }
430 
431   // Trivial bitcast if the types are the same size and the destination
432   // vector type is legal.
433   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
434       TLI.isTypeLegal(ValueVT))
435     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 
437   if (ValueVT.getVectorNumElements() != 1) {
438      // Certain ABIs require that vectors are passed as integers. For vectors
439      // are the same size, this is an obvious bitcast.
440      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
441        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442      } else if (ValueVT.bitsLT(PartEVT)) {
443        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
444        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
445        // Drop the extra bits.
446        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
447        return DAG.getBitcast(ValueVT, Val);
448      }
449 
450      diagnosePossiblyInvalidConstraint(
451          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
452      return DAG.getUNDEF(ValueVT);
453   }
454 
455   // Handle cases such as i8 -> <1 x i1>
456   EVT ValueSVT = ValueVT.getVectorElementType();
457   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
458     unsigned ValueSize = ValueSVT.getSizeInBits();
459     if (ValueSize == PartEVT.getSizeInBits()) {
460       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
461     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
462       // It's possible a scalar floating point type gets softened to integer and
463       // then promoted to a larger integer. If PartEVT is the larger integer
464       // we need to truncate it and then bitcast to the FP type.
465       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
466       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
467       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
468       Val = DAG.getBitcast(ValueSVT, Val);
469     } else {
470       Val = ValueVT.isFloatingPoint()
471                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
472                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
473     }
474   }
475 
476   return DAG.getBuildVector(ValueVT, DL, Val);
477 }
478 
479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                  SDValue Val, SDValue *Parts, unsigned NumParts,
481                                  MVT PartVT, const Value *V,
482                                  std::optional<CallingConv::ID> CallConv);
483 
484 /// getCopyToParts - Create a series of nodes that contain the specified value
485 /// split into legal parts.  If the parts contain more bits than Val, then, for
486 /// integers, ExtendKind can be used to specify how to generate the extra bits.
487 static void
488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
489                unsigned NumParts, MVT PartVT, const Value *V,
490                std::optional<CallingConv::ID> CallConv = std::nullopt,
491                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492   // Let the target split the parts if it wants to
493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
494   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
495                                       CallConv))
496     return;
497   EVT ValueVT = Val.getValueType();
498 
499   // Handle the vector case separately.
500   if (ValueVT.isVector())
501     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
502                                 CallConv);
503 
504   unsigned OrigNumParts = NumParts;
505   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
506          "Copying to an illegal type!");
507 
508   if (NumParts == 0)
509     return;
510 
511   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
512   EVT PartEVT = PartVT;
513   if (PartEVT == ValueVT) {
514     assert(NumParts == 1 && "No-op copy with multiple parts!");
515     Parts[0] = Val;
516     return;
517   }
518 
519   unsigned PartBits = PartVT.getSizeInBits();
520   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
521     // If the parts cover more bits than the value has, promote the value.
522     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
523       assert(NumParts == 1 && "Do not know what to promote to!");
524       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
525     } else {
526       if (ValueVT.isFloatingPoint()) {
527         // FP values need to be bitcast, then extended if they are being put
528         // into a larger container.
529         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
530         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
531       }
532       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533              ValueVT.isInteger() &&
534              "Unknown mismatch!");
535       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
537       if (PartVT == MVT::x86mmx)
538         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539     }
540   } else if (PartBits == ValueVT.getSizeInBits()) {
541     // Different types of the same size.
542     assert(NumParts == 1 && PartEVT != ValueVT);
543     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
545     // If the parts cover less bits than value has, truncate the value.
546     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
547            ValueVT.isInteger() &&
548            "Unknown mismatch!");
549     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
550     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
551     if (PartVT == MVT::x86mmx)
552       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
553   }
554 
555   // The value may have changed - recompute ValueVT.
556   ValueVT = Val.getValueType();
557   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
558          "Failed to tile the value with PartVT!");
559 
560   if (NumParts == 1) {
561     if (PartEVT != ValueVT) {
562       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
563                                         "scalar-to-vector conversion failed");
564       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Expand the value into multiple parts.
572   if (NumParts & (NumParts - 1)) {
573     // The number of parts is not a power of 2.  Split off and copy the tail.
574     assert(PartVT.isInteger() && ValueVT.isInteger() &&
575            "Do not know what to expand to!");
576     unsigned RoundParts = llvm::bit_floor(NumParts);
577     unsigned RoundBits = RoundParts * PartBits;
578     unsigned OddParts = NumParts - RoundParts;
579     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
580       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
581 
582     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
583                    CallConv);
584 
585     if (DAG.getDataLayout().isBigEndian())
586       // The odd parts were reversed by getCopyToParts - unreverse them.
587       std::reverse(Parts + RoundParts, Parts + NumParts);
588 
589     NumParts = RoundParts;
590     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
591     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
592   }
593 
594   // The number of parts is a power of 2.  Repeatedly bisect the value using
595   // EXTRACT_ELEMENT.
596   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
597                          EVT::getIntegerVT(*DAG.getContext(),
598                                            ValueVT.getSizeInBits()),
599                          Val);
600 
601   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
602     for (unsigned i = 0; i < NumParts; i += StepSize) {
603       unsigned ThisBits = StepSize * PartBits / 2;
604       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
605       SDValue &Part0 = Parts[i];
606       SDValue &Part1 = Parts[i+StepSize/2];
607 
608       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
609                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
610       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
611                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
612 
613       if (ThisBits == PartBits && ThisVT != PartVT) {
614         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
615         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
616       }
617     }
618   }
619 
620   if (DAG.getDataLayout().isBigEndian())
621     std::reverse(Parts, Parts + OrigNumParts);
622 }
623 
624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
625                                      const SDLoc &DL, EVT PartVT) {
626   if (!PartVT.isVector())
627     return SDValue();
628 
629   EVT ValueVT = Val.getValueType();
630   EVT PartEVT = PartVT.getVectorElementType();
631   EVT ValueEVT = ValueVT.getVectorElementType();
632   ElementCount PartNumElts = PartVT.getVectorElementCount();
633   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
634 
635   // We only support widening vectors with equivalent element types and
636   // fixed/scalable properties. If a target needs to widen a fixed-length type
637   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
638   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
639       PartNumElts.isScalable() != ValueNumElts.isScalable())
640     return SDValue();
641 
642   // Have a try for bf16 because some targets share its ABI with fp16.
643   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
644     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
645            "Cannot widen to illegal type");
646     Val = DAG.getNode(ISD::BITCAST, DL,
647                       ValueVT.changeVectorElementType(MVT::f16), Val);
648   } else if (PartEVT != ValueEVT) {
649     return SDValue();
650   }
651 
652   // Widening a scalable vector to another scalable vector is done by inserting
653   // the vector into a larger undef one.
654   if (PartNumElts.isScalable())
655     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
656                        Val, DAG.getVectorIdxConstant(0, DL));
657 
658   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
659   // undef elements.
660   SmallVector<SDValue, 16> Ops;
661   DAG.ExtractVectorElements(Val, Ops);
662   SDValue EltUndef = DAG.getUNDEF(PartEVT);
663   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
664 
665   // FIXME: Use CONCAT for 2x -> 4x.
666   return DAG.getBuildVector(PartVT, DL, Ops);
667 }
668 
669 /// getCopyToPartsVector - Create a series of nodes that contain the specified
670 /// value split into legal parts.
671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
672                                  SDValue Val, SDValue *Parts, unsigned NumParts,
673                                  MVT PartVT, const Value *V,
674                                  std::optional<CallingConv::ID> CallConv) {
675   EVT ValueVT = Val.getValueType();
676   assert(ValueVT.isVector() && "Not a vector");
677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678   const bool IsABIRegCopy = CallConv.has_value();
679 
680   if (NumParts == 1) {
681     EVT PartEVT = PartVT;
682     if (PartEVT == ValueVT) {
683       // Nothing to do.
684     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
685       // Bitconvert vector->vector case.
686       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
687     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
688       Val = Widened;
689     } else if (PartVT.isVector() &&
690                PartEVT.getVectorElementType().bitsGE(
691                    ValueVT.getVectorElementType()) &&
692                PartEVT.getVectorElementCount() ==
693                    ValueVT.getVectorElementCount()) {
694 
695       // Promoted vector extract
696       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
697     } else if (PartEVT.isVector() &&
698                PartEVT.getVectorElementType() !=
699                    ValueVT.getVectorElementType() &&
700                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
701                    TargetLowering::TypeWidenVector) {
702       // Combination of widening and promotion.
703       EVT WidenVT =
704           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
705                            PartVT.getVectorElementCount());
706       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
707       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
708     } else {
709       // Don't extract an integer from a float vector. This can happen if the
710       // FP type gets softened to integer and then promoted. The promotion
711       // prevents it from being picked up by the earlier bitcast case.
712       if (ValueVT.getVectorElementCount().isScalar() &&
713           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
714         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
715                           DAG.getVectorIdxConstant(0, DL));
716       } else {
717         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
718         assert(PartVT.getFixedSizeInBits() > ValueSize &&
719                "lossy conversion of vector to scalar type");
720         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
721         Val = DAG.getBitcast(IntermediateType, Val);
722         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
723       }
724     }
725 
726     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
727     Parts[0] = Val;
728     return;
729   }
730 
731   // Handle a multi-element vector.
732   EVT IntermediateVT;
733   MVT RegisterVT;
734   unsigned NumIntermediates;
735   unsigned NumRegs;
736   if (IsABIRegCopy) {
737     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
738         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
739         RegisterVT);
740   } else {
741     NumRegs =
742         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
743                                    NumIntermediates, RegisterVT);
744   }
745 
746   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
747   NumParts = NumRegs; // Silence a compiler warning.
748   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
749 
750   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
751          "Mixing scalable and fixed vectors when copying in parts");
752 
753   std::optional<ElementCount> DestEltCnt;
754 
755   if (IntermediateVT.isVector())
756     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
757   else
758     DestEltCnt = ElementCount::getFixed(NumIntermediates);
759 
760   EVT BuiltVectorTy = EVT::getVectorVT(
761       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
762 
763   if (ValueVT == BuiltVectorTy) {
764     // Nothing to do.
765   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
766     // Bitconvert vector->vector case.
767     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
768   } else {
769     if (BuiltVectorTy.getVectorElementType().bitsGT(
770             ValueVT.getVectorElementType())) {
771       // Integer promotion.
772       ValueVT = EVT::getVectorVT(*DAG.getContext(),
773                                  BuiltVectorTy.getVectorElementType(),
774                                  ValueVT.getVectorElementCount());
775       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
776     }
777 
778     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
779       Val = Widened;
780     }
781   }
782 
783   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
784 
785   // Split the vector into intermediate operands.
786   SmallVector<SDValue, 8> Ops(NumIntermediates);
787   for (unsigned i = 0; i != NumIntermediates; ++i) {
788     if (IntermediateVT.isVector()) {
789       // This does something sensible for scalable vectors - see the
790       // definition of EXTRACT_SUBVECTOR for further details.
791       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
792       Ops[i] =
793           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
794                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
795     } else {
796       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
797                            DAG.getVectorIdxConstant(i, DL));
798     }
799   }
800 
801   // Split the intermediate operands into legal parts.
802   if (NumParts == NumIntermediates) {
803     // If the register was not expanded, promote or copy the value,
804     // as appropriate.
805     for (unsigned i = 0; i != NumParts; ++i)
806       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
807   } else if (NumParts > 0) {
808     // If the intermediate type was expanded, split each the value into
809     // legal parts.
810     assert(NumIntermediates != 0 && "division by zero");
811     assert(NumParts % NumIntermediates == 0 &&
812            "Must expand into a divisible number of parts!");
813     unsigned Factor = NumParts / NumIntermediates;
814     for (unsigned i = 0; i != NumIntermediates; ++i)
815       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
816                      CallConv);
817   }
818 }
819 
820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
821                            EVT valuevt, std::optional<CallingConv::ID> CC)
822     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
823       RegCount(1, regs.size()), CallConv(CC) {}
824 
825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
826                            const DataLayout &DL, unsigned Reg, Type *Ty,
827                            std::optional<CallingConv::ID> CC) {
828   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
829 
830   CallConv = CC;
831 
832   for (EVT ValueVT : ValueVTs) {
833     unsigned NumRegs =
834         isABIMangled()
835             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
836             : TLI.getNumRegisters(Context, ValueVT);
837     MVT RegisterVT =
838         isABIMangled()
839             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
840             : TLI.getRegisterType(Context, ValueVT);
841     for (unsigned i = 0; i != NumRegs; ++i)
842       Regs.push_back(Reg + i);
843     RegVTs.push_back(RegisterVT);
844     RegCount.push_back(NumRegs);
845     Reg += NumRegs;
846   }
847 }
848 
849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
850                                       FunctionLoweringInfo &FuncInfo,
851                                       const SDLoc &dl, SDValue &Chain,
852                                       SDValue *Glue, const Value *V) const {
853   // A Value with type {} or [0 x %t] needs no registers.
854   if (ValueVTs.empty())
855     return SDValue();
856 
857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
858 
859   // Assemble the legal parts into the final values.
860   SmallVector<SDValue, 4> Values(ValueVTs.size());
861   SmallVector<SDValue, 8> Parts;
862   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
863     // Copy the legal parts from the registers.
864     EVT ValueVT = ValueVTs[Value];
865     unsigned NumRegs = RegCount[Value];
866     MVT RegisterVT = isABIMangled()
867                          ? TLI.getRegisterTypeForCallingConv(
868                                *DAG.getContext(), *CallConv, RegVTs[Value])
869                          : RegVTs[Value];
870 
871     Parts.resize(NumRegs);
872     for (unsigned i = 0; i != NumRegs; ++i) {
873       SDValue P;
874       if (!Glue) {
875         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
876       } else {
877         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
878         *Glue = P.getValue(2);
879       }
880 
881       Chain = P.getValue(1);
882       Parts[i] = P;
883 
884       // If the source register was virtual and if we know something about it,
885       // add an assert node.
886       if (!Register::isVirtualRegister(Regs[Part + i]) ||
887           !RegisterVT.isInteger())
888         continue;
889 
890       const FunctionLoweringInfo::LiveOutInfo *LOI =
891         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
892       if (!LOI)
893         continue;
894 
895       unsigned RegSize = RegisterVT.getScalarSizeInBits();
896       unsigned NumSignBits = LOI->NumSignBits;
897       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
898 
899       if (NumZeroBits == RegSize) {
900         // The current value is a zero.
901         // Explicitly express that as it would be easier for
902         // optimizations to kick in.
903         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
904         continue;
905       }
906 
907       // FIXME: We capture more information than the dag can represent.  For
908       // now, just use the tightest assertzext/assertsext possible.
909       bool isSExt;
910       EVT FromVT(MVT::Other);
911       if (NumZeroBits) {
912         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
913         isSExt = false;
914       } else if (NumSignBits > 1) {
915         FromVT =
916             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
917         isSExt = true;
918       } else {
919         continue;
920       }
921       // Add an assertion node.
922       assert(FromVT != MVT::Other);
923       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
924                              RegisterVT, P, DAG.getValueType(FromVT));
925     }
926 
927     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
928                                      RegisterVT, ValueVT, V, CallConv);
929     Part += NumRegs;
930     Parts.clear();
931   }
932 
933   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
934 }
935 
936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
937                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
938                                  const Value *V,
939                                  ISD::NodeType PreferredExtendType) const {
940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
941   ISD::NodeType ExtendKind = PreferredExtendType;
942 
943   // Get the list of the values's legal parts.
944   unsigned NumRegs = Regs.size();
945   SmallVector<SDValue, 8> Parts(NumRegs);
946   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
947     unsigned NumParts = RegCount[Value];
948 
949     MVT RegisterVT = isABIMangled()
950                          ? TLI.getRegisterTypeForCallingConv(
951                                *DAG.getContext(), *CallConv, RegVTs[Value])
952                          : RegVTs[Value];
953 
954     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
955       ExtendKind = ISD::ZERO_EXTEND;
956 
957     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
958                    NumParts, RegisterVT, V, CallConv, ExtendKind);
959     Part += NumParts;
960   }
961 
962   // Copy the parts into the registers.
963   SmallVector<SDValue, 8> Chains(NumRegs);
964   for (unsigned i = 0; i != NumRegs; ++i) {
965     SDValue Part;
966     if (!Glue) {
967       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
968     } else {
969       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
970       *Glue = Part.getValue(1);
971     }
972 
973     Chains[i] = Part.getValue(0);
974   }
975 
976   if (NumRegs == 1 || Glue)
977     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
978     // flagged to it. That is the CopyToReg nodes and the user are considered
979     // a single scheduling unit. If we create a TokenFactor and return it as
980     // chain, then the TokenFactor is both a predecessor (operand) of the
981     // user as well as a successor (the TF operands are flagged to the user).
982     // c1, f1 = CopyToReg
983     // c2, f2 = CopyToReg
984     // c3     = TokenFactor c1, c2
985     // ...
986     //        = op c3, ..., f2
987     Chain = Chains[NumRegs-1];
988   else
989     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
990 }
991 
992 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
993                                         unsigned MatchingIdx, const SDLoc &dl,
994                                         SelectionDAG &DAG,
995                                         std::vector<SDValue> &Ops) const {
996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
997 
998   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
999   if (HasMatching)
1000     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
1001   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1002     // Put the register class of the virtual registers in the flag word.  That
1003     // way, later passes can recompute register class constraints for inline
1004     // assembly as well as normal instructions.
1005     // Don't do this for tied operands that can use the regclass information
1006     // from the def.
1007     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1008     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1009     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
1010   }
1011 
1012   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1013   Ops.push_back(Res);
1014 
1015   if (Code == InlineAsm::Kind_Clobber) {
1016     // Clobbers should always have a 1:1 mapping with registers, and may
1017     // reference registers that have illegal (e.g. vector) types. Hence, we
1018     // shouldn't try to apply any sort of splitting logic to them.
1019     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1020            "No 1:1 mapping from clobbers to regs?");
1021     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1022     (void)SP;
1023     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1024       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1025       assert(
1026           (Regs[I] != SP ||
1027            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1028           "If we clobbered the stack pointer, MFI should know about it.");
1029     }
1030     return;
1031   }
1032 
1033   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1034     MVT RegisterVT = RegVTs[Value];
1035     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1036                                            RegisterVT);
1037     for (unsigned i = 0; i != NumRegs; ++i) {
1038       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1039       unsigned TheReg = Regs[Reg++];
1040       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1041     }
1042   }
1043 }
1044 
1045 SmallVector<std::pair<unsigned, TypeSize>, 4>
1046 RegsForValue::getRegsAndSizes() const {
1047   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1048   unsigned I = 0;
1049   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1050     unsigned RegCount = std::get<0>(CountAndVT);
1051     MVT RegisterVT = std::get<1>(CountAndVT);
1052     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1053     for (unsigned E = I + RegCount; I != E; ++I)
1054       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1055   }
1056   return OutVec;
1057 }
1058 
1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1060                                AssumptionCache *ac,
1061                                const TargetLibraryInfo *li) {
1062   AA = aa;
1063   AC = ac;
1064   GFI = gfi;
1065   LibInfo = li;
1066   Context = DAG.getContext();
1067   LPadToCallSiteMap.clear();
1068   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1069   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1070       *DAG.getMachineFunction().getFunction().getParent());
1071 }
1072 
1073 void SelectionDAGBuilder::clear() {
1074   NodeMap.clear();
1075   UnusedArgNodeMap.clear();
1076   PendingLoads.clear();
1077   PendingExports.clear();
1078   PendingConstrainedFP.clear();
1079   PendingConstrainedFPStrict.clear();
1080   CurInst = nullptr;
1081   HasTailCall = false;
1082   SDNodeOrder = LowestSDNodeOrder;
1083   StatepointLowering.clear();
1084 }
1085 
1086 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1087   DanglingDebugInfoMap.clear();
1088 }
1089 
1090 // Update DAG root to include dependencies on Pending chains.
1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1092   SDValue Root = DAG.getRoot();
1093 
1094   if (Pending.empty())
1095     return Root;
1096 
1097   // Add current root to PendingChains, unless we already indirectly
1098   // depend on it.
1099   if (Root.getOpcode() != ISD::EntryToken) {
1100     unsigned i = 0, e = Pending.size();
1101     for (; i != e; ++i) {
1102       assert(Pending[i].getNode()->getNumOperands() > 1);
1103       if (Pending[i].getNode()->getOperand(0) == Root)
1104         break;  // Don't add the root if we already indirectly depend on it.
1105     }
1106 
1107     if (i == e)
1108       Pending.push_back(Root);
1109   }
1110 
1111   if (Pending.size() == 1)
1112     Root = Pending[0];
1113   else
1114     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1115 
1116   DAG.setRoot(Root);
1117   Pending.clear();
1118   return Root;
1119 }
1120 
1121 SDValue SelectionDAGBuilder::getMemoryRoot() {
1122   return updateRoot(PendingLoads);
1123 }
1124 
1125 SDValue SelectionDAGBuilder::getRoot() {
1126   // Chain up all pending constrained intrinsics together with all
1127   // pending loads, by simply appending them to PendingLoads and
1128   // then calling getMemoryRoot().
1129   PendingLoads.reserve(PendingLoads.size() +
1130                        PendingConstrainedFP.size() +
1131                        PendingConstrainedFPStrict.size());
1132   PendingLoads.append(PendingConstrainedFP.begin(),
1133                       PendingConstrainedFP.end());
1134   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1135                       PendingConstrainedFPStrict.end());
1136   PendingConstrainedFP.clear();
1137   PendingConstrainedFPStrict.clear();
1138   return getMemoryRoot();
1139 }
1140 
1141 SDValue SelectionDAGBuilder::getControlRoot() {
1142   // We need to emit pending fpexcept.strict constrained intrinsics,
1143   // so append them to the PendingExports list.
1144   PendingExports.append(PendingConstrainedFPStrict.begin(),
1145                         PendingConstrainedFPStrict.end());
1146   PendingConstrainedFPStrict.clear();
1147   return updateRoot(PendingExports);
1148 }
1149 
1150 void SelectionDAGBuilder::visit(const Instruction &I) {
1151   // Set up outgoing PHI node register values before emitting the terminator.
1152   if (I.isTerminator()) {
1153     HandlePHINodesInSuccessorBlocks(I.getParent());
1154   }
1155 
1156   // Add SDDbgValue nodes for any var locs here. Do so before updating
1157   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1158   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1159     // Add SDDbgValue nodes for any var locs here. Do so before updating
1160     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1161     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1162          It != End; ++It) {
1163       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1164       dropDanglingDebugInfo(Var, It->Expr);
1165       if (It->Values.isKillLocation(It->Expr)) {
1166         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1167         continue;
1168       }
1169       SmallVector<Value *> Values(It->Values.location_ops());
1170       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1171                             It->Values.hasArgList()))
1172         addDanglingDebugInfo(It, SDNodeOrder);
1173     }
1174   }
1175 
1176   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1177   if (!isa<DbgInfoIntrinsic>(I))
1178     ++SDNodeOrder;
1179 
1180   CurInst = &I;
1181 
1182   // Set inserted listener only if required.
1183   bool NodeInserted = false;
1184   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1185   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1186   if (PCSectionsMD) {
1187     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1188         DAG, [&](SDNode *) { NodeInserted = true; });
1189   }
1190 
1191   visit(I.getOpcode(), I);
1192 
1193   if (!I.isTerminator() && !HasTailCall &&
1194       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1195     CopyToExportRegsIfNeeded(&I);
1196 
1197   // Handle metadata.
1198   if (PCSectionsMD) {
1199     auto It = NodeMap.find(&I);
1200     if (It != NodeMap.end()) {
1201       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1202     } else if (NodeInserted) {
1203       // This should not happen; if it does, don't let it go unnoticed so we can
1204       // fix it. Relevant visit*() function is probably missing a setValue().
1205       errs() << "warning: loosing !pcsections metadata ["
1206              << I.getModule()->getName() << "]\n";
1207       LLVM_DEBUG(I.dump());
1208       assert(false);
1209     }
1210   }
1211 
1212   CurInst = nullptr;
1213 }
1214 
1215 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1216   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1217 }
1218 
1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1220   // Note: this doesn't use InstVisitor, because it has to work with
1221   // ConstantExpr's in addition to instructions.
1222   switch (Opcode) {
1223   default: llvm_unreachable("Unknown instruction type encountered!");
1224     // Build the switch statement using the Instruction.def file.
1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1226     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1227 #include "llvm/IR/Instruction.def"
1228   }
1229 }
1230 
1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1232                                             DILocalVariable *Variable,
1233                                             DebugLoc DL, unsigned Order,
1234                                             RawLocationWrapper Values,
1235                                             DIExpression *Expression) {
1236   if (!Values.hasArgList())
1237     return false;
1238   // For variadic dbg_values we will now insert an undef.
1239   // FIXME: We can potentially recover these!
1240   SmallVector<SDDbgOperand, 2> Locs;
1241   for (const Value *V : Values.location_ops()) {
1242     auto *Undef = UndefValue::get(V->getType());
1243     Locs.push_back(SDDbgOperand::fromConst(Undef));
1244   }
1245   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1246                                         /*IsIndirect=*/false, DL, Order,
1247                                         /*IsVariadic=*/true);
1248   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1249   return true;
1250 }
1251 
1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1253                                                unsigned Order) {
1254   if (!handleDanglingVariadicDebugInfo(
1255           DAG,
1256           const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1257                                             ->getVariable(VarLoc->VariableID)
1258                                             .getVariable()),
1259           VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1260     DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1261         VarLoc, Order);
1262   }
1263 }
1264 
1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1266                                                unsigned Order) {
1267   // We treat variadic dbg_values differently at this stage.
1268   if (!handleDanglingVariadicDebugInfo(
1269           DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1270           DI->getWrappedLocation(), DI->getExpression())) {
1271     // TODO: Dangling debug info will eventually either be resolved or produce
1272     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1273     // between the original dbg.value location and its resolved DBG_VALUE,
1274     // which we should ideally fill with an extra Undef DBG_VALUE.
1275     assert(DI->getNumVariableLocationOps() == 1 &&
1276            "DbgValueInst without an ArgList should have a single location "
1277            "operand.");
1278     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1279   }
1280 }
1281 
1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1283                                                 const DIExpression *Expr) {
1284   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1285     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1286     DIExpression *DanglingExpr = DDI.getExpression();
1287     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1288       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1289                         << "\n");
1290       return true;
1291     }
1292     return false;
1293   };
1294 
1295   for (auto &DDIMI : DanglingDebugInfoMap) {
1296     DanglingDebugInfoVector &DDIV = DDIMI.second;
1297 
1298     // If debug info is to be dropped, run it through final checks to see
1299     // whether it can be salvaged.
1300     for (auto &DDI : DDIV)
1301       if (isMatchingDbgValue(DDI))
1302         salvageUnresolvedDbgValue(DDI);
1303 
1304     erase_if(DDIV, isMatchingDbgValue);
1305   }
1306 }
1307 
1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1309 // generate the debug data structures now that we've seen its definition.
1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1311                                                    SDValue Val) {
1312   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1313   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1314     return;
1315 
1316   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1317   for (auto &DDI : DDIV) {
1318     DebugLoc DL = DDI.getDebugLoc();
1319     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1320     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1321     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1322     DIExpression *Expr = DDI.getExpression();
1323     assert(Variable->isValidLocationForIntrinsic(DL) &&
1324            "Expected inlined-at fields to agree");
1325     SDDbgValue *SDV;
1326     if (Val.getNode()) {
1327       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1328       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1329       // we couldn't resolve it directly when examining the DbgValue intrinsic
1330       // in the first place we should not be more successful here). Unless we
1331       // have some test case that prove this to be correct we should avoid
1332       // calling EmitFuncArgumentDbgValue here.
1333       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1334                                     FuncArgumentDbgValueKind::Value, Val)) {
1335         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1336                           << "\n");
1337         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1338         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1339         // inserted after the definition of Val when emitting the instructions
1340         // after ISel. An alternative could be to teach
1341         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1342         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1343                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1344                    << ValSDNodeOrder << "\n");
1345         SDV = getDbgValue(Val, Variable, Expr, DL,
1346                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1347         DAG.AddDbgValue(SDV, false);
1348       } else
1349         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1350                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1351     } else {
1352       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1353       auto Undef = UndefValue::get(V->getType());
1354       auto SDV =
1355           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1356       DAG.AddDbgValue(SDV, false);
1357     }
1358   }
1359   DDIV.clear();
1360 }
1361 
1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1363   // TODO: For the variadic implementation, instead of only checking the fail
1364   // state of `handleDebugValue`, we need know specifically which values were
1365   // invalid, so that we attempt to salvage only those values when processing
1366   // a DIArgList.
1367   Value *V = DDI.getVariableLocationOp(0);
1368   Value *OrigV = V;
1369   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1370   DIExpression *Expr = DDI.getExpression();
1371   DebugLoc DL = DDI.getDebugLoc();
1372   unsigned SDOrder = DDI.getSDNodeOrder();
1373 
1374   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1375   // that DW_OP_stack_value is desired.
1376   bool StackValue = true;
1377 
1378   // Can this Value can be encoded without any further work?
1379   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1380     return;
1381 
1382   // Attempt to salvage back through as many instructions as possible. Bail if
1383   // a non-instruction is seen, such as a constant expression or global
1384   // variable. FIXME: Further work could recover those too.
1385   while (isa<Instruction>(V)) {
1386     Instruction &VAsInst = *cast<Instruction>(V);
1387     // Temporary "0", awaiting real implementation.
1388     SmallVector<uint64_t, 16> Ops;
1389     SmallVector<Value *, 4> AdditionalValues;
1390     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1391                              AdditionalValues);
1392     // If we cannot salvage any further, and haven't yet found a suitable debug
1393     // expression, bail out.
1394     if (!V)
1395       break;
1396 
1397     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1398     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1399     // here for variadic dbg_values, remove that condition.
1400     if (!AdditionalValues.empty())
1401       break;
1402 
1403     // New value and expr now represent this debuginfo.
1404     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1405 
1406     // Some kind of simplification occurred: check whether the operand of the
1407     // salvaged debug expression can be encoded in this DAG.
1408     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1409       LLVM_DEBUG(
1410           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1411                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1412       return;
1413     }
1414   }
1415 
1416   // This was the final opportunity to salvage this debug information, and it
1417   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1418   // any earlier variable location.
1419   assert(OrigV && "V shouldn't be null");
1420   auto *Undef = UndefValue::get(OrigV->getType());
1421   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1422   DAG.AddDbgValue(SDV, false);
1423   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1424                     << "\n");
1425 }
1426 
1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1428                                                DIExpression *Expr,
1429                                                DebugLoc DbgLoc,
1430                                                unsigned Order) {
1431   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1432   DIExpression *NewExpr =
1433       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1434   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1435                    /*IsVariadic*/ false);
1436 }
1437 
1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1439                                            DILocalVariable *Var,
1440                                            DIExpression *Expr, DebugLoc DbgLoc,
1441                                            unsigned Order, bool IsVariadic) {
1442   if (Values.empty())
1443     return true;
1444   SmallVector<SDDbgOperand> LocationOps;
1445   SmallVector<SDNode *> Dependencies;
1446   for (const Value *V : Values) {
1447     // Constant value.
1448     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1449         isa<ConstantPointerNull>(V)) {
1450       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1451       continue;
1452     }
1453 
1454     // Look through IntToPtr constants.
1455     if (auto *CE = dyn_cast<ConstantExpr>(V))
1456       if (CE->getOpcode() == Instruction::IntToPtr) {
1457         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1458         continue;
1459       }
1460 
1461     // If the Value is a frame index, we can create a FrameIndex debug value
1462     // without relying on the DAG at all.
1463     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1464       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1465       if (SI != FuncInfo.StaticAllocaMap.end()) {
1466         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1467         continue;
1468       }
1469     }
1470 
1471     // Do not use getValue() in here; we don't want to generate code at
1472     // this point if it hasn't been done yet.
1473     SDValue N = NodeMap[V];
1474     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1475       N = UnusedArgNodeMap[V];
1476     if (N.getNode()) {
1477       // Only emit func arg dbg value for non-variadic dbg.values for now.
1478       if (!IsVariadic &&
1479           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1480                                    FuncArgumentDbgValueKind::Value, N))
1481         return true;
1482       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1483         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1484         // describe stack slot locations.
1485         //
1486         // Consider "int x = 0; int *px = &x;". There are two kinds of
1487         // interesting debug values here after optimization:
1488         //
1489         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1490         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1491         //
1492         // Both describe the direct values of their associated variables.
1493         Dependencies.push_back(N.getNode());
1494         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1495         continue;
1496       }
1497       LocationOps.emplace_back(
1498           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1499       continue;
1500     }
1501 
1502     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1503     // Special rules apply for the first dbg.values of parameter variables in a
1504     // function. Identify them by the fact they reference Argument Values, that
1505     // they're parameters, and they are parameters of the current function. We
1506     // need to let them dangle until they get an SDNode.
1507     bool IsParamOfFunc =
1508         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1509     if (IsParamOfFunc)
1510       return false;
1511 
1512     // The value is not used in this block yet (or it would have an SDNode).
1513     // We still want the value to appear for the user if possible -- if it has
1514     // an associated VReg, we can refer to that instead.
1515     auto VMI = FuncInfo.ValueMap.find(V);
1516     if (VMI != FuncInfo.ValueMap.end()) {
1517       unsigned Reg = VMI->second;
1518       // If this is a PHI node, it may be split up into several MI PHI nodes
1519       // (in FunctionLoweringInfo::set).
1520       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1521                        V->getType(), std::nullopt);
1522       if (RFV.occupiesMultipleRegs()) {
1523         // FIXME: We could potentially support variadic dbg_values here.
1524         if (IsVariadic)
1525           return false;
1526         unsigned Offset = 0;
1527         unsigned BitsToDescribe = 0;
1528         if (auto VarSize = Var->getSizeInBits())
1529           BitsToDescribe = *VarSize;
1530         if (auto Fragment = Expr->getFragmentInfo())
1531           BitsToDescribe = Fragment->SizeInBits;
1532         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1533           // Bail out if all bits are described already.
1534           if (Offset >= BitsToDescribe)
1535             break;
1536           // TODO: handle scalable vectors.
1537           unsigned RegisterSize = RegAndSize.second;
1538           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1539                                       ? BitsToDescribe - Offset
1540                                       : RegisterSize;
1541           auto FragmentExpr = DIExpression::createFragmentExpression(
1542               Expr, Offset, FragmentSize);
1543           if (!FragmentExpr)
1544             continue;
1545           SDDbgValue *SDV = DAG.getVRegDbgValue(
1546               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1547           DAG.AddDbgValue(SDV, false);
1548           Offset += RegisterSize;
1549         }
1550         return true;
1551       }
1552       // We can use simple vreg locations for variadic dbg_values as well.
1553       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1554       continue;
1555     }
1556     // We failed to create a SDDbgOperand for V.
1557     return false;
1558   }
1559 
1560   // We have created a SDDbgOperand for each Value in Values.
1561   // Should use Order instead of SDNodeOrder?
1562   assert(!LocationOps.empty());
1563   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1564                                         /*IsIndirect=*/false, DbgLoc,
1565                                         SDNodeOrder, IsVariadic);
1566   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1567   return true;
1568 }
1569 
1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1571   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1572   for (auto &Pair : DanglingDebugInfoMap)
1573     for (auto &DDI : Pair.second)
1574       salvageUnresolvedDbgValue(DDI);
1575   clearDanglingDebugInfo();
1576 }
1577 
1578 /// getCopyFromRegs - If there was virtual register allocated for the value V
1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1581   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1582   SDValue Result;
1583 
1584   if (It != FuncInfo.ValueMap.end()) {
1585     Register InReg = It->second;
1586 
1587     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1588                      DAG.getDataLayout(), InReg, Ty,
1589                      std::nullopt); // This is not an ABI copy.
1590     SDValue Chain = DAG.getEntryNode();
1591     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1592                                  V);
1593     resolveDanglingDebugInfo(V, Result);
1594   }
1595 
1596   return Result;
1597 }
1598 
1599 /// getValue - Return an SDValue for the given Value.
1600 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1601   // If we already have an SDValue for this value, use it. It's important
1602   // to do this first, so that we don't create a CopyFromReg if we already
1603   // have a regular SDValue.
1604   SDValue &N = NodeMap[V];
1605   if (N.getNode()) return N;
1606 
1607   // If there's a virtual register allocated and initialized for this
1608   // value, use it.
1609   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1610     return copyFromReg;
1611 
1612   // Otherwise create a new SDValue and remember it.
1613   SDValue Val = getValueImpl(V);
1614   NodeMap[V] = Val;
1615   resolveDanglingDebugInfo(V, Val);
1616   return Val;
1617 }
1618 
1619 /// getNonRegisterValue - Return an SDValue for the given Value, but
1620 /// don't look in FuncInfo.ValueMap for a virtual register.
1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1622   // If we already have an SDValue for this value, use it.
1623   SDValue &N = NodeMap[V];
1624   if (N.getNode()) {
1625     if (isIntOrFPConstant(N)) {
1626       // Remove the debug location from the node as the node is about to be used
1627       // in a location which may differ from the original debug location.  This
1628       // is relevant to Constant and ConstantFP nodes because they can appear
1629       // as constant expressions inside PHI nodes.
1630       N->setDebugLoc(DebugLoc());
1631     }
1632     return N;
1633   }
1634 
1635   // Otherwise create a new SDValue and remember it.
1636   SDValue Val = getValueImpl(V);
1637   NodeMap[V] = Val;
1638   resolveDanglingDebugInfo(V, Val);
1639   return Val;
1640 }
1641 
1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1643 /// Create an SDValue for the given value.
1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1645   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1646 
1647   if (const Constant *C = dyn_cast<Constant>(V)) {
1648     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1649 
1650     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1651       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1652 
1653     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1654       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1655 
1656     if (isa<ConstantPointerNull>(C)) {
1657       unsigned AS = V->getType()->getPointerAddressSpace();
1658       return DAG.getConstant(0, getCurSDLoc(),
1659                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1660     }
1661 
1662     if (match(C, m_VScale()))
1663       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1664 
1665     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1666       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1667 
1668     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1669       return DAG.getUNDEF(VT);
1670 
1671     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1672       visit(CE->getOpcode(), *CE);
1673       SDValue N1 = NodeMap[V];
1674       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1675       return N1;
1676     }
1677 
1678     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1679       SmallVector<SDValue, 4> Constants;
1680       for (const Use &U : C->operands()) {
1681         SDNode *Val = getValue(U).getNode();
1682         // If the operand is an empty aggregate, there are no values.
1683         if (!Val) continue;
1684         // Add each leaf value from the operand to the Constants list
1685         // to form a flattened list of all the values.
1686         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1687           Constants.push_back(SDValue(Val, i));
1688       }
1689 
1690       return DAG.getMergeValues(Constants, getCurSDLoc());
1691     }
1692 
1693     if (const ConstantDataSequential *CDS =
1694           dyn_cast<ConstantDataSequential>(C)) {
1695       SmallVector<SDValue, 4> Ops;
1696       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1697         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1698         // Add each leaf value from the operand to the Constants list
1699         // to form a flattened list of all the values.
1700         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1701           Ops.push_back(SDValue(Val, i));
1702       }
1703 
1704       if (isa<ArrayType>(CDS->getType()))
1705         return DAG.getMergeValues(Ops, getCurSDLoc());
1706       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1707     }
1708 
1709     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1710       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1711              "Unknown struct or array constant!");
1712 
1713       SmallVector<EVT, 4> ValueVTs;
1714       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1715       unsigned NumElts = ValueVTs.size();
1716       if (NumElts == 0)
1717         return SDValue(); // empty struct
1718       SmallVector<SDValue, 4> Constants(NumElts);
1719       for (unsigned i = 0; i != NumElts; ++i) {
1720         EVT EltVT = ValueVTs[i];
1721         if (isa<UndefValue>(C))
1722           Constants[i] = DAG.getUNDEF(EltVT);
1723         else if (EltVT.isFloatingPoint())
1724           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1725         else
1726           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1727       }
1728 
1729       return DAG.getMergeValues(Constants, getCurSDLoc());
1730     }
1731 
1732     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1733       return DAG.getBlockAddress(BA, VT);
1734 
1735     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1736       return getValue(Equiv->getGlobalValue());
1737 
1738     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1739       return getValue(NC->getGlobalValue());
1740 
1741     VectorType *VecTy = cast<VectorType>(V->getType());
1742 
1743     // Now that we know the number and type of the elements, get that number of
1744     // elements into the Ops array based on what kind of constant it is.
1745     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1746       SmallVector<SDValue, 16> Ops;
1747       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1748       for (unsigned i = 0; i != NumElements; ++i)
1749         Ops.push_back(getValue(CV->getOperand(i)));
1750 
1751       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1752     }
1753 
1754     if (isa<ConstantAggregateZero>(C)) {
1755       EVT EltVT =
1756           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1757 
1758       SDValue Op;
1759       if (EltVT.isFloatingPoint())
1760         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1761       else
1762         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1763 
1764       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1765     }
1766 
1767     llvm_unreachable("Unknown vector constant");
1768   }
1769 
1770   // If this is a static alloca, generate it as the frameindex instead of
1771   // computation.
1772   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1773     DenseMap<const AllocaInst*, int>::iterator SI =
1774       FuncInfo.StaticAllocaMap.find(AI);
1775     if (SI != FuncInfo.StaticAllocaMap.end())
1776       return DAG.getFrameIndex(
1777           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1778   }
1779 
1780   // If this is an instruction which fast-isel has deferred, select it now.
1781   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1782     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1783 
1784     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1785                      Inst->getType(), std::nullopt);
1786     SDValue Chain = DAG.getEntryNode();
1787     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1788   }
1789 
1790   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1791     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1792 
1793   if (const auto *BB = dyn_cast<BasicBlock>(V))
1794     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1795 
1796   llvm_unreachable("Can't get register for value!");
1797 }
1798 
1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1800   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1801   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1802   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1803   bool IsSEH = isAsynchronousEHPersonality(Pers);
1804   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1805   if (!IsSEH)
1806     CatchPadMBB->setIsEHScopeEntry();
1807   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1808   if (IsMSVCCXX || IsCoreCLR)
1809     CatchPadMBB->setIsEHFuncletEntry();
1810 }
1811 
1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1813   // Update machine-CFG edge.
1814   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1815   FuncInfo.MBB->addSuccessor(TargetMBB);
1816   TargetMBB->setIsEHCatchretTarget(true);
1817   DAG.getMachineFunction().setHasEHCatchret(true);
1818 
1819   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1820   bool IsSEH = isAsynchronousEHPersonality(Pers);
1821   if (IsSEH) {
1822     // If this is not a fall-through branch or optimizations are switched off,
1823     // emit the branch.
1824     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1825         TM.getOptLevel() == CodeGenOpt::None)
1826       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1827                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1828     return;
1829   }
1830 
1831   // Figure out the funclet membership for the catchret's successor.
1832   // This will be used by the FuncletLayout pass to determine how to order the
1833   // BB's.
1834   // A 'catchret' returns to the outer scope's color.
1835   Value *ParentPad = I.getCatchSwitchParentPad();
1836   const BasicBlock *SuccessorColor;
1837   if (isa<ConstantTokenNone>(ParentPad))
1838     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1839   else
1840     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1841   assert(SuccessorColor && "No parent funclet for catchret!");
1842   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1843   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1844 
1845   // Create the terminator node.
1846   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1847                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1848                             DAG.getBasicBlock(SuccessorColorMBB));
1849   DAG.setRoot(Ret);
1850 }
1851 
1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1853   // Don't emit any special code for the cleanuppad instruction. It just marks
1854   // the start of an EH scope/funclet.
1855   FuncInfo.MBB->setIsEHScopeEntry();
1856   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1857   if (Pers != EHPersonality::Wasm_CXX) {
1858     FuncInfo.MBB->setIsEHFuncletEntry();
1859     FuncInfo.MBB->setIsCleanupFuncletEntry();
1860   }
1861 }
1862 
1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1864 // not match, it is OK to add only the first unwind destination catchpad to the
1865 // successors, because there will be at least one invoke instruction within the
1866 // catch scope that points to the next unwind destination, if one exists, so
1867 // CFGSort cannot mess up with BB sorting order.
1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1869 // call within them, and catchpads only consisting of 'catch (...)' have a
1870 // '__cxa_end_catch' call within them, both of which generate invokes in case
1871 // the next unwind destination exists, i.e., the next unwind destination is not
1872 // the caller.)
1873 //
1874 // Having at most one EH pad successor is also simpler and helps later
1875 // transformations.
1876 //
1877 // For example,
1878 // current:
1879 //   invoke void @foo to ... unwind label %catch.dispatch
1880 // catch.dispatch:
1881 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1882 // catch.start:
1883 //   ...
1884 //   ... in this BB or some other child BB dominated by this BB there will be an
1885 //   invoke that points to 'next' BB as an unwind destination
1886 //
1887 // next: ; We don't need to add this to 'current' BB's successor
1888 //   ...
1889 static void findWasmUnwindDestinations(
1890     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1891     BranchProbability Prob,
1892     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1893         &UnwindDests) {
1894   while (EHPadBB) {
1895     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1896     if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads.
1898       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1899       UnwindDests.back().first->setIsEHScopeEntry();
1900       break;
1901     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1902       // Add the catchpad handlers to the possible destinations. We don't
1903       // continue to the unwind destination of the catchswitch for wasm.
1904       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1905         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1906         UnwindDests.back().first->setIsEHScopeEntry();
1907       }
1908       break;
1909     } else {
1910       continue;
1911     }
1912   }
1913 }
1914 
1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1916 /// many places it could ultimately go. In the IR, we have a single unwind
1917 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1918 /// This function skips over imaginary basic blocks that hold catchswitch
1919 /// instructions, and finds all the "real" machine
1920 /// basic block destinations. As those destinations may not be successors of
1921 /// EHPadBB, here we also calculate the edge probability to those destinations.
1922 /// The passed-in Prob is the edge probability to EHPadBB.
1923 static void findUnwindDestinations(
1924     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1925     BranchProbability Prob,
1926     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1927         &UnwindDests) {
1928   EHPersonality Personality =
1929     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1930   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1931   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1932   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1933   bool IsSEH = isAsynchronousEHPersonality(Personality);
1934 
1935   if (IsWasmCXX) {
1936     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1937     assert(UnwindDests.size() <= 1 &&
1938            "There should be at most one unwind destination for wasm");
1939     return;
1940   }
1941 
1942   while (EHPadBB) {
1943     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1944     BasicBlock *NewEHPadBB = nullptr;
1945     if (isa<LandingPadInst>(Pad)) {
1946       // Stop on landingpads. They are not funclets.
1947       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1948       break;
1949     } else if (isa<CleanupPadInst>(Pad)) {
1950       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1951       // personalities.
1952       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1953       UnwindDests.back().first->setIsEHScopeEntry();
1954       UnwindDests.back().first->setIsEHFuncletEntry();
1955       break;
1956     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1957       // Add the catchpad handlers to the possible destinations.
1958       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1959         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1960         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1961         if (IsMSVCCXX || IsCoreCLR)
1962           UnwindDests.back().first->setIsEHFuncletEntry();
1963         if (!IsSEH)
1964           UnwindDests.back().first->setIsEHScopeEntry();
1965       }
1966       NewEHPadBB = CatchSwitch->getUnwindDest();
1967     } else {
1968       continue;
1969     }
1970 
1971     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1972     if (BPI && NewEHPadBB)
1973       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1974     EHPadBB = NewEHPadBB;
1975   }
1976 }
1977 
1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1979   // Update successor info.
1980   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1981   auto UnwindDest = I.getUnwindDest();
1982   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1983   BranchProbability UnwindDestProb =
1984       (BPI && UnwindDest)
1985           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1986           : BranchProbability::getZero();
1987   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1988   for (auto &UnwindDest : UnwindDests) {
1989     UnwindDest.first->setIsEHPad();
1990     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1991   }
1992   FuncInfo.MBB->normalizeSuccProbs();
1993 
1994   // Create the terminator node.
1995   SDValue Ret =
1996       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1997   DAG.setRoot(Ret);
1998 }
1999 
2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2001   report_fatal_error("visitCatchSwitch not yet implemented!");
2002 }
2003 
2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2006   auto &DL = DAG.getDataLayout();
2007   SDValue Chain = getControlRoot();
2008   SmallVector<ISD::OutputArg, 8> Outs;
2009   SmallVector<SDValue, 8> OutVals;
2010 
2011   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2012   // lower
2013   //
2014   //   %val = call <ty> @llvm.experimental.deoptimize()
2015   //   ret <ty> %val
2016   //
2017   // differently.
2018   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2019     LowerDeoptimizingReturn();
2020     return;
2021   }
2022 
2023   if (!FuncInfo.CanLowerReturn) {
2024     unsigned DemoteReg = FuncInfo.DemoteRegister;
2025     const Function *F = I.getParent()->getParent();
2026 
2027     // Emit a store of the return value through the virtual register.
2028     // Leave Outs empty so that LowerReturn won't try to load return
2029     // registers the usual way.
2030     SmallVector<EVT, 1> PtrValueVTs;
2031     ComputeValueVTs(TLI, DL,
2032                     PointerType::get(F->getContext(),
2033                                      DAG.getDataLayout().getAllocaAddrSpace()),
2034                     PtrValueVTs);
2035 
2036     SDValue RetPtr =
2037         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2038     SDValue RetOp = getValue(I.getOperand(0));
2039 
2040     SmallVector<EVT, 4> ValueVTs, MemVTs;
2041     SmallVector<uint64_t, 4> Offsets;
2042     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2043                     &Offsets, 0);
2044     unsigned NumValues = ValueVTs.size();
2045 
2046     SmallVector<SDValue, 4> Chains(NumValues);
2047     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2048     for (unsigned i = 0; i != NumValues; ++i) {
2049       // An aggregate return value cannot wrap around the address space, so
2050       // offsets to its parts don't wrap either.
2051       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2052                                            TypeSize::Fixed(Offsets[i]));
2053 
2054       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2055       if (MemVTs[i] != ValueVTs[i])
2056         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2057       Chains[i] = DAG.getStore(
2058           Chain, getCurSDLoc(), Val,
2059           // FIXME: better loc info would be nice.
2060           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2061           commonAlignment(BaseAlign, Offsets[i]));
2062     }
2063 
2064     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2065                         MVT::Other, Chains);
2066   } else if (I.getNumOperands() != 0) {
2067     SmallVector<EVT, 4> ValueVTs;
2068     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2069     unsigned NumValues = ValueVTs.size();
2070     if (NumValues) {
2071       SDValue RetOp = getValue(I.getOperand(0));
2072 
2073       const Function *F = I.getParent()->getParent();
2074 
2075       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2076           I.getOperand(0)->getType(), F->getCallingConv(),
2077           /*IsVarArg*/ false, DL);
2078 
2079       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2080       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2081         ExtendKind = ISD::SIGN_EXTEND;
2082       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2083         ExtendKind = ISD::ZERO_EXTEND;
2084 
2085       LLVMContext &Context = F->getContext();
2086       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2087 
2088       for (unsigned j = 0; j != NumValues; ++j) {
2089         EVT VT = ValueVTs[j];
2090 
2091         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2092           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2093 
2094         CallingConv::ID CC = F->getCallingConv();
2095 
2096         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2097         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2098         SmallVector<SDValue, 4> Parts(NumParts);
2099         getCopyToParts(DAG, getCurSDLoc(),
2100                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2101                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2102 
2103         // 'inreg' on function refers to return value
2104         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2105         if (RetInReg)
2106           Flags.setInReg();
2107 
2108         if (I.getOperand(0)->getType()->isPointerTy()) {
2109           Flags.setPointer();
2110           Flags.setPointerAddrSpace(
2111               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2112         }
2113 
2114         if (NeedsRegBlock) {
2115           Flags.setInConsecutiveRegs();
2116           if (j == NumValues - 1)
2117             Flags.setInConsecutiveRegsLast();
2118         }
2119 
2120         // Propagate extension type if any
2121         if (ExtendKind == ISD::SIGN_EXTEND)
2122           Flags.setSExt();
2123         else if (ExtendKind == ISD::ZERO_EXTEND)
2124           Flags.setZExt();
2125 
2126         for (unsigned i = 0; i < NumParts; ++i) {
2127           Outs.push_back(ISD::OutputArg(Flags,
2128                                         Parts[i].getValueType().getSimpleVT(),
2129                                         VT, /*isfixed=*/true, 0, 0));
2130           OutVals.push_back(Parts[i]);
2131         }
2132       }
2133     }
2134   }
2135 
2136   // Push in swifterror virtual register as the last element of Outs. This makes
2137   // sure swifterror virtual register will be returned in the swifterror
2138   // physical register.
2139   const Function *F = I.getParent()->getParent();
2140   if (TLI.supportSwiftError() &&
2141       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2142     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2143     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2144     Flags.setSwiftError();
2145     Outs.push_back(ISD::OutputArg(
2146         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2147         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2148     // Create SDNode for the swifterror virtual register.
2149     OutVals.push_back(
2150         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2151                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2152                         EVT(TLI.getPointerTy(DL))));
2153   }
2154 
2155   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2156   CallingConv::ID CallConv =
2157     DAG.getMachineFunction().getFunction().getCallingConv();
2158   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2159       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2160 
2161   // Verify that the target's LowerReturn behaved as expected.
2162   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2163          "LowerReturn didn't return a valid chain!");
2164 
2165   // Update the DAG with the new chain value resulting from return lowering.
2166   DAG.setRoot(Chain);
2167 }
2168 
2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2170 /// created for it, emit nodes to copy the value into the virtual
2171 /// registers.
2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2173   // Skip empty types
2174   if (V->getType()->isEmptyTy())
2175     return;
2176 
2177   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2178   if (VMI != FuncInfo.ValueMap.end()) {
2179     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2180            "Unused value assigned virtual registers!");
2181     CopyValueToVirtualRegister(V, VMI->second);
2182   }
2183 }
2184 
2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2186 /// the current basic block, add it to ValueMap now so that we'll get a
2187 /// CopyTo/FromReg.
2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2189   // No need to export constants.
2190   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2191 
2192   // Already exported?
2193   if (FuncInfo.isExportedInst(V)) return;
2194 
2195   Register Reg = FuncInfo.InitializeRegForValue(V);
2196   CopyValueToVirtualRegister(V, Reg);
2197 }
2198 
2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2200                                                      const BasicBlock *FromBB) {
2201   // The operands of the setcc have to be in this block.  We don't know
2202   // how to export them from some other block.
2203   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2204     // Can export from current BB.
2205     if (VI->getParent() == FromBB)
2206       return true;
2207 
2208     // Is already exported, noop.
2209     return FuncInfo.isExportedInst(V);
2210   }
2211 
2212   // If this is an argument, we can export it if the BB is the entry block or
2213   // if it is already exported.
2214   if (isa<Argument>(V)) {
2215     if (FromBB->isEntryBlock())
2216       return true;
2217 
2218     // Otherwise, can only export this if it is already exported.
2219     return FuncInfo.isExportedInst(V);
2220   }
2221 
2222   // Otherwise, constants can always be exported.
2223   return true;
2224 }
2225 
2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2227 BranchProbability
2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2229                                         const MachineBasicBlock *Dst) const {
2230   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2231   const BasicBlock *SrcBB = Src->getBasicBlock();
2232   const BasicBlock *DstBB = Dst->getBasicBlock();
2233   if (!BPI) {
2234     // If BPI is not available, set the default probability as 1 / N, where N is
2235     // the number of successors.
2236     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2237     return BranchProbability(1, SuccSize);
2238   }
2239   return BPI->getEdgeProbability(SrcBB, DstBB);
2240 }
2241 
2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2243                                                MachineBasicBlock *Dst,
2244                                                BranchProbability Prob) {
2245   if (!FuncInfo.BPI)
2246     Src->addSuccessorWithoutProb(Dst);
2247   else {
2248     if (Prob.isUnknown())
2249       Prob = getEdgeProbability(Src, Dst);
2250     Src->addSuccessor(Dst, Prob);
2251   }
2252 }
2253 
2254 static bool InBlock(const Value *V, const BasicBlock *BB) {
2255   if (const Instruction *I = dyn_cast<Instruction>(V))
2256     return I->getParent() == BB;
2257   return true;
2258 }
2259 
2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2261 /// This function emits a branch and is used at the leaves of an OR or an
2262 /// AND operator tree.
2263 void
2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2265                                                   MachineBasicBlock *TBB,
2266                                                   MachineBasicBlock *FBB,
2267                                                   MachineBasicBlock *CurBB,
2268                                                   MachineBasicBlock *SwitchBB,
2269                                                   BranchProbability TProb,
2270                                                   BranchProbability FProb,
2271                                                   bool InvertCond) {
2272   const BasicBlock *BB = CurBB->getBasicBlock();
2273 
2274   // If the leaf of the tree is a comparison, merge the condition into
2275   // the caseblock.
2276   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2277     // The operands of the cmp have to be in this block.  We don't know
2278     // how to export them from some other block.  If this is the first block
2279     // of the sequence, no exporting is needed.
2280     if (CurBB == SwitchBB ||
2281         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2282          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2283       ISD::CondCode Condition;
2284       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2285         ICmpInst::Predicate Pred =
2286             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2287         Condition = getICmpCondCode(Pred);
2288       } else {
2289         const FCmpInst *FC = cast<FCmpInst>(Cond);
2290         FCmpInst::Predicate Pred =
2291             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2292         Condition = getFCmpCondCode(Pred);
2293         if (TM.Options.NoNaNsFPMath)
2294           Condition = getFCmpCodeWithoutNaN(Condition);
2295       }
2296 
2297       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2298                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2299       SL->SwitchCases.push_back(CB);
2300       return;
2301     }
2302   }
2303 
2304   // Create a CaseBlock record representing this branch.
2305   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2306   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2307                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2308   SL->SwitchCases.push_back(CB);
2309 }
2310 
2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2312                                                MachineBasicBlock *TBB,
2313                                                MachineBasicBlock *FBB,
2314                                                MachineBasicBlock *CurBB,
2315                                                MachineBasicBlock *SwitchBB,
2316                                                Instruction::BinaryOps Opc,
2317                                                BranchProbability TProb,
2318                                                BranchProbability FProb,
2319                                                bool InvertCond) {
2320   // Skip over not part of the tree and remember to invert op and operands at
2321   // next level.
2322   Value *NotCond;
2323   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2324       InBlock(NotCond, CurBB->getBasicBlock())) {
2325     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2326                          !InvertCond);
2327     return;
2328   }
2329 
2330   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2331   const Value *BOpOp0, *BOpOp1;
2332   // Compute the effective opcode for Cond, taking into account whether it needs
2333   // to be inverted, e.g.
2334   //   and (not (or A, B)), C
2335   // gets lowered as
2336   //   and (and (not A, not B), C)
2337   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2338   if (BOp) {
2339     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2340                ? Instruction::And
2341                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2342                       ? Instruction::Or
2343                       : (Instruction::BinaryOps)0);
2344     if (InvertCond) {
2345       if (BOpc == Instruction::And)
2346         BOpc = Instruction::Or;
2347       else if (BOpc == Instruction::Or)
2348         BOpc = Instruction::And;
2349     }
2350   }
2351 
2352   // If this node is not part of the or/and tree, emit it as a branch.
2353   // Note that all nodes in the tree should have same opcode.
2354   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2355   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2356       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2357       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2359                                  TProb, FProb, InvertCond);
2360     return;
2361   }
2362 
2363   //  Create TmpBB after CurBB.
2364   MachineFunction::iterator BBI(CurBB);
2365   MachineFunction &MF = DAG.getMachineFunction();
2366   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2367   CurBB->getParent()->insert(++BBI, TmpBB);
2368 
2369   if (Opc == Instruction::Or) {
2370     // Codegen X | Y as:
2371     // BB1:
2372     //   jmp_if_X TBB
2373     //   jmp TmpBB
2374     // TmpBB:
2375     //   jmp_if_Y TBB
2376     //   jmp FBB
2377     //
2378 
2379     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2380     // The requirement is that
2381     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2382     //     = TrueProb for original BB.
2383     // Assuming the original probabilities are A and B, one choice is to set
2384     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2385     // A/(1+B) and 2B/(1+B). This choice assumes that
2386     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2387     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2388     // TmpBB, but the math is more complicated.
2389 
2390     auto NewTrueProb = TProb / 2;
2391     auto NewFalseProb = TProb / 2 + FProb;
2392     // Emit the LHS condition.
2393     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2394                          NewFalseProb, InvertCond);
2395 
2396     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2397     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2398     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2399     // Emit the RHS condition into TmpBB.
2400     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2401                          Probs[1], InvertCond);
2402   } else {
2403     assert(Opc == Instruction::And && "Unknown merge op!");
2404     // Codegen X & Y as:
2405     // BB1:
2406     //   jmp_if_X TmpBB
2407     //   jmp FBB
2408     // TmpBB:
2409     //   jmp_if_Y TBB
2410     //   jmp FBB
2411     //
2412     //  This requires creation of TmpBB after CurBB.
2413 
2414     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2415     // The requirement is that
2416     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2417     //     = FalseProb for original BB.
2418     // Assuming the original probabilities are A and B, one choice is to set
2419     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2420     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2421     // TrueProb for BB1 * FalseProb for TmpBB.
2422 
2423     auto NewTrueProb = TProb + FProb / 2;
2424     auto NewFalseProb = FProb / 2;
2425     // Emit the LHS condition.
2426     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2427                          NewFalseProb, InvertCond);
2428 
2429     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2430     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2431     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2432     // Emit the RHS condition into TmpBB.
2433     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2434                          Probs[1], InvertCond);
2435   }
2436 }
2437 
2438 /// If the set of cases should be emitted as a series of branches, return true.
2439 /// If we should emit this as a bunch of and/or'd together conditions, return
2440 /// false.
2441 bool
2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2443   if (Cases.size() != 2) return true;
2444 
2445   // If this is two comparisons of the same values or'd or and'd together, they
2446   // will get folded into a single comparison, so don't emit two blocks.
2447   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2448        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2449       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2450        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2451     return false;
2452   }
2453 
2454   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2455   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2456   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2457       Cases[0].CC == Cases[1].CC &&
2458       isa<Constant>(Cases[0].CmpRHS) &&
2459       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2460     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2461       return false;
2462     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2463       return false;
2464   }
2465 
2466   return true;
2467 }
2468 
2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2470   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2471 
2472   // Update machine-CFG edges.
2473   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2474 
2475   if (I.isUnconditional()) {
2476     // Update machine-CFG edges.
2477     BrMBB->addSuccessor(Succ0MBB);
2478 
2479     // If this is not a fall-through branch or optimizations are switched off,
2480     // emit the branch.
2481     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) {
2482       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2483                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2484       setValue(&I, Br);
2485       DAG.setRoot(Br);
2486     }
2487 
2488     return;
2489   }
2490 
2491   // If this condition is one of the special cases we handle, do special stuff
2492   // now.
2493   const Value *CondVal = I.getCondition();
2494   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2495 
2496   // If this is a series of conditions that are or'd or and'd together, emit
2497   // this as a sequence of branches instead of setcc's with and/or operations.
2498   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2499   // unpredictable branches, and vector extracts because those jumps are likely
2500   // expensive for any target), this should improve performance.
2501   // For example, instead of something like:
2502   //     cmp A, B
2503   //     C = seteq
2504   //     cmp D, E
2505   //     F = setle
2506   //     or C, F
2507   //     jnz foo
2508   // Emit:
2509   //     cmp A, B
2510   //     je foo
2511   //     cmp D, E
2512   //     jle foo
2513   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2514   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2515       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2516     Value *Vec;
2517     const Value *BOp0, *BOp1;
2518     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2519     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2520       Opcode = Instruction::And;
2521     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2522       Opcode = Instruction::Or;
2523 
2524     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2525                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2526       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2527                            getEdgeProbability(BrMBB, Succ0MBB),
2528                            getEdgeProbability(BrMBB, Succ1MBB),
2529                            /*InvertCond=*/false);
2530       // If the compares in later blocks need to use values not currently
2531       // exported from this block, export them now.  This block should always
2532       // be the first entry.
2533       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2534 
2535       // Allow some cases to be rejected.
2536       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2537         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2538           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2539           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2540         }
2541 
2542         // Emit the branch for this block.
2543         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2544         SL->SwitchCases.erase(SL->SwitchCases.begin());
2545         return;
2546       }
2547 
2548       // Okay, we decided not to do this, remove any inserted MBB's and clear
2549       // SwitchCases.
2550       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2551         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2552 
2553       SL->SwitchCases.clear();
2554     }
2555   }
2556 
2557   // Create a CaseBlock record representing this branch.
2558   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2559                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2560 
2561   // Use visitSwitchCase to actually insert the fast branch sequence for this
2562   // cond branch.
2563   visitSwitchCase(CB, BrMBB);
2564 }
2565 
2566 /// visitSwitchCase - Emits the necessary code to represent a single node in
2567 /// the binary search tree resulting from lowering a switch instruction.
2568 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2569                                           MachineBasicBlock *SwitchBB) {
2570   SDValue Cond;
2571   SDValue CondLHS = getValue(CB.CmpLHS);
2572   SDLoc dl = CB.DL;
2573 
2574   if (CB.CC == ISD::SETTRUE) {
2575     // Branch or fall through to TrueBB.
2576     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577     SwitchBB->normalizeSuccProbs();
2578     if (CB.TrueBB != NextBlock(SwitchBB)) {
2579       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2580                               DAG.getBasicBlock(CB.TrueBB)));
2581     }
2582     return;
2583   }
2584 
2585   auto &TLI = DAG.getTargetLoweringInfo();
2586   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2587 
2588   // Build the setcc now.
2589   if (!CB.CmpMHS) {
2590     // Fold "(X == true)" to X and "(X == false)" to !X to
2591     // handle common cases produced by branch lowering.
2592     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2593         CB.CC == ISD::SETEQ)
2594       Cond = CondLHS;
2595     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2596              CB.CC == ISD::SETEQ) {
2597       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2598       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2599     } else {
2600       SDValue CondRHS = getValue(CB.CmpRHS);
2601 
2602       // If a pointer's DAG type is larger than its memory type then the DAG
2603       // values are zero-extended. This breaks signed comparisons so truncate
2604       // back to the underlying type before doing the compare.
2605       if (CondLHS.getValueType() != MemVT) {
2606         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2607         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2608       }
2609       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2610     }
2611   } else {
2612     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2613 
2614     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2615     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2616 
2617     SDValue CmpOp = getValue(CB.CmpMHS);
2618     EVT VT = CmpOp.getValueType();
2619 
2620     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2621       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2622                           ISD::SETLE);
2623     } else {
2624       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2625                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2626       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2627                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2628     }
2629   }
2630 
2631   // Update successor info
2632   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2633   // TrueBB and FalseBB are always different unless the incoming IR is
2634   // degenerate. This only happens when running llc on weird IR.
2635   if (CB.TrueBB != CB.FalseBB)
2636     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2637   SwitchBB->normalizeSuccProbs();
2638 
2639   // If the lhs block is the next block, invert the condition so that we can
2640   // fall through to the lhs instead of the rhs block.
2641   if (CB.TrueBB == NextBlock(SwitchBB)) {
2642     std::swap(CB.TrueBB, CB.FalseBB);
2643     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2644     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2645   }
2646 
2647   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2648                                MVT::Other, getControlRoot(), Cond,
2649                                DAG.getBasicBlock(CB.TrueBB));
2650 
2651   setValue(CurInst, BrCond);
2652 
2653   // Insert the false branch. Do this even if it's a fall through branch,
2654   // this makes it easier to do DAG optimizations which require inverting
2655   // the branch condition.
2656   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2657                        DAG.getBasicBlock(CB.FalseBB));
2658 
2659   DAG.setRoot(BrCond);
2660 }
2661 
2662 /// visitJumpTable - Emit JumpTable node in the current MBB
2663 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2664   // Emit the code for the jump table
2665   assert(JT.Reg != -1U && "Should lower JT Header first!");
2666   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2667   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2668                                      JT.Reg, PTy);
2669   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2670   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2671                                     MVT::Other, Index.getValue(1),
2672                                     Table, Index);
2673   DAG.setRoot(BrJumpTable);
2674 }
2675 
2676 /// visitJumpTableHeader - This function emits necessary code to produce index
2677 /// in the JumpTable from switch case.
2678 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2679                                                JumpTableHeader &JTH,
2680                                                MachineBasicBlock *SwitchBB) {
2681   SDLoc dl = getCurSDLoc();
2682 
2683   // Subtract the lowest switch case value from the value being switched on.
2684   SDValue SwitchOp = getValue(JTH.SValue);
2685   EVT VT = SwitchOp.getValueType();
2686   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2687                             DAG.getConstant(JTH.First, dl, VT));
2688 
2689   // The SDNode we just created, which holds the value being switched on minus
2690   // the smallest case value, needs to be copied to a virtual register so it
2691   // can be used as an index into the jump table in a subsequent basic block.
2692   // This value may be smaller or larger than the target's pointer type, and
2693   // therefore require extension or truncating.
2694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2695   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2696 
2697   unsigned JumpTableReg =
2698       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2699   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2700                                     JumpTableReg, SwitchOp);
2701   JT.Reg = JumpTableReg;
2702 
2703   if (!JTH.FallthroughUnreachable) {
2704     // Emit the range check for the jump table, and branch to the default block
2705     // for the switch statement if the value being switched on exceeds the
2706     // largest case in the switch.
2707     SDValue CMP = DAG.getSetCC(
2708         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2709                                    Sub.getValueType()),
2710         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2711 
2712     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2713                                  MVT::Other, CopyTo, CMP,
2714                                  DAG.getBasicBlock(JT.Default));
2715 
2716     // Avoid emitting unnecessary branches to the next block.
2717     if (JT.MBB != NextBlock(SwitchBB))
2718       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2719                            DAG.getBasicBlock(JT.MBB));
2720 
2721     DAG.setRoot(BrCond);
2722   } else {
2723     // Avoid emitting unnecessary branches to the next block.
2724     if (JT.MBB != NextBlock(SwitchBB))
2725       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2726                               DAG.getBasicBlock(JT.MBB)));
2727     else
2728       DAG.setRoot(CopyTo);
2729   }
2730 }
2731 
2732 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2733 /// variable if there exists one.
2734 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2735                                  SDValue &Chain) {
2736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2738   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2739   MachineFunction &MF = DAG.getMachineFunction();
2740   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2741   MachineSDNode *Node =
2742       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2743   if (Global) {
2744     MachinePointerInfo MPInfo(Global);
2745     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2746                  MachineMemOperand::MODereferenceable;
2747     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2748         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2749     DAG.setNodeMemRefs(Node, {MemRef});
2750   }
2751   if (PtrTy != PtrMemTy)
2752     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2753   return SDValue(Node, 0);
2754 }
2755 
2756 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2757 /// tail spliced into a stack protector check success bb.
2758 ///
2759 /// For a high level explanation of how this fits into the stack protector
2760 /// generation see the comment on the declaration of class
2761 /// StackProtectorDescriptor.
2762 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2763                                                   MachineBasicBlock *ParentBB) {
2764 
2765   // First create the loads to the guard/stack slot for the comparison.
2766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2767   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2768   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2769 
2770   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2771   int FI = MFI.getStackProtectorIndex();
2772 
2773   SDValue Guard;
2774   SDLoc dl = getCurSDLoc();
2775   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2776   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2777   Align Align =
2778       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2779 
2780   // Generate code to load the content of the guard slot.
2781   SDValue GuardVal = DAG.getLoad(
2782       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2783       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2784       MachineMemOperand::MOVolatile);
2785 
2786   if (TLI.useStackGuardXorFP())
2787     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2788 
2789   // Retrieve guard check function, nullptr if instrumentation is inlined.
2790   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2791     // The target provides a guard check function to validate the guard value.
2792     // Generate a call to that function with the content of the guard slot as
2793     // argument.
2794     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2795     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2796 
2797     TargetLowering::ArgListTy Args;
2798     TargetLowering::ArgListEntry Entry;
2799     Entry.Node = GuardVal;
2800     Entry.Ty = FnTy->getParamType(0);
2801     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2802       Entry.IsInReg = true;
2803     Args.push_back(Entry);
2804 
2805     TargetLowering::CallLoweringInfo CLI(DAG);
2806     CLI.setDebugLoc(getCurSDLoc())
2807         .setChain(DAG.getEntryNode())
2808         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2809                    getValue(GuardCheckFn), std::move(Args));
2810 
2811     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2812     DAG.setRoot(Result.second);
2813     return;
2814   }
2815 
2816   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2817   // Otherwise, emit a volatile load to retrieve the stack guard value.
2818   SDValue Chain = DAG.getEntryNode();
2819   if (TLI.useLoadStackGuardNode()) {
2820     Guard = getLoadStackGuard(DAG, dl, Chain);
2821   } else {
2822     const Value *IRGuard = TLI.getSDagStackGuard(M);
2823     SDValue GuardPtr = getValue(IRGuard);
2824 
2825     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2826                         MachinePointerInfo(IRGuard, 0), Align,
2827                         MachineMemOperand::MOVolatile);
2828   }
2829 
2830   // Perform the comparison via a getsetcc.
2831   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2832                                                         *DAG.getContext(),
2833                                                         Guard.getValueType()),
2834                              Guard, GuardVal, ISD::SETNE);
2835 
2836   // If the guard/stackslot do not equal, branch to failure MBB.
2837   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2838                                MVT::Other, GuardVal.getOperand(0),
2839                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2840   // Otherwise branch to success MBB.
2841   SDValue Br = DAG.getNode(ISD::BR, dl,
2842                            MVT::Other, BrCond,
2843                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2844 
2845   DAG.setRoot(Br);
2846 }
2847 
2848 /// Codegen the failure basic block for a stack protector check.
2849 ///
2850 /// A failure stack protector machine basic block consists simply of a call to
2851 /// __stack_chk_fail().
2852 ///
2853 /// For a high level explanation of how this fits into the stack protector
2854 /// generation see the comment on the declaration of class
2855 /// StackProtectorDescriptor.
2856 void
2857 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2859   TargetLowering::MakeLibCallOptions CallOptions;
2860   CallOptions.setDiscardResult(true);
2861   SDValue Chain =
2862       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2863                       std::nullopt, CallOptions, getCurSDLoc())
2864           .second;
2865   // On PS4/PS5, the "return address" must still be within the calling
2866   // function, even if it's at the very end, so emit an explicit TRAP here.
2867   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2868   if (TM.getTargetTriple().isPS())
2869     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2870   // WebAssembly needs an unreachable instruction after a non-returning call,
2871   // because the function return type can be different from __stack_chk_fail's
2872   // return type (void).
2873   if (TM.getTargetTriple().isWasm())
2874     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2875 
2876   DAG.setRoot(Chain);
2877 }
2878 
2879 /// visitBitTestHeader - This function emits necessary code to produce value
2880 /// suitable for "bit tests"
2881 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2882                                              MachineBasicBlock *SwitchBB) {
2883   SDLoc dl = getCurSDLoc();
2884 
2885   // Subtract the minimum value.
2886   SDValue SwitchOp = getValue(B.SValue);
2887   EVT VT = SwitchOp.getValueType();
2888   SDValue RangeSub =
2889       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2890 
2891   // Determine the type of the test operands.
2892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2893   bool UsePtrType = false;
2894   if (!TLI.isTypeLegal(VT)) {
2895     UsePtrType = true;
2896   } else {
2897     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2898       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2899         // Switch table case range are encoded into series of masks.
2900         // Just use pointer type, it's guaranteed to fit.
2901         UsePtrType = true;
2902         break;
2903       }
2904   }
2905   SDValue Sub = RangeSub;
2906   if (UsePtrType) {
2907     VT = TLI.getPointerTy(DAG.getDataLayout());
2908     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2909   }
2910 
2911   B.RegVT = VT.getSimpleVT();
2912   B.Reg = FuncInfo.CreateReg(B.RegVT);
2913   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2914 
2915   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2916 
2917   if (!B.FallthroughUnreachable)
2918     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2919   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2920   SwitchBB->normalizeSuccProbs();
2921 
2922   SDValue Root = CopyTo;
2923   if (!B.FallthroughUnreachable) {
2924     // Conditional branch to the default block.
2925     SDValue RangeCmp = DAG.getSetCC(dl,
2926         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2927                                RangeSub.getValueType()),
2928         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2929         ISD::SETUGT);
2930 
2931     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2932                        DAG.getBasicBlock(B.Default));
2933   }
2934 
2935   // Avoid emitting unnecessary branches to the next block.
2936   if (MBB != NextBlock(SwitchBB))
2937     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2938 
2939   DAG.setRoot(Root);
2940 }
2941 
2942 /// visitBitTestCase - this function produces one "bit test"
2943 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2944                                            MachineBasicBlock* NextMBB,
2945                                            BranchProbability BranchProbToNext,
2946                                            unsigned Reg,
2947                                            BitTestCase &B,
2948                                            MachineBasicBlock *SwitchBB) {
2949   SDLoc dl = getCurSDLoc();
2950   MVT VT = BB.RegVT;
2951   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2952   SDValue Cmp;
2953   unsigned PopCount = llvm::popcount(B.Mask);
2954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2955   if (PopCount == 1) {
2956     // Testing for a single bit; just compare the shift count with what it
2957     // would need to be to shift a 1 bit in that position.
2958     Cmp = DAG.getSetCC(
2959         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2960         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2961         ISD::SETEQ);
2962   } else if (PopCount == BB.Range) {
2963     // There is only one zero bit in the range, test for it directly.
2964     Cmp = DAG.getSetCC(
2965         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2966         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2967   } else {
2968     // Make desired shift
2969     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2970                                     DAG.getConstant(1, dl, VT), ShiftOp);
2971 
2972     // Emit bit tests and jumps
2973     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2974                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2975     Cmp = DAG.getSetCC(
2976         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2977         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2978   }
2979 
2980   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2981   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2982   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2983   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2984   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2985   // one as they are relative probabilities (and thus work more like weights),
2986   // and hence we need to normalize them to let the sum of them become one.
2987   SwitchBB->normalizeSuccProbs();
2988 
2989   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2990                               MVT::Other, getControlRoot(),
2991                               Cmp, DAG.getBasicBlock(B.TargetBB));
2992 
2993   // Avoid emitting unnecessary branches to the next block.
2994   if (NextMBB != NextBlock(SwitchBB))
2995     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2996                         DAG.getBasicBlock(NextMBB));
2997 
2998   DAG.setRoot(BrAnd);
2999 }
3000 
3001 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3002   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3003 
3004   // Retrieve successors. Look through artificial IR level blocks like
3005   // catchswitch for successors.
3006   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3007   const BasicBlock *EHPadBB = I.getSuccessor(1);
3008   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3009 
3010   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3011   // have to do anything here to lower funclet bundles.
3012   assert(!I.hasOperandBundlesOtherThan(
3013              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3014               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3015               LLVMContext::OB_cfguardtarget,
3016               LLVMContext::OB_clang_arc_attachedcall}) &&
3017          "Cannot lower invokes with arbitrary operand bundles yet!");
3018 
3019   const Value *Callee(I.getCalledOperand());
3020   const Function *Fn = dyn_cast<Function>(Callee);
3021   if (isa<InlineAsm>(Callee))
3022     visitInlineAsm(I, EHPadBB);
3023   else if (Fn && Fn->isIntrinsic()) {
3024     switch (Fn->getIntrinsicID()) {
3025     default:
3026       llvm_unreachable("Cannot invoke this intrinsic");
3027     case Intrinsic::donothing:
3028       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3029     case Intrinsic::seh_try_begin:
3030     case Intrinsic::seh_scope_begin:
3031     case Intrinsic::seh_try_end:
3032     case Intrinsic::seh_scope_end:
3033       if (EHPadMBB)
3034           // a block referenced by EH table
3035           // so dtor-funclet not removed by opts
3036           EHPadMBB->setMachineBlockAddressTaken();
3037       break;
3038     case Intrinsic::experimental_patchpoint_void:
3039     case Intrinsic::experimental_patchpoint_i64:
3040       visitPatchpoint(I, EHPadBB);
3041       break;
3042     case Intrinsic::experimental_gc_statepoint:
3043       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3044       break;
3045     case Intrinsic::wasm_rethrow: {
3046       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3047       // special because it can be invoked, so we manually lower it to a DAG
3048       // node here.
3049       SmallVector<SDValue, 8> Ops;
3050       Ops.push_back(getRoot()); // inchain
3051       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052       Ops.push_back(
3053           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3054                                 TLI.getPointerTy(DAG.getDataLayout())));
3055       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3056       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3057       break;
3058     }
3059     }
3060   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3061     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3062     // Eventually we will support lowering the @llvm.experimental.deoptimize
3063     // intrinsic, and right now there are no plans to support other intrinsics
3064     // with deopt state.
3065     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3066   } else {
3067     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3068   }
3069 
3070   // If the value of the invoke is used outside of its defining block, make it
3071   // available as a virtual register.
3072   // We already took care of the exported value for the statepoint instruction
3073   // during call to the LowerStatepoint.
3074   if (!isa<GCStatepointInst>(I)) {
3075     CopyToExportRegsIfNeeded(&I);
3076   }
3077 
3078   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3079   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3080   BranchProbability EHPadBBProb =
3081       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3082           : BranchProbability::getZero();
3083   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3084 
3085   // Update successor info.
3086   addSuccessorWithProb(InvokeMBB, Return);
3087   for (auto &UnwindDest : UnwindDests) {
3088     UnwindDest.first->setIsEHPad();
3089     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3090   }
3091   InvokeMBB->normalizeSuccProbs();
3092 
3093   // Drop into normal successor.
3094   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3095                           DAG.getBasicBlock(Return)));
3096 }
3097 
3098 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3099   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3100 
3101   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3102   // have to do anything here to lower funclet bundles.
3103   assert(!I.hasOperandBundlesOtherThan(
3104              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3105          "Cannot lower callbrs with arbitrary operand bundles yet!");
3106 
3107   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3108   visitInlineAsm(I);
3109   CopyToExportRegsIfNeeded(&I);
3110 
3111   // Retrieve successors.
3112   SmallPtrSet<BasicBlock *, 8> Dests;
3113   Dests.insert(I.getDefaultDest());
3114   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3115 
3116   // Update successor info.
3117   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3118   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3119     BasicBlock *Dest = I.getIndirectDest(i);
3120     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3121     Target->setIsInlineAsmBrIndirectTarget();
3122     Target->setMachineBlockAddressTaken();
3123     Target->setLabelMustBeEmitted();
3124     // Don't add duplicate machine successors.
3125     if (Dests.insert(Dest).second)
3126       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3127   }
3128   CallBrMBB->normalizeSuccProbs();
3129 
3130   // Drop into default successor.
3131   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3132                           MVT::Other, getControlRoot(),
3133                           DAG.getBasicBlock(Return)));
3134 }
3135 
3136 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3137   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3138 }
3139 
3140 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3141   assert(FuncInfo.MBB->isEHPad() &&
3142          "Call to landingpad not in landing pad!");
3143 
3144   // If there aren't registers to copy the values into (e.g., during SjLj
3145   // exceptions), then don't bother to create these DAG nodes.
3146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3147   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3148   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3149       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3150     return;
3151 
3152   // If landingpad's return type is token type, we don't create DAG nodes
3153   // for its exception pointer and selector value. The extraction of exception
3154   // pointer or selector value from token type landingpads is not currently
3155   // supported.
3156   if (LP.getType()->isTokenTy())
3157     return;
3158 
3159   SmallVector<EVT, 2> ValueVTs;
3160   SDLoc dl = getCurSDLoc();
3161   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3162   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3163 
3164   // Get the two live-in registers as SDValues. The physregs have already been
3165   // copied into virtual registers.
3166   SDValue Ops[2];
3167   if (FuncInfo.ExceptionPointerVirtReg) {
3168     Ops[0] = DAG.getZExtOrTrunc(
3169         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3170                            FuncInfo.ExceptionPointerVirtReg,
3171                            TLI.getPointerTy(DAG.getDataLayout())),
3172         dl, ValueVTs[0]);
3173   } else {
3174     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3175   }
3176   Ops[1] = DAG.getZExtOrTrunc(
3177       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3178                          FuncInfo.ExceptionSelectorVirtReg,
3179                          TLI.getPointerTy(DAG.getDataLayout())),
3180       dl, ValueVTs[1]);
3181 
3182   // Merge into one.
3183   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3184                             DAG.getVTList(ValueVTs), Ops);
3185   setValue(&LP, Res);
3186 }
3187 
3188 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3189                                            MachineBasicBlock *Last) {
3190   // Update JTCases.
3191   for (JumpTableBlock &JTB : SL->JTCases)
3192     if (JTB.first.HeaderBB == First)
3193       JTB.first.HeaderBB = Last;
3194 
3195   // Update BitTestCases.
3196   for (BitTestBlock &BTB : SL->BitTestCases)
3197     if (BTB.Parent == First)
3198       BTB.Parent = Last;
3199 }
3200 
3201 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3202   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3203 
3204   // Update machine-CFG edges with unique successors.
3205   SmallSet<BasicBlock*, 32> Done;
3206   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3207     BasicBlock *BB = I.getSuccessor(i);
3208     bool Inserted = Done.insert(BB).second;
3209     if (!Inserted)
3210         continue;
3211 
3212     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3213     addSuccessorWithProb(IndirectBrMBB, Succ);
3214   }
3215   IndirectBrMBB->normalizeSuccProbs();
3216 
3217   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3218                           MVT::Other, getControlRoot(),
3219                           getValue(I.getAddress())));
3220 }
3221 
3222 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3223   if (!DAG.getTarget().Options.TrapUnreachable)
3224     return;
3225 
3226   // We may be able to ignore unreachable behind a noreturn call.
3227   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3228     const BasicBlock &BB = *I.getParent();
3229     if (&I != &BB.front()) {
3230       BasicBlock::const_iterator PredI =
3231         std::prev(BasicBlock::const_iterator(&I));
3232       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3233         if (Call->doesNotReturn())
3234           return;
3235       }
3236     }
3237   }
3238 
3239   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3240 }
3241 
3242 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3243   SDNodeFlags Flags;
3244   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3245     Flags.copyFMF(*FPOp);
3246 
3247   SDValue Op = getValue(I.getOperand(0));
3248   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3249                                     Op, Flags);
3250   setValue(&I, UnNodeValue);
3251 }
3252 
3253 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3254   SDNodeFlags Flags;
3255   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3256     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3257     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3258   }
3259   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3260     Flags.setExact(ExactOp->isExact());
3261   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3262     Flags.copyFMF(*FPOp);
3263 
3264   SDValue Op1 = getValue(I.getOperand(0));
3265   SDValue Op2 = getValue(I.getOperand(1));
3266   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3267                                      Op1, Op2, Flags);
3268   setValue(&I, BinNodeValue);
3269 }
3270 
3271 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3272   SDValue Op1 = getValue(I.getOperand(0));
3273   SDValue Op2 = getValue(I.getOperand(1));
3274 
3275   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3276       Op1.getValueType(), DAG.getDataLayout());
3277 
3278   // Coerce the shift amount to the right type if we can. This exposes the
3279   // truncate or zext to optimization early.
3280   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3281     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3282            "Unexpected shift type");
3283     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3284   }
3285 
3286   bool nuw = false;
3287   bool nsw = false;
3288   bool exact = false;
3289 
3290   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3291 
3292     if (const OverflowingBinaryOperator *OFBinOp =
3293             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3294       nuw = OFBinOp->hasNoUnsignedWrap();
3295       nsw = OFBinOp->hasNoSignedWrap();
3296     }
3297     if (const PossiblyExactOperator *ExactOp =
3298             dyn_cast<const PossiblyExactOperator>(&I))
3299       exact = ExactOp->isExact();
3300   }
3301   SDNodeFlags Flags;
3302   Flags.setExact(exact);
3303   Flags.setNoSignedWrap(nsw);
3304   Flags.setNoUnsignedWrap(nuw);
3305   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3306                             Flags);
3307   setValue(&I, Res);
3308 }
3309 
3310 void SelectionDAGBuilder::visitSDiv(const User &I) {
3311   SDValue Op1 = getValue(I.getOperand(0));
3312   SDValue Op2 = getValue(I.getOperand(1));
3313 
3314   SDNodeFlags Flags;
3315   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3316                  cast<PossiblyExactOperator>(&I)->isExact());
3317   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3318                            Op2, Flags));
3319 }
3320 
3321 void SelectionDAGBuilder::visitICmp(const User &I) {
3322   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3323   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3324     predicate = IC->getPredicate();
3325   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3326     predicate = ICmpInst::Predicate(IC->getPredicate());
3327   SDValue Op1 = getValue(I.getOperand(0));
3328   SDValue Op2 = getValue(I.getOperand(1));
3329   ISD::CondCode Opcode = getICmpCondCode(predicate);
3330 
3331   auto &TLI = DAG.getTargetLoweringInfo();
3332   EVT MemVT =
3333       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3334 
3335   // If a pointer's DAG type is larger than its memory type then the DAG values
3336   // are zero-extended. This breaks signed comparisons so truncate back to the
3337   // underlying type before doing the compare.
3338   if (Op1.getValueType() != MemVT) {
3339     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3340     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3341   }
3342 
3343   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3344                                                         I.getType());
3345   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3346 }
3347 
3348 void SelectionDAGBuilder::visitFCmp(const User &I) {
3349   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3350   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3351     predicate = FC->getPredicate();
3352   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3353     predicate = FCmpInst::Predicate(FC->getPredicate());
3354   SDValue Op1 = getValue(I.getOperand(0));
3355   SDValue Op2 = getValue(I.getOperand(1));
3356 
3357   ISD::CondCode Condition = getFCmpCondCode(predicate);
3358   auto *FPMO = cast<FPMathOperator>(&I);
3359   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3360     Condition = getFCmpCodeWithoutNaN(Condition);
3361 
3362   SDNodeFlags Flags;
3363   Flags.copyFMF(*FPMO);
3364   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3365 
3366   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3367                                                         I.getType());
3368   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3369 }
3370 
3371 // Check if the condition of the select has one use or two users that are both
3372 // selects with the same condition.
3373 static bool hasOnlySelectUsers(const Value *Cond) {
3374   return llvm::all_of(Cond->users(), [](const Value *V) {
3375     return isa<SelectInst>(V);
3376   });
3377 }
3378 
3379 void SelectionDAGBuilder::visitSelect(const User &I) {
3380   SmallVector<EVT, 4> ValueVTs;
3381   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3382                   ValueVTs);
3383   unsigned NumValues = ValueVTs.size();
3384   if (NumValues == 0) return;
3385 
3386   SmallVector<SDValue, 4> Values(NumValues);
3387   SDValue Cond     = getValue(I.getOperand(0));
3388   SDValue LHSVal   = getValue(I.getOperand(1));
3389   SDValue RHSVal   = getValue(I.getOperand(2));
3390   SmallVector<SDValue, 1> BaseOps(1, Cond);
3391   ISD::NodeType OpCode =
3392       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3393 
3394   bool IsUnaryAbs = false;
3395   bool Negate = false;
3396 
3397   SDNodeFlags Flags;
3398   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3399     Flags.copyFMF(*FPOp);
3400 
3401   Flags.setUnpredictable(
3402       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3403 
3404   // Min/max matching is only viable if all output VTs are the same.
3405   if (all_equal(ValueVTs)) {
3406     EVT VT = ValueVTs[0];
3407     LLVMContext &Ctx = *DAG.getContext();
3408     auto &TLI = DAG.getTargetLoweringInfo();
3409 
3410     // We care about the legality of the operation after it has been type
3411     // legalized.
3412     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3413       VT = TLI.getTypeToTransformTo(Ctx, VT);
3414 
3415     // If the vselect is legal, assume we want to leave this as a vector setcc +
3416     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3417     // min/max is legal on the scalar type.
3418     bool UseScalarMinMax = VT.isVector() &&
3419       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3420 
3421     // ValueTracking's select pattern matching does not account for -0.0,
3422     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3423     // -0.0 is less than +0.0.
3424     Value *LHS, *RHS;
3425     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3426     ISD::NodeType Opc = ISD::DELETED_NODE;
3427     switch (SPR.Flavor) {
3428     case SPF_UMAX:    Opc = ISD::UMAX; break;
3429     case SPF_UMIN:    Opc = ISD::UMIN; break;
3430     case SPF_SMAX:    Opc = ISD::SMAX; break;
3431     case SPF_SMIN:    Opc = ISD::SMIN; break;
3432     case SPF_FMINNUM:
3433       switch (SPR.NaNBehavior) {
3434       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3435       case SPNB_RETURNS_NAN: break;
3436       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3437       case SPNB_RETURNS_ANY:
3438         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3439             (UseScalarMinMax &&
3440              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3441           Opc = ISD::FMINNUM;
3442         break;
3443       }
3444       break;
3445     case SPF_FMAXNUM:
3446       switch (SPR.NaNBehavior) {
3447       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3448       case SPNB_RETURNS_NAN: break;
3449       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3450       case SPNB_RETURNS_ANY:
3451         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3452             (UseScalarMinMax &&
3453              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3454           Opc = ISD::FMAXNUM;
3455         break;
3456       }
3457       break;
3458     case SPF_NABS:
3459       Negate = true;
3460       [[fallthrough]];
3461     case SPF_ABS:
3462       IsUnaryAbs = true;
3463       Opc = ISD::ABS;
3464       break;
3465     default: break;
3466     }
3467 
3468     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3469         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3470          (UseScalarMinMax &&
3471           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3472         // If the underlying comparison instruction is used by any other
3473         // instruction, the consumed instructions won't be destroyed, so it is
3474         // not profitable to convert to a min/max.
3475         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3476       OpCode = Opc;
3477       LHSVal = getValue(LHS);
3478       RHSVal = getValue(RHS);
3479       BaseOps.clear();
3480     }
3481 
3482     if (IsUnaryAbs) {
3483       OpCode = Opc;
3484       LHSVal = getValue(LHS);
3485       BaseOps.clear();
3486     }
3487   }
3488 
3489   if (IsUnaryAbs) {
3490     for (unsigned i = 0; i != NumValues; ++i) {
3491       SDLoc dl = getCurSDLoc();
3492       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3493       Values[i] =
3494           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3495       if (Negate)
3496         Values[i] = DAG.getNegative(Values[i], dl, VT);
3497     }
3498   } else {
3499     for (unsigned i = 0; i != NumValues; ++i) {
3500       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3501       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3502       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3503       Values[i] = DAG.getNode(
3504           OpCode, getCurSDLoc(),
3505           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3506     }
3507   }
3508 
3509   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3510                            DAG.getVTList(ValueVTs), Values));
3511 }
3512 
3513 void SelectionDAGBuilder::visitTrunc(const User &I) {
3514   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3515   SDValue N = getValue(I.getOperand(0));
3516   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3517                                                         I.getType());
3518   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3519 }
3520 
3521 void SelectionDAGBuilder::visitZExt(const User &I) {
3522   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3523   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3524   SDValue N = getValue(I.getOperand(0));
3525   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3526                                                         I.getType());
3527   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3528 }
3529 
3530 void SelectionDAGBuilder::visitSExt(const User &I) {
3531   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3532   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3533   SDValue N = getValue(I.getOperand(0));
3534   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3535                                                         I.getType());
3536   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3537 }
3538 
3539 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3540   // FPTrunc is never a no-op cast, no need to check
3541   SDValue N = getValue(I.getOperand(0));
3542   SDLoc dl = getCurSDLoc();
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3545   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3546                            DAG.getTargetConstant(
3547                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3548 }
3549 
3550 void SelectionDAGBuilder::visitFPExt(const User &I) {
3551   // FPExt is never a no-op cast, no need to check
3552   SDValue N = getValue(I.getOperand(0));
3553   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3554                                                         I.getType());
3555   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3556 }
3557 
3558 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3559   // FPToUI is never a no-op cast, no need to check
3560   SDValue N = getValue(I.getOperand(0));
3561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                         I.getType());
3563   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3564 }
3565 
3566 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3567   // FPToSI is never a no-op cast, no need to check
3568   SDValue N = getValue(I.getOperand(0));
3569   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3570                                                         I.getType());
3571   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3572 }
3573 
3574 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3575   // UIToFP is never a no-op cast, no need to check
3576   SDValue N = getValue(I.getOperand(0));
3577   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3578                                                         I.getType());
3579   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3580 }
3581 
3582 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3583   // SIToFP is never a no-op cast, no need to check
3584   SDValue N = getValue(I.getOperand(0));
3585   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3586                                                         I.getType());
3587   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3588 }
3589 
3590 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3591   // What to do depends on the size of the integer and the size of the pointer.
3592   // We can either truncate, zero extend, or no-op, accordingly.
3593   SDValue N = getValue(I.getOperand(0));
3594   auto &TLI = DAG.getTargetLoweringInfo();
3595   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3596                                                         I.getType());
3597   EVT PtrMemVT =
3598       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3599   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3600   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3601   setValue(&I, N);
3602 }
3603 
3604 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3605   // What to do depends on the size of the integer and the size of the pointer.
3606   // We can either truncate, zero extend, or no-op, accordingly.
3607   SDValue N = getValue(I.getOperand(0));
3608   auto &TLI = DAG.getTargetLoweringInfo();
3609   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3610   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3611   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3612   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3613   setValue(&I, N);
3614 }
3615 
3616 void SelectionDAGBuilder::visitBitCast(const User &I) {
3617   SDValue N = getValue(I.getOperand(0));
3618   SDLoc dl = getCurSDLoc();
3619   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3620                                                         I.getType());
3621 
3622   // BitCast assures us that source and destination are the same size so this is
3623   // either a BITCAST or a no-op.
3624   if (DestVT != N.getValueType())
3625     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3626                              DestVT, N)); // convert types.
3627   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3628   // might fold any kind of constant expression to an integer constant and that
3629   // is not what we are looking for. Only recognize a bitcast of a genuine
3630   // constant integer as an opaque constant.
3631   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3632     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3633                                  /*isOpaque*/true));
3634   else
3635     setValue(&I, N);            // noop cast.
3636 }
3637 
3638 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3640   const Value *SV = I.getOperand(0);
3641   SDValue N = getValue(SV);
3642   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3643 
3644   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3645   unsigned DestAS = I.getType()->getPointerAddressSpace();
3646 
3647   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3648     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3649 
3650   setValue(&I, N);
3651 }
3652 
3653 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3655   SDValue InVec = getValue(I.getOperand(0));
3656   SDValue InVal = getValue(I.getOperand(1));
3657   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3658                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3659   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3660                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3661                            InVec, InVal, InIdx));
3662 }
3663 
3664 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3666   SDValue InVec = getValue(I.getOperand(0));
3667   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3668                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3669   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3670                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3671                            InVec, InIdx));
3672 }
3673 
3674 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3675   SDValue Src1 = getValue(I.getOperand(0));
3676   SDValue Src2 = getValue(I.getOperand(1));
3677   ArrayRef<int> Mask;
3678   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3679     Mask = SVI->getShuffleMask();
3680   else
3681     Mask = cast<ConstantExpr>(I).getShuffleMask();
3682   SDLoc DL = getCurSDLoc();
3683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3684   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3685   EVT SrcVT = Src1.getValueType();
3686 
3687   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3688       VT.isScalableVector()) {
3689     // Canonical splat form of first element of first input vector.
3690     SDValue FirstElt =
3691         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3692                     DAG.getVectorIdxConstant(0, DL));
3693     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3694     return;
3695   }
3696 
3697   // For now, we only handle splats for scalable vectors.
3698   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3699   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3700   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3701 
3702   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3703   unsigned MaskNumElts = Mask.size();
3704 
3705   if (SrcNumElts == MaskNumElts) {
3706     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3707     return;
3708   }
3709 
3710   // Normalize the shuffle vector since mask and vector length don't match.
3711   if (SrcNumElts < MaskNumElts) {
3712     // Mask is longer than the source vectors. We can use concatenate vector to
3713     // make the mask and vectors lengths match.
3714 
3715     if (MaskNumElts % SrcNumElts == 0) {
3716       // Mask length is a multiple of the source vector length.
3717       // Check if the shuffle is some kind of concatenation of the input
3718       // vectors.
3719       unsigned NumConcat = MaskNumElts / SrcNumElts;
3720       bool IsConcat = true;
3721       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3722       for (unsigned i = 0; i != MaskNumElts; ++i) {
3723         int Idx = Mask[i];
3724         if (Idx < 0)
3725           continue;
3726         // Ensure the indices in each SrcVT sized piece are sequential and that
3727         // the same source is used for the whole piece.
3728         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3729             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3730              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3731           IsConcat = false;
3732           break;
3733         }
3734         // Remember which source this index came from.
3735         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3736       }
3737 
3738       // The shuffle is concatenating multiple vectors together. Just emit
3739       // a CONCAT_VECTORS operation.
3740       if (IsConcat) {
3741         SmallVector<SDValue, 8> ConcatOps;
3742         for (auto Src : ConcatSrcs) {
3743           if (Src < 0)
3744             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3745           else if (Src == 0)
3746             ConcatOps.push_back(Src1);
3747           else
3748             ConcatOps.push_back(Src2);
3749         }
3750         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3751         return;
3752       }
3753     }
3754 
3755     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3756     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3757     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3758                                     PaddedMaskNumElts);
3759 
3760     // Pad both vectors with undefs to make them the same length as the mask.
3761     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3762 
3763     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3764     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3765     MOps1[0] = Src1;
3766     MOps2[0] = Src2;
3767 
3768     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3769     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3770 
3771     // Readjust mask for new input vector length.
3772     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3773     for (unsigned i = 0; i != MaskNumElts; ++i) {
3774       int Idx = Mask[i];
3775       if (Idx >= (int)SrcNumElts)
3776         Idx -= SrcNumElts - PaddedMaskNumElts;
3777       MappedOps[i] = Idx;
3778     }
3779 
3780     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3781 
3782     // If the concatenated vector was padded, extract a subvector with the
3783     // correct number of elements.
3784     if (MaskNumElts != PaddedMaskNumElts)
3785       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3786                            DAG.getVectorIdxConstant(0, DL));
3787 
3788     setValue(&I, Result);
3789     return;
3790   }
3791 
3792   if (SrcNumElts > MaskNumElts) {
3793     // Analyze the access pattern of the vector to see if we can extract
3794     // two subvectors and do the shuffle.
3795     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3796     bool CanExtract = true;
3797     for (int Idx : Mask) {
3798       unsigned Input = 0;
3799       if (Idx < 0)
3800         continue;
3801 
3802       if (Idx >= (int)SrcNumElts) {
3803         Input = 1;
3804         Idx -= SrcNumElts;
3805       }
3806 
3807       // If all the indices come from the same MaskNumElts sized portion of
3808       // the sources we can use extract. Also make sure the extract wouldn't
3809       // extract past the end of the source.
3810       int NewStartIdx = alignDown(Idx, MaskNumElts);
3811       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3812           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3813         CanExtract = false;
3814       // Make sure we always update StartIdx as we use it to track if all
3815       // elements are undef.
3816       StartIdx[Input] = NewStartIdx;
3817     }
3818 
3819     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3820       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3821       return;
3822     }
3823     if (CanExtract) {
3824       // Extract appropriate subvector and generate a vector shuffle
3825       for (unsigned Input = 0; Input < 2; ++Input) {
3826         SDValue &Src = Input == 0 ? Src1 : Src2;
3827         if (StartIdx[Input] < 0)
3828           Src = DAG.getUNDEF(VT);
3829         else {
3830           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3831                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3832         }
3833       }
3834 
3835       // Calculate new mask.
3836       SmallVector<int, 8> MappedOps(Mask);
3837       for (int &Idx : MappedOps) {
3838         if (Idx >= (int)SrcNumElts)
3839           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3840         else if (Idx >= 0)
3841           Idx -= StartIdx[0];
3842       }
3843 
3844       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3845       return;
3846     }
3847   }
3848 
3849   // We can't use either concat vectors or extract subvectors so fall back to
3850   // replacing the shuffle with extract and build vector.
3851   // to insert and build vector.
3852   EVT EltVT = VT.getVectorElementType();
3853   SmallVector<SDValue,8> Ops;
3854   for (int Idx : Mask) {
3855     SDValue Res;
3856 
3857     if (Idx < 0) {
3858       Res = DAG.getUNDEF(EltVT);
3859     } else {
3860       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3861       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3862 
3863       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3864                         DAG.getVectorIdxConstant(Idx, DL));
3865     }
3866 
3867     Ops.push_back(Res);
3868   }
3869 
3870   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3871 }
3872 
3873 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3874   ArrayRef<unsigned> Indices = I.getIndices();
3875   const Value *Op0 = I.getOperand(0);
3876   const Value *Op1 = I.getOperand(1);
3877   Type *AggTy = I.getType();
3878   Type *ValTy = Op1->getType();
3879   bool IntoUndef = isa<UndefValue>(Op0);
3880   bool FromUndef = isa<UndefValue>(Op1);
3881 
3882   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3883 
3884   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3885   SmallVector<EVT, 4> AggValueVTs;
3886   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3887   SmallVector<EVT, 4> ValValueVTs;
3888   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3889 
3890   unsigned NumAggValues = AggValueVTs.size();
3891   unsigned NumValValues = ValValueVTs.size();
3892   SmallVector<SDValue, 4> Values(NumAggValues);
3893 
3894   // Ignore an insertvalue that produces an empty object
3895   if (!NumAggValues) {
3896     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3897     return;
3898   }
3899 
3900   SDValue Agg = getValue(Op0);
3901   unsigned i = 0;
3902   // Copy the beginning value(s) from the original aggregate.
3903   for (; i != LinearIndex; ++i)
3904     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3905                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3906   // Copy values from the inserted value(s).
3907   if (NumValValues) {
3908     SDValue Val = getValue(Op1);
3909     for (; i != LinearIndex + NumValValues; ++i)
3910       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3911                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3912   }
3913   // Copy remaining value(s) from the original aggregate.
3914   for (; i != NumAggValues; ++i)
3915     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3916                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3917 
3918   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3919                            DAG.getVTList(AggValueVTs), Values));
3920 }
3921 
3922 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3923   ArrayRef<unsigned> Indices = I.getIndices();
3924   const Value *Op0 = I.getOperand(0);
3925   Type *AggTy = Op0->getType();
3926   Type *ValTy = I.getType();
3927   bool OutOfUndef = isa<UndefValue>(Op0);
3928 
3929   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3930 
3931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3932   SmallVector<EVT, 4> ValValueVTs;
3933   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3934 
3935   unsigned NumValValues = ValValueVTs.size();
3936 
3937   // Ignore a extractvalue that produces an empty object
3938   if (!NumValValues) {
3939     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3940     return;
3941   }
3942 
3943   SmallVector<SDValue, 4> Values(NumValValues);
3944 
3945   SDValue Agg = getValue(Op0);
3946   // Copy out the selected value(s).
3947   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3948     Values[i - LinearIndex] =
3949       OutOfUndef ?
3950         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3951         SDValue(Agg.getNode(), Agg.getResNo() + i);
3952 
3953   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3954                            DAG.getVTList(ValValueVTs), Values));
3955 }
3956 
3957 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3958   Value *Op0 = I.getOperand(0);
3959   // Note that the pointer operand may be a vector of pointers. Take the scalar
3960   // element which holds a pointer.
3961   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3962   SDValue N = getValue(Op0);
3963   SDLoc dl = getCurSDLoc();
3964   auto &TLI = DAG.getTargetLoweringInfo();
3965 
3966   // Normalize Vector GEP - all scalar operands should be converted to the
3967   // splat vector.
3968   bool IsVectorGEP = I.getType()->isVectorTy();
3969   ElementCount VectorElementCount =
3970       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3971                   : ElementCount::getFixed(0);
3972 
3973   if (IsVectorGEP && !N.getValueType().isVector()) {
3974     LLVMContext &Context = *DAG.getContext();
3975     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3976     N = DAG.getSplat(VT, dl, N);
3977   }
3978 
3979   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3980        GTI != E; ++GTI) {
3981     const Value *Idx = GTI.getOperand();
3982     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3983       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3984       if (Field) {
3985         // N = N + Offset
3986         uint64_t Offset =
3987             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3988 
3989         // In an inbounds GEP with an offset that is nonnegative even when
3990         // interpreted as signed, assume there is no unsigned overflow.
3991         SDNodeFlags Flags;
3992         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3993           Flags.setNoUnsignedWrap(true);
3994 
3995         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3996                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3997       }
3998     } else {
3999       // IdxSize is the width of the arithmetic according to IR semantics.
4000       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4001       // (and fix up the result later).
4002       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4003       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4004       TypeSize ElementSize =
4005           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
4006       // We intentionally mask away the high bits here; ElementSize may not
4007       // fit in IdxTy.
4008       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4009       bool ElementScalable = ElementSize.isScalable();
4010 
4011       // If this is a scalar constant or a splat vector of constants,
4012       // handle it quickly.
4013       const auto *C = dyn_cast<Constant>(Idx);
4014       if (C && isa<VectorType>(C->getType()))
4015         C = C->getSplatValue();
4016 
4017       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4018       if (CI && CI->isZero())
4019         continue;
4020       if (CI && !ElementScalable) {
4021         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4022         LLVMContext &Context = *DAG.getContext();
4023         SDValue OffsVal;
4024         if (IsVectorGEP)
4025           OffsVal = DAG.getConstant(
4026               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4027         else
4028           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4029 
4030         // In an inbounds GEP with an offset that is nonnegative even when
4031         // interpreted as signed, assume there is no unsigned overflow.
4032         SDNodeFlags Flags;
4033         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4034           Flags.setNoUnsignedWrap(true);
4035 
4036         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4037 
4038         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4039         continue;
4040       }
4041 
4042       // N = N + Idx * ElementMul;
4043       SDValue IdxN = getValue(Idx);
4044 
4045       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4046         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4047                                   VectorElementCount);
4048         IdxN = DAG.getSplat(VT, dl, IdxN);
4049       }
4050 
4051       // If the index is smaller or larger than intptr_t, truncate or extend
4052       // it.
4053       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4054 
4055       if (ElementScalable) {
4056         EVT VScaleTy = N.getValueType().getScalarType();
4057         SDValue VScale = DAG.getNode(
4058             ISD::VSCALE, dl, VScaleTy,
4059             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4060         if (IsVectorGEP)
4061           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4062         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4063       } else {
4064         // If this is a multiply by a power of two, turn it into a shl
4065         // immediately.  This is a very common case.
4066         if (ElementMul != 1) {
4067           if (ElementMul.isPowerOf2()) {
4068             unsigned Amt = ElementMul.logBase2();
4069             IdxN = DAG.getNode(ISD::SHL, dl,
4070                                N.getValueType(), IdxN,
4071                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4072           } else {
4073             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4074                                             IdxN.getValueType());
4075             IdxN = DAG.getNode(ISD::MUL, dl,
4076                                N.getValueType(), IdxN, Scale);
4077           }
4078         }
4079       }
4080 
4081       N = DAG.getNode(ISD::ADD, dl,
4082                       N.getValueType(), N, IdxN);
4083     }
4084   }
4085 
4086   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4087   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4088   if (IsVectorGEP) {
4089     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4090     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4091   }
4092 
4093   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4094     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4095 
4096   setValue(&I, N);
4097 }
4098 
4099 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4100   // If this is a fixed sized alloca in the entry block of the function,
4101   // allocate it statically on the stack.
4102   if (FuncInfo.StaticAllocaMap.count(&I))
4103     return;   // getValue will auto-populate this.
4104 
4105   SDLoc dl = getCurSDLoc();
4106   Type *Ty = I.getAllocatedType();
4107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4108   auto &DL = DAG.getDataLayout();
4109   TypeSize TySize = DL.getTypeAllocSize(Ty);
4110   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4111 
4112   SDValue AllocSize = getValue(I.getArraySize());
4113 
4114   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4115   if (AllocSize.getValueType() != IntPtr)
4116     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4117 
4118   if (TySize.isScalable())
4119     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4120                             DAG.getVScale(dl, IntPtr,
4121                                           APInt(IntPtr.getScalarSizeInBits(),
4122                                                 TySize.getKnownMinValue())));
4123   else
4124     AllocSize =
4125         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4126                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4127 
4128   // Handle alignment.  If the requested alignment is less than or equal to
4129   // the stack alignment, ignore it.  If the size is greater than or equal to
4130   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4131   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4132   if (*Alignment <= StackAlign)
4133     Alignment = std::nullopt;
4134 
4135   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4136   // Round the size of the allocation up to the stack alignment size
4137   // by add SA-1 to the size. This doesn't overflow because we're computing
4138   // an address inside an alloca.
4139   SDNodeFlags Flags;
4140   Flags.setNoUnsignedWrap(true);
4141   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4142                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4143 
4144   // Mask out the low bits for alignment purposes.
4145   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4146                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4147 
4148   SDValue Ops[] = {
4149       getRoot(), AllocSize,
4150       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4151   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4152   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4153   setValue(&I, DSA);
4154   DAG.setRoot(DSA.getValue(1));
4155 
4156   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4157 }
4158 
4159 static const MDNode *getRangeMetadata(const Instruction &I) {
4160   // If !noundef is not present, then !range violation results in a poison
4161   // value rather than immediate undefined behavior. In theory, transferring
4162   // these annotations to SDAG is fine, but in practice there are key SDAG
4163   // transforms that are known not to be poison-safe, such as folding logical
4164   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4165   // also present.
4166   if (!I.hasMetadata(LLVMContext::MD_noundef))
4167     return nullptr;
4168   return I.getMetadata(LLVMContext::MD_range);
4169 }
4170 
4171 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4172   if (I.isAtomic())
4173     return visitAtomicLoad(I);
4174 
4175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4176   const Value *SV = I.getOperand(0);
4177   if (TLI.supportSwiftError()) {
4178     // Swifterror values can come from either a function parameter with
4179     // swifterror attribute or an alloca with swifterror attribute.
4180     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4181       if (Arg->hasSwiftErrorAttr())
4182         return visitLoadFromSwiftError(I);
4183     }
4184 
4185     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4186       if (Alloca->isSwiftError())
4187         return visitLoadFromSwiftError(I);
4188     }
4189   }
4190 
4191   SDValue Ptr = getValue(SV);
4192 
4193   Type *Ty = I.getType();
4194   SmallVector<EVT, 4> ValueVTs, MemVTs;
4195   SmallVector<TypeSize, 4> Offsets;
4196   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4197   unsigned NumValues = ValueVTs.size();
4198   if (NumValues == 0)
4199     return;
4200 
4201   Align Alignment = I.getAlign();
4202   AAMDNodes AAInfo = I.getAAMetadata();
4203   const MDNode *Ranges = getRangeMetadata(I);
4204   bool isVolatile = I.isVolatile();
4205   MachineMemOperand::Flags MMOFlags =
4206       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4207 
4208   SDValue Root;
4209   bool ConstantMemory = false;
4210   if (isVolatile)
4211     // Serialize volatile loads with other side effects.
4212     Root = getRoot();
4213   else if (NumValues > MaxParallelChains)
4214     Root = getMemoryRoot();
4215   else if (AA &&
4216            AA->pointsToConstantMemory(MemoryLocation(
4217                SV,
4218                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4219                AAInfo))) {
4220     // Do not serialize (non-volatile) loads of constant memory with anything.
4221     Root = DAG.getEntryNode();
4222     ConstantMemory = true;
4223     MMOFlags |= MachineMemOperand::MOInvariant;
4224   } else {
4225     // Do not serialize non-volatile loads against each other.
4226     Root = DAG.getRoot();
4227   }
4228 
4229   SDLoc dl = getCurSDLoc();
4230 
4231   if (isVolatile)
4232     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4233 
4234   SmallVector<SDValue, 4> Values(NumValues);
4235   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4236 
4237   unsigned ChainI = 0;
4238   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4239     // Serializing loads here may result in excessive register pressure, and
4240     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4241     // could recover a bit by hoisting nodes upward in the chain by recognizing
4242     // they are side-effect free or do not alias. The optimizer should really
4243     // avoid this case by converting large object/array copies to llvm.memcpy
4244     // (MaxParallelChains should always remain as failsafe).
4245     if (ChainI == MaxParallelChains) {
4246       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4247       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4248                                   ArrayRef(Chains.data(), ChainI));
4249       Root = Chain;
4250       ChainI = 0;
4251     }
4252 
4253     // TODO: MachinePointerInfo only supports a fixed length offset.
4254     MachinePointerInfo PtrInfo =
4255         !Offsets[i].isScalable() || Offsets[i].isZero()
4256             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4257             : MachinePointerInfo();
4258 
4259     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4260     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4261                             MMOFlags, AAInfo, Ranges);
4262     Chains[ChainI] = L.getValue(1);
4263 
4264     if (MemVTs[i] != ValueVTs[i])
4265       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4266 
4267     Values[i] = L;
4268   }
4269 
4270   if (!ConstantMemory) {
4271     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4272                                 ArrayRef(Chains.data(), ChainI));
4273     if (isVolatile)
4274       DAG.setRoot(Chain);
4275     else
4276       PendingLoads.push_back(Chain);
4277   }
4278 
4279   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4280                            DAG.getVTList(ValueVTs), Values));
4281 }
4282 
4283 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4284   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4285          "call visitStoreToSwiftError when backend supports swifterror");
4286 
4287   SmallVector<EVT, 4> ValueVTs;
4288   SmallVector<uint64_t, 4> Offsets;
4289   const Value *SrcV = I.getOperand(0);
4290   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4291                   SrcV->getType(), ValueVTs, &Offsets, 0);
4292   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4293          "expect a single EVT for swifterror");
4294 
4295   SDValue Src = getValue(SrcV);
4296   // Create a virtual register, then update the virtual register.
4297   Register VReg =
4298       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4299   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4300   // Chain can be getRoot or getControlRoot.
4301   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4302                                       SDValue(Src.getNode(), Src.getResNo()));
4303   DAG.setRoot(CopyNode);
4304 }
4305 
4306 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4307   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4308          "call visitLoadFromSwiftError when backend supports swifterror");
4309 
4310   assert(!I.isVolatile() &&
4311          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4312          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4313          "Support volatile, non temporal, invariant for load_from_swift_error");
4314 
4315   const Value *SV = I.getOperand(0);
4316   Type *Ty = I.getType();
4317   assert(
4318       (!AA ||
4319        !AA->pointsToConstantMemory(MemoryLocation(
4320            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4321            I.getAAMetadata()))) &&
4322       "load_from_swift_error should not be constant memory");
4323 
4324   SmallVector<EVT, 4> ValueVTs;
4325   SmallVector<uint64_t, 4> Offsets;
4326   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4327                   ValueVTs, &Offsets, 0);
4328   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4329          "expect a single EVT for swifterror");
4330 
4331   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4332   SDValue L = DAG.getCopyFromReg(
4333       getRoot(), getCurSDLoc(),
4334       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4335 
4336   setValue(&I, L);
4337 }
4338 
4339 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4340   if (I.isAtomic())
4341     return visitAtomicStore(I);
4342 
4343   const Value *SrcV = I.getOperand(0);
4344   const Value *PtrV = I.getOperand(1);
4345 
4346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4347   if (TLI.supportSwiftError()) {
4348     // Swifterror values can come from either a function parameter with
4349     // swifterror attribute or an alloca with swifterror attribute.
4350     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4351       if (Arg->hasSwiftErrorAttr())
4352         return visitStoreToSwiftError(I);
4353     }
4354 
4355     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4356       if (Alloca->isSwiftError())
4357         return visitStoreToSwiftError(I);
4358     }
4359   }
4360 
4361   SmallVector<EVT, 4> ValueVTs, MemVTs;
4362   SmallVector<TypeSize, 4> Offsets;
4363   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4364                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4365   unsigned NumValues = ValueVTs.size();
4366   if (NumValues == 0)
4367     return;
4368 
4369   // Get the lowered operands. Note that we do this after
4370   // checking if NumResults is zero, because with zero results
4371   // the operands won't have values in the map.
4372   SDValue Src = getValue(SrcV);
4373   SDValue Ptr = getValue(PtrV);
4374 
4375   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4376   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4377   SDLoc dl = getCurSDLoc();
4378   Align Alignment = I.getAlign();
4379   AAMDNodes AAInfo = I.getAAMetadata();
4380 
4381   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4382 
4383   unsigned ChainI = 0;
4384   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4385     // See visitLoad comments.
4386     if (ChainI == MaxParallelChains) {
4387       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4388                                   ArrayRef(Chains.data(), ChainI));
4389       Root = Chain;
4390       ChainI = 0;
4391     }
4392 
4393     // TODO: MachinePointerInfo only supports a fixed length offset.
4394     MachinePointerInfo PtrInfo =
4395         !Offsets[i].isScalable() || Offsets[i].isZero()
4396             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4397             : MachinePointerInfo();
4398 
4399     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4400     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4401     if (MemVTs[i] != ValueVTs[i])
4402       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4403     SDValue St =
4404         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4405     Chains[ChainI] = St;
4406   }
4407 
4408   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4409                                   ArrayRef(Chains.data(), ChainI));
4410   setValue(&I, StoreNode);
4411   DAG.setRoot(StoreNode);
4412 }
4413 
4414 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4415                                            bool IsCompressing) {
4416   SDLoc sdl = getCurSDLoc();
4417 
4418   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4419                                MaybeAlign &Alignment) {
4420     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4421     Src0 = I.getArgOperand(0);
4422     Ptr = I.getArgOperand(1);
4423     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4424     Mask = I.getArgOperand(3);
4425   };
4426   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4427                                     MaybeAlign &Alignment) {
4428     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4429     Src0 = I.getArgOperand(0);
4430     Ptr = I.getArgOperand(1);
4431     Mask = I.getArgOperand(2);
4432     Alignment = std::nullopt;
4433   };
4434 
4435   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4436   MaybeAlign Alignment;
4437   if (IsCompressing)
4438     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4439   else
4440     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4441 
4442   SDValue Ptr = getValue(PtrOperand);
4443   SDValue Src0 = getValue(Src0Operand);
4444   SDValue Mask = getValue(MaskOperand);
4445   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4446 
4447   EVT VT = Src0.getValueType();
4448   if (!Alignment)
4449     Alignment = DAG.getEVTAlign(VT);
4450 
4451   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4452       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4453       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4454   SDValue StoreNode =
4455       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4456                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4457   DAG.setRoot(StoreNode);
4458   setValue(&I, StoreNode);
4459 }
4460 
4461 // Get a uniform base for the Gather/Scatter intrinsic.
4462 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4463 // We try to represent it as a base pointer + vector of indices.
4464 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4465 // The first operand of the GEP may be a single pointer or a vector of pointers
4466 // Example:
4467 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4468 //  or
4469 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4470 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4471 //
4472 // When the first GEP operand is a single pointer - it is the uniform base we
4473 // are looking for. If first operand of the GEP is a splat vector - we
4474 // extract the splat value and use it as a uniform base.
4475 // In all other cases the function returns 'false'.
4476 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4477                            ISD::MemIndexType &IndexType, SDValue &Scale,
4478                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4479                            uint64_t ElemSize) {
4480   SelectionDAG& DAG = SDB->DAG;
4481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4482   const DataLayout &DL = DAG.getDataLayout();
4483 
4484   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4485 
4486   // Handle splat constant pointer.
4487   if (auto *C = dyn_cast<Constant>(Ptr)) {
4488     C = C->getSplatValue();
4489     if (!C)
4490       return false;
4491 
4492     Base = SDB->getValue(C);
4493 
4494     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4495     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4496     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4497     IndexType = ISD::SIGNED_SCALED;
4498     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4499     return true;
4500   }
4501 
4502   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4503   if (!GEP || GEP->getParent() != CurBB)
4504     return false;
4505 
4506   if (GEP->getNumOperands() != 2)
4507     return false;
4508 
4509   const Value *BasePtr = GEP->getPointerOperand();
4510   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4511 
4512   // Make sure the base is scalar and the index is a vector.
4513   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4514     return false;
4515 
4516   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4517   if (ScaleVal.isScalable())
4518     return false;
4519 
4520   // Target may not support the required addressing mode.
4521   if (ScaleVal != 1 &&
4522       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4523     return false;
4524 
4525   Base = SDB->getValue(BasePtr);
4526   Index = SDB->getValue(IndexVal);
4527   IndexType = ISD::SIGNED_SCALED;
4528 
4529   Scale =
4530       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4531   return true;
4532 }
4533 
4534 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4535   SDLoc sdl = getCurSDLoc();
4536 
4537   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4538   const Value *Ptr = I.getArgOperand(1);
4539   SDValue Src0 = getValue(I.getArgOperand(0));
4540   SDValue Mask = getValue(I.getArgOperand(3));
4541   EVT VT = Src0.getValueType();
4542   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4543                         ->getMaybeAlignValue()
4544                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4546 
4547   SDValue Base;
4548   SDValue Index;
4549   ISD::MemIndexType IndexType;
4550   SDValue Scale;
4551   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4552                                     I.getParent(), VT.getScalarStoreSize());
4553 
4554   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4555   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4556       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4557       // TODO: Make MachineMemOperands aware of scalable
4558       // vectors.
4559       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4560   if (!UniformBase) {
4561     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4562     Index = getValue(Ptr);
4563     IndexType = ISD::SIGNED_SCALED;
4564     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4565   }
4566 
4567   EVT IdxVT = Index.getValueType();
4568   EVT EltTy = IdxVT.getVectorElementType();
4569   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4570     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4571     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4572   }
4573 
4574   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4575   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4576                                          Ops, MMO, IndexType, false);
4577   DAG.setRoot(Scatter);
4578   setValue(&I, Scatter);
4579 }
4580 
4581 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4582   SDLoc sdl = getCurSDLoc();
4583 
4584   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4585                               MaybeAlign &Alignment) {
4586     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4587     Ptr = I.getArgOperand(0);
4588     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4589     Mask = I.getArgOperand(2);
4590     Src0 = I.getArgOperand(3);
4591   };
4592   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4593                                  MaybeAlign &Alignment) {
4594     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4595     Ptr = I.getArgOperand(0);
4596     Alignment = std::nullopt;
4597     Mask = I.getArgOperand(1);
4598     Src0 = I.getArgOperand(2);
4599   };
4600 
4601   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4602   MaybeAlign Alignment;
4603   if (IsExpanding)
4604     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4605   else
4606     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4607 
4608   SDValue Ptr = getValue(PtrOperand);
4609   SDValue Src0 = getValue(Src0Operand);
4610   SDValue Mask = getValue(MaskOperand);
4611   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4612 
4613   EVT VT = Src0.getValueType();
4614   if (!Alignment)
4615     Alignment = DAG.getEVTAlign(VT);
4616 
4617   AAMDNodes AAInfo = I.getAAMetadata();
4618   const MDNode *Ranges = getRangeMetadata(I);
4619 
4620   // Do not serialize masked loads of constant memory with anything.
4621   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4622   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4623 
4624   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4625 
4626   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4627       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4628       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4629 
4630   SDValue Load =
4631       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4632                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4633   if (AddToChain)
4634     PendingLoads.push_back(Load.getValue(1));
4635   setValue(&I, Load);
4636 }
4637 
4638 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4639   SDLoc sdl = getCurSDLoc();
4640 
4641   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4642   const Value *Ptr = I.getArgOperand(0);
4643   SDValue Src0 = getValue(I.getArgOperand(3));
4644   SDValue Mask = getValue(I.getArgOperand(2));
4645 
4646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4647   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4648   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4649                         ->getMaybeAlignValue()
4650                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4651 
4652   const MDNode *Ranges = getRangeMetadata(I);
4653 
4654   SDValue Root = DAG.getRoot();
4655   SDValue Base;
4656   SDValue Index;
4657   ISD::MemIndexType IndexType;
4658   SDValue Scale;
4659   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4660                                     I.getParent(), VT.getScalarStoreSize());
4661   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4662   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4663       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4664       // TODO: Make MachineMemOperands aware of scalable
4665       // vectors.
4666       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4667 
4668   if (!UniformBase) {
4669     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4670     Index = getValue(Ptr);
4671     IndexType = ISD::SIGNED_SCALED;
4672     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4673   }
4674 
4675   EVT IdxVT = Index.getValueType();
4676   EVT EltTy = IdxVT.getVectorElementType();
4677   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4678     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4679     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4680   }
4681 
4682   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4683   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4684                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4685 
4686   PendingLoads.push_back(Gather.getValue(1));
4687   setValue(&I, Gather);
4688 }
4689 
4690 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4691   SDLoc dl = getCurSDLoc();
4692   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4693   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4694   SyncScope::ID SSID = I.getSyncScopeID();
4695 
4696   SDValue InChain = getRoot();
4697 
4698   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4699   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4700 
4701   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4702   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4703 
4704   MachineFunction &MF = DAG.getMachineFunction();
4705   MachineMemOperand *MMO = MF.getMachineMemOperand(
4706       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4707       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4708       FailureOrdering);
4709 
4710   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4711                                    dl, MemVT, VTs, InChain,
4712                                    getValue(I.getPointerOperand()),
4713                                    getValue(I.getCompareOperand()),
4714                                    getValue(I.getNewValOperand()), MMO);
4715 
4716   SDValue OutChain = L.getValue(2);
4717 
4718   setValue(&I, L);
4719   DAG.setRoot(OutChain);
4720 }
4721 
4722 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4723   SDLoc dl = getCurSDLoc();
4724   ISD::NodeType NT;
4725   switch (I.getOperation()) {
4726   default: llvm_unreachable("Unknown atomicrmw operation");
4727   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4728   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4729   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4730   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4731   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4732   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4733   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4734   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4735   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4736   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4737   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4738   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4739   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4740   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4741   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4742   case AtomicRMWInst::UIncWrap:
4743     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4744     break;
4745   case AtomicRMWInst::UDecWrap:
4746     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4747     break;
4748   }
4749   AtomicOrdering Ordering = I.getOrdering();
4750   SyncScope::ID SSID = I.getSyncScopeID();
4751 
4752   SDValue InChain = getRoot();
4753 
4754   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4756   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4757 
4758   MachineFunction &MF = DAG.getMachineFunction();
4759   MachineMemOperand *MMO = MF.getMachineMemOperand(
4760       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4761       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4762 
4763   SDValue L =
4764     DAG.getAtomic(NT, dl, MemVT, InChain,
4765                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4766                   MMO);
4767 
4768   SDValue OutChain = L.getValue(1);
4769 
4770   setValue(&I, L);
4771   DAG.setRoot(OutChain);
4772 }
4773 
4774 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4775   SDLoc dl = getCurSDLoc();
4776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4777   SDValue Ops[3];
4778   Ops[0] = getRoot();
4779   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4780                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4781   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4782                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4783   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4784   setValue(&I, N);
4785   DAG.setRoot(N);
4786 }
4787 
4788 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4789   SDLoc dl = getCurSDLoc();
4790   AtomicOrdering Order = I.getOrdering();
4791   SyncScope::ID SSID = I.getSyncScopeID();
4792 
4793   SDValue InChain = getRoot();
4794 
4795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4796   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4797   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4798 
4799   if (!TLI.supportsUnalignedAtomics() &&
4800       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4801     report_fatal_error("Cannot generate unaligned atomic load");
4802 
4803   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4804 
4805   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4806       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4807       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4808 
4809   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4810 
4811   SDValue Ptr = getValue(I.getPointerOperand());
4812 
4813   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4814     // TODO: Once this is better exercised by tests, it should be merged with
4815     // the normal path for loads to prevent future divergence.
4816     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4817     if (MemVT != VT)
4818       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4819 
4820     setValue(&I, L);
4821     SDValue OutChain = L.getValue(1);
4822     if (!I.isUnordered())
4823       DAG.setRoot(OutChain);
4824     else
4825       PendingLoads.push_back(OutChain);
4826     return;
4827   }
4828 
4829   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4830                             Ptr, MMO);
4831 
4832   SDValue OutChain = L.getValue(1);
4833   if (MemVT != VT)
4834     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4835 
4836   setValue(&I, L);
4837   DAG.setRoot(OutChain);
4838 }
4839 
4840 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4841   SDLoc dl = getCurSDLoc();
4842 
4843   AtomicOrdering Ordering = I.getOrdering();
4844   SyncScope::ID SSID = I.getSyncScopeID();
4845 
4846   SDValue InChain = getRoot();
4847 
4848   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4849   EVT MemVT =
4850       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4851 
4852   if (!TLI.supportsUnalignedAtomics() &&
4853       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4854     report_fatal_error("Cannot generate unaligned atomic store");
4855 
4856   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4857 
4858   MachineFunction &MF = DAG.getMachineFunction();
4859   MachineMemOperand *MMO = MF.getMachineMemOperand(
4860       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4861       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4862 
4863   SDValue Val = getValue(I.getValueOperand());
4864   if (Val.getValueType() != MemVT)
4865     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4866   SDValue Ptr = getValue(I.getPointerOperand());
4867 
4868   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4869     // TODO: Once this is better exercised by tests, it should be merged with
4870     // the normal path for stores to prevent future divergence.
4871     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4872     setValue(&I, S);
4873     DAG.setRoot(S);
4874     return;
4875   }
4876   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4877                                    Ptr, Val, MMO);
4878 
4879   setValue(&I, OutChain);
4880   DAG.setRoot(OutChain);
4881 }
4882 
4883 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4884 /// node.
4885 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4886                                                unsigned Intrinsic) {
4887   // Ignore the callsite's attributes. A specific call site may be marked with
4888   // readnone, but the lowering code will expect the chain based on the
4889   // definition.
4890   const Function *F = I.getCalledFunction();
4891   bool HasChain = !F->doesNotAccessMemory();
4892   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4893 
4894   // Build the operand list.
4895   SmallVector<SDValue, 8> Ops;
4896   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4897     if (OnlyLoad) {
4898       // We don't need to serialize loads against other loads.
4899       Ops.push_back(DAG.getRoot());
4900     } else {
4901       Ops.push_back(getRoot());
4902     }
4903   }
4904 
4905   // Info is set by getTgtMemIntrinsic
4906   TargetLowering::IntrinsicInfo Info;
4907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4908   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4909                                                DAG.getMachineFunction(),
4910                                                Intrinsic);
4911 
4912   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4913   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4914       Info.opc == ISD::INTRINSIC_W_CHAIN)
4915     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4916                                         TLI.getPointerTy(DAG.getDataLayout())));
4917 
4918   // Add all operands of the call to the operand list.
4919   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4920     const Value *Arg = I.getArgOperand(i);
4921     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4922       Ops.push_back(getValue(Arg));
4923       continue;
4924     }
4925 
4926     // Use TargetConstant instead of a regular constant for immarg.
4927     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4928     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4929       assert(CI->getBitWidth() <= 64 &&
4930              "large intrinsic immediates not handled");
4931       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4932     } else {
4933       Ops.push_back(
4934           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4935     }
4936   }
4937 
4938   SmallVector<EVT, 4> ValueVTs;
4939   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4940 
4941   if (HasChain)
4942     ValueVTs.push_back(MVT::Other);
4943 
4944   SDVTList VTs = DAG.getVTList(ValueVTs);
4945 
4946   // Propagate fast-math-flags from IR to node(s).
4947   SDNodeFlags Flags;
4948   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4949     Flags.copyFMF(*FPMO);
4950   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4951 
4952   // Create the node.
4953   SDValue Result;
4954   // In some cases, custom collection of operands from CallInst I may be needed.
4955   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4956   if (IsTgtIntrinsic) {
4957     // This is target intrinsic that touches memory
4958     //
4959     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4960     //       didn't yield anything useful.
4961     MachinePointerInfo MPI;
4962     if (Info.ptrVal)
4963       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4964     else if (Info.fallbackAddressSpace)
4965       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4966     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4967                                      Info.memVT, MPI, Info.align, Info.flags,
4968                                      Info.size, I.getAAMetadata());
4969   } else if (!HasChain) {
4970     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4971   } else if (!I.getType()->isVoidTy()) {
4972     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4973   } else {
4974     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4975   }
4976 
4977   if (HasChain) {
4978     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4979     if (OnlyLoad)
4980       PendingLoads.push_back(Chain);
4981     else
4982       DAG.setRoot(Chain);
4983   }
4984 
4985   if (!I.getType()->isVoidTy()) {
4986     if (!isa<VectorType>(I.getType()))
4987       Result = lowerRangeToAssertZExt(DAG, I, Result);
4988 
4989     MaybeAlign Alignment = I.getRetAlign();
4990 
4991     // Insert `assertalign` node if there's an alignment.
4992     if (InsertAssertAlign && Alignment) {
4993       Result =
4994           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4995     }
4996 
4997     setValue(&I, Result);
4998   }
4999 }
5000 
5001 /// GetSignificand - Get the significand and build it into a floating-point
5002 /// number with exponent of 1:
5003 ///
5004 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5005 ///
5006 /// where Op is the hexadecimal representation of floating point value.
5007 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5008   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5009                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5010   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5011                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5012   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5013 }
5014 
5015 /// GetExponent - Get the exponent:
5016 ///
5017 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5018 ///
5019 /// where Op is the hexadecimal representation of floating point value.
5020 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5021                            const TargetLowering &TLI, const SDLoc &dl) {
5022   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5023                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5024   SDValue t1 = DAG.getNode(
5025       ISD::SRL, dl, MVT::i32, t0,
5026       DAG.getConstant(23, dl,
5027                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5028   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5029                            DAG.getConstant(127, dl, MVT::i32));
5030   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5031 }
5032 
5033 /// getF32Constant - Get 32-bit floating point constant.
5034 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5035                               const SDLoc &dl) {
5036   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5037                            MVT::f32);
5038 }
5039 
5040 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5041                                        SelectionDAG &DAG) {
5042   // TODO: What fast-math-flags should be set on the floating-point nodes?
5043 
5044   //   IntegerPartOfX = ((int32_t)(t0);
5045   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5046 
5047   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5048   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5049   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5050 
5051   //   IntegerPartOfX <<= 23;
5052   IntegerPartOfX =
5053       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5054                   DAG.getConstant(23, dl,
5055                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5056                                       MVT::i32, DAG.getDataLayout())));
5057 
5058   SDValue TwoToFractionalPartOfX;
5059   if (LimitFloatPrecision <= 6) {
5060     // For floating-point precision of 6:
5061     //
5062     //   TwoToFractionalPartOfX =
5063     //     0.997535578f +
5064     //       (0.735607626f + 0.252464424f * x) * x;
5065     //
5066     // error 0.0144103317, which is 6 bits
5067     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5068                              getF32Constant(DAG, 0x3e814304, dl));
5069     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5070                              getF32Constant(DAG, 0x3f3c50c8, dl));
5071     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5072     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5073                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5074   } else if (LimitFloatPrecision <= 12) {
5075     // For floating-point precision of 12:
5076     //
5077     //   TwoToFractionalPartOfX =
5078     //     0.999892986f +
5079     //       (0.696457318f +
5080     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5081     //
5082     // error 0.000107046256, which is 13 to 14 bits
5083     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5084                              getF32Constant(DAG, 0x3da235e3, dl));
5085     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5086                              getF32Constant(DAG, 0x3e65b8f3, dl));
5087     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5088     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5089                              getF32Constant(DAG, 0x3f324b07, dl));
5090     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5091     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5092                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5093   } else { // LimitFloatPrecision <= 18
5094     // For floating-point precision of 18:
5095     //
5096     //   TwoToFractionalPartOfX =
5097     //     0.999999982f +
5098     //       (0.693148872f +
5099     //         (0.240227044f +
5100     //           (0.554906021e-1f +
5101     //             (0.961591928e-2f +
5102     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5103     // error 2.47208000*10^(-7), which is better than 18 bits
5104     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5105                              getF32Constant(DAG, 0x3924b03e, dl));
5106     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5107                              getF32Constant(DAG, 0x3ab24b87, dl));
5108     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5109     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5110                              getF32Constant(DAG, 0x3c1d8c17, dl));
5111     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5112     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5113                              getF32Constant(DAG, 0x3d634a1d, dl));
5114     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5115     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5116                              getF32Constant(DAG, 0x3e75fe14, dl));
5117     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5118     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5119                               getF32Constant(DAG, 0x3f317234, dl));
5120     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5121     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5122                                          getF32Constant(DAG, 0x3f800000, dl));
5123   }
5124 
5125   // Add the exponent into the result in integer domain.
5126   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5127   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5128                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5129 }
5130 
5131 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5132 /// limited-precision mode.
5133 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5134                          const TargetLowering &TLI, SDNodeFlags Flags) {
5135   if (Op.getValueType() == MVT::f32 &&
5136       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5137 
5138     // Put the exponent in the right bit position for later addition to the
5139     // final result:
5140     //
5141     // t0 = Op * log2(e)
5142 
5143     // TODO: What fast-math-flags should be set here?
5144     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5145                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5146     return getLimitedPrecisionExp2(t0, dl, DAG);
5147   }
5148 
5149   // No special expansion.
5150   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5151 }
5152 
5153 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5154 /// limited-precision mode.
5155 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5156                          const TargetLowering &TLI, SDNodeFlags Flags) {
5157   // TODO: What fast-math-flags should be set on the floating-point nodes?
5158 
5159   if (Op.getValueType() == MVT::f32 &&
5160       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5161     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5162 
5163     // Scale the exponent by log(2).
5164     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5165     SDValue LogOfExponent =
5166         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5167                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5168 
5169     // Get the significand and build it into a floating-point number with
5170     // exponent of 1.
5171     SDValue X = GetSignificand(DAG, Op1, dl);
5172 
5173     SDValue LogOfMantissa;
5174     if (LimitFloatPrecision <= 6) {
5175       // For floating-point precision of 6:
5176       //
5177       //   LogofMantissa =
5178       //     -1.1609546f +
5179       //       (1.4034025f - 0.23903021f * x) * x;
5180       //
5181       // error 0.0034276066, which is better than 8 bits
5182       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5183                                getF32Constant(DAG, 0xbe74c456, dl));
5184       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5185                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5186       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5187       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5188                                   getF32Constant(DAG, 0x3f949a29, dl));
5189     } else if (LimitFloatPrecision <= 12) {
5190       // For floating-point precision of 12:
5191       //
5192       //   LogOfMantissa =
5193       //     -1.7417939f +
5194       //       (2.8212026f +
5195       //         (-1.4699568f +
5196       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5197       //
5198       // error 0.000061011436, which is 14 bits
5199       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5200                                getF32Constant(DAG, 0xbd67b6d6, dl));
5201       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5202                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5203       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5204       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5205                                getF32Constant(DAG, 0x3fbc278b, dl));
5206       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5207       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5208                                getF32Constant(DAG, 0x40348e95, dl));
5209       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5210       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5211                                   getF32Constant(DAG, 0x3fdef31a, dl));
5212     } else { // LimitFloatPrecision <= 18
5213       // For floating-point precision of 18:
5214       //
5215       //   LogOfMantissa =
5216       //     -2.1072184f +
5217       //       (4.2372794f +
5218       //         (-3.7029485f +
5219       //           (2.2781945f +
5220       //             (-0.87823314f +
5221       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5222       //
5223       // error 0.0000023660568, which is better than 18 bits
5224       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5225                                getF32Constant(DAG, 0xbc91e5ac, dl));
5226       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5227                                getF32Constant(DAG, 0x3e4350aa, dl));
5228       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5229       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5230                                getF32Constant(DAG, 0x3f60d3e3, dl));
5231       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5232       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5233                                getF32Constant(DAG, 0x4011cdf0, dl));
5234       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5235       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5236                                getF32Constant(DAG, 0x406cfd1c, dl));
5237       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5238       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5239                                getF32Constant(DAG, 0x408797cb, dl));
5240       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5241       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5242                                   getF32Constant(DAG, 0x4006dcab, dl));
5243     }
5244 
5245     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5246   }
5247 
5248   // No special expansion.
5249   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5250 }
5251 
5252 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5253 /// limited-precision mode.
5254 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5255                           const TargetLowering &TLI, SDNodeFlags Flags) {
5256   // TODO: What fast-math-flags should be set on the floating-point nodes?
5257 
5258   if (Op.getValueType() == MVT::f32 &&
5259       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5260     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5261 
5262     // Get the exponent.
5263     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5264 
5265     // Get the significand and build it into a floating-point number with
5266     // exponent of 1.
5267     SDValue X = GetSignificand(DAG, Op1, dl);
5268 
5269     // Different possible minimax approximations of significand in
5270     // floating-point for various degrees of accuracy over [1,2].
5271     SDValue Log2ofMantissa;
5272     if (LimitFloatPrecision <= 6) {
5273       // For floating-point precision of 6:
5274       //
5275       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5276       //
5277       // error 0.0049451742, which is more than 7 bits
5278       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5279                                getF32Constant(DAG, 0xbeb08fe0, dl));
5280       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5281                                getF32Constant(DAG, 0x40019463, dl));
5282       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5283       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5284                                    getF32Constant(DAG, 0x3fd6633d, dl));
5285     } else if (LimitFloatPrecision <= 12) {
5286       // For floating-point precision of 12:
5287       //
5288       //   Log2ofMantissa =
5289       //     -2.51285454f +
5290       //       (4.07009056f +
5291       //         (-2.12067489f +
5292       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5293       //
5294       // error 0.0000876136000, which is better than 13 bits
5295       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5296                                getF32Constant(DAG, 0xbda7262e, dl));
5297       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5298                                getF32Constant(DAG, 0x3f25280b, dl));
5299       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5300       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5301                                getF32Constant(DAG, 0x4007b923, dl));
5302       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5303       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5304                                getF32Constant(DAG, 0x40823e2f, dl));
5305       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5306       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5307                                    getF32Constant(DAG, 0x4020d29c, dl));
5308     } else { // LimitFloatPrecision <= 18
5309       // For floating-point precision of 18:
5310       //
5311       //   Log2ofMantissa =
5312       //     -3.0400495f +
5313       //       (6.1129976f +
5314       //         (-5.3420409f +
5315       //           (3.2865683f +
5316       //             (-1.2669343f +
5317       //               (0.27515199f -
5318       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5319       //
5320       // error 0.0000018516, which is better than 18 bits
5321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5322                                getF32Constant(DAG, 0xbcd2769e, dl));
5323       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5324                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5326       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5327                                getF32Constant(DAG, 0x3fa22ae7, dl));
5328       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5329       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5330                                getF32Constant(DAG, 0x40525723, dl));
5331       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5332       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5333                                getF32Constant(DAG, 0x40aaf200, dl));
5334       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5335       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5336                                getF32Constant(DAG, 0x40c39dad, dl));
5337       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5338       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5339                                    getF32Constant(DAG, 0x4042902c, dl));
5340     }
5341 
5342     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5343   }
5344 
5345   // No special expansion.
5346   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5347 }
5348 
5349 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5350 /// limited-precision mode.
5351 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5352                            const TargetLowering &TLI, SDNodeFlags Flags) {
5353   // TODO: What fast-math-flags should be set on the floating-point nodes?
5354 
5355   if (Op.getValueType() == MVT::f32 &&
5356       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5357     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5358 
5359     // Scale the exponent by log10(2) [0.30102999f].
5360     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5361     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5362                                         getF32Constant(DAG, 0x3e9a209a, dl));
5363 
5364     // Get the significand and build it into a floating-point number with
5365     // exponent of 1.
5366     SDValue X = GetSignificand(DAG, Op1, dl);
5367 
5368     SDValue Log10ofMantissa;
5369     if (LimitFloatPrecision <= 6) {
5370       // For floating-point precision of 6:
5371       //
5372       //   Log10ofMantissa =
5373       //     -0.50419619f +
5374       //       (0.60948995f - 0.10380950f * x) * x;
5375       //
5376       // error 0.0014886165, which is 6 bits
5377       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5378                                getF32Constant(DAG, 0xbdd49a13, dl));
5379       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5380                                getF32Constant(DAG, 0x3f1c0789, dl));
5381       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5382       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5383                                     getF32Constant(DAG, 0x3f011300, dl));
5384     } else if (LimitFloatPrecision <= 12) {
5385       // For floating-point precision of 12:
5386       //
5387       //   Log10ofMantissa =
5388       //     -0.64831180f +
5389       //       (0.91751397f +
5390       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5391       //
5392       // error 0.00019228036, which is better than 12 bits
5393       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5394                                getF32Constant(DAG, 0x3d431f31, dl));
5395       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5396                                getF32Constant(DAG, 0x3ea21fb2, dl));
5397       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5398       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5399                                getF32Constant(DAG, 0x3f6ae232, dl));
5400       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5401       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5402                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5403     } else { // LimitFloatPrecision <= 18
5404       // For floating-point precision of 18:
5405       //
5406       //   Log10ofMantissa =
5407       //     -0.84299375f +
5408       //       (1.5327582f +
5409       //         (-1.0688956f +
5410       //           (0.49102474f +
5411       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5412       //
5413       // error 0.0000037995730, which is better than 18 bits
5414       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5415                                getF32Constant(DAG, 0x3c5d51ce, dl));
5416       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5417                                getF32Constant(DAG, 0x3e00685a, dl));
5418       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5419       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5420                                getF32Constant(DAG, 0x3efb6798, dl));
5421       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5422       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5423                                getF32Constant(DAG, 0x3f88d192, dl));
5424       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5425       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5426                                getF32Constant(DAG, 0x3fc4316c, dl));
5427       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5428       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5429                                     getF32Constant(DAG, 0x3f57ce70, dl));
5430     }
5431 
5432     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5433   }
5434 
5435   // No special expansion.
5436   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5437 }
5438 
5439 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5440 /// limited-precision mode.
5441 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5442                           const TargetLowering &TLI, SDNodeFlags Flags) {
5443   if (Op.getValueType() == MVT::f32 &&
5444       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5445     return getLimitedPrecisionExp2(Op, dl, DAG);
5446 
5447   // No special expansion.
5448   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5449 }
5450 
5451 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5452 /// limited-precision mode with x == 10.0f.
5453 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5454                          SelectionDAG &DAG, const TargetLowering &TLI,
5455                          SDNodeFlags Flags) {
5456   bool IsExp10 = false;
5457   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5458       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5459     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5460       APFloat Ten(10.0f);
5461       IsExp10 = LHSC->isExactlyValue(Ten);
5462     }
5463   }
5464 
5465   // TODO: What fast-math-flags should be set on the FMUL node?
5466   if (IsExp10) {
5467     // Put the exponent in the right bit position for later addition to the
5468     // final result:
5469     //
5470     //   #define LOG2OF10 3.3219281f
5471     //   t0 = Op * LOG2OF10;
5472     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5473                              getF32Constant(DAG, 0x40549a78, dl));
5474     return getLimitedPrecisionExp2(t0, dl, DAG);
5475   }
5476 
5477   // No special expansion.
5478   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5479 }
5480 
5481 /// ExpandPowI - Expand a llvm.powi intrinsic.
5482 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5483                           SelectionDAG &DAG) {
5484   // If RHS is a constant, we can expand this out to a multiplication tree if
5485   // it's beneficial on the target, otherwise we end up lowering to a call to
5486   // __powidf2 (for example).
5487   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5488     unsigned Val = RHSC->getSExtValue();
5489 
5490     // powi(x, 0) -> 1.0
5491     if (Val == 0)
5492       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5493 
5494     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5495             Val, DAG.shouldOptForSize())) {
5496       // Get the exponent as a positive value.
5497       if ((int)Val < 0)
5498         Val = -Val;
5499       // We use the simple binary decomposition method to generate the multiply
5500       // sequence.  There are more optimal ways to do this (for example,
5501       // powi(x,15) generates one more multiply than it should), but this has
5502       // the benefit of being both really simple and much better than a libcall.
5503       SDValue Res; // Logically starts equal to 1.0
5504       SDValue CurSquare = LHS;
5505       // TODO: Intrinsics should have fast-math-flags that propagate to these
5506       // nodes.
5507       while (Val) {
5508         if (Val & 1) {
5509           if (Res.getNode())
5510             Res =
5511                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5512           else
5513             Res = CurSquare; // 1.0*CurSquare.
5514         }
5515 
5516         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5517                                 CurSquare, CurSquare);
5518         Val >>= 1;
5519       }
5520 
5521       // If the original was negative, invert the result, producing 1/(x*x*x).
5522       if (RHSC->getSExtValue() < 0)
5523         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5524                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5525       return Res;
5526     }
5527   }
5528 
5529   // Otherwise, expand to a libcall.
5530   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5531 }
5532 
5533 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5534                             SDValue LHS, SDValue RHS, SDValue Scale,
5535                             SelectionDAG &DAG, const TargetLowering &TLI) {
5536   EVT VT = LHS.getValueType();
5537   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5538   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5539   LLVMContext &Ctx = *DAG.getContext();
5540 
5541   // If the type is legal but the operation isn't, this node might survive all
5542   // the way to operation legalization. If we end up there and we do not have
5543   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5544   // node.
5545 
5546   // Coax the legalizer into expanding the node during type legalization instead
5547   // by bumping the size by one bit. This will force it to Promote, enabling the
5548   // early expansion and avoiding the need to expand later.
5549 
5550   // We don't have to do this if Scale is 0; that can always be expanded, unless
5551   // it's a saturating signed operation. Those can experience true integer
5552   // division overflow, a case which we must avoid.
5553 
5554   // FIXME: We wouldn't have to do this (or any of the early
5555   // expansion/promotion) if it was possible to expand a libcall of an
5556   // illegal type during operation legalization. But it's not, so things
5557   // get a bit hacky.
5558   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5559   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5560       (TLI.isTypeLegal(VT) ||
5561        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5562     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5563         Opcode, VT, ScaleInt);
5564     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5565       EVT PromVT;
5566       if (VT.isScalarInteger())
5567         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5568       else if (VT.isVector()) {
5569         PromVT = VT.getVectorElementType();
5570         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5571         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5572       } else
5573         llvm_unreachable("Wrong VT for DIVFIX?");
5574       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5575       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5576       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5577       // For saturating operations, we need to shift up the LHS to get the
5578       // proper saturation width, and then shift down again afterwards.
5579       if (Saturating)
5580         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5581                           DAG.getConstant(1, DL, ShiftTy));
5582       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5583       if (Saturating)
5584         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5585                           DAG.getConstant(1, DL, ShiftTy));
5586       return DAG.getZExtOrTrunc(Res, DL, VT);
5587     }
5588   }
5589 
5590   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5591 }
5592 
5593 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5594 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5595 static void
5596 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5597                      const SDValue &N) {
5598   switch (N.getOpcode()) {
5599   case ISD::CopyFromReg: {
5600     SDValue Op = N.getOperand(1);
5601     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5602                       Op.getValueType().getSizeInBits());
5603     return;
5604   }
5605   case ISD::BITCAST:
5606   case ISD::AssertZext:
5607   case ISD::AssertSext:
5608   case ISD::TRUNCATE:
5609     getUnderlyingArgRegs(Regs, N.getOperand(0));
5610     return;
5611   case ISD::BUILD_PAIR:
5612   case ISD::BUILD_VECTOR:
5613   case ISD::CONCAT_VECTORS:
5614     for (SDValue Op : N->op_values())
5615       getUnderlyingArgRegs(Regs, Op);
5616     return;
5617   default:
5618     return;
5619   }
5620 }
5621 
5622 /// If the DbgValueInst is a dbg_value of a function argument, create the
5623 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5624 /// instruction selection, they will be inserted to the entry BB.
5625 /// We don't currently support this for variadic dbg_values, as they shouldn't
5626 /// appear for function arguments or in the prologue.
5627 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5628     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5629     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5630   const Argument *Arg = dyn_cast<Argument>(V);
5631   if (!Arg)
5632     return false;
5633 
5634   MachineFunction &MF = DAG.getMachineFunction();
5635   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5636 
5637   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5638   // we've been asked to pursue.
5639   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5640                               bool Indirect) {
5641     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5642       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5643       // pointing at the VReg, which will be patched up later.
5644       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5645       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5646           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5647           /* isKill */ false, /* isDead */ false,
5648           /* isUndef */ false, /* isEarlyClobber */ false,
5649           /* SubReg */ 0, /* isDebug */ true)});
5650 
5651       auto *NewDIExpr = FragExpr;
5652       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5653       // the DIExpression.
5654       if (Indirect)
5655         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5656       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5657       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5658       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5659     } else {
5660       // Create a completely standard DBG_VALUE.
5661       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5662       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5663     }
5664   };
5665 
5666   if (Kind == FuncArgumentDbgValueKind::Value) {
5667     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5668     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5669     // the entry block.
5670     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5671     if (!IsInEntryBlock)
5672       return false;
5673 
5674     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5675     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5676     // variable that also is a param.
5677     //
5678     // Although, if we are at the top of the entry block already, we can still
5679     // emit using ArgDbgValue. This might catch some situations when the
5680     // dbg.value refers to an argument that isn't used in the entry block, so
5681     // any CopyToReg node would be optimized out and the only way to express
5682     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5683     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5684     // we should only emit as ArgDbgValue if the Variable is an argument to the
5685     // current function, and the dbg.value intrinsic is found in the entry
5686     // block.
5687     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5688         !DL->getInlinedAt();
5689     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5690     if (!IsInPrologue && !VariableIsFunctionInputArg)
5691       return false;
5692 
5693     // Here we assume that a function argument on IR level only can be used to
5694     // describe one input parameter on source level. If we for example have
5695     // source code like this
5696     //
5697     //    struct A { long x, y; };
5698     //    void foo(struct A a, long b) {
5699     //      ...
5700     //      b = a.x;
5701     //      ...
5702     //    }
5703     //
5704     // and IR like this
5705     //
5706     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5707     //  entry:
5708     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5709     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5710     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5711     //    ...
5712     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5713     //    ...
5714     //
5715     // then the last dbg.value is describing a parameter "b" using a value that
5716     // is an argument. But since we already has used %a1 to describe a parameter
5717     // we should not handle that last dbg.value here (that would result in an
5718     // incorrect hoisting of the DBG_VALUE to the function entry).
5719     // Notice that we allow one dbg.value per IR level argument, to accommodate
5720     // for the situation with fragments above.
5721     if (VariableIsFunctionInputArg) {
5722       unsigned ArgNo = Arg->getArgNo();
5723       if (ArgNo >= FuncInfo.DescribedArgs.size())
5724         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5725       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5726         return false;
5727       FuncInfo.DescribedArgs.set(ArgNo);
5728     }
5729   }
5730 
5731   bool IsIndirect = false;
5732   std::optional<MachineOperand> Op;
5733   // Some arguments' frame index is recorded during argument lowering.
5734   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5735   if (FI != std::numeric_limits<int>::max())
5736     Op = MachineOperand::CreateFI(FI);
5737 
5738   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5739   if (!Op && N.getNode()) {
5740     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5741     Register Reg;
5742     if (ArgRegsAndSizes.size() == 1)
5743       Reg = ArgRegsAndSizes.front().first;
5744 
5745     if (Reg && Reg.isVirtual()) {
5746       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5747       Register PR = RegInfo.getLiveInPhysReg(Reg);
5748       if (PR)
5749         Reg = PR;
5750     }
5751     if (Reg) {
5752       Op = MachineOperand::CreateReg(Reg, false);
5753       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5754     }
5755   }
5756 
5757   if (!Op && N.getNode()) {
5758     // Check if frame index is available.
5759     SDValue LCandidate = peekThroughBitcasts(N);
5760     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5761       if (FrameIndexSDNode *FINode =
5762           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5763         Op = MachineOperand::CreateFI(FINode->getIndex());
5764   }
5765 
5766   if (!Op) {
5767     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5768     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5769                                          SplitRegs) {
5770       unsigned Offset = 0;
5771       for (const auto &RegAndSize : SplitRegs) {
5772         // If the expression is already a fragment, the current register
5773         // offset+size might extend beyond the fragment. In this case, only
5774         // the register bits that are inside the fragment are relevant.
5775         int RegFragmentSizeInBits = RegAndSize.second;
5776         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5777           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5778           // The register is entirely outside the expression fragment,
5779           // so is irrelevant for debug info.
5780           if (Offset >= ExprFragmentSizeInBits)
5781             break;
5782           // The register is partially outside the expression fragment, only
5783           // the low bits within the fragment are relevant for debug info.
5784           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5785             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5786           }
5787         }
5788 
5789         auto FragmentExpr = DIExpression::createFragmentExpression(
5790             Expr, Offset, RegFragmentSizeInBits);
5791         Offset += RegAndSize.second;
5792         // If a valid fragment expression cannot be created, the variable's
5793         // correct value cannot be determined and so it is set as Undef.
5794         if (!FragmentExpr) {
5795           SDDbgValue *SDV = DAG.getConstantDbgValue(
5796               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5797           DAG.AddDbgValue(SDV, false);
5798           continue;
5799         }
5800         MachineInstr *NewMI =
5801             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5802                              Kind != FuncArgumentDbgValueKind::Value);
5803         FuncInfo.ArgDbgValues.push_back(NewMI);
5804       }
5805     };
5806 
5807     // Check if ValueMap has reg number.
5808     DenseMap<const Value *, Register>::const_iterator
5809       VMI = FuncInfo.ValueMap.find(V);
5810     if (VMI != FuncInfo.ValueMap.end()) {
5811       const auto &TLI = DAG.getTargetLoweringInfo();
5812       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5813                        V->getType(), std::nullopt);
5814       if (RFV.occupiesMultipleRegs()) {
5815         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5816         return true;
5817       }
5818 
5819       Op = MachineOperand::CreateReg(VMI->second, false);
5820       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5821     } else if (ArgRegsAndSizes.size() > 1) {
5822       // This was split due to the calling convention, and no virtual register
5823       // mapping exists for the value.
5824       splitMultiRegDbgValue(ArgRegsAndSizes);
5825       return true;
5826     }
5827   }
5828 
5829   if (!Op)
5830     return false;
5831 
5832   // If the expression refers to the entry value of an Argument, use the
5833   // corresponding livein physical register. As per the Verifier, this is only
5834   // allowed for swiftasync Arguments.
5835   if (Op->isReg() && Expr->isEntryValue()) {
5836     assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
5837     auto OpReg = Op->getReg();
5838     for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
5839       if (OpReg == VirtReg || OpReg == PhysReg) {
5840         SDDbgValue *SDV = DAG.getVRegDbgValue(
5841             Variable, Expr, PhysReg,
5842             Kind != FuncArgumentDbgValueKind::Value /*is indirect*/, DL,
5843             SDNodeOrder);
5844         DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
5845         return true;
5846       }
5847     LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
5848                          "couldn't find a physical register\n");
5849     return true;
5850   }
5851 
5852   assert(Variable->isValidLocationForIntrinsic(DL) &&
5853          "Expected inlined-at fields to agree");
5854   MachineInstr *NewMI = nullptr;
5855 
5856   if (Op->isReg())
5857     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5858   else
5859     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5860                     Variable, Expr);
5861 
5862   // Otherwise, use ArgDbgValues.
5863   FuncInfo.ArgDbgValues.push_back(NewMI);
5864   return true;
5865 }
5866 
5867 /// Return the appropriate SDDbgValue based on N.
5868 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5869                                              DILocalVariable *Variable,
5870                                              DIExpression *Expr,
5871                                              const DebugLoc &dl,
5872                                              unsigned DbgSDNodeOrder) {
5873   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5874     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5875     // stack slot locations.
5876     //
5877     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5878     // debug values here after optimization:
5879     //
5880     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5881     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5882     //
5883     // Both describe the direct values of their associated variables.
5884     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5885                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5886   }
5887   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5888                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5889 }
5890 
5891 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5892   switch (Intrinsic) {
5893   case Intrinsic::smul_fix:
5894     return ISD::SMULFIX;
5895   case Intrinsic::umul_fix:
5896     return ISD::UMULFIX;
5897   case Intrinsic::smul_fix_sat:
5898     return ISD::SMULFIXSAT;
5899   case Intrinsic::umul_fix_sat:
5900     return ISD::UMULFIXSAT;
5901   case Intrinsic::sdiv_fix:
5902     return ISD::SDIVFIX;
5903   case Intrinsic::udiv_fix:
5904     return ISD::UDIVFIX;
5905   case Intrinsic::sdiv_fix_sat:
5906     return ISD::SDIVFIXSAT;
5907   case Intrinsic::udiv_fix_sat:
5908     return ISD::UDIVFIXSAT;
5909   default:
5910     llvm_unreachable("Unhandled fixed point intrinsic");
5911   }
5912 }
5913 
5914 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5915                                            const char *FunctionName) {
5916   assert(FunctionName && "FunctionName must not be nullptr");
5917   SDValue Callee = DAG.getExternalSymbol(
5918       FunctionName,
5919       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5920   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5921 }
5922 
5923 /// Given a @llvm.call.preallocated.setup, return the corresponding
5924 /// preallocated call.
5925 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5926   assert(cast<CallBase>(PreallocatedSetup)
5927                  ->getCalledFunction()
5928                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5929          "expected call_preallocated_setup Value");
5930   for (const auto *U : PreallocatedSetup->users()) {
5931     auto *UseCall = cast<CallBase>(U);
5932     const Function *Fn = UseCall->getCalledFunction();
5933     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5934       return UseCall;
5935     }
5936   }
5937   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5938 }
5939 
5940 /// Lower the call to the specified intrinsic function.
5941 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5942                                              unsigned Intrinsic) {
5943   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5944   SDLoc sdl = getCurSDLoc();
5945   DebugLoc dl = getCurDebugLoc();
5946   SDValue Res;
5947 
5948   SDNodeFlags Flags;
5949   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5950     Flags.copyFMF(*FPOp);
5951 
5952   switch (Intrinsic) {
5953   default:
5954     // By default, turn this into a target intrinsic node.
5955     visitTargetIntrinsic(I, Intrinsic);
5956     return;
5957   case Intrinsic::vscale: {
5958     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5959     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5960     return;
5961   }
5962   case Intrinsic::vastart:  visitVAStart(I); return;
5963   case Intrinsic::vaend:    visitVAEnd(I); return;
5964   case Intrinsic::vacopy:   visitVACopy(I); return;
5965   case Intrinsic::returnaddress:
5966     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5967                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5968                              getValue(I.getArgOperand(0))));
5969     return;
5970   case Intrinsic::addressofreturnaddress:
5971     setValue(&I,
5972              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5973                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5974     return;
5975   case Intrinsic::sponentry:
5976     setValue(&I,
5977              DAG.getNode(ISD::SPONENTRY, sdl,
5978                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5979     return;
5980   case Intrinsic::frameaddress:
5981     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5982                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5983                              getValue(I.getArgOperand(0))));
5984     return;
5985   case Intrinsic::read_volatile_register:
5986   case Intrinsic::read_register: {
5987     Value *Reg = I.getArgOperand(0);
5988     SDValue Chain = getRoot();
5989     SDValue RegName =
5990         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5991     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5992     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5993       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5994     setValue(&I, Res);
5995     DAG.setRoot(Res.getValue(1));
5996     return;
5997   }
5998   case Intrinsic::write_register: {
5999     Value *Reg = I.getArgOperand(0);
6000     Value *RegValue = I.getArgOperand(1);
6001     SDValue Chain = getRoot();
6002     SDValue RegName =
6003         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6004     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6005                             RegName, getValue(RegValue)));
6006     return;
6007   }
6008   case Intrinsic::memcpy: {
6009     const auto &MCI = cast<MemCpyInst>(I);
6010     SDValue Op1 = getValue(I.getArgOperand(0));
6011     SDValue Op2 = getValue(I.getArgOperand(1));
6012     SDValue Op3 = getValue(I.getArgOperand(2));
6013     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6014     Align DstAlign = MCI.getDestAlign().valueOrOne();
6015     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6016     Align Alignment = std::min(DstAlign, SrcAlign);
6017     bool isVol = MCI.isVolatile();
6018     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6019     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6020     // node.
6021     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6022     SDValue MC = DAG.getMemcpy(
6023         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6024         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6025         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6026     updateDAGForMaybeTailCall(MC);
6027     return;
6028   }
6029   case Intrinsic::memcpy_inline: {
6030     const auto &MCI = cast<MemCpyInlineInst>(I);
6031     SDValue Dst = getValue(I.getArgOperand(0));
6032     SDValue Src = getValue(I.getArgOperand(1));
6033     SDValue Size = getValue(I.getArgOperand(2));
6034     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6035     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6036     Align DstAlign = MCI.getDestAlign().valueOrOne();
6037     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6038     Align Alignment = std::min(DstAlign, SrcAlign);
6039     bool isVol = MCI.isVolatile();
6040     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6041     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6042     // node.
6043     SDValue MC = DAG.getMemcpy(
6044         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6045         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6046         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6047     updateDAGForMaybeTailCall(MC);
6048     return;
6049   }
6050   case Intrinsic::memset: {
6051     const auto &MSI = cast<MemSetInst>(I);
6052     SDValue Op1 = getValue(I.getArgOperand(0));
6053     SDValue Op2 = getValue(I.getArgOperand(1));
6054     SDValue Op3 = getValue(I.getArgOperand(2));
6055     // @llvm.memset defines 0 and 1 to both mean no alignment.
6056     Align Alignment = MSI.getDestAlign().valueOrOne();
6057     bool isVol = MSI.isVolatile();
6058     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6059     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6060     SDValue MS = DAG.getMemset(
6061         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6062         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6063     updateDAGForMaybeTailCall(MS);
6064     return;
6065   }
6066   case Intrinsic::memset_inline: {
6067     const auto &MSII = cast<MemSetInlineInst>(I);
6068     SDValue Dst = getValue(I.getArgOperand(0));
6069     SDValue Value = getValue(I.getArgOperand(1));
6070     SDValue Size = getValue(I.getArgOperand(2));
6071     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6072     // @llvm.memset defines 0 and 1 to both mean no alignment.
6073     Align DstAlign = MSII.getDestAlign().valueOrOne();
6074     bool isVol = MSII.isVolatile();
6075     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6076     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6077     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6078                                /* AlwaysInline */ true, isTC,
6079                                MachinePointerInfo(I.getArgOperand(0)),
6080                                I.getAAMetadata());
6081     updateDAGForMaybeTailCall(MC);
6082     return;
6083   }
6084   case Intrinsic::memmove: {
6085     const auto &MMI = cast<MemMoveInst>(I);
6086     SDValue Op1 = getValue(I.getArgOperand(0));
6087     SDValue Op2 = getValue(I.getArgOperand(1));
6088     SDValue Op3 = getValue(I.getArgOperand(2));
6089     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6090     Align DstAlign = MMI.getDestAlign().valueOrOne();
6091     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6092     Align Alignment = std::min(DstAlign, SrcAlign);
6093     bool isVol = MMI.isVolatile();
6094     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6095     // FIXME: Support passing different dest/src alignments to the memmove DAG
6096     // node.
6097     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6098     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6099                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6100                                 MachinePointerInfo(I.getArgOperand(1)),
6101                                 I.getAAMetadata(), AA);
6102     updateDAGForMaybeTailCall(MM);
6103     return;
6104   }
6105   case Intrinsic::memcpy_element_unordered_atomic: {
6106     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6107     SDValue Dst = getValue(MI.getRawDest());
6108     SDValue Src = getValue(MI.getRawSource());
6109     SDValue Length = getValue(MI.getLength());
6110 
6111     Type *LengthTy = MI.getLength()->getType();
6112     unsigned ElemSz = MI.getElementSizeInBytes();
6113     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6114     SDValue MC =
6115         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6116                             isTC, MachinePointerInfo(MI.getRawDest()),
6117                             MachinePointerInfo(MI.getRawSource()));
6118     updateDAGForMaybeTailCall(MC);
6119     return;
6120   }
6121   case Intrinsic::memmove_element_unordered_atomic: {
6122     auto &MI = cast<AtomicMemMoveInst>(I);
6123     SDValue Dst = getValue(MI.getRawDest());
6124     SDValue Src = getValue(MI.getRawSource());
6125     SDValue Length = getValue(MI.getLength());
6126 
6127     Type *LengthTy = MI.getLength()->getType();
6128     unsigned ElemSz = MI.getElementSizeInBytes();
6129     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6130     SDValue MC =
6131         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6132                              isTC, MachinePointerInfo(MI.getRawDest()),
6133                              MachinePointerInfo(MI.getRawSource()));
6134     updateDAGForMaybeTailCall(MC);
6135     return;
6136   }
6137   case Intrinsic::memset_element_unordered_atomic: {
6138     auto &MI = cast<AtomicMemSetInst>(I);
6139     SDValue Dst = getValue(MI.getRawDest());
6140     SDValue Val = getValue(MI.getValue());
6141     SDValue Length = getValue(MI.getLength());
6142 
6143     Type *LengthTy = MI.getLength()->getType();
6144     unsigned ElemSz = MI.getElementSizeInBytes();
6145     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6146     SDValue MC =
6147         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6148                             isTC, MachinePointerInfo(MI.getRawDest()));
6149     updateDAGForMaybeTailCall(MC);
6150     return;
6151   }
6152   case Intrinsic::call_preallocated_setup: {
6153     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6154     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6155     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6156                               getRoot(), SrcValue);
6157     setValue(&I, Res);
6158     DAG.setRoot(Res);
6159     return;
6160   }
6161   case Intrinsic::call_preallocated_arg: {
6162     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6163     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6164     SDValue Ops[3];
6165     Ops[0] = getRoot();
6166     Ops[1] = SrcValue;
6167     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6168                                    MVT::i32); // arg index
6169     SDValue Res = DAG.getNode(
6170         ISD::PREALLOCATED_ARG, sdl,
6171         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6172     setValue(&I, Res);
6173     DAG.setRoot(Res.getValue(1));
6174     return;
6175   }
6176   case Intrinsic::dbg_declare: {
6177     const auto &DI = cast<DbgDeclareInst>(I);
6178     // Debug intrinsics are handled separately in assignment tracking mode.
6179     // Some intrinsics are handled right after Argument lowering.
6180     if (AssignmentTrackingEnabled ||
6181         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6182       return;
6183     // Assume dbg.declare can not currently use DIArgList, i.e.
6184     // it is non-variadic.
6185     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6186     DILocalVariable *Variable = DI.getVariable();
6187     DIExpression *Expression = DI.getExpression();
6188     dropDanglingDebugInfo(Variable, Expression);
6189     assert(Variable && "Missing variable");
6190     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6191                       << "\n");
6192     // Check if address has undef value.
6193     const Value *Address = DI.getVariableLocationOp(0);
6194     if (!Address || isa<UndefValue>(Address) ||
6195         (Address->use_empty() && !isa<Argument>(Address))) {
6196       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6197                         << " (bad/undef/unused-arg address)\n");
6198       return;
6199     }
6200 
6201     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6202 
6203     SDValue &N = NodeMap[Address];
6204     if (!N.getNode() && isa<Argument>(Address))
6205       // Check unused arguments map.
6206       N = UnusedArgNodeMap[Address];
6207     SDDbgValue *SDV;
6208     if (N.getNode()) {
6209       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6210         Address = BCI->getOperand(0);
6211       // Parameters are handled specially.
6212       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6213       if (isParameter && FINode) {
6214         // Byval parameter. We have a frame index at this point.
6215         SDV =
6216             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6217                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6218       } else if (isa<Argument>(Address)) {
6219         // Address is an argument, so try to emit its dbg value using
6220         // virtual register info from the FuncInfo.ValueMap.
6221         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6222                                  FuncArgumentDbgValueKind::Declare, N);
6223         return;
6224       } else {
6225         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6226                               true, dl, SDNodeOrder);
6227       }
6228       DAG.AddDbgValue(SDV, isParameter);
6229     } else {
6230       // If Address is an argument then try to emit its dbg value using
6231       // virtual register info from the FuncInfo.ValueMap.
6232       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6233                                     FuncArgumentDbgValueKind::Declare, N)) {
6234         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6235                           << " (could not emit func-arg dbg_value)\n");
6236       }
6237     }
6238     return;
6239   }
6240   case Intrinsic::dbg_label: {
6241     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6242     DILabel *Label = DI.getLabel();
6243     assert(Label && "Missing label");
6244 
6245     SDDbgLabel *SDV;
6246     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6247     DAG.AddDbgLabel(SDV);
6248     return;
6249   }
6250   case Intrinsic::dbg_assign: {
6251     // Debug intrinsics are handled seperately in assignment tracking mode.
6252     if (AssignmentTrackingEnabled)
6253       return;
6254     // If assignment tracking hasn't been enabled then fall through and treat
6255     // the dbg.assign as a dbg.value.
6256     [[fallthrough]];
6257   }
6258   case Intrinsic::dbg_value: {
6259     // Debug intrinsics are handled seperately in assignment tracking mode.
6260     if (AssignmentTrackingEnabled)
6261       return;
6262     const DbgValueInst &DI = cast<DbgValueInst>(I);
6263     assert(DI.getVariable() && "Missing variable");
6264 
6265     DILocalVariable *Variable = DI.getVariable();
6266     DIExpression *Expression = DI.getExpression();
6267     dropDanglingDebugInfo(Variable, Expression);
6268 
6269     if (DI.isKillLocation()) {
6270       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6271       return;
6272     }
6273 
6274     SmallVector<Value *, 4> Values(DI.getValues());
6275     if (Values.empty())
6276       return;
6277 
6278     bool IsVariadic = DI.hasArgList();
6279     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6280                           SDNodeOrder, IsVariadic))
6281       addDanglingDebugInfo(&DI, SDNodeOrder);
6282     return;
6283   }
6284 
6285   case Intrinsic::eh_typeid_for: {
6286     // Find the type id for the given typeinfo.
6287     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6288     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6289     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6290     setValue(&I, Res);
6291     return;
6292   }
6293 
6294   case Intrinsic::eh_return_i32:
6295   case Intrinsic::eh_return_i64:
6296     DAG.getMachineFunction().setCallsEHReturn(true);
6297     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6298                             MVT::Other,
6299                             getControlRoot(),
6300                             getValue(I.getArgOperand(0)),
6301                             getValue(I.getArgOperand(1))));
6302     return;
6303   case Intrinsic::eh_unwind_init:
6304     DAG.getMachineFunction().setCallsUnwindInit(true);
6305     return;
6306   case Intrinsic::eh_dwarf_cfa:
6307     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6308                              TLI.getPointerTy(DAG.getDataLayout()),
6309                              getValue(I.getArgOperand(0))));
6310     return;
6311   case Intrinsic::eh_sjlj_callsite: {
6312     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6313     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6314     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6315 
6316     MMI.setCurrentCallSite(CI->getZExtValue());
6317     return;
6318   }
6319   case Intrinsic::eh_sjlj_functioncontext: {
6320     // Get and store the index of the function context.
6321     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6322     AllocaInst *FnCtx =
6323       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6324     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6325     MFI.setFunctionContextIndex(FI);
6326     return;
6327   }
6328   case Intrinsic::eh_sjlj_setjmp: {
6329     SDValue Ops[2];
6330     Ops[0] = getRoot();
6331     Ops[1] = getValue(I.getArgOperand(0));
6332     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6333                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6334     setValue(&I, Op.getValue(0));
6335     DAG.setRoot(Op.getValue(1));
6336     return;
6337   }
6338   case Intrinsic::eh_sjlj_longjmp:
6339     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6340                             getRoot(), getValue(I.getArgOperand(0))));
6341     return;
6342   case Intrinsic::eh_sjlj_setup_dispatch:
6343     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6344                             getRoot()));
6345     return;
6346   case Intrinsic::masked_gather:
6347     visitMaskedGather(I);
6348     return;
6349   case Intrinsic::masked_load:
6350     visitMaskedLoad(I);
6351     return;
6352   case Intrinsic::masked_scatter:
6353     visitMaskedScatter(I);
6354     return;
6355   case Intrinsic::masked_store:
6356     visitMaskedStore(I);
6357     return;
6358   case Intrinsic::masked_expandload:
6359     visitMaskedLoad(I, true /* IsExpanding */);
6360     return;
6361   case Intrinsic::masked_compressstore:
6362     visitMaskedStore(I, true /* IsCompressing */);
6363     return;
6364   case Intrinsic::powi:
6365     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6366                             getValue(I.getArgOperand(1)), DAG));
6367     return;
6368   case Intrinsic::log:
6369     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6370     return;
6371   case Intrinsic::log2:
6372     setValue(&I,
6373              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6374     return;
6375   case Intrinsic::log10:
6376     setValue(&I,
6377              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6378     return;
6379   case Intrinsic::exp:
6380     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6381     return;
6382   case Intrinsic::exp2:
6383     setValue(&I,
6384              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6385     return;
6386   case Intrinsic::pow:
6387     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6388                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6389     return;
6390   case Intrinsic::sqrt:
6391   case Intrinsic::fabs:
6392   case Intrinsic::sin:
6393   case Intrinsic::cos:
6394   case Intrinsic::floor:
6395   case Intrinsic::ceil:
6396   case Intrinsic::trunc:
6397   case Intrinsic::rint:
6398   case Intrinsic::nearbyint:
6399   case Intrinsic::round:
6400   case Intrinsic::roundeven:
6401   case Intrinsic::canonicalize: {
6402     unsigned Opcode;
6403     switch (Intrinsic) {
6404     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6405     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6406     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6407     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6408     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6409     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6410     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6411     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6412     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6413     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6414     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6415     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6416     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6417     }
6418 
6419     setValue(&I, DAG.getNode(Opcode, sdl,
6420                              getValue(I.getArgOperand(0)).getValueType(),
6421                              getValue(I.getArgOperand(0)), Flags));
6422     return;
6423   }
6424   case Intrinsic::lround:
6425   case Intrinsic::llround:
6426   case Intrinsic::lrint:
6427   case Intrinsic::llrint: {
6428     unsigned Opcode;
6429     switch (Intrinsic) {
6430     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6431     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6432     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6433     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6434     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6435     }
6436 
6437     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6438     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6439                              getValue(I.getArgOperand(0))));
6440     return;
6441   }
6442   case Intrinsic::minnum:
6443     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6444                              getValue(I.getArgOperand(0)).getValueType(),
6445                              getValue(I.getArgOperand(0)),
6446                              getValue(I.getArgOperand(1)), Flags));
6447     return;
6448   case Intrinsic::maxnum:
6449     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6450                              getValue(I.getArgOperand(0)).getValueType(),
6451                              getValue(I.getArgOperand(0)),
6452                              getValue(I.getArgOperand(1)), Flags));
6453     return;
6454   case Intrinsic::minimum:
6455     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6456                              getValue(I.getArgOperand(0)).getValueType(),
6457                              getValue(I.getArgOperand(0)),
6458                              getValue(I.getArgOperand(1)), Flags));
6459     return;
6460   case Intrinsic::maximum:
6461     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6462                              getValue(I.getArgOperand(0)).getValueType(),
6463                              getValue(I.getArgOperand(0)),
6464                              getValue(I.getArgOperand(1)), Flags));
6465     return;
6466   case Intrinsic::copysign:
6467     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6468                              getValue(I.getArgOperand(0)).getValueType(),
6469                              getValue(I.getArgOperand(0)),
6470                              getValue(I.getArgOperand(1)), Flags));
6471     return;
6472   case Intrinsic::ldexp:
6473     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6474                              getValue(I.getArgOperand(0)).getValueType(),
6475                              getValue(I.getArgOperand(0)),
6476                              getValue(I.getArgOperand(1)), Flags));
6477     return;
6478   case Intrinsic::frexp: {
6479     SmallVector<EVT, 2> ValueVTs;
6480     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6481     SDVTList VTs = DAG.getVTList(ValueVTs);
6482     setValue(&I,
6483              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6484     return;
6485   }
6486   case Intrinsic::arithmetic_fence: {
6487     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6488                              getValue(I.getArgOperand(0)).getValueType(),
6489                              getValue(I.getArgOperand(0)), Flags));
6490     return;
6491   }
6492   case Intrinsic::fma:
6493     setValue(&I, DAG.getNode(
6494                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6495                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6496                      getValue(I.getArgOperand(2)), Flags));
6497     return;
6498 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6499   case Intrinsic::INTRINSIC:
6500 #include "llvm/IR/ConstrainedOps.def"
6501     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6502     return;
6503 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6504 #include "llvm/IR/VPIntrinsics.def"
6505     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6506     return;
6507   case Intrinsic::fptrunc_round: {
6508     // Get the last argument, the metadata and convert it to an integer in the
6509     // call
6510     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6511     std::optional<RoundingMode> RoundMode =
6512         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6513 
6514     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6515 
6516     // Propagate fast-math-flags from IR to node(s).
6517     SDNodeFlags Flags;
6518     Flags.copyFMF(*cast<FPMathOperator>(&I));
6519     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6520 
6521     SDValue Result;
6522     Result = DAG.getNode(
6523         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6524         DAG.getTargetConstant((int)*RoundMode, sdl,
6525                               TLI.getPointerTy(DAG.getDataLayout())));
6526     setValue(&I, Result);
6527 
6528     return;
6529   }
6530   case Intrinsic::fmuladd: {
6531     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6532     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6533         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6534       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6535                                getValue(I.getArgOperand(0)).getValueType(),
6536                                getValue(I.getArgOperand(0)),
6537                                getValue(I.getArgOperand(1)),
6538                                getValue(I.getArgOperand(2)), Flags));
6539     } else {
6540       // TODO: Intrinsic calls should have fast-math-flags.
6541       SDValue Mul = DAG.getNode(
6542           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6543           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6544       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6545                                 getValue(I.getArgOperand(0)).getValueType(),
6546                                 Mul, getValue(I.getArgOperand(2)), Flags);
6547       setValue(&I, Add);
6548     }
6549     return;
6550   }
6551   case Intrinsic::convert_to_fp16:
6552     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6553                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6554                                          getValue(I.getArgOperand(0)),
6555                                          DAG.getTargetConstant(0, sdl,
6556                                                                MVT::i32))));
6557     return;
6558   case Intrinsic::convert_from_fp16:
6559     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6560                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6561                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6562                                          getValue(I.getArgOperand(0)))));
6563     return;
6564   case Intrinsic::fptosi_sat: {
6565     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6566     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6567                              getValue(I.getArgOperand(0)),
6568                              DAG.getValueType(VT.getScalarType())));
6569     return;
6570   }
6571   case Intrinsic::fptoui_sat: {
6572     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6573     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6574                              getValue(I.getArgOperand(0)),
6575                              DAG.getValueType(VT.getScalarType())));
6576     return;
6577   }
6578   case Intrinsic::set_rounding:
6579     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6580                       {getRoot(), getValue(I.getArgOperand(0))});
6581     setValue(&I, Res);
6582     DAG.setRoot(Res.getValue(0));
6583     return;
6584   case Intrinsic::is_fpclass: {
6585     const DataLayout DLayout = DAG.getDataLayout();
6586     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6587     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6588     FPClassTest Test = static_cast<FPClassTest>(
6589         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6590     MachineFunction &MF = DAG.getMachineFunction();
6591     const Function &F = MF.getFunction();
6592     SDValue Op = getValue(I.getArgOperand(0));
6593     SDNodeFlags Flags;
6594     Flags.setNoFPExcept(
6595         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6596     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6597     // expansion can use illegal types. Making expansion early allows
6598     // legalizing these types prior to selection.
6599     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6600       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6601       setValue(&I, Result);
6602       return;
6603     }
6604 
6605     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6606     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6607     setValue(&I, V);
6608     return;
6609   }
6610   case Intrinsic::get_fpenv: {
6611     const DataLayout DLayout = DAG.getDataLayout();
6612     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6613     Align TempAlign = DAG.getEVTAlign(EnvVT);
6614     SDValue Chain = getRoot();
6615     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6616     // and temporary storage in stack.
6617     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6618       Res = DAG.getNode(
6619           ISD::GET_FPENV, sdl,
6620           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6621                         MVT::Other),
6622           Chain);
6623     } else {
6624       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6625       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6626       auto MPI =
6627           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6628       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6629           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6630           TempAlign);
6631       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6632       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6633     }
6634     setValue(&I, Res);
6635     DAG.setRoot(Res.getValue(1));
6636     return;
6637   }
6638   case Intrinsic::set_fpenv: {
6639     const DataLayout DLayout = DAG.getDataLayout();
6640     SDValue Env = getValue(I.getArgOperand(0));
6641     EVT EnvVT = Env.getValueType();
6642     Align TempAlign = DAG.getEVTAlign(EnvVT);
6643     SDValue Chain = getRoot();
6644     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6645     // environment from memory.
6646     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6647       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6648     } else {
6649       // Allocate space in stack, copy environment bits into it and use this
6650       // memory in SET_FPENV_MEM.
6651       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6652       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6653       auto MPI =
6654           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6655       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6656                            MachineMemOperand::MOStore);
6657       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6658           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6659           TempAlign);
6660       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6661     }
6662     DAG.setRoot(Chain);
6663     return;
6664   }
6665   case Intrinsic::reset_fpenv:
6666     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6667     return;
6668   case Intrinsic::pcmarker: {
6669     SDValue Tmp = getValue(I.getArgOperand(0));
6670     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6671     return;
6672   }
6673   case Intrinsic::readcyclecounter: {
6674     SDValue Op = getRoot();
6675     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6676                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6677     setValue(&I, Res);
6678     DAG.setRoot(Res.getValue(1));
6679     return;
6680   }
6681   case Intrinsic::bitreverse:
6682     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6683                              getValue(I.getArgOperand(0)).getValueType(),
6684                              getValue(I.getArgOperand(0))));
6685     return;
6686   case Intrinsic::bswap:
6687     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6688                              getValue(I.getArgOperand(0)).getValueType(),
6689                              getValue(I.getArgOperand(0))));
6690     return;
6691   case Intrinsic::cttz: {
6692     SDValue Arg = getValue(I.getArgOperand(0));
6693     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6694     EVT Ty = Arg.getValueType();
6695     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6696                              sdl, Ty, Arg));
6697     return;
6698   }
6699   case Intrinsic::ctlz: {
6700     SDValue Arg = getValue(I.getArgOperand(0));
6701     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6702     EVT Ty = Arg.getValueType();
6703     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6704                              sdl, Ty, Arg));
6705     return;
6706   }
6707   case Intrinsic::ctpop: {
6708     SDValue Arg = getValue(I.getArgOperand(0));
6709     EVT Ty = Arg.getValueType();
6710     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6711     return;
6712   }
6713   case Intrinsic::fshl:
6714   case Intrinsic::fshr: {
6715     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6716     SDValue X = getValue(I.getArgOperand(0));
6717     SDValue Y = getValue(I.getArgOperand(1));
6718     SDValue Z = getValue(I.getArgOperand(2));
6719     EVT VT = X.getValueType();
6720 
6721     if (X == Y) {
6722       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6723       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6724     } else {
6725       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6726       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6727     }
6728     return;
6729   }
6730   case Intrinsic::sadd_sat: {
6731     SDValue Op1 = getValue(I.getArgOperand(0));
6732     SDValue Op2 = getValue(I.getArgOperand(1));
6733     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6734     return;
6735   }
6736   case Intrinsic::uadd_sat: {
6737     SDValue Op1 = getValue(I.getArgOperand(0));
6738     SDValue Op2 = getValue(I.getArgOperand(1));
6739     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6740     return;
6741   }
6742   case Intrinsic::ssub_sat: {
6743     SDValue Op1 = getValue(I.getArgOperand(0));
6744     SDValue Op2 = getValue(I.getArgOperand(1));
6745     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6746     return;
6747   }
6748   case Intrinsic::usub_sat: {
6749     SDValue Op1 = getValue(I.getArgOperand(0));
6750     SDValue Op2 = getValue(I.getArgOperand(1));
6751     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6752     return;
6753   }
6754   case Intrinsic::sshl_sat: {
6755     SDValue Op1 = getValue(I.getArgOperand(0));
6756     SDValue Op2 = getValue(I.getArgOperand(1));
6757     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6758     return;
6759   }
6760   case Intrinsic::ushl_sat: {
6761     SDValue Op1 = getValue(I.getArgOperand(0));
6762     SDValue Op2 = getValue(I.getArgOperand(1));
6763     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6764     return;
6765   }
6766   case Intrinsic::smul_fix:
6767   case Intrinsic::umul_fix:
6768   case Intrinsic::smul_fix_sat:
6769   case Intrinsic::umul_fix_sat: {
6770     SDValue Op1 = getValue(I.getArgOperand(0));
6771     SDValue Op2 = getValue(I.getArgOperand(1));
6772     SDValue Op3 = getValue(I.getArgOperand(2));
6773     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6774                              Op1.getValueType(), Op1, Op2, Op3));
6775     return;
6776   }
6777   case Intrinsic::sdiv_fix:
6778   case Intrinsic::udiv_fix:
6779   case Intrinsic::sdiv_fix_sat:
6780   case Intrinsic::udiv_fix_sat: {
6781     SDValue Op1 = getValue(I.getArgOperand(0));
6782     SDValue Op2 = getValue(I.getArgOperand(1));
6783     SDValue Op3 = getValue(I.getArgOperand(2));
6784     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6785                               Op1, Op2, Op3, DAG, TLI));
6786     return;
6787   }
6788   case Intrinsic::smax: {
6789     SDValue Op1 = getValue(I.getArgOperand(0));
6790     SDValue Op2 = getValue(I.getArgOperand(1));
6791     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6792     return;
6793   }
6794   case Intrinsic::smin: {
6795     SDValue Op1 = getValue(I.getArgOperand(0));
6796     SDValue Op2 = getValue(I.getArgOperand(1));
6797     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6798     return;
6799   }
6800   case Intrinsic::umax: {
6801     SDValue Op1 = getValue(I.getArgOperand(0));
6802     SDValue Op2 = getValue(I.getArgOperand(1));
6803     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6804     return;
6805   }
6806   case Intrinsic::umin: {
6807     SDValue Op1 = getValue(I.getArgOperand(0));
6808     SDValue Op2 = getValue(I.getArgOperand(1));
6809     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6810     return;
6811   }
6812   case Intrinsic::abs: {
6813     // TODO: Preserve "int min is poison" arg in SDAG?
6814     SDValue Op1 = getValue(I.getArgOperand(0));
6815     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6816     return;
6817   }
6818   case Intrinsic::stacksave: {
6819     SDValue Op = getRoot();
6820     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6821     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6822     setValue(&I, Res);
6823     DAG.setRoot(Res.getValue(1));
6824     return;
6825   }
6826   case Intrinsic::stackrestore:
6827     Res = getValue(I.getArgOperand(0));
6828     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6829     return;
6830   case Intrinsic::get_dynamic_area_offset: {
6831     SDValue Op = getRoot();
6832     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6833     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6834     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6835     // target.
6836     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6837       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6838                          " intrinsic!");
6839     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6840                       Op);
6841     DAG.setRoot(Op);
6842     setValue(&I, Res);
6843     return;
6844   }
6845   case Intrinsic::stackguard: {
6846     MachineFunction &MF = DAG.getMachineFunction();
6847     const Module &M = *MF.getFunction().getParent();
6848     SDValue Chain = getRoot();
6849     if (TLI.useLoadStackGuardNode()) {
6850       Res = getLoadStackGuard(DAG, sdl, Chain);
6851     } else {
6852       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6853       const Value *Global = TLI.getSDagStackGuard(M);
6854       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6855       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6856                         MachinePointerInfo(Global, 0), Align,
6857                         MachineMemOperand::MOVolatile);
6858     }
6859     if (TLI.useStackGuardXorFP())
6860       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6861     DAG.setRoot(Chain);
6862     setValue(&I, Res);
6863     return;
6864   }
6865   case Intrinsic::stackprotector: {
6866     // Emit code into the DAG to store the stack guard onto the stack.
6867     MachineFunction &MF = DAG.getMachineFunction();
6868     MachineFrameInfo &MFI = MF.getFrameInfo();
6869     SDValue Src, Chain = getRoot();
6870 
6871     if (TLI.useLoadStackGuardNode())
6872       Src = getLoadStackGuard(DAG, sdl, Chain);
6873     else
6874       Src = getValue(I.getArgOperand(0));   // The guard's value.
6875 
6876     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6877 
6878     int FI = FuncInfo.StaticAllocaMap[Slot];
6879     MFI.setStackProtectorIndex(FI);
6880     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6881 
6882     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6883 
6884     // Store the stack protector onto the stack.
6885     Res = DAG.getStore(
6886         Chain, sdl, Src, FIN,
6887         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6888         MaybeAlign(), MachineMemOperand::MOVolatile);
6889     setValue(&I, Res);
6890     DAG.setRoot(Res);
6891     return;
6892   }
6893   case Intrinsic::objectsize:
6894     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6895 
6896   case Intrinsic::is_constant:
6897     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6898 
6899   case Intrinsic::annotation:
6900   case Intrinsic::ptr_annotation:
6901   case Intrinsic::launder_invariant_group:
6902   case Intrinsic::strip_invariant_group:
6903     // Drop the intrinsic, but forward the value
6904     setValue(&I, getValue(I.getOperand(0)));
6905     return;
6906 
6907   case Intrinsic::assume:
6908   case Intrinsic::experimental_noalias_scope_decl:
6909   case Intrinsic::var_annotation:
6910   case Intrinsic::sideeffect:
6911     // Discard annotate attributes, noalias scope declarations, assumptions, and
6912     // artificial side-effects.
6913     return;
6914 
6915   case Intrinsic::codeview_annotation: {
6916     // Emit a label associated with this metadata.
6917     MachineFunction &MF = DAG.getMachineFunction();
6918     MCSymbol *Label =
6919         MF.getMMI().getContext().createTempSymbol("annotation", true);
6920     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6921     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6922     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6923     DAG.setRoot(Res);
6924     return;
6925   }
6926 
6927   case Intrinsic::init_trampoline: {
6928     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6929 
6930     SDValue Ops[6];
6931     Ops[0] = getRoot();
6932     Ops[1] = getValue(I.getArgOperand(0));
6933     Ops[2] = getValue(I.getArgOperand(1));
6934     Ops[3] = getValue(I.getArgOperand(2));
6935     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6936     Ops[5] = DAG.getSrcValue(F);
6937 
6938     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6939 
6940     DAG.setRoot(Res);
6941     return;
6942   }
6943   case Intrinsic::adjust_trampoline:
6944     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6945                              TLI.getPointerTy(DAG.getDataLayout()),
6946                              getValue(I.getArgOperand(0))));
6947     return;
6948   case Intrinsic::gcroot: {
6949     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6950            "only valid in functions with gc specified, enforced by Verifier");
6951     assert(GFI && "implied by previous");
6952     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6953     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6954 
6955     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6956     GFI->addStackRoot(FI->getIndex(), TypeMap);
6957     return;
6958   }
6959   case Intrinsic::gcread:
6960   case Intrinsic::gcwrite:
6961     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6962   case Intrinsic::get_rounding:
6963     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6964     setValue(&I, Res);
6965     DAG.setRoot(Res.getValue(1));
6966     return;
6967 
6968   case Intrinsic::expect:
6969     // Just replace __builtin_expect(exp, c) with EXP.
6970     setValue(&I, getValue(I.getArgOperand(0)));
6971     return;
6972 
6973   case Intrinsic::ubsantrap:
6974   case Intrinsic::debugtrap:
6975   case Intrinsic::trap: {
6976     StringRef TrapFuncName =
6977         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6978     if (TrapFuncName.empty()) {
6979       switch (Intrinsic) {
6980       case Intrinsic::trap:
6981         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6982         break;
6983       case Intrinsic::debugtrap:
6984         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6985         break;
6986       case Intrinsic::ubsantrap:
6987         DAG.setRoot(DAG.getNode(
6988             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6989             DAG.getTargetConstant(
6990                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6991                 MVT::i32)));
6992         break;
6993       default: llvm_unreachable("unknown trap intrinsic");
6994       }
6995       return;
6996     }
6997     TargetLowering::ArgListTy Args;
6998     if (Intrinsic == Intrinsic::ubsantrap) {
6999       Args.push_back(TargetLoweringBase::ArgListEntry());
7000       Args[0].Val = I.getArgOperand(0);
7001       Args[0].Node = getValue(Args[0].Val);
7002       Args[0].Ty = Args[0].Val->getType();
7003     }
7004 
7005     TargetLowering::CallLoweringInfo CLI(DAG);
7006     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7007         CallingConv::C, I.getType(),
7008         DAG.getExternalSymbol(TrapFuncName.data(),
7009                               TLI.getPointerTy(DAG.getDataLayout())),
7010         std::move(Args));
7011 
7012     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7013     DAG.setRoot(Result.second);
7014     return;
7015   }
7016 
7017   case Intrinsic::uadd_with_overflow:
7018   case Intrinsic::sadd_with_overflow:
7019   case Intrinsic::usub_with_overflow:
7020   case Intrinsic::ssub_with_overflow:
7021   case Intrinsic::umul_with_overflow:
7022   case Intrinsic::smul_with_overflow: {
7023     ISD::NodeType Op;
7024     switch (Intrinsic) {
7025     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7026     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7027     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7028     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7029     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7030     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7031     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7032     }
7033     SDValue Op1 = getValue(I.getArgOperand(0));
7034     SDValue Op2 = getValue(I.getArgOperand(1));
7035 
7036     EVT ResultVT = Op1.getValueType();
7037     EVT OverflowVT = MVT::i1;
7038     if (ResultVT.isVector())
7039       OverflowVT = EVT::getVectorVT(
7040           *Context, OverflowVT, ResultVT.getVectorElementCount());
7041 
7042     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7043     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7044     return;
7045   }
7046   case Intrinsic::prefetch: {
7047     SDValue Ops[5];
7048     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7049     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7050     Ops[0] = DAG.getRoot();
7051     Ops[1] = getValue(I.getArgOperand(0));
7052     Ops[2] = getValue(I.getArgOperand(1));
7053     Ops[3] = getValue(I.getArgOperand(2));
7054     Ops[4] = getValue(I.getArgOperand(3));
7055     SDValue Result = DAG.getMemIntrinsicNode(
7056         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7057         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7058         /* align */ std::nullopt, Flags);
7059 
7060     // Chain the prefetch in parallell with any pending loads, to stay out of
7061     // the way of later optimizations.
7062     PendingLoads.push_back(Result);
7063     Result = getRoot();
7064     DAG.setRoot(Result);
7065     return;
7066   }
7067   case Intrinsic::lifetime_start:
7068   case Intrinsic::lifetime_end: {
7069     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7070     // Stack coloring is not enabled in O0, discard region information.
7071     if (TM.getOptLevel() == CodeGenOpt::None)
7072       return;
7073 
7074     const int64_t ObjectSize =
7075         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7076     Value *const ObjectPtr = I.getArgOperand(1);
7077     SmallVector<const Value *, 4> Allocas;
7078     getUnderlyingObjects(ObjectPtr, Allocas);
7079 
7080     for (const Value *Alloca : Allocas) {
7081       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7082 
7083       // Could not find an Alloca.
7084       if (!LifetimeObject)
7085         continue;
7086 
7087       // First check that the Alloca is static, otherwise it won't have a
7088       // valid frame index.
7089       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7090       if (SI == FuncInfo.StaticAllocaMap.end())
7091         return;
7092 
7093       const int FrameIndex = SI->second;
7094       int64_t Offset;
7095       if (GetPointerBaseWithConstantOffset(
7096               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7097         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7098       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7099                                 Offset);
7100       DAG.setRoot(Res);
7101     }
7102     return;
7103   }
7104   case Intrinsic::pseudoprobe: {
7105     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7106     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7107     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7108     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7109     DAG.setRoot(Res);
7110     return;
7111   }
7112   case Intrinsic::invariant_start:
7113     // Discard region information.
7114     setValue(&I,
7115              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7116     return;
7117   case Intrinsic::invariant_end:
7118     // Discard region information.
7119     return;
7120   case Intrinsic::clear_cache:
7121     /// FunctionName may be null.
7122     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7123       lowerCallToExternalSymbol(I, FunctionName);
7124     return;
7125   case Intrinsic::donothing:
7126   case Intrinsic::seh_try_begin:
7127   case Intrinsic::seh_scope_begin:
7128   case Intrinsic::seh_try_end:
7129   case Intrinsic::seh_scope_end:
7130     // ignore
7131     return;
7132   case Intrinsic::experimental_stackmap:
7133     visitStackmap(I);
7134     return;
7135   case Intrinsic::experimental_patchpoint_void:
7136   case Intrinsic::experimental_patchpoint_i64:
7137     visitPatchpoint(I);
7138     return;
7139   case Intrinsic::experimental_gc_statepoint:
7140     LowerStatepoint(cast<GCStatepointInst>(I));
7141     return;
7142   case Intrinsic::experimental_gc_result:
7143     visitGCResult(cast<GCResultInst>(I));
7144     return;
7145   case Intrinsic::experimental_gc_relocate:
7146     visitGCRelocate(cast<GCRelocateInst>(I));
7147     return;
7148   case Intrinsic::instrprof_cover:
7149     llvm_unreachable("instrprof failed to lower a cover");
7150   case Intrinsic::instrprof_increment:
7151     llvm_unreachable("instrprof failed to lower an increment");
7152   case Intrinsic::instrprof_timestamp:
7153     llvm_unreachable("instrprof failed to lower a timestamp");
7154   case Intrinsic::instrprof_value_profile:
7155     llvm_unreachable("instrprof failed to lower a value profiling call");
7156   case Intrinsic::localescape: {
7157     MachineFunction &MF = DAG.getMachineFunction();
7158     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7159 
7160     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7161     // is the same on all targets.
7162     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7163       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7164       if (isa<ConstantPointerNull>(Arg))
7165         continue; // Skip null pointers. They represent a hole in index space.
7166       AllocaInst *Slot = cast<AllocaInst>(Arg);
7167       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7168              "can only escape static allocas");
7169       int FI = FuncInfo.StaticAllocaMap[Slot];
7170       MCSymbol *FrameAllocSym =
7171           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7172               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7173       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7174               TII->get(TargetOpcode::LOCAL_ESCAPE))
7175           .addSym(FrameAllocSym)
7176           .addFrameIndex(FI);
7177     }
7178 
7179     return;
7180   }
7181 
7182   case Intrinsic::localrecover: {
7183     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7184     MachineFunction &MF = DAG.getMachineFunction();
7185 
7186     // Get the symbol that defines the frame offset.
7187     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7188     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7189     unsigned IdxVal =
7190         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7191     MCSymbol *FrameAllocSym =
7192         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7193             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7194 
7195     Value *FP = I.getArgOperand(1);
7196     SDValue FPVal = getValue(FP);
7197     EVT PtrVT = FPVal.getValueType();
7198 
7199     // Create a MCSymbol for the label to avoid any target lowering
7200     // that would make this PC relative.
7201     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7202     SDValue OffsetVal =
7203         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7204 
7205     // Add the offset to the FP.
7206     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7207     setValue(&I, Add);
7208 
7209     return;
7210   }
7211 
7212   case Intrinsic::eh_exceptionpointer:
7213   case Intrinsic::eh_exceptioncode: {
7214     // Get the exception pointer vreg, copy from it, and resize it to fit.
7215     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7216     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7217     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7218     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7219     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7220     if (Intrinsic == Intrinsic::eh_exceptioncode)
7221       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7222     setValue(&I, N);
7223     return;
7224   }
7225   case Intrinsic::xray_customevent: {
7226     // Here we want to make sure that the intrinsic behaves as if it has a
7227     // specific calling convention.
7228     const auto &Triple = DAG.getTarget().getTargetTriple();
7229     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7230       return;
7231 
7232     SmallVector<SDValue, 8> Ops;
7233 
7234     // We want to say that we always want the arguments in registers.
7235     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7236     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7237     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7238     SDValue Chain = getRoot();
7239     Ops.push_back(LogEntryVal);
7240     Ops.push_back(StrSizeVal);
7241     Ops.push_back(Chain);
7242 
7243     // We need to enforce the calling convention for the callsite, so that
7244     // argument ordering is enforced correctly, and that register allocation can
7245     // see that some registers may be assumed clobbered and have to preserve
7246     // them across calls to the intrinsic.
7247     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7248                                            sdl, NodeTys, Ops);
7249     SDValue patchableNode = SDValue(MN, 0);
7250     DAG.setRoot(patchableNode);
7251     setValue(&I, patchableNode);
7252     return;
7253   }
7254   case Intrinsic::xray_typedevent: {
7255     // Here we want to make sure that the intrinsic behaves as if it has a
7256     // specific calling convention.
7257     const auto &Triple = DAG.getTarget().getTargetTriple();
7258     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7259       return;
7260 
7261     SmallVector<SDValue, 8> Ops;
7262 
7263     // We want to say that we always want the arguments in registers.
7264     // It's unclear to me how manipulating the selection DAG here forces callers
7265     // to provide arguments in registers instead of on the stack.
7266     SDValue LogTypeId = getValue(I.getArgOperand(0));
7267     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7268     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7269     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7270     SDValue Chain = getRoot();
7271     Ops.push_back(LogTypeId);
7272     Ops.push_back(LogEntryVal);
7273     Ops.push_back(StrSizeVal);
7274     Ops.push_back(Chain);
7275 
7276     // We need to enforce the calling convention for the callsite, so that
7277     // argument ordering is enforced correctly, and that register allocation can
7278     // see that some registers may be assumed clobbered and have to preserve
7279     // them across calls to the intrinsic.
7280     MachineSDNode *MN = DAG.getMachineNode(
7281         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7282     SDValue patchableNode = SDValue(MN, 0);
7283     DAG.setRoot(patchableNode);
7284     setValue(&I, patchableNode);
7285     return;
7286   }
7287   case Intrinsic::experimental_deoptimize:
7288     LowerDeoptimizeCall(&I);
7289     return;
7290   case Intrinsic::experimental_stepvector:
7291     visitStepVector(I);
7292     return;
7293   case Intrinsic::vector_reduce_fadd:
7294   case Intrinsic::vector_reduce_fmul:
7295   case Intrinsic::vector_reduce_add:
7296   case Intrinsic::vector_reduce_mul:
7297   case Intrinsic::vector_reduce_and:
7298   case Intrinsic::vector_reduce_or:
7299   case Intrinsic::vector_reduce_xor:
7300   case Intrinsic::vector_reduce_smax:
7301   case Intrinsic::vector_reduce_smin:
7302   case Intrinsic::vector_reduce_umax:
7303   case Intrinsic::vector_reduce_umin:
7304   case Intrinsic::vector_reduce_fmax:
7305   case Intrinsic::vector_reduce_fmin:
7306   case Intrinsic::vector_reduce_fmaximum:
7307   case Intrinsic::vector_reduce_fminimum:
7308     visitVectorReduce(I, Intrinsic);
7309     return;
7310 
7311   case Intrinsic::icall_branch_funnel: {
7312     SmallVector<SDValue, 16> Ops;
7313     Ops.push_back(getValue(I.getArgOperand(0)));
7314 
7315     int64_t Offset;
7316     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7317         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7318     if (!Base)
7319       report_fatal_error(
7320           "llvm.icall.branch.funnel operand must be a GlobalValue");
7321     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7322 
7323     struct BranchFunnelTarget {
7324       int64_t Offset;
7325       SDValue Target;
7326     };
7327     SmallVector<BranchFunnelTarget, 8> Targets;
7328 
7329     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7330       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7331           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7332       if (ElemBase != Base)
7333         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7334                            "to the same GlobalValue");
7335 
7336       SDValue Val = getValue(I.getArgOperand(Op + 1));
7337       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7338       if (!GA)
7339         report_fatal_error(
7340             "llvm.icall.branch.funnel operand must be a GlobalValue");
7341       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7342                                      GA->getGlobal(), sdl, Val.getValueType(),
7343                                      GA->getOffset())});
7344     }
7345     llvm::sort(Targets,
7346                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7347                  return T1.Offset < T2.Offset;
7348                });
7349 
7350     for (auto &T : Targets) {
7351       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7352       Ops.push_back(T.Target);
7353     }
7354 
7355     Ops.push_back(DAG.getRoot()); // Chain
7356     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7357                                  MVT::Other, Ops),
7358               0);
7359     DAG.setRoot(N);
7360     setValue(&I, N);
7361     HasTailCall = true;
7362     return;
7363   }
7364 
7365   case Intrinsic::wasm_landingpad_index:
7366     // Information this intrinsic contained has been transferred to
7367     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7368     // delete it now.
7369     return;
7370 
7371   case Intrinsic::aarch64_settag:
7372   case Intrinsic::aarch64_settag_zero: {
7373     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7374     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7375     SDValue Val = TSI.EmitTargetCodeForSetTag(
7376         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7377         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7378         ZeroMemory);
7379     DAG.setRoot(Val);
7380     setValue(&I, Val);
7381     return;
7382   }
7383   case Intrinsic::ptrmask: {
7384     SDValue Ptr = getValue(I.getOperand(0));
7385     SDValue Const = getValue(I.getOperand(1));
7386 
7387     EVT PtrVT = Ptr.getValueType();
7388     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7389                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7390     return;
7391   }
7392   case Intrinsic::threadlocal_address: {
7393     setValue(&I, getValue(I.getOperand(0)));
7394     return;
7395   }
7396   case Intrinsic::get_active_lane_mask: {
7397     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7398     SDValue Index = getValue(I.getOperand(0));
7399     EVT ElementVT = Index.getValueType();
7400 
7401     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7402       visitTargetIntrinsic(I, Intrinsic);
7403       return;
7404     }
7405 
7406     SDValue TripCount = getValue(I.getOperand(1));
7407     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7408                                  CCVT.getVectorElementCount());
7409 
7410     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7411     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7412     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7413     SDValue VectorInduction = DAG.getNode(
7414         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7415     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7416                                  VectorTripCount, ISD::CondCode::SETULT);
7417     setValue(&I, SetCC);
7418     return;
7419   }
7420   case Intrinsic::experimental_get_vector_length: {
7421     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7422            "Expected positive VF");
7423     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7424     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7425 
7426     SDValue Count = getValue(I.getOperand(0));
7427     EVT CountVT = Count.getValueType();
7428 
7429     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7430       visitTargetIntrinsic(I, Intrinsic);
7431       return;
7432     }
7433 
7434     // Expand to a umin between the trip count and the maximum elements the type
7435     // can hold.
7436     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7437 
7438     // Extend the trip count to at least the result VT.
7439     if (CountVT.bitsLT(VT)) {
7440       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7441       CountVT = VT;
7442     }
7443 
7444     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7445                                          ElementCount::get(VF, IsScalable));
7446 
7447     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7448     // Clip to the result type if needed.
7449     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7450 
7451     setValue(&I, Trunc);
7452     return;
7453   }
7454   case Intrinsic::vector_insert: {
7455     SDValue Vec = getValue(I.getOperand(0));
7456     SDValue SubVec = getValue(I.getOperand(1));
7457     SDValue Index = getValue(I.getOperand(2));
7458 
7459     // The intrinsic's index type is i64, but the SDNode requires an index type
7460     // suitable for the target. Convert the index as required.
7461     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7462     if (Index.getValueType() != VectorIdxTy)
7463       Index = DAG.getVectorIdxConstant(
7464           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7465 
7466     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7467     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7468                              Index));
7469     return;
7470   }
7471   case Intrinsic::vector_extract: {
7472     SDValue Vec = getValue(I.getOperand(0));
7473     SDValue Index = getValue(I.getOperand(1));
7474     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7475 
7476     // The intrinsic's index type is i64, but the SDNode requires an index type
7477     // suitable for the target. Convert the index as required.
7478     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7479     if (Index.getValueType() != VectorIdxTy)
7480       Index = DAG.getVectorIdxConstant(
7481           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7482 
7483     setValue(&I,
7484              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7485     return;
7486   }
7487   case Intrinsic::experimental_vector_reverse:
7488     visitVectorReverse(I);
7489     return;
7490   case Intrinsic::experimental_vector_splice:
7491     visitVectorSplice(I);
7492     return;
7493   case Intrinsic::callbr_landingpad:
7494     visitCallBrLandingPad(I);
7495     return;
7496   case Intrinsic::experimental_vector_interleave2:
7497     visitVectorInterleave(I);
7498     return;
7499   case Intrinsic::experimental_vector_deinterleave2:
7500     visitVectorDeinterleave(I);
7501     return;
7502   }
7503 }
7504 
7505 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7506     const ConstrainedFPIntrinsic &FPI) {
7507   SDLoc sdl = getCurSDLoc();
7508 
7509   // We do not need to serialize constrained FP intrinsics against
7510   // each other or against (nonvolatile) loads, so they can be
7511   // chained like loads.
7512   SDValue Chain = DAG.getRoot();
7513   SmallVector<SDValue, 4> Opers;
7514   Opers.push_back(Chain);
7515   if (FPI.isUnaryOp()) {
7516     Opers.push_back(getValue(FPI.getArgOperand(0)));
7517   } else if (FPI.isTernaryOp()) {
7518     Opers.push_back(getValue(FPI.getArgOperand(0)));
7519     Opers.push_back(getValue(FPI.getArgOperand(1)));
7520     Opers.push_back(getValue(FPI.getArgOperand(2)));
7521   } else {
7522     Opers.push_back(getValue(FPI.getArgOperand(0)));
7523     Opers.push_back(getValue(FPI.getArgOperand(1)));
7524   }
7525 
7526   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7527     assert(Result.getNode()->getNumValues() == 2);
7528 
7529     // Push node to the appropriate list so that future instructions can be
7530     // chained up correctly.
7531     SDValue OutChain = Result.getValue(1);
7532     switch (EB) {
7533     case fp::ExceptionBehavior::ebIgnore:
7534       // The only reason why ebIgnore nodes still need to be chained is that
7535       // they might depend on the current rounding mode, and therefore must
7536       // not be moved across instruction that may change that mode.
7537       [[fallthrough]];
7538     case fp::ExceptionBehavior::ebMayTrap:
7539       // These must not be moved across calls or instructions that may change
7540       // floating-point exception masks.
7541       PendingConstrainedFP.push_back(OutChain);
7542       break;
7543     case fp::ExceptionBehavior::ebStrict:
7544       // These must not be moved across calls or instructions that may change
7545       // floating-point exception masks or read floating-point exception flags.
7546       // In addition, they cannot be optimized out even if unused.
7547       PendingConstrainedFPStrict.push_back(OutChain);
7548       break;
7549     }
7550   };
7551 
7552   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7553   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7554   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7555   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7556 
7557   SDNodeFlags Flags;
7558   if (EB == fp::ExceptionBehavior::ebIgnore)
7559     Flags.setNoFPExcept(true);
7560 
7561   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7562     Flags.copyFMF(*FPOp);
7563 
7564   unsigned Opcode;
7565   switch (FPI.getIntrinsicID()) {
7566   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7567 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7568   case Intrinsic::INTRINSIC:                                                   \
7569     Opcode = ISD::STRICT_##DAGN;                                               \
7570     break;
7571 #include "llvm/IR/ConstrainedOps.def"
7572   case Intrinsic::experimental_constrained_fmuladd: {
7573     Opcode = ISD::STRICT_FMA;
7574     // Break fmuladd into fmul and fadd.
7575     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7576         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7577       Opers.pop_back();
7578       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7579       pushOutChain(Mul, EB);
7580       Opcode = ISD::STRICT_FADD;
7581       Opers.clear();
7582       Opers.push_back(Mul.getValue(1));
7583       Opers.push_back(Mul.getValue(0));
7584       Opers.push_back(getValue(FPI.getArgOperand(2)));
7585     }
7586     break;
7587   }
7588   }
7589 
7590   // A few strict DAG nodes carry additional operands that are not
7591   // set up by the default code above.
7592   switch (Opcode) {
7593   default: break;
7594   case ISD::STRICT_FP_ROUND:
7595     Opers.push_back(
7596         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7597     break;
7598   case ISD::STRICT_FSETCC:
7599   case ISD::STRICT_FSETCCS: {
7600     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7601     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7602     if (TM.Options.NoNaNsFPMath)
7603       Condition = getFCmpCodeWithoutNaN(Condition);
7604     Opers.push_back(DAG.getCondCode(Condition));
7605     break;
7606   }
7607   }
7608 
7609   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7610   pushOutChain(Result, EB);
7611 
7612   SDValue FPResult = Result.getValue(0);
7613   setValue(&FPI, FPResult);
7614 }
7615 
7616 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7617   std::optional<unsigned> ResOPC;
7618   switch (VPIntrin.getIntrinsicID()) {
7619   case Intrinsic::vp_ctlz: {
7620     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7621     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7622     break;
7623   }
7624   case Intrinsic::vp_cttz: {
7625     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7626     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7627     break;
7628   }
7629 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7630   case Intrinsic::VPID:                                                        \
7631     ResOPC = ISD::VPSD;                                                        \
7632     break;
7633 #include "llvm/IR/VPIntrinsics.def"
7634   }
7635 
7636   if (!ResOPC)
7637     llvm_unreachable(
7638         "Inconsistency: no SDNode available for this VPIntrinsic!");
7639 
7640   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7641       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7642     if (VPIntrin.getFastMathFlags().allowReassoc())
7643       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7644                                                 : ISD::VP_REDUCE_FMUL;
7645   }
7646 
7647   return *ResOPC;
7648 }
7649 
7650 void SelectionDAGBuilder::visitVPLoad(
7651     const VPIntrinsic &VPIntrin, EVT VT,
7652     const SmallVectorImpl<SDValue> &OpValues) {
7653   SDLoc DL = getCurSDLoc();
7654   Value *PtrOperand = VPIntrin.getArgOperand(0);
7655   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7656   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7657   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7658   SDValue LD;
7659   // Do not serialize variable-length loads of constant memory with
7660   // anything.
7661   if (!Alignment)
7662     Alignment = DAG.getEVTAlign(VT);
7663   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7664   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7665   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7666   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7667       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7668       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7669   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7670                      MMO, false /*IsExpanding */);
7671   if (AddToChain)
7672     PendingLoads.push_back(LD.getValue(1));
7673   setValue(&VPIntrin, LD);
7674 }
7675 
7676 void SelectionDAGBuilder::visitVPGather(
7677     const VPIntrinsic &VPIntrin, EVT VT,
7678     const SmallVectorImpl<SDValue> &OpValues) {
7679   SDLoc DL = getCurSDLoc();
7680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7681   Value *PtrOperand = VPIntrin.getArgOperand(0);
7682   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7683   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7684   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7685   SDValue LD;
7686   if (!Alignment)
7687     Alignment = DAG.getEVTAlign(VT.getScalarType());
7688   unsigned AS =
7689     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7690   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7691      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7692      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7693   SDValue Base, Index, Scale;
7694   ISD::MemIndexType IndexType;
7695   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7696                                     this, VPIntrin.getParent(),
7697                                     VT.getScalarStoreSize());
7698   if (!UniformBase) {
7699     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7700     Index = getValue(PtrOperand);
7701     IndexType = ISD::SIGNED_SCALED;
7702     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7703   }
7704   EVT IdxVT = Index.getValueType();
7705   EVT EltTy = IdxVT.getVectorElementType();
7706   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7707     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7708     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7709   }
7710   LD = DAG.getGatherVP(
7711       DAG.getVTList(VT, MVT::Other), VT, DL,
7712       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7713       IndexType);
7714   PendingLoads.push_back(LD.getValue(1));
7715   setValue(&VPIntrin, LD);
7716 }
7717 
7718 void SelectionDAGBuilder::visitVPStore(
7719     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7720   SDLoc DL = getCurSDLoc();
7721   Value *PtrOperand = VPIntrin.getArgOperand(1);
7722   EVT VT = OpValues[0].getValueType();
7723   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7724   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7725   SDValue ST;
7726   if (!Alignment)
7727     Alignment = DAG.getEVTAlign(VT);
7728   SDValue Ptr = OpValues[1];
7729   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7730   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7731       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7732       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7733   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7734                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7735                       /* IsTruncating */ false, /*IsCompressing*/ false);
7736   DAG.setRoot(ST);
7737   setValue(&VPIntrin, ST);
7738 }
7739 
7740 void SelectionDAGBuilder::visitVPScatter(
7741     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7742   SDLoc DL = getCurSDLoc();
7743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7744   Value *PtrOperand = VPIntrin.getArgOperand(1);
7745   EVT VT = OpValues[0].getValueType();
7746   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7747   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7748   SDValue ST;
7749   if (!Alignment)
7750     Alignment = DAG.getEVTAlign(VT.getScalarType());
7751   unsigned AS =
7752       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7753   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7754       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7755       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7756   SDValue Base, Index, Scale;
7757   ISD::MemIndexType IndexType;
7758   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7759                                     this, VPIntrin.getParent(),
7760                                     VT.getScalarStoreSize());
7761   if (!UniformBase) {
7762     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7763     Index = getValue(PtrOperand);
7764     IndexType = ISD::SIGNED_SCALED;
7765     Scale =
7766       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7767   }
7768   EVT IdxVT = Index.getValueType();
7769   EVT EltTy = IdxVT.getVectorElementType();
7770   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7771     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7772     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7773   }
7774   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7775                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7776                          OpValues[2], OpValues[3]},
7777                         MMO, IndexType);
7778   DAG.setRoot(ST);
7779   setValue(&VPIntrin, ST);
7780 }
7781 
7782 void SelectionDAGBuilder::visitVPStridedLoad(
7783     const VPIntrinsic &VPIntrin, EVT VT,
7784     const SmallVectorImpl<SDValue> &OpValues) {
7785   SDLoc DL = getCurSDLoc();
7786   Value *PtrOperand = VPIntrin.getArgOperand(0);
7787   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7788   if (!Alignment)
7789     Alignment = DAG.getEVTAlign(VT.getScalarType());
7790   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7791   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7792   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7793   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7794   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7795   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7796       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7797       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7798 
7799   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7800                                     OpValues[2], OpValues[3], MMO,
7801                                     false /*IsExpanding*/);
7802 
7803   if (AddToChain)
7804     PendingLoads.push_back(LD.getValue(1));
7805   setValue(&VPIntrin, LD);
7806 }
7807 
7808 void SelectionDAGBuilder::visitVPStridedStore(
7809     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7810   SDLoc DL = getCurSDLoc();
7811   Value *PtrOperand = VPIntrin.getArgOperand(1);
7812   EVT VT = OpValues[0].getValueType();
7813   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7814   if (!Alignment)
7815     Alignment = DAG.getEVTAlign(VT.getScalarType());
7816   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7817   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7818       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7819       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7820 
7821   SDValue ST = DAG.getStridedStoreVP(
7822       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7823       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7824       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7825       /*IsCompressing*/ false);
7826 
7827   DAG.setRoot(ST);
7828   setValue(&VPIntrin, ST);
7829 }
7830 
7831 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7833   SDLoc DL = getCurSDLoc();
7834 
7835   ISD::CondCode Condition;
7836   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7837   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7838   if (IsFP) {
7839     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7840     // flags, but calls that don't return floating-point types can't be
7841     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7842     Condition = getFCmpCondCode(CondCode);
7843     if (TM.Options.NoNaNsFPMath)
7844       Condition = getFCmpCodeWithoutNaN(Condition);
7845   } else {
7846     Condition = getICmpCondCode(CondCode);
7847   }
7848 
7849   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7850   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7851   // #2 is the condition code
7852   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7853   SDValue EVL = getValue(VPIntrin.getOperand(4));
7854   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7855   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7856          "Unexpected target EVL type");
7857   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7858 
7859   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7860                                                         VPIntrin.getType());
7861   setValue(&VPIntrin,
7862            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7863 }
7864 
7865 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7866     const VPIntrinsic &VPIntrin) {
7867   SDLoc DL = getCurSDLoc();
7868   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7869 
7870   auto IID = VPIntrin.getIntrinsicID();
7871 
7872   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7873     return visitVPCmp(*CmpI);
7874 
7875   SmallVector<EVT, 4> ValueVTs;
7876   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7877   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7878   SDVTList VTs = DAG.getVTList(ValueVTs);
7879 
7880   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7881 
7882   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7883   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7884          "Unexpected target EVL type");
7885 
7886   // Request operands.
7887   SmallVector<SDValue, 7> OpValues;
7888   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7889     auto Op = getValue(VPIntrin.getArgOperand(I));
7890     if (I == EVLParamPos)
7891       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7892     OpValues.push_back(Op);
7893   }
7894 
7895   switch (Opcode) {
7896   default: {
7897     SDNodeFlags SDFlags;
7898     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7899       SDFlags.copyFMF(*FPMO);
7900     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7901     setValue(&VPIntrin, Result);
7902     break;
7903   }
7904   case ISD::VP_LOAD:
7905     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7906     break;
7907   case ISD::VP_GATHER:
7908     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7909     break;
7910   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7911     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7912     break;
7913   case ISD::VP_STORE:
7914     visitVPStore(VPIntrin, OpValues);
7915     break;
7916   case ISD::VP_SCATTER:
7917     visitVPScatter(VPIntrin, OpValues);
7918     break;
7919   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7920     visitVPStridedStore(VPIntrin, OpValues);
7921     break;
7922   case ISD::VP_FMULADD: {
7923     assert(OpValues.size() == 5 && "Unexpected number of operands");
7924     SDNodeFlags SDFlags;
7925     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7926       SDFlags.copyFMF(*FPMO);
7927     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7928         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7929       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7930     } else {
7931       SDValue Mul = DAG.getNode(
7932           ISD::VP_FMUL, DL, VTs,
7933           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7934       SDValue Add =
7935           DAG.getNode(ISD::VP_FADD, DL, VTs,
7936                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7937       setValue(&VPIntrin, Add);
7938     }
7939     break;
7940   }
7941   case ISD::VP_INTTOPTR: {
7942     SDValue N = OpValues[0];
7943     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7944     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7945     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7946                                OpValues[2]);
7947     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7948                              OpValues[2]);
7949     setValue(&VPIntrin, N);
7950     break;
7951   }
7952   case ISD::VP_PTRTOINT: {
7953     SDValue N = OpValues[0];
7954     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7955                                                           VPIntrin.getType());
7956     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7957                                        VPIntrin.getOperand(0)->getType());
7958     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7959                                OpValues[2]);
7960     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7961                              OpValues[2]);
7962     setValue(&VPIntrin, N);
7963     break;
7964   }
7965   case ISD::VP_ABS:
7966   case ISD::VP_CTLZ:
7967   case ISD::VP_CTLZ_ZERO_UNDEF:
7968   case ISD::VP_CTTZ:
7969   case ISD::VP_CTTZ_ZERO_UNDEF: {
7970     SDValue Result =
7971         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
7972     setValue(&VPIntrin, Result);
7973     break;
7974   }
7975   }
7976 }
7977 
7978 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7979                                           const BasicBlock *EHPadBB,
7980                                           MCSymbol *&BeginLabel) {
7981   MachineFunction &MF = DAG.getMachineFunction();
7982   MachineModuleInfo &MMI = MF.getMMI();
7983 
7984   // Insert a label before the invoke call to mark the try range.  This can be
7985   // used to detect deletion of the invoke via the MachineModuleInfo.
7986   BeginLabel = MMI.getContext().createTempSymbol();
7987 
7988   // For SjLj, keep track of which landing pads go with which invokes
7989   // so as to maintain the ordering of pads in the LSDA.
7990   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7991   if (CallSiteIndex) {
7992     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7993     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7994 
7995     // Now that the call site is handled, stop tracking it.
7996     MMI.setCurrentCallSite(0);
7997   }
7998 
7999   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8000 }
8001 
8002 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8003                                         const BasicBlock *EHPadBB,
8004                                         MCSymbol *BeginLabel) {
8005   assert(BeginLabel && "BeginLabel should've been set");
8006 
8007   MachineFunction &MF = DAG.getMachineFunction();
8008   MachineModuleInfo &MMI = MF.getMMI();
8009 
8010   // Insert a label at the end of the invoke call to mark the try range.  This
8011   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8012   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8013   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8014 
8015   // Inform MachineModuleInfo of range.
8016   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8017   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8018   // actually use outlined funclets and their LSDA info style.
8019   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8020     assert(II && "II should've been set");
8021     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8022     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8023   } else if (!isScopedEHPersonality(Pers)) {
8024     assert(EHPadBB);
8025     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8026   }
8027 
8028   return Chain;
8029 }
8030 
8031 std::pair<SDValue, SDValue>
8032 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8033                                     const BasicBlock *EHPadBB) {
8034   MCSymbol *BeginLabel = nullptr;
8035 
8036   if (EHPadBB) {
8037     // Both PendingLoads and PendingExports must be flushed here;
8038     // this call might not return.
8039     (void)getRoot();
8040     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8041     CLI.setChain(getRoot());
8042   }
8043 
8044   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8045   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8046 
8047   assert((CLI.IsTailCall || Result.second.getNode()) &&
8048          "Non-null chain expected with non-tail call!");
8049   assert((Result.second.getNode() || !Result.first.getNode()) &&
8050          "Null value expected with tail call!");
8051 
8052   if (!Result.second.getNode()) {
8053     // As a special case, a null chain means that a tail call has been emitted
8054     // and the DAG root is already updated.
8055     HasTailCall = true;
8056 
8057     // Since there's no actual continuation from this block, nothing can be
8058     // relying on us setting vregs for them.
8059     PendingExports.clear();
8060   } else {
8061     DAG.setRoot(Result.second);
8062   }
8063 
8064   if (EHPadBB) {
8065     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8066                            BeginLabel));
8067   }
8068 
8069   return Result;
8070 }
8071 
8072 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8073                                       bool isTailCall,
8074                                       bool isMustTailCall,
8075                                       const BasicBlock *EHPadBB) {
8076   auto &DL = DAG.getDataLayout();
8077   FunctionType *FTy = CB.getFunctionType();
8078   Type *RetTy = CB.getType();
8079 
8080   TargetLowering::ArgListTy Args;
8081   Args.reserve(CB.arg_size());
8082 
8083   const Value *SwiftErrorVal = nullptr;
8084   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8085 
8086   if (isTailCall) {
8087     // Avoid emitting tail calls in functions with the disable-tail-calls
8088     // attribute.
8089     auto *Caller = CB.getParent()->getParent();
8090     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8091         "true" && !isMustTailCall)
8092       isTailCall = false;
8093 
8094     // We can't tail call inside a function with a swifterror argument. Lowering
8095     // does not support this yet. It would have to move into the swifterror
8096     // register before the call.
8097     if (TLI.supportSwiftError() &&
8098         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8099       isTailCall = false;
8100   }
8101 
8102   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8103     TargetLowering::ArgListEntry Entry;
8104     const Value *V = *I;
8105 
8106     // Skip empty types
8107     if (V->getType()->isEmptyTy())
8108       continue;
8109 
8110     SDValue ArgNode = getValue(V);
8111     Entry.Node = ArgNode; Entry.Ty = V->getType();
8112 
8113     Entry.setAttributes(&CB, I - CB.arg_begin());
8114 
8115     // Use swifterror virtual register as input to the call.
8116     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8117       SwiftErrorVal = V;
8118       // We find the virtual register for the actual swifterror argument.
8119       // Instead of using the Value, we use the virtual register instead.
8120       Entry.Node =
8121           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8122                           EVT(TLI.getPointerTy(DL)));
8123     }
8124 
8125     Args.push_back(Entry);
8126 
8127     // If we have an explicit sret argument that is an Instruction, (i.e., it
8128     // might point to function-local memory), we can't meaningfully tail-call.
8129     if (Entry.IsSRet && isa<Instruction>(V))
8130       isTailCall = false;
8131   }
8132 
8133   // If call site has a cfguardtarget operand bundle, create and add an
8134   // additional ArgListEntry.
8135   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8136     TargetLowering::ArgListEntry Entry;
8137     Value *V = Bundle->Inputs[0];
8138     SDValue ArgNode = getValue(V);
8139     Entry.Node = ArgNode;
8140     Entry.Ty = V->getType();
8141     Entry.IsCFGuardTarget = true;
8142     Args.push_back(Entry);
8143   }
8144 
8145   // Check if target-independent constraints permit a tail call here.
8146   // Target-dependent constraints are checked within TLI->LowerCallTo.
8147   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8148     isTailCall = false;
8149 
8150   // Disable tail calls if there is an swifterror argument. Targets have not
8151   // been updated to support tail calls.
8152   if (TLI.supportSwiftError() && SwiftErrorVal)
8153     isTailCall = false;
8154 
8155   ConstantInt *CFIType = nullptr;
8156   if (CB.isIndirectCall()) {
8157     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8158       if (!TLI.supportKCFIBundles())
8159         report_fatal_error(
8160             "Target doesn't support calls with kcfi operand bundles.");
8161       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8162       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8163     }
8164   }
8165 
8166   TargetLowering::CallLoweringInfo CLI(DAG);
8167   CLI.setDebugLoc(getCurSDLoc())
8168       .setChain(getRoot())
8169       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8170       .setTailCall(isTailCall)
8171       .setConvergent(CB.isConvergent())
8172       .setIsPreallocated(
8173           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8174       .setCFIType(CFIType);
8175   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8176 
8177   if (Result.first.getNode()) {
8178     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8179     setValue(&CB, Result.first);
8180   }
8181 
8182   // The last element of CLI.InVals has the SDValue for swifterror return.
8183   // Here we copy it to a virtual register and update SwiftErrorMap for
8184   // book-keeping.
8185   if (SwiftErrorVal && TLI.supportSwiftError()) {
8186     // Get the last element of InVals.
8187     SDValue Src = CLI.InVals.back();
8188     Register VReg =
8189         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8190     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8191     DAG.setRoot(CopyNode);
8192   }
8193 }
8194 
8195 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8196                              SelectionDAGBuilder &Builder) {
8197   // Check to see if this load can be trivially constant folded, e.g. if the
8198   // input is from a string literal.
8199   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8200     // Cast pointer to the type we really want to load.
8201     Type *LoadTy =
8202         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8203     if (LoadVT.isVector())
8204       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8205 
8206     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8207                                          PointerType::getUnqual(LoadTy));
8208 
8209     if (const Constant *LoadCst =
8210             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8211                                          LoadTy, Builder.DAG.getDataLayout()))
8212       return Builder.getValue(LoadCst);
8213   }
8214 
8215   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8216   // still constant memory, the input chain can be the entry node.
8217   SDValue Root;
8218   bool ConstantMemory = false;
8219 
8220   // Do not serialize (non-volatile) loads of constant memory with anything.
8221   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8222     Root = Builder.DAG.getEntryNode();
8223     ConstantMemory = true;
8224   } else {
8225     // Do not serialize non-volatile loads against each other.
8226     Root = Builder.DAG.getRoot();
8227   }
8228 
8229   SDValue Ptr = Builder.getValue(PtrVal);
8230   SDValue LoadVal =
8231       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8232                           MachinePointerInfo(PtrVal), Align(1));
8233 
8234   if (!ConstantMemory)
8235     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8236   return LoadVal;
8237 }
8238 
8239 /// Record the value for an instruction that produces an integer result,
8240 /// converting the type where necessary.
8241 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8242                                                   SDValue Value,
8243                                                   bool IsSigned) {
8244   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8245                                                     I.getType(), true);
8246   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8247   setValue(&I, Value);
8248 }
8249 
8250 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8251 /// true and lower it. Otherwise return false, and it will be lowered like a
8252 /// normal call.
8253 /// The caller already checked that \p I calls the appropriate LibFunc with a
8254 /// correct prototype.
8255 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8256   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8257   const Value *Size = I.getArgOperand(2);
8258   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8259   if (CSize && CSize->getZExtValue() == 0) {
8260     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8261                                                           I.getType(), true);
8262     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8263     return true;
8264   }
8265 
8266   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8267   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8268       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8269       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8270   if (Res.first.getNode()) {
8271     processIntegerCallValue(I, Res.first, true);
8272     PendingLoads.push_back(Res.second);
8273     return true;
8274   }
8275 
8276   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8277   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8278   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8279     return false;
8280 
8281   // If the target has a fast compare for the given size, it will return a
8282   // preferred load type for that size. Require that the load VT is legal and
8283   // that the target supports unaligned loads of that type. Otherwise, return
8284   // INVALID.
8285   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8286     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8287     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8288     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8289       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8290       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8291       // TODO: Check alignment of src and dest ptrs.
8292       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8293       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8294       if (!TLI.isTypeLegal(LVT) ||
8295           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8296           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8297         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8298     }
8299 
8300     return LVT;
8301   };
8302 
8303   // This turns into unaligned loads. We only do this if the target natively
8304   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8305   // we'll only produce a small number of byte loads.
8306   MVT LoadVT;
8307   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8308   switch (NumBitsToCompare) {
8309   default:
8310     return false;
8311   case 16:
8312     LoadVT = MVT::i16;
8313     break;
8314   case 32:
8315     LoadVT = MVT::i32;
8316     break;
8317   case 64:
8318   case 128:
8319   case 256:
8320     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8321     break;
8322   }
8323 
8324   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8325     return false;
8326 
8327   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8328   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8329 
8330   // Bitcast to a wide integer type if the loads are vectors.
8331   if (LoadVT.isVector()) {
8332     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8333     LoadL = DAG.getBitcast(CmpVT, LoadL);
8334     LoadR = DAG.getBitcast(CmpVT, LoadR);
8335   }
8336 
8337   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8338   processIntegerCallValue(I, Cmp, false);
8339   return true;
8340 }
8341 
8342 /// See if we can lower a memchr call into an optimized form. If so, return
8343 /// true and lower it. Otherwise return false, and it will be lowered like a
8344 /// normal call.
8345 /// The caller already checked that \p I calls the appropriate LibFunc with a
8346 /// correct prototype.
8347 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8348   const Value *Src = I.getArgOperand(0);
8349   const Value *Char = I.getArgOperand(1);
8350   const Value *Length = I.getArgOperand(2);
8351 
8352   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8353   std::pair<SDValue, SDValue> Res =
8354     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8355                                 getValue(Src), getValue(Char), getValue(Length),
8356                                 MachinePointerInfo(Src));
8357   if (Res.first.getNode()) {
8358     setValue(&I, Res.first);
8359     PendingLoads.push_back(Res.second);
8360     return true;
8361   }
8362 
8363   return false;
8364 }
8365 
8366 /// See if we can lower a mempcpy call into an optimized form. If so, return
8367 /// true and lower it. Otherwise return false, and it will be lowered like a
8368 /// normal call.
8369 /// The caller already checked that \p I calls the appropriate LibFunc with a
8370 /// correct prototype.
8371 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8372   SDValue Dst = getValue(I.getArgOperand(0));
8373   SDValue Src = getValue(I.getArgOperand(1));
8374   SDValue Size = getValue(I.getArgOperand(2));
8375 
8376   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8377   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8378   // DAG::getMemcpy needs Alignment to be defined.
8379   Align Alignment = std::min(DstAlign, SrcAlign);
8380 
8381   SDLoc sdl = getCurSDLoc();
8382 
8383   // In the mempcpy context we need to pass in a false value for isTailCall
8384   // because the return pointer needs to be adjusted by the size of
8385   // the copied memory.
8386   SDValue Root = getMemoryRoot();
8387   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8388                              /*isTailCall=*/false,
8389                              MachinePointerInfo(I.getArgOperand(0)),
8390                              MachinePointerInfo(I.getArgOperand(1)),
8391                              I.getAAMetadata());
8392   assert(MC.getNode() != nullptr &&
8393          "** memcpy should not be lowered as TailCall in mempcpy context **");
8394   DAG.setRoot(MC);
8395 
8396   // Check if Size needs to be truncated or extended.
8397   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8398 
8399   // Adjust return pointer to point just past the last dst byte.
8400   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8401                                     Dst, Size);
8402   setValue(&I, DstPlusSize);
8403   return true;
8404 }
8405 
8406 /// See if we can lower a strcpy call into an optimized form.  If so, return
8407 /// true and lower it, otherwise return false and it will be lowered like a
8408 /// normal call.
8409 /// The caller already checked that \p I calls the appropriate LibFunc with a
8410 /// correct prototype.
8411 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8412   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8413 
8414   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8415   std::pair<SDValue, SDValue> Res =
8416     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8417                                 getValue(Arg0), getValue(Arg1),
8418                                 MachinePointerInfo(Arg0),
8419                                 MachinePointerInfo(Arg1), isStpcpy);
8420   if (Res.first.getNode()) {
8421     setValue(&I, Res.first);
8422     DAG.setRoot(Res.second);
8423     return true;
8424   }
8425 
8426   return false;
8427 }
8428 
8429 /// See if we can lower a strcmp call into an optimized form.  If so, return
8430 /// true and lower it, otherwise return false and it will be lowered like a
8431 /// normal call.
8432 /// The caller already checked that \p I calls the appropriate LibFunc with a
8433 /// correct prototype.
8434 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8435   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8436 
8437   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8438   std::pair<SDValue, SDValue> Res =
8439     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8440                                 getValue(Arg0), getValue(Arg1),
8441                                 MachinePointerInfo(Arg0),
8442                                 MachinePointerInfo(Arg1));
8443   if (Res.first.getNode()) {
8444     processIntegerCallValue(I, Res.first, true);
8445     PendingLoads.push_back(Res.second);
8446     return true;
8447   }
8448 
8449   return false;
8450 }
8451 
8452 /// See if we can lower a strlen call into an optimized form.  If so, return
8453 /// true and lower it, otherwise return false and it will be lowered like a
8454 /// normal call.
8455 /// The caller already checked that \p I calls the appropriate LibFunc with a
8456 /// correct prototype.
8457 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8458   const Value *Arg0 = I.getArgOperand(0);
8459 
8460   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8461   std::pair<SDValue, SDValue> Res =
8462     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8463                                 getValue(Arg0), MachinePointerInfo(Arg0));
8464   if (Res.first.getNode()) {
8465     processIntegerCallValue(I, Res.first, false);
8466     PendingLoads.push_back(Res.second);
8467     return true;
8468   }
8469 
8470   return false;
8471 }
8472 
8473 /// See if we can lower a strnlen call into an optimized form.  If so, return
8474 /// true and lower it, otherwise return false and it will be lowered like a
8475 /// normal call.
8476 /// The caller already checked that \p I calls the appropriate LibFunc with a
8477 /// correct prototype.
8478 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8479   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8480 
8481   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8482   std::pair<SDValue, SDValue> Res =
8483     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8484                                  getValue(Arg0), getValue(Arg1),
8485                                  MachinePointerInfo(Arg0));
8486   if (Res.first.getNode()) {
8487     processIntegerCallValue(I, Res.first, false);
8488     PendingLoads.push_back(Res.second);
8489     return true;
8490   }
8491 
8492   return false;
8493 }
8494 
8495 /// See if we can lower a unary floating-point operation into an SDNode with
8496 /// the specified Opcode.  If so, return true and lower it, otherwise return
8497 /// false and it will be lowered like a normal call.
8498 /// The caller already checked that \p I calls the appropriate LibFunc with a
8499 /// correct prototype.
8500 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8501                                               unsigned Opcode) {
8502   // We already checked this call's prototype; verify it doesn't modify errno.
8503   if (!I.onlyReadsMemory())
8504     return false;
8505 
8506   SDNodeFlags Flags;
8507   Flags.copyFMF(cast<FPMathOperator>(I));
8508 
8509   SDValue Tmp = getValue(I.getArgOperand(0));
8510   setValue(&I,
8511            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8512   return true;
8513 }
8514 
8515 /// See if we can lower a binary floating-point operation into an SDNode with
8516 /// the specified Opcode. If so, return true and lower it. Otherwise return
8517 /// false, and it will be lowered like a normal call.
8518 /// The caller already checked that \p I calls the appropriate LibFunc with a
8519 /// correct prototype.
8520 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8521                                                unsigned Opcode) {
8522   // We already checked this call's prototype; verify it doesn't modify errno.
8523   if (!I.onlyReadsMemory())
8524     return false;
8525 
8526   SDNodeFlags Flags;
8527   Flags.copyFMF(cast<FPMathOperator>(I));
8528 
8529   SDValue Tmp0 = getValue(I.getArgOperand(0));
8530   SDValue Tmp1 = getValue(I.getArgOperand(1));
8531   EVT VT = Tmp0.getValueType();
8532   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8533   return true;
8534 }
8535 
8536 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8537   // Handle inline assembly differently.
8538   if (I.isInlineAsm()) {
8539     visitInlineAsm(I);
8540     return;
8541   }
8542 
8543   diagnoseDontCall(I);
8544 
8545   if (Function *F = I.getCalledFunction()) {
8546     if (F->isDeclaration()) {
8547       // Is this an LLVM intrinsic or a target-specific intrinsic?
8548       unsigned IID = F->getIntrinsicID();
8549       if (!IID)
8550         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8551           IID = II->getIntrinsicID(F);
8552 
8553       if (IID) {
8554         visitIntrinsicCall(I, IID);
8555         return;
8556       }
8557     }
8558 
8559     // Check for well-known libc/libm calls.  If the function is internal, it
8560     // can't be a library call.  Don't do the check if marked as nobuiltin for
8561     // some reason or the call site requires strict floating point semantics.
8562     LibFunc Func;
8563     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8564         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8565         LibInfo->hasOptimizedCodeGen(Func)) {
8566       switch (Func) {
8567       default: break;
8568       case LibFunc_bcmp:
8569         if (visitMemCmpBCmpCall(I))
8570           return;
8571         break;
8572       case LibFunc_copysign:
8573       case LibFunc_copysignf:
8574       case LibFunc_copysignl:
8575         // We already checked this call's prototype; verify it doesn't modify
8576         // errno.
8577         if (I.onlyReadsMemory()) {
8578           SDValue LHS = getValue(I.getArgOperand(0));
8579           SDValue RHS = getValue(I.getArgOperand(1));
8580           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8581                                    LHS.getValueType(), LHS, RHS));
8582           return;
8583         }
8584         break;
8585       case LibFunc_fabs:
8586       case LibFunc_fabsf:
8587       case LibFunc_fabsl:
8588         if (visitUnaryFloatCall(I, ISD::FABS))
8589           return;
8590         break;
8591       case LibFunc_fmin:
8592       case LibFunc_fminf:
8593       case LibFunc_fminl:
8594         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8595           return;
8596         break;
8597       case LibFunc_fmax:
8598       case LibFunc_fmaxf:
8599       case LibFunc_fmaxl:
8600         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8601           return;
8602         break;
8603       case LibFunc_sin:
8604       case LibFunc_sinf:
8605       case LibFunc_sinl:
8606         if (visitUnaryFloatCall(I, ISD::FSIN))
8607           return;
8608         break;
8609       case LibFunc_cos:
8610       case LibFunc_cosf:
8611       case LibFunc_cosl:
8612         if (visitUnaryFloatCall(I, ISD::FCOS))
8613           return;
8614         break;
8615       case LibFunc_sqrt:
8616       case LibFunc_sqrtf:
8617       case LibFunc_sqrtl:
8618       case LibFunc_sqrt_finite:
8619       case LibFunc_sqrtf_finite:
8620       case LibFunc_sqrtl_finite:
8621         if (visitUnaryFloatCall(I, ISD::FSQRT))
8622           return;
8623         break;
8624       case LibFunc_floor:
8625       case LibFunc_floorf:
8626       case LibFunc_floorl:
8627         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8628           return;
8629         break;
8630       case LibFunc_nearbyint:
8631       case LibFunc_nearbyintf:
8632       case LibFunc_nearbyintl:
8633         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8634           return;
8635         break;
8636       case LibFunc_ceil:
8637       case LibFunc_ceilf:
8638       case LibFunc_ceill:
8639         if (visitUnaryFloatCall(I, ISD::FCEIL))
8640           return;
8641         break;
8642       case LibFunc_rint:
8643       case LibFunc_rintf:
8644       case LibFunc_rintl:
8645         if (visitUnaryFloatCall(I, ISD::FRINT))
8646           return;
8647         break;
8648       case LibFunc_round:
8649       case LibFunc_roundf:
8650       case LibFunc_roundl:
8651         if (visitUnaryFloatCall(I, ISD::FROUND))
8652           return;
8653         break;
8654       case LibFunc_trunc:
8655       case LibFunc_truncf:
8656       case LibFunc_truncl:
8657         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8658           return;
8659         break;
8660       case LibFunc_log2:
8661       case LibFunc_log2f:
8662       case LibFunc_log2l:
8663         if (visitUnaryFloatCall(I, ISD::FLOG2))
8664           return;
8665         break;
8666       case LibFunc_exp2:
8667       case LibFunc_exp2f:
8668       case LibFunc_exp2l:
8669         if (visitUnaryFloatCall(I, ISD::FEXP2))
8670           return;
8671         break;
8672       case LibFunc_ldexp:
8673       case LibFunc_ldexpf:
8674       case LibFunc_ldexpl:
8675         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8676           return;
8677         break;
8678       case LibFunc_memcmp:
8679         if (visitMemCmpBCmpCall(I))
8680           return;
8681         break;
8682       case LibFunc_mempcpy:
8683         if (visitMemPCpyCall(I))
8684           return;
8685         break;
8686       case LibFunc_memchr:
8687         if (visitMemChrCall(I))
8688           return;
8689         break;
8690       case LibFunc_strcpy:
8691         if (visitStrCpyCall(I, false))
8692           return;
8693         break;
8694       case LibFunc_stpcpy:
8695         if (visitStrCpyCall(I, true))
8696           return;
8697         break;
8698       case LibFunc_strcmp:
8699         if (visitStrCmpCall(I))
8700           return;
8701         break;
8702       case LibFunc_strlen:
8703         if (visitStrLenCall(I))
8704           return;
8705         break;
8706       case LibFunc_strnlen:
8707         if (visitStrNLenCall(I))
8708           return;
8709         break;
8710       }
8711     }
8712   }
8713 
8714   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8715   // have to do anything here to lower funclet bundles.
8716   // CFGuardTarget bundles are lowered in LowerCallTo.
8717   assert(!I.hasOperandBundlesOtherThan(
8718              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8719               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8720               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8721          "Cannot lower calls with arbitrary operand bundles!");
8722 
8723   SDValue Callee = getValue(I.getCalledOperand());
8724 
8725   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8726     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8727   else
8728     // Check if we can potentially perform a tail call. More detailed checking
8729     // is be done within LowerCallTo, after more information about the call is
8730     // known.
8731     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8732 }
8733 
8734 namespace {
8735 
8736 /// AsmOperandInfo - This contains information for each constraint that we are
8737 /// lowering.
8738 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8739 public:
8740   /// CallOperand - If this is the result output operand or a clobber
8741   /// this is null, otherwise it is the incoming operand to the CallInst.
8742   /// This gets modified as the asm is processed.
8743   SDValue CallOperand;
8744 
8745   /// AssignedRegs - If this is a register or register class operand, this
8746   /// contains the set of register corresponding to the operand.
8747   RegsForValue AssignedRegs;
8748 
8749   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8750     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8751   }
8752 
8753   /// Whether or not this operand accesses memory
8754   bool hasMemory(const TargetLowering &TLI) const {
8755     // Indirect operand accesses access memory.
8756     if (isIndirect)
8757       return true;
8758 
8759     for (const auto &Code : Codes)
8760       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8761         return true;
8762 
8763     return false;
8764   }
8765 };
8766 
8767 
8768 } // end anonymous namespace
8769 
8770 /// Make sure that the output operand \p OpInfo and its corresponding input
8771 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8772 /// out).
8773 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8774                                SDISelAsmOperandInfo &MatchingOpInfo,
8775                                SelectionDAG &DAG) {
8776   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8777     return;
8778 
8779   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8780   const auto &TLI = DAG.getTargetLoweringInfo();
8781 
8782   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8783       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8784                                        OpInfo.ConstraintVT);
8785   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8786       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8787                                        MatchingOpInfo.ConstraintVT);
8788   if ((OpInfo.ConstraintVT.isInteger() !=
8789        MatchingOpInfo.ConstraintVT.isInteger()) ||
8790       (MatchRC.second != InputRC.second)) {
8791     // FIXME: error out in a more elegant fashion
8792     report_fatal_error("Unsupported asm: input constraint"
8793                        " with a matching output constraint of"
8794                        " incompatible type!");
8795   }
8796   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8797 }
8798 
8799 /// Get a direct memory input to behave well as an indirect operand.
8800 /// This may introduce stores, hence the need for a \p Chain.
8801 /// \return The (possibly updated) chain.
8802 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8803                                         SDISelAsmOperandInfo &OpInfo,
8804                                         SelectionDAG &DAG) {
8805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8806 
8807   // If we don't have an indirect input, put it in the constpool if we can,
8808   // otherwise spill it to a stack slot.
8809   // TODO: This isn't quite right. We need to handle these according to
8810   // the addressing mode that the constraint wants. Also, this may take
8811   // an additional register for the computation and we don't want that
8812   // either.
8813 
8814   // If the operand is a float, integer, or vector constant, spill to a
8815   // constant pool entry to get its address.
8816   const Value *OpVal = OpInfo.CallOperandVal;
8817   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8818       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8819     OpInfo.CallOperand = DAG.getConstantPool(
8820         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8821     return Chain;
8822   }
8823 
8824   // Otherwise, create a stack slot and emit a store to it before the asm.
8825   Type *Ty = OpVal->getType();
8826   auto &DL = DAG.getDataLayout();
8827   uint64_t TySize = DL.getTypeAllocSize(Ty);
8828   MachineFunction &MF = DAG.getMachineFunction();
8829   int SSFI = MF.getFrameInfo().CreateStackObject(
8830       TySize, DL.getPrefTypeAlign(Ty), false);
8831   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8832   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8833                             MachinePointerInfo::getFixedStack(MF, SSFI),
8834                             TLI.getMemValueType(DL, Ty));
8835   OpInfo.CallOperand = StackSlot;
8836 
8837   return Chain;
8838 }
8839 
8840 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8841 /// specified operand.  We prefer to assign virtual registers, to allow the
8842 /// register allocator to handle the assignment process.  However, if the asm
8843 /// uses features that we can't model on machineinstrs, we have SDISel do the
8844 /// allocation.  This produces generally horrible, but correct, code.
8845 ///
8846 ///   OpInfo describes the operand
8847 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8848 static std::optional<unsigned>
8849 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8850                      SDISelAsmOperandInfo &OpInfo,
8851                      SDISelAsmOperandInfo &RefOpInfo) {
8852   LLVMContext &Context = *DAG.getContext();
8853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8854 
8855   MachineFunction &MF = DAG.getMachineFunction();
8856   SmallVector<unsigned, 4> Regs;
8857   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8858 
8859   // No work to do for memory/address operands.
8860   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8861       OpInfo.ConstraintType == TargetLowering::C_Address)
8862     return std::nullopt;
8863 
8864   // If this is a constraint for a single physreg, or a constraint for a
8865   // register class, find it.
8866   unsigned AssignedReg;
8867   const TargetRegisterClass *RC;
8868   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8869       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8870   // RC is unset only on failure. Return immediately.
8871   if (!RC)
8872     return std::nullopt;
8873 
8874   // Get the actual register value type.  This is important, because the user
8875   // may have asked for (e.g.) the AX register in i32 type.  We need to
8876   // remember that AX is actually i16 to get the right extension.
8877   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8878 
8879   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8880     // If this is an FP operand in an integer register (or visa versa), or more
8881     // generally if the operand value disagrees with the register class we plan
8882     // to stick it in, fix the operand type.
8883     //
8884     // If this is an input value, the bitcast to the new type is done now.
8885     // Bitcast for output value is done at the end of visitInlineAsm().
8886     if ((OpInfo.Type == InlineAsm::isOutput ||
8887          OpInfo.Type == InlineAsm::isInput) &&
8888         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8889       // Try to convert to the first EVT that the reg class contains.  If the
8890       // types are identical size, use a bitcast to convert (e.g. two differing
8891       // vector types).  Note: output bitcast is done at the end of
8892       // visitInlineAsm().
8893       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8894         // Exclude indirect inputs while they are unsupported because the code
8895         // to perform the load is missing and thus OpInfo.CallOperand still
8896         // refers to the input address rather than the pointed-to value.
8897         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8898           OpInfo.CallOperand =
8899               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8900         OpInfo.ConstraintVT = RegVT;
8901         // If the operand is an FP value and we want it in integer registers,
8902         // use the corresponding integer type. This turns an f64 value into
8903         // i64, which can be passed with two i32 values on a 32-bit machine.
8904       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8905         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8906         if (OpInfo.Type == InlineAsm::isInput)
8907           OpInfo.CallOperand =
8908               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8909         OpInfo.ConstraintVT = VT;
8910       }
8911     }
8912   }
8913 
8914   // No need to allocate a matching input constraint since the constraint it's
8915   // matching to has already been allocated.
8916   if (OpInfo.isMatchingInputConstraint())
8917     return std::nullopt;
8918 
8919   EVT ValueVT = OpInfo.ConstraintVT;
8920   if (OpInfo.ConstraintVT == MVT::Other)
8921     ValueVT = RegVT;
8922 
8923   // Initialize NumRegs.
8924   unsigned NumRegs = 1;
8925   if (OpInfo.ConstraintVT != MVT::Other)
8926     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8927 
8928   // If this is a constraint for a specific physical register, like {r17},
8929   // assign it now.
8930 
8931   // If this associated to a specific register, initialize iterator to correct
8932   // place. If virtual, make sure we have enough registers
8933 
8934   // Initialize iterator if necessary
8935   TargetRegisterClass::iterator I = RC->begin();
8936   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8937 
8938   // Do not check for single registers.
8939   if (AssignedReg) {
8940     I = std::find(I, RC->end(), AssignedReg);
8941     if (I == RC->end()) {
8942       // RC does not contain the selected register, which indicates a
8943       // mismatch between the register and the required type/bitwidth.
8944       return {AssignedReg};
8945     }
8946   }
8947 
8948   for (; NumRegs; --NumRegs, ++I) {
8949     assert(I != RC->end() && "Ran out of registers to allocate!");
8950     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8951     Regs.push_back(R);
8952   }
8953 
8954   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8955   return std::nullopt;
8956 }
8957 
8958 static unsigned
8959 findMatchingInlineAsmOperand(unsigned OperandNo,
8960                              const std::vector<SDValue> &AsmNodeOperands) {
8961   // Scan until we find the definition we already emitted of this operand.
8962   unsigned CurOp = InlineAsm::Op_FirstOperand;
8963   for (; OperandNo; --OperandNo) {
8964     // Advance to the next operand.
8965     unsigned OpFlag =
8966         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8967     assert((InlineAsm::isRegDefKind(OpFlag) ||
8968             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8969             InlineAsm::isMemKind(OpFlag)) &&
8970            "Skipped past definitions?");
8971     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8972   }
8973   return CurOp;
8974 }
8975 
8976 namespace {
8977 
8978 class ExtraFlags {
8979   unsigned Flags = 0;
8980 
8981 public:
8982   explicit ExtraFlags(const CallBase &Call) {
8983     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8984     if (IA->hasSideEffects())
8985       Flags |= InlineAsm::Extra_HasSideEffects;
8986     if (IA->isAlignStack())
8987       Flags |= InlineAsm::Extra_IsAlignStack;
8988     if (Call.isConvergent())
8989       Flags |= InlineAsm::Extra_IsConvergent;
8990     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8991   }
8992 
8993   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8994     // Ideally, we would only check against memory constraints.  However, the
8995     // meaning of an Other constraint can be target-specific and we can't easily
8996     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8997     // for Other constraints as well.
8998     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8999         OpInfo.ConstraintType == TargetLowering::C_Other) {
9000       if (OpInfo.Type == InlineAsm::isInput)
9001         Flags |= InlineAsm::Extra_MayLoad;
9002       else if (OpInfo.Type == InlineAsm::isOutput)
9003         Flags |= InlineAsm::Extra_MayStore;
9004       else if (OpInfo.Type == InlineAsm::isClobber)
9005         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9006     }
9007   }
9008 
9009   unsigned get() const { return Flags; }
9010 };
9011 
9012 } // end anonymous namespace
9013 
9014 static bool isFunction(SDValue Op) {
9015   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9016     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9017       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9018 
9019       // In normal "call dllimport func" instruction (non-inlineasm) it force
9020       // indirect access by specifing call opcode. And usually specially print
9021       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9022       // not do in this way now. (In fact, this is similar with "Data Access"
9023       // action). So here we ignore dllimport function.
9024       if (Fn && !Fn->hasDLLImportStorageClass())
9025         return true;
9026     }
9027   }
9028   return false;
9029 }
9030 
9031 /// visitInlineAsm - Handle a call to an InlineAsm object.
9032 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9033                                          const BasicBlock *EHPadBB) {
9034   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9035 
9036   /// ConstraintOperands - Information about all of the constraints.
9037   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9038 
9039   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9040   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9041       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9042 
9043   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9044   // AsmDialect, MayLoad, MayStore).
9045   bool HasSideEffect = IA->hasSideEffects();
9046   ExtraFlags ExtraInfo(Call);
9047 
9048   for (auto &T : TargetConstraints) {
9049     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9050     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9051 
9052     if (OpInfo.CallOperandVal)
9053       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9054 
9055     if (!HasSideEffect)
9056       HasSideEffect = OpInfo.hasMemory(TLI);
9057 
9058     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9059     // FIXME: Could we compute this on OpInfo rather than T?
9060 
9061     // Compute the constraint code and ConstraintType to use.
9062     TLI.ComputeConstraintToUse(T, SDValue());
9063 
9064     if (T.ConstraintType == TargetLowering::C_Immediate &&
9065         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9066       // We've delayed emitting a diagnostic like the "n" constraint because
9067       // inlining could cause an integer showing up.
9068       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9069                                           "' expects an integer constant "
9070                                           "expression");
9071 
9072     ExtraInfo.update(T);
9073   }
9074 
9075   // We won't need to flush pending loads if this asm doesn't touch
9076   // memory and is nonvolatile.
9077   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9078 
9079   bool EmitEHLabels = isa<InvokeInst>(Call);
9080   if (EmitEHLabels) {
9081     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9082   }
9083   bool IsCallBr = isa<CallBrInst>(Call);
9084 
9085   if (IsCallBr || EmitEHLabels) {
9086     // If this is a callbr or invoke we need to flush pending exports since
9087     // inlineasm_br and invoke are terminators.
9088     // We need to do this before nodes are glued to the inlineasm_br node.
9089     Chain = getControlRoot();
9090   }
9091 
9092   MCSymbol *BeginLabel = nullptr;
9093   if (EmitEHLabels) {
9094     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9095   }
9096 
9097   int OpNo = -1;
9098   SmallVector<StringRef> AsmStrs;
9099   IA->collectAsmStrs(AsmStrs);
9100 
9101   // Second pass over the constraints: compute which constraint option to use.
9102   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9103     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9104       OpNo++;
9105 
9106     // If this is an output operand with a matching input operand, look up the
9107     // matching input. If their types mismatch, e.g. one is an integer, the
9108     // other is floating point, or their sizes are different, flag it as an
9109     // error.
9110     if (OpInfo.hasMatchingInput()) {
9111       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9112       patchMatchingInput(OpInfo, Input, DAG);
9113     }
9114 
9115     // Compute the constraint code and ConstraintType to use.
9116     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9117 
9118     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9119          OpInfo.Type == InlineAsm::isClobber) ||
9120         OpInfo.ConstraintType == TargetLowering::C_Address)
9121       continue;
9122 
9123     // In Linux PIC model, there are 4 cases about value/label addressing:
9124     //
9125     // 1: Function call or Label jmp inside the module.
9126     // 2: Data access (such as global variable, static variable) inside module.
9127     // 3: Function call or Label jmp outside the module.
9128     // 4: Data access (such as global variable) outside the module.
9129     //
9130     // Due to current llvm inline asm architecture designed to not "recognize"
9131     // the asm code, there are quite troubles for us to treat mem addressing
9132     // differently for same value/adress used in different instuctions.
9133     // For example, in pic model, call a func may in plt way or direclty
9134     // pc-related, but lea/mov a function adress may use got.
9135     //
9136     // Here we try to "recognize" function call for the case 1 and case 3 in
9137     // inline asm. And try to adjust the constraint for them.
9138     //
9139     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9140     // label, so here we don't handle jmp function label now, but we need to
9141     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9142     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9143         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9144         TM.getCodeModel() != CodeModel::Large) {
9145       OpInfo.isIndirect = false;
9146       OpInfo.ConstraintType = TargetLowering::C_Address;
9147     }
9148 
9149     // If this is a memory input, and if the operand is not indirect, do what we
9150     // need to provide an address for the memory input.
9151     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9152         !OpInfo.isIndirect) {
9153       assert((OpInfo.isMultipleAlternative ||
9154               (OpInfo.Type == InlineAsm::isInput)) &&
9155              "Can only indirectify direct input operands!");
9156 
9157       // Memory operands really want the address of the value.
9158       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9159 
9160       // There is no longer a Value* corresponding to this operand.
9161       OpInfo.CallOperandVal = nullptr;
9162 
9163       // It is now an indirect operand.
9164       OpInfo.isIndirect = true;
9165     }
9166 
9167   }
9168 
9169   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9170   std::vector<SDValue> AsmNodeOperands;
9171   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9172   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9173       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9174 
9175   // If we have a !srcloc metadata node associated with it, we want to attach
9176   // this to the ultimately generated inline asm machineinstr.  To do this, we
9177   // pass in the third operand as this (potentially null) inline asm MDNode.
9178   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9179   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9180 
9181   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9182   // bits as operand 3.
9183   AsmNodeOperands.push_back(DAG.getTargetConstant(
9184       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9185 
9186   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9187   // this, assign virtual and physical registers for inputs and otput.
9188   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9189     // Assign Registers.
9190     SDISelAsmOperandInfo &RefOpInfo =
9191         OpInfo.isMatchingInputConstraint()
9192             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9193             : OpInfo;
9194     const auto RegError =
9195         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9196     if (RegError) {
9197       const MachineFunction &MF = DAG.getMachineFunction();
9198       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9199       const char *RegName = TRI.getName(*RegError);
9200       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9201                                    "' allocated for constraint '" +
9202                                    Twine(OpInfo.ConstraintCode) +
9203                                    "' does not match required type");
9204       return;
9205     }
9206 
9207     auto DetectWriteToReservedRegister = [&]() {
9208       const MachineFunction &MF = DAG.getMachineFunction();
9209       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9210       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9211         if (Register::isPhysicalRegister(Reg) &&
9212             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9213           const char *RegName = TRI.getName(Reg);
9214           emitInlineAsmError(Call, "write to reserved register '" +
9215                                        Twine(RegName) + "'");
9216           return true;
9217         }
9218       }
9219       return false;
9220     };
9221     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9222             (OpInfo.Type == InlineAsm::isInput &&
9223              !OpInfo.isMatchingInputConstraint())) &&
9224            "Only address as input operand is allowed.");
9225 
9226     switch (OpInfo.Type) {
9227     case InlineAsm::isOutput:
9228       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9229         unsigned ConstraintID =
9230             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9231         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9232                "Failed to convert memory constraint code to constraint id.");
9233 
9234         // Add information to the INLINEASM node to know about this output.
9235         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9236         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9237         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9238                                                         MVT::i32));
9239         AsmNodeOperands.push_back(OpInfo.CallOperand);
9240       } else {
9241         // Otherwise, this outputs to a register (directly for C_Register /
9242         // C_RegisterClass, and a target-defined fashion for
9243         // C_Immediate/C_Other). Find a register that we can use.
9244         if (OpInfo.AssignedRegs.Regs.empty()) {
9245           emitInlineAsmError(
9246               Call, "couldn't allocate output register for constraint '" +
9247                         Twine(OpInfo.ConstraintCode) + "'");
9248           return;
9249         }
9250 
9251         if (DetectWriteToReservedRegister())
9252           return;
9253 
9254         // Add information to the INLINEASM node to know that this register is
9255         // set.
9256         OpInfo.AssignedRegs.AddInlineAsmOperands(
9257             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9258                                   : InlineAsm::Kind_RegDef,
9259             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9260       }
9261       break;
9262 
9263     case InlineAsm::isInput:
9264     case InlineAsm::isLabel: {
9265       SDValue InOperandVal = OpInfo.CallOperand;
9266 
9267       if (OpInfo.isMatchingInputConstraint()) {
9268         // If this is required to match an output register we have already set,
9269         // just use its register.
9270         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9271                                                   AsmNodeOperands);
9272         unsigned OpFlag =
9273           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9274         if (InlineAsm::isRegDefKind(OpFlag) ||
9275             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9276           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9277           if (OpInfo.isIndirect) {
9278             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9279             emitInlineAsmError(Call, "inline asm not supported yet: "
9280                                      "don't know how to handle tied "
9281                                      "indirect register inputs");
9282             return;
9283           }
9284 
9285           SmallVector<unsigned, 4> Regs;
9286           MachineFunction &MF = DAG.getMachineFunction();
9287           MachineRegisterInfo &MRI = MF.getRegInfo();
9288           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9289           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9290           Register TiedReg = R->getReg();
9291           MVT RegVT = R->getSimpleValueType(0);
9292           const TargetRegisterClass *RC =
9293               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9294               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9295                                       : TRI.getMinimalPhysRegClass(TiedReg);
9296           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9297           for (unsigned i = 0; i != NumRegs; ++i)
9298             Regs.push_back(MRI.createVirtualRegister(RC));
9299 
9300           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9301 
9302           SDLoc dl = getCurSDLoc();
9303           // Use the produced MatchedRegs object to
9304           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9305           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9306                                            true, OpInfo.getMatchedOperand(), dl,
9307                                            DAG, AsmNodeOperands);
9308           break;
9309         }
9310 
9311         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9312         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9313                "Unexpected number of operands");
9314         // Add information to the INLINEASM node to know about this input.
9315         // See InlineAsm.h isUseOperandTiedToDef.
9316         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9317         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9318                                                     OpInfo.getMatchedOperand());
9319         AsmNodeOperands.push_back(DAG.getTargetConstant(
9320             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9321         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9322         break;
9323       }
9324 
9325       // Treat indirect 'X' constraint as memory.
9326       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9327           OpInfo.isIndirect)
9328         OpInfo.ConstraintType = TargetLowering::C_Memory;
9329 
9330       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9331           OpInfo.ConstraintType == TargetLowering::C_Other) {
9332         std::vector<SDValue> Ops;
9333         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9334                                           Ops, DAG);
9335         if (Ops.empty()) {
9336           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9337             if (isa<ConstantSDNode>(InOperandVal)) {
9338               emitInlineAsmError(Call, "value out of range for constraint '" +
9339                                            Twine(OpInfo.ConstraintCode) + "'");
9340               return;
9341             }
9342 
9343           emitInlineAsmError(Call,
9344                              "invalid operand for inline asm constraint '" +
9345                                  Twine(OpInfo.ConstraintCode) + "'");
9346           return;
9347         }
9348 
9349         // Add information to the INLINEASM node to know about this input.
9350         unsigned ResOpType =
9351           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9352         AsmNodeOperands.push_back(DAG.getTargetConstant(
9353             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9354         llvm::append_range(AsmNodeOperands, Ops);
9355         break;
9356       }
9357 
9358       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9359         assert((OpInfo.isIndirect ||
9360                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9361                "Operand must be indirect to be a mem!");
9362         assert(InOperandVal.getValueType() ==
9363                    TLI.getPointerTy(DAG.getDataLayout()) &&
9364                "Memory operands expect pointer values");
9365 
9366         unsigned ConstraintID =
9367             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9368         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9369                "Failed to convert memory constraint code to constraint id.");
9370 
9371         // Add information to the INLINEASM node to know about this input.
9372         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9373         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9374         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9375                                                         getCurSDLoc(),
9376                                                         MVT::i32));
9377         AsmNodeOperands.push_back(InOperandVal);
9378         break;
9379       }
9380 
9381       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9382         unsigned ConstraintID =
9383             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9384         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9385                "Failed to convert memory constraint code to constraint id.");
9386 
9387         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9388 
9389         SDValue AsmOp = InOperandVal;
9390         if (isFunction(InOperandVal)) {
9391           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9392           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9393           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9394                                              InOperandVal.getValueType(),
9395                                              GA->getOffset());
9396         }
9397 
9398         // Add information to the INLINEASM node to know about this input.
9399         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9400 
9401         AsmNodeOperands.push_back(
9402             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9403 
9404         AsmNodeOperands.push_back(AsmOp);
9405         break;
9406       }
9407 
9408       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9409               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9410              "Unknown constraint type!");
9411 
9412       // TODO: Support this.
9413       if (OpInfo.isIndirect) {
9414         emitInlineAsmError(
9415             Call, "Don't know how to handle indirect register inputs yet "
9416                   "for constraint '" +
9417                       Twine(OpInfo.ConstraintCode) + "'");
9418         return;
9419       }
9420 
9421       // Copy the input into the appropriate registers.
9422       if (OpInfo.AssignedRegs.Regs.empty()) {
9423         emitInlineAsmError(Call,
9424                            "couldn't allocate input reg for constraint '" +
9425                                Twine(OpInfo.ConstraintCode) + "'");
9426         return;
9427       }
9428 
9429       if (DetectWriteToReservedRegister())
9430         return;
9431 
9432       SDLoc dl = getCurSDLoc();
9433 
9434       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9435                                         &Call);
9436 
9437       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9438                                                dl, DAG, AsmNodeOperands);
9439       break;
9440     }
9441     case InlineAsm::isClobber:
9442       // Add the clobbered value to the operand list, so that the register
9443       // allocator is aware that the physreg got clobbered.
9444       if (!OpInfo.AssignedRegs.Regs.empty())
9445         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9446                                                  false, 0, getCurSDLoc(), DAG,
9447                                                  AsmNodeOperands);
9448       break;
9449     }
9450   }
9451 
9452   // Finish up input operands.  Set the input chain and add the flag last.
9453   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9454   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9455 
9456   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9457   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9458                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9459   Glue = Chain.getValue(1);
9460 
9461   // Do additional work to generate outputs.
9462 
9463   SmallVector<EVT, 1> ResultVTs;
9464   SmallVector<SDValue, 1> ResultValues;
9465   SmallVector<SDValue, 8> OutChains;
9466 
9467   llvm::Type *CallResultType = Call.getType();
9468   ArrayRef<Type *> ResultTypes;
9469   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9470     ResultTypes = StructResult->elements();
9471   else if (!CallResultType->isVoidTy())
9472     ResultTypes = ArrayRef(CallResultType);
9473 
9474   auto CurResultType = ResultTypes.begin();
9475   auto handleRegAssign = [&](SDValue V) {
9476     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9477     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9478     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9479     ++CurResultType;
9480     // If the type of the inline asm call site return value is different but has
9481     // same size as the type of the asm output bitcast it.  One example of this
9482     // is for vectors with different width / number of elements.  This can
9483     // happen for register classes that can contain multiple different value
9484     // types.  The preg or vreg allocated may not have the same VT as was
9485     // expected.
9486     //
9487     // This can also happen for a return value that disagrees with the register
9488     // class it is put in, eg. a double in a general-purpose register on a
9489     // 32-bit machine.
9490     if (ResultVT != V.getValueType() &&
9491         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9492       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9493     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9494              V.getValueType().isInteger()) {
9495       // If a result value was tied to an input value, the computed result
9496       // may have a wider width than the expected result.  Extract the
9497       // relevant portion.
9498       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9499     }
9500     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9501     ResultVTs.push_back(ResultVT);
9502     ResultValues.push_back(V);
9503   };
9504 
9505   // Deal with output operands.
9506   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9507     if (OpInfo.Type == InlineAsm::isOutput) {
9508       SDValue Val;
9509       // Skip trivial output operands.
9510       if (OpInfo.AssignedRegs.Regs.empty())
9511         continue;
9512 
9513       switch (OpInfo.ConstraintType) {
9514       case TargetLowering::C_Register:
9515       case TargetLowering::C_RegisterClass:
9516         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9517                                                   Chain, &Glue, &Call);
9518         break;
9519       case TargetLowering::C_Immediate:
9520       case TargetLowering::C_Other:
9521         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9522                                               OpInfo, DAG);
9523         break;
9524       case TargetLowering::C_Memory:
9525         break; // Already handled.
9526       case TargetLowering::C_Address:
9527         break; // Silence warning.
9528       case TargetLowering::C_Unknown:
9529         assert(false && "Unexpected unknown constraint");
9530       }
9531 
9532       // Indirect output manifest as stores. Record output chains.
9533       if (OpInfo.isIndirect) {
9534         const Value *Ptr = OpInfo.CallOperandVal;
9535         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9536         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9537                                      MachinePointerInfo(Ptr));
9538         OutChains.push_back(Store);
9539       } else {
9540         // generate CopyFromRegs to associated registers.
9541         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9542         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9543           for (const SDValue &V : Val->op_values())
9544             handleRegAssign(V);
9545         } else
9546           handleRegAssign(Val);
9547       }
9548     }
9549   }
9550 
9551   // Set results.
9552   if (!ResultValues.empty()) {
9553     assert(CurResultType == ResultTypes.end() &&
9554            "Mismatch in number of ResultTypes");
9555     assert(ResultValues.size() == ResultTypes.size() &&
9556            "Mismatch in number of output operands in asm result");
9557 
9558     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9559                             DAG.getVTList(ResultVTs), ResultValues);
9560     setValue(&Call, V);
9561   }
9562 
9563   // Collect store chains.
9564   if (!OutChains.empty())
9565     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9566 
9567   if (EmitEHLabels) {
9568     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9569   }
9570 
9571   // Only Update Root if inline assembly has a memory effect.
9572   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9573       EmitEHLabels)
9574     DAG.setRoot(Chain);
9575 }
9576 
9577 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9578                                              const Twine &Message) {
9579   LLVMContext &Ctx = *DAG.getContext();
9580   Ctx.emitError(&Call, Message);
9581 
9582   // Make sure we leave the DAG in a valid state
9583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9584   SmallVector<EVT, 1> ValueVTs;
9585   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9586 
9587   if (ValueVTs.empty())
9588     return;
9589 
9590   SmallVector<SDValue, 1> Ops;
9591   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9592     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9593 
9594   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9595 }
9596 
9597 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9598   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9599                           MVT::Other, getRoot(),
9600                           getValue(I.getArgOperand(0)),
9601                           DAG.getSrcValue(I.getArgOperand(0))));
9602 }
9603 
9604 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9605   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9606   const DataLayout &DL = DAG.getDataLayout();
9607   SDValue V = DAG.getVAArg(
9608       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9609       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9610       DL.getABITypeAlign(I.getType()).value());
9611   DAG.setRoot(V.getValue(1));
9612 
9613   if (I.getType()->isPointerTy())
9614     V = DAG.getPtrExtOrTrunc(
9615         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9616   setValue(&I, V);
9617 }
9618 
9619 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9620   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9621                           MVT::Other, getRoot(),
9622                           getValue(I.getArgOperand(0)),
9623                           DAG.getSrcValue(I.getArgOperand(0))));
9624 }
9625 
9626 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9627   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9628                           MVT::Other, getRoot(),
9629                           getValue(I.getArgOperand(0)),
9630                           getValue(I.getArgOperand(1)),
9631                           DAG.getSrcValue(I.getArgOperand(0)),
9632                           DAG.getSrcValue(I.getArgOperand(1))));
9633 }
9634 
9635 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9636                                                     const Instruction &I,
9637                                                     SDValue Op) {
9638   const MDNode *Range = getRangeMetadata(I);
9639   if (!Range)
9640     return Op;
9641 
9642   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9643   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9644     return Op;
9645 
9646   APInt Lo = CR.getUnsignedMin();
9647   if (!Lo.isMinValue())
9648     return Op;
9649 
9650   APInt Hi = CR.getUnsignedMax();
9651   unsigned Bits = std::max(Hi.getActiveBits(),
9652                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9653 
9654   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9655 
9656   SDLoc SL = getCurSDLoc();
9657 
9658   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9659                              DAG.getValueType(SmallVT));
9660   unsigned NumVals = Op.getNode()->getNumValues();
9661   if (NumVals == 1)
9662     return ZExt;
9663 
9664   SmallVector<SDValue, 4> Ops;
9665 
9666   Ops.push_back(ZExt);
9667   for (unsigned I = 1; I != NumVals; ++I)
9668     Ops.push_back(Op.getValue(I));
9669 
9670   return DAG.getMergeValues(Ops, SL);
9671 }
9672 
9673 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9674 /// the call being lowered.
9675 ///
9676 /// This is a helper for lowering intrinsics that follow a target calling
9677 /// convention or require stack pointer adjustment. Only a subset of the
9678 /// intrinsic's operands need to participate in the calling convention.
9679 void SelectionDAGBuilder::populateCallLoweringInfo(
9680     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9681     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9682     bool IsPatchPoint) {
9683   TargetLowering::ArgListTy Args;
9684   Args.reserve(NumArgs);
9685 
9686   // Populate the argument list.
9687   // Attributes for args start at offset 1, after the return attribute.
9688   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9689        ArgI != ArgE; ++ArgI) {
9690     const Value *V = Call->getOperand(ArgI);
9691 
9692     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9693 
9694     TargetLowering::ArgListEntry Entry;
9695     Entry.Node = getValue(V);
9696     Entry.Ty = V->getType();
9697     Entry.setAttributes(Call, ArgI);
9698     Args.push_back(Entry);
9699   }
9700 
9701   CLI.setDebugLoc(getCurSDLoc())
9702       .setChain(getRoot())
9703       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9704       .setDiscardResult(Call->use_empty())
9705       .setIsPatchPoint(IsPatchPoint)
9706       .setIsPreallocated(
9707           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9708 }
9709 
9710 /// Add a stack map intrinsic call's live variable operands to a stackmap
9711 /// or patchpoint target node's operand list.
9712 ///
9713 /// Constants are converted to TargetConstants purely as an optimization to
9714 /// avoid constant materialization and register allocation.
9715 ///
9716 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9717 /// generate addess computation nodes, and so FinalizeISel can convert the
9718 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9719 /// address materialization and register allocation, but may also be required
9720 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9721 /// alloca in the entry block, then the runtime may assume that the alloca's
9722 /// StackMap location can be read immediately after compilation and that the
9723 /// location is valid at any point during execution (this is similar to the
9724 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9725 /// only available in a register, then the runtime would need to trap when
9726 /// execution reaches the StackMap in order to read the alloca's location.
9727 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9728                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9729                                 SelectionDAGBuilder &Builder) {
9730   SelectionDAG &DAG = Builder.DAG;
9731   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9732     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9733 
9734     // Things on the stack are pointer-typed, meaning that they are already
9735     // legal and can be emitted directly to target nodes.
9736     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9737       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9738     } else {
9739       // Otherwise emit a target independent node to be legalised.
9740       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9741     }
9742   }
9743 }
9744 
9745 /// Lower llvm.experimental.stackmap.
9746 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9747   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9748   //                                  [live variables...])
9749 
9750   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9751 
9752   SDValue Chain, InGlue, Callee;
9753   SmallVector<SDValue, 32> Ops;
9754 
9755   SDLoc DL = getCurSDLoc();
9756   Callee = getValue(CI.getCalledOperand());
9757 
9758   // The stackmap intrinsic only records the live variables (the arguments
9759   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9760   // intrinsic, this won't be lowered to a function call. This means we don't
9761   // have to worry about calling conventions and target specific lowering code.
9762   // Instead we perform the call lowering right here.
9763   //
9764   // chain, flag = CALLSEQ_START(chain, 0, 0)
9765   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9766   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9767   //
9768   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9769   InGlue = Chain.getValue(1);
9770 
9771   // Add the STACKMAP operands, starting with DAG house-keeping.
9772   Ops.push_back(Chain);
9773   Ops.push_back(InGlue);
9774 
9775   // Add the <id>, <numShadowBytes> operands.
9776   //
9777   // These do not require legalisation, and can be emitted directly to target
9778   // constant nodes.
9779   SDValue ID = getValue(CI.getArgOperand(0));
9780   assert(ID.getValueType() == MVT::i64);
9781   SDValue IDConst = DAG.getTargetConstant(
9782       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9783   Ops.push_back(IDConst);
9784 
9785   SDValue Shad = getValue(CI.getArgOperand(1));
9786   assert(Shad.getValueType() == MVT::i32);
9787   SDValue ShadConst = DAG.getTargetConstant(
9788       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9789   Ops.push_back(ShadConst);
9790 
9791   // Add the live variables.
9792   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9793 
9794   // Create the STACKMAP node.
9795   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9796   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9797   InGlue = Chain.getValue(1);
9798 
9799   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
9800 
9801   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9802 
9803   // Set the root to the target-lowered call chain.
9804   DAG.setRoot(Chain);
9805 
9806   // Inform the Frame Information that we have a stackmap in this function.
9807   FuncInfo.MF->getFrameInfo().setHasStackMap();
9808 }
9809 
9810 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9811 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9812                                           const BasicBlock *EHPadBB) {
9813   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9814   //                                                 i32 <numBytes>,
9815   //                                                 i8* <target>,
9816   //                                                 i32 <numArgs>,
9817   //                                                 [Args...],
9818   //                                                 [live variables...])
9819 
9820   CallingConv::ID CC = CB.getCallingConv();
9821   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9822   bool HasDef = !CB.getType()->isVoidTy();
9823   SDLoc dl = getCurSDLoc();
9824   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9825 
9826   // Handle immediate and symbolic callees.
9827   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9828     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9829                                    /*isTarget=*/true);
9830   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9831     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9832                                          SDLoc(SymbolicCallee),
9833                                          SymbolicCallee->getValueType(0));
9834 
9835   // Get the real number of arguments participating in the call <numArgs>
9836   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9837   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9838 
9839   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9840   // Intrinsics include all meta-operands up to but not including CC.
9841   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9842   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9843          "Not enough arguments provided to the patchpoint intrinsic");
9844 
9845   // For AnyRegCC the arguments are lowered later on manually.
9846   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9847   Type *ReturnTy =
9848       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9849 
9850   TargetLowering::CallLoweringInfo CLI(DAG);
9851   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9852                            ReturnTy, true);
9853   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9854 
9855   SDNode *CallEnd = Result.second.getNode();
9856   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9857     CallEnd = CallEnd->getOperand(0).getNode();
9858 
9859   /// Get a call instruction from the call sequence chain.
9860   /// Tail calls are not allowed.
9861   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9862          "Expected a callseq node.");
9863   SDNode *Call = CallEnd->getOperand(0).getNode();
9864   bool HasGlue = Call->getGluedNode();
9865 
9866   // Replace the target specific call node with the patchable intrinsic.
9867   SmallVector<SDValue, 8> Ops;
9868 
9869   // Push the chain.
9870   Ops.push_back(*(Call->op_begin()));
9871 
9872   // Optionally, push the glue (if any).
9873   if (HasGlue)
9874     Ops.push_back(*(Call->op_end() - 1));
9875 
9876   // Push the register mask info.
9877   if (HasGlue)
9878     Ops.push_back(*(Call->op_end() - 2));
9879   else
9880     Ops.push_back(*(Call->op_end() - 1));
9881 
9882   // Add the <id> and <numBytes> constants.
9883   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9884   Ops.push_back(DAG.getTargetConstant(
9885                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9886   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9887   Ops.push_back(DAG.getTargetConstant(
9888                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9889                   MVT::i32));
9890 
9891   // Add the callee.
9892   Ops.push_back(Callee);
9893 
9894   // Adjust <numArgs> to account for any arguments that have been passed on the
9895   // stack instead.
9896   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9897   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9898   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9899   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9900 
9901   // Add the calling convention
9902   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9903 
9904   // Add the arguments we omitted previously. The register allocator should
9905   // place these in any free register.
9906   if (IsAnyRegCC)
9907     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9908       Ops.push_back(getValue(CB.getArgOperand(i)));
9909 
9910   // Push the arguments from the call instruction.
9911   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9912   Ops.append(Call->op_begin() + 2, e);
9913 
9914   // Push live variables for the stack map.
9915   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9916 
9917   SDVTList NodeTys;
9918   if (IsAnyRegCC && HasDef) {
9919     // Create the return types based on the intrinsic definition
9920     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9921     SmallVector<EVT, 3> ValueVTs;
9922     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9923     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9924 
9925     // There is always a chain and a glue type at the end
9926     ValueVTs.push_back(MVT::Other);
9927     ValueVTs.push_back(MVT::Glue);
9928     NodeTys = DAG.getVTList(ValueVTs);
9929   } else
9930     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9931 
9932   // Replace the target specific call node with a PATCHPOINT node.
9933   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9934 
9935   // Update the NodeMap.
9936   if (HasDef) {
9937     if (IsAnyRegCC)
9938       setValue(&CB, SDValue(PPV.getNode(), 0));
9939     else
9940       setValue(&CB, Result.first);
9941   }
9942 
9943   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9944   // call sequence. Furthermore the location of the chain and glue can change
9945   // when the AnyReg calling convention is used and the intrinsic returns a
9946   // value.
9947   if (IsAnyRegCC && HasDef) {
9948     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9949     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9950     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9951   } else
9952     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9953   DAG.DeleteNode(Call);
9954 
9955   // Inform the Frame Information that we have a patchpoint in this function.
9956   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9957 }
9958 
9959 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9960                                             unsigned Intrinsic) {
9961   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9962   SDValue Op1 = getValue(I.getArgOperand(0));
9963   SDValue Op2;
9964   if (I.arg_size() > 1)
9965     Op2 = getValue(I.getArgOperand(1));
9966   SDLoc dl = getCurSDLoc();
9967   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9968   SDValue Res;
9969   SDNodeFlags SDFlags;
9970   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9971     SDFlags.copyFMF(*FPMO);
9972 
9973   switch (Intrinsic) {
9974   case Intrinsic::vector_reduce_fadd:
9975     if (SDFlags.hasAllowReassociation())
9976       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9977                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9978                         SDFlags);
9979     else
9980       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9981     break;
9982   case Intrinsic::vector_reduce_fmul:
9983     if (SDFlags.hasAllowReassociation())
9984       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9985                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9986                         SDFlags);
9987     else
9988       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9989     break;
9990   case Intrinsic::vector_reduce_add:
9991     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9992     break;
9993   case Intrinsic::vector_reduce_mul:
9994     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9995     break;
9996   case Intrinsic::vector_reduce_and:
9997     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9998     break;
9999   case Intrinsic::vector_reduce_or:
10000     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10001     break;
10002   case Intrinsic::vector_reduce_xor:
10003     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10004     break;
10005   case Intrinsic::vector_reduce_smax:
10006     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10007     break;
10008   case Intrinsic::vector_reduce_smin:
10009     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10010     break;
10011   case Intrinsic::vector_reduce_umax:
10012     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10013     break;
10014   case Intrinsic::vector_reduce_umin:
10015     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10016     break;
10017   case Intrinsic::vector_reduce_fmax:
10018     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10019     break;
10020   case Intrinsic::vector_reduce_fmin:
10021     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10022     break;
10023   case Intrinsic::vector_reduce_fmaximum:
10024     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10025     break;
10026   case Intrinsic::vector_reduce_fminimum:
10027     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10028     break;
10029   default:
10030     llvm_unreachable("Unhandled vector reduce intrinsic");
10031   }
10032   setValue(&I, Res);
10033 }
10034 
10035 /// Returns an AttributeList representing the attributes applied to the return
10036 /// value of the given call.
10037 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10038   SmallVector<Attribute::AttrKind, 2> Attrs;
10039   if (CLI.RetSExt)
10040     Attrs.push_back(Attribute::SExt);
10041   if (CLI.RetZExt)
10042     Attrs.push_back(Attribute::ZExt);
10043   if (CLI.IsInReg)
10044     Attrs.push_back(Attribute::InReg);
10045 
10046   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10047                             Attrs);
10048 }
10049 
10050 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10051 /// implementation, which just calls LowerCall.
10052 /// FIXME: When all targets are
10053 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10054 std::pair<SDValue, SDValue>
10055 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10056   // Handle the incoming return values from the call.
10057   CLI.Ins.clear();
10058   Type *OrigRetTy = CLI.RetTy;
10059   SmallVector<EVT, 4> RetTys;
10060   SmallVector<uint64_t, 4> Offsets;
10061   auto &DL = CLI.DAG.getDataLayout();
10062   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10063 
10064   if (CLI.IsPostTypeLegalization) {
10065     // If we are lowering a libcall after legalization, split the return type.
10066     SmallVector<EVT, 4> OldRetTys;
10067     SmallVector<uint64_t, 4> OldOffsets;
10068     RetTys.swap(OldRetTys);
10069     Offsets.swap(OldOffsets);
10070 
10071     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10072       EVT RetVT = OldRetTys[i];
10073       uint64_t Offset = OldOffsets[i];
10074       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10075       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10076       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10077       RetTys.append(NumRegs, RegisterVT);
10078       for (unsigned j = 0; j != NumRegs; ++j)
10079         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10080     }
10081   }
10082 
10083   SmallVector<ISD::OutputArg, 4> Outs;
10084   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10085 
10086   bool CanLowerReturn =
10087       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10088                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10089 
10090   SDValue DemoteStackSlot;
10091   int DemoteStackIdx = -100;
10092   if (!CanLowerReturn) {
10093     // FIXME: equivalent assert?
10094     // assert(!CS.hasInAllocaArgument() &&
10095     //        "sret demotion is incompatible with inalloca");
10096     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10097     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10098     MachineFunction &MF = CLI.DAG.getMachineFunction();
10099     DemoteStackIdx =
10100         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10101     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10102                                               DL.getAllocaAddrSpace());
10103 
10104     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10105     ArgListEntry Entry;
10106     Entry.Node = DemoteStackSlot;
10107     Entry.Ty = StackSlotPtrType;
10108     Entry.IsSExt = false;
10109     Entry.IsZExt = false;
10110     Entry.IsInReg = false;
10111     Entry.IsSRet = true;
10112     Entry.IsNest = false;
10113     Entry.IsByVal = false;
10114     Entry.IsByRef = false;
10115     Entry.IsReturned = false;
10116     Entry.IsSwiftSelf = false;
10117     Entry.IsSwiftAsync = false;
10118     Entry.IsSwiftError = false;
10119     Entry.IsCFGuardTarget = false;
10120     Entry.Alignment = Alignment;
10121     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10122     CLI.NumFixedArgs += 1;
10123     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10124     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10125 
10126     // sret demotion isn't compatible with tail-calls, since the sret argument
10127     // points into the callers stack frame.
10128     CLI.IsTailCall = false;
10129   } else {
10130     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10131         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10132     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10133       ISD::ArgFlagsTy Flags;
10134       if (NeedsRegBlock) {
10135         Flags.setInConsecutiveRegs();
10136         if (I == RetTys.size() - 1)
10137           Flags.setInConsecutiveRegsLast();
10138       }
10139       EVT VT = RetTys[I];
10140       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10141                                                      CLI.CallConv, VT);
10142       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10143                                                        CLI.CallConv, VT);
10144       for (unsigned i = 0; i != NumRegs; ++i) {
10145         ISD::InputArg MyFlags;
10146         MyFlags.Flags = Flags;
10147         MyFlags.VT = RegisterVT;
10148         MyFlags.ArgVT = VT;
10149         MyFlags.Used = CLI.IsReturnValueUsed;
10150         if (CLI.RetTy->isPointerTy()) {
10151           MyFlags.Flags.setPointer();
10152           MyFlags.Flags.setPointerAddrSpace(
10153               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10154         }
10155         if (CLI.RetSExt)
10156           MyFlags.Flags.setSExt();
10157         if (CLI.RetZExt)
10158           MyFlags.Flags.setZExt();
10159         if (CLI.IsInReg)
10160           MyFlags.Flags.setInReg();
10161         CLI.Ins.push_back(MyFlags);
10162       }
10163     }
10164   }
10165 
10166   // We push in swifterror return as the last element of CLI.Ins.
10167   ArgListTy &Args = CLI.getArgs();
10168   if (supportSwiftError()) {
10169     for (const ArgListEntry &Arg : Args) {
10170       if (Arg.IsSwiftError) {
10171         ISD::InputArg MyFlags;
10172         MyFlags.VT = getPointerTy(DL);
10173         MyFlags.ArgVT = EVT(getPointerTy(DL));
10174         MyFlags.Flags.setSwiftError();
10175         CLI.Ins.push_back(MyFlags);
10176       }
10177     }
10178   }
10179 
10180   // Handle all of the outgoing arguments.
10181   CLI.Outs.clear();
10182   CLI.OutVals.clear();
10183   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10184     SmallVector<EVT, 4> ValueVTs;
10185     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10186     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10187     Type *FinalType = Args[i].Ty;
10188     if (Args[i].IsByVal)
10189       FinalType = Args[i].IndirectType;
10190     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10191         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10192     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10193          ++Value) {
10194       EVT VT = ValueVTs[Value];
10195       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10196       SDValue Op = SDValue(Args[i].Node.getNode(),
10197                            Args[i].Node.getResNo() + Value);
10198       ISD::ArgFlagsTy Flags;
10199 
10200       // Certain targets (such as MIPS), may have a different ABI alignment
10201       // for a type depending on the context. Give the target a chance to
10202       // specify the alignment it wants.
10203       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10204       Flags.setOrigAlign(OriginalAlignment);
10205 
10206       if (Args[i].Ty->isPointerTy()) {
10207         Flags.setPointer();
10208         Flags.setPointerAddrSpace(
10209             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10210       }
10211       if (Args[i].IsZExt)
10212         Flags.setZExt();
10213       if (Args[i].IsSExt)
10214         Flags.setSExt();
10215       if (Args[i].IsInReg) {
10216         // If we are using vectorcall calling convention, a structure that is
10217         // passed InReg - is surely an HVA
10218         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10219             isa<StructType>(FinalType)) {
10220           // The first value of a structure is marked
10221           if (0 == Value)
10222             Flags.setHvaStart();
10223           Flags.setHva();
10224         }
10225         // Set InReg Flag
10226         Flags.setInReg();
10227       }
10228       if (Args[i].IsSRet)
10229         Flags.setSRet();
10230       if (Args[i].IsSwiftSelf)
10231         Flags.setSwiftSelf();
10232       if (Args[i].IsSwiftAsync)
10233         Flags.setSwiftAsync();
10234       if (Args[i].IsSwiftError)
10235         Flags.setSwiftError();
10236       if (Args[i].IsCFGuardTarget)
10237         Flags.setCFGuardTarget();
10238       if (Args[i].IsByVal)
10239         Flags.setByVal();
10240       if (Args[i].IsByRef)
10241         Flags.setByRef();
10242       if (Args[i].IsPreallocated) {
10243         Flags.setPreallocated();
10244         // Set the byval flag for CCAssignFn callbacks that don't know about
10245         // preallocated.  This way we can know how many bytes we should've
10246         // allocated and how many bytes a callee cleanup function will pop.  If
10247         // we port preallocated to more targets, we'll have to add custom
10248         // preallocated handling in the various CC lowering callbacks.
10249         Flags.setByVal();
10250       }
10251       if (Args[i].IsInAlloca) {
10252         Flags.setInAlloca();
10253         // Set the byval flag for CCAssignFn callbacks that don't know about
10254         // inalloca.  This way we can know how many bytes we should've allocated
10255         // and how many bytes a callee cleanup function will pop.  If we port
10256         // inalloca to more targets, we'll have to add custom inalloca handling
10257         // in the various CC lowering callbacks.
10258         Flags.setByVal();
10259       }
10260       Align MemAlign;
10261       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10262         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10263         Flags.setByValSize(FrameSize);
10264 
10265         // info is not there but there are cases it cannot get right.
10266         if (auto MA = Args[i].Alignment)
10267           MemAlign = *MA;
10268         else
10269           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10270       } else if (auto MA = Args[i].Alignment) {
10271         MemAlign = *MA;
10272       } else {
10273         MemAlign = OriginalAlignment;
10274       }
10275       Flags.setMemAlign(MemAlign);
10276       if (Args[i].IsNest)
10277         Flags.setNest();
10278       if (NeedsRegBlock)
10279         Flags.setInConsecutiveRegs();
10280 
10281       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10282                                                  CLI.CallConv, VT);
10283       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10284                                                         CLI.CallConv, VT);
10285       SmallVector<SDValue, 4> Parts(NumParts);
10286       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10287 
10288       if (Args[i].IsSExt)
10289         ExtendKind = ISD::SIGN_EXTEND;
10290       else if (Args[i].IsZExt)
10291         ExtendKind = ISD::ZERO_EXTEND;
10292 
10293       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10294       // for now.
10295       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10296           CanLowerReturn) {
10297         assert((CLI.RetTy == Args[i].Ty ||
10298                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10299                  CLI.RetTy->getPointerAddressSpace() ==
10300                      Args[i].Ty->getPointerAddressSpace())) &&
10301                RetTys.size() == NumValues && "unexpected use of 'returned'");
10302         // Before passing 'returned' to the target lowering code, ensure that
10303         // either the register MVT and the actual EVT are the same size or that
10304         // the return value and argument are extended in the same way; in these
10305         // cases it's safe to pass the argument register value unchanged as the
10306         // return register value (although it's at the target's option whether
10307         // to do so)
10308         // TODO: allow code generation to take advantage of partially preserved
10309         // registers rather than clobbering the entire register when the
10310         // parameter extension method is not compatible with the return
10311         // extension method
10312         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10313             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10314              CLI.RetZExt == Args[i].IsZExt))
10315           Flags.setReturned();
10316       }
10317 
10318       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10319                      CLI.CallConv, ExtendKind);
10320 
10321       for (unsigned j = 0; j != NumParts; ++j) {
10322         // if it isn't first piece, alignment must be 1
10323         // For scalable vectors the scalable part is currently handled
10324         // by individual targets, so we just use the known minimum size here.
10325         ISD::OutputArg MyFlags(
10326             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10327             i < CLI.NumFixedArgs, i,
10328             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10329         if (NumParts > 1 && j == 0)
10330           MyFlags.Flags.setSplit();
10331         else if (j != 0) {
10332           MyFlags.Flags.setOrigAlign(Align(1));
10333           if (j == NumParts - 1)
10334             MyFlags.Flags.setSplitEnd();
10335         }
10336 
10337         CLI.Outs.push_back(MyFlags);
10338         CLI.OutVals.push_back(Parts[j]);
10339       }
10340 
10341       if (NeedsRegBlock && Value == NumValues - 1)
10342         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10343     }
10344   }
10345 
10346   SmallVector<SDValue, 4> InVals;
10347   CLI.Chain = LowerCall(CLI, InVals);
10348 
10349   // Update CLI.InVals to use outside of this function.
10350   CLI.InVals = InVals;
10351 
10352   // Verify that the target's LowerCall behaved as expected.
10353   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10354          "LowerCall didn't return a valid chain!");
10355   assert((!CLI.IsTailCall || InVals.empty()) &&
10356          "LowerCall emitted a return value for a tail call!");
10357   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10358          "LowerCall didn't emit the correct number of values!");
10359 
10360   // For a tail call, the return value is merely live-out and there aren't
10361   // any nodes in the DAG representing it. Return a special value to
10362   // indicate that a tail call has been emitted and no more Instructions
10363   // should be processed in the current block.
10364   if (CLI.IsTailCall) {
10365     CLI.DAG.setRoot(CLI.Chain);
10366     return std::make_pair(SDValue(), SDValue());
10367   }
10368 
10369 #ifndef NDEBUG
10370   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10371     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10372     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10373            "LowerCall emitted a value with the wrong type!");
10374   }
10375 #endif
10376 
10377   SmallVector<SDValue, 4> ReturnValues;
10378   if (!CanLowerReturn) {
10379     // The instruction result is the result of loading from the
10380     // hidden sret parameter.
10381     SmallVector<EVT, 1> PVTs;
10382     Type *PtrRetTy =
10383         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10384 
10385     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10386     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10387     EVT PtrVT = PVTs[0];
10388 
10389     unsigned NumValues = RetTys.size();
10390     ReturnValues.resize(NumValues);
10391     SmallVector<SDValue, 4> Chains(NumValues);
10392 
10393     // An aggregate return value cannot wrap around the address space, so
10394     // offsets to its parts don't wrap either.
10395     SDNodeFlags Flags;
10396     Flags.setNoUnsignedWrap(true);
10397 
10398     MachineFunction &MF = CLI.DAG.getMachineFunction();
10399     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10400     for (unsigned i = 0; i < NumValues; ++i) {
10401       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10402                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10403                                                         PtrVT), Flags);
10404       SDValue L = CLI.DAG.getLoad(
10405           RetTys[i], CLI.DL, CLI.Chain, Add,
10406           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10407                                             DemoteStackIdx, Offsets[i]),
10408           HiddenSRetAlign);
10409       ReturnValues[i] = L;
10410       Chains[i] = L.getValue(1);
10411     }
10412 
10413     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10414   } else {
10415     // Collect the legal value parts into potentially illegal values
10416     // that correspond to the original function's return values.
10417     std::optional<ISD::NodeType> AssertOp;
10418     if (CLI.RetSExt)
10419       AssertOp = ISD::AssertSext;
10420     else if (CLI.RetZExt)
10421       AssertOp = ISD::AssertZext;
10422     unsigned CurReg = 0;
10423     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10424       EVT VT = RetTys[I];
10425       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10426                                                      CLI.CallConv, VT);
10427       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10428                                                        CLI.CallConv, VT);
10429 
10430       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10431                                               NumRegs, RegisterVT, VT, nullptr,
10432                                               CLI.CallConv, AssertOp));
10433       CurReg += NumRegs;
10434     }
10435 
10436     // For a function returning void, there is no return value. We can't create
10437     // such a node, so we just return a null return value in that case. In
10438     // that case, nothing will actually look at the value.
10439     if (ReturnValues.empty())
10440       return std::make_pair(SDValue(), CLI.Chain);
10441   }
10442 
10443   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10444                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10445   return std::make_pair(Res, CLI.Chain);
10446 }
10447 
10448 /// Places new result values for the node in Results (their number
10449 /// and types must exactly match those of the original return values of
10450 /// the node), or leaves Results empty, which indicates that the node is not
10451 /// to be custom lowered after all.
10452 void TargetLowering::LowerOperationWrapper(SDNode *N,
10453                                            SmallVectorImpl<SDValue> &Results,
10454                                            SelectionDAG &DAG) const {
10455   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10456 
10457   if (!Res.getNode())
10458     return;
10459 
10460   // If the original node has one result, take the return value from
10461   // LowerOperation as is. It might not be result number 0.
10462   if (N->getNumValues() == 1) {
10463     Results.push_back(Res);
10464     return;
10465   }
10466 
10467   // If the original node has multiple results, then the return node should
10468   // have the same number of results.
10469   assert((N->getNumValues() == Res->getNumValues()) &&
10470       "Lowering returned the wrong number of results!");
10471 
10472   // Places new result values base on N result number.
10473   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10474     Results.push_back(Res.getValue(I));
10475 }
10476 
10477 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10478   llvm_unreachable("LowerOperation not implemented for this target!");
10479 }
10480 
10481 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10482                                                      unsigned Reg,
10483                                                      ISD::NodeType ExtendType) {
10484   SDValue Op = getNonRegisterValue(V);
10485   assert((Op.getOpcode() != ISD::CopyFromReg ||
10486           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10487          "Copy from a reg to the same reg!");
10488   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10489 
10490   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10491   // If this is an InlineAsm we have to match the registers required, not the
10492   // notional registers required by the type.
10493 
10494   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10495                    std::nullopt); // This is not an ABI copy.
10496   SDValue Chain = DAG.getEntryNode();
10497 
10498   if (ExtendType == ISD::ANY_EXTEND) {
10499     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10500     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10501       ExtendType = PreferredExtendIt->second;
10502   }
10503   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10504   PendingExports.push_back(Chain);
10505 }
10506 
10507 #include "llvm/CodeGen/SelectionDAGISel.h"
10508 
10509 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10510 /// entry block, return true.  This includes arguments used by switches, since
10511 /// the switch may expand into multiple basic blocks.
10512 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10513   // With FastISel active, we may be splitting blocks, so force creation
10514   // of virtual registers for all non-dead arguments.
10515   if (FastISel)
10516     return A->use_empty();
10517 
10518   const BasicBlock &Entry = A->getParent()->front();
10519   for (const User *U : A->users())
10520     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10521       return false;  // Use not in entry block.
10522 
10523   return true;
10524 }
10525 
10526 using ArgCopyElisionMapTy =
10527     DenseMap<const Argument *,
10528              std::pair<const AllocaInst *, const StoreInst *>>;
10529 
10530 /// Scan the entry block of the function in FuncInfo for arguments that look
10531 /// like copies into a local alloca. Record any copied arguments in
10532 /// ArgCopyElisionCandidates.
10533 static void
10534 findArgumentCopyElisionCandidates(const DataLayout &DL,
10535                                   FunctionLoweringInfo *FuncInfo,
10536                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10537   // Record the state of every static alloca used in the entry block. Argument
10538   // allocas are all used in the entry block, so we need approximately as many
10539   // entries as we have arguments.
10540   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10541   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10542   unsigned NumArgs = FuncInfo->Fn->arg_size();
10543   StaticAllocas.reserve(NumArgs * 2);
10544 
10545   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10546     if (!V)
10547       return nullptr;
10548     V = V->stripPointerCasts();
10549     const auto *AI = dyn_cast<AllocaInst>(V);
10550     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10551       return nullptr;
10552     auto Iter = StaticAllocas.insert({AI, Unknown});
10553     return &Iter.first->second;
10554   };
10555 
10556   // Look for stores of arguments to static allocas. Look through bitcasts and
10557   // GEPs to handle type coercions, as long as the alloca is fully initialized
10558   // by the store. Any non-store use of an alloca escapes it and any subsequent
10559   // unanalyzed store might write it.
10560   // FIXME: Handle structs initialized with multiple stores.
10561   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10562     // Look for stores, and handle non-store uses conservatively.
10563     const auto *SI = dyn_cast<StoreInst>(&I);
10564     if (!SI) {
10565       // We will look through cast uses, so ignore them completely.
10566       if (I.isCast())
10567         continue;
10568       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10569       // to allocas.
10570       if (I.isDebugOrPseudoInst())
10571         continue;
10572       // This is an unknown instruction. Assume it escapes or writes to all
10573       // static alloca operands.
10574       for (const Use &U : I.operands()) {
10575         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10576           *Info = StaticAllocaInfo::Clobbered;
10577       }
10578       continue;
10579     }
10580 
10581     // If the stored value is a static alloca, mark it as escaped.
10582     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10583       *Info = StaticAllocaInfo::Clobbered;
10584 
10585     // Check if the destination is a static alloca.
10586     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10587     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10588     if (!Info)
10589       continue;
10590     const AllocaInst *AI = cast<AllocaInst>(Dst);
10591 
10592     // Skip allocas that have been initialized or clobbered.
10593     if (*Info != StaticAllocaInfo::Unknown)
10594       continue;
10595 
10596     // Check if the stored value is an argument, and that this store fully
10597     // initializes the alloca.
10598     // If the argument type has padding bits we can't directly forward a pointer
10599     // as the upper bits may contain garbage.
10600     // Don't elide copies from the same argument twice.
10601     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10602     const auto *Arg = dyn_cast<Argument>(Val);
10603     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10604         Arg->getType()->isEmptyTy() ||
10605         DL.getTypeStoreSize(Arg->getType()) !=
10606             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10607         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10608         ArgCopyElisionCandidates.count(Arg)) {
10609       *Info = StaticAllocaInfo::Clobbered;
10610       continue;
10611     }
10612 
10613     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10614                       << '\n');
10615 
10616     // Mark this alloca and store for argument copy elision.
10617     *Info = StaticAllocaInfo::Elidable;
10618     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10619 
10620     // Stop scanning if we've seen all arguments. This will happen early in -O0
10621     // builds, which is useful, because -O0 builds have large entry blocks and
10622     // many allocas.
10623     if (ArgCopyElisionCandidates.size() == NumArgs)
10624       break;
10625   }
10626 }
10627 
10628 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10629 /// ArgVal is a load from a suitable fixed stack object.
10630 static void tryToElideArgumentCopy(
10631     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10632     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10633     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10634     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10635     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10636   // Check if this is a load from a fixed stack object.
10637   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10638   if (!LNode)
10639     return;
10640   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10641   if (!FINode)
10642     return;
10643 
10644   // Check that the fixed stack object is the right size and alignment.
10645   // Look at the alignment that the user wrote on the alloca instead of looking
10646   // at the stack object.
10647   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10648   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10649   const AllocaInst *AI = ArgCopyIter->second.first;
10650   int FixedIndex = FINode->getIndex();
10651   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10652   int OldIndex = AllocaIndex;
10653   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10654   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10655     LLVM_DEBUG(
10656         dbgs() << "  argument copy elision failed due to bad fixed stack "
10657                   "object size\n");
10658     return;
10659   }
10660   Align RequiredAlignment = AI->getAlign();
10661   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10662     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10663                          "greater than stack argument alignment ("
10664                       << DebugStr(RequiredAlignment) << " vs "
10665                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10666     return;
10667   }
10668 
10669   // Perform the elision. Delete the old stack object and replace its only use
10670   // in the variable info map. Mark the stack object as mutable.
10671   LLVM_DEBUG({
10672     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10673            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10674            << '\n';
10675   });
10676   MFI.RemoveStackObject(OldIndex);
10677   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10678   AllocaIndex = FixedIndex;
10679   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10680   for (SDValue ArgVal : ArgVals)
10681     Chains.push_back(ArgVal.getValue(1));
10682 
10683   // Avoid emitting code for the store implementing the copy.
10684   const StoreInst *SI = ArgCopyIter->second.second;
10685   ElidedArgCopyInstrs.insert(SI);
10686 
10687   // Check for uses of the argument again so that we can avoid exporting ArgVal
10688   // if it is't used by anything other than the store.
10689   for (const Value *U : Arg.users()) {
10690     if (U != SI) {
10691       ArgHasUses = true;
10692       break;
10693     }
10694   }
10695 }
10696 
10697 void SelectionDAGISel::LowerArguments(const Function &F) {
10698   SelectionDAG &DAG = SDB->DAG;
10699   SDLoc dl = SDB->getCurSDLoc();
10700   const DataLayout &DL = DAG.getDataLayout();
10701   SmallVector<ISD::InputArg, 16> Ins;
10702 
10703   // In Naked functions we aren't going to save any registers.
10704   if (F.hasFnAttribute(Attribute::Naked))
10705     return;
10706 
10707   if (!FuncInfo->CanLowerReturn) {
10708     // Put in an sret pointer parameter before all the other parameters.
10709     SmallVector<EVT, 1> ValueVTs;
10710     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10711                     PointerType::get(F.getContext(),
10712                                      DAG.getDataLayout().getAllocaAddrSpace()),
10713                     ValueVTs);
10714 
10715     // NOTE: Assuming that a pointer will never break down to more than one VT
10716     // or one register.
10717     ISD::ArgFlagsTy Flags;
10718     Flags.setSRet();
10719     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10720     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10721                          ISD::InputArg::NoArgIndex, 0);
10722     Ins.push_back(RetArg);
10723   }
10724 
10725   // Look for stores of arguments to static allocas. Mark such arguments with a
10726   // flag to ask the target to give us the memory location of that argument if
10727   // available.
10728   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10729   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10730                                     ArgCopyElisionCandidates);
10731 
10732   // Set up the incoming argument description vector.
10733   for (const Argument &Arg : F.args()) {
10734     unsigned ArgNo = Arg.getArgNo();
10735     SmallVector<EVT, 4> ValueVTs;
10736     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10737     bool isArgValueUsed = !Arg.use_empty();
10738     unsigned PartBase = 0;
10739     Type *FinalType = Arg.getType();
10740     if (Arg.hasAttribute(Attribute::ByVal))
10741       FinalType = Arg.getParamByValType();
10742     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10743         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10744     for (unsigned Value = 0, NumValues = ValueVTs.size();
10745          Value != NumValues; ++Value) {
10746       EVT VT = ValueVTs[Value];
10747       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10748       ISD::ArgFlagsTy Flags;
10749 
10750 
10751       if (Arg.getType()->isPointerTy()) {
10752         Flags.setPointer();
10753         Flags.setPointerAddrSpace(
10754             cast<PointerType>(Arg.getType())->getAddressSpace());
10755       }
10756       if (Arg.hasAttribute(Attribute::ZExt))
10757         Flags.setZExt();
10758       if (Arg.hasAttribute(Attribute::SExt))
10759         Flags.setSExt();
10760       if (Arg.hasAttribute(Attribute::InReg)) {
10761         // If we are using vectorcall calling convention, a structure that is
10762         // passed InReg - is surely an HVA
10763         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10764             isa<StructType>(Arg.getType())) {
10765           // The first value of a structure is marked
10766           if (0 == Value)
10767             Flags.setHvaStart();
10768           Flags.setHva();
10769         }
10770         // Set InReg Flag
10771         Flags.setInReg();
10772       }
10773       if (Arg.hasAttribute(Attribute::StructRet))
10774         Flags.setSRet();
10775       if (Arg.hasAttribute(Attribute::SwiftSelf))
10776         Flags.setSwiftSelf();
10777       if (Arg.hasAttribute(Attribute::SwiftAsync))
10778         Flags.setSwiftAsync();
10779       if (Arg.hasAttribute(Attribute::SwiftError))
10780         Flags.setSwiftError();
10781       if (Arg.hasAttribute(Attribute::ByVal))
10782         Flags.setByVal();
10783       if (Arg.hasAttribute(Attribute::ByRef))
10784         Flags.setByRef();
10785       if (Arg.hasAttribute(Attribute::InAlloca)) {
10786         Flags.setInAlloca();
10787         // Set the byval flag for CCAssignFn callbacks that don't know about
10788         // inalloca.  This way we can know how many bytes we should've allocated
10789         // and how many bytes a callee cleanup function will pop.  If we port
10790         // inalloca to more targets, we'll have to add custom inalloca handling
10791         // in the various CC lowering callbacks.
10792         Flags.setByVal();
10793       }
10794       if (Arg.hasAttribute(Attribute::Preallocated)) {
10795         Flags.setPreallocated();
10796         // Set the byval flag for CCAssignFn callbacks that don't know about
10797         // preallocated.  This way we can know how many bytes we should've
10798         // allocated and how many bytes a callee cleanup function will pop.  If
10799         // we port preallocated to more targets, we'll have to add custom
10800         // preallocated handling in the various CC lowering callbacks.
10801         Flags.setByVal();
10802       }
10803 
10804       // Certain targets (such as MIPS), may have a different ABI alignment
10805       // for a type depending on the context. Give the target a chance to
10806       // specify the alignment it wants.
10807       const Align OriginalAlignment(
10808           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10809       Flags.setOrigAlign(OriginalAlignment);
10810 
10811       Align MemAlign;
10812       Type *ArgMemTy = nullptr;
10813       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10814           Flags.isByRef()) {
10815         if (!ArgMemTy)
10816           ArgMemTy = Arg.getPointeeInMemoryValueType();
10817 
10818         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10819 
10820         // For in-memory arguments, size and alignment should be passed from FE.
10821         // BE will guess if this info is not there but there are cases it cannot
10822         // get right.
10823         if (auto ParamAlign = Arg.getParamStackAlign())
10824           MemAlign = *ParamAlign;
10825         else if ((ParamAlign = Arg.getParamAlign()))
10826           MemAlign = *ParamAlign;
10827         else
10828           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10829         if (Flags.isByRef())
10830           Flags.setByRefSize(MemSize);
10831         else
10832           Flags.setByValSize(MemSize);
10833       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10834         MemAlign = *ParamAlign;
10835       } else {
10836         MemAlign = OriginalAlignment;
10837       }
10838       Flags.setMemAlign(MemAlign);
10839 
10840       if (Arg.hasAttribute(Attribute::Nest))
10841         Flags.setNest();
10842       if (NeedsRegBlock)
10843         Flags.setInConsecutiveRegs();
10844       if (ArgCopyElisionCandidates.count(&Arg))
10845         Flags.setCopyElisionCandidate();
10846       if (Arg.hasAttribute(Attribute::Returned))
10847         Flags.setReturned();
10848 
10849       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10850           *CurDAG->getContext(), F.getCallingConv(), VT);
10851       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10852           *CurDAG->getContext(), F.getCallingConv(), VT);
10853       for (unsigned i = 0; i != NumRegs; ++i) {
10854         // For scalable vectors, use the minimum size; individual targets
10855         // are responsible for handling scalable vector arguments and
10856         // return values.
10857         ISD::InputArg MyFlags(
10858             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10859             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10860         if (NumRegs > 1 && i == 0)
10861           MyFlags.Flags.setSplit();
10862         // if it isn't first piece, alignment must be 1
10863         else if (i > 0) {
10864           MyFlags.Flags.setOrigAlign(Align(1));
10865           if (i == NumRegs - 1)
10866             MyFlags.Flags.setSplitEnd();
10867         }
10868         Ins.push_back(MyFlags);
10869       }
10870       if (NeedsRegBlock && Value == NumValues - 1)
10871         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10872       PartBase += VT.getStoreSize().getKnownMinValue();
10873     }
10874   }
10875 
10876   // Call the target to set up the argument values.
10877   SmallVector<SDValue, 8> InVals;
10878   SDValue NewRoot = TLI->LowerFormalArguments(
10879       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10880 
10881   // Verify that the target's LowerFormalArguments behaved as expected.
10882   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10883          "LowerFormalArguments didn't return a valid chain!");
10884   assert(InVals.size() == Ins.size() &&
10885          "LowerFormalArguments didn't emit the correct number of values!");
10886   LLVM_DEBUG({
10887     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10888       assert(InVals[i].getNode() &&
10889              "LowerFormalArguments emitted a null value!");
10890       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10891              "LowerFormalArguments emitted a value with the wrong type!");
10892     }
10893   });
10894 
10895   // Update the DAG with the new chain value resulting from argument lowering.
10896   DAG.setRoot(NewRoot);
10897 
10898   // Set up the argument values.
10899   unsigned i = 0;
10900   if (!FuncInfo->CanLowerReturn) {
10901     // Create a virtual register for the sret pointer, and put in a copy
10902     // from the sret argument into it.
10903     SmallVector<EVT, 1> ValueVTs;
10904     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10905                     PointerType::get(F.getContext(),
10906                                      DAG.getDataLayout().getAllocaAddrSpace()),
10907                     ValueVTs);
10908     MVT VT = ValueVTs[0].getSimpleVT();
10909     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10910     std::optional<ISD::NodeType> AssertOp;
10911     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10912                                         nullptr, F.getCallingConv(), AssertOp);
10913 
10914     MachineFunction& MF = SDB->DAG.getMachineFunction();
10915     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10916     Register SRetReg =
10917         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10918     FuncInfo->DemoteRegister = SRetReg;
10919     NewRoot =
10920         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10921     DAG.setRoot(NewRoot);
10922 
10923     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10924     ++i;
10925   }
10926 
10927   SmallVector<SDValue, 4> Chains;
10928   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10929   for (const Argument &Arg : F.args()) {
10930     SmallVector<SDValue, 4> ArgValues;
10931     SmallVector<EVT, 4> ValueVTs;
10932     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10933     unsigned NumValues = ValueVTs.size();
10934     if (NumValues == 0)
10935       continue;
10936 
10937     bool ArgHasUses = !Arg.use_empty();
10938 
10939     // Elide the copying store if the target loaded this argument from a
10940     // suitable fixed stack object.
10941     if (Ins[i].Flags.isCopyElisionCandidate()) {
10942       unsigned NumParts = 0;
10943       for (EVT VT : ValueVTs)
10944         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
10945                                                        F.getCallingConv(), VT);
10946 
10947       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10948                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10949                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
10950     }
10951 
10952     // If this argument is unused then remember its value. It is used to generate
10953     // debugging information.
10954     bool isSwiftErrorArg =
10955         TLI->supportSwiftError() &&
10956         Arg.hasAttribute(Attribute::SwiftError);
10957     if (!ArgHasUses && !isSwiftErrorArg) {
10958       SDB->setUnusedArgValue(&Arg, InVals[i]);
10959 
10960       // Also remember any frame index for use in FastISel.
10961       if (FrameIndexSDNode *FI =
10962           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10963         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10964     }
10965 
10966     for (unsigned Val = 0; Val != NumValues; ++Val) {
10967       EVT VT = ValueVTs[Val];
10968       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10969                                                       F.getCallingConv(), VT);
10970       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10971           *CurDAG->getContext(), F.getCallingConv(), VT);
10972 
10973       // Even an apparent 'unused' swifterror argument needs to be returned. So
10974       // we do generate a copy for it that can be used on return from the
10975       // function.
10976       if (ArgHasUses || isSwiftErrorArg) {
10977         std::optional<ISD::NodeType> AssertOp;
10978         if (Arg.hasAttribute(Attribute::SExt))
10979           AssertOp = ISD::AssertSext;
10980         else if (Arg.hasAttribute(Attribute::ZExt))
10981           AssertOp = ISD::AssertZext;
10982 
10983         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10984                                              PartVT, VT, nullptr,
10985                                              F.getCallingConv(), AssertOp));
10986       }
10987 
10988       i += NumParts;
10989     }
10990 
10991     // We don't need to do anything else for unused arguments.
10992     if (ArgValues.empty())
10993       continue;
10994 
10995     // Note down frame index.
10996     if (FrameIndexSDNode *FI =
10997         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10998       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10999 
11000     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11001                                      SDB->getCurSDLoc());
11002 
11003     SDB->setValue(&Arg, Res);
11004     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11005       // We want to associate the argument with the frame index, among
11006       // involved operands, that correspond to the lowest address. The
11007       // getCopyFromParts function, called earlier, is swapping the order of
11008       // the operands to BUILD_PAIR depending on endianness. The result of
11009       // that swapping is that the least significant bits of the argument will
11010       // be in the first operand of the BUILD_PAIR node, and the most
11011       // significant bits will be in the second operand.
11012       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11013       if (LoadSDNode *LNode =
11014           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11015         if (FrameIndexSDNode *FI =
11016             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11017           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11018     }
11019 
11020     // Analyses past this point are naive and don't expect an assertion.
11021     if (Res.getOpcode() == ISD::AssertZext)
11022       Res = Res.getOperand(0);
11023 
11024     // Update the SwiftErrorVRegDefMap.
11025     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11026       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11027       if (Register::isVirtualRegister(Reg))
11028         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11029                                    Reg);
11030     }
11031 
11032     // If this argument is live outside of the entry block, insert a copy from
11033     // wherever we got it to the vreg that other BB's will reference it as.
11034     if (Res.getOpcode() == ISD::CopyFromReg) {
11035       // If we can, though, try to skip creating an unnecessary vreg.
11036       // FIXME: This isn't very clean... it would be nice to make this more
11037       // general.
11038       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11039       if (Register::isVirtualRegister(Reg)) {
11040         FuncInfo->ValueMap[&Arg] = Reg;
11041         continue;
11042       }
11043     }
11044     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11045       FuncInfo->InitializeRegForValue(&Arg);
11046       SDB->CopyToExportRegsIfNeeded(&Arg);
11047     }
11048   }
11049 
11050   if (!Chains.empty()) {
11051     Chains.push_back(NewRoot);
11052     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11053   }
11054 
11055   DAG.setRoot(NewRoot);
11056 
11057   assert(i == InVals.size() && "Argument register count mismatch!");
11058 
11059   // If any argument copy elisions occurred and we have debug info, update the
11060   // stale frame indices used in the dbg.declare variable info table.
11061   if (!ArgCopyElisionFrameIndexMap.empty()) {
11062     for (MachineFunction::VariableDbgInfo &VI :
11063          MF->getInStackSlotVariableDbgInfo()) {
11064       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11065       if (I != ArgCopyElisionFrameIndexMap.end())
11066         VI.updateStackSlot(I->second);
11067     }
11068   }
11069 
11070   // Finally, if the target has anything special to do, allow it to do so.
11071   emitFunctionEntryCode();
11072 }
11073 
11074 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11075 /// ensure constants are generated when needed.  Remember the virtual registers
11076 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11077 /// directly add them, because expansion might result in multiple MBB's for one
11078 /// BB.  As such, the start of the BB might correspond to a different MBB than
11079 /// the end.
11080 void
11081 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11082   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11083 
11084   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11085 
11086   // Check PHI nodes in successors that expect a value to be available from this
11087   // block.
11088   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11089     if (!isa<PHINode>(SuccBB->begin())) continue;
11090     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11091 
11092     // If this terminator has multiple identical successors (common for
11093     // switches), only handle each succ once.
11094     if (!SuccsHandled.insert(SuccMBB).second)
11095       continue;
11096 
11097     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11098 
11099     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11100     // nodes and Machine PHI nodes, but the incoming operands have not been
11101     // emitted yet.
11102     for (const PHINode &PN : SuccBB->phis()) {
11103       // Ignore dead phi's.
11104       if (PN.use_empty())
11105         continue;
11106 
11107       // Skip empty types
11108       if (PN.getType()->isEmptyTy())
11109         continue;
11110 
11111       unsigned Reg;
11112       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11113 
11114       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11115         unsigned &RegOut = ConstantsOut[C];
11116         if (RegOut == 0) {
11117           RegOut = FuncInfo.CreateRegs(C);
11118           // We need to zero/sign extend ConstantInt phi operands to match
11119           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11120           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11121           if (auto *CI = dyn_cast<ConstantInt>(C))
11122             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11123                                                     : ISD::ZERO_EXTEND;
11124           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11125         }
11126         Reg = RegOut;
11127       } else {
11128         DenseMap<const Value *, Register>::iterator I =
11129           FuncInfo.ValueMap.find(PHIOp);
11130         if (I != FuncInfo.ValueMap.end())
11131           Reg = I->second;
11132         else {
11133           assert(isa<AllocaInst>(PHIOp) &&
11134                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11135                  "Didn't codegen value into a register!??");
11136           Reg = FuncInfo.CreateRegs(PHIOp);
11137           CopyValueToVirtualRegister(PHIOp, Reg);
11138         }
11139       }
11140 
11141       // Remember that this register needs to added to the machine PHI node as
11142       // the input for this MBB.
11143       SmallVector<EVT, 4> ValueVTs;
11144       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11145       for (EVT VT : ValueVTs) {
11146         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11147         for (unsigned i = 0; i != NumRegisters; ++i)
11148           FuncInfo.PHINodesToUpdate.push_back(
11149               std::make_pair(&*MBBI++, Reg + i));
11150         Reg += NumRegisters;
11151       }
11152     }
11153   }
11154 
11155   ConstantsOut.clear();
11156 }
11157 
11158 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11159   MachineFunction::iterator I(MBB);
11160   if (++I == FuncInfo.MF->end())
11161     return nullptr;
11162   return &*I;
11163 }
11164 
11165 /// During lowering new call nodes can be created (such as memset, etc.).
11166 /// Those will become new roots of the current DAG, but complications arise
11167 /// when they are tail calls. In such cases, the call lowering will update
11168 /// the root, but the builder still needs to know that a tail call has been
11169 /// lowered in order to avoid generating an additional return.
11170 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11171   // If the node is null, we do have a tail call.
11172   if (MaybeTC.getNode() != nullptr)
11173     DAG.setRoot(MaybeTC);
11174   else
11175     HasTailCall = true;
11176 }
11177 
11178 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11179                                         MachineBasicBlock *SwitchMBB,
11180                                         MachineBasicBlock *DefaultMBB) {
11181   MachineFunction *CurMF = FuncInfo.MF;
11182   MachineBasicBlock *NextMBB = nullptr;
11183   MachineFunction::iterator BBI(W.MBB);
11184   if (++BBI != FuncInfo.MF->end())
11185     NextMBB = &*BBI;
11186 
11187   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11188 
11189   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11190 
11191   if (Size == 2 && W.MBB == SwitchMBB) {
11192     // If any two of the cases has the same destination, and if one value
11193     // is the same as the other, but has one bit unset that the other has set,
11194     // use bit manipulation to do two compares at once.  For example:
11195     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11196     // TODO: This could be extended to merge any 2 cases in switches with 3
11197     // cases.
11198     // TODO: Handle cases where W.CaseBB != SwitchBB.
11199     CaseCluster &Small = *W.FirstCluster;
11200     CaseCluster &Big = *W.LastCluster;
11201 
11202     if (Small.Low == Small.High && Big.Low == Big.High &&
11203         Small.MBB == Big.MBB) {
11204       const APInt &SmallValue = Small.Low->getValue();
11205       const APInt &BigValue = Big.Low->getValue();
11206 
11207       // Check that there is only one bit different.
11208       APInt CommonBit = BigValue ^ SmallValue;
11209       if (CommonBit.isPowerOf2()) {
11210         SDValue CondLHS = getValue(Cond);
11211         EVT VT = CondLHS.getValueType();
11212         SDLoc DL = getCurSDLoc();
11213 
11214         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11215                                  DAG.getConstant(CommonBit, DL, VT));
11216         SDValue Cond = DAG.getSetCC(
11217             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11218             ISD::SETEQ);
11219 
11220         // Update successor info.
11221         // Both Small and Big will jump to Small.BB, so we sum up the
11222         // probabilities.
11223         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11224         if (BPI)
11225           addSuccessorWithProb(
11226               SwitchMBB, DefaultMBB,
11227               // The default destination is the first successor in IR.
11228               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11229         else
11230           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11231 
11232         // Insert the true branch.
11233         SDValue BrCond =
11234             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11235                         DAG.getBasicBlock(Small.MBB));
11236         // Insert the false branch.
11237         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11238                              DAG.getBasicBlock(DefaultMBB));
11239 
11240         DAG.setRoot(BrCond);
11241         return;
11242       }
11243     }
11244   }
11245 
11246   if (TM.getOptLevel() != CodeGenOpt::None) {
11247     // Here, we order cases by probability so the most likely case will be
11248     // checked first. However, two clusters can have the same probability in
11249     // which case their relative ordering is non-deterministic. So we use Low
11250     // as a tie-breaker as clusters are guaranteed to never overlap.
11251     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11252                [](const CaseCluster &a, const CaseCluster &b) {
11253       return a.Prob != b.Prob ?
11254              a.Prob > b.Prob :
11255              a.Low->getValue().slt(b.Low->getValue());
11256     });
11257 
11258     // Rearrange the case blocks so that the last one falls through if possible
11259     // without changing the order of probabilities.
11260     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11261       --I;
11262       if (I->Prob > W.LastCluster->Prob)
11263         break;
11264       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11265         std::swap(*I, *W.LastCluster);
11266         break;
11267       }
11268     }
11269   }
11270 
11271   // Compute total probability.
11272   BranchProbability DefaultProb = W.DefaultProb;
11273   BranchProbability UnhandledProbs = DefaultProb;
11274   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11275     UnhandledProbs += I->Prob;
11276 
11277   MachineBasicBlock *CurMBB = W.MBB;
11278   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11279     bool FallthroughUnreachable = false;
11280     MachineBasicBlock *Fallthrough;
11281     if (I == W.LastCluster) {
11282       // For the last cluster, fall through to the default destination.
11283       Fallthrough = DefaultMBB;
11284       FallthroughUnreachable = isa<UnreachableInst>(
11285           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11286     } else {
11287       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11288       CurMF->insert(BBI, Fallthrough);
11289       // Put Cond in a virtual register to make it available from the new blocks.
11290       ExportFromCurrentBlock(Cond);
11291     }
11292     UnhandledProbs -= I->Prob;
11293 
11294     switch (I->Kind) {
11295       case CC_JumpTable: {
11296         // FIXME: Optimize away range check based on pivot comparisons.
11297         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11298         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11299 
11300         // The jump block hasn't been inserted yet; insert it here.
11301         MachineBasicBlock *JumpMBB = JT->MBB;
11302         CurMF->insert(BBI, JumpMBB);
11303 
11304         auto JumpProb = I->Prob;
11305         auto FallthroughProb = UnhandledProbs;
11306 
11307         // If the default statement is a target of the jump table, we evenly
11308         // distribute the default probability to successors of CurMBB. Also
11309         // update the probability on the edge from JumpMBB to Fallthrough.
11310         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11311                                               SE = JumpMBB->succ_end();
11312              SI != SE; ++SI) {
11313           if (*SI == DefaultMBB) {
11314             JumpProb += DefaultProb / 2;
11315             FallthroughProb -= DefaultProb / 2;
11316             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11317             JumpMBB->normalizeSuccProbs();
11318             break;
11319           }
11320         }
11321 
11322         // If the default clause is unreachable, propagate that knowledge into
11323         // JTH->FallthroughUnreachable which will use it to suppress the range
11324         // check.
11325         //
11326         // However, don't do this if we're doing branch target enforcement,
11327         // because a table branch _without_ a range check can be a tempting JOP
11328         // gadget - out-of-bounds inputs that are impossible in correct
11329         // execution become possible again if an attacker can influence the
11330         // control flow. So if an attacker doesn't already have a BTI bypass
11331         // available, we don't want them to be able to get one out of this
11332         // table branch.
11333         if (FallthroughUnreachable) {
11334           Function &CurFunc = CurMF->getFunction();
11335           bool HasBranchTargetEnforcement = false;
11336           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11337             HasBranchTargetEnforcement =
11338                 CurFunc.getFnAttribute("branch-target-enforcement")
11339                     .getValueAsBool();
11340           } else {
11341             HasBranchTargetEnforcement =
11342                 CurMF->getMMI().getModule()->getModuleFlag(
11343                     "branch-target-enforcement");
11344           }
11345           if (!HasBranchTargetEnforcement)
11346             JTH->FallthroughUnreachable = true;
11347         }
11348 
11349         if (!JTH->FallthroughUnreachable)
11350           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11351         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11352         CurMBB->normalizeSuccProbs();
11353 
11354         // The jump table header will be inserted in our current block, do the
11355         // range check, and fall through to our fallthrough block.
11356         JTH->HeaderBB = CurMBB;
11357         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11358 
11359         // If we're in the right place, emit the jump table header right now.
11360         if (CurMBB == SwitchMBB) {
11361           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11362           JTH->Emitted = true;
11363         }
11364         break;
11365       }
11366       case CC_BitTests: {
11367         // FIXME: Optimize away range check based on pivot comparisons.
11368         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11369 
11370         // The bit test blocks haven't been inserted yet; insert them here.
11371         for (BitTestCase &BTC : BTB->Cases)
11372           CurMF->insert(BBI, BTC.ThisBB);
11373 
11374         // Fill in fields of the BitTestBlock.
11375         BTB->Parent = CurMBB;
11376         BTB->Default = Fallthrough;
11377 
11378         BTB->DefaultProb = UnhandledProbs;
11379         // If the cases in bit test don't form a contiguous range, we evenly
11380         // distribute the probability on the edge to Fallthrough to two
11381         // successors of CurMBB.
11382         if (!BTB->ContiguousRange) {
11383           BTB->Prob += DefaultProb / 2;
11384           BTB->DefaultProb -= DefaultProb / 2;
11385         }
11386 
11387         if (FallthroughUnreachable)
11388           BTB->FallthroughUnreachable = true;
11389 
11390         // If we're in the right place, emit the bit test header right now.
11391         if (CurMBB == SwitchMBB) {
11392           visitBitTestHeader(*BTB, SwitchMBB);
11393           BTB->Emitted = true;
11394         }
11395         break;
11396       }
11397       case CC_Range: {
11398         const Value *RHS, *LHS, *MHS;
11399         ISD::CondCode CC;
11400         if (I->Low == I->High) {
11401           // Check Cond == I->Low.
11402           CC = ISD::SETEQ;
11403           LHS = Cond;
11404           RHS=I->Low;
11405           MHS = nullptr;
11406         } else {
11407           // Check I->Low <= Cond <= I->High.
11408           CC = ISD::SETLE;
11409           LHS = I->Low;
11410           MHS = Cond;
11411           RHS = I->High;
11412         }
11413 
11414         // If Fallthrough is unreachable, fold away the comparison.
11415         if (FallthroughUnreachable)
11416           CC = ISD::SETTRUE;
11417 
11418         // The false probability is the sum of all unhandled cases.
11419         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11420                      getCurSDLoc(), I->Prob, UnhandledProbs);
11421 
11422         if (CurMBB == SwitchMBB)
11423           visitSwitchCase(CB, SwitchMBB);
11424         else
11425           SL->SwitchCases.push_back(CB);
11426 
11427         break;
11428       }
11429     }
11430     CurMBB = Fallthrough;
11431   }
11432 }
11433 
11434 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11435                                               CaseClusterIt First,
11436                                               CaseClusterIt Last) {
11437   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11438     if (X.Prob != CC.Prob)
11439       return X.Prob > CC.Prob;
11440 
11441     // Ties are broken by comparing the case value.
11442     return X.Low->getValue().slt(CC.Low->getValue());
11443   });
11444 }
11445 
11446 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11447                                         const SwitchWorkListItem &W,
11448                                         Value *Cond,
11449                                         MachineBasicBlock *SwitchMBB) {
11450   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11451          "Clusters not sorted?");
11452 
11453   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11454 
11455   // Balance the tree based on branch probabilities to create a near-optimal (in
11456   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11457   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11458   CaseClusterIt LastLeft = W.FirstCluster;
11459   CaseClusterIt FirstRight = W.LastCluster;
11460   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11461   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11462 
11463   // Move LastLeft and FirstRight towards each other from opposite directions to
11464   // find a partitioning of the clusters which balances the probability on both
11465   // sides. If LeftProb and RightProb are equal, alternate which side is
11466   // taken to ensure 0-probability nodes are distributed evenly.
11467   unsigned I = 0;
11468   while (LastLeft + 1 < FirstRight) {
11469     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11470       LeftProb += (++LastLeft)->Prob;
11471     else
11472       RightProb += (--FirstRight)->Prob;
11473     I++;
11474   }
11475 
11476   while (true) {
11477     // Our binary search tree differs from a typical BST in that ours can have up
11478     // to three values in each leaf. The pivot selection above doesn't take that
11479     // into account, which means the tree might require more nodes and be less
11480     // efficient. We compensate for this here.
11481 
11482     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11483     unsigned NumRight = W.LastCluster - FirstRight + 1;
11484 
11485     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11486       // If one side has less than 3 clusters, and the other has more than 3,
11487       // consider taking a cluster from the other side.
11488 
11489       if (NumLeft < NumRight) {
11490         // Consider moving the first cluster on the right to the left side.
11491         CaseCluster &CC = *FirstRight;
11492         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11493         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11494         if (LeftSideRank <= RightSideRank) {
11495           // Moving the cluster to the left does not demote it.
11496           ++LastLeft;
11497           ++FirstRight;
11498           continue;
11499         }
11500       } else {
11501         assert(NumRight < NumLeft);
11502         // Consider moving the last element on the left to the right side.
11503         CaseCluster &CC = *LastLeft;
11504         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11505         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11506         if (RightSideRank <= LeftSideRank) {
11507           // Moving the cluster to the right does not demot it.
11508           --LastLeft;
11509           --FirstRight;
11510           continue;
11511         }
11512       }
11513     }
11514     break;
11515   }
11516 
11517   assert(LastLeft + 1 == FirstRight);
11518   assert(LastLeft >= W.FirstCluster);
11519   assert(FirstRight <= W.LastCluster);
11520 
11521   // Use the first element on the right as pivot since we will make less-than
11522   // comparisons against it.
11523   CaseClusterIt PivotCluster = FirstRight;
11524   assert(PivotCluster > W.FirstCluster);
11525   assert(PivotCluster <= W.LastCluster);
11526 
11527   CaseClusterIt FirstLeft = W.FirstCluster;
11528   CaseClusterIt LastRight = W.LastCluster;
11529 
11530   const ConstantInt *Pivot = PivotCluster->Low;
11531 
11532   // New blocks will be inserted immediately after the current one.
11533   MachineFunction::iterator BBI(W.MBB);
11534   ++BBI;
11535 
11536   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11537   // we can branch to its destination directly if it's squeezed exactly in
11538   // between the known lower bound and Pivot - 1.
11539   MachineBasicBlock *LeftMBB;
11540   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11541       FirstLeft->Low == W.GE &&
11542       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11543     LeftMBB = FirstLeft->MBB;
11544   } else {
11545     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11546     FuncInfo.MF->insert(BBI, LeftMBB);
11547     WorkList.push_back(
11548         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11549     // Put Cond in a virtual register to make it available from the new blocks.
11550     ExportFromCurrentBlock(Cond);
11551   }
11552 
11553   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11554   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11555   // directly if RHS.High equals the current upper bound.
11556   MachineBasicBlock *RightMBB;
11557   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11558       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11559     RightMBB = FirstRight->MBB;
11560   } else {
11561     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11562     FuncInfo.MF->insert(BBI, RightMBB);
11563     WorkList.push_back(
11564         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11565     // Put Cond in a virtual register to make it available from the new blocks.
11566     ExportFromCurrentBlock(Cond);
11567   }
11568 
11569   // Create the CaseBlock record that will be used to lower the branch.
11570   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11571                getCurSDLoc(), LeftProb, RightProb);
11572 
11573   if (W.MBB == SwitchMBB)
11574     visitSwitchCase(CB, SwitchMBB);
11575   else
11576     SL->SwitchCases.push_back(CB);
11577 }
11578 
11579 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11580 // from the swith statement.
11581 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11582                                             BranchProbability PeeledCaseProb) {
11583   if (PeeledCaseProb == BranchProbability::getOne())
11584     return BranchProbability::getZero();
11585   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11586 
11587   uint32_t Numerator = CaseProb.getNumerator();
11588   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11589   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11590 }
11591 
11592 // Try to peel the top probability case if it exceeds the threshold.
11593 // Return current MachineBasicBlock for the switch statement if the peeling
11594 // does not occur.
11595 // If the peeling is performed, return the newly created MachineBasicBlock
11596 // for the peeled switch statement. Also update Clusters to remove the peeled
11597 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11598 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11599     const SwitchInst &SI, CaseClusterVector &Clusters,
11600     BranchProbability &PeeledCaseProb) {
11601   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11602   // Don't perform if there is only one cluster or optimizing for size.
11603   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11604       TM.getOptLevel() == CodeGenOpt::None ||
11605       SwitchMBB->getParent()->getFunction().hasMinSize())
11606     return SwitchMBB;
11607 
11608   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11609   unsigned PeeledCaseIndex = 0;
11610   bool SwitchPeeled = false;
11611   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11612     CaseCluster &CC = Clusters[Index];
11613     if (CC.Prob < TopCaseProb)
11614       continue;
11615     TopCaseProb = CC.Prob;
11616     PeeledCaseIndex = Index;
11617     SwitchPeeled = true;
11618   }
11619   if (!SwitchPeeled)
11620     return SwitchMBB;
11621 
11622   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11623                     << TopCaseProb << "\n");
11624 
11625   // Record the MBB for the peeled switch statement.
11626   MachineFunction::iterator BBI(SwitchMBB);
11627   ++BBI;
11628   MachineBasicBlock *PeeledSwitchMBB =
11629       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11630   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11631 
11632   ExportFromCurrentBlock(SI.getCondition());
11633   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11634   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11635                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11636   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11637 
11638   Clusters.erase(PeeledCaseIt);
11639   for (CaseCluster &CC : Clusters) {
11640     LLVM_DEBUG(
11641         dbgs() << "Scale the probablity for one cluster, before scaling: "
11642                << CC.Prob << "\n");
11643     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11644     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11645   }
11646   PeeledCaseProb = TopCaseProb;
11647   return PeeledSwitchMBB;
11648 }
11649 
11650 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11651   // Extract cases from the switch.
11652   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11653   CaseClusterVector Clusters;
11654   Clusters.reserve(SI.getNumCases());
11655   for (auto I : SI.cases()) {
11656     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11657     const ConstantInt *CaseVal = I.getCaseValue();
11658     BranchProbability Prob =
11659         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11660             : BranchProbability(1, SI.getNumCases() + 1);
11661     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11662   }
11663 
11664   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11665 
11666   // Cluster adjacent cases with the same destination. We do this at all
11667   // optimization levels because it's cheap to do and will make codegen faster
11668   // if there are many clusters.
11669   sortAndRangeify(Clusters);
11670 
11671   // The branch probablity of the peeled case.
11672   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11673   MachineBasicBlock *PeeledSwitchMBB =
11674       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11675 
11676   // If there is only the default destination, jump there directly.
11677   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11678   if (Clusters.empty()) {
11679     assert(PeeledSwitchMBB == SwitchMBB);
11680     SwitchMBB->addSuccessor(DefaultMBB);
11681     if (DefaultMBB != NextBlock(SwitchMBB)) {
11682       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11683                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11684     }
11685     return;
11686   }
11687 
11688   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11689   SL->findBitTestClusters(Clusters, &SI);
11690 
11691   LLVM_DEBUG({
11692     dbgs() << "Case clusters: ";
11693     for (const CaseCluster &C : Clusters) {
11694       if (C.Kind == CC_JumpTable)
11695         dbgs() << "JT:";
11696       if (C.Kind == CC_BitTests)
11697         dbgs() << "BT:";
11698 
11699       C.Low->getValue().print(dbgs(), true);
11700       if (C.Low != C.High) {
11701         dbgs() << '-';
11702         C.High->getValue().print(dbgs(), true);
11703       }
11704       dbgs() << ' ';
11705     }
11706     dbgs() << '\n';
11707   });
11708 
11709   assert(!Clusters.empty());
11710   SwitchWorkList WorkList;
11711   CaseClusterIt First = Clusters.begin();
11712   CaseClusterIt Last = Clusters.end() - 1;
11713   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11714   // Scale the branchprobability for DefaultMBB if the peel occurs and
11715   // DefaultMBB is not replaced.
11716   if (PeeledCaseProb != BranchProbability::getZero() &&
11717       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11718     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11719   WorkList.push_back(
11720       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11721 
11722   while (!WorkList.empty()) {
11723     SwitchWorkListItem W = WorkList.pop_back_val();
11724     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11725 
11726     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11727         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11728       // For optimized builds, lower large range as a balanced binary tree.
11729       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11730       continue;
11731     }
11732 
11733     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11734   }
11735 }
11736 
11737 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11738   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11739   auto DL = getCurSDLoc();
11740   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11741   setValue(&I, DAG.getStepVector(DL, ResultVT));
11742 }
11743 
11744 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11746   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11747 
11748   SDLoc DL = getCurSDLoc();
11749   SDValue V = getValue(I.getOperand(0));
11750   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11751 
11752   if (VT.isScalableVector()) {
11753     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11754     return;
11755   }
11756 
11757   // Use VECTOR_SHUFFLE for the fixed-length vector
11758   // to maintain existing behavior.
11759   SmallVector<int, 8> Mask;
11760   unsigned NumElts = VT.getVectorMinNumElements();
11761   for (unsigned i = 0; i != NumElts; ++i)
11762     Mask.push_back(NumElts - 1 - i);
11763 
11764   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11765 }
11766 
11767 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11768   auto DL = getCurSDLoc();
11769   SDValue InVec = getValue(I.getOperand(0));
11770   EVT OutVT =
11771       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11772 
11773   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11774 
11775   // ISD Node needs the input vectors split into two equal parts
11776   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11777                            DAG.getVectorIdxConstant(0, DL));
11778   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11779                            DAG.getVectorIdxConstant(OutNumElts, DL));
11780 
11781   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11782   // legalisation and combines.
11783   if (OutVT.isFixedLengthVector()) {
11784     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11785                                         createStrideMask(0, 2, OutNumElts));
11786     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11787                                        createStrideMask(1, 2, OutNumElts));
11788     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11789     setValue(&I, Res);
11790     return;
11791   }
11792 
11793   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11794                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11795   setValue(&I, Res);
11796 }
11797 
11798 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11799   auto DL = getCurSDLoc();
11800   EVT InVT = getValue(I.getOperand(0)).getValueType();
11801   SDValue InVec0 = getValue(I.getOperand(0));
11802   SDValue InVec1 = getValue(I.getOperand(1));
11803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11804   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11805 
11806   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11807   // legalisation and combines.
11808   if (OutVT.isFixedLengthVector()) {
11809     unsigned NumElts = InVT.getVectorMinNumElements();
11810     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11811     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11812                                       createInterleaveMask(NumElts, 2)));
11813     return;
11814   }
11815 
11816   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11817                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11818   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11819                     Res.getValue(1));
11820   setValue(&I, Res);
11821 }
11822 
11823 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11824   SmallVector<EVT, 4> ValueVTs;
11825   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11826                   ValueVTs);
11827   unsigned NumValues = ValueVTs.size();
11828   if (NumValues == 0) return;
11829 
11830   SmallVector<SDValue, 4> Values(NumValues);
11831   SDValue Op = getValue(I.getOperand(0));
11832 
11833   for (unsigned i = 0; i != NumValues; ++i)
11834     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11835                             SDValue(Op.getNode(), Op.getResNo() + i));
11836 
11837   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11838                            DAG.getVTList(ValueVTs), Values));
11839 }
11840 
11841 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11843   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11844 
11845   SDLoc DL = getCurSDLoc();
11846   SDValue V1 = getValue(I.getOperand(0));
11847   SDValue V2 = getValue(I.getOperand(1));
11848   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11849 
11850   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11851   if (VT.isScalableVector()) {
11852     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11853     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11854                              DAG.getConstant(Imm, DL, IdxVT)));
11855     return;
11856   }
11857 
11858   unsigned NumElts = VT.getVectorNumElements();
11859 
11860   uint64_t Idx = (NumElts + Imm) % NumElts;
11861 
11862   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11863   SmallVector<int, 8> Mask;
11864   for (unsigned i = 0; i < NumElts; ++i)
11865     Mask.push_back(Idx + i);
11866   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11867 }
11868 
11869 // Consider the following MIR after SelectionDAG, which produces output in
11870 // phyregs in the first case or virtregs in the second case.
11871 //
11872 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11873 // %5:gr32 = COPY $ebx
11874 // %6:gr32 = COPY $edx
11875 // %1:gr32 = COPY %6:gr32
11876 // %0:gr32 = COPY %5:gr32
11877 //
11878 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11879 // %1:gr32 = COPY %6:gr32
11880 // %0:gr32 = COPY %5:gr32
11881 //
11882 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11883 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11884 //
11885 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11886 // to a single virtreg (such as %0). The remaining outputs monotonically
11887 // increase in virtreg number from there. If a callbr has no outputs, then it
11888 // should not have a corresponding callbr landingpad; in fact, the callbr
11889 // landingpad would not even be able to refer to such a callbr.
11890 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11891   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11892   // There is definitely at least one copy.
11893   assert(MI->getOpcode() == TargetOpcode::COPY &&
11894          "start of copy chain MUST be COPY");
11895   Reg = MI->getOperand(1).getReg();
11896   MI = MRI.def_begin(Reg)->getParent();
11897   // There may be an optional second copy.
11898   if (MI->getOpcode() == TargetOpcode::COPY) {
11899     assert(Reg.isVirtual() && "expected COPY of virtual register");
11900     Reg = MI->getOperand(1).getReg();
11901     assert(Reg.isPhysical() && "expected COPY of physical register");
11902     MI = MRI.def_begin(Reg)->getParent();
11903   }
11904   // The start of the chain must be an INLINEASM_BR.
11905   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11906          "end of copy chain MUST be INLINEASM_BR");
11907   return Reg;
11908 }
11909 
11910 // We must do this walk rather than the simpler
11911 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11912 // otherwise we will end up with copies of virtregs only valid along direct
11913 // edges.
11914 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11915   SmallVector<EVT, 8> ResultVTs;
11916   SmallVector<SDValue, 8> ResultValues;
11917   const auto *CBR =
11918       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11919 
11920   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11921   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11922   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11923 
11924   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11925   SDValue Chain = DAG.getRoot();
11926 
11927   // Re-parse the asm constraints string.
11928   TargetLowering::AsmOperandInfoVector TargetConstraints =
11929       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11930   for (auto &T : TargetConstraints) {
11931     SDISelAsmOperandInfo OpInfo(T);
11932     if (OpInfo.Type != InlineAsm::isOutput)
11933       continue;
11934 
11935     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11936     // individual constraint.
11937     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11938 
11939     switch (OpInfo.ConstraintType) {
11940     case TargetLowering::C_Register:
11941     case TargetLowering::C_RegisterClass: {
11942       // Fill in OpInfo.AssignedRegs.Regs.
11943       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11944 
11945       // getRegistersForValue may produce 1 to many registers based on whether
11946       // the OpInfo.ConstraintVT is legal on the target or not.
11947       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11948         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11949         if (Register::isPhysicalRegister(OriginalDef))
11950           FuncInfo.MBB->addLiveIn(OriginalDef);
11951         // Update the assigned registers to use the original defs.
11952         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11953       }
11954 
11955       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11956           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11957       ResultValues.push_back(V);
11958       ResultVTs.push_back(OpInfo.ConstraintVT);
11959       break;
11960     }
11961     case TargetLowering::C_Other: {
11962       SDValue Flag;
11963       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11964                                                   OpInfo, DAG);
11965       ++InitialDef;
11966       ResultValues.push_back(V);
11967       ResultVTs.push_back(OpInfo.ConstraintVT);
11968       break;
11969     }
11970     default:
11971       break;
11972     }
11973   }
11974   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11975                           DAG.getVTList(ResultVTs), ResultValues);
11976   setValue(&I, V);
11977 }
11978