1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/DiagnosticInfo.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/InlineAsm.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/IntrinsicsAArch64.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <cstddef> 105 #include <cstring> 106 #include <iterator> 107 #include <limits> 108 #include <numeric> 109 #include <tuple> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 using namespace SwitchCG; 114 115 #define DEBUG_TYPE "isel" 116 117 /// LimitFloatPrecision - Generate low-precision inline sequences for 118 /// some float libcalls (6, 8 or 12 bits). 119 static unsigned LimitFloatPrecision; 120 121 static cl::opt<bool> 122 InsertAssertAlign("insert-assert-align", cl::init(true), 123 cl::desc("Insert the experimental `assertalign` node."), 124 cl::ReallyHidden); 125 126 static cl::opt<unsigned, true> 127 LimitFPPrecision("limit-float-precision", 128 cl::desc("Generate low-precision inline sequences " 129 "for some float libcalls"), 130 cl::location(LimitFloatPrecision), cl::Hidden, 131 cl::init(0)); 132 133 static cl::opt<unsigned> SwitchPeelThreshold( 134 "switch-peel-threshold", cl::Hidden, cl::init(66), 135 cl::desc("Set the case probability threshold for peeling the case from a " 136 "switch statement. A value greater than 100 will void this " 137 "optimization")); 138 139 // Limit the width of DAG chains. This is important in general to prevent 140 // DAG-based analysis from blowing up. For example, alias analysis and 141 // load clustering may not complete in reasonable time. It is difficult to 142 // recognize and avoid this situation within each individual analysis, and 143 // future analyses are likely to have the same behavior. Limiting DAG width is 144 // the safe approach and will be especially important with global DAGs. 145 // 146 // MaxParallelChains default is arbitrarily high to avoid affecting 147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 148 // sequence over this should have been converted to llvm.memcpy by the 149 // frontend. It is easy to induce this behavior with .ll code such as: 150 // %buffer = alloca [4096 x i8] 151 // %data = load [4096 x i8]* %argPtr 152 // store [4096 x i8] %data, [4096 x i8]* %buffer 153 static const unsigned MaxParallelChains = 64; 154 155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 156 const SDValue *Parts, unsigned NumParts, 157 MVT PartVT, EVT ValueVT, const Value *V, 158 Optional<CallingConv::ID> CC); 159 160 /// getCopyFromParts - Create a value that contains the specified legal parts 161 /// combined into the value they represent. If the parts combine to a type 162 /// larger than ValueVT then AssertOp can be used to specify whether the extra 163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 164 /// (ISD::AssertSext). 165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 166 const SDValue *Parts, unsigned NumParts, 167 MVT PartVT, EVT ValueVT, const Value *V, 168 Optional<CallingConv::ID> CC = None, 169 Optional<ISD::NodeType> AssertOp = None) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = 191 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 192 unsigned RoundBits = PartBits * RoundParts; 193 EVT RoundVT = RoundBits == ValueBits ? 194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 195 SDValue Lo, Hi; 196 197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 198 199 if (RoundParts > 2) { 200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 201 PartVT, HalfVT, V); 202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 203 RoundParts / 2, PartVT, HalfVT, V); 204 } else { 205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 207 } 208 209 if (DAG.getDataLayout().isBigEndian()) 210 std::swap(Lo, Hi); 211 212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 213 214 if (RoundParts < NumParts) { 215 // Assemble the trailing non-power-of-2 part. 216 unsigned OddParts = NumParts - RoundParts; 217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 219 OddVT, V, CC); 220 221 // Combine the round and odd parts. 222 Lo = Val; 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 227 Hi = 228 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 229 DAG.getConstant(Lo.getValueSizeInBits(), DL, 230 TLI.getPointerTy(DAG.getDataLayout()))); 231 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 232 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 233 } 234 } else if (PartVT.isFloatingPoint()) { 235 // FP split into multiple FP parts (for ppcf128) 236 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 237 "Unexpected split"); 238 SDValue Lo, Hi; 239 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 241 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 242 std::swap(Lo, Hi); 243 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 244 } else { 245 // FP split into integer parts (soft fp) 246 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 247 !PartVT.isVector() && "Unexpected split"); 248 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 249 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp.hasValue()) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) 290 return DAG.getNode( 291 ISD::FP_ROUND, DL, ValueVT, Val, 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 293 294 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 295 } 296 297 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 298 // then truncating. 299 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 300 ValueVT.bitsLT(PartEVT)) { 301 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 305 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 306 } 307 308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 309 const Twine &ErrMsg) { 310 const Instruction *I = dyn_cast_or_null<Instruction>(V); 311 if (!V) 312 return Ctx.emitError(ErrMsg); 313 314 const char *AsmError = ", possible invalid constraint for vector type"; 315 if (const CallInst *CI = dyn_cast<CallInst>(I)) 316 if (CI->isInlineAsm()) 317 return Ctx.emitError(I, ErrMsg + AsmError); 318 319 return Ctx.emitError(I, ErrMsg); 320 } 321 322 /// getCopyFromPartsVector - Create a value that contains the specified legal 323 /// parts combined into the value they represent. If the parts combine to a 324 /// type larger than ValueVT then AssertOp can be used to specify whether the 325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 326 /// ValueVT (ISD::AssertSext). 327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 328 const SDValue *Parts, unsigned NumParts, 329 MVT PartVT, EVT ValueVT, const Value *V, 330 Optional<CallingConv::ID> CallConv) { 331 assert(ValueVT.isVector() && "Not a vector value"); 332 assert(NumParts > 0 && "No parts to assemble!"); 333 const bool IsABIRegCopy = CallConv.hasValue(); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 SDValue Val = Parts[0]; 337 338 // Handle a multi-element vector. 339 if (NumParts > 1) { 340 EVT IntermediateVT; 341 MVT RegisterVT; 342 unsigned NumIntermediates; 343 unsigned NumRegs; 344 345 if (IsABIRegCopy) { 346 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 347 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } else { 350 NumRegs = 351 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 352 NumIntermediates, RegisterVT); 353 } 354 355 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 356 NumParts = NumRegs; // Silence a compiler warning. 357 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 358 assert(RegisterVT.getSizeInBits() == 359 Parts[0].getSimpleValueType().getSizeInBits() && 360 "Part type sizes don't match!"); 361 362 // Assemble the parts into intermediate operands. 363 SmallVector<SDValue, 8> Ops(NumIntermediates); 364 if (NumIntermediates == NumParts) { 365 // If the register was not expanded, truncate or copy the value, 366 // as appropriate. 367 for (unsigned i = 0; i != NumParts; ++i) 368 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 369 PartVT, IntermediateVT, V, CallConv); 370 } else if (NumParts > 0) { 371 // If the intermediate type was expanded, build the intermediate 372 // operands from the parts. 373 assert(NumParts % NumIntermediates == 0 && 374 "Must expand into a divisible number of parts!"); 375 unsigned Factor = NumParts / NumIntermediates; 376 for (unsigned i = 0; i != NumIntermediates; ++i) 377 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 378 PartVT, IntermediateVT, V, CallConv); 379 } 380 381 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 382 // intermediate operands. 383 EVT BuiltVectorTy = 384 IntermediateVT.isVector() 385 ? EVT::getVectorVT( 386 *DAG.getContext(), IntermediateVT.getScalarType(), 387 IntermediateVT.getVectorElementCount() * NumParts) 388 : EVT::getVectorVT(*DAG.getContext(), 389 IntermediateVT.getScalarType(), 390 NumIntermediates); 391 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 392 : ISD::BUILD_VECTOR, 393 DL, BuiltVectorTy, Ops); 394 } 395 396 // There is now one part, held in Val. Correct it to match ValueVT. 397 EVT PartEVT = Val.getValueType(); 398 399 if (PartEVT == ValueVT) 400 return Val; 401 402 if (PartEVT.isVector()) { 403 // Vector/Vector bitcast. 404 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 405 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 406 407 // If the element type of the source/dest vectors are the same, but the 408 // parts vector has more elements than the value vector, then we have a 409 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 410 // elements we want. 411 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 412 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 413 ValueVT.getVectorElementCount().getKnownMinValue()) && 414 (PartEVT.getVectorElementCount().isScalable() == 415 ValueVT.getVectorElementCount().isScalable()) && 416 "Cannot narrow, it would be a lossy transformation"); 417 PartEVT = 418 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 419 ValueVT.getVectorElementCount()); 420 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 421 DAG.getVectorIdxConstant(0, DL)); 422 if (PartEVT == ValueVT) 423 return Val; 424 } 425 426 // Promoted vector extract 427 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 428 } 429 430 // Trivial bitcast if the types are the same size and the destination 431 // vector type is legal. 432 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 433 TLI.isTypeLegal(ValueVT)) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 if (ValueVT.getVectorNumElements() != 1) { 437 // Certain ABIs require that vectors are passed as integers. For vectors 438 // are the same size, this is an obvious bitcast. 439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 441 } else if (ValueVT.bitsLT(PartEVT)) { 442 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 443 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 444 // Drop the extra bits. 445 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 446 return DAG.getBitcast(ValueVT, Val); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 614 const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 ElementCount PartNumElts = PartVT.getVectorElementCount(); 620 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 621 622 // We only support widening vectors with equivalent element types and 623 // fixed/scalable properties. If a target needs to widen a fixed-length type 624 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 625 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 626 PartNumElts.isScalable() != ValueNumElts.isScalable() || 627 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 628 return SDValue(); 629 630 // Widening a scalable vector to another scalable vector is done by inserting 631 // the vector into a larger undef one. 632 if (PartNumElts.isScalable()) 633 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 634 Val, DAG.getVectorIdxConstant(0, DL)); 635 636 EVT ElementVT = PartVT.getVectorElementType(); 637 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 638 // undef elements. 639 SmallVector<SDValue, 16> Ops; 640 DAG.ExtractVectorElements(Val, Ops); 641 SDValue EltUndef = DAG.getUNDEF(ElementVT); 642 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 return DAG.getBuildVector(PartVT, DL, Ops); 646 } 647 648 /// getCopyToPartsVector - Create a series of nodes that contain the specified 649 /// value split into legal parts. 650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 651 SDValue Val, SDValue *Parts, unsigned NumParts, 652 MVT PartVT, const Value *V, 653 Optional<CallingConv::ID> CallConv) { 654 EVT ValueVT = Val.getValueType(); 655 assert(ValueVT.isVector() && "Not a vector"); 656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 657 const bool IsABIRegCopy = CallConv.hasValue(); 658 659 if (NumParts == 1) { 660 EVT PartEVT = PartVT; 661 if (PartEVT == ValueVT) { 662 // Nothing to do. 663 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 664 // Bitconvert vector->vector case. 665 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 666 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 667 Val = Widened; 668 } else if (PartVT.isVector() && 669 PartEVT.getVectorElementType().bitsGE( 670 ValueVT.getVectorElementType()) && 671 PartEVT.getVectorElementCount() == 672 ValueVT.getVectorElementCount()) { 673 674 // Promoted vector extract 675 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 676 } else if (PartEVT.isVector() && 677 PartEVT.getVectorElementType() != 678 ValueVT.getVectorElementType() && 679 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 680 TargetLowering::TypeWidenVector) { 681 // Combination of widening and promotion. 682 EVT WidenVT = 683 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 684 PartVT.getVectorElementCount()); 685 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 686 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorElementCount().isScalar()) { 689 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 690 DAG.getVectorIdxConstant(0, DL)); 691 } else { 692 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 693 assert(PartVT.getFixedSizeInBits() > ValueSize && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 696 Val = DAG.getBitcast(IntermediateType, Val); 697 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 698 } 699 } 700 701 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 702 Parts[0] = Val; 703 return; 704 } 705 706 // Handle a multi-element vector. 707 EVT IntermediateVT; 708 MVT RegisterVT; 709 unsigned NumIntermediates; 710 unsigned NumRegs; 711 if (IsABIRegCopy) { 712 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 713 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 714 NumIntermediates, RegisterVT); 715 } else { 716 NumRegs = 717 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 718 NumIntermediates, RegisterVT); 719 } 720 721 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 722 NumParts = NumRegs; // Silence a compiler warning. 723 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 724 725 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 726 "Mixing scalable and fixed vectors when copying in parts"); 727 728 Optional<ElementCount> DestEltCnt; 729 730 if (IntermediateVT.isVector()) 731 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 732 else 733 DestEltCnt = ElementCount::getFixed(NumIntermediates); 734 735 EVT BuiltVectorTy = EVT::getVectorVT( 736 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 737 738 if (ValueVT == BuiltVectorTy) { 739 // Nothing to do. 740 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 741 // Bitconvert vector->vector case. 742 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 743 } else { 744 if (BuiltVectorTy.getVectorElementType().bitsGT( 745 ValueVT.getVectorElementType())) { 746 // Integer promotion. 747 ValueVT = EVT::getVectorVT(*DAG.getContext(), 748 BuiltVectorTy.getVectorElementType(), 749 ValueVT.getVectorElementCount()); 750 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 751 } 752 753 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 754 Val = Widened; 755 } 756 } 757 758 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 759 760 // Split the vector into intermediate operands. 761 SmallVector<SDValue, 8> Ops(NumIntermediates); 762 for (unsigned i = 0; i != NumIntermediates; ++i) { 763 if (IntermediateVT.isVector()) { 764 // This does something sensible for scalable vectors - see the 765 // definition of EXTRACT_SUBVECTOR for further details. 766 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 767 Ops[i] = 768 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 769 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 770 } else { 771 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 772 DAG.getVectorIdxConstant(i, DL)); 773 } 774 } 775 776 // Split the intermediate operands into legal parts. 777 if (NumParts == NumIntermediates) { 778 // If the register was not expanded, promote or copy the value, 779 // as appropriate. 780 for (unsigned i = 0; i != NumParts; ++i) 781 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 782 } else if (NumParts > 0) { 783 // If the intermediate type was expanded, split each the value into 784 // legal parts. 785 assert(NumIntermediates != 0 && "division by zero"); 786 assert(NumParts % NumIntermediates == 0 && 787 "Must expand into a divisible number of parts!"); 788 unsigned Factor = NumParts / NumIntermediates; 789 for (unsigned i = 0; i != NumIntermediates; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 791 CallConv); 792 } 793 } 794 795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 796 EVT valuevt, Optional<CallingConv::ID> CC) 797 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 798 RegCount(1, regs.size()), CallConv(CC) {} 799 800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 801 const DataLayout &DL, unsigned Reg, Type *Ty, 802 Optional<CallingConv::ID> CC) { 803 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 804 805 CallConv = CC; 806 807 for (EVT ValueVT : ValueVTs) { 808 unsigned NumRegs = 809 isABIMangled() 810 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 811 : TLI.getNumRegisters(Context, ValueVT); 812 MVT RegisterVT = 813 isABIMangled() 814 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 815 : TLI.getRegisterType(Context, ValueVT); 816 for (unsigned i = 0; i != NumRegs; ++i) 817 Regs.push_back(Reg + i); 818 RegVTs.push_back(RegisterVT); 819 RegCount.push_back(NumRegs); 820 Reg += NumRegs; 821 } 822 } 823 824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 825 FunctionLoweringInfo &FuncInfo, 826 const SDLoc &dl, SDValue &Chain, 827 SDValue *Flag, const Value *V) const { 828 // A Value with type {} or [0 x %t] needs no registers. 829 if (ValueVTs.empty()) 830 return SDValue(); 831 832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 833 834 // Assemble the legal parts into the final values. 835 SmallVector<SDValue, 4> Values(ValueVTs.size()); 836 SmallVector<SDValue, 8> Parts; 837 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 838 // Copy the legal parts from the registers. 839 EVT ValueVT = ValueVTs[Value]; 840 unsigned NumRegs = RegCount[Value]; 841 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 842 *DAG.getContext(), 843 CallConv.getValue(), RegVTs[Value]) 844 : RegVTs[Value]; 845 846 Parts.resize(NumRegs); 847 for (unsigned i = 0; i != NumRegs; ++i) { 848 SDValue P; 849 if (!Flag) { 850 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 851 } else { 852 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 853 *Flag = P.getValue(2); 854 } 855 856 Chain = P.getValue(1); 857 Parts[i] = P; 858 859 // If the source register was virtual and if we know something about it, 860 // add an assert node. 861 if (!Register::isVirtualRegister(Regs[Part + i]) || 862 !RegisterVT.isInteger()) 863 continue; 864 865 const FunctionLoweringInfo::LiveOutInfo *LOI = 866 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 867 if (!LOI) 868 continue; 869 870 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 871 unsigned NumSignBits = LOI->NumSignBits; 872 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 873 874 if (NumZeroBits == RegSize) { 875 // The current value is a zero. 876 // Explicitly express that as it would be easier for 877 // optimizations to kick in. 878 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 879 continue; 880 } 881 882 // FIXME: We capture more information than the dag can represent. For 883 // now, just use the tightest assertzext/assertsext possible. 884 bool isSExt; 885 EVT FromVT(MVT::Other); 886 if (NumZeroBits) { 887 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 888 isSExt = false; 889 } else if (NumSignBits > 1) { 890 FromVT = 891 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 892 isSExt = true; 893 } else { 894 continue; 895 } 896 // Add an assertion node. 897 assert(FromVT != MVT::Other); 898 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 899 RegisterVT, P, DAG.getValueType(FromVT)); 900 } 901 902 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 903 RegisterVT, ValueVT, V, CallConv); 904 Part += NumRegs; 905 Parts.clear(); 906 } 907 908 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 909 } 910 911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 912 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 913 const Value *V, 914 ISD::NodeType PreferredExtendType) const { 915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 916 ISD::NodeType ExtendKind = PreferredExtendType; 917 918 // Get the list of the values's legal parts. 919 unsigned NumRegs = Regs.size(); 920 SmallVector<SDValue, 8> Parts(NumRegs); 921 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 922 unsigned NumParts = RegCount[Value]; 923 924 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 925 *DAG.getContext(), 926 CallConv.getValue(), RegVTs[Value]) 927 : RegVTs[Value]; 928 929 // We need to zero extend constants that are liveout to match assumptions 930 // in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 931 if (ExtendKind == ISD::ANY_EXTEND && 932 (TLI.isZExtFree(Val, RegisterVT) || isa<ConstantSDNode>(Val))) 933 ExtendKind = ISD::ZERO_EXTEND; 934 935 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 936 NumParts, RegisterVT, V, CallConv, ExtendKind); 937 Part += NumParts; 938 } 939 940 // Copy the parts into the registers. 941 SmallVector<SDValue, 8> Chains(NumRegs); 942 for (unsigned i = 0; i != NumRegs; ++i) { 943 SDValue Part; 944 if (!Flag) { 945 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 946 } else { 947 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 948 *Flag = Part.getValue(1); 949 } 950 951 Chains[i] = Part.getValue(0); 952 } 953 954 if (NumRegs == 1 || Flag) 955 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 956 // flagged to it. That is the CopyToReg nodes and the user are considered 957 // a single scheduling unit. If we create a TokenFactor and return it as 958 // chain, then the TokenFactor is both a predecessor (operand) of the 959 // user as well as a successor (the TF operands are flagged to the user). 960 // c1, f1 = CopyToReg 961 // c2, f2 = CopyToReg 962 // c3 = TokenFactor c1, c2 963 // ... 964 // = op c3, ..., f2 965 Chain = Chains[NumRegs-1]; 966 else 967 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 968 } 969 970 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 971 unsigned MatchingIdx, const SDLoc &dl, 972 SelectionDAG &DAG, 973 std::vector<SDValue> &Ops) const { 974 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 975 976 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 977 if (HasMatching) 978 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 979 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 980 // Put the register class of the virtual registers in the flag word. That 981 // way, later passes can recompute register class constraints for inline 982 // assembly as well as normal instructions. 983 // Don't do this for tied operands that can use the regclass information 984 // from the def. 985 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 986 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 987 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 988 } 989 990 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 991 Ops.push_back(Res); 992 993 if (Code == InlineAsm::Kind_Clobber) { 994 // Clobbers should always have a 1:1 mapping with registers, and may 995 // reference registers that have illegal (e.g. vector) types. Hence, we 996 // shouldn't try to apply any sort of splitting logic to them. 997 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 998 "No 1:1 mapping from clobbers to regs?"); 999 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1000 (void)SP; 1001 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1002 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1003 assert( 1004 (Regs[I] != SP || 1005 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1006 "If we clobbered the stack pointer, MFI should know about it."); 1007 } 1008 return; 1009 } 1010 1011 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1012 MVT RegisterVT = RegVTs[Value]; 1013 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1014 RegisterVT); 1015 for (unsigned i = 0; i != NumRegs; ++i) { 1016 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1017 unsigned TheReg = Regs[Reg++]; 1018 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1019 } 1020 } 1021 } 1022 1023 SmallVector<std::pair<unsigned, TypeSize>, 4> 1024 RegsForValue::getRegsAndSizes() const { 1025 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1026 unsigned I = 0; 1027 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1028 unsigned RegCount = std::get<0>(CountAndVT); 1029 MVT RegisterVT = std::get<1>(CountAndVT); 1030 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1031 for (unsigned E = I + RegCount; I != E; ++I) 1032 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1033 } 1034 return OutVec; 1035 } 1036 1037 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1038 const TargetLibraryInfo *li) { 1039 AA = aa; 1040 GFI = gfi; 1041 LibInfo = li; 1042 Context = DAG.getContext(); 1043 LPadToCallSiteMap.clear(); 1044 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1045 } 1046 1047 void SelectionDAGBuilder::clear() { 1048 NodeMap.clear(); 1049 UnusedArgNodeMap.clear(); 1050 PendingLoads.clear(); 1051 PendingExports.clear(); 1052 PendingConstrainedFP.clear(); 1053 PendingConstrainedFPStrict.clear(); 1054 CurInst = nullptr; 1055 HasTailCall = false; 1056 SDNodeOrder = LowestSDNodeOrder; 1057 StatepointLowering.clear(); 1058 } 1059 1060 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1061 DanglingDebugInfoMap.clear(); 1062 } 1063 1064 // Update DAG root to include dependencies on Pending chains. 1065 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1066 SDValue Root = DAG.getRoot(); 1067 1068 if (Pending.empty()) 1069 return Root; 1070 1071 // Add current root to PendingChains, unless we already indirectly 1072 // depend on it. 1073 if (Root.getOpcode() != ISD::EntryToken) { 1074 unsigned i = 0, e = Pending.size(); 1075 for (; i != e; ++i) { 1076 assert(Pending[i].getNode()->getNumOperands() > 1); 1077 if (Pending[i].getNode()->getOperand(0) == Root) 1078 break; // Don't add the root if we already indirectly depend on it. 1079 } 1080 1081 if (i == e) 1082 Pending.push_back(Root); 1083 } 1084 1085 if (Pending.size() == 1) 1086 Root = Pending[0]; 1087 else 1088 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1089 1090 DAG.setRoot(Root); 1091 Pending.clear(); 1092 return Root; 1093 } 1094 1095 SDValue SelectionDAGBuilder::getMemoryRoot() { 1096 return updateRoot(PendingLoads); 1097 } 1098 1099 SDValue SelectionDAGBuilder::getRoot() { 1100 // Chain up all pending constrained intrinsics together with all 1101 // pending loads, by simply appending them to PendingLoads and 1102 // then calling getMemoryRoot(). 1103 PendingLoads.reserve(PendingLoads.size() + 1104 PendingConstrainedFP.size() + 1105 PendingConstrainedFPStrict.size()); 1106 PendingLoads.append(PendingConstrainedFP.begin(), 1107 PendingConstrainedFP.end()); 1108 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1109 PendingConstrainedFPStrict.end()); 1110 PendingConstrainedFP.clear(); 1111 PendingConstrainedFPStrict.clear(); 1112 return getMemoryRoot(); 1113 } 1114 1115 SDValue SelectionDAGBuilder::getControlRoot() { 1116 // We need to emit pending fpexcept.strict constrained intrinsics, 1117 // so append them to the PendingExports list. 1118 PendingExports.append(PendingConstrainedFPStrict.begin(), 1119 PendingConstrainedFPStrict.end()); 1120 PendingConstrainedFPStrict.clear(); 1121 return updateRoot(PendingExports); 1122 } 1123 1124 void SelectionDAGBuilder::visit(const Instruction &I) { 1125 // Set up outgoing PHI node register values before emitting the terminator. 1126 if (I.isTerminator()) { 1127 HandlePHINodesInSuccessorBlocks(I.getParent()); 1128 } 1129 1130 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1131 if (!isa<DbgInfoIntrinsic>(I)) 1132 ++SDNodeOrder; 1133 1134 CurInst = &I; 1135 1136 visit(I.getOpcode(), I); 1137 1138 if (!I.isTerminator() && !HasTailCall && 1139 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1140 CopyToExportRegsIfNeeded(&I); 1141 1142 CurInst = nullptr; 1143 } 1144 1145 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1146 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1147 } 1148 1149 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1150 // Note: this doesn't use InstVisitor, because it has to work with 1151 // ConstantExpr's in addition to instructions. 1152 switch (Opcode) { 1153 default: llvm_unreachable("Unknown instruction type encountered!"); 1154 // Build the switch statement using the Instruction.def file. 1155 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1156 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1157 #include "llvm/IR/Instruction.def" 1158 } 1159 } 1160 1161 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1162 DebugLoc DL, unsigned Order) { 1163 // We treat variadic dbg_values differently at this stage. 1164 if (DI->hasArgList()) { 1165 // For variadic dbg_values we will now insert an undef. 1166 // FIXME: We can potentially recover these! 1167 SmallVector<SDDbgOperand, 2> Locs; 1168 for (const Value *V : DI->getValues()) { 1169 auto Undef = UndefValue::get(V->getType()); 1170 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1171 } 1172 SDDbgValue *SDV = DAG.getDbgValueList( 1173 DI->getVariable(), DI->getExpression(), Locs, {}, 1174 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1175 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1176 } else { 1177 // TODO: Dangling debug info will eventually either be resolved or produce 1178 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1179 // between the original dbg.value location and its resolved DBG_VALUE, 1180 // which we should ideally fill with an extra Undef DBG_VALUE. 1181 assert(DI->getNumVariableLocationOps() == 1 && 1182 "DbgValueInst without an ArgList should have a single location " 1183 "operand."); 1184 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1185 } 1186 } 1187 1188 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1189 const DIExpression *Expr) { 1190 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1191 const DbgValueInst *DI = DDI.getDI(); 1192 DIVariable *DanglingVariable = DI->getVariable(); 1193 DIExpression *DanglingExpr = DI->getExpression(); 1194 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1195 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1196 return true; 1197 } 1198 return false; 1199 }; 1200 1201 for (auto &DDIMI : DanglingDebugInfoMap) { 1202 DanglingDebugInfoVector &DDIV = DDIMI.second; 1203 1204 // If debug info is to be dropped, run it through final checks to see 1205 // whether it can be salvaged. 1206 for (auto &DDI : DDIV) 1207 if (isMatchingDbgValue(DDI)) 1208 salvageUnresolvedDbgValue(DDI); 1209 1210 erase_if(DDIV, isMatchingDbgValue); 1211 } 1212 } 1213 1214 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1215 // generate the debug data structures now that we've seen its definition. 1216 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1217 SDValue Val) { 1218 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1219 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1220 return; 1221 1222 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1223 for (auto &DDI : DDIV) { 1224 const DbgValueInst *DI = DDI.getDI(); 1225 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1226 assert(DI && "Ill-formed DanglingDebugInfo"); 1227 DebugLoc dl = DDI.getdl(); 1228 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1229 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1230 DILocalVariable *Variable = DI->getVariable(); 1231 DIExpression *Expr = DI->getExpression(); 1232 assert(Variable->isValidLocationForIntrinsic(dl) && 1233 "Expected inlined-at fields to agree"); 1234 SDDbgValue *SDV; 1235 if (Val.getNode()) { 1236 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1237 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1238 // we couldn't resolve it directly when examining the DbgValue intrinsic 1239 // in the first place we should not be more successful here). Unless we 1240 // have some test case that prove this to be correct we should avoid 1241 // calling EmitFuncArgumentDbgValue here. 1242 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1243 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1244 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1245 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1246 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1247 // inserted after the definition of Val when emitting the instructions 1248 // after ISel. An alternative could be to teach 1249 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1250 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1251 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1252 << ValSDNodeOrder << "\n"); 1253 SDV = getDbgValue(Val, Variable, Expr, dl, 1254 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1255 DAG.AddDbgValue(SDV, false); 1256 } else 1257 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1258 << "in EmitFuncArgumentDbgValue\n"); 1259 } else { 1260 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1261 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1262 auto SDV = 1263 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1264 DAG.AddDbgValue(SDV, false); 1265 } 1266 } 1267 DDIV.clear(); 1268 } 1269 1270 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1271 // TODO: For the variadic implementation, instead of only checking the fail 1272 // state of `handleDebugValue`, we need know specifically which values were 1273 // invalid, so that we attempt to salvage only those values when processing 1274 // a DIArgList. 1275 assert(!DDI.getDI()->hasArgList() && 1276 "Not implemented for variadic dbg_values"); 1277 Value *V = DDI.getDI()->getValue(0); 1278 DILocalVariable *Var = DDI.getDI()->getVariable(); 1279 DIExpression *Expr = DDI.getDI()->getExpression(); 1280 DebugLoc DL = DDI.getdl(); 1281 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1282 unsigned SDOrder = DDI.getSDNodeOrder(); 1283 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1284 // that DW_OP_stack_value is desired. 1285 assert(isa<DbgValueInst>(DDI.getDI())); 1286 bool StackValue = true; 1287 1288 // Can this Value can be encoded without any further work? 1289 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1290 return; 1291 1292 // Attempt to salvage back through as many instructions as possible. Bail if 1293 // a non-instruction is seen, such as a constant expression or global 1294 // variable. FIXME: Further work could recover those too. 1295 while (isa<Instruction>(V)) { 1296 Instruction &VAsInst = *cast<Instruction>(V); 1297 // Temporary "0", awaiting real implementation. 1298 SmallVector<uint64_t, 16> Ops; 1299 SmallVector<Value *, 4> AdditionalValues; 1300 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1301 AdditionalValues); 1302 // If we cannot salvage any further, and haven't yet found a suitable debug 1303 // expression, bail out. 1304 if (!V) 1305 break; 1306 1307 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1308 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1309 // here for variadic dbg_values, remove that condition. 1310 if (!AdditionalValues.empty()) 1311 break; 1312 1313 // New value and expr now represent this debuginfo. 1314 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1315 1316 // Some kind of simplification occurred: check whether the operand of the 1317 // salvaged debug expression can be encoded in this DAG. 1318 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1319 /*IsVariadic=*/false)) { 1320 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1321 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1322 return; 1323 } 1324 } 1325 1326 // This was the final opportunity to salvage this debug information, and it 1327 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1328 // any earlier variable location. 1329 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1330 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1331 DAG.AddDbgValue(SDV, false); 1332 1333 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1334 << "\n"); 1335 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1336 << "\n"); 1337 } 1338 1339 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1340 DILocalVariable *Var, 1341 DIExpression *Expr, DebugLoc dl, 1342 DebugLoc InstDL, unsigned Order, 1343 bool IsVariadic) { 1344 if (Values.empty()) 1345 return true; 1346 SmallVector<SDDbgOperand> LocationOps; 1347 SmallVector<SDNode *> Dependencies; 1348 for (const Value *V : Values) { 1349 // Constant value. 1350 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1351 isa<ConstantPointerNull>(V)) { 1352 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1353 continue; 1354 } 1355 1356 // If the Value is a frame index, we can create a FrameIndex debug value 1357 // without relying on the DAG at all. 1358 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1359 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1360 if (SI != FuncInfo.StaticAllocaMap.end()) { 1361 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1362 continue; 1363 } 1364 } 1365 1366 // Do not use getValue() in here; we don't want to generate code at 1367 // this point if it hasn't been done yet. 1368 SDValue N = NodeMap[V]; 1369 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1370 N = UnusedArgNodeMap[V]; 1371 if (N.getNode()) { 1372 // Only emit func arg dbg value for non-variadic dbg.values for now. 1373 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1374 return true; 1375 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1376 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1377 // describe stack slot locations. 1378 // 1379 // Consider "int x = 0; int *px = &x;". There are two kinds of 1380 // interesting debug values here after optimization: 1381 // 1382 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1383 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1384 // 1385 // Both describe the direct values of their associated variables. 1386 Dependencies.push_back(N.getNode()); 1387 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1388 continue; 1389 } 1390 LocationOps.emplace_back( 1391 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1392 continue; 1393 } 1394 1395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1396 // Special rules apply for the first dbg.values of parameter variables in a 1397 // function. Identify them by the fact they reference Argument Values, that 1398 // they're parameters, and they are parameters of the current function. We 1399 // need to let them dangle until they get an SDNode. 1400 bool IsParamOfFunc = 1401 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1402 if (IsParamOfFunc) 1403 return false; 1404 1405 // The value is not used in this block yet (or it would have an SDNode). 1406 // We still want the value to appear for the user if possible -- if it has 1407 // an associated VReg, we can refer to that instead. 1408 auto VMI = FuncInfo.ValueMap.find(V); 1409 if (VMI != FuncInfo.ValueMap.end()) { 1410 unsigned Reg = VMI->second; 1411 // If this is a PHI node, it may be split up into several MI PHI nodes 1412 // (in FunctionLoweringInfo::set). 1413 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1414 V->getType(), None); 1415 if (RFV.occupiesMultipleRegs()) { 1416 // FIXME: We could potentially support variadic dbg_values here. 1417 if (IsVariadic) 1418 return false; 1419 unsigned Offset = 0; 1420 unsigned BitsToDescribe = 0; 1421 if (auto VarSize = Var->getSizeInBits()) 1422 BitsToDescribe = *VarSize; 1423 if (auto Fragment = Expr->getFragmentInfo()) 1424 BitsToDescribe = Fragment->SizeInBits; 1425 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1426 // Bail out if all bits are described already. 1427 if (Offset >= BitsToDescribe) 1428 break; 1429 // TODO: handle scalable vectors. 1430 unsigned RegisterSize = RegAndSize.second; 1431 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1432 ? BitsToDescribe - Offset 1433 : RegisterSize; 1434 auto FragmentExpr = DIExpression::createFragmentExpression( 1435 Expr, Offset, FragmentSize); 1436 if (!FragmentExpr) 1437 continue; 1438 SDDbgValue *SDV = DAG.getVRegDbgValue( 1439 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1440 DAG.AddDbgValue(SDV, false); 1441 Offset += RegisterSize; 1442 } 1443 return true; 1444 } 1445 // We can use simple vreg locations for variadic dbg_values as well. 1446 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1447 continue; 1448 } 1449 // We failed to create a SDDbgOperand for V. 1450 return false; 1451 } 1452 1453 // We have created a SDDbgOperand for each Value in Values. 1454 // Should use Order instead of SDNodeOrder? 1455 assert(!LocationOps.empty()); 1456 SDDbgValue *SDV = 1457 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1458 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1459 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1460 return true; 1461 } 1462 1463 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1464 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1465 for (auto &Pair : DanglingDebugInfoMap) 1466 for (auto &DDI : Pair.second) 1467 salvageUnresolvedDbgValue(DDI); 1468 clearDanglingDebugInfo(); 1469 } 1470 1471 /// getCopyFromRegs - If there was virtual register allocated for the value V 1472 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1473 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1474 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1475 SDValue Result; 1476 1477 if (It != FuncInfo.ValueMap.end()) { 1478 Register InReg = It->second; 1479 1480 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1481 DAG.getDataLayout(), InReg, Ty, 1482 None); // This is not an ABI copy. 1483 SDValue Chain = DAG.getEntryNode(); 1484 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1485 V); 1486 resolveDanglingDebugInfo(V, Result); 1487 } 1488 1489 return Result; 1490 } 1491 1492 /// getValue - Return an SDValue for the given Value. 1493 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1494 // If we already have an SDValue for this value, use it. It's important 1495 // to do this first, so that we don't create a CopyFromReg if we already 1496 // have a regular SDValue. 1497 SDValue &N = NodeMap[V]; 1498 if (N.getNode()) return N; 1499 1500 // If there's a virtual register allocated and initialized for this 1501 // value, use it. 1502 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1503 return copyFromReg; 1504 1505 // Otherwise create a new SDValue and remember it. 1506 SDValue Val = getValueImpl(V); 1507 NodeMap[V] = Val; 1508 resolveDanglingDebugInfo(V, Val); 1509 return Val; 1510 } 1511 1512 /// getNonRegisterValue - Return an SDValue for the given Value, but 1513 /// don't look in FuncInfo.ValueMap for a virtual register. 1514 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1515 // If we already have an SDValue for this value, use it. 1516 SDValue &N = NodeMap[V]; 1517 if (N.getNode()) { 1518 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1519 // Remove the debug location from the node as the node is about to be used 1520 // in a location which may differ from the original debug location. This 1521 // is relevant to Constant and ConstantFP nodes because they can appear 1522 // as constant expressions inside PHI nodes. 1523 N->setDebugLoc(DebugLoc()); 1524 } 1525 return N; 1526 } 1527 1528 // Otherwise create a new SDValue and remember it. 1529 SDValue Val = getValueImpl(V); 1530 NodeMap[V] = Val; 1531 resolveDanglingDebugInfo(V, Val); 1532 return Val; 1533 } 1534 1535 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1536 /// Create an SDValue for the given value. 1537 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1539 1540 if (const Constant *C = dyn_cast<Constant>(V)) { 1541 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1542 1543 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1544 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1545 1546 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1547 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1548 1549 if (isa<ConstantPointerNull>(C)) { 1550 unsigned AS = V->getType()->getPointerAddressSpace(); 1551 return DAG.getConstant(0, getCurSDLoc(), 1552 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1553 } 1554 1555 if (match(C, m_VScale(DAG.getDataLayout()))) 1556 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1557 1558 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1559 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1560 1561 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1562 return DAG.getUNDEF(VT); 1563 1564 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1565 visit(CE->getOpcode(), *CE); 1566 SDValue N1 = NodeMap[V]; 1567 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1568 return N1; 1569 } 1570 1571 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1572 SmallVector<SDValue, 4> Constants; 1573 for (const Use &U : C->operands()) { 1574 SDNode *Val = getValue(U).getNode(); 1575 // If the operand is an empty aggregate, there are no values. 1576 if (!Val) continue; 1577 // Add each leaf value from the operand to the Constants list 1578 // to form a flattened list of all the values. 1579 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1580 Constants.push_back(SDValue(Val, i)); 1581 } 1582 1583 return DAG.getMergeValues(Constants, getCurSDLoc()); 1584 } 1585 1586 if (const ConstantDataSequential *CDS = 1587 dyn_cast<ConstantDataSequential>(C)) { 1588 SmallVector<SDValue, 4> Ops; 1589 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1590 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1591 // Add each leaf value from the operand to the Constants list 1592 // to form a flattened list of all the values. 1593 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1594 Ops.push_back(SDValue(Val, i)); 1595 } 1596 1597 if (isa<ArrayType>(CDS->getType())) 1598 return DAG.getMergeValues(Ops, getCurSDLoc()); 1599 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1600 } 1601 1602 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1603 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1604 "Unknown struct or array constant!"); 1605 1606 SmallVector<EVT, 4> ValueVTs; 1607 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1608 unsigned NumElts = ValueVTs.size(); 1609 if (NumElts == 0) 1610 return SDValue(); // empty struct 1611 SmallVector<SDValue, 4> Constants(NumElts); 1612 for (unsigned i = 0; i != NumElts; ++i) { 1613 EVT EltVT = ValueVTs[i]; 1614 if (isa<UndefValue>(C)) 1615 Constants[i] = DAG.getUNDEF(EltVT); 1616 else if (EltVT.isFloatingPoint()) 1617 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1618 else 1619 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1620 } 1621 1622 return DAG.getMergeValues(Constants, getCurSDLoc()); 1623 } 1624 1625 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1626 return DAG.getBlockAddress(BA, VT); 1627 1628 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1629 return getValue(Equiv->getGlobalValue()); 1630 1631 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1632 return getValue(NC->getGlobalValue()); 1633 1634 VectorType *VecTy = cast<VectorType>(V->getType()); 1635 1636 // Now that we know the number and type of the elements, get that number of 1637 // elements into the Ops array based on what kind of constant it is. 1638 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1639 SmallVector<SDValue, 16> Ops; 1640 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1641 for (unsigned i = 0; i != NumElements; ++i) 1642 Ops.push_back(getValue(CV->getOperand(i))); 1643 1644 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1645 } else if (isa<ConstantAggregateZero>(C)) { 1646 EVT EltVT = 1647 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1648 1649 SDValue Op; 1650 if (EltVT.isFloatingPoint()) 1651 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1652 else 1653 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1654 1655 if (isa<ScalableVectorType>(VecTy)) 1656 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1657 else { 1658 SmallVector<SDValue, 16> Ops; 1659 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1660 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1661 } 1662 } 1663 llvm_unreachable("Unknown vector constant"); 1664 } 1665 1666 // If this is a static alloca, generate it as the frameindex instead of 1667 // computation. 1668 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1669 DenseMap<const AllocaInst*, int>::iterator SI = 1670 FuncInfo.StaticAllocaMap.find(AI); 1671 if (SI != FuncInfo.StaticAllocaMap.end()) 1672 return DAG.getFrameIndex(SI->second, 1673 TLI.getFrameIndexTy(DAG.getDataLayout())); 1674 } 1675 1676 // If this is an instruction which fast-isel has deferred, select it now. 1677 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1678 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1679 1680 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1681 Inst->getType(), None); 1682 SDValue Chain = DAG.getEntryNode(); 1683 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1684 } 1685 1686 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1687 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1688 } 1689 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1690 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1691 llvm_unreachable("Can't get register for value!"); 1692 } 1693 1694 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1695 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1696 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1697 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1698 bool IsSEH = isAsynchronousEHPersonality(Pers); 1699 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1700 if (!IsSEH) 1701 CatchPadMBB->setIsEHScopeEntry(); 1702 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1703 if (IsMSVCCXX || IsCoreCLR) 1704 CatchPadMBB->setIsEHFuncletEntry(); 1705 } 1706 1707 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1708 // Update machine-CFG edge. 1709 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1710 FuncInfo.MBB->addSuccessor(TargetMBB); 1711 TargetMBB->setIsEHCatchretTarget(true); 1712 DAG.getMachineFunction().setHasEHCatchret(true); 1713 1714 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1715 bool IsSEH = isAsynchronousEHPersonality(Pers); 1716 if (IsSEH) { 1717 // If this is not a fall-through branch or optimizations are switched off, 1718 // emit the branch. 1719 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1720 TM.getOptLevel() == CodeGenOpt::None) 1721 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1722 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1723 return; 1724 } 1725 1726 // Figure out the funclet membership for the catchret's successor. 1727 // This will be used by the FuncletLayout pass to determine how to order the 1728 // BB's. 1729 // A 'catchret' returns to the outer scope's color. 1730 Value *ParentPad = I.getCatchSwitchParentPad(); 1731 const BasicBlock *SuccessorColor; 1732 if (isa<ConstantTokenNone>(ParentPad)) 1733 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1734 else 1735 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1736 assert(SuccessorColor && "No parent funclet for catchret!"); 1737 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1738 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1739 1740 // Create the terminator node. 1741 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1742 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1743 DAG.getBasicBlock(SuccessorColorMBB)); 1744 DAG.setRoot(Ret); 1745 } 1746 1747 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1748 // Don't emit any special code for the cleanuppad instruction. It just marks 1749 // the start of an EH scope/funclet. 1750 FuncInfo.MBB->setIsEHScopeEntry(); 1751 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1752 if (Pers != EHPersonality::Wasm_CXX) { 1753 FuncInfo.MBB->setIsEHFuncletEntry(); 1754 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1755 } 1756 } 1757 1758 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1759 // not match, it is OK to add only the first unwind destination catchpad to the 1760 // successors, because there will be at least one invoke instruction within the 1761 // catch scope that points to the next unwind destination, if one exists, so 1762 // CFGSort cannot mess up with BB sorting order. 1763 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1764 // call within them, and catchpads only consisting of 'catch (...)' have a 1765 // '__cxa_end_catch' call within them, both of which generate invokes in case 1766 // the next unwind destination exists, i.e., the next unwind destination is not 1767 // the caller.) 1768 // 1769 // Having at most one EH pad successor is also simpler and helps later 1770 // transformations. 1771 // 1772 // For example, 1773 // current: 1774 // invoke void @foo to ... unwind label %catch.dispatch 1775 // catch.dispatch: 1776 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1777 // catch.start: 1778 // ... 1779 // ... in this BB or some other child BB dominated by this BB there will be an 1780 // invoke that points to 'next' BB as an unwind destination 1781 // 1782 // next: ; We don't need to add this to 'current' BB's successor 1783 // ... 1784 static void findWasmUnwindDestinations( 1785 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1786 BranchProbability Prob, 1787 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1788 &UnwindDests) { 1789 while (EHPadBB) { 1790 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1791 if (isa<CleanupPadInst>(Pad)) { 1792 // Stop on cleanup pads. 1793 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1794 UnwindDests.back().first->setIsEHScopeEntry(); 1795 break; 1796 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1797 // Add the catchpad handlers to the possible destinations. We don't 1798 // continue to the unwind destination of the catchswitch for wasm. 1799 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1800 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1801 UnwindDests.back().first->setIsEHScopeEntry(); 1802 } 1803 break; 1804 } else { 1805 continue; 1806 } 1807 } 1808 } 1809 1810 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1811 /// many places it could ultimately go. In the IR, we have a single unwind 1812 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1813 /// This function skips over imaginary basic blocks that hold catchswitch 1814 /// instructions, and finds all the "real" machine 1815 /// basic block destinations. As those destinations may not be successors of 1816 /// EHPadBB, here we also calculate the edge probability to those destinations. 1817 /// The passed-in Prob is the edge probability to EHPadBB. 1818 static void findUnwindDestinations( 1819 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1820 BranchProbability Prob, 1821 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1822 &UnwindDests) { 1823 EHPersonality Personality = 1824 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1825 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1826 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1827 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1828 bool IsSEH = isAsynchronousEHPersonality(Personality); 1829 1830 if (IsWasmCXX) { 1831 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1832 assert(UnwindDests.size() <= 1 && 1833 "There should be at most one unwind destination for wasm"); 1834 return; 1835 } 1836 1837 while (EHPadBB) { 1838 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1839 BasicBlock *NewEHPadBB = nullptr; 1840 if (isa<LandingPadInst>(Pad)) { 1841 // Stop on landingpads. They are not funclets. 1842 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1843 break; 1844 } else if (isa<CleanupPadInst>(Pad)) { 1845 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1846 // personalities. 1847 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1848 UnwindDests.back().first->setIsEHScopeEntry(); 1849 UnwindDests.back().first->setIsEHFuncletEntry(); 1850 break; 1851 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1852 // Add the catchpad handlers to the possible destinations. 1853 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1854 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1855 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1856 if (IsMSVCCXX || IsCoreCLR) 1857 UnwindDests.back().first->setIsEHFuncletEntry(); 1858 if (!IsSEH) 1859 UnwindDests.back().first->setIsEHScopeEntry(); 1860 } 1861 NewEHPadBB = CatchSwitch->getUnwindDest(); 1862 } else { 1863 continue; 1864 } 1865 1866 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1867 if (BPI && NewEHPadBB) 1868 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1869 EHPadBB = NewEHPadBB; 1870 } 1871 } 1872 1873 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1874 // Update successor info. 1875 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1876 auto UnwindDest = I.getUnwindDest(); 1877 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1878 BranchProbability UnwindDestProb = 1879 (BPI && UnwindDest) 1880 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1881 : BranchProbability::getZero(); 1882 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1883 for (auto &UnwindDest : UnwindDests) { 1884 UnwindDest.first->setIsEHPad(); 1885 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1886 } 1887 FuncInfo.MBB->normalizeSuccProbs(); 1888 1889 // Create the terminator node. 1890 SDValue Ret = 1891 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1892 DAG.setRoot(Ret); 1893 } 1894 1895 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1896 report_fatal_error("visitCatchSwitch not yet implemented!"); 1897 } 1898 1899 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1901 auto &DL = DAG.getDataLayout(); 1902 SDValue Chain = getControlRoot(); 1903 SmallVector<ISD::OutputArg, 8> Outs; 1904 SmallVector<SDValue, 8> OutVals; 1905 1906 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1907 // lower 1908 // 1909 // %val = call <ty> @llvm.experimental.deoptimize() 1910 // ret <ty> %val 1911 // 1912 // differently. 1913 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1914 LowerDeoptimizingReturn(); 1915 return; 1916 } 1917 1918 if (!FuncInfo.CanLowerReturn) { 1919 unsigned DemoteReg = FuncInfo.DemoteRegister; 1920 const Function *F = I.getParent()->getParent(); 1921 1922 // Emit a store of the return value through the virtual register. 1923 // Leave Outs empty so that LowerReturn won't try to load return 1924 // registers the usual way. 1925 SmallVector<EVT, 1> PtrValueVTs; 1926 ComputeValueVTs(TLI, DL, 1927 F->getReturnType()->getPointerTo( 1928 DAG.getDataLayout().getAllocaAddrSpace()), 1929 PtrValueVTs); 1930 1931 SDValue RetPtr = 1932 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1933 SDValue RetOp = getValue(I.getOperand(0)); 1934 1935 SmallVector<EVT, 4> ValueVTs, MemVTs; 1936 SmallVector<uint64_t, 4> Offsets; 1937 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1938 &Offsets); 1939 unsigned NumValues = ValueVTs.size(); 1940 1941 SmallVector<SDValue, 4> Chains(NumValues); 1942 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1943 for (unsigned i = 0; i != NumValues; ++i) { 1944 // An aggregate return value cannot wrap around the address space, so 1945 // offsets to its parts don't wrap either. 1946 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1947 TypeSize::Fixed(Offsets[i])); 1948 1949 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1950 if (MemVTs[i] != ValueVTs[i]) 1951 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1952 Chains[i] = DAG.getStore( 1953 Chain, getCurSDLoc(), Val, 1954 // FIXME: better loc info would be nice. 1955 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1956 commonAlignment(BaseAlign, Offsets[i])); 1957 } 1958 1959 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1960 MVT::Other, Chains); 1961 } else if (I.getNumOperands() != 0) { 1962 SmallVector<EVT, 4> ValueVTs; 1963 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1964 unsigned NumValues = ValueVTs.size(); 1965 if (NumValues) { 1966 SDValue RetOp = getValue(I.getOperand(0)); 1967 1968 const Function *F = I.getParent()->getParent(); 1969 1970 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1971 I.getOperand(0)->getType(), F->getCallingConv(), 1972 /*IsVarArg*/ false, DL); 1973 1974 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1975 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1976 ExtendKind = ISD::SIGN_EXTEND; 1977 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1978 ExtendKind = ISD::ZERO_EXTEND; 1979 1980 LLVMContext &Context = F->getContext(); 1981 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1982 1983 for (unsigned j = 0; j != NumValues; ++j) { 1984 EVT VT = ValueVTs[j]; 1985 1986 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1987 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1988 1989 CallingConv::ID CC = F->getCallingConv(); 1990 1991 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1992 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1993 SmallVector<SDValue, 4> Parts(NumParts); 1994 getCopyToParts(DAG, getCurSDLoc(), 1995 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1996 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1997 1998 // 'inreg' on function refers to return value 1999 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2000 if (RetInReg) 2001 Flags.setInReg(); 2002 2003 if (I.getOperand(0)->getType()->isPointerTy()) { 2004 Flags.setPointer(); 2005 Flags.setPointerAddrSpace( 2006 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2007 } 2008 2009 if (NeedsRegBlock) { 2010 Flags.setInConsecutiveRegs(); 2011 if (j == NumValues - 1) 2012 Flags.setInConsecutiveRegsLast(); 2013 } 2014 2015 // Propagate extension type if any 2016 if (ExtendKind == ISD::SIGN_EXTEND) 2017 Flags.setSExt(); 2018 else if (ExtendKind == ISD::ZERO_EXTEND) 2019 Flags.setZExt(); 2020 2021 for (unsigned i = 0; i < NumParts; ++i) { 2022 Outs.push_back(ISD::OutputArg(Flags, 2023 Parts[i].getValueType().getSimpleVT(), 2024 VT, /*isfixed=*/true, 0, 0)); 2025 OutVals.push_back(Parts[i]); 2026 } 2027 } 2028 } 2029 } 2030 2031 // Push in swifterror virtual register as the last element of Outs. This makes 2032 // sure swifterror virtual register will be returned in the swifterror 2033 // physical register. 2034 const Function *F = I.getParent()->getParent(); 2035 if (TLI.supportSwiftError() && 2036 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2037 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2038 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2039 Flags.setSwiftError(); 2040 Outs.push_back(ISD::OutputArg( 2041 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2042 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2043 // Create SDNode for the swifterror virtual register. 2044 OutVals.push_back( 2045 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2046 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2047 EVT(TLI.getPointerTy(DL)))); 2048 } 2049 2050 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2051 CallingConv::ID CallConv = 2052 DAG.getMachineFunction().getFunction().getCallingConv(); 2053 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2054 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2055 2056 // Verify that the target's LowerReturn behaved as expected. 2057 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2058 "LowerReturn didn't return a valid chain!"); 2059 2060 // Update the DAG with the new chain value resulting from return lowering. 2061 DAG.setRoot(Chain); 2062 } 2063 2064 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2065 /// created for it, emit nodes to copy the value into the virtual 2066 /// registers. 2067 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2068 // Skip empty types 2069 if (V->getType()->isEmptyTy()) 2070 return; 2071 2072 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2073 if (VMI != FuncInfo.ValueMap.end()) { 2074 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2075 CopyValueToVirtualRegister(V, VMI->second); 2076 } 2077 } 2078 2079 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2080 /// the current basic block, add it to ValueMap now so that we'll get a 2081 /// CopyTo/FromReg. 2082 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2083 // No need to export constants. 2084 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2085 2086 // Already exported? 2087 if (FuncInfo.isExportedInst(V)) return; 2088 2089 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2090 CopyValueToVirtualRegister(V, Reg); 2091 } 2092 2093 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2094 const BasicBlock *FromBB) { 2095 // The operands of the setcc have to be in this block. We don't know 2096 // how to export them from some other block. 2097 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2098 // Can export from current BB. 2099 if (VI->getParent() == FromBB) 2100 return true; 2101 2102 // Is already exported, noop. 2103 return FuncInfo.isExportedInst(V); 2104 } 2105 2106 // If this is an argument, we can export it if the BB is the entry block or 2107 // if it is already exported. 2108 if (isa<Argument>(V)) { 2109 if (FromBB->isEntryBlock()) 2110 return true; 2111 2112 // Otherwise, can only export this if it is already exported. 2113 return FuncInfo.isExportedInst(V); 2114 } 2115 2116 // Otherwise, constants can always be exported. 2117 return true; 2118 } 2119 2120 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2121 BranchProbability 2122 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2123 const MachineBasicBlock *Dst) const { 2124 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2125 const BasicBlock *SrcBB = Src->getBasicBlock(); 2126 const BasicBlock *DstBB = Dst->getBasicBlock(); 2127 if (!BPI) { 2128 // If BPI is not available, set the default probability as 1 / N, where N is 2129 // the number of successors. 2130 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2131 return BranchProbability(1, SuccSize); 2132 } 2133 return BPI->getEdgeProbability(SrcBB, DstBB); 2134 } 2135 2136 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2137 MachineBasicBlock *Dst, 2138 BranchProbability Prob) { 2139 if (!FuncInfo.BPI) 2140 Src->addSuccessorWithoutProb(Dst); 2141 else { 2142 if (Prob.isUnknown()) 2143 Prob = getEdgeProbability(Src, Dst); 2144 Src->addSuccessor(Dst, Prob); 2145 } 2146 } 2147 2148 static bool InBlock(const Value *V, const BasicBlock *BB) { 2149 if (const Instruction *I = dyn_cast<Instruction>(V)) 2150 return I->getParent() == BB; 2151 return true; 2152 } 2153 2154 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2155 /// This function emits a branch and is used at the leaves of an OR or an 2156 /// AND operator tree. 2157 void 2158 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2159 MachineBasicBlock *TBB, 2160 MachineBasicBlock *FBB, 2161 MachineBasicBlock *CurBB, 2162 MachineBasicBlock *SwitchBB, 2163 BranchProbability TProb, 2164 BranchProbability FProb, 2165 bool InvertCond) { 2166 const BasicBlock *BB = CurBB->getBasicBlock(); 2167 2168 // If the leaf of the tree is a comparison, merge the condition into 2169 // the caseblock. 2170 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2171 // The operands of the cmp have to be in this block. We don't know 2172 // how to export them from some other block. If this is the first block 2173 // of the sequence, no exporting is needed. 2174 if (CurBB == SwitchBB || 2175 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2176 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2177 ISD::CondCode Condition; 2178 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2179 ICmpInst::Predicate Pred = 2180 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2181 Condition = getICmpCondCode(Pred); 2182 } else { 2183 const FCmpInst *FC = cast<FCmpInst>(Cond); 2184 FCmpInst::Predicate Pred = 2185 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2186 Condition = getFCmpCondCode(Pred); 2187 if (TM.Options.NoNaNsFPMath) 2188 Condition = getFCmpCodeWithoutNaN(Condition); 2189 } 2190 2191 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2192 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2193 SL->SwitchCases.push_back(CB); 2194 return; 2195 } 2196 } 2197 2198 // Create a CaseBlock record representing this branch. 2199 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2200 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2201 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2202 SL->SwitchCases.push_back(CB); 2203 } 2204 2205 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2206 MachineBasicBlock *TBB, 2207 MachineBasicBlock *FBB, 2208 MachineBasicBlock *CurBB, 2209 MachineBasicBlock *SwitchBB, 2210 Instruction::BinaryOps Opc, 2211 BranchProbability TProb, 2212 BranchProbability FProb, 2213 bool InvertCond) { 2214 // Skip over not part of the tree and remember to invert op and operands at 2215 // next level. 2216 Value *NotCond; 2217 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2218 InBlock(NotCond, CurBB->getBasicBlock())) { 2219 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2220 !InvertCond); 2221 return; 2222 } 2223 2224 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2225 const Value *BOpOp0, *BOpOp1; 2226 // Compute the effective opcode for Cond, taking into account whether it needs 2227 // to be inverted, e.g. 2228 // and (not (or A, B)), C 2229 // gets lowered as 2230 // and (and (not A, not B), C) 2231 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2232 if (BOp) { 2233 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2234 ? Instruction::And 2235 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2236 ? Instruction::Or 2237 : (Instruction::BinaryOps)0); 2238 if (InvertCond) { 2239 if (BOpc == Instruction::And) 2240 BOpc = Instruction::Or; 2241 else if (BOpc == Instruction::Or) 2242 BOpc = Instruction::And; 2243 } 2244 } 2245 2246 // If this node is not part of the or/and tree, emit it as a branch. 2247 // Note that all nodes in the tree should have same opcode. 2248 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2249 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2250 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2251 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2252 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2253 TProb, FProb, InvertCond); 2254 return; 2255 } 2256 2257 // Create TmpBB after CurBB. 2258 MachineFunction::iterator BBI(CurBB); 2259 MachineFunction &MF = DAG.getMachineFunction(); 2260 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2261 CurBB->getParent()->insert(++BBI, TmpBB); 2262 2263 if (Opc == Instruction::Or) { 2264 // Codegen X | Y as: 2265 // BB1: 2266 // jmp_if_X TBB 2267 // jmp TmpBB 2268 // TmpBB: 2269 // jmp_if_Y TBB 2270 // jmp FBB 2271 // 2272 2273 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2274 // The requirement is that 2275 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2276 // = TrueProb for original BB. 2277 // Assuming the original probabilities are A and B, one choice is to set 2278 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2279 // A/(1+B) and 2B/(1+B). This choice assumes that 2280 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2281 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2282 // TmpBB, but the math is more complicated. 2283 2284 auto NewTrueProb = TProb / 2; 2285 auto NewFalseProb = TProb / 2 + FProb; 2286 // Emit the LHS condition. 2287 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2288 NewFalseProb, InvertCond); 2289 2290 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2291 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2292 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2293 // Emit the RHS condition into TmpBB. 2294 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2295 Probs[1], InvertCond); 2296 } else { 2297 assert(Opc == Instruction::And && "Unknown merge op!"); 2298 // Codegen X & Y as: 2299 // BB1: 2300 // jmp_if_X TmpBB 2301 // jmp FBB 2302 // TmpBB: 2303 // jmp_if_Y TBB 2304 // jmp FBB 2305 // 2306 // This requires creation of TmpBB after CurBB. 2307 2308 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2309 // The requirement is that 2310 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2311 // = FalseProb for original BB. 2312 // Assuming the original probabilities are A and B, one choice is to set 2313 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2314 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2315 // TrueProb for BB1 * FalseProb for TmpBB. 2316 2317 auto NewTrueProb = TProb + FProb / 2; 2318 auto NewFalseProb = FProb / 2; 2319 // Emit the LHS condition. 2320 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2321 NewFalseProb, InvertCond); 2322 2323 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2324 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2325 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2326 // Emit the RHS condition into TmpBB. 2327 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2328 Probs[1], InvertCond); 2329 } 2330 } 2331 2332 /// If the set of cases should be emitted as a series of branches, return true. 2333 /// If we should emit this as a bunch of and/or'd together conditions, return 2334 /// false. 2335 bool 2336 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2337 if (Cases.size() != 2) return true; 2338 2339 // If this is two comparisons of the same values or'd or and'd together, they 2340 // will get folded into a single comparison, so don't emit two blocks. 2341 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2342 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2343 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2344 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2345 return false; 2346 } 2347 2348 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2349 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2350 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2351 Cases[0].CC == Cases[1].CC && 2352 isa<Constant>(Cases[0].CmpRHS) && 2353 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2354 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2355 return false; 2356 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2357 return false; 2358 } 2359 2360 return true; 2361 } 2362 2363 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2364 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2365 2366 // Update machine-CFG edges. 2367 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2368 2369 if (I.isUnconditional()) { 2370 // Update machine-CFG edges. 2371 BrMBB->addSuccessor(Succ0MBB); 2372 2373 // If this is not a fall-through branch or optimizations are switched off, 2374 // emit the branch. 2375 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2376 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2377 MVT::Other, getControlRoot(), 2378 DAG.getBasicBlock(Succ0MBB))); 2379 2380 return; 2381 } 2382 2383 // If this condition is one of the special cases we handle, do special stuff 2384 // now. 2385 const Value *CondVal = I.getCondition(); 2386 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2387 2388 // If this is a series of conditions that are or'd or and'd together, emit 2389 // this as a sequence of branches instead of setcc's with and/or operations. 2390 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2391 // unpredictable branches, and vector extracts because those jumps are likely 2392 // expensive for any target), this should improve performance. 2393 // For example, instead of something like: 2394 // cmp A, B 2395 // C = seteq 2396 // cmp D, E 2397 // F = setle 2398 // or C, F 2399 // jnz foo 2400 // Emit: 2401 // cmp A, B 2402 // je foo 2403 // cmp D, E 2404 // jle foo 2405 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2406 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2407 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2408 Value *Vec; 2409 const Value *BOp0, *BOp1; 2410 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2411 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2412 Opcode = Instruction::And; 2413 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2414 Opcode = Instruction::Or; 2415 2416 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2417 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2418 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2419 getEdgeProbability(BrMBB, Succ0MBB), 2420 getEdgeProbability(BrMBB, Succ1MBB), 2421 /*InvertCond=*/false); 2422 // If the compares in later blocks need to use values not currently 2423 // exported from this block, export them now. This block should always 2424 // be the first entry. 2425 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2426 2427 // Allow some cases to be rejected. 2428 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2429 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2430 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2431 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2432 } 2433 2434 // Emit the branch for this block. 2435 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2436 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2437 return; 2438 } 2439 2440 // Okay, we decided not to do this, remove any inserted MBB's and clear 2441 // SwitchCases. 2442 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2443 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2444 2445 SL->SwitchCases.clear(); 2446 } 2447 } 2448 2449 // Create a CaseBlock record representing this branch. 2450 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2451 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2452 2453 // Use visitSwitchCase to actually insert the fast branch sequence for this 2454 // cond branch. 2455 visitSwitchCase(CB, BrMBB); 2456 } 2457 2458 /// visitSwitchCase - Emits the necessary code to represent a single node in 2459 /// the binary search tree resulting from lowering a switch instruction. 2460 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2461 MachineBasicBlock *SwitchBB) { 2462 SDValue Cond; 2463 SDValue CondLHS = getValue(CB.CmpLHS); 2464 SDLoc dl = CB.DL; 2465 2466 if (CB.CC == ISD::SETTRUE) { 2467 // Branch or fall through to TrueBB. 2468 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2469 SwitchBB->normalizeSuccProbs(); 2470 if (CB.TrueBB != NextBlock(SwitchBB)) { 2471 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2472 DAG.getBasicBlock(CB.TrueBB))); 2473 } 2474 return; 2475 } 2476 2477 auto &TLI = DAG.getTargetLoweringInfo(); 2478 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2479 2480 // Build the setcc now. 2481 if (!CB.CmpMHS) { 2482 // Fold "(X == true)" to X and "(X == false)" to !X to 2483 // handle common cases produced by branch lowering. 2484 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2485 CB.CC == ISD::SETEQ) 2486 Cond = CondLHS; 2487 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2488 CB.CC == ISD::SETEQ) { 2489 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2490 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2491 } else { 2492 SDValue CondRHS = getValue(CB.CmpRHS); 2493 2494 // If a pointer's DAG type is larger than its memory type then the DAG 2495 // values are zero-extended. This breaks signed comparisons so truncate 2496 // back to the underlying type before doing the compare. 2497 if (CondLHS.getValueType() != MemVT) { 2498 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2499 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2500 } 2501 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2502 } 2503 } else { 2504 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2505 2506 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2507 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2508 2509 SDValue CmpOp = getValue(CB.CmpMHS); 2510 EVT VT = CmpOp.getValueType(); 2511 2512 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2513 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2514 ISD::SETLE); 2515 } else { 2516 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2517 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2518 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2519 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2520 } 2521 } 2522 2523 // Update successor info 2524 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2525 // TrueBB and FalseBB are always different unless the incoming IR is 2526 // degenerate. This only happens when running llc on weird IR. 2527 if (CB.TrueBB != CB.FalseBB) 2528 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2529 SwitchBB->normalizeSuccProbs(); 2530 2531 // If the lhs block is the next block, invert the condition so that we can 2532 // fall through to the lhs instead of the rhs block. 2533 if (CB.TrueBB == NextBlock(SwitchBB)) { 2534 std::swap(CB.TrueBB, CB.FalseBB); 2535 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2536 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2537 } 2538 2539 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2540 MVT::Other, getControlRoot(), Cond, 2541 DAG.getBasicBlock(CB.TrueBB)); 2542 2543 // Insert the false branch. Do this even if it's a fall through branch, 2544 // this makes it easier to do DAG optimizations which require inverting 2545 // the branch condition. 2546 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2547 DAG.getBasicBlock(CB.FalseBB)); 2548 2549 DAG.setRoot(BrCond); 2550 } 2551 2552 /// visitJumpTable - Emit JumpTable node in the current MBB 2553 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2554 // Emit the code for the jump table 2555 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2556 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2557 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2558 JT.Reg, PTy); 2559 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2560 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2561 MVT::Other, Index.getValue(1), 2562 Table, Index); 2563 DAG.setRoot(BrJumpTable); 2564 } 2565 2566 /// visitJumpTableHeader - This function emits necessary code to produce index 2567 /// in the JumpTable from switch case. 2568 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2569 JumpTableHeader &JTH, 2570 MachineBasicBlock *SwitchBB) { 2571 SDLoc dl = getCurSDLoc(); 2572 2573 // Subtract the lowest switch case value from the value being switched on. 2574 SDValue SwitchOp = getValue(JTH.SValue); 2575 EVT VT = SwitchOp.getValueType(); 2576 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2577 DAG.getConstant(JTH.First, dl, VT)); 2578 2579 // The SDNode we just created, which holds the value being switched on minus 2580 // the smallest case value, needs to be copied to a virtual register so it 2581 // can be used as an index into the jump table in a subsequent basic block. 2582 // This value may be smaller or larger than the target's pointer type, and 2583 // therefore require extension or truncating. 2584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2585 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2586 2587 unsigned JumpTableReg = 2588 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2589 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2590 JumpTableReg, SwitchOp); 2591 JT.Reg = JumpTableReg; 2592 2593 if (!JTH.FallthroughUnreachable) { 2594 // Emit the range check for the jump table, and branch to the default block 2595 // for the switch statement if the value being switched on exceeds the 2596 // largest case in the switch. 2597 SDValue CMP = DAG.getSetCC( 2598 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2599 Sub.getValueType()), 2600 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2601 2602 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2603 MVT::Other, CopyTo, CMP, 2604 DAG.getBasicBlock(JT.Default)); 2605 2606 // Avoid emitting unnecessary branches to the next block. 2607 if (JT.MBB != NextBlock(SwitchBB)) 2608 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2609 DAG.getBasicBlock(JT.MBB)); 2610 2611 DAG.setRoot(BrCond); 2612 } else { 2613 // Avoid emitting unnecessary branches to the next block. 2614 if (JT.MBB != NextBlock(SwitchBB)) 2615 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2616 DAG.getBasicBlock(JT.MBB))); 2617 else 2618 DAG.setRoot(CopyTo); 2619 } 2620 } 2621 2622 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2623 /// variable if there exists one. 2624 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2625 SDValue &Chain) { 2626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2627 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2628 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2629 MachineFunction &MF = DAG.getMachineFunction(); 2630 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2631 MachineSDNode *Node = 2632 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2633 if (Global) { 2634 MachinePointerInfo MPInfo(Global); 2635 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2636 MachineMemOperand::MODereferenceable; 2637 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2638 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2639 DAG.setNodeMemRefs(Node, {MemRef}); 2640 } 2641 if (PtrTy != PtrMemTy) 2642 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2643 return SDValue(Node, 0); 2644 } 2645 2646 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2647 /// tail spliced into a stack protector check success bb. 2648 /// 2649 /// For a high level explanation of how this fits into the stack protector 2650 /// generation see the comment on the declaration of class 2651 /// StackProtectorDescriptor. 2652 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2653 MachineBasicBlock *ParentBB) { 2654 2655 // First create the loads to the guard/stack slot for the comparison. 2656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2657 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2658 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2659 2660 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2661 int FI = MFI.getStackProtectorIndex(); 2662 2663 SDValue Guard; 2664 SDLoc dl = getCurSDLoc(); 2665 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2666 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2667 Align Align = 2668 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2669 2670 // Generate code to load the content of the guard slot. 2671 SDValue GuardVal = DAG.getLoad( 2672 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2673 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2674 MachineMemOperand::MOVolatile); 2675 2676 if (TLI.useStackGuardXorFP()) 2677 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2678 2679 // Retrieve guard check function, nullptr if instrumentation is inlined. 2680 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2681 // The target provides a guard check function to validate the guard value. 2682 // Generate a call to that function with the content of the guard slot as 2683 // argument. 2684 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2685 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2686 2687 TargetLowering::ArgListTy Args; 2688 TargetLowering::ArgListEntry Entry; 2689 Entry.Node = GuardVal; 2690 Entry.Ty = FnTy->getParamType(0); 2691 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2692 Entry.IsInReg = true; 2693 Args.push_back(Entry); 2694 2695 TargetLowering::CallLoweringInfo CLI(DAG); 2696 CLI.setDebugLoc(getCurSDLoc()) 2697 .setChain(DAG.getEntryNode()) 2698 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2699 getValue(GuardCheckFn), std::move(Args)); 2700 2701 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2702 DAG.setRoot(Result.second); 2703 return; 2704 } 2705 2706 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2707 // Otherwise, emit a volatile load to retrieve the stack guard value. 2708 SDValue Chain = DAG.getEntryNode(); 2709 if (TLI.useLoadStackGuardNode()) { 2710 Guard = getLoadStackGuard(DAG, dl, Chain); 2711 } else { 2712 const Value *IRGuard = TLI.getSDagStackGuard(M); 2713 SDValue GuardPtr = getValue(IRGuard); 2714 2715 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2716 MachinePointerInfo(IRGuard, 0), Align, 2717 MachineMemOperand::MOVolatile); 2718 } 2719 2720 // Perform the comparison via a getsetcc. 2721 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2722 *DAG.getContext(), 2723 Guard.getValueType()), 2724 Guard, GuardVal, ISD::SETNE); 2725 2726 // If the guard/stackslot do not equal, branch to failure MBB. 2727 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2728 MVT::Other, GuardVal.getOperand(0), 2729 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2730 // Otherwise branch to success MBB. 2731 SDValue Br = DAG.getNode(ISD::BR, dl, 2732 MVT::Other, BrCond, 2733 DAG.getBasicBlock(SPD.getSuccessMBB())); 2734 2735 DAG.setRoot(Br); 2736 } 2737 2738 /// Codegen the failure basic block for a stack protector check. 2739 /// 2740 /// A failure stack protector machine basic block consists simply of a call to 2741 /// __stack_chk_fail(). 2742 /// 2743 /// For a high level explanation of how this fits into the stack protector 2744 /// generation see the comment on the declaration of class 2745 /// StackProtectorDescriptor. 2746 void 2747 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2748 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2749 TargetLowering::MakeLibCallOptions CallOptions; 2750 CallOptions.setDiscardResult(true); 2751 SDValue Chain = 2752 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2753 None, CallOptions, getCurSDLoc()).second; 2754 // On PS4, the "return address" must still be within the calling function, 2755 // even if it's at the very end, so emit an explicit TRAP here. 2756 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2757 if (TM.getTargetTriple().isPS4CPU()) 2758 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2759 // WebAssembly needs an unreachable instruction after a non-returning call, 2760 // because the function return type can be different from __stack_chk_fail's 2761 // return type (void). 2762 if (TM.getTargetTriple().isWasm()) 2763 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2764 2765 DAG.setRoot(Chain); 2766 } 2767 2768 /// visitBitTestHeader - This function emits necessary code to produce value 2769 /// suitable for "bit tests" 2770 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2771 MachineBasicBlock *SwitchBB) { 2772 SDLoc dl = getCurSDLoc(); 2773 2774 // Subtract the minimum value. 2775 SDValue SwitchOp = getValue(B.SValue); 2776 EVT VT = SwitchOp.getValueType(); 2777 SDValue RangeSub = 2778 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2779 2780 // Determine the type of the test operands. 2781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2782 bool UsePtrType = false; 2783 if (!TLI.isTypeLegal(VT)) { 2784 UsePtrType = true; 2785 } else { 2786 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2787 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2788 // Switch table case range are encoded into series of masks. 2789 // Just use pointer type, it's guaranteed to fit. 2790 UsePtrType = true; 2791 break; 2792 } 2793 } 2794 SDValue Sub = RangeSub; 2795 if (UsePtrType) { 2796 VT = TLI.getPointerTy(DAG.getDataLayout()); 2797 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2798 } 2799 2800 B.RegVT = VT.getSimpleVT(); 2801 B.Reg = FuncInfo.CreateReg(B.RegVT); 2802 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2803 2804 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2805 2806 if (!B.FallthroughUnreachable) 2807 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2808 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2809 SwitchBB->normalizeSuccProbs(); 2810 2811 SDValue Root = CopyTo; 2812 if (!B.FallthroughUnreachable) { 2813 // Conditional branch to the default block. 2814 SDValue RangeCmp = DAG.getSetCC(dl, 2815 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2816 RangeSub.getValueType()), 2817 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2818 ISD::SETUGT); 2819 2820 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2821 DAG.getBasicBlock(B.Default)); 2822 } 2823 2824 // Avoid emitting unnecessary branches to the next block. 2825 if (MBB != NextBlock(SwitchBB)) 2826 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2827 2828 DAG.setRoot(Root); 2829 } 2830 2831 /// visitBitTestCase - this function produces one "bit test" 2832 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2833 MachineBasicBlock* NextMBB, 2834 BranchProbability BranchProbToNext, 2835 unsigned Reg, 2836 BitTestCase &B, 2837 MachineBasicBlock *SwitchBB) { 2838 SDLoc dl = getCurSDLoc(); 2839 MVT VT = BB.RegVT; 2840 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2841 SDValue Cmp; 2842 unsigned PopCount = countPopulation(B.Mask); 2843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2844 if (PopCount == 1) { 2845 // Testing for a single bit; just compare the shift count with what it 2846 // would need to be to shift a 1 bit in that position. 2847 Cmp = DAG.getSetCC( 2848 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2849 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2850 ISD::SETEQ); 2851 } else if (PopCount == BB.Range) { 2852 // There is only one zero bit in the range, test for it directly. 2853 Cmp = DAG.getSetCC( 2854 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2855 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2856 ISD::SETNE); 2857 } else { 2858 // Make desired shift 2859 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2860 DAG.getConstant(1, dl, VT), ShiftOp); 2861 2862 // Emit bit tests and jumps 2863 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2864 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2865 Cmp = DAG.getSetCC( 2866 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2867 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2868 } 2869 2870 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2871 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2872 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2873 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2874 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2875 // one as they are relative probabilities (and thus work more like weights), 2876 // and hence we need to normalize them to let the sum of them become one. 2877 SwitchBB->normalizeSuccProbs(); 2878 2879 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2880 MVT::Other, getControlRoot(), 2881 Cmp, DAG.getBasicBlock(B.TargetBB)); 2882 2883 // Avoid emitting unnecessary branches to the next block. 2884 if (NextMBB != NextBlock(SwitchBB)) 2885 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2886 DAG.getBasicBlock(NextMBB)); 2887 2888 DAG.setRoot(BrAnd); 2889 } 2890 2891 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2892 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2893 2894 // Retrieve successors. Look through artificial IR level blocks like 2895 // catchswitch for successors. 2896 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2897 const BasicBlock *EHPadBB = I.getSuccessor(1); 2898 2899 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2900 // have to do anything here to lower funclet bundles. 2901 assert(!I.hasOperandBundlesOtherThan( 2902 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2903 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2904 LLVMContext::OB_cfguardtarget, 2905 LLVMContext::OB_clang_arc_attachedcall}) && 2906 "Cannot lower invokes with arbitrary operand bundles yet!"); 2907 2908 const Value *Callee(I.getCalledOperand()); 2909 const Function *Fn = dyn_cast<Function>(Callee); 2910 if (isa<InlineAsm>(Callee)) 2911 visitInlineAsm(I, EHPadBB); 2912 else if (Fn && Fn->isIntrinsic()) { 2913 switch (Fn->getIntrinsicID()) { 2914 default: 2915 llvm_unreachable("Cannot invoke this intrinsic"); 2916 case Intrinsic::donothing: 2917 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2918 case Intrinsic::seh_try_begin: 2919 case Intrinsic::seh_scope_begin: 2920 case Intrinsic::seh_try_end: 2921 case Intrinsic::seh_scope_end: 2922 break; 2923 case Intrinsic::experimental_patchpoint_void: 2924 case Intrinsic::experimental_patchpoint_i64: 2925 visitPatchpoint(I, EHPadBB); 2926 break; 2927 case Intrinsic::experimental_gc_statepoint: 2928 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2929 break; 2930 case Intrinsic::wasm_rethrow: { 2931 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2932 // special because it can be invoked, so we manually lower it to a DAG 2933 // node here. 2934 SmallVector<SDValue, 8> Ops; 2935 Ops.push_back(getRoot()); // inchain 2936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2937 Ops.push_back( 2938 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2939 TLI.getPointerTy(DAG.getDataLayout()))); 2940 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2941 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2942 break; 2943 } 2944 } 2945 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2946 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2947 // Eventually we will support lowering the @llvm.experimental.deoptimize 2948 // intrinsic, and right now there are no plans to support other intrinsics 2949 // with deopt state. 2950 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2951 } else { 2952 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2953 } 2954 2955 // If the value of the invoke is used outside of its defining block, make it 2956 // available as a virtual register. 2957 // We already took care of the exported value for the statepoint instruction 2958 // during call to the LowerStatepoint. 2959 if (!isa<GCStatepointInst>(I)) { 2960 CopyToExportRegsIfNeeded(&I); 2961 } 2962 2963 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2964 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2965 BranchProbability EHPadBBProb = 2966 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2967 : BranchProbability::getZero(); 2968 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2969 2970 // Update successor info. 2971 addSuccessorWithProb(InvokeMBB, Return); 2972 for (auto &UnwindDest : UnwindDests) { 2973 UnwindDest.first->setIsEHPad(); 2974 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2975 } 2976 InvokeMBB->normalizeSuccProbs(); 2977 2978 // Drop into normal successor. 2979 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2980 DAG.getBasicBlock(Return))); 2981 } 2982 2983 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2984 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2985 2986 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2987 // have to do anything here to lower funclet bundles. 2988 assert(!I.hasOperandBundlesOtherThan( 2989 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2990 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2991 2992 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2993 visitInlineAsm(I); 2994 CopyToExportRegsIfNeeded(&I); 2995 2996 // Retrieve successors. 2997 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2998 2999 // Update successor info. 3000 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3001 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3002 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 3003 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3004 Target->setIsInlineAsmBrIndirectTarget(); 3005 } 3006 CallBrMBB->normalizeSuccProbs(); 3007 3008 // Drop into default successor. 3009 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3010 MVT::Other, getControlRoot(), 3011 DAG.getBasicBlock(Return))); 3012 } 3013 3014 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3015 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3016 } 3017 3018 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3019 assert(FuncInfo.MBB->isEHPad() && 3020 "Call to landingpad not in landing pad!"); 3021 3022 // If there aren't registers to copy the values into (e.g., during SjLj 3023 // exceptions), then don't bother to create these DAG nodes. 3024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3025 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3026 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3027 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3028 return; 3029 3030 // If landingpad's return type is token type, we don't create DAG nodes 3031 // for its exception pointer and selector value. The extraction of exception 3032 // pointer or selector value from token type landingpads is not currently 3033 // supported. 3034 if (LP.getType()->isTokenTy()) 3035 return; 3036 3037 SmallVector<EVT, 2> ValueVTs; 3038 SDLoc dl = getCurSDLoc(); 3039 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3040 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3041 3042 // Get the two live-in registers as SDValues. The physregs have already been 3043 // copied into virtual registers. 3044 SDValue Ops[2]; 3045 if (FuncInfo.ExceptionPointerVirtReg) { 3046 Ops[0] = DAG.getZExtOrTrunc( 3047 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3048 FuncInfo.ExceptionPointerVirtReg, 3049 TLI.getPointerTy(DAG.getDataLayout())), 3050 dl, ValueVTs[0]); 3051 } else { 3052 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3053 } 3054 Ops[1] = DAG.getZExtOrTrunc( 3055 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3056 FuncInfo.ExceptionSelectorVirtReg, 3057 TLI.getPointerTy(DAG.getDataLayout())), 3058 dl, ValueVTs[1]); 3059 3060 // Merge into one. 3061 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3062 DAG.getVTList(ValueVTs), Ops); 3063 setValue(&LP, Res); 3064 } 3065 3066 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3067 MachineBasicBlock *Last) { 3068 // Update JTCases. 3069 for (JumpTableBlock &JTB : SL->JTCases) 3070 if (JTB.first.HeaderBB == First) 3071 JTB.first.HeaderBB = Last; 3072 3073 // Update BitTestCases. 3074 for (BitTestBlock &BTB : SL->BitTestCases) 3075 if (BTB.Parent == First) 3076 BTB.Parent = Last; 3077 } 3078 3079 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3080 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3081 3082 // Update machine-CFG edges with unique successors. 3083 SmallSet<BasicBlock*, 32> Done; 3084 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3085 BasicBlock *BB = I.getSuccessor(i); 3086 bool Inserted = Done.insert(BB).second; 3087 if (!Inserted) 3088 continue; 3089 3090 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3091 addSuccessorWithProb(IndirectBrMBB, Succ); 3092 } 3093 IndirectBrMBB->normalizeSuccProbs(); 3094 3095 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3096 MVT::Other, getControlRoot(), 3097 getValue(I.getAddress()))); 3098 } 3099 3100 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3101 if (!DAG.getTarget().Options.TrapUnreachable) 3102 return; 3103 3104 // We may be able to ignore unreachable behind a noreturn call. 3105 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3106 const BasicBlock &BB = *I.getParent(); 3107 if (&I != &BB.front()) { 3108 BasicBlock::const_iterator PredI = 3109 std::prev(BasicBlock::const_iterator(&I)); 3110 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3111 if (Call->doesNotReturn()) 3112 return; 3113 } 3114 } 3115 } 3116 3117 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3118 } 3119 3120 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3121 SDNodeFlags Flags; 3122 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3123 Flags.copyFMF(*FPOp); 3124 3125 SDValue Op = getValue(I.getOperand(0)); 3126 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3127 Op, Flags); 3128 setValue(&I, UnNodeValue); 3129 } 3130 3131 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3132 SDNodeFlags Flags; 3133 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3134 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3135 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3136 } 3137 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3138 Flags.setExact(ExactOp->isExact()); 3139 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3140 Flags.copyFMF(*FPOp); 3141 3142 SDValue Op1 = getValue(I.getOperand(0)); 3143 SDValue Op2 = getValue(I.getOperand(1)); 3144 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3145 Op1, Op2, Flags); 3146 setValue(&I, BinNodeValue); 3147 } 3148 3149 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3150 SDValue Op1 = getValue(I.getOperand(0)); 3151 SDValue Op2 = getValue(I.getOperand(1)); 3152 3153 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3154 Op1.getValueType(), DAG.getDataLayout()); 3155 3156 // Coerce the shift amount to the right type if we can. 3157 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3158 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3159 unsigned Op2Size = Op2.getValueSizeInBits(); 3160 SDLoc DL = getCurSDLoc(); 3161 3162 // If the operand is smaller than the shift count type, promote it. 3163 if (ShiftSize > Op2Size) 3164 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3165 3166 // If the operand is larger than the shift count type but the shift 3167 // count type has enough bits to represent any shift value, truncate 3168 // it now. This is a common case and it exposes the truncate to 3169 // optimization early. 3170 else if (ShiftSize >= Log2_32_Ceil(Op1.getValueSizeInBits())) 3171 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3172 // Otherwise we'll need to temporarily settle for some other convenient 3173 // type. Type legalization will make adjustments once the shiftee is split. 3174 else 3175 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3176 } 3177 3178 bool nuw = false; 3179 bool nsw = false; 3180 bool exact = false; 3181 3182 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3183 3184 if (const OverflowingBinaryOperator *OFBinOp = 3185 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3186 nuw = OFBinOp->hasNoUnsignedWrap(); 3187 nsw = OFBinOp->hasNoSignedWrap(); 3188 } 3189 if (const PossiblyExactOperator *ExactOp = 3190 dyn_cast<const PossiblyExactOperator>(&I)) 3191 exact = ExactOp->isExact(); 3192 } 3193 SDNodeFlags Flags; 3194 Flags.setExact(exact); 3195 Flags.setNoSignedWrap(nsw); 3196 Flags.setNoUnsignedWrap(nuw); 3197 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3198 Flags); 3199 setValue(&I, Res); 3200 } 3201 3202 void SelectionDAGBuilder::visitSDiv(const User &I) { 3203 SDValue Op1 = getValue(I.getOperand(0)); 3204 SDValue Op2 = getValue(I.getOperand(1)); 3205 3206 SDNodeFlags Flags; 3207 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3208 cast<PossiblyExactOperator>(&I)->isExact()); 3209 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3210 Op2, Flags)); 3211 } 3212 3213 void SelectionDAGBuilder::visitICmp(const User &I) { 3214 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3215 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3216 predicate = IC->getPredicate(); 3217 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3218 predicate = ICmpInst::Predicate(IC->getPredicate()); 3219 SDValue Op1 = getValue(I.getOperand(0)); 3220 SDValue Op2 = getValue(I.getOperand(1)); 3221 ISD::CondCode Opcode = getICmpCondCode(predicate); 3222 3223 auto &TLI = DAG.getTargetLoweringInfo(); 3224 EVT MemVT = 3225 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3226 3227 // If a pointer's DAG type is larger than its memory type then the DAG values 3228 // are zero-extended. This breaks signed comparisons so truncate back to the 3229 // underlying type before doing the compare. 3230 if (Op1.getValueType() != MemVT) { 3231 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3232 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3233 } 3234 3235 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3236 I.getType()); 3237 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3238 } 3239 3240 void SelectionDAGBuilder::visitFCmp(const User &I) { 3241 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3242 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3243 predicate = FC->getPredicate(); 3244 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3245 predicate = FCmpInst::Predicate(FC->getPredicate()); 3246 SDValue Op1 = getValue(I.getOperand(0)); 3247 SDValue Op2 = getValue(I.getOperand(1)); 3248 3249 ISD::CondCode Condition = getFCmpCondCode(predicate); 3250 auto *FPMO = cast<FPMathOperator>(&I); 3251 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3252 Condition = getFCmpCodeWithoutNaN(Condition); 3253 3254 SDNodeFlags Flags; 3255 Flags.copyFMF(*FPMO); 3256 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3257 3258 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3259 I.getType()); 3260 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3261 } 3262 3263 // Check if the condition of the select has one use or two users that are both 3264 // selects with the same condition. 3265 static bool hasOnlySelectUsers(const Value *Cond) { 3266 return llvm::all_of(Cond->users(), [](const Value *V) { 3267 return isa<SelectInst>(V); 3268 }); 3269 } 3270 3271 void SelectionDAGBuilder::visitSelect(const User &I) { 3272 SmallVector<EVT, 4> ValueVTs; 3273 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3274 ValueVTs); 3275 unsigned NumValues = ValueVTs.size(); 3276 if (NumValues == 0) return; 3277 3278 SmallVector<SDValue, 4> Values(NumValues); 3279 SDValue Cond = getValue(I.getOperand(0)); 3280 SDValue LHSVal = getValue(I.getOperand(1)); 3281 SDValue RHSVal = getValue(I.getOperand(2)); 3282 SmallVector<SDValue, 1> BaseOps(1, Cond); 3283 ISD::NodeType OpCode = 3284 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3285 3286 bool IsUnaryAbs = false; 3287 bool Negate = false; 3288 3289 SDNodeFlags Flags; 3290 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3291 Flags.copyFMF(*FPOp); 3292 3293 // Min/max matching is only viable if all output VTs are the same. 3294 if (is_splat(ValueVTs)) { 3295 EVT VT = ValueVTs[0]; 3296 LLVMContext &Ctx = *DAG.getContext(); 3297 auto &TLI = DAG.getTargetLoweringInfo(); 3298 3299 // We care about the legality of the operation after it has been type 3300 // legalized. 3301 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3302 VT = TLI.getTypeToTransformTo(Ctx, VT); 3303 3304 // If the vselect is legal, assume we want to leave this as a vector setcc + 3305 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3306 // min/max is legal on the scalar type. 3307 bool UseScalarMinMax = VT.isVector() && 3308 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3309 3310 Value *LHS, *RHS; 3311 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3312 ISD::NodeType Opc = ISD::DELETED_NODE; 3313 switch (SPR.Flavor) { 3314 case SPF_UMAX: Opc = ISD::UMAX; break; 3315 case SPF_UMIN: Opc = ISD::UMIN; break; 3316 case SPF_SMAX: Opc = ISD::SMAX; break; 3317 case SPF_SMIN: Opc = ISD::SMIN; break; 3318 case SPF_FMINNUM: 3319 switch (SPR.NaNBehavior) { 3320 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3321 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3322 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3323 case SPNB_RETURNS_ANY: { 3324 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3325 Opc = ISD::FMINNUM; 3326 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3327 Opc = ISD::FMINIMUM; 3328 else if (UseScalarMinMax) 3329 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3330 ISD::FMINNUM : ISD::FMINIMUM; 3331 break; 3332 } 3333 } 3334 break; 3335 case SPF_FMAXNUM: 3336 switch (SPR.NaNBehavior) { 3337 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3338 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3339 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3340 case SPNB_RETURNS_ANY: 3341 3342 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3343 Opc = ISD::FMAXNUM; 3344 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3345 Opc = ISD::FMAXIMUM; 3346 else if (UseScalarMinMax) 3347 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3348 ISD::FMAXNUM : ISD::FMAXIMUM; 3349 break; 3350 } 3351 break; 3352 case SPF_NABS: 3353 Negate = true; 3354 LLVM_FALLTHROUGH; 3355 case SPF_ABS: 3356 IsUnaryAbs = true; 3357 Opc = ISD::ABS; 3358 break; 3359 default: break; 3360 } 3361 3362 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3363 (TLI.isOperationLegalOrCustom(Opc, VT) || 3364 (UseScalarMinMax && 3365 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3366 // If the underlying comparison instruction is used by any other 3367 // instruction, the consumed instructions won't be destroyed, so it is 3368 // not profitable to convert to a min/max. 3369 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3370 OpCode = Opc; 3371 LHSVal = getValue(LHS); 3372 RHSVal = getValue(RHS); 3373 BaseOps.clear(); 3374 } 3375 3376 if (IsUnaryAbs) { 3377 OpCode = Opc; 3378 LHSVal = getValue(LHS); 3379 BaseOps.clear(); 3380 } 3381 } 3382 3383 if (IsUnaryAbs) { 3384 for (unsigned i = 0; i != NumValues; ++i) { 3385 SDLoc dl = getCurSDLoc(); 3386 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3387 Values[i] = 3388 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3389 if (Negate) 3390 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3391 Values[i]); 3392 } 3393 } else { 3394 for (unsigned i = 0; i != NumValues; ++i) { 3395 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3396 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3397 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3398 Values[i] = DAG.getNode( 3399 OpCode, getCurSDLoc(), 3400 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3401 } 3402 } 3403 3404 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3405 DAG.getVTList(ValueVTs), Values)); 3406 } 3407 3408 void SelectionDAGBuilder::visitTrunc(const User &I) { 3409 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3410 SDValue N = getValue(I.getOperand(0)); 3411 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3412 I.getType()); 3413 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3414 } 3415 3416 void SelectionDAGBuilder::visitZExt(const User &I) { 3417 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3418 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3419 SDValue N = getValue(I.getOperand(0)); 3420 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3421 I.getType()); 3422 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3423 } 3424 3425 void SelectionDAGBuilder::visitSExt(const User &I) { 3426 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3427 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3435 // FPTrunc is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 SDLoc dl = getCurSDLoc(); 3438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3439 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3440 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3441 DAG.getTargetConstant( 3442 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3443 } 3444 3445 void SelectionDAGBuilder::visitFPExt(const User &I) { 3446 // FPExt is never a no-op cast, no need to check 3447 SDValue N = getValue(I.getOperand(0)); 3448 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3449 I.getType()); 3450 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3451 } 3452 3453 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3454 // FPToUI is never a no-op cast, no need to check 3455 SDValue N = getValue(I.getOperand(0)); 3456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3457 I.getType()); 3458 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3459 } 3460 3461 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3462 // FPToSI is never a no-op cast, no need to check 3463 SDValue N = getValue(I.getOperand(0)); 3464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3465 I.getType()); 3466 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3467 } 3468 3469 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3470 // UIToFP is never a no-op cast, no need to check 3471 SDValue N = getValue(I.getOperand(0)); 3472 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3473 I.getType()); 3474 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3475 } 3476 3477 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3478 // SIToFP is never a no-op cast, no need to check 3479 SDValue N = getValue(I.getOperand(0)); 3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3481 I.getType()); 3482 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3483 } 3484 3485 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3486 // What to do depends on the size of the integer and the size of the pointer. 3487 // We can either truncate, zero extend, or no-op, accordingly. 3488 SDValue N = getValue(I.getOperand(0)); 3489 auto &TLI = DAG.getTargetLoweringInfo(); 3490 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3491 I.getType()); 3492 EVT PtrMemVT = 3493 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3494 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3495 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3496 setValue(&I, N); 3497 } 3498 3499 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3500 // What to do depends on the size of the integer and the size of the pointer. 3501 // We can either truncate, zero extend, or no-op, accordingly. 3502 SDValue N = getValue(I.getOperand(0)); 3503 auto &TLI = DAG.getTargetLoweringInfo(); 3504 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3505 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3506 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3507 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3508 setValue(&I, N); 3509 } 3510 3511 void SelectionDAGBuilder::visitBitCast(const User &I) { 3512 SDValue N = getValue(I.getOperand(0)); 3513 SDLoc dl = getCurSDLoc(); 3514 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3515 I.getType()); 3516 3517 // BitCast assures us that source and destination are the same size so this is 3518 // either a BITCAST or a no-op. 3519 if (DestVT != N.getValueType()) 3520 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3521 DestVT, N)); // convert types. 3522 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3523 // might fold any kind of constant expression to an integer constant and that 3524 // is not what we are looking for. Only recognize a bitcast of a genuine 3525 // constant integer as an opaque constant. 3526 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3527 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3528 /*isOpaque*/true)); 3529 else 3530 setValue(&I, N); // noop cast. 3531 } 3532 3533 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3535 const Value *SV = I.getOperand(0); 3536 SDValue N = getValue(SV); 3537 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3538 3539 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3540 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3541 3542 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3543 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3544 3545 setValue(&I, N); 3546 } 3547 3548 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3550 SDValue InVec = getValue(I.getOperand(0)); 3551 SDValue InVal = getValue(I.getOperand(1)); 3552 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3553 TLI.getVectorIdxTy(DAG.getDataLayout())); 3554 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3555 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3556 InVec, InVal, InIdx)); 3557 } 3558 3559 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3561 SDValue InVec = getValue(I.getOperand(0)); 3562 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3563 TLI.getVectorIdxTy(DAG.getDataLayout())); 3564 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3565 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3566 InVec, InIdx)); 3567 } 3568 3569 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3570 SDValue Src1 = getValue(I.getOperand(0)); 3571 SDValue Src2 = getValue(I.getOperand(1)); 3572 ArrayRef<int> Mask; 3573 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3574 Mask = SVI->getShuffleMask(); 3575 else 3576 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3577 SDLoc DL = getCurSDLoc(); 3578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3579 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3580 EVT SrcVT = Src1.getValueType(); 3581 3582 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3583 VT.isScalableVector()) { 3584 // Canonical splat form of first element of first input vector. 3585 SDValue FirstElt = 3586 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3587 DAG.getVectorIdxConstant(0, DL)); 3588 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3589 return; 3590 } 3591 3592 // For now, we only handle splats for scalable vectors. 3593 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3594 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3595 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3596 3597 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3598 unsigned MaskNumElts = Mask.size(); 3599 3600 if (SrcNumElts == MaskNumElts) { 3601 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3602 return; 3603 } 3604 3605 // Normalize the shuffle vector since mask and vector length don't match. 3606 if (SrcNumElts < MaskNumElts) { 3607 // Mask is longer than the source vectors. We can use concatenate vector to 3608 // make the mask and vectors lengths match. 3609 3610 if (MaskNumElts % SrcNumElts == 0) { 3611 // Mask length is a multiple of the source vector length. 3612 // Check if the shuffle is some kind of concatenation of the input 3613 // vectors. 3614 unsigned NumConcat = MaskNumElts / SrcNumElts; 3615 bool IsConcat = true; 3616 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3617 for (unsigned i = 0; i != MaskNumElts; ++i) { 3618 int Idx = Mask[i]; 3619 if (Idx < 0) 3620 continue; 3621 // Ensure the indices in each SrcVT sized piece are sequential and that 3622 // the same source is used for the whole piece. 3623 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3624 (ConcatSrcs[i / SrcNumElts] >= 0 && 3625 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3626 IsConcat = false; 3627 break; 3628 } 3629 // Remember which source this index came from. 3630 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3631 } 3632 3633 // The shuffle is concatenating multiple vectors together. Just emit 3634 // a CONCAT_VECTORS operation. 3635 if (IsConcat) { 3636 SmallVector<SDValue, 8> ConcatOps; 3637 for (auto Src : ConcatSrcs) { 3638 if (Src < 0) 3639 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3640 else if (Src == 0) 3641 ConcatOps.push_back(Src1); 3642 else 3643 ConcatOps.push_back(Src2); 3644 } 3645 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3646 return; 3647 } 3648 } 3649 3650 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3651 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3652 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3653 PaddedMaskNumElts); 3654 3655 // Pad both vectors with undefs to make them the same length as the mask. 3656 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3657 3658 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3659 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3660 MOps1[0] = Src1; 3661 MOps2[0] = Src2; 3662 3663 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3664 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3665 3666 // Readjust mask for new input vector length. 3667 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3668 for (unsigned i = 0; i != MaskNumElts; ++i) { 3669 int Idx = Mask[i]; 3670 if (Idx >= (int)SrcNumElts) 3671 Idx -= SrcNumElts - PaddedMaskNumElts; 3672 MappedOps[i] = Idx; 3673 } 3674 3675 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3676 3677 // If the concatenated vector was padded, extract a subvector with the 3678 // correct number of elements. 3679 if (MaskNumElts != PaddedMaskNumElts) 3680 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3681 DAG.getVectorIdxConstant(0, DL)); 3682 3683 setValue(&I, Result); 3684 return; 3685 } 3686 3687 if (SrcNumElts > MaskNumElts) { 3688 // Analyze the access pattern of the vector to see if we can extract 3689 // two subvectors and do the shuffle. 3690 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3691 bool CanExtract = true; 3692 for (int Idx : Mask) { 3693 unsigned Input = 0; 3694 if (Idx < 0) 3695 continue; 3696 3697 if (Idx >= (int)SrcNumElts) { 3698 Input = 1; 3699 Idx -= SrcNumElts; 3700 } 3701 3702 // If all the indices come from the same MaskNumElts sized portion of 3703 // the sources we can use extract. Also make sure the extract wouldn't 3704 // extract past the end of the source. 3705 int NewStartIdx = alignDown(Idx, MaskNumElts); 3706 if (NewStartIdx + MaskNumElts > SrcNumElts || 3707 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3708 CanExtract = false; 3709 // Make sure we always update StartIdx as we use it to track if all 3710 // elements are undef. 3711 StartIdx[Input] = NewStartIdx; 3712 } 3713 3714 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3715 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3716 return; 3717 } 3718 if (CanExtract) { 3719 // Extract appropriate subvector and generate a vector shuffle 3720 for (unsigned Input = 0; Input < 2; ++Input) { 3721 SDValue &Src = Input == 0 ? Src1 : Src2; 3722 if (StartIdx[Input] < 0) 3723 Src = DAG.getUNDEF(VT); 3724 else { 3725 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3726 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3727 } 3728 } 3729 3730 // Calculate new mask. 3731 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3732 for (int &Idx : MappedOps) { 3733 if (Idx >= (int)SrcNumElts) 3734 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3735 else if (Idx >= 0) 3736 Idx -= StartIdx[0]; 3737 } 3738 3739 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3740 return; 3741 } 3742 } 3743 3744 // We can't use either concat vectors or extract subvectors so fall back to 3745 // replacing the shuffle with extract and build vector. 3746 // to insert and build vector. 3747 EVT EltVT = VT.getVectorElementType(); 3748 SmallVector<SDValue,8> Ops; 3749 for (int Idx : Mask) { 3750 SDValue Res; 3751 3752 if (Idx < 0) { 3753 Res = DAG.getUNDEF(EltVT); 3754 } else { 3755 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3756 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3757 3758 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3759 DAG.getVectorIdxConstant(Idx, DL)); 3760 } 3761 3762 Ops.push_back(Res); 3763 } 3764 3765 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3766 } 3767 3768 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3769 ArrayRef<unsigned> Indices; 3770 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3771 Indices = IV->getIndices(); 3772 else 3773 Indices = cast<ConstantExpr>(&I)->getIndices(); 3774 3775 const Value *Op0 = I.getOperand(0); 3776 const Value *Op1 = I.getOperand(1); 3777 Type *AggTy = I.getType(); 3778 Type *ValTy = Op1->getType(); 3779 bool IntoUndef = isa<UndefValue>(Op0); 3780 bool FromUndef = isa<UndefValue>(Op1); 3781 3782 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3783 3784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3785 SmallVector<EVT, 4> AggValueVTs; 3786 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3787 SmallVector<EVT, 4> ValValueVTs; 3788 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3789 3790 unsigned NumAggValues = AggValueVTs.size(); 3791 unsigned NumValValues = ValValueVTs.size(); 3792 SmallVector<SDValue, 4> Values(NumAggValues); 3793 3794 // Ignore an insertvalue that produces an empty object 3795 if (!NumAggValues) { 3796 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3797 return; 3798 } 3799 3800 SDValue Agg = getValue(Op0); 3801 unsigned i = 0; 3802 // Copy the beginning value(s) from the original aggregate. 3803 for (; i != LinearIndex; ++i) 3804 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3805 SDValue(Agg.getNode(), Agg.getResNo() + i); 3806 // Copy values from the inserted value(s). 3807 if (NumValValues) { 3808 SDValue Val = getValue(Op1); 3809 for (; i != LinearIndex + NumValValues; ++i) 3810 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3811 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3812 } 3813 // Copy remaining value(s) from the original aggregate. 3814 for (; i != NumAggValues; ++i) 3815 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3816 SDValue(Agg.getNode(), Agg.getResNo() + i); 3817 3818 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3819 DAG.getVTList(AggValueVTs), Values)); 3820 } 3821 3822 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3823 ArrayRef<unsigned> Indices; 3824 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3825 Indices = EV->getIndices(); 3826 else 3827 Indices = cast<ConstantExpr>(&I)->getIndices(); 3828 3829 const Value *Op0 = I.getOperand(0); 3830 Type *AggTy = Op0->getType(); 3831 Type *ValTy = I.getType(); 3832 bool OutOfUndef = isa<UndefValue>(Op0); 3833 3834 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3835 3836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3837 SmallVector<EVT, 4> ValValueVTs; 3838 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3839 3840 unsigned NumValValues = ValValueVTs.size(); 3841 3842 // Ignore a extractvalue that produces an empty object 3843 if (!NumValValues) { 3844 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3845 return; 3846 } 3847 3848 SmallVector<SDValue, 4> Values(NumValValues); 3849 3850 SDValue Agg = getValue(Op0); 3851 // Copy out the selected value(s). 3852 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3853 Values[i - LinearIndex] = 3854 OutOfUndef ? 3855 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3856 SDValue(Agg.getNode(), Agg.getResNo() + i); 3857 3858 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3859 DAG.getVTList(ValValueVTs), Values)); 3860 } 3861 3862 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3863 Value *Op0 = I.getOperand(0); 3864 // Note that the pointer operand may be a vector of pointers. Take the scalar 3865 // element which holds a pointer. 3866 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3867 SDValue N = getValue(Op0); 3868 SDLoc dl = getCurSDLoc(); 3869 auto &TLI = DAG.getTargetLoweringInfo(); 3870 3871 // Normalize Vector GEP - all scalar operands should be converted to the 3872 // splat vector. 3873 bool IsVectorGEP = I.getType()->isVectorTy(); 3874 ElementCount VectorElementCount = 3875 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3876 : ElementCount::getFixed(0); 3877 3878 if (IsVectorGEP && !N.getValueType().isVector()) { 3879 LLVMContext &Context = *DAG.getContext(); 3880 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3881 if (VectorElementCount.isScalable()) 3882 N = DAG.getSplatVector(VT, dl, N); 3883 else 3884 N = DAG.getSplatBuildVector(VT, dl, N); 3885 } 3886 3887 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3888 GTI != E; ++GTI) { 3889 const Value *Idx = GTI.getOperand(); 3890 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3891 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3892 if (Field) { 3893 // N = N + Offset 3894 uint64_t Offset = 3895 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3896 3897 // In an inbounds GEP with an offset that is nonnegative even when 3898 // interpreted as signed, assume there is no unsigned overflow. 3899 SDNodeFlags Flags; 3900 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3901 Flags.setNoUnsignedWrap(true); 3902 3903 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3904 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3905 } 3906 } else { 3907 // IdxSize is the width of the arithmetic according to IR semantics. 3908 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3909 // (and fix up the result later). 3910 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3911 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3912 TypeSize ElementSize = 3913 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3914 // We intentionally mask away the high bits here; ElementSize may not 3915 // fit in IdxTy. 3916 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3917 bool ElementScalable = ElementSize.isScalable(); 3918 3919 // If this is a scalar constant or a splat vector of constants, 3920 // handle it quickly. 3921 const auto *C = dyn_cast<Constant>(Idx); 3922 if (C && isa<VectorType>(C->getType())) 3923 C = C->getSplatValue(); 3924 3925 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3926 if (CI && CI->isZero()) 3927 continue; 3928 if (CI && !ElementScalable) { 3929 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3930 LLVMContext &Context = *DAG.getContext(); 3931 SDValue OffsVal; 3932 if (IsVectorGEP) 3933 OffsVal = DAG.getConstant( 3934 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3935 else 3936 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3937 3938 // In an inbounds GEP with an offset that is nonnegative even when 3939 // interpreted as signed, assume there is no unsigned overflow. 3940 SDNodeFlags Flags; 3941 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3942 Flags.setNoUnsignedWrap(true); 3943 3944 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3945 3946 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3947 continue; 3948 } 3949 3950 // N = N + Idx * ElementMul; 3951 SDValue IdxN = getValue(Idx); 3952 3953 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3954 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3955 VectorElementCount); 3956 if (VectorElementCount.isScalable()) 3957 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3958 else 3959 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3960 } 3961 3962 // If the index is smaller or larger than intptr_t, truncate or extend 3963 // it. 3964 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3965 3966 if (ElementScalable) { 3967 EVT VScaleTy = N.getValueType().getScalarType(); 3968 SDValue VScale = DAG.getNode( 3969 ISD::VSCALE, dl, VScaleTy, 3970 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3971 if (IsVectorGEP) 3972 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3973 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3974 } else { 3975 // If this is a multiply by a power of two, turn it into a shl 3976 // immediately. This is a very common case. 3977 if (ElementMul != 1) { 3978 if (ElementMul.isPowerOf2()) { 3979 unsigned Amt = ElementMul.logBase2(); 3980 IdxN = DAG.getNode(ISD::SHL, dl, 3981 N.getValueType(), IdxN, 3982 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3983 } else { 3984 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3985 IdxN.getValueType()); 3986 IdxN = DAG.getNode(ISD::MUL, dl, 3987 N.getValueType(), IdxN, Scale); 3988 } 3989 } 3990 } 3991 3992 N = DAG.getNode(ISD::ADD, dl, 3993 N.getValueType(), N, IdxN); 3994 } 3995 } 3996 3997 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3998 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3999 if (IsVectorGEP) { 4000 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4001 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4002 } 4003 4004 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4005 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4006 4007 setValue(&I, N); 4008 } 4009 4010 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4011 // If this is a fixed sized alloca in the entry block of the function, 4012 // allocate it statically on the stack. 4013 if (FuncInfo.StaticAllocaMap.count(&I)) 4014 return; // getValue will auto-populate this. 4015 4016 SDLoc dl = getCurSDLoc(); 4017 Type *Ty = I.getAllocatedType(); 4018 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4019 auto &DL = DAG.getDataLayout(); 4020 TypeSize TySize = DL.getTypeAllocSize(Ty); 4021 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4022 4023 SDValue AllocSize = getValue(I.getArraySize()); 4024 4025 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4026 if (AllocSize.getValueType() != IntPtr) 4027 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4028 4029 if (TySize.isScalable()) 4030 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4031 DAG.getVScale(dl, IntPtr, 4032 APInt(IntPtr.getScalarSizeInBits(), 4033 TySize.getKnownMinValue()))); 4034 else 4035 AllocSize = 4036 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4037 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4038 4039 // Handle alignment. If the requested alignment is less than or equal to 4040 // the stack alignment, ignore it. If the size is greater than or equal to 4041 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4042 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4043 if (*Alignment <= StackAlign) 4044 Alignment = None; 4045 4046 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4047 // Round the size of the allocation up to the stack alignment size 4048 // by add SA-1 to the size. This doesn't overflow because we're computing 4049 // an address inside an alloca. 4050 SDNodeFlags Flags; 4051 Flags.setNoUnsignedWrap(true); 4052 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4053 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4054 4055 // Mask out the low bits for alignment purposes. 4056 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4057 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4058 4059 SDValue Ops[] = { 4060 getRoot(), AllocSize, 4061 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4062 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4063 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4064 setValue(&I, DSA); 4065 DAG.setRoot(DSA.getValue(1)); 4066 4067 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4068 } 4069 4070 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4071 if (I.isAtomic()) 4072 return visitAtomicLoad(I); 4073 4074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4075 const Value *SV = I.getOperand(0); 4076 if (TLI.supportSwiftError()) { 4077 // Swifterror values can come from either a function parameter with 4078 // swifterror attribute or an alloca with swifterror attribute. 4079 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4080 if (Arg->hasSwiftErrorAttr()) 4081 return visitLoadFromSwiftError(I); 4082 } 4083 4084 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4085 if (Alloca->isSwiftError()) 4086 return visitLoadFromSwiftError(I); 4087 } 4088 } 4089 4090 SDValue Ptr = getValue(SV); 4091 4092 Type *Ty = I.getType(); 4093 Align Alignment = I.getAlign(); 4094 4095 AAMDNodes AAInfo = I.getAAMetadata(); 4096 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4097 4098 SmallVector<EVT, 4> ValueVTs, MemVTs; 4099 SmallVector<uint64_t, 4> Offsets; 4100 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4101 unsigned NumValues = ValueVTs.size(); 4102 if (NumValues == 0) 4103 return; 4104 4105 bool isVolatile = I.isVolatile(); 4106 4107 SDValue Root; 4108 bool ConstantMemory = false; 4109 if (isVolatile) 4110 // Serialize volatile loads with other side effects. 4111 Root = getRoot(); 4112 else if (NumValues > MaxParallelChains) 4113 Root = getMemoryRoot(); 4114 else if (AA && 4115 AA->pointsToConstantMemory(MemoryLocation( 4116 SV, 4117 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4118 AAInfo))) { 4119 // Do not serialize (non-volatile) loads of constant memory with anything. 4120 Root = DAG.getEntryNode(); 4121 ConstantMemory = true; 4122 } else { 4123 // Do not serialize non-volatile loads against each other. 4124 Root = DAG.getRoot(); 4125 } 4126 4127 SDLoc dl = getCurSDLoc(); 4128 4129 if (isVolatile) 4130 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4131 4132 // An aggregate load cannot wrap around the address space, so offsets to its 4133 // parts don't wrap either. 4134 SDNodeFlags Flags; 4135 Flags.setNoUnsignedWrap(true); 4136 4137 SmallVector<SDValue, 4> Values(NumValues); 4138 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4139 EVT PtrVT = Ptr.getValueType(); 4140 4141 MachineMemOperand::Flags MMOFlags 4142 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4143 4144 unsigned ChainI = 0; 4145 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4146 // Serializing loads here may result in excessive register pressure, and 4147 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4148 // could recover a bit by hoisting nodes upward in the chain by recognizing 4149 // they are side-effect free or do not alias. The optimizer should really 4150 // avoid this case by converting large object/array copies to llvm.memcpy 4151 // (MaxParallelChains should always remain as failsafe). 4152 if (ChainI == MaxParallelChains) { 4153 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4154 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4155 makeArrayRef(Chains.data(), ChainI)); 4156 Root = Chain; 4157 ChainI = 0; 4158 } 4159 SDValue A = DAG.getNode(ISD::ADD, dl, 4160 PtrVT, Ptr, 4161 DAG.getConstant(Offsets[i], dl, PtrVT), 4162 Flags); 4163 4164 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4165 MachinePointerInfo(SV, Offsets[i]), Alignment, 4166 MMOFlags, AAInfo, Ranges); 4167 Chains[ChainI] = L.getValue(1); 4168 4169 if (MemVTs[i] != ValueVTs[i]) 4170 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4171 4172 Values[i] = L; 4173 } 4174 4175 if (!ConstantMemory) { 4176 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4177 makeArrayRef(Chains.data(), ChainI)); 4178 if (isVolatile) 4179 DAG.setRoot(Chain); 4180 else 4181 PendingLoads.push_back(Chain); 4182 } 4183 4184 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4185 DAG.getVTList(ValueVTs), Values)); 4186 } 4187 4188 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4189 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4190 "call visitStoreToSwiftError when backend supports swifterror"); 4191 4192 SmallVector<EVT, 4> ValueVTs; 4193 SmallVector<uint64_t, 4> Offsets; 4194 const Value *SrcV = I.getOperand(0); 4195 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4196 SrcV->getType(), ValueVTs, &Offsets); 4197 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4198 "expect a single EVT for swifterror"); 4199 4200 SDValue Src = getValue(SrcV); 4201 // Create a virtual register, then update the virtual register. 4202 Register VReg = 4203 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4204 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4205 // Chain can be getRoot or getControlRoot. 4206 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4207 SDValue(Src.getNode(), Src.getResNo())); 4208 DAG.setRoot(CopyNode); 4209 } 4210 4211 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4212 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4213 "call visitLoadFromSwiftError when backend supports swifterror"); 4214 4215 assert(!I.isVolatile() && 4216 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4217 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4218 "Support volatile, non temporal, invariant for load_from_swift_error"); 4219 4220 const Value *SV = I.getOperand(0); 4221 Type *Ty = I.getType(); 4222 assert( 4223 (!AA || 4224 !AA->pointsToConstantMemory(MemoryLocation( 4225 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4226 I.getAAMetadata()))) && 4227 "load_from_swift_error should not be constant memory"); 4228 4229 SmallVector<EVT, 4> ValueVTs; 4230 SmallVector<uint64_t, 4> Offsets; 4231 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4232 ValueVTs, &Offsets); 4233 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4234 "expect a single EVT for swifterror"); 4235 4236 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4237 SDValue L = DAG.getCopyFromReg( 4238 getRoot(), getCurSDLoc(), 4239 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4240 4241 setValue(&I, L); 4242 } 4243 4244 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4245 if (I.isAtomic()) 4246 return visitAtomicStore(I); 4247 4248 const Value *SrcV = I.getOperand(0); 4249 const Value *PtrV = I.getOperand(1); 4250 4251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4252 if (TLI.supportSwiftError()) { 4253 // Swifterror values can come from either a function parameter with 4254 // swifterror attribute or an alloca with swifterror attribute. 4255 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4256 if (Arg->hasSwiftErrorAttr()) 4257 return visitStoreToSwiftError(I); 4258 } 4259 4260 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4261 if (Alloca->isSwiftError()) 4262 return visitStoreToSwiftError(I); 4263 } 4264 } 4265 4266 SmallVector<EVT, 4> ValueVTs, MemVTs; 4267 SmallVector<uint64_t, 4> Offsets; 4268 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4269 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4270 unsigned NumValues = ValueVTs.size(); 4271 if (NumValues == 0) 4272 return; 4273 4274 // Get the lowered operands. Note that we do this after 4275 // checking if NumResults is zero, because with zero results 4276 // the operands won't have values in the map. 4277 SDValue Src = getValue(SrcV); 4278 SDValue Ptr = getValue(PtrV); 4279 4280 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4281 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4282 SDLoc dl = getCurSDLoc(); 4283 Align Alignment = I.getAlign(); 4284 AAMDNodes AAInfo = I.getAAMetadata(); 4285 4286 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4287 4288 // An aggregate load cannot wrap around the address space, so offsets to its 4289 // parts don't wrap either. 4290 SDNodeFlags Flags; 4291 Flags.setNoUnsignedWrap(true); 4292 4293 unsigned ChainI = 0; 4294 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4295 // See visitLoad comments. 4296 if (ChainI == MaxParallelChains) { 4297 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4298 makeArrayRef(Chains.data(), ChainI)); 4299 Root = Chain; 4300 ChainI = 0; 4301 } 4302 SDValue Add = 4303 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4304 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4305 if (MemVTs[i] != ValueVTs[i]) 4306 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4307 SDValue St = 4308 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4309 Alignment, MMOFlags, AAInfo); 4310 Chains[ChainI] = St; 4311 } 4312 4313 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4314 makeArrayRef(Chains.data(), ChainI)); 4315 DAG.setRoot(StoreNode); 4316 } 4317 4318 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4319 bool IsCompressing) { 4320 SDLoc sdl = getCurSDLoc(); 4321 4322 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4323 MaybeAlign &Alignment) { 4324 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4325 Src0 = I.getArgOperand(0); 4326 Ptr = I.getArgOperand(1); 4327 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4328 Mask = I.getArgOperand(3); 4329 }; 4330 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4331 MaybeAlign &Alignment) { 4332 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4333 Src0 = I.getArgOperand(0); 4334 Ptr = I.getArgOperand(1); 4335 Mask = I.getArgOperand(2); 4336 Alignment = None; 4337 }; 4338 4339 Value *PtrOperand, *MaskOperand, *Src0Operand; 4340 MaybeAlign Alignment; 4341 if (IsCompressing) 4342 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4343 else 4344 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4345 4346 SDValue Ptr = getValue(PtrOperand); 4347 SDValue Src0 = getValue(Src0Operand); 4348 SDValue Mask = getValue(MaskOperand); 4349 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4350 4351 EVT VT = Src0.getValueType(); 4352 if (!Alignment) 4353 Alignment = DAG.getEVTAlign(VT); 4354 4355 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4356 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4357 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4358 SDValue StoreNode = 4359 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4360 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4361 DAG.setRoot(StoreNode); 4362 setValue(&I, StoreNode); 4363 } 4364 4365 // Get a uniform base for the Gather/Scatter intrinsic. 4366 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4367 // We try to represent it as a base pointer + vector of indices. 4368 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4369 // The first operand of the GEP may be a single pointer or a vector of pointers 4370 // Example: 4371 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4372 // or 4373 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4374 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4375 // 4376 // When the first GEP operand is a single pointer - it is the uniform base we 4377 // are looking for. If first operand of the GEP is a splat vector - we 4378 // extract the splat value and use it as a uniform base. 4379 // In all other cases the function returns 'false'. 4380 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4381 ISD::MemIndexType &IndexType, SDValue &Scale, 4382 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4383 SelectionDAG& DAG = SDB->DAG; 4384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4385 const DataLayout &DL = DAG.getDataLayout(); 4386 4387 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4388 4389 // Handle splat constant pointer. 4390 if (auto *C = dyn_cast<Constant>(Ptr)) { 4391 C = C->getSplatValue(); 4392 if (!C) 4393 return false; 4394 4395 Base = SDB->getValue(C); 4396 4397 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4398 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4399 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4400 IndexType = ISD::SIGNED_SCALED; 4401 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4402 return true; 4403 } 4404 4405 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4406 if (!GEP || GEP->getParent() != CurBB) 4407 return false; 4408 4409 if (GEP->getNumOperands() != 2) 4410 return false; 4411 4412 const Value *BasePtr = GEP->getPointerOperand(); 4413 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4414 4415 // Make sure the base is scalar and the index is a vector. 4416 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4417 return false; 4418 4419 Base = SDB->getValue(BasePtr); 4420 Index = SDB->getValue(IndexVal); 4421 IndexType = ISD::SIGNED_SCALED; 4422 Scale = DAG.getTargetConstant( 4423 DL.getTypeAllocSize(GEP->getResultElementType()), 4424 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4425 return true; 4426 } 4427 4428 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4429 SDLoc sdl = getCurSDLoc(); 4430 4431 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4432 const Value *Ptr = I.getArgOperand(1); 4433 SDValue Src0 = getValue(I.getArgOperand(0)); 4434 SDValue Mask = getValue(I.getArgOperand(3)); 4435 EVT VT = Src0.getValueType(); 4436 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4437 ->getMaybeAlignValue() 4438 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4440 4441 SDValue Base; 4442 SDValue Index; 4443 ISD::MemIndexType IndexType; 4444 SDValue Scale; 4445 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4446 I.getParent()); 4447 4448 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4449 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4450 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4451 // TODO: Make MachineMemOperands aware of scalable 4452 // vectors. 4453 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4454 if (!UniformBase) { 4455 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4456 Index = getValue(Ptr); 4457 IndexType = ISD::SIGNED_UNSCALED; 4458 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4459 } 4460 4461 EVT IdxVT = Index.getValueType(); 4462 EVT EltTy = IdxVT.getVectorElementType(); 4463 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4464 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4465 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4466 } 4467 4468 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4469 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4470 Ops, MMO, IndexType, false); 4471 DAG.setRoot(Scatter); 4472 setValue(&I, Scatter); 4473 } 4474 4475 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4476 SDLoc sdl = getCurSDLoc(); 4477 4478 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4479 MaybeAlign &Alignment) { 4480 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4481 Ptr = I.getArgOperand(0); 4482 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4483 Mask = I.getArgOperand(2); 4484 Src0 = I.getArgOperand(3); 4485 }; 4486 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4487 MaybeAlign &Alignment) { 4488 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4489 Ptr = I.getArgOperand(0); 4490 Alignment = None; 4491 Mask = I.getArgOperand(1); 4492 Src0 = I.getArgOperand(2); 4493 }; 4494 4495 Value *PtrOperand, *MaskOperand, *Src0Operand; 4496 MaybeAlign Alignment; 4497 if (IsExpanding) 4498 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4499 else 4500 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4501 4502 SDValue Ptr = getValue(PtrOperand); 4503 SDValue Src0 = getValue(Src0Operand); 4504 SDValue Mask = getValue(MaskOperand); 4505 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4506 4507 EVT VT = Src0.getValueType(); 4508 if (!Alignment) 4509 Alignment = DAG.getEVTAlign(VT); 4510 4511 AAMDNodes AAInfo = I.getAAMetadata(); 4512 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4513 4514 // Do not serialize masked loads of constant memory with anything. 4515 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4516 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4517 4518 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4519 4520 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4521 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4522 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4523 4524 SDValue Load = 4525 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4526 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4527 if (AddToChain) 4528 PendingLoads.push_back(Load.getValue(1)); 4529 setValue(&I, Load); 4530 } 4531 4532 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4533 SDLoc sdl = getCurSDLoc(); 4534 4535 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4536 const Value *Ptr = I.getArgOperand(0); 4537 SDValue Src0 = getValue(I.getArgOperand(3)); 4538 SDValue Mask = getValue(I.getArgOperand(2)); 4539 4540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4541 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4542 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4543 ->getMaybeAlignValue() 4544 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4545 4546 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4547 4548 SDValue Root = DAG.getRoot(); 4549 SDValue Base; 4550 SDValue Index; 4551 ISD::MemIndexType IndexType; 4552 SDValue Scale; 4553 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4554 I.getParent()); 4555 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4556 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4557 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4558 // TODO: Make MachineMemOperands aware of scalable 4559 // vectors. 4560 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4561 4562 if (!UniformBase) { 4563 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4564 Index = getValue(Ptr); 4565 IndexType = ISD::SIGNED_UNSCALED; 4566 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4567 } 4568 4569 EVT IdxVT = Index.getValueType(); 4570 EVT EltTy = IdxVT.getVectorElementType(); 4571 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4572 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4573 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4574 } 4575 4576 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4577 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4578 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4579 4580 PendingLoads.push_back(Gather.getValue(1)); 4581 setValue(&I, Gather); 4582 } 4583 4584 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4585 SDLoc dl = getCurSDLoc(); 4586 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4587 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4588 SyncScope::ID SSID = I.getSyncScopeID(); 4589 4590 SDValue InChain = getRoot(); 4591 4592 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4593 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4594 4595 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4596 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4597 4598 MachineFunction &MF = DAG.getMachineFunction(); 4599 MachineMemOperand *MMO = MF.getMachineMemOperand( 4600 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4601 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4602 FailureOrdering); 4603 4604 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4605 dl, MemVT, VTs, InChain, 4606 getValue(I.getPointerOperand()), 4607 getValue(I.getCompareOperand()), 4608 getValue(I.getNewValOperand()), MMO); 4609 4610 SDValue OutChain = L.getValue(2); 4611 4612 setValue(&I, L); 4613 DAG.setRoot(OutChain); 4614 } 4615 4616 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4617 SDLoc dl = getCurSDLoc(); 4618 ISD::NodeType NT; 4619 switch (I.getOperation()) { 4620 default: llvm_unreachable("Unknown atomicrmw operation"); 4621 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4622 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4623 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4624 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4625 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4626 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4627 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4628 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4629 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4630 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4631 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4632 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4633 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4634 } 4635 AtomicOrdering Ordering = I.getOrdering(); 4636 SyncScope::ID SSID = I.getSyncScopeID(); 4637 4638 SDValue InChain = getRoot(); 4639 4640 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4642 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4643 4644 MachineFunction &MF = DAG.getMachineFunction(); 4645 MachineMemOperand *MMO = MF.getMachineMemOperand( 4646 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4647 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4648 4649 SDValue L = 4650 DAG.getAtomic(NT, dl, MemVT, InChain, 4651 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4652 MMO); 4653 4654 SDValue OutChain = L.getValue(1); 4655 4656 setValue(&I, L); 4657 DAG.setRoot(OutChain); 4658 } 4659 4660 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4661 SDLoc dl = getCurSDLoc(); 4662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4663 SDValue Ops[3]; 4664 Ops[0] = getRoot(); 4665 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4666 TLI.getFenceOperandTy(DAG.getDataLayout())); 4667 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4668 TLI.getFenceOperandTy(DAG.getDataLayout())); 4669 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4670 } 4671 4672 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4673 SDLoc dl = getCurSDLoc(); 4674 AtomicOrdering Order = I.getOrdering(); 4675 SyncScope::ID SSID = I.getSyncScopeID(); 4676 4677 SDValue InChain = getRoot(); 4678 4679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4680 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4681 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4682 4683 if (!TLI.supportsUnalignedAtomics() && 4684 I.getAlignment() < MemVT.getSizeInBits() / 8) 4685 report_fatal_error("Cannot generate unaligned atomic load"); 4686 4687 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4688 4689 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4690 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4691 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4692 4693 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4694 4695 SDValue Ptr = getValue(I.getPointerOperand()); 4696 4697 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4698 // TODO: Once this is better exercised by tests, it should be merged with 4699 // the normal path for loads to prevent future divergence. 4700 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4701 if (MemVT != VT) 4702 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4703 4704 setValue(&I, L); 4705 SDValue OutChain = L.getValue(1); 4706 if (!I.isUnordered()) 4707 DAG.setRoot(OutChain); 4708 else 4709 PendingLoads.push_back(OutChain); 4710 return; 4711 } 4712 4713 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4714 Ptr, MMO); 4715 4716 SDValue OutChain = L.getValue(1); 4717 if (MemVT != VT) 4718 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4719 4720 setValue(&I, L); 4721 DAG.setRoot(OutChain); 4722 } 4723 4724 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4725 SDLoc dl = getCurSDLoc(); 4726 4727 AtomicOrdering Ordering = I.getOrdering(); 4728 SyncScope::ID SSID = I.getSyncScopeID(); 4729 4730 SDValue InChain = getRoot(); 4731 4732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4733 EVT MemVT = 4734 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4735 4736 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4737 report_fatal_error("Cannot generate unaligned atomic store"); 4738 4739 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4740 4741 MachineFunction &MF = DAG.getMachineFunction(); 4742 MachineMemOperand *MMO = MF.getMachineMemOperand( 4743 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4744 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4745 4746 SDValue Val = getValue(I.getValueOperand()); 4747 if (Val.getValueType() != MemVT) 4748 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4749 SDValue Ptr = getValue(I.getPointerOperand()); 4750 4751 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4752 // TODO: Once this is better exercised by tests, it should be merged with 4753 // the normal path for stores to prevent future divergence. 4754 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4755 DAG.setRoot(S); 4756 return; 4757 } 4758 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4759 Ptr, Val, MMO); 4760 4761 4762 DAG.setRoot(OutChain); 4763 } 4764 4765 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4766 /// node. 4767 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4768 unsigned Intrinsic) { 4769 // Ignore the callsite's attributes. A specific call site may be marked with 4770 // readnone, but the lowering code will expect the chain based on the 4771 // definition. 4772 const Function *F = I.getCalledFunction(); 4773 bool HasChain = !F->doesNotAccessMemory(); 4774 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4775 4776 // Build the operand list. 4777 SmallVector<SDValue, 8> Ops; 4778 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4779 if (OnlyLoad) { 4780 // We don't need to serialize loads against other loads. 4781 Ops.push_back(DAG.getRoot()); 4782 } else { 4783 Ops.push_back(getRoot()); 4784 } 4785 } 4786 4787 // Info is set by getTgtMemInstrinsic 4788 TargetLowering::IntrinsicInfo Info; 4789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4790 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4791 DAG.getMachineFunction(), 4792 Intrinsic); 4793 4794 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4795 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4796 Info.opc == ISD::INTRINSIC_W_CHAIN) 4797 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4798 TLI.getPointerTy(DAG.getDataLayout()))); 4799 4800 // Add all operands of the call to the operand list. 4801 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4802 const Value *Arg = I.getArgOperand(i); 4803 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4804 Ops.push_back(getValue(Arg)); 4805 continue; 4806 } 4807 4808 // Use TargetConstant instead of a regular constant for immarg. 4809 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4810 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4811 assert(CI->getBitWidth() <= 64 && 4812 "large intrinsic immediates not handled"); 4813 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4814 } else { 4815 Ops.push_back( 4816 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4817 } 4818 } 4819 4820 SmallVector<EVT, 4> ValueVTs; 4821 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4822 4823 if (HasChain) 4824 ValueVTs.push_back(MVT::Other); 4825 4826 SDVTList VTs = DAG.getVTList(ValueVTs); 4827 4828 // Propagate fast-math-flags from IR to node(s). 4829 SDNodeFlags Flags; 4830 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4831 Flags.copyFMF(*FPMO); 4832 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4833 4834 // Create the node. 4835 SDValue Result; 4836 if (IsTgtIntrinsic) { 4837 // This is target intrinsic that touches memory 4838 Result = 4839 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4840 MachinePointerInfo(Info.ptrVal, Info.offset), 4841 Info.align, Info.flags, Info.size, 4842 I.getAAMetadata()); 4843 } else if (!HasChain) { 4844 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4845 } else if (!I.getType()->isVoidTy()) { 4846 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4847 } else { 4848 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4849 } 4850 4851 if (HasChain) { 4852 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4853 if (OnlyLoad) 4854 PendingLoads.push_back(Chain); 4855 else 4856 DAG.setRoot(Chain); 4857 } 4858 4859 if (!I.getType()->isVoidTy()) { 4860 if (!isa<VectorType>(I.getType())) 4861 Result = lowerRangeToAssertZExt(DAG, I, Result); 4862 4863 MaybeAlign Alignment = I.getRetAlign(); 4864 if (!Alignment) 4865 Alignment = F->getAttributes().getRetAlignment(); 4866 // Insert `assertalign` node if there's an alignment. 4867 if (InsertAssertAlign && Alignment) { 4868 Result = 4869 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4870 } 4871 4872 setValue(&I, Result); 4873 } 4874 } 4875 4876 /// GetSignificand - Get the significand and build it into a floating-point 4877 /// number with exponent of 1: 4878 /// 4879 /// Op = (Op & 0x007fffff) | 0x3f800000; 4880 /// 4881 /// where Op is the hexadecimal representation of floating point value. 4882 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4883 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4884 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4885 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4886 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4887 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4888 } 4889 4890 /// GetExponent - Get the exponent: 4891 /// 4892 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4893 /// 4894 /// where Op is the hexadecimal representation of floating point value. 4895 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4896 const TargetLowering &TLI, const SDLoc &dl) { 4897 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4898 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4899 SDValue t1 = DAG.getNode( 4900 ISD::SRL, dl, MVT::i32, t0, 4901 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4902 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4903 DAG.getConstant(127, dl, MVT::i32)); 4904 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4905 } 4906 4907 /// getF32Constant - Get 32-bit floating point constant. 4908 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4909 const SDLoc &dl) { 4910 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4911 MVT::f32); 4912 } 4913 4914 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4915 SelectionDAG &DAG) { 4916 // TODO: What fast-math-flags should be set on the floating-point nodes? 4917 4918 // IntegerPartOfX = ((int32_t)(t0); 4919 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4920 4921 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4922 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4923 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4924 4925 // IntegerPartOfX <<= 23; 4926 IntegerPartOfX = DAG.getNode( 4927 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4928 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4929 DAG.getDataLayout()))); 4930 4931 SDValue TwoToFractionalPartOfX; 4932 if (LimitFloatPrecision <= 6) { 4933 // For floating-point precision of 6: 4934 // 4935 // TwoToFractionalPartOfX = 4936 // 0.997535578f + 4937 // (0.735607626f + 0.252464424f * x) * x; 4938 // 4939 // error 0.0144103317, which is 6 bits 4940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4941 getF32Constant(DAG, 0x3e814304, dl)); 4942 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4943 getF32Constant(DAG, 0x3f3c50c8, dl)); 4944 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4945 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4946 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4947 } else if (LimitFloatPrecision <= 12) { 4948 // For floating-point precision of 12: 4949 // 4950 // TwoToFractionalPartOfX = 4951 // 0.999892986f + 4952 // (0.696457318f + 4953 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4954 // 4955 // error 0.000107046256, which is 13 to 14 bits 4956 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4957 getF32Constant(DAG, 0x3da235e3, dl)); 4958 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4959 getF32Constant(DAG, 0x3e65b8f3, dl)); 4960 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4961 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4962 getF32Constant(DAG, 0x3f324b07, dl)); 4963 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4964 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4965 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4966 } else { // LimitFloatPrecision <= 18 4967 // For floating-point precision of 18: 4968 // 4969 // TwoToFractionalPartOfX = 4970 // 0.999999982f + 4971 // (0.693148872f + 4972 // (0.240227044f + 4973 // (0.554906021e-1f + 4974 // (0.961591928e-2f + 4975 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4976 // error 2.47208000*10^(-7), which is better than 18 bits 4977 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4978 getF32Constant(DAG, 0x3924b03e, dl)); 4979 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4980 getF32Constant(DAG, 0x3ab24b87, dl)); 4981 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4982 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4983 getF32Constant(DAG, 0x3c1d8c17, dl)); 4984 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4985 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4986 getF32Constant(DAG, 0x3d634a1d, dl)); 4987 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4988 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4989 getF32Constant(DAG, 0x3e75fe14, dl)); 4990 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4991 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4992 getF32Constant(DAG, 0x3f317234, dl)); 4993 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4994 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4995 getF32Constant(DAG, 0x3f800000, dl)); 4996 } 4997 4998 // Add the exponent into the result in integer domain. 4999 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5000 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5001 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5002 } 5003 5004 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5005 /// limited-precision mode. 5006 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5007 const TargetLowering &TLI, SDNodeFlags Flags) { 5008 if (Op.getValueType() == MVT::f32 && 5009 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5010 5011 // Put the exponent in the right bit position for later addition to the 5012 // final result: 5013 // 5014 // t0 = Op * log2(e) 5015 5016 // TODO: What fast-math-flags should be set here? 5017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5018 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5019 return getLimitedPrecisionExp2(t0, dl, DAG); 5020 } 5021 5022 // No special expansion. 5023 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5024 } 5025 5026 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5027 /// limited-precision mode. 5028 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5029 const TargetLowering &TLI, SDNodeFlags Flags) { 5030 // TODO: What fast-math-flags should be set on the floating-point nodes? 5031 5032 if (Op.getValueType() == MVT::f32 && 5033 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5034 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5035 5036 // Scale the exponent by log(2). 5037 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5038 SDValue LogOfExponent = 5039 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5040 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5041 5042 // Get the significand and build it into a floating-point number with 5043 // exponent of 1. 5044 SDValue X = GetSignificand(DAG, Op1, dl); 5045 5046 SDValue LogOfMantissa; 5047 if (LimitFloatPrecision <= 6) { 5048 // For floating-point precision of 6: 5049 // 5050 // LogofMantissa = 5051 // -1.1609546f + 5052 // (1.4034025f - 0.23903021f * x) * x; 5053 // 5054 // error 0.0034276066, which is better than 8 bits 5055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5056 getF32Constant(DAG, 0xbe74c456, dl)); 5057 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5058 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5060 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5061 getF32Constant(DAG, 0x3f949a29, dl)); 5062 } else if (LimitFloatPrecision <= 12) { 5063 // For floating-point precision of 12: 5064 // 5065 // LogOfMantissa = 5066 // -1.7417939f + 5067 // (2.8212026f + 5068 // (-1.4699568f + 5069 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5070 // 5071 // error 0.000061011436, which is 14 bits 5072 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5073 getF32Constant(DAG, 0xbd67b6d6, dl)); 5074 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5075 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5076 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5077 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5078 getF32Constant(DAG, 0x3fbc278b, dl)); 5079 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5080 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5081 getF32Constant(DAG, 0x40348e95, dl)); 5082 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5083 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5084 getF32Constant(DAG, 0x3fdef31a, dl)); 5085 } else { // LimitFloatPrecision <= 18 5086 // For floating-point precision of 18: 5087 // 5088 // LogOfMantissa = 5089 // -2.1072184f + 5090 // (4.2372794f + 5091 // (-3.7029485f + 5092 // (2.2781945f + 5093 // (-0.87823314f + 5094 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5095 // 5096 // error 0.0000023660568, which is better than 18 bits 5097 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5098 getF32Constant(DAG, 0xbc91e5ac, dl)); 5099 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5100 getF32Constant(DAG, 0x3e4350aa, dl)); 5101 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5102 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5103 getF32Constant(DAG, 0x3f60d3e3, dl)); 5104 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5105 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5106 getF32Constant(DAG, 0x4011cdf0, dl)); 5107 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5108 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5109 getF32Constant(DAG, 0x406cfd1c, dl)); 5110 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5111 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5112 getF32Constant(DAG, 0x408797cb, dl)); 5113 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5114 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5115 getF32Constant(DAG, 0x4006dcab, dl)); 5116 } 5117 5118 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5119 } 5120 5121 // No special expansion. 5122 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5123 } 5124 5125 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5126 /// limited-precision mode. 5127 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5128 const TargetLowering &TLI, SDNodeFlags Flags) { 5129 // TODO: What fast-math-flags should be set on the floating-point nodes? 5130 5131 if (Op.getValueType() == MVT::f32 && 5132 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5133 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5134 5135 // Get the exponent. 5136 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5137 5138 // Get the significand and build it into a floating-point number with 5139 // exponent of 1. 5140 SDValue X = GetSignificand(DAG, Op1, dl); 5141 5142 // Different possible minimax approximations of significand in 5143 // floating-point for various degrees of accuracy over [1,2]. 5144 SDValue Log2ofMantissa; 5145 if (LimitFloatPrecision <= 6) { 5146 // For floating-point precision of 6: 5147 // 5148 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5149 // 5150 // error 0.0049451742, which is more than 7 bits 5151 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5152 getF32Constant(DAG, 0xbeb08fe0, dl)); 5153 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5154 getF32Constant(DAG, 0x40019463, dl)); 5155 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5156 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5157 getF32Constant(DAG, 0x3fd6633d, dl)); 5158 } else if (LimitFloatPrecision <= 12) { 5159 // For floating-point precision of 12: 5160 // 5161 // Log2ofMantissa = 5162 // -2.51285454f + 5163 // (4.07009056f + 5164 // (-2.12067489f + 5165 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5166 // 5167 // error 0.0000876136000, which is better than 13 bits 5168 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5169 getF32Constant(DAG, 0xbda7262e, dl)); 5170 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5171 getF32Constant(DAG, 0x3f25280b, dl)); 5172 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5173 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5174 getF32Constant(DAG, 0x4007b923, dl)); 5175 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5176 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5177 getF32Constant(DAG, 0x40823e2f, dl)); 5178 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5179 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5180 getF32Constant(DAG, 0x4020d29c, dl)); 5181 } else { // LimitFloatPrecision <= 18 5182 // For floating-point precision of 18: 5183 // 5184 // Log2ofMantissa = 5185 // -3.0400495f + 5186 // (6.1129976f + 5187 // (-5.3420409f + 5188 // (3.2865683f + 5189 // (-1.2669343f + 5190 // (0.27515199f - 5191 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5192 // 5193 // error 0.0000018516, which is better than 18 bits 5194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5195 getF32Constant(DAG, 0xbcd2769e, dl)); 5196 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5197 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5199 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5200 getF32Constant(DAG, 0x3fa22ae7, dl)); 5201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5202 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5203 getF32Constant(DAG, 0x40525723, dl)); 5204 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5205 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5206 getF32Constant(DAG, 0x40aaf200, dl)); 5207 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5208 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5209 getF32Constant(DAG, 0x40c39dad, dl)); 5210 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5211 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5212 getF32Constant(DAG, 0x4042902c, dl)); 5213 } 5214 5215 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5216 } 5217 5218 // No special expansion. 5219 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5220 } 5221 5222 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5223 /// limited-precision mode. 5224 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5225 const TargetLowering &TLI, SDNodeFlags Flags) { 5226 // TODO: What fast-math-flags should be set on the floating-point nodes? 5227 5228 if (Op.getValueType() == MVT::f32 && 5229 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5230 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5231 5232 // Scale the exponent by log10(2) [0.30102999f]. 5233 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5234 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5235 getF32Constant(DAG, 0x3e9a209a, dl)); 5236 5237 // Get the significand and build it into a floating-point number with 5238 // exponent of 1. 5239 SDValue X = GetSignificand(DAG, Op1, dl); 5240 5241 SDValue Log10ofMantissa; 5242 if (LimitFloatPrecision <= 6) { 5243 // For floating-point precision of 6: 5244 // 5245 // Log10ofMantissa = 5246 // -0.50419619f + 5247 // (0.60948995f - 0.10380950f * x) * x; 5248 // 5249 // error 0.0014886165, which is 6 bits 5250 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5251 getF32Constant(DAG, 0xbdd49a13, dl)); 5252 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5253 getF32Constant(DAG, 0x3f1c0789, dl)); 5254 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5255 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5256 getF32Constant(DAG, 0x3f011300, dl)); 5257 } else if (LimitFloatPrecision <= 12) { 5258 // For floating-point precision of 12: 5259 // 5260 // Log10ofMantissa = 5261 // -0.64831180f + 5262 // (0.91751397f + 5263 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5264 // 5265 // error 0.00019228036, which is better than 12 bits 5266 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5267 getF32Constant(DAG, 0x3d431f31, dl)); 5268 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5269 getF32Constant(DAG, 0x3ea21fb2, dl)); 5270 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5271 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5272 getF32Constant(DAG, 0x3f6ae232, dl)); 5273 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5274 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5275 getF32Constant(DAG, 0x3f25f7c3, dl)); 5276 } else { // LimitFloatPrecision <= 18 5277 // For floating-point precision of 18: 5278 // 5279 // Log10ofMantissa = 5280 // -0.84299375f + 5281 // (1.5327582f + 5282 // (-1.0688956f + 5283 // (0.49102474f + 5284 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5285 // 5286 // error 0.0000037995730, which is better than 18 bits 5287 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5288 getF32Constant(DAG, 0x3c5d51ce, dl)); 5289 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5290 getF32Constant(DAG, 0x3e00685a, dl)); 5291 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5292 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5293 getF32Constant(DAG, 0x3efb6798, dl)); 5294 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5295 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5296 getF32Constant(DAG, 0x3f88d192, dl)); 5297 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5298 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5299 getF32Constant(DAG, 0x3fc4316c, dl)); 5300 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5301 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5302 getF32Constant(DAG, 0x3f57ce70, dl)); 5303 } 5304 5305 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5306 } 5307 5308 // No special expansion. 5309 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5310 } 5311 5312 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5313 /// limited-precision mode. 5314 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5315 const TargetLowering &TLI, SDNodeFlags Flags) { 5316 if (Op.getValueType() == MVT::f32 && 5317 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5318 return getLimitedPrecisionExp2(Op, dl, DAG); 5319 5320 // No special expansion. 5321 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5322 } 5323 5324 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5325 /// limited-precision mode with x == 10.0f. 5326 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5327 SelectionDAG &DAG, const TargetLowering &TLI, 5328 SDNodeFlags Flags) { 5329 bool IsExp10 = false; 5330 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5331 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5332 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5333 APFloat Ten(10.0f); 5334 IsExp10 = LHSC->isExactlyValue(Ten); 5335 } 5336 } 5337 5338 // TODO: What fast-math-flags should be set on the FMUL node? 5339 if (IsExp10) { 5340 // Put the exponent in the right bit position for later addition to the 5341 // final result: 5342 // 5343 // #define LOG2OF10 3.3219281f 5344 // t0 = Op * LOG2OF10; 5345 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5346 getF32Constant(DAG, 0x40549a78, dl)); 5347 return getLimitedPrecisionExp2(t0, dl, DAG); 5348 } 5349 5350 // No special expansion. 5351 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5352 } 5353 5354 /// ExpandPowI - Expand a llvm.powi intrinsic. 5355 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5356 SelectionDAG &DAG) { 5357 // If RHS is a constant, we can expand this out to a multiplication tree, 5358 // otherwise we end up lowering to a call to __powidf2 (for example). When 5359 // optimizing for size, we only want to do this if the expansion would produce 5360 // a small number of multiplies, otherwise we do the full expansion. 5361 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5362 // Get the exponent as a positive value. 5363 unsigned Val = RHSC->getSExtValue(); 5364 if ((int)Val < 0) Val = -Val; 5365 5366 // powi(x, 0) -> 1.0 5367 if (Val == 0) 5368 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5369 5370 bool OptForSize = DAG.shouldOptForSize(); 5371 if (!OptForSize || 5372 // If optimizing for size, don't insert too many multiplies. 5373 // This inserts up to 5 multiplies. 5374 countPopulation(Val) + Log2_32(Val) < 7) { 5375 // We use the simple binary decomposition method to generate the multiply 5376 // sequence. There are more optimal ways to do this (for example, 5377 // powi(x,15) generates one more multiply than it should), but this has 5378 // the benefit of being both really simple and much better than a libcall. 5379 SDValue Res; // Logically starts equal to 1.0 5380 SDValue CurSquare = LHS; 5381 // TODO: Intrinsics should have fast-math-flags that propagate to these 5382 // nodes. 5383 while (Val) { 5384 if (Val & 1) { 5385 if (Res.getNode()) 5386 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5387 else 5388 Res = CurSquare; // 1.0*CurSquare. 5389 } 5390 5391 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5392 CurSquare, CurSquare); 5393 Val >>= 1; 5394 } 5395 5396 // If the original was negative, invert the result, producing 1/(x*x*x). 5397 if (RHSC->getSExtValue() < 0) 5398 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5399 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5400 return Res; 5401 } 5402 } 5403 5404 // Otherwise, expand to a libcall. 5405 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5406 } 5407 5408 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5409 SDValue LHS, SDValue RHS, SDValue Scale, 5410 SelectionDAG &DAG, const TargetLowering &TLI) { 5411 EVT VT = LHS.getValueType(); 5412 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5413 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5414 LLVMContext &Ctx = *DAG.getContext(); 5415 5416 // If the type is legal but the operation isn't, this node might survive all 5417 // the way to operation legalization. If we end up there and we do not have 5418 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5419 // node. 5420 5421 // Coax the legalizer into expanding the node during type legalization instead 5422 // by bumping the size by one bit. This will force it to Promote, enabling the 5423 // early expansion and avoiding the need to expand later. 5424 5425 // We don't have to do this if Scale is 0; that can always be expanded, unless 5426 // it's a saturating signed operation. Those can experience true integer 5427 // division overflow, a case which we must avoid. 5428 5429 // FIXME: We wouldn't have to do this (or any of the early 5430 // expansion/promotion) if it was possible to expand a libcall of an 5431 // illegal type during operation legalization. But it's not, so things 5432 // get a bit hacky. 5433 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5434 if ((ScaleInt > 0 || (Saturating && Signed)) && 5435 (TLI.isTypeLegal(VT) || 5436 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5437 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5438 Opcode, VT, ScaleInt); 5439 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5440 EVT PromVT; 5441 if (VT.isScalarInteger()) 5442 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5443 else if (VT.isVector()) { 5444 PromVT = VT.getVectorElementType(); 5445 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5446 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5447 } else 5448 llvm_unreachable("Wrong VT for DIVFIX?"); 5449 if (Signed) { 5450 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5451 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5452 } else { 5453 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5454 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5455 } 5456 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5457 // For saturating operations, we need to shift up the LHS to get the 5458 // proper saturation width, and then shift down again afterwards. 5459 if (Saturating) 5460 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5461 DAG.getConstant(1, DL, ShiftTy)); 5462 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5463 if (Saturating) 5464 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5465 DAG.getConstant(1, DL, ShiftTy)); 5466 return DAG.getZExtOrTrunc(Res, DL, VT); 5467 } 5468 } 5469 5470 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5471 } 5472 5473 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5474 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5475 static void 5476 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5477 const SDValue &N) { 5478 switch (N.getOpcode()) { 5479 case ISD::CopyFromReg: { 5480 SDValue Op = N.getOperand(1); 5481 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5482 Op.getValueType().getSizeInBits()); 5483 return; 5484 } 5485 case ISD::BITCAST: 5486 case ISD::AssertZext: 5487 case ISD::AssertSext: 5488 case ISD::TRUNCATE: 5489 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5490 return; 5491 case ISD::BUILD_PAIR: 5492 case ISD::BUILD_VECTOR: 5493 case ISD::CONCAT_VECTORS: 5494 for (SDValue Op : N->op_values()) 5495 getUnderlyingArgRegs(Regs, Op); 5496 return; 5497 default: 5498 return; 5499 } 5500 } 5501 5502 /// If the DbgValueInst is a dbg_value of a function argument, create the 5503 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5504 /// instruction selection, they will be inserted to the entry BB. 5505 /// We don't currently support this for variadic dbg_values, as they shouldn't 5506 /// appear for function arguments or in the prologue. 5507 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5508 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5509 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5510 const Argument *Arg = dyn_cast<Argument>(V); 5511 if (!Arg) 5512 return false; 5513 5514 MachineFunction &MF = DAG.getMachineFunction(); 5515 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5516 5517 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5518 // we've been asked to pursue. 5519 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5520 bool Indirect) { 5521 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5522 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5523 // pointing at the VReg, which will be patched up later. 5524 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5525 auto MIB = BuildMI(MF, DL, Inst); 5526 MIB.addReg(Reg); 5527 MIB.addImm(0); 5528 MIB.addMetadata(Variable); 5529 auto *NewDIExpr = FragExpr; 5530 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5531 // the DIExpression. 5532 if (Indirect) 5533 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5534 MIB.addMetadata(NewDIExpr); 5535 return MIB; 5536 } else { 5537 // Create a completely standard DBG_VALUE. 5538 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5539 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5540 } 5541 }; 5542 5543 if (!IsDbgDeclare) { 5544 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5545 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5546 // the entry block. 5547 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5548 if (!IsInEntryBlock) 5549 return false; 5550 5551 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5552 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5553 // variable that also is a param. 5554 // 5555 // Although, if we are at the top of the entry block already, we can still 5556 // emit using ArgDbgValue. This might catch some situations when the 5557 // dbg.value refers to an argument that isn't used in the entry block, so 5558 // any CopyToReg node would be optimized out and the only way to express 5559 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5560 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5561 // we should only emit as ArgDbgValue if the Variable is an argument to the 5562 // current function, and the dbg.value intrinsic is found in the entry 5563 // block. 5564 bool VariableIsFunctionInputArg = Variable->isParameter() && 5565 !DL->getInlinedAt(); 5566 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5567 if (!IsInPrologue && !VariableIsFunctionInputArg) 5568 return false; 5569 5570 // Here we assume that a function argument on IR level only can be used to 5571 // describe one input parameter on source level. If we for example have 5572 // source code like this 5573 // 5574 // struct A { long x, y; }; 5575 // void foo(struct A a, long b) { 5576 // ... 5577 // b = a.x; 5578 // ... 5579 // } 5580 // 5581 // and IR like this 5582 // 5583 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5584 // entry: 5585 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5586 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5587 // call void @llvm.dbg.value(metadata i32 %b, "b", 5588 // ... 5589 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5590 // ... 5591 // 5592 // then the last dbg.value is describing a parameter "b" using a value that 5593 // is an argument. But since we already has used %a1 to describe a parameter 5594 // we should not handle that last dbg.value here (that would result in an 5595 // incorrect hoisting of the DBG_VALUE to the function entry). 5596 // Notice that we allow one dbg.value per IR level argument, to accommodate 5597 // for the situation with fragments above. 5598 if (VariableIsFunctionInputArg) { 5599 unsigned ArgNo = Arg->getArgNo(); 5600 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5601 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5602 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5603 return false; 5604 FuncInfo.DescribedArgs.set(ArgNo); 5605 } 5606 } 5607 5608 bool IsIndirect = false; 5609 Optional<MachineOperand> Op; 5610 // Some arguments' frame index is recorded during argument lowering. 5611 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5612 if (FI != std::numeric_limits<int>::max()) 5613 Op = MachineOperand::CreateFI(FI); 5614 5615 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5616 if (!Op && N.getNode()) { 5617 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5618 Register Reg; 5619 if (ArgRegsAndSizes.size() == 1) 5620 Reg = ArgRegsAndSizes.front().first; 5621 5622 if (Reg && Reg.isVirtual()) { 5623 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5624 Register PR = RegInfo.getLiveInPhysReg(Reg); 5625 if (PR) 5626 Reg = PR; 5627 } 5628 if (Reg) { 5629 Op = MachineOperand::CreateReg(Reg, false); 5630 IsIndirect = IsDbgDeclare; 5631 } 5632 } 5633 5634 if (!Op && N.getNode()) { 5635 // Check if frame index is available. 5636 SDValue LCandidate = peekThroughBitcasts(N); 5637 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5638 if (FrameIndexSDNode *FINode = 5639 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5640 Op = MachineOperand::CreateFI(FINode->getIndex()); 5641 } 5642 5643 if (!Op) { 5644 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5645 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5646 SplitRegs) { 5647 unsigned Offset = 0; 5648 for (const auto &RegAndSize : SplitRegs) { 5649 // If the expression is already a fragment, the current register 5650 // offset+size might extend beyond the fragment. In this case, only 5651 // the register bits that are inside the fragment are relevant. 5652 int RegFragmentSizeInBits = RegAndSize.second; 5653 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5654 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5655 // The register is entirely outside the expression fragment, 5656 // so is irrelevant for debug info. 5657 if (Offset >= ExprFragmentSizeInBits) 5658 break; 5659 // The register is partially outside the expression fragment, only 5660 // the low bits within the fragment are relevant for debug info. 5661 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5662 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5663 } 5664 } 5665 5666 auto FragmentExpr = DIExpression::createFragmentExpression( 5667 Expr, Offset, RegFragmentSizeInBits); 5668 Offset += RegAndSize.second; 5669 // If a valid fragment expression cannot be created, the variable's 5670 // correct value cannot be determined and so it is set as Undef. 5671 if (!FragmentExpr) { 5672 SDDbgValue *SDV = DAG.getConstantDbgValue( 5673 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5674 DAG.AddDbgValue(SDV, false); 5675 continue; 5676 } 5677 MachineInstr *NewMI = 5678 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5679 FuncInfo.ArgDbgValues.push_back(NewMI); 5680 } 5681 }; 5682 5683 // Check if ValueMap has reg number. 5684 DenseMap<const Value *, Register>::const_iterator 5685 VMI = FuncInfo.ValueMap.find(V); 5686 if (VMI != FuncInfo.ValueMap.end()) { 5687 const auto &TLI = DAG.getTargetLoweringInfo(); 5688 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5689 V->getType(), None); 5690 if (RFV.occupiesMultipleRegs()) { 5691 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5692 return true; 5693 } 5694 5695 Op = MachineOperand::CreateReg(VMI->second, false); 5696 IsIndirect = IsDbgDeclare; 5697 } else if (ArgRegsAndSizes.size() > 1) { 5698 // This was split due to the calling convention, and no virtual register 5699 // mapping exists for the value. 5700 splitMultiRegDbgValue(ArgRegsAndSizes); 5701 return true; 5702 } 5703 } 5704 5705 if (!Op) 5706 return false; 5707 5708 assert(Variable->isValidLocationForIntrinsic(DL) && 5709 "Expected inlined-at fields to agree"); 5710 MachineInstr *NewMI = nullptr; 5711 5712 if (Op->isReg()) 5713 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5714 else 5715 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5716 Variable, Expr); 5717 5718 FuncInfo.ArgDbgValues.push_back(NewMI); 5719 return true; 5720 } 5721 5722 /// Return the appropriate SDDbgValue based on N. 5723 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5724 DILocalVariable *Variable, 5725 DIExpression *Expr, 5726 const DebugLoc &dl, 5727 unsigned DbgSDNodeOrder) { 5728 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5729 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5730 // stack slot locations. 5731 // 5732 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5733 // debug values here after optimization: 5734 // 5735 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5736 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5737 // 5738 // Both describe the direct values of their associated variables. 5739 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5740 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5741 } 5742 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5743 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5744 } 5745 5746 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5747 switch (Intrinsic) { 5748 case Intrinsic::smul_fix: 5749 return ISD::SMULFIX; 5750 case Intrinsic::umul_fix: 5751 return ISD::UMULFIX; 5752 case Intrinsic::smul_fix_sat: 5753 return ISD::SMULFIXSAT; 5754 case Intrinsic::umul_fix_sat: 5755 return ISD::UMULFIXSAT; 5756 case Intrinsic::sdiv_fix: 5757 return ISD::SDIVFIX; 5758 case Intrinsic::udiv_fix: 5759 return ISD::UDIVFIX; 5760 case Intrinsic::sdiv_fix_sat: 5761 return ISD::SDIVFIXSAT; 5762 case Intrinsic::udiv_fix_sat: 5763 return ISD::UDIVFIXSAT; 5764 default: 5765 llvm_unreachable("Unhandled fixed point intrinsic"); 5766 } 5767 } 5768 5769 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5770 const char *FunctionName) { 5771 assert(FunctionName && "FunctionName must not be nullptr"); 5772 SDValue Callee = DAG.getExternalSymbol( 5773 FunctionName, 5774 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5775 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5776 } 5777 5778 /// Given a @llvm.call.preallocated.setup, return the corresponding 5779 /// preallocated call. 5780 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5781 assert(cast<CallBase>(PreallocatedSetup) 5782 ->getCalledFunction() 5783 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5784 "expected call_preallocated_setup Value"); 5785 for (auto *U : PreallocatedSetup->users()) { 5786 auto *UseCall = cast<CallBase>(U); 5787 const Function *Fn = UseCall->getCalledFunction(); 5788 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5789 return UseCall; 5790 } 5791 } 5792 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5793 } 5794 5795 /// Lower the call to the specified intrinsic function. 5796 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5797 unsigned Intrinsic) { 5798 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5799 SDLoc sdl = getCurSDLoc(); 5800 DebugLoc dl = getCurDebugLoc(); 5801 SDValue Res; 5802 5803 SDNodeFlags Flags; 5804 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5805 Flags.copyFMF(*FPOp); 5806 5807 switch (Intrinsic) { 5808 default: 5809 // By default, turn this into a target intrinsic node. 5810 visitTargetIntrinsic(I, Intrinsic); 5811 return; 5812 case Intrinsic::vscale: { 5813 match(&I, m_VScale(DAG.getDataLayout())); 5814 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5815 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5816 return; 5817 } 5818 case Intrinsic::vastart: visitVAStart(I); return; 5819 case Intrinsic::vaend: visitVAEnd(I); return; 5820 case Intrinsic::vacopy: visitVACopy(I); return; 5821 case Intrinsic::returnaddress: 5822 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5823 TLI.getPointerTy(DAG.getDataLayout()), 5824 getValue(I.getArgOperand(0)))); 5825 return; 5826 case Intrinsic::addressofreturnaddress: 5827 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5828 TLI.getPointerTy(DAG.getDataLayout()))); 5829 return; 5830 case Intrinsic::sponentry: 5831 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5832 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5833 return; 5834 case Intrinsic::frameaddress: 5835 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5836 TLI.getFrameIndexTy(DAG.getDataLayout()), 5837 getValue(I.getArgOperand(0)))); 5838 return; 5839 case Intrinsic::read_volatile_register: 5840 case Intrinsic::read_register: { 5841 Value *Reg = I.getArgOperand(0); 5842 SDValue Chain = getRoot(); 5843 SDValue RegName = 5844 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5845 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5846 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5847 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5848 setValue(&I, Res); 5849 DAG.setRoot(Res.getValue(1)); 5850 return; 5851 } 5852 case Intrinsic::write_register: { 5853 Value *Reg = I.getArgOperand(0); 5854 Value *RegValue = I.getArgOperand(1); 5855 SDValue Chain = getRoot(); 5856 SDValue RegName = 5857 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5858 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5859 RegName, getValue(RegValue))); 5860 return; 5861 } 5862 case Intrinsic::memcpy: { 5863 const auto &MCI = cast<MemCpyInst>(I); 5864 SDValue Op1 = getValue(I.getArgOperand(0)); 5865 SDValue Op2 = getValue(I.getArgOperand(1)); 5866 SDValue Op3 = getValue(I.getArgOperand(2)); 5867 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5868 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5869 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5870 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5871 bool isVol = MCI.isVolatile(); 5872 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5873 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5874 // node. 5875 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5876 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5877 /* AlwaysInline */ false, isTC, 5878 MachinePointerInfo(I.getArgOperand(0)), 5879 MachinePointerInfo(I.getArgOperand(1)), 5880 I.getAAMetadata()); 5881 updateDAGForMaybeTailCall(MC); 5882 return; 5883 } 5884 case Intrinsic::memcpy_inline: { 5885 const auto &MCI = cast<MemCpyInlineInst>(I); 5886 SDValue Dst = getValue(I.getArgOperand(0)); 5887 SDValue Src = getValue(I.getArgOperand(1)); 5888 SDValue Size = getValue(I.getArgOperand(2)); 5889 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5890 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5891 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5892 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5893 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5894 bool isVol = MCI.isVolatile(); 5895 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5896 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5897 // node. 5898 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5899 /* AlwaysInline */ true, isTC, 5900 MachinePointerInfo(I.getArgOperand(0)), 5901 MachinePointerInfo(I.getArgOperand(1)), 5902 I.getAAMetadata()); 5903 updateDAGForMaybeTailCall(MC); 5904 return; 5905 } 5906 case Intrinsic::memset: { 5907 const auto &MSI = cast<MemSetInst>(I); 5908 SDValue Op1 = getValue(I.getArgOperand(0)); 5909 SDValue Op2 = getValue(I.getArgOperand(1)); 5910 SDValue Op3 = getValue(I.getArgOperand(2)); 5911 // @llvm.memset defines 0 and 1 to both mean no alignment. 5912 Align Alignment = MSI.getDestAlign().valueOrOne(); 5913 bool isVol = MSI.isVolatile(); 5914 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5915 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5916 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5917 MachinePointerInfo(I.getArgOperand(0)), 5918 I.getAAMetadata()); 5919 updateDAGForMaybeTailCall(MS); 5920 return; 5921 } 5922 case Intrinsic::memmove: { 5923 const auto &MMI = cast<MemMoveInst>(I); 5924 SDValue Op1 = getValue(I.getArgOperand(0)); 5925 SDValue Op2 = getValue(I.getArgOperand(1)); 5926 SDValue Op3 = getValue(I.getArgOperand(2)); 5927 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5928 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5929 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5930 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5931 bool isVol = MMI.isVolatile(); 5932 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5933 // FIXME: Support passing different dest/src alignments to the memmove DAG 5934 // node. 5935 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5936 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5937 isTC, MachinePointerInfo(I.getArgOperand(0)), 5938 MachinePointerInfo(I.getArgOperand(1)), 5939 I.getAAMetadata()); 5940 updateDAGForMaybeTailCall(MM); 5941 return; 5942 } 5943 case Intrinsic::memcpy_element_unordered_atomic: { 5944 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5945 SDValue Dst = getValue(MI.getRawDest()); 5946 SDValue Src = getValue(MI.getRawSource()); 5947 SDValue Length = getValue(MI.getLength()); 5948 5949 unsigned DstAlign = MI.getDestAlignment(); 5950 unsigned SrcAlign = MI.getSourceAlignment(); 5951 Type *LengthTy = MI.getLength()->getType(); 5952 unsigned ElemSz = MI.getElementSizeInBytes(); 5953 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5954 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5955 SrcAlign, Length, LengthTy, ElemSz, isTC, 5956 MachinePointerInfo(MI.getRawDest()), 5957 MachinePointerInfo(MI.getRawSource())); 5958 updateDAGForMaybeTailCall(MC); 5959 return; 5960 } 5961 case Intrinsic::memmove_element_unordered_atomic: { 5962 auto &MI = cast<AtomicMemMoveInst>(I); 5963 SDValue Dst = getValue(MI.getRawDest()); 5964 SDValue Src = getValue(MI.getRawSource()); 5965 SDValue Length = getValue(MI.getLength()); 5966 5967 unsigned DstAlign = MI.getDestAlignment(); 5968 unsigned SrcAlign = MI.getSourceAlignment(); 5969 Type *LengthTy = MI.getLength()->getType(); 5970 unsigned ElemSz = MI.getElementSizeInBytes(); 5971 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5972 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5973 SrcAlign, Length, LengthTy, ElemSz, isTC, 5974 MachinePointerInfo(MI.getRawDest()), 5975 MachinePointerInfo(MI.getRawSource())); 5976 updateDAGForMaybeTailCall(MC); 5977 return; 5978 } 5979 case Intrinsic::memset_element_unordered_atomic: { 5980 auto &MI = cast<AtomicMemSetInst>(I); 5981 SDValue Dst = getValue(MI.getRawDest()); 5982 SDValue Val = getValue(MI.getValue()); 5983 SDValue Length = getValue(MI.getLength()); 5984 5985 unsigned DstAlign = MI.getDestAlignment(); 5986 Type *LengthTy = MI.getLength()->getType(); 5987 unsigned ElemSz = MI.getElementSizeInBytes(); 5988 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5989 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5990 LengthTy, ElemSz, isTC, 5991 MachinePointerInfo(MI.getRawDest())); 5992 updateDAGForMaybeTailCall(MC); 5993 return; 5994 } 5995 case Intrinsic::call_preallocated_setup: { 5996 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5997 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5998 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5999 getRoot(), SrcValue); 6000 setValue(&I, Res); 6001 DAG.setRoot(Res); 6002 return; 6003 } 6004 case Intrinsic::call_preallocated_arg: { 6005 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6006 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6007 SDValue Ops[3]; 6008 Ops[0] = getRoot(); 6009 Ops[1] = SrcValue; 6010 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6011 MVT::i32); // arg index 6012 SDValue Res = DAG.getNode( 6013 ISD::PREALLOCATED_ARG, sdl, 6014 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6015 setValue(&I, Res); 6016 DAG.setRoot(Res.getValue(1)); 6017 return; 6018 } 6019 case Intrinsic::dbg_addr: 6020 case Intrinsic::dbg_declare: { 6021 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6022 // they are non-variadic. 6023 const auto &DI = cast<DbgVariableIntrinsic>(I); 6024 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6025 DILocalVariable *Variable = DI.getVariable(); 6026 DIExpression *Expression = DI.getExpression(); 6027 dropDanglingDebugInfo(Variable, Expression); 6028 assert(Variable && "Missing variable"); 6029 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6030 << "\n"); 6031 // Check if address has undef value. 6032 const Value *Address = DI.getVariableLocationOp(0); 6033 if (!Address || isa<UndefValue>(Address) || 6034 (Address->use_empty() && !isa<Argument>(Address))) { 6035 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6036 << " (bad/undef/unused-arg address)\n"); 6037 return; 6038 } 6039 6040 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6041 6042 // Check if this variable can be described by a frame index, typically 6043 // either as a static alloca or a byval parameter. 6044 int FI = std::numeric_limits<int>::max(); 6045 if (const auto *AI = 6046 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6047 if (AI->isStaticAlloca()) { 6048 auto I = FuncInfo.StaticAllocaMap.find(AI); 6049 if (I != FuncInfo.StaticAllocaMap.end()) 6050 FI = I->second; 6051 } 6052 } else if (const auto *Arg = dyn_cast<Argument>( 6053 Address->stripInBoundsConstantOffsets())) { 6054 FI = FuncInfo.getArgumentFrameIndex(Arg); 6055 } 6056 6057 // llvm.dbg.addr is control dependent and always generates indirect 6058 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6059 // the MachineFunction variable table. 6060 if (FI != std::numeric_limits<int>::max()) { 6061 if (Intrinsic == Intrinsic::dbg_addr) { 6062 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6063 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6064 dl, SDNodeOrder); 6065 DAG.AddDbgValue(SDV, isParameter); 6066 } else { 6067 LLVM_DEBUG(dbgs() << "Skipping " << DI 6068 << " (variable info stashed in MF side table)\n"); 6069 } 6070 return; 6071 } 6072 6073 SDValue &N = NodeMap[Address]; 6074 if (!N.getNode() && isa<Argument>(Address)) 6075 // Check unused arguments map. 6076 N = UnusedArgNodeMap[Address]; 6077 SDDbgValue *SDV; 6078 if (N.getNode()) { 6079 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6080 Address = BCI->getOperand(0); 6081 // Parameters are handled specially. 6082 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6083 if (isParameter && FINode) { 6084 // Byval parameter. We have a frame index at this point. 6085 SDV = 6086 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6087 /*IsIndirect*/ true, dl, SDNodeOrder); 6088 } else if (isa<Argument>(Address)) { 6089 // Address is an argument, so try to emit its dbg value using 6090 // virtual register info from the FuncInfo.ValueMap. 6091 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6092 return; 6093 } else { 6094 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6095 true, dl, SDNodeOrder); 6096 } 6097 DAG.AddDbgValue(SDV, isParameter); 6098 } else { 6099 // If Address is an argument then try to emit its dbg value using 6100 // virtual register info from the FuncInfo.ValueMap. 6101 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6102 N)) { 6103 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6104 << " (could not emit func-arg dbg_value)\n"); 6105 } 6106 } 6107 return; 6108 } 6109 case Intrinsic::dbg_label: { 6110 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6111 DILabel *Label = DI.getLabel(); 6112 assert(Label && "Missing label"); 6113 6114 SDDbgLabel *SDV; 6115 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6116 DAG.AddDbgLabel(SDV); 6117 return; 6118 } 6119 case Intrinsic::dbg_value: { 6120 const DbgValueInst &DI = cast<DbgValueInst>(I); 6121 assert(DI.getVariable() && "Missing variable"); 6122 6123 DILocalVariable *Variable = DI.getVariable(); 6124 DIExpression *Expression = DI.getExpression(); 6125 dropDanglingDebugInfo(Variable, Expression); 6126 SmallVector<Value *, 4> Values(DI.getValues()); 6127 if (Values.empty()) 6128 return; 6129 6130 if (llvm::is_contained(Values, nullptr)) 6131 return; 6132 6133 bool IsVariadic = DI.hasArgList(); 6134 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6135 SDNodeOrder, IsVariadic)) 6136 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6137 return; 6138 } 6139 6140 case Intrinsic::eh_typeid_for: { 6141 // Find the type id for the given typeinfo. 6142 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6143 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6144 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6145 setValue(&I, Res); 6146 return; 6147 } 6148 6149 case Intrinsic::eh_return_i32: 6150 case Intrinsic::eh_return_i64: 6151 DAG.getMachineFunction().setCallsEHReturn(true); 6152 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6153 MVT::Other, 6154 getControlRoot(), 6155 getValue(I.getArgOperand(0)), 6156 getValue(I.getArgOperand(1)))); 6157 return; 6158 case Intrinsic::eh_unwind_init: 6159 DAG.getMachineFunction().setCallsUnwindInit(true); 6160 return; 6161 case Intrinsic::eh_dwarf_cfa: 6162 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6163 TLI.getPointerTy(DAG.getDataLayout()), 6164 getValue(I.getArgOperand(0)))); 6165 return; 6166 case Intrinsic::eh_sjlj_callsite: { 6167 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6168 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6169 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6170 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6171 6172 MMI.setCurrentCallSite(CI->getZExtValue()); 6173 return; 6174 } 6175 case Intrinsic::eh_sjlj_functioncontext: { 6176 // Get and store the index of the function context. 6177 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6178 AllocaInst *FnCtx = 6179 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6180 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6181 MFI.setFunctionContextIndex(FI); 6182 return; 6183 } 6184 case Intrinsic::eh_sjlj_setjmp: { 6185 SDValue Ops[2]; 6186 Ops[0] = getRoot(); 6187 Ops[1] = getValue(I.getArgOperand(0)); 6188 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6189 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6190 setValue(&I, Op.getValue(0)); 6191 DAG.setRoot(Op.getValue(1)); 6192 return; 6193 } 6194 case Intrinsic::eh_sjlj_longjmp: 6195 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6196 getRoot(), getValue(I.getArgOperand(0)))); 6197 return; 6198 case Intrinsic::eh_sjlj_setup_dispatch: 6199 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6200 getRoot())); 6201 return; 6202 case Intrinsic::masked_gather: 6203 visitMaskedGather(I); 6204 return; 6205 case Intrinsic::masked_load: 6206 visitMaskedLoad(I); 6207 return; 6208 case Intrinsic::masked_scatter: 6209 visitMaskedScatter(I); 6210 return; 6211 case Intrinsic::masked_store: 6212 visitMaskedStore(I); 6213 return; 6214 case Intrinsic::masked_expandload: 6215 visitMaskedLoad(I, true /* IsExpanding */); 6216 return; 6217 case Intrinsic::masked_compressstore: 6218 visitMaskedStore(I, true /* IsCompressing */); 6219 return; 6220 case Intrinsic::powi: 6221 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6222 getValue(I.getArgOperand(1)), DAG)); 6223 return; 6224 case Intrinsic::log: 6225 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6226 return; 6227 case Intrinsic::log2: 6228 setValue(&I, 6229 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6230 return; 6231 case Intrinsic::log10: 6232 setValue(&I, 6233 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6234 return; 6235 case Intrinsic::exp: 6236 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6237 return; 6238 case Intrinsic::exp2: 6239 setValue(&I, 6240 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6241 return; 6242 case Intrinsic::pow: 6243 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6244 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6245 return; 6246 case Intrinsic::sqrt: 6247 case Intrinsic::fabs: 6248 case Intrinsic::sin: 6249 case Intrinsic::cos: 6250 case Intrinsic::floor: 6251 case Intrinsic::ceil: 6252 case Intrinsic::trunc: 6253 case Intrinsic::rint: 6254 case Intrinsic::nearbyint: 6255 case Intrinsic::round: 6256 case Intrinsic::roundeven: 6257 case Intrinsic::canonicalize: { 6258 unsigned Opcode; 6259 switch (Intrinsic) { 6260 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6261 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6262 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6263 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6264 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6265 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6266 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6267 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6268 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6269 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6270 case Intrinsic::round: Opcode = ISD::FROUND; break; 6271 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6272 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6273 } 6274 6275 setValue(&I, DAG.getNode(Opcode, sdl, 6276 getValue(I.getArgOperand(0)).getValueType(), 6277 getValue(I.getArgOperand(0)), Flags)); 6278 return; 6279 } 6280 case Intrinsic::lround: 6281 case Intrinsic::llround: 6282 case Intrinsic::lrint: 6283 case Intrinsic::llrint: { 6284 unsigned Opcode; 6285 switch (Intrinsic) { 6286 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6287 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6288 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6289 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6290 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6291 } 6292 6293 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6294 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6295 getValue(I.getArgOperand(0)))); 6296 return; 6297 } 6298 case Intrinsic::minnum: 6299 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6300 getValue(I.getArgOperand(0)).getValueType(), 6301 getValue(I.getArgOperand(0)), 6302 getValue(I.getArgOperand(1)), Flags)); 6303 return; 6304 case Intrinsic::maxnum: 6305 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6306 getValue(I.getArgOperand(0)).getValueType(), 6307 getValue(I.getArgOperand(0)), 6308 getValue(I.getArgOperand(1)), Flags)); 6309 return; 6310 case Intrinsic::minimum: 6311 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6312 getValue(I.getArgOperand(0)).getValueType(), 6313 getValue(I.getArgOperand(0)), 6314 getValue(I.getArgOperand(1)), Flags)); 6315 return; 6316 case Intrinsic::maximum: 6317 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6318 getValue(I.getArgOperand(0)).getValueType(), 6319 getValue(I.getArgOperand(0)), 6320 getValue(I.getArgOperand(1)), Flags)); 6321 return; 6322 case Intrinsic::copysign: 6323 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6324 getValue(I.getArgOperand(0)).getValueType(), 6325 getValue(I.getArgOperand(0)), 6326 getValue(I.getArgOperand(1)), Flags)); 6327 return; 6328 case Intrinsic::arithmetic_fence: { 6329 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6330 getValue(I.getArgOperand(0)).getValueType(), 6331 getValue(I.getArgOperand(0)), Flags)); 6332 return; 6333 } 6334 case Intrinsic::fma: 6335 setValue(&I, DAG.getNode( 6336 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6337 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6338 getValue(I.getArgOperand(2)), Flags)); 6339 return; 6340 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6341 case Intrinsic::INTRINSIC: 6342 #include "llvm/IR/ConstrainedOps.def" 6343 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6344 return; 6345 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6346 #include "llvm/IR/VPIntrinsics.def" 6347 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6348 return; 6349 case Intrinsic::fmuladd: { 6350 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6351 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6352 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6353 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6354 getValue(I.getArgOperand(0)).getValueType(), 6355 getValue(I.getArgOperand(0)), 6356 getValue(I.getArgOperand(1)), 6357 getValue(I.getArgOperand(2)), Flags)); 6358 } else { 6359 // TODO: Intrinsic calls should have fast-math-flags. 6360 SDValue Mul = DAG.getNode( 6361 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6362 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6363 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6364 getValue(I.getArgOperand(0)).getValueType(), 6365 Mul, getValue(I.getArgOperand(2)), Flags); 6366 setValue(&I, Add); 6367 } 6368 return; 6369 } 6370 case Intrinsic::convert_to_fp16: 6371 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6372 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6373 getValue(I.getArgOperand(0)), 6374 DAG.getTargetConstant(0, sdl, 6375 MVT::i32)))); 6376 return; 6377 case Intrinsic::convert_from_fp16: 6378 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6379 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6380 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6381 getValue(I.getArgOperand(0))))); 6382 return; 6383 case Intrinsic::fptosi_sat: { 6384 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6385 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6386 getValue(I.getArgOperand(0)), 6387 DAG.getValueType(VT.getScalarType()))); 6388 return; 6389 } 6390 case Intrinsic::fptoui_sat: { 6391 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6392 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6393 getValue(I.getArgOperand(0)), 6394 DAG.getValueType(VT.getScalarType()))); 6395 return; 6396 } 6397 case Intrinsic::set_rounding: 6398 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6399 {getRoot(), getValue(I.getArgOperand(0))}); 6400 setValue(&I, Res); 6401 DAG.setRoot(Res.getValue(0)); 6402 return; 6403 case Intrinsic::pcmarker: { 6404 SDValue Tmp = getValue(I.getArgOperand(0)); 6405 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6406 return; 6407 } 6408 case Intrinsic::readcyclecounter: { 6409 SDValue Op = getRoot(); 6410 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6411 DAG.getVTList(MVT::i64, MVT::Other), Op); 6412 setValue(&I, Res); 6413 DAG.setRoot(Res.getValue(1)); 6414 return; 6415 } 6416 case Intrinsic::bitreverse: 6417 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6418 getValue(I.getArgOperand(0)).getValueType(), 6419 getValue(I.getArgOperand(0)))); 6420 return; 6421 case Intrinsic::bswap: 6422 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6423 getValue(I.getArgOperand(0)).getValueType(), 6424 getValue(I.getArgOperand(0)))); 6425 return; 6426 case Intrinsic::cttz: { 6427 SDValue Arg = getValue(I.getArgOperand(0)); 6428 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6429 EVT Ty = Arg.getValueType(); 6430 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6431 sdl, Ty, Arg)); 6432 return; 6433 } 6434 case Intrinsic::ctlz: { 6435 SDValue Arg = getValue(I.getArgOperand(0)); 6436 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6437 EVT Ty = Arg.getValueType(); 6438 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6439 sdl, Ty, Arg)); 6440 return; 6441 } 6442 case Intrinsic::ctpop: { 6443 SDValue Arg = getValue(I.getArgOperand(0)); 6444 EVT Ty = Arg.getValueType(); 6445 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6446 return; 6447 } 6448 case Intrinsic::fshl: 6449 case Intrinsic::fshr: { 6450 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6451 SDValue X = getValue(I.getArgOperand(0)); 6452 SDValue Y = getValue(I.getArgOperand(1)); 6453 SDValue Z = getValue(I.getArgOperand(2)); 6454 EVT VT = X.getValueType(); 6455 6456 if (X == Y) { 6457 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6458 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6459 } else { 6460 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6461 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6462 } 6463 return; 6464 } 6465 case Intrinsic::sadd_sat: { 6466 SDValue Op1 = getValue(I.getArgOperand(0)); 6467 SDValue Op2 = getValue(I.getArgOperand(1)); 6468 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6469 return; 6470 } 6471 case Intrinsic::uadd_sat: { 6472 SDValue Op1 = getValue(I.getArgOperand(0)); 6473 SDValue Op2 = getValue(I.getArgOperand(1)); 6474 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6475 return; 6476 } 6477 case Intrinsic::ssub_sat: { 6478 SDValue Op1 = getValue(I.getArgOperand(0)); 6479 SDValue Op2 = getValue(I.getArgOperand(1)); 6480 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6481 return; 6482 } 6483 case Intrinsic::usub_sat: { 6484 SDValue Op1 = getValue(I.getArgOperand(0)); 6485 SDValue Op2 = getValue(I.getArgOperand(1)); 6486 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6487 return; 6488 } 6489 case Intrinsic::sshl_sat: { 6490 SDValue Op1 = getValue(I.getArgOperand(0)); 6491 SDValue Op2 = getValue(I.getArgOperand(1)); 6492 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6493 return; 6494 } 6495 case Intrinsic::ushl_sat: { 6496 SDValue Op1 = getValue(I.getArgOperand(0)); 6497 SDValue Op2 = getValue(I.getArgOperand(1)); 6498 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6499 return; 6500 } 6501 case Intrinsic::smul_fix: 6502 case Intrinsic::umul_fix: 6503 case Intrinsic::smul_fix_sat: 6504 case Intrinsic::umul_fix_sat: { 6505 SDValue Op1 = getValue(I.getArgOperand(0)); 6506 SDValue Op2 = getValue(I.getArgOperand(1)); 6507 SDValue Op3 = getValue(I.getArgOperand(2)); 6508 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6509 Op1.getValueType(), Op1, Op2, Op3)); 6510 return; 6511 } 6512 case Intrinsic::sdiv_fix: 6513 case Intrinsic::udiv_fix: 6514 case Intrinsic::sdiv_fix_sat: 6515 case Intrinsic::udiv_fix_sat: { 6516 SDValue Op1 = getValue(I.getArgOperand(0)); 6517 SDValue Op2 = getValue(I.getArgOperand(1)); 6518 SDValue Op3 = getValue(I.getArgOperand(2)); 6519 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6520 Op1, Op2, Op3, DAG, TLI)); 6521 return; 6522 } 6523 case Intrinsic::smax: { 6524 SDValue Op1 = getValue(I.getArgOperand(0)); 6525 SDValue Op2 = getValue(I.getArgOperand(1)); 6526 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6527 return; 6528 } 6529 case Intrinsic::smin: { 6530 SDValue Op1 = getValue(I.getArgOperand(0)); 6531 SDValue Op2 = getValue(I.getArgOperand(1)); 6532 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6533 return; 6534 } 6535 case Intrinsic::umax: { 6536 SDValue Op1 = getValue(I.getArgOperand(0)); 6537 SDValue Op2 = getValue(I.getArgOperand(1)); 6538 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6539 return; 6540 } 6541 case Intrinsic::umin: { 6542 SDValue Op1 = getValue(I.getArgOperand(0)); 6543 SDValue Op2 = getValue(I.getArgOperand(1)); 6544 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6545 return; 6546 } 6547 case Intrinsic::abs: { 6548 // TODO: Preserve "int min is poison" arg in SDAG? 6549 SDValue Op1 = getValue(I.getArgOperand(0)); 6550 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6551 return; 6552 } 6553 case Intrinsic::stacksave: { 6554 SDValue Op = getRoot(); 6555 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6556 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6557 setValue(&I, Res); 6558 DAG.setRoot(Res.getValue(1)); 6559 return; 6560 } 6561 case Intrinsic::stackrestore: 6562 Res = getValue(I.getArgOperand(0)); 6563 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6564 return; 6565 case Intrinsic::get_dynamic_area_offset: { 6566 SDValue Op = getRoot(); 6567 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6568 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6569 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6570 // target. 6571 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6572 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6573 " intrinsic!"); 6574 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6575 Op); 6576 DAG.setRoot(Op); 6577 setValue(&I, Res); 6578 return; 6579 } 6580 case Intrinsic::stackguard: { 6581 MachineFunction &MF = DAG.getMachineFunction(); 6582 const Module &M = *MF.getFunction().getParent(); 6583 SDValue Chain = getRoot(); 6584 if (TLI.useLoadStackGuardNode()) { 6585 Res = getLoadStackGuard(DAG, sdl, Chain); 6586 } else { 6587 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6588 const Value *Global = TLI.getSDagStackGuard(M); 6589 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6590 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6591 MachinePointerInfo(Global, 0), Align, 6592 MachineMemOperand::MOVolatile); 6593 } 6594 if (TLI.useStackGuardXorFP()) 6595 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6596 DAG.setRoot(Chain); 6597 setValue(&I, Res); 6598 return; 6599 } 6600 case Intrinsic::stackprotector: { 6601 // Emit code into the DAG to store the stack guard onto the stack. 6602 MachineFunction &MF = DAG.getMachineFunction(); 6603 MachineFrameInfo &MFI = MF.getFrameInfo(); 6604 SDValue Src, Chain = getRoot(); 6605 6606 if (TLI.useLoadStackGuardNode()) 6607 Src = getLoadStackGuard(DAG, sdl, Chain); 6608 else 6609 Src = getValue(I.getArgOperand(0)); // The guard's value. 6610 6611 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6612 6613 int FI = FuncInfo.StaticAllocaMap[Slot]; 6614 MFI.setStackProtectorIndex(FI); 6615 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6616 6617 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6618 6619 // Store the stack protector onto the stack. 6620 Res = DAG.getStore( 6621 Chain, sdl, Src, FIN, 6622 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6623 MaybeAlign(), MachineMemOperand::MOVolatile); 6624 setValue(&I, Res); 6625 DAG.setRoot(Res); 6626 return; 6627 } 6628 case Intrinsic::objectsize: 6629 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6630 6631 case Intrinsic::is_constant: 6632 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6633 6634 case Intrinsic::annotation: 6635 case Intrinsic::ptr_annotation: 6636 case Intrinsic::launder_invariant_group: 6637 case Intrinsic::strip_invariant_group: 6638 // Drop the intrinsic, but forward the value 6639 setValue(&I, getValue(I.getOperand(0))); 6640 return; 6641 6642 case Intrinsic::assume: 6643 case Intrinsic::experimental_noalias_scope_decl: 6644 case Intrinsic::var_annotation: 6645 case Intrinsic::sideeffect: 6646 // Discard annotate attributes, noalias scope declarations, assumptions, and 6647 // artificial side-effects. 6648 return; 6649 6650 case Intrinsic::codeview_annotation: { 6651 // Emit a label associated with this metadata. 6652 MachineFunction &MF = DAG.getMachineFunction(); 6653 MCSymbol *Label = 6654 MF.getMMI().getContext().createTempSymbol("annotation", true); 6655 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6656 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6657 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6658 DAG.setRoot(Res); 6659 return; 6660 } 6661 6662 case Intrinsic::init_trampoline: { 6663 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6664 6665 SDValue Ops[6]; 6666 Ops[0] = getRoot(); 6667 Ops[1] = getValue(I.getArgOperand(0)); 6668 Ops[2] = getValue(I.getArgOperand(1)); 6669 Ops[3] = getValue(I.getArgOperand(2)); 6670 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6671 Ops[5] = DAG.getSrcValue(F); 6672 6673 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6674 6675 DAG.setRoot(Res); 6676 return; 6677 } 6678 case Intrinsic::adjust_trampoline: 6679 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6680 TLI.getPointerTy(DAG.getDataLayout()), 6681 getValue(I.getArgOperand(0)))); 6682 return; 6683 case Intrinsic::gcroot: { 6684 assert(DAG.getMachineFunction().getFunction().hasGC() && 6685 "only valid in functions with gc specified, enforced by Verifier"); 6686 assert(GFI && "implied by previous"); 6687 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6688 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6689 6690 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6691 GFI->addStackRoot(FI->getIndex(), TypeMap); 6692 return; 6693 } 6694 case Intrinsic::gcread: 6695 case Intrinsic::gcwrite: 6696 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6697 case Intrinsic::flt_rounds: 6698 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6699 setValue(&I, Res); 6700 DAG.setRoot(Res.getValue(1)); 6701 return; 6702 6703 case Intrinsic::expect: 6704 // Just replace __builtin_expect(exp, c) with EXP. 6705 setValue(&I, getValue(I.getArgOperand(0))); 6706 return; 6707 6708 case Intrinsic::ubsantrap: 6709 case Intrinsic::debugtrap: 6710 case Intrinsic::trap: { 6711 StringRef TrapFuncName = 6712 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6713 if (TrapFuncName.empty()) { 6714 switch (Intrinsic) { 6715 case Intrinsic::trap: 6716 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6717 break; 6718 case Intrinsic::debugtrap: 6719 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6720 break; 6721 case Intrinsic::ubsantrap: 6722 DAG.setRoot(DAG.getNode( 6723 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6724 DAG.getTargetConstant( 6725 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6726 MVT::i32))); 6727 break; 6728 default: llvm_unreachable("unknown trap intrinsic"); 6729 } 6730 return; 6731 } 6732 TargetLowering::ArgListTy Args; 6733 if (Intrinsic == Intrinsic::ubsantrap) { 6734 Args.push_back(TargetLoweringBase::ArgListEntry()); 6735 Args[0].Val = I.getArgOperand(0); 6736 Args[0].Node = getValue(Args[0].Val); 6737 Args[0].Ty = Args[0].Val->getType(); 6738 } 6739 6740 TargetLowering::CallLoweringInfo CLI(DAG); 6741 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6742 CallingConv::C, I.getType(), 6743 DAG.getExternalSymbol(TrapFuncName.data(), 6744 TLI.getPointerTy(DAG.getDataLayout())), 6745 std::move(Args)); 6746 6747 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6748 DAG.setRoot(Result.second); 6749 return; 6750 } 6751 6752 case Intrinsic::uadd_with_overflow: 6753 case Intrinsic::sadd_with_overflow: 6754 case Intrinsic::usub_with_overflow: 6755 case Intrinsic::ssub_with_overflow: 6756 case Intrinsic::umul_with_overflow: 6757 case Intrinsic::smul_with_overflow: { 6758 ISD::NodeType Op; 6759 switch (Intrinsic) { 6760 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6761 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6762 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6763 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6764 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6765 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6766 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6767 } 6768 SDValue Op1 = getValue(I.getArgOperand(0)); 6769 SDValue Op2 = getValue(I.getArgOperand(1)); 6770 6771 EVT ResultVT = Op1.getValueType(); 6772 EVT OverflowVT = MVT::i1; 6773 if (ResultVT.isVector()) 6774 OverflowVT = EVT::getVectorVT( 6775 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6776 6777 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6778 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6779 return; 6780 } 6781 case Intrinsic::prefetch: { 6782 SDValue Ops[5]; 6783 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6784 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6785 Ops[0] = DAG.getRoot(); 6786 Ops[1] = getValue(I.getArgOperand(0)); 6787 Ops[2] = getValue(I.getArgOperand(1)); 6788 Ops[3] = getValue(I.getArgOperand(2)); 6789 Ops[4] = getValue(I.getArgOperand(3)); 6790 SDValue Result = DAG.getMemIntrinsicNode( 6791 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6792 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6793 /* align */ None, Flags); 6794 6795 // Chain the prefetch in parallell with any pending loads, to stay out of 6796 // the way of later optimizations. 6797 PendingLoads.push_back(Result); 6798 Result = getRoot(); 6799 DAG.setRoot(Result); 6800 return; 6801 } 6802 case Intrinsic::lifetime_start: 6803 case Intrinsic::lifetime_end: { 6804 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6805 // Stack coloring is not enabled in O0, discard region information. 6806 if (TM.getOptLevel() == CodeGenOpt::None) 6807 return; 6808 6809 const int64_t ObjectSize = 6810 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6811 Value *const ObjectPtr = I.getArgOperand(1); 6812 SmallVector<const Value *, 4> Allocas; 6813 getUnderlyingObjects(ObjectPtr, Allocas); 6814 6815 for (const Value *Alloca : Allocas) { 6816 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6817 6818 // Could not find an Alloca. 6819 if (!LifetimeObject) 6820 continue; 6821 6822 // First check that the Alloca is static, otherwise it won't have a 6823 // valid frame index. 6824 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6825 if (SI == FuncInfo.StaticAllocaMap.end()) 6826 return; 6827 6828 const int FrameIndex = SI->second; 6829 int64_t Offset; 6830 if (GetPointerBaseWithConstantOffset( 6831 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6832 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6833 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6834 Offset); 6835 DAG.setRoot(Res); 6836 } 6837 return; 6838 } 6839 case Intrinsic::pseudoprobe: { 6840 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6841 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6842 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6843 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6844 DAG.setRoot(Res); 6845 return; 6846 } 6847 case Intrinsic::invariant_start: 6848 // Discard region information. 6849 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6850 return; 6851 case Intrinsic::invariant_end: 6852 // Discard region information. 6853 return; 6854 case Intrinsic::clear_cache: 6855 /// FunctionName may be null. 6856 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6857 lowerCallToExternalSymbol(I, FunctionName); 6858 return; 6859 case Intrinsic::donothing: 6860 case Intrinsic::seh_try_begin: 6861 case Intrinsic::seh_scope_begin: 6862 case Intrinsic::seh_try_end: 6863 case Intrinsic::seh_scope_end: 6864 // ignore 6865 return; 6866 case Intrinsic::experimental_stackmap: 6867 visitStackmap(I); 6868 return; 6869 case Intrinsic::experimental_patchpoint_void: 6870 case Intrinsic::experimental_patchpoint_i64: 6871 visitPatchpoint(I); 6872 return; 6873 case Intrinsic::experimental_gc_statepoint: 6874 LowerStatepoint(cast<GCStatepointInst>(I)); 6875 return; 6876 case Intrinsic::experimental_gc_result: 6877 visitGCResult(cast<GCResultInst>(I)); 6878 return; 6879 case Intrinsic::experimental_gc_relocate: 6880 visitGCRelocate(cast<GCRelocateInst>(I)); 6881 return; 6882 case Intrinsic::instrprof_cover: 6883 llvm_unreachable("instrprof failed to lower a cover"); 6884 case Intrinsic::instrprof_increment: 6885 llvm_unreachable("instrprof failed to lower an increment"); 6886 case Intrinsic::instrprof_value_profile: 6887 llvm_unreachable("instrprof failed to lower a value profiling call"); 6888 case Intrinsic::localescape: { 6889 MachineFunction &MF = DAG.getMachineFunction(); 6890 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6891 6892 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6893 // is the same on all targets. 6894 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6895 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6896 if (isa<ConstantPointerNull>(Arg)) 6897 continue; // Skip null pointers. They represent a hole in index space. 6898 AllocaInst *Slot = cast<AllocaInst>(Arg); 6899 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6900 "can only escape static allocas"); 6901 int FI = FuncInfo.StaticAllocaMap[Slot]; 6902 MCSymbol *FrameAllocSym = 6903 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6904 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6906 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6907 .addSym(FrameAllocSym) 6908 .addFrameIndex(FI); 6909 } 6910 6911 return; 6912 } 6913 6914 case Intrinsic::localrecover: { 6915 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6916 MachineFunction &MF = DAG.getMachineFunction(); 6917 6918 // Get the symbol that defines the frame offset. 6919 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6920 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6921 unsigned IdxVal = 6922 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6923 MCSymbol *FrameAllocSym = 6924 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6925 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6926 6927 Value *FP = I.getArgOperand(1); 6928 SDValue FPVal = getValue(FP); 6929 EVT PtrVT = FPVal.getValueType(); 6930 6931 // Create a MCSymbol for the label to avoid any target lowering 6932 // that would make this PC relative. 6933 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6934 SDValue OffsetVal = 6935 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6936 6937 // Add the offset to the FP. 6938 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6939 setValue(&I, Add); 6940 6941 return; 6942 } 6943 6944 case Intrinsic::eh_exceptionpointer: 6945 case Intrinsic::eh_exceptioncode: { 6946 // Get the exception pointer vreg, copy from it, and resize it to fit. 6947 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6948 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6949 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6950 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6951 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 6952 if (Intrinsic == Intrinsic::eh_exceptioncode) 6953 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 6954 setValue(&I, N); 6955 return; 6956 } 6957 case Intrinsic::xray_customevent: { 6958 // Here we want to make sure that the intrinsic behaves as if it has a 6959 // specific calling convention, and only for x86_64. 6960 // FIXME: Support other platforms later. 6961 const auto &Triple = DAG.getTarget().getTargetTriple(); 6962 if (Triple.getArch() != Triple::x86_64) 6963 return; 6964 6965 SmallVector<SDValue, 8> Ops; 6966 6967 // We want to say that we always want the arguments in registers. 6968 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6969 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6970 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6971 SDValue Chain = getRoot(); 6972 Ops.push_back(LogEntryVal); 6973 Ops.push_back(StrSizeVal); 6974 Ops.push_back(Chain); 6975 6976 // We need to enforce the calling convention for the callsite, so that 6977 // argument ordering is enforced correctly, and that register allocation can 6978 // see that some registers may be assumed clobbered and have to preserve 6979 // them across calls to the intrinsic. 6980 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6981 sdl, NodeTys, Ops); 6982 SDValue patchableNode = SDValue(MN, 0); 6983 DAG.setRoot(patchableNode); 6984 setValue(&I, patchableNode); 6985 return; 6986 } 6987 case Intrinsic::xray_typedevent: { 6988 // Here we want to make sure that the intrinsic behaves as if it has a 6989 // specific calling convention, and only for x86_64. 6990 // FIXME: Support other platforms later. 6991 const auto &Triple = DAG.getTarget().getTargetTriple(); 6992 if (Triple.getArch() != Triple::x86_64) 6993 return; 6994 6995 SmallVector<SDValue, 8> Ops; 6996 6997 // We want to say that we always want the arguments in registers. 6998 // It's unclear to me how manipulating the selection DAG here forces callers 6999 // to provide arguments in registers instead of on the stack. 7000 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7001 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7002 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7003 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7004 SDValue Chain = getRoot(); 7005 Ops.push_back(LogTypeId); 7006 Ops.push_back(LogEntryVal); 7007 Ops.push_back(StrSizeVal); 7008 Ops.push_back(Chain); 7009 7010 // We need to enforce the calling convention for the callsite, so that 7011 // argument ordering is enforced correctly, and that register allocation can 7012 // see that some registers may be assumed clobbered and have to preserve 7013 // them across calls to the intrinsic. 7014 MachineSDNode *MN = DAG.getMachineNode( 7015 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7016 SDValue patchableNode = SDValue(MN, 0); 7017 DAG.setRoot(patchableNode); 7018 setValue(&I, patchableNode); 7019 return; 7020 } 7021 case Intrinsic::experimental_deoptimize: 7022 LowerDeoptimizeCall(&I); 7023 return; 7024 case Intrinsic::experimental_stepvector: 7025 visitStepVector(I); 7026 return; 7027 case Intrinsic::vector_reduce_fadd: 7028 case Intrinsic::vector_reduce_fmul: 7029 case Intrinsic::vector_reduce_add: 7030 case Intrinsic::vector_reduce_mul: 7031 case Intrinsic::vector_reduce_and: 7032 case Intrinsic::vector_reduce_or: 7033 case Intrinsic::vector_reduce_xor: 7034 case Intrinsic::vector_reduce_smax: 7035 case Intrinsic::vector_reduce_smin: 7036 case Intrinsic::vector_reduce_umax: 7037 case Intrinsic::vector_reduce_umin: 7038 case Intrinsic::vector_reduce_fmax: 7039 case Intrinsic::vector_reduce_fmin: 7040 visitVectorReduce(I, Intrinsic); 7041 return; 7042 7043 case Intrinsic::icall_branch_funnel: { 7044 SmallVector<SDValue, 16> Ops; 7045 Ops.push_back(getValue(I.getArgOperand(0))); 7046 7047 int64_t Offset; 7048 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7049 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7050 if (!Base) 7051 report_fatal_error( 7052 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7053 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7054 7055 struct BranchFunnelTarget { 7056 int64_t Offset; 7057 SDValue Target; 7058 }; 7059 SmallVector<BranchFunnelTarget, 8> Targets; 7060 7061 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7062 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7063 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7064 if (ElemBase != Base) 7065 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7066 "to the same GlobalValue"); 7067 7068 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7069 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7070 if (!GA) 7071 report_fatal_error( 7072 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7073 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7074 GA->getGlobal(), sdl, Val.getValueType(), 7075 GA->getOffset())}); 7076 } 7077 llvm::sort(Targets, 7078 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7079 return T1.Offset < T2.Offset; 7080 }); 7081 7082 for (auto &T : Targets) { 7083 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7084 Ops.push_back(T.Target); 7085 } 7086 7087 Ops.push_back(DAG.getRoot()); // Chain 7088 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7089 MVT::Other, Ops), 7090 0); 7091 DAG.setRoot(N); 7092 setValue(&I, N); 7093 HasTailCall = true; 7094 return; 7095 } 7096 7097 case Intrinsic::wasm_landingpad_index: 7098 // Information this intrinsic contained has been transferred to 7099 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7100 // delete it now. 7101 return; 7102 7103 case Intrinsic::aarch64_settag: 7104 case Intrinsic::aarch64_settag_zero: { 7105 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7106 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7107 SDValue Val = TSI.EmitTargetCodeForSetTag( 7108 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7109 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7110 ZeroMemory); 7111 DAG.setRoot(Val); 7112 setValue(&I, Val); 7113 return; 7114 } 7115 case Intrinsic::ptrmask: { 7116 SDValue Ptr = getValue(I.getOperand(0)); 7117 SDValue Const = getValue(I.getOperand(1)); 7118 7119 EVT PtrVT = Ptr.getValueType(); 7120 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7121 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7122 return; 7123 } 7124 case Intrinsic::get_active_lane_mask: { 7125 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7126 SDValue Index = getValue(I.getOperand(0)); 7127 EVT ElementVT = Index.getValueType(); 7128 7129 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7130 visitTargetIntrinsic(I, Intrinsic); 7131 return; 7132 } 7133 7134 SDValue TripCount = getValue(I.getOperand(1)); 7135 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7136 7137 SDValue VectorIndex, VectorTripCount; 7138 if (VecTy.isScalableVector()) { 7139 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7140 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7141 } else { 7142 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7143 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7144 } 7145 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7146 SDValue VectorInduction = DAG.getNode( 7147 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7148 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7149 VectorTripCount, ISD::CondCode::SETULT); 7150 setValue(&I, SetCC); 7151 return; 7152 } 7153 case Intrinsic::experimental_vector_insert: { 7154 SDValue Vec = getValue(I.getOperand(0)); 7155 SDValue SubVec = getValue(I.getOperand(1)); 7156 SDValue Index = getValue(I.getOperand(2)); 7157 7158 // The intrinsic's index type is i64, but the SDNode requires an index type 7159 // suitable for the target. Convert the index as required. 7160 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7161 if (Index.getValueType() != VectorIdxTy) 7162 Index = DAG.getVectorIdxConstant( 7163 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7164 7165 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7166 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7167 Index)); 7168 return; 7169 } 7170 case Intrinsic::experimental_vector_extract: { 7171 SDValue Vec = getValue(I.getOperand(0)); 7172 SDValue Index = getValue(I.getOperand(1)); 7173 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7174 7175 // The intrinsic's index type is i64, but the SDNode requires an index type 7176 // suitable for the target. Convert the index as required. 7177 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7178 if (Index.getValueType() != VectorIdxTy) 7179 Index = DAG.getVectorIdxConstant( 7180 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7181 7182 setValue(&I, 7183 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7184 return; 7185 } 7186 case Intrinsic::experimental_vector_reverse: 7187 visitVectorReverse(I); 7188 return; 7189 case Intrinsic::experimental_vector_splice: 7190 visitVectorSplice(I); 7191 return; 7192 } 7193 } 7194 7195 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7196 const ConstrainedFPIntrinsic &FPI) { 7197 SDLoc sdl = getCurSDLoc(); 7198 7199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7200 SmallVector<EVT, 4> ValueVTs; 7201 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7202 ValueVTs.push_back(MVT::Other); // Out chain 7203 7204 // We do not need to serialize constrained FP intrinsics against 7205 // each other or against (nonvolatile) loads, so they can be 7206 // chained like loads. 7207 SDValue Chain = DAG.getRoot(); 7208 SmallVector<SDValue, 4> Opers; 7209 Opers.push_back(Chain); 7210 if (FPI.isUnaryOp()) { 7211 Opers.push_back(getValue(FPI.getArgOperand(0))); 7212 } else if (FPI.isTernaryOp()) { 7213 Opers.push_back(getValue(FPI.getArgOperand(0))); 7214 Opers.push_back(getValue(FPI.getArgOperand(1))); 7215 Opers.push_back(getValue(FPI.getArgOperand(2))); 7216 } else { 7217 Opers.push_back(getValue(FPI.getArgOperand(0))); 7218 Opers.push_back(getValue(FPI.getArgOperand(1))); 7219 } 7220 7221 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7222 assert(Result.getNode()->getNumValues() == 2); 7223 7224 // Push node to the appropriate list so that future instructions can be 7225 // chained up correctly. 7226 SDValue OutChain = Result.getValue(1); 7227 switch (EB) { 7228 case fp::ExceptionBehavior::ebIgnore: 7229 // The only reason why ebIgnore nodes still need to be chained is that 7230 // they might depend on the current rounding mode, and therefore must 7231 // not be moved across instruction that may change that mode. 7232 LLVM_FALLTHROUGH; 7233 case fp::ExceptionBehavior::ebMayTrap: 7234 // These must not be moved across calls or instructions that may change 7235 // floating-point exception masks. 7236 PendingConstrainedFP.push_back(OutChain); 7237 break; 7238 case fp::ExceptionBehavior::ebStrict: 7239 // These must not be moved across calls or instructions that may change 7240 // floating-point exception masks or read floating-point exception flags. 7241 // In addition, they cannot be optimized out even if unused. 7242 PendingConstrainedFPStrict.push_back(OutChain); 7243 break; 7244 } 7245 }; 7246 7247 SDVTList VTs = DAG.getVTList(ValueVTs); 7248 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7249 7250 SDNodeFlags Flags; 7251 if (EB == fp::ExceptionBehavior::ebIgnore) 7252 Flags.setNoFPExcept(true); 7253 7254 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7255 Flags.copyFMF(*FPOp); 7256 7257 unsigned Opcode; 7258 switch (FPI.getIntrinsicID()) { 7259 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7260 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7261 case Intrinsic::INTRINSIC: \ 7262 Opcode = ISD::STRICT_##DAGN; \ 7263 break; 7264 #include "llvm/IR/ConstrainedOps.def" 7265 case Intrinsic::experimental_constrained_fmuladd: { 7266 Opcode = ISD::STRICT_FMA; 7267 // Break fmuladd into fmul and fadd. 7268 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7269 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7270 ValueVTs[0])) { 7271 Opers.pop_back(); 7272 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7273 pushOutChain(Mul, EB); 7274 Opcode = ISD::STRICT_FADD; 7275 Opers.clear(); 7276 Opers.push_back(Mul.getValue(1)); 7277 Opers.push_back(Mul.getValue(0)); 7278 Opers.push_back(getValue(FPI.getArgOperand(2))); 7279 } 7280 break; 7281 } 7282 } 7283 7284 // A few strict DAG nodes carry additional operands that are not 7285 // set up by the default code above. 7286 switch (Opcode) { 7287 default: break; 7288 case ISD::STRICT_FP_ROUND: 7289 Opers.push_back( 7290 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7291 break; 7292 case ISD::STRICT_FSETCC: 7293 case ISD::STRICT_FSETCCS: { 7294 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7295 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7296 if (TM.Options.NoNaNsFPMath) 7297 Condition = getFCmpCodeWithoutNaN(Condition); 7298 Opers.push_back(DAG.getCondCode(Condition)); 7299 break; 7300 } 7301 } 7302 7303 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7304 pushOutChain(Result, EB); 7305 7306 SDValue FPResult = Result.getValue(0); 7307 setValue(&FPI, FPResult); 7308 } 7309 7310 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7311 Optional<unsigned> ResOPC; 7312 switch (VPIntrin.getIntrinsicID()) { 7313 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7314 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD; 7315 #define END_REGISTER_VP_INTRINSIC(VPID) break; 7316 #include "llvm/IR/VPIntrinsics.def" 7317 } 7318 7319 if (!ResOPC.hasValue()) 7320 llvm_unreachable( 7321 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7322 7323 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7324 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7325 if (VPIntrin.getFastMathFlags().allowReassoc()) 7326 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7327 : ISD::VP_REDUCE_FMUL; 7328 } 7329 7330 return ResOPC.getValue(); 7331 } 7332 7333 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7334 SmallVector<SDValue, 7> &OpValues, 7335 bool IsGather) { 7336 SDLoc DL = getCurSDLoc(); 7337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7338 Value *PtrOperand = VPIntrin.getArgOperand(0); 7339 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7340 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7341 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7342 SDValue LD; 7343 bool AddToChain = true; 7344 if (!IsGather) { 7345 // Do not serialize variable-length loads of constant memory with 7346 // anything. 7347 if (!Alignment) 7348 Alignment = DAG.getEVTAlign(VT); 7349 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7350 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7351 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7352 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7353 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7354 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7355 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7356 MMO, false /*IsExpanding */); 7357 } else { 7358 if (!Alignment) 7359 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7360 unsigned AS = 7361 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7362 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7363 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7364 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7365 SDValue Base, Index, Scale; 7366 ISD::MemIndexType IndexType; 7367 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7368 this, VPIntrin.getParent()); 7369 if (!UniformBase) { 7370 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7371 Index = getValue(PtrOperand); 7372 IndexType = ISD::SIGNED_UNSCALED; 7373 Scale = 7374 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7375 } 7376 EVT IdxVT = Index.getValueType(); 7377 EVT EltTy = IdxVT.getVectorElementType(); 7378 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7379 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7380 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7381 } 7382 LD = DAG.getGatherVP( 7383 DAG.getVTList(VT, MVT::Other), VT, DL, 7384 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7385 IndexType); 7386 } 7387 if (AddToChain) 7388 PendingLoads.push_back(LD.getValue(1)); 7389 setValue(&VPIntrin, LD); 7390 } 7391 7392 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7393 SmallVector<SDValue, 7> &OpValues, 7394 bool IsScatter) { 7395 SDLoc DL = getCurSDLoc(); 7396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7397 Value *PtrOperand = VPIntrin.getArgOperand(1); 7398 EVT VT = OpValues[0].getValueType(); 7399 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7400 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7401 SDValue ST; 7402 if (!IsScatter) { 7403 if (!Alignment) 7404 Alignment = DAG.getEVTAlign(VT); 7405 SDValue Ptr = OpValues[1]; 7406 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7407 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7408 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7409 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7410 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7411 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7412 /* IsTruncating */ false, /*IsCompressing*/ false); 7413 } else { 7414 if (!Alignment) 7415 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7416 unsigned AS = 7417 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7418 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7419 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7420 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7421 SDValue Base, Index, Scale; 7422 ISD::MemIndexType IndexType; 7423 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7424 this, VPIntrin.getParent()); 7425 if (!UniformBase) { 7426 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7427 Index = getValue(PtrOperand); 7428 IndexType = ISD::SIGNED_UNSCALED; 7429 Scale = 7430 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7431 } 7432 EVT IdxVT = Index.getValueType(); 7433 EVT EltTy = IdxVT.getVectorElementType(); 7434 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7435 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7436 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7437 } 7438 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7439 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7440 OpValues[2], OpValues[3]}, 7441 MMO, IndexType); 7442 } 7443 DAG.setRoot(ST); 7444 setValue(&VPIntrin, ST); 7445 } 7446 7447 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7448 const VPIntrinsic &VPIntrin) { 7449 SDLoc DL = getCurSDLoc(); 7450 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7451 7452 SmallVector<EVT, 4> ValueVTs; 7453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7454 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7455 SDVTList VTs = DAG.getVTList(ValueVTs); 7456 7457 auto EVLParamPos = 7458 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7459 7460 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7461 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7462 "Unexpected target EVL type"); 7463 7464 // Request operands. 7465 SmallVector<SDValue, 7> OpValues; 7466 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7467 auto Op = getValue(VPIntrin.getArgOperand(I)); 7468 if (I == EVLParamPos) 7469 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7470 OpValues.push_back(Op); 7471 } 7472 7473 switch (Opcode) { 7474 default: { 7475 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7476 setValue(&VPIntrin, Result); 7477 break; 7478 } 7479 case ISD::VP_LOAD: 7480 case ISD::VP_GATHER: 7481 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7482 Opcode == ISD::VP_GATHER); 7483 break; 7484 case ISD::VP_STORE: 7485 case ISD::VP_SCATTER: 7486 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7487 break; 7488 } 7489 } 7490 7491 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7492 const BasicBlock *EHPadBB, 7493 MCSymbol *&BeginLabel) { 7494 MachineFunction &MF = DAG.getMachineFunction(); 7495 MachineModuleInfo &MMI = MF.getMMI(); 7496 7497 // Insert a label before the invoke call to mark the try range. This can be 7498 // used to detect deletion of the invoke via the MachineModuleInfo. 7499 BeginLabel = MMI.getContext().createTempSymbol(); 7500 7501 // For SjLj, keep track of which landing pads go with which invokes 7502 // so as to maintain the ordering of pads in the LSDA. 7503 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7504 if (CallSiteIndex) { 7505 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7506 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7507 7508 // Now that the call site is handled, stop tracking it. 7509 MMI.setCurrentCallSite(0); 7510 } 7511 7512 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7513 } 7514 7515 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7516 const BasicBlock *EHPadBB, 7517 MCSymbol *BeginLabel) { 7518 assert(BeginLabel && "BeginLabel should've been set"); 7519 7520 MachineFunction &MF = DAG.getMachineFunction(); 7521 MachineModuleInfo &MMI = MF.getMMI(); 7522 7523 // Insert a label at the end of the invoke call to mark the try range. This 7524 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7525 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7526 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7527 7528 // Inform MachineModuleInfo of range. 7529 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7530 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7531 // actually use outlined funclets and their LSDA info style. 7532 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7533 assert(II && "II should've been set"); 7534 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7535 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7536 } else if (!isScopedEHPersonality(Pers)) { 7537 assert(EHPadBB); 7538 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7539 } 7540 7541 return Chain; 7542 } 7543 7544 std::pair<SDValue, SDValue> 7545 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7546 const BasicBlock *EHPadBB) { 7547 MCSymbol *BeginLabel = nullptr; 7548 7549 if (EHPadBB) { 7550 // Both PendingLoads and PendingExports must be flushed here; 7551 // this call might not return. 7552 (void)getRoot(); 7553 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7554 CLI.setChain(getRoot()); 7555 } 7556 7557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7558 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7559 7560 assert((CLI.IsTailCall || Result.second.getNode()) && 7561 "Non-null chain expected with non-tail call!"); 7562 assert((Result.second.getNode() || !Result.first.getNode()) && 7563 "Null value expected with tail call!"); 7564 7565 if (!Result.second.getNode()) { 7566 // As a special case, a null chain means that a tail call has been emitted 7567 // and the DAG root is already updated. 7568 HasTailCall = true; 7569 7570 // Since there's no actual continuation from this block, nothing can be 7571 // relying on us setting vregs for them. 7572 PendingExports.clear(); 7573 } else { 7574 DAG.setRoot(Result.second); 7575 } 7576 7577 if (EHPadBB) { 7578 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7579 BeginLabel)); 7580 } 7581 7582 return Result; 7583 } 7584 7585 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7586 bool isTailCall, 7587 bool isMustTailCall, 7588 const BasicBlock *EHPadBB) { 7589 auto &DL = DAG.getDataLayout(); 7590 FunctionType *FTy = CB.getFunctionType(); 7591 Type *RetTy = CB.getType(); 7592 7593 TargetLowering::ArgListTy Args; 7594 Args.reserve(CB.arg_size()); 7595 7596 const Value *SwiftErrorVal = nullptr; 7597 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7598 7599 if (isTailCall) { 7600 // Avoid emitting tail calls in functions with the disable-tail-calls 7601 // attribute. 7602 auto *Caller = CB.getParent()->getParent(); 7603 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7604 "true" && !isMustTailCall) 7605 isTailCall = false; 7606 7607 // We can't tail call inside a function with a swifterror argument. Lowering 7608 // does not support this yet. It would have to move into the swifterror 7609 // register before the call. 7610 if (TLI.supportSwiftError() && 7611 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7612 isTailCall = false; 7613 } 7614 7615 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7616 TargetLowering::ArgListEntry Entry; 7617 const Value *V = *I; 7618 7619 // Skip empty types 7620 if (V->getType()->isEmptyTy()) 7621 continue; 7622 7623 SDValue ArgNode = getValue(V); 7624 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7625 7626 Entry.setAttributes(&CB, I - CB.arg_begin()); 7627 7628 // Use swifterror virtual register as input to the call. 7629 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7630 SwiftErrorVal = V; 7631 // We find the virtual register for the actual swifterror argument. 7632 // Instead of using the Value, we use the virtual register instead. 7633 Entry.Node = 7634 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7635 EVT(TLI.getPointerTy(DL))); 7636 } 7637 7638 Args.push_back(Entry); 7639 7640 // If we have an explicit sret argument that is an Instruction, (i.e., it 7641 // might point to function-local memory), we can't meaningfully tail-call. 7642 if (Entry.IsSRet && isa<Instruction>(V)) 7643 isTailCall = false; 7644 } 7645 7646 // If call site has a cfguardtarget operand bundle, create and add an 7647 // additional ArgListEntry. 7648 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7649 TargetLowering::ArgListEntry Entry; 7650 Value *V = Bundle->Inputs[0]; 7651 SDValue ArgNode = getValue(V); 7652 Entry.Node = ArgNode; 7653 Entry.Ty = V->getType(); 7654 Entry.IsCFGuardTarget = true; 7655 Args.push_back(Entry); 7656 } 7657 7658 // Check if target-independent constraints permit a tail call here. 7659 // Target-dependent constraints are checked within TLI->LowerCallTo. 7660 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7661 isTailCall = false; 7662 7663 // Disable tail calls if there is an swifterror argument. Targets have not 7664 // been updated to support tail calls. 7665 if (TLI.supportSwiftError() && SwiftErrorVal) 7666 isTailCall = false; 7667 7668 TargetLowering::CallLoweringInfo CLI(DAG); 7669 CLI.setDebugLoc(getCurSDLoc()) 7670 .setChain(getRoot()) 7671 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7672 .setTailCall(isTailCall) 7673 .setConvergent(CB.isConvergent()) 7674 .setIsPreallocated( 7675 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7676 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7677 7678 if (Result.first.getNode()) { 7679 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7680 setValue(&CB, Result.first); 7681 } 7682 7683 // The last element of CLI.InVals has the SDValue for swifterror return. 7684 // Here we copy it to a virtual register and update SwiftErrorMap for 7685 // book-keeping. 7686 if (SwiftErrorVal && TLI.supportSwiftError()) { 7687 // Get the last element of InVals. 7688 SDValue Src = CLI.InVals.back(); 7689 Register VReg = 7690 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7691 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7692 DAG.setRoot(CopyNode); 7693 } 7694 } 7695 7696 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7697 SelectionDAGBuilder &Builder) { 7698 // Check to see if this load can be trivially constant folded, e.g. if the 7699 // input is from a string literal. 7700 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7701 // Cast pointer to the type we really want to load. 7702 Type *LoadTy = 7703 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7704 if (LoadVT.isVector()) 7705 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7706 7707 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7708 PointerType::getUnqual(LoadTy)); 7709 7710 if (const Constant *LoadCst = 7711 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7712 LoadTy, Builder.DAG.getDataLayout())) 7713 return Builder.getValue(LoadCst); 7714 } 7715 7716 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7717 // still constant memory, the input chain can be the entry node. 7718 SDValue Root; 7719 bool ConstantMemory = false; 7720 7721 // Do not serialize (non-volatile) loads of constant memory with anything. 7722 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7723 Root = Builder.DAG.getEntryNode(); 7724 ConstantMemory = true; 7725 } else { 7726 // Do not serialize non-volatile loads against each other. 7727 Root = Builder.DAG.getRoot(); 7728 } 7729 7730 SDValue Ptr = Builder.getValue(PtrVal); 7731 SDValue LoadVal = 7732 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7733 MachinePointerInfo(PtrVal), Align(1)); 7734 7735 if (!ConstantMemory) 7736 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7737 return LoadVal; 7738 } 7739 7740 /// Record the value for an instruction that produces an integer result, 7741 /// converting the type where necessary. 7742 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7743 SDValue Value, 7744 bool IsSigned) { 7745 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7746 I.getType(), true); 7747 if (IsSigned) 7748 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7749 else 7750 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7751 setValue(&I, Value); 7752 } 7753 7754 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7755 /// true and lower it. Otherwise return false, and it will be lowered like a 7756 /// normal call. 7757 /// The caller already checked that \p I calls the appropriate LibFunc with a 7758 /// correct prototype. 7759 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7760 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7761 const Value *Size = I.getArgOperand(2); 7762 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7763 if (CSize && CSize->getZExtValue() == 0) { 7764 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7765 I.getType(), true); 7766 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7767 return true; 7768 } 7769 7770 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7771 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7772 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7773 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7774 if (Res.first.getNode()) { 7775 processIntegerCallValue(I, Res.first, true); 7776 PendingLoads.push_back(Res.second); 7777 return true; 7778 } 7779 7780 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7781 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7782 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7783 return false; 7784 7785 // If the target has a fast compare for the given size, it will return a 7786 // preferred load type for that size. Require that the load VT is legal and 7787 // that the target supports unaligned loads of that type. Otherwise, return 7788 // INVALID. 7789 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7791 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7792 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7793 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7794 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7795 // TODO: Check alignment of src and dest ptrs. 7796 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7797 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7798 if (!TLI.isTypeLegal(LVT) || 7799 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7800 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7801 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7802 } 7803 7804 return LVT; 7805 }; 7806 7807 // This turns into unaligned loads. We only do this if the target natively 7808 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7809 // we'll only produce a small number of byte loads. 7810 MVT LoadVT; 7811 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7812 switch (NumBitsToCompare) { 7813 default: 7814 return false; 7815 case 16: 7816 LoadVT = MVT::i16; 7817 break; 7818 case 32: 7819 LoadVT = MVT::i32; 7820 break; 7821 case 64: 7822 case 128: 7823 case 256: 7824 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7825 break; 7826 } 7827 7828 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7829 return false; 7830 7831 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7832 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7833 7834 // Bitcast to a wide integer type if the loads are vectors. 7835 if (LoadVT.isVector()) { 7836 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7837 LoadL = DAG.getBitcast(CmpVT, LoadL); 7838 LoadR = DAG.getBitcast(CmpVT, LoadR); 7839 } 7840 7841 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7842 processIntegerCallValue(I, Cmp, false); 7843 return true; 7844 } 7845 7846 /// See if we can lower a memchr call into an optimized form. If so, return 7847 /// true and lower it. Otherwise return false, and it will be lowered like a 7848 /// normal call. 7849 /// The caller already checked that \p I calls the appropriate LibFunc with a 7850 /// correct prototype. 7851 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7852 const Value *Src = I.getArgOperand(0); 7853 const Value *Char = I.getArgOperand(1); 7854 const Value *Length = I.getArgOperand(2); 7855 7856 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7857 std::pair<SDValue, SDValue> Res = 7858 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7859 getValue(Src), getValue(Char), getValue(Length), 7860 MachinePointerInfo(Src)); 7861 if (Res.first.getNode()) { 7862 setValue(&I, Res.first); 7863 PendingLoads.push_back(Res.second); 7864 return true; 7865 } 7866 7867 return false; 7868 } 7869 7870 /// See if we can lower a mempcpy call into an optimized form. If so, return 7871 /// true and lower it. Otherwise return false, and it will be lowered like a 7872 /// normal call. 7873 /// The caller already checked that \p I calls the appropriate LibFunc with a 7874 /// correct prototype. 7875 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7876 SDValue Dst = getValue(I.getArgOperand(0)); 7877 SDValue Src = getValue(I.getArgOperand(1)); 7878 SDValue Size = getValue(I.getArgOperand(2)); 7879 7880 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7881 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7882 // DAG::getMemcpy needs Alignment to be defined. 7883 Align Alignment = std::min(DstAlign, SrcAlign); 7884 7885 bool isVol = false; 7886 SDLoc sdl = getCurSDLoc(); 7887 7888 // In the mempcpy context we need to pass in a false value for isTailCall 7889 // because the return pointer needs to be adjusted by the size of 7890 // the copied memory. 7891 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7892 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7893 /*isTailCall=*/false, 7894 MachinePointerInfo(I.getArgOperand(0)), 7895 MachinePointerInfo(I.getArgOperand(1)), 7896 I.getAAMetadata()); 7897 assert(MC.getNode() != nullptr && 7898 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7899 DAG.setRoot(MC); 7900 7901 // Check if Size needs to be truncated or extended. 7902 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7903 7904 // Adjust return pointer to point just past the last dst byte. 7905 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7906 Dst, Size); 7907 setValue(&I, DstPlusSize); 7908 return true; 7909 } 7910 7911 /// See if we can lower a strcpy call into an optimized form. If so, return 7912 /// true and lower it, otherwise return false and it will be lowered like a 7913 /// normal call. 7914 /// The caller already checked that \p I calls the appropriate LibFunc with a 7915 /// correct prototype. 7916 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7917 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7918 7919 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7920 std::pair<SDValue, SDValue> Res = 7921 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7922 getValue(Arg0), getValue(Arg1), 7923 MachinePointerInfo(Arg0), 7924 MachinePointerInfo(Arg1), isStpcpy); 7925 if (Res.first.getNode()) { 7926 setValue(&I, Res.first); 7927 DAG.setRoot(Res.second); 7928 return true; 7929 } 7930 7931 return false; 7932 } 7933 7934 /// See if we can lower a strcmp call into an optimized form. If so, return 7935 /// true and lower it, otherwise return false and it will be lowered like a 7936 /// normal call. 7937 /// The caller already checked that \p I calls the appropriate LibFunc with a 7938 /// correct prototype. 7939 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7940 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7941 7942 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7943 std::pair<SDValue, SDValue> Res = 7944 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7945 getValue(Arg0), getValue(Arg1), 7946 MachinePointerInfo(Arg0), 7947 MachinePointerInfo(Arg1)); 7948 if (Res.first.getNode()) { 7949 processIntegerCallValue(I, Res.first, true); 7950 PendingLoads.push_back(Res.second); 7951 return true; 7952 } 7953 7954 return false; 7955 } 7956 7957 /// See if we can lower a strlen call into an optimized form. If so, return 7958 /// true and lower it, otherwise return false and it will be lowered like a 7959 /// normal call. 7960 /// The caller already checked that \p I calls the appropriate LibFunc with a 7961 /// correct prototype. 7962 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7963 const Value *Arg0 = I.getArgOperand(0); 7964 7965 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7966 std::pair<SDValue, SDValue> Res = 7967 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7968 getValue(Arg0), MachinePointerInfo(Arg0)); 7969 if (Res.first.getNode()) { 7970 processIntegerCallValue(I, Res.first, false); 7971 PendingLoads.push_back(Res.second); 7972 return true; 7973 } 7974 7975 return false; 7976 } 7977 7978 /// See if we can lower a strnlen call into an optimized form. If so, return 7979 /// true and lower it, otherwise return false and it will be lowered like a 7980 /// normal call. 7981 /// The caller already checked that \p I calls the appropriate LibFunc with a 7982 /// correct prototype. 7983 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7984 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7985 7986 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7987 std::pair<SDValue, SDValue> Res = 7988 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7989 getValue(Arg0), getValue(Arg1), 7990 MachinePointerInfo(Arg0)); 7991 if (Res.first.getNode()) { 7992 processIntegerCallValue(I, Res.first, false); 7993 PendingLoads.push_back(Res.second); 7994 return true; 7995 } 7996 7997 return false; 7998 } 7999 8000 /// See if we can lower a unary floating-point operation into an SDNode with 8001 /// the specified Opcode. If so, return true and lower it, otherwise return 8002 /// false and it will be lowered like a normal call. 8003 /// The caller already checked that \p I calls the appropriate LibFunc with a 8004 /// correct prototype. 8005 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8006 unsigned Opcode) { 8007 // We already checked this call's prototype; verify it doesn't modify errno. 8008 if (!I.onlyReadsMemory()) 8009 return false; 8010 8011 SDNodeFlags Flags; 8012 Flags.copyFMF(cast<FPMathOperator>(I)); 8013 8014 SDValue Tmp = getValue(I.getArgOperand(0)); 8015 setValue(&I, 8016 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8017 return true; 8018 } 8019 8020 /// See if we can lower a binary floating-point operation into an SDNode with 8021 /// the specified Opcode. If so, return true and lower it. Otherwise return 8022 /// false, and it will be lowered like a normal call. 8023 /// The caller already checked that \p I calls the appropriate LibFunc with a 8024 /// correct prototype. 8025 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8026 unsigned Opcode) { 8027 // We already checked this call's prototype; verify it doesn't modify errno. 8028 if (!I.onlyReadsMemory()) 8029 return false; 8030 8031 SDNodeFlags Flags; 8032 Flags.copyFMF(cast<FPMathOperator>(I)); 8033 8034 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8035 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8036 EVT VT = Tmp0.getValueType(); 8037 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8038 return true; 8039 } 8040 8041 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8042 // Handle inline assembly differently. 8043 if (I.isInlineAsm()) { 8044 visitInlineAsm(I); 8045 return; 8046 } 8047 8048 if (Function *F = I.getCalledFunction()) { 8049 diagnoseDontCall(I); 8050 8051 if (F->isDeclaration()) { 8052 // Is this an LLVM intrinsic or a target-specific intrinsic? 8053 unsigned IID = F->getIntrinsicID(); 8054 if (!IID) 8055 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8056 IID = II->getIntrinsicID(F); 8057 8058 if (IID) { 8059 visitIntrinsicCall(I, IID); 8060 return; 8061 } 8062 } 8063 8064 // Check for well-known libc/libm calls. If the function is internal, it 8065 // can't be a library call. Don't do the check if marked as nobuiltin for 8066 // some reason or the call site requires strict floating point semantics. 8067 LibFunc Func; 8068 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8069 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8070 LibInfo->hasOptimizedCodeGen(Func)) { 8071 switch (Func) { 8072 default: break; 8073 case LibFunc_bcmp: 8074 if (visitMemCmpBCmpCall(I)) 8075 return; 8076 break; 8077 case LibFunc_copysign: 8078 case LibFunc_copysignf: 8079 case LibFunc_copysignl: 8080 // We already checked this call's prototype; verify it doesn't modify 8081 // errno. 8082 if (I.onlyReadsMemory()) { 8083 SDValue LHS = getValue(I.getArgOperand(0)); 8084 SDValue RHS = getValue(I.getArgOperand(1)); 8085 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8086 LHS.getValueType(), LHS, RHS)); 8087 return; 8088 } 8089 break; 8090 case LibFunc_fabs: 8091 case LibFunc_fabsf: 8092 case LibFunc_fabsl: 8093 if (visitUnaryFloatCall(I, ISD::FABS)) 8094 return; 8095 break; 8096 case LibFunc_fmin: 8097 case LibFunc_fminf: 8098 case LibFunc_fminl: 8099 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8100 return; 8101 break; 8102 case LibFunc_fmax: 8103 case LibFunc_fmaxf: 8104 case LibFunc_fmaxl: 8105 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8106 return; 8107 break; 8108 case LibFunc_sin: 8109 case LibFunc_sinf: 8110 case LibFunc_sinl: 8111 if (visitUnaryFloatCall(I, ISD::FSIN)) 8112 return; 8113 break; 8114 case LibFunc_cos: 8115 case LibFunc_cosf: 8116 case LibFunc_cosl: 8117 if (visitUnaryFloatCall(I, ISD::FCOS)) 8118 return; 8119 break; 8120 case LibFunc_sqrt: 8121 case LibFunc_sqrtf: 8122 case LibFunc_sqrtl: 8123 case LibFunc_sqrt_finite: 8124 case LibFunc_sqrtf_finite: 8125 case LibFunc_sqrtl_finite: 8126 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8127 return; 8128 break; 8129 case LibFunc_floor: 8130 case LibFunc_floorf: 8131 case LibFunc_floorl: 8132 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8133 return; 8134 break; 8135 case LibFunc_nearbyint: 8136 case LibFunc_nearbyintf: 8137 case LibFunc_nearbyintl: 8138 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8139 return; 8140 break; 8141 case LibFunc_ceil: 8142 case LibFunc_ceilf: 8143 case LibFunc_ceill: 8144 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8145 return; 8146 break; 8147 case LibFunc_rint: 8148 case LibFunc_rintf: 8149 case LibFunc_rintl: 8150 if (visitUnaryFloatCall(I, ISD::FRINT)) 8151 return; 8152 break; 8153 case LibFunc_round: 8154 case LibFunc_roundf: 8155 case LibFunc_roundl: 8156 if (visitUnaryFloatCall(I, ISD::FROUND)) 8157 return; 8158 break; 8159 case LibFunc_trunc: 8160 case LibFunc_truncf: 8161 case LibFunc_truncl: 8162 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8163 return; 8164 break; 8165 case LibFunc_log2: 8166 case LibFunc_log2f: 8167 case LibFunc_log2l: 8168 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8169 return; 8170 break; 8171 case LibFunc_exp2: 8172 case LibFunc_exp2f: 8173 case LibFunc_exp2l: 8174 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8175 return; 8176 break; 8177 case LibFunc_memcmp: 8178 if (visitMemCmpBCmpCall(I)) 8179 return; 8180 break; 8181 case LibFunc_mempcpy: 8182 if (visitMemPCpyCall(I)) 8183 return; 8184 break; 8185 case LibFunc_memchr: 8186 if (visitMemChrCall(I)) 8187 return; 8188 break; 8189 case LibFunc_strcpy: 8190 if (visitStrCpyCall(I, false)) 8191 return; 8192 break; 8193 case LibFunc_stpcpy: 8194 if (visitStrCpyCall(I, true)) 8195 return; 8196 break; 8197 case LibFunc_strcmp: 8198 if (visitStrCmpCall(I)) 8199 return; 8200 break; 8201 case LibFunc_strlen: 8202 if (visitStrLenCall(I)) 8203 return; 8204 break; 8205 case LibFunc_strnlen: 8206 if (visitStrNLenCall(I)) 8207 return; 8208 break; 8209 } 8210 } 8211 } 8212 8213 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8214 // have to do anything here to lower funclet bundles. 8215 // CFGuardTarget bundles are lowered in LowerCallTo. 8216 assert(!I.hasOperandBundlesOtherThan( 8217 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8218 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8219 LLVMContext::OB_clang_arc_attachedcall}) && 8220 "Cannot lower calls with arbitrary operand bundles!"); 8221 8222 SDValue Callee = getValue(I.getCalledOperand()); 8223 8224 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8225 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8226 else 8227 // Check if we can potentially perform a tail call. More detailed checking 8228 // is be done within LowerCallTo, after more information about the call is 8229 // known. 8230 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8231 } 8232 8233 namespace { 8234 8235 /// AsmOperandInfo - This contains information for each constraint that we are 8236 /// lowering. 8237 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8238 public: 8239 /// CallOperand - If this is the result output operand or a clobber 8240 /// this is null, otherwise it is the incoming operand to the CallInst. 8241 /// This gets modified as the asm is processed. 8242 SDValue CallOperand; 8243 8244 /// AssignedRegs - If this is a register or register class operand, this 8245 /// contains the set of register corresponding to the operand. 8246 RegsForValue AssignedRegs; 8247 8248 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8249 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8250 } 8251 8252 /// Whether or not this operand accesses memory 8253 bool hasMemory(const TargetLowering &TLI) const { 8254 // Indirect operand accesses access memory. 8255 if (isIndirect) 8256 return true; 8257 8258 for (const auto &Code : Codes) 8259 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8260 return true; 8261 8262 return false; 8263 } 8264 8265 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8266 /// corresponds to. If there is no Value* for this operand, it returns 8267 /// MVT::Other. 8268 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8269 const DataLayout &DL, 8270 llvm::Type *ParamElemType) const { 8271 if (!CallOperandVal) return MVT::Other; 8272 8273 if (isa<BasicBlock>(CallOperandVal)) 8274 return TLI.getProgramPointerTy(DL); 8275 8276 llvm::Type *OpTy = CallOperandVal->getType(); 8277 8278 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8279 // If this is an indirect operand, the operand is a pointer to the 8280 // accessed type. 8281 if (isIndirect) { 8282 OpTy = ParamElemType; 8283 assert(OpTy && "Indirect opernad must have elementtype attribute"); 8284 } 8285 8286 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8287 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8288 if (STy->getNumElements() == 1) 8289 OpTy = STy->getElementType(0); 8290 8291 // If OpTy is not a single value, it may be a struct/union that we 8292 // can tile with integers. 8293 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8294 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8295 switch (BitSize) { 8296 default: break; 8297 case 1: 8298 case 8: 8299 case 16: 8300 case 32: 8301 case 64: 8302 case 128: 8303 OpTy = IntegerType::get(Context, BitSize); 8304 break; 8305 } 8306 } 8307 8308 return TLI.getAsmOperandValueType(DL, OpTy, true); 8309 } 8310 }; 8311 8312 8313 } // end anonymous namespace 8314 8315 /// Make sure that the output operand \p OpInfo and its corresponding input 8316 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8317 /// out). 8318 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8319 SDISelAsmOperandInfo &MatchingOpInfo, 8320 SelectionDAG &DAG) { 8321 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8322 return; 8323 8324 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8325 const auto &TLI = DAG.getTargetLoweringInfo(); 8326 8327 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8328 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8329 OpInfo.ConstraintVT); 8330 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8331 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8332 MatchingOpInfo.ConstraintVT); 8333 if ((OpInfo.ConstraintVT.isInteger() != 8334 MatchingOpInfo.ConstraintVT.isInteger()) || 8335 (MatchRC.second != InputRC.second)) { 8336 // FIXME: error out in a more elegant fashion 8337 report_fatal_error("Unsupported asm: input constraint" 8338 " with a matching output constraint of" 8339 " incompatible type!"); 8340 } 8341 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8342 } 8343 8344 /// Get a direct memory input to behave well as an indirect operand. 8345 /// This may introduce stores, hence the need for a \p Chain. 8346 /// \return The (possibly updated) chain. 8347 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8348 SDISelAsmOperandInfo &OpInfo, 8349 SelectionDAG &DAG) { 8350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8351 8352 // If we don't have an indirect input, put it in the constpool if we can, 8353 // otherwise spill it to a stack slot. 8354 // TODO: This isn't quite right. We need to handle these according to 8355 // the addressing mode that the constraint wants. Also, this may take 8356 // an additional register for the computation and we don't want that 8357 // either. 8358 8359 // If the operand is a float, integer, or vector constant, spill to a 8360 // constant pool entry to get its address. 8361 const Value *OpVal = OpInfo.CallOperandVal; 8362 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8363 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8364 OpInfo.CallOperand = DAG.getConstantPool( 8365 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8366 return Chain; 8367 } 8368 8369 // Otherwise, create a stack slot and emit a store to it before the asm. 8370 Type *Ty = OpVal->getType(); 8371 auto &DL = DAG.getDataLayout(); 8372 uint64_t TySize = DL.getTypeAllocSize(Ty); 8373 MachineFunction &MF = DAG.getMachineFunction(); 8374 int SSFI = MF.getFrameInfo().CreateStackObject( 8375 TySize, DL.getPrefTypeAlign(Ty), false); 8376 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8377 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8378 MachinePointerInfo::getFixedStack(MF, SSFI), 8379 TLI.getMemValueType(DL, Ty)); 8380 OpInfo.CallOperand = StackSlot; 8381 8382 return Chain; 8383 } 8384 8385 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8386 /// specified operand. We prefer to assign virtual registers, to allow the 8387 /// register allocator to handle the assignment process. However, if the asm 8388 /// uses features that we can't model on machineinstrs, we have SDISel do the 8389 /// allocation. This produces generally horrible, but correct, code. 8390 /// 8391 /// OpInfo describes the operand 8392 /// RefOpInfo describes the matching operand if any, the operand otherwise 8393 static llvm::Optional<unsigned> 8394 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8395 SDISelAsmOperandInfo &OpInfo, 8396 SDISelAsmOperandInfo &RefOpInfo) { 8397 LLVMContext &Context = *DAG.getContext(); 8398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8399 8400 MachineFunction &MF = DAG.getMachineFunction(); 8401 SmallVector<unsigned, 4> Regs; 8402 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8403 8404 // No work to do for memory operations. 8405 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8406 return None; 8407 8408 // If this is a constraint for a single physreg, or a constraint for a 8409 // register class, find it. 8410 unsigned AssignedReg; 8411 const TargetRegisterClass *RC; 8412 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8413 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8414 // RC is unset only on failure. Return immediately. 8415 if (!RC) 8416 return None; 8417 8418 // Get the actual register value type. This is important, because the user 8419 // may have asked for (e.g.) the AX register in i32 type. We need to 8420 // remember that AX is actually i16 to get the right extension. 8421 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8422 8423 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8424 // If this is an FP operand in an integer register (or visa versa), or more 8425 // generally if the operand value disagrees with the register class we plan 8426 // to stick it in, fix the operand type. 8427 // 8428 // If this is an input value, the bitcast to the new type is done now. 8429 // Bitcast for output value is done at the end of visitInlineAsm(). 8430 if ((OpInfo.Type == InlineAsm::isOutput || 8431 OpInfo.Type == InlineAsm::isInput) && 8432 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8433 // Try to convert to the first EVT that the reg class contains. If the 8434 // types are identical size, use a bitcast to convert (e.g. two differing 8435 // vector types). Note: output bitcast is done at the end of 8436 // visitInlineAsm(). 8437 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8438 // Exclude indirect inputs while they are unsupported because the code 8439 // to perform the load is missing and thus OpInfo.CallOperand still 8440 // refers to the input address rather than the pointed-to value. 8441 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8442 OpInfo.CallOperand = 8443 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8444 OpInfo.ConstraintVT = RegVT; 8445 // If the operand is an FP value and we want it in integer registers, 8446 // use the corresponding integer type. This turns an f64 value into 8447 // i64, which can be passed with two i32 values on a 32-bit machine. 8448 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8449 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8450 if (OpInfo.Type == InlineAsm::isInput) 8451 OpInfo.CallOperand = 8452 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8453 OpInfo.ConstraintVT = VT; 8454 } 8455 } 8456 } 8457 8458 // No need to allocate a matching input constraint since the constraint it's 8459 // matching to has already been allocated. 8460 if (OpInfo.isMatchingInputConstraint()) 8461 return None; 8462 8463 EVT ValueVT = OpInfo.ConstraintVT; 8464 if (OpInfo.ConstraintVT == MVT::Other) 8465 ValueVT = RegVT; 8466 8467 // Initialize NumRegs. 8468 unsigned NumRegs = 1; 8469 if (OpInfo.ConstraintVT != MVT::Other) 8470 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8471 8472 // If this is a constraint for a specific physical register, like {r17}, 8473 // assign it now. 8474 8475 // If this associated to a specific register, initialize iterator to correct 8476 // place. If virtual, make sure we have enough registers 8477 8478 // Initialize iterator if necessary 8479 TargetRegisterClass::iterator I = RC->begin(); 8480 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8481 8482 // Do not check for single registers. 8483 if (AssignedReg) { 8484 I = std::find(I, RC->end(), AssignedReg); 8485 if (I == RC->end()) { 8486 // RC does not contain the selected register, which indicates a 8487 // mismatch between the register and the required type/bitwidth. 8488 return {AssignedReg}; 8489 } 8490 } 8491 8492 for (; NumRegs; --NumRegs, ++I) { 8493 assert(I != RC->end() && "Ran out of registers to allocate!"); 8494 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8495 Regs.push_back(R); 8496 } 8497 8498 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8499 return None; 8500 } 8501 8502 static unsigned 8503 findMatchingInlineAsmOperand(unsigned OperandNo, 8504 const std::vector<SDValue> &AsmNodeOperands) { 8505 // Scan until we find the definition we already emitted of this operand. 8506 unsigned CurOp = InlineAsm::Op_FirstOperand; 8507 for (; OperandNo; --OperandNo) { 8508 // Advance to the next operand. 8509 unsigned OpFlag = 8510 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8511 assert((InlineAsm::isRegDefKind(OpFlag) || 8512 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8513 InlineAsm::isMemKind(OpFlag)) && 8514 "Skipped past definitions?"); 8515 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8516 } 8517 return CurOp; 8518 } 8519 8520 namespace { 8521 8522 class ExtraFlags { 8523 unsigned Flags = 0; 8524 8525 public: 8526 explicit ExtraFlags(const CallBase &Call) { 8527 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8528 if (IA->hasSideEffects()) 8529 Flags |= InlineAsm::Extra_HasSideEffects; 8530 if (IA->isAlignStack()) 8531 Flags |= InlineAsm::Extra_IsAlignStack; 8532 if (Call.isConvergent()) 8533 Flags |= InlineAsm::Extra_IsConvergent; 8534 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8535 } 8536 8537 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8538 // Ideally, we would only check against memory constraints. However, the 8539 // meaning of an Other constraint can be target-specific and we can't easily 8540 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8541 // for Other constraints as well. 8542 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8543 OpInfo.ConstraintType == TargetLowering::C_Other) { 8544 if (OpInfo.Type == InlineAsm::isInput) 8545 Flags |= InlineAsm::Extra_MayLoad; 8546 else if (OpInfo.Type == InlineAsm::isOutput) 8547 Flags |= InlineAsm::Extra_MayStore; 8548 else if (OpInfo.Type == InlineAsm::isClobber) 8549 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8550 } 8551 } 8552 8553 unsigned get() const { return Flags; } 8554 }; 8555 8556 } // end anonymous namespace 8557 8558 /// visitInlineAsm - Handle a call to an InlineAsm object. 8559 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8560 const BasicBlock *EHPadBB) { 8561 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8562 8563 /// ConstraintOperands - Information about all of the constraints. 8564 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8565 8566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8567 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8568 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8569 8570 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8571 // AsmDialect, MayLoad, MayStore). 8572 bool HasSideEffect = IA->hasSideEffects(); 8573 ExtraFlags ExtraInfo(Call); 8574 8575 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8576 unsigned ResNo = 0; // ResNo - The result number of the next output. 8577 for (auto &T : TargetConstraints) { 8578 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8579 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8580 8581 // Compute the value type for each operand. 8582 if (OpInfo.hasArg()) { 8583 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 8584 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8585 Type *ParamElemTy = Call.getAttributes().getParamElementType(ArgNo); 8586 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8587 DAG.getDataLayout(), ParamElemTy); 8588 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8589 ArgNo++; 8590 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8591 // The return value of the call is this value. As such, there is no 8592 // corresponding argument. 8593 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8594 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8595 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8596 DAG.getDataLayout(), STy->getElementType(ResNo)); 8597 } else { 8598 assert(ResNo == 0 && "Asm only has one result!"); 8599 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8600 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8601 } 8602 ++ResNo; 8603 } else { 8604 OpInfo.ConstraintVT = MVT::Other; 8605 } 8606 8607 if (!HasSideEffect) 8608 HasSideEffect = OpInfo.hasMemory(TLI); 8609 8610 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8611 // FIXME: Could we compute this on OpInfo rather than T? 8612 8613 // Compute the constraint code and ConstraintType to use. 8614 TLI.ComputeConstraintToUse(T, SDValue()); 8615 8616 if (T.ConstraintType == TargetLowering::C_Immediate && 8617 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8618 // We've delayed emitting a diagnostic like the "n" constraint because 8619 // inlining could cause an integer showing up. 8620 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8621 "' expects an integer constant " 8622 "expression"); 8623 8624 ExtraInfo.update(T); 8625 } 8626 8627 // We won't need to flush pending loads if this asm doesn't touch 8628 // memory and is nonvolatile. 8629 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8630 8631 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8632 if (EmitEHLabels) { 8633 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8634 } 8635 bool IsCallBr = isa<CallBrInst>(Call); 8636 8637 if (IsCallBr || EmitEHLabels) { 8638 // If this is a callbr or invoke we need to flush pending exports since 8639 // inlineasm_br and invoke are terminators. 8640 // We need to do this before nodes are glued to the inlineasm_br node. 8641 Chain = getControlRoot(); 8642 } 8643 8644 MCSymbol *BeginLabel = nullptr; 8645 if (EmitEHLabels) { 8646 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8647 } 8648 8649 // Second pass over the constraints: compute which constraint option to use. 8650 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8651 // If this is an output operand with a matching input operand, look up the 8652 // matching input. If their types mismatch, e.g. one is an integer, the 8653 // other is floating point, or their sizes are different, flag it as an 8654 // error. 8655 if (OpInfo.hasMatchingInput()) { 8656 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8657 patchMatchingInput(OpInfo, Input, DAG); 8658 } 8659 8660 // Compute the constraint code and ConstraintType to use. 8661 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8662 8663 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8664 OpInfo.Type == InlineAsm::isClobber) 8665 continue; 8666 8667 // If this is a memory input, and if the operand is not indirect, do what we 8668 // need to provide an address for the memory input. 8669 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8670 !OpInfo.isIndirect) { 8671 assert((OpInfo.isMultipleAlternative || 8672 (OpInfo.Type == InlineAsm::isInput)) && 8673 "Can only indirectify direct input operands!"); 8674 8675 // Memory operands really want the address of the value. 8676 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8677 8678 // There is no longer a Value* corresponding to this operand. 8679 OpInfo.CallOperandVal = nullptr; 8680 8681 // It is now an indirect operand. 8682 OpInfo.isIndirect = true; 8683 } 8684 8685 } 8686 8687 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8688 std::vector<SDValue> AsmNodeOperands; 8689 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8690 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8691 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8692 8693 // If we have a !srcloc metadata node associated with it, we want to attach 8694 // this to the ultimately generated inline asm machineinstr. To do this, we 8695 // pass in the third operand as this (potentially null) inline asm MDNode. 8696 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8697 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8698 8699 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8700 // bits as operand 3. 8701 AsmNodeOperands.push_back(DAG.getTargetConstant( 8702 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8703 8704 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8705 // this, assign virtual and physical registers for inputs and otput. 8706 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8707 // Assign Registers. 8708 SDISelAsmOperandInfo &RefOpInfo = 8709 OpInfo.isMatchingInputConstraint() 8710 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8711 : OpInfo; 8712 const auto RegError = 8713 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8714 if (RegError.hasValue()) { 8715 const MachineFunction &MF = DAG.getMachineFunction(); 8716 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8717 const char *RegName = TRI.getName(RegError.getValue()); 8718 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8719 "' allocated for constraint '" + 8720 Twine(OpInfo.ConstraintCode) + 8721 "' does not match required type"); 8722 return; 8723 } 8724 8725 auto DetectWriteToReservedRegister = [&]() { 8726 const MachineFunction &MF = DAG.getMachineFunction(); 8727 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8728 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8729 if (Register::isPhysicalRegister(Reg) && 8730 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8731 const char *RegName = TRI.getName(Reg); 8732 emitInlineAsmError(Call, "write to reserved register '" + 8733 Twine(RegName) + "'"); 8734 return true; 8735 } 8736 } 8737 return false; 8738 }; 8739 8740 switch (OpInfo.Type) { 8741 case InlineAsm::isOutput: 8742 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8743 unsigned ConstraintID = 8744 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8745 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8746 "Failed to convert memory constraint code to constraint id."); 8747 8748 // Add information to the INLINEASM node to know about this output. 8749 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8750 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8751 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8752 MVT::i32)); 8753 AsmNodeOperands.push_back(OpInfo.CallOperand); 8754 } else { 8755 // Otherwise, this outputs to a register (directly for C_Register / 8756 // C_RegisterClass, and a target-defined fashion for 8757 // C_Immediate/C_Other). Find a register that we can use. 8758 if (OpInfo.AssignedRegs.Regs.empty()) { 8759 emitInlineAsmError( 8760 Call, "couldn't allocate output register for constraint '" + 8761 Twine(OpInfo.ConstraintCode) + "'"); 8762 return; 8763 } 8764 8765 if (DetectWriteToReservedRegister()) 8766 return; 8767 8768 // Add information to the INLINEASM node to know that this register is 8769 // set. 8770 OpInfo.AssignedRegs.AddInlineAsmOperands( 8771 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8772 : InlineAsm::Kind_RegDef, 8773 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8774 } 8775 break; 8776 8777 case InlineAsm::isInput: { 8778 SDValue InOperandVal = OpInfo.CallOperand; 8779 8780 if (OpInfo.isMatchingInputConstraint()) { 8781 // If this is required to match an output register we have already set, 8782 // just use its register. 8783 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8784 AsmNodeOperands); 8785 unsigned OpFlag = 8786 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8787 if (InlineAsm::isRegDefKind(OpFlag) || 8788 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8789 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8790 if (OpInfo.isIndirect) { 8791 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8792 emitInlineAsmError(Call, "inline asm not supported yet: " 8793 "don't know how to handle tied " 8794 "indirect register inputs"); 8795 return; 8796 } 8797 8798 SmallVector<unsigned, 4> Regs; 8799 MachineFunction &MF = DAG.getMachineFunction(); 8800 MachineRegisterInfo &MRI = MF.getRegInfo(); 8801 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8802 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8803 Register TiedReg = R->getReg(); 8804 MVT RegVT = R->getSimpleValueType(0); 8805 const TargetRegisterClass *RC = 8806 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8807 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8808 : TRI.getMinimalPhysRegClass(TiedReg); 8809 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8810 for (unsigned i = 0; i != NumRegs; ++i) 8811 Regs.push_back(MRI.createVirtualRegister(RC)); 8812 8813 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8814 8815 SDLoc dl = getCurSDLoc(); 8816 // Use the produced MatchedRegs object to 8817 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8818 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8819 true, OpInfo.getMatchedOperand(), dl, 8820 DAG, AsmNodeOperands); 8821 break; 8822 } 8823 8824 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8825 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8826 "Unexpected number of operands"); 8827 // Add information to the INLINEASM node to know about this input. 8828 // See InlineAsm.h isUseOperandTiedToDef. 8829 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8830 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8831 OpInfo.getMatchedOperand()); 8832 AsmNodeOperands.push_back(DAG.getTargetConstant( 8833 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8834 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8835 break; 8836 } 8837 8838 // Treat indirect 'X' constraint as memory. 8839 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8840 OpInfo.isIndirect) 8841 OpInfo.ConstraintType = TargetLowering::C_Memory; 8842 8843 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8844 OpInfo.ConstraintType == TargetLowering::C_Other) { 8845 std::vector<SDValue> Ops; 8846 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8847 Ops, DAG); 8848 if (Ops.empty()) { 8849 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8850 if (isa<ConstantSDNode>(InOperandVal)) { 8851 emitInlineAsmError(Call, "value out of range for constraint '" + 8852 Twine(OpInfo.ConstraintCode) + "'"); 8853 return; 8854 } 8855 8856 emitInlineAsmError(Call, 8857 "invalid operand for inline asm constraint '" + 8858 Twine(OpInfo.ConstraintCode) + "'"); 8859 return; 8860 } 8861 8862 // Add information to the INLINEASM node to know about this input. 8863 unsigned ResOpType = 8864 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8865 AsmNodeOperands.push_back(DAG.getTargetConstant( 8866 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8867 llvm::append_range(AsmNodeOperands, Ops); 8868 break; 8869 } 8870 8871 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8872 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8873 assert(InOperandVal.getValueType() == 8874 TLI.getPointerTy(DAG.getDataLayout()) && 8875 "Memory operands expect pointer values"); 8876 8877 unsigned ConstraintID = 8878 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8879 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8880 "Failed to convert memory constraint code to constraint id."); 8881 8882 // Add information to the INLINEASM node to know about this input. 8883 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8884 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8885 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8886 getCurSDLoc(), 8887 MVT::i32)); 8888 AsmNodeOperands.push_back(InOperandVal); 8889 break; 8890 } 8891 8892 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8893 OpInfo.ConstraintType == TargetLowering::C_Register) && 8894 "Unknown constraint type!"); 8895 8896 // TODO: Support this. 8897 if (OpInfo.isIndirect) { 8898 emitInlineAsmError( 8899 Call, "Don't know how to handle indirect register inputs yet " 8900 "for constraint '" + 8901 Twine(OpInfo.ConstraintCode) + "'"); 8902 return; 8903 } 8904 8905 // Copy the input into the appropriate registers. 8906 if (OpInfo.AssignedRegs.Regs.empty()) { 8907 emitInlineAsmError(Call, 8908 "couldn't allocate input reg for constraint '" + 8909 Twine(OpInfo.ConstraintCode) + "'"); 8910 return; 8911 } 8912 8913 if (DetectWriteToReservedRegister()) 8914 return; 8915 8916 SDLoc dl = getCurSDLoc(); 8917 8918 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8919 &Call); 8920 8921 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8922 dl, DAG, AsmNodeOperands); 8923 break; 8924 } 8925 case InlineAsm::isClobber: 8926 // Add the clobbered value to the operand list, so that the register 8927 // allocator is aware that the physreg got clobbered. 8928 if (!OpInfo.AssignedRegs.Regs.empty()) 8929 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8930 false, 0, getCurSDLoc(), DAG, 8931 AsmNodeOperands); 8932 break; 8933 } 8934 } 8935 8936 // Finish up input operands. Set the input chain and add the flag last. 8937 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8938 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8939 8940 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8941 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8942 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8943 Flag = Chain.getValue(1); 8944 8945 // Do additional work to generate outputs. 8946 8947 SmallVector<EVT, 1> ResultVTs; 8948 SmallVector<SDValue, 1> ResultValues; 8949 SmallVector<SDValue, 8> OutChains; 8950 8951 llvm::Type *CallResultType = Call.getType(); 8952 ArrayRef<Type *> ResultTypes; 8953 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8954 ResultTypes = StructResult->elements(); 8955 else if (!CallResultType->isVoidTy()) 8956 ResultTypes = makeArrayRef(CallResultType); 8957 8958 auto CurResultType = ResultTypes.begin(); 8959 auto handleRegAssign = [&](SDValue V) { 8960 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8961 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8962 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8963 ++CurResultType; 8964 // If the type of the inline asm call site return value is different but has 8965 // same size as the type of the asm output bitcast it. One example of this 8966 // is for vectors with different width / number of elements. This can 8967 // happen for register classes that can contain multiple different value 8968 // types. The preg or vreg allocated may not have the same VT as was 8969 // expected. 8970 // 8971 // This can also happen for a return value that disagrees with the register 8972 // class it is put in, eg. a double in a general-purpose register on a 8973 // 32-bit machine. 8974 if (ResultVT != V.getValueType() && 8975 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8976 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8977 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8978 V.getValueType().isInteger()) { 8979 // If a result value was tied to an input value, the computed result 8980 // may have a wider width than the expected result. Extract the 8981 // relevant portion. 8982 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8983 } 8984 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8985 ResultVTs.push_back(ResultVT); 8986 ResultValues.push_back(V); 8987 }; 8988 8989 // Deal with output operands. 8990 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8991 if (OpInfo.Type == InlineAsm::isOutput) { 8992 SDValue Val; 8993 // Skip trivial output operands. 8994 if (OpInfo.AssignedRegs.Regs.empty()) 8995 continue; 8996 8997 switch (OpInfo.ConstraintType) { 8998 case TargetLowering::C_Register: 8999 case TargetLowering::C_RegisterClass: 9000 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9001 Chain, &Flag, &Call); 9002 break; 9003 case TargetLowering::C_Immediate: 9004 case TargetLowering::C_Other: 9005 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9006 OpInfo, DAG); 9007 break; 9008 case TargetLowering::C_Memory: 9009 break; // Already handled. 9010 case TargetLowering::C_Unknown: 9011 assert(false && "Unexpected unknown constraint"); 9012 } 9013 9014 // Indirect output manifest as stores. Record output chains. 9015 if (OpInfo.isIndirect) { 9016 const Value *Ptr = OpInfo.CallOperandVal; 9017 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9018 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9019 MachinePointerInfo(Ptr)); 9020 OutChains.push_back(Store); 9021 } else { 9022 // generate CopyFromRegs to associated registers. 9023 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9024 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9025 for (const SDValue &V : Val->op_values()) 9026 handleRegAssign(V); 9027 } else 9028 handleRegAssign(Val); 9029 } 9030 } 9031 } 9032 9033 // Set results. 9034 if (!ResultValues.empty()) { 9035 assert(CurResultType == ResultTypes.end() && 9036 "Mismatch in number of ResultTypes"); 9037 assert(ResultValues.size() == ResultTypes.size() && 9038 "Mismatch in number of output operands in asm result"); 9039 9040 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9041 DAG.getVTList(ResultVTs), ResultValues); 9042 setValue(&Call, V); 9043 } 9044 9045 // Collect store chains. 9046 if (!OutChains.empty()) 9047 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9048 9049 if (EmitEHLabels) { 9050 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9051 } 9052 9053 // Only Update Root if inline assembly has a memory effect. 9054 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9055 EmitEHLabels) 9056 DAG.setRoot(Chain); 9057 } 9058 9059 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9060 const Twine &Message) { 9061 LLVMContext &Ctx = *DAG.getContext(); 9062 Ctx.emitError(&Call, Message); 9063 9064 // Make sure we leave the DAG in a valid state 9065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9066 SmallVector<EVT, 1> ValueVTs; 9067 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9068 9069 if (ValueVTs.empty()) 9070 return; 9071 9072 SmallVector<SDValue, 1> Ops; 9073 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9074 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9075 9076 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9077 } 9078 9079 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9080 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9081 MVT::Other, getRoot(), 9082 getValue(I.getArgOperand(0)), 9083 DAG.getSrcValue(I.getArgOperand(0)))); 9084 } 9085 9086 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9088 const DataLayout &DL = DAG.getDataLayout(); 9089 SDValue V = DAG.getVAArg( 9090 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9091 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9092 DL.getABITypeAlign(I.getType()).value()); 9093 DAG.setRoot(V.getValue(1)); 9094 9095 if (I.getType()->isPointerTy()) 9096 V = DAG.getPtrExtOrTrunc( 9097 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9098 setValue(&I, V); 9099 } 9100 9101 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9102 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9103 MVT::Other, getRoot(), 9104 getValue(I.getArgOperand(0)), 9105 DAG.getSrcValue(I.getArgOperand(0)))); 9106 } 9107 9108 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9109 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9110 MVT::Other, getRoot(), 9111 getValue(I.getArgOperand(0)), 9112 getValue(I.getArgOperand(1)), 9113 DAG.getSrcValue(I.getArgOperand(0)), 9114 DAG.getSrcValue(I.getArgOperand(1)))); 9115 } 9116 9117 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9118 const Instruction &I, 9119 SDValue Op) { 9120 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9121 if (!Range) 9122 return Op; 9123 9124 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9125 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9126 return Op; 9127 9128 APInt Lo = CR.getUnsignedMin(); 9129 if (!Lo.isMinValue()) 9130 return Op; 9131 9132 APInt Hi = CR.getUnsignedMax(); 9133 unsigned Bits = std::max(Hi.getActiveBits(), 9134 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9135 9136 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9137 9138 SDLoc SL = getCurSDLoc(); 9139 9140 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9141 DAG.getValueType(SmallVT)); 9142 unsigned NumVals = Op.getNode()->getNumValues(); 9143 if (NumVals == 1) 9144 return ZExt; 9145 9146 SmallVector<SDValue, 4> Ops; 9147 9148 Ops.push_back(ZExt); 9149 for (unsigned I = 1; I != NumVals; ++I) 9150 Ops.push_back(Op.getValue(I)); 9151 9152 return DAG.getMergeValues(Ops, SL); 9153 } 9154 9155 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9156 /// the call being lowered. 9157 /// 9158 /// This is a helper for lowering intrinsics that follow a target calling 9159 /// convention or require stack pointer adjustment. Only a subset of the 9160 /// intrinsic's operands need to participate in the calling convention. 9161 void SelectionDAGBuilder::populateCallLoweringInfo( 9162 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9163 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9164 bool IsPatchPoint) { 9165 TargetLowering::ArgListTy Args; 9166 Args.reserve(NumArgs); 9167 9168 // Populate the argument list. 9169 // Attributes for args start at offset 1, after the return attribute. 9170 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9171 ArgI != ArgE; ++ArgI) { 9172 const Value *V = Call->getOperand(ArgI); 9173 9174 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9175 9176 TargetLowering::ArgListEntry Entry; 9177 Entry.Node = getValue(V); 9178 Entry.Ty = V->getType(); 9179 Entry.setAttributes(Call, ArgI); 9180 Args.push_back(Entry); 9181 } 9182 9183 CLI.setDebugLoc(getCurSDLoc()) 9184 .setChain(getRoot()) 9185 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9186 .setDiscardResult(Call->use_empty()) 9187 .setIsPatchPoint(IsPatchPoint) 9188 .setIsPreallocated( 9189 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9190 } 9191 9192 /// Add a stack map intrinsic call's live variable operands to a stackmap 9193 /// or patchpoint target node's operand list. 9194 /// 9195 /// Constants are converted to TargetConstants purely as an optimization to 9196 /// avoid constant materialization and register allocation. 9197 /// 9198 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9199 /// generate addess computation nodes, and so FinalizeISel can convert the 9200 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9201 /// address materialization and register allocation, but may also be required 9202 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9203 /// alloca in the entry block, then the runtime may assume that the alloca's 9204 /// StackMap location can be read immediately after compilation and that the 9205 /// location is valid at any point during execution (this is similar to the 9206 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9207 /// only available in a register, then the runtime would need to trap when 9208 /// execution reaches the StackMap in order to read the alloca's location. 9209 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9210 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9211 SelectionDAGBuilder &Builder) { 9212 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9213 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9214 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9215 Ops.push_back( 9216 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9217 Ops.push_back( 9218 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9219 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9220 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9221 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9222 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9223 } else 9224 Ops.push_back(OpVal); 9225 } 9226 } 9227 9228 /// Lower llvm.experimental.stackmap directly to its target opcode. 9229 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9230 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9231 // [live variables...]) 9232 9233 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9234 9235 SDValue Chain, InFlag, Callee, NullPtr; 9236 SmallVector<SDValue, 32> Ops; 9237 9238 SDLoc DL = getCurSDLoc(); 9239 Callee = getValue(CI.getCalledOperand()); 9240 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9241 9242 // The stackmap intrinsic only records the live variables (the arguments 9243 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9244 // intrinsic, this won't be lowered to a function call. This means we don't 9245 // have to worry about calling conventions and target specific lowering code. 9246 // Instead we perform the call lowering right here. 9247 // 9248 // chain, flag = CALLSEQ_START(chain, 0, 0) 9249 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9250 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9251 // 9252 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9253 InFlag = Chain.getValue(1); 9254 9255 // Add the <id> and <numBytes> constants. 9256 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9257 Ops.push_back(DAG.getTargetConstant( 9258 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9259 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9260 Ops.push_back(DAG.getTargetConstant( 9261 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9262 MVT::i32)); 9263 9264 // Push live variables for the stack map. 9265 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9266 9267 // We are not pushing any register mask info here on the operands list, 9268 // because the stackmap doesn't clobber anything. 9269 9270 // Push the chain and the glue flag. 9271 Ops.push_back(Chain); 9272 Ops.push_back(InFlag); 9273 9274 // Create the STACKMAP node. 9275 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9276 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9277 Chain = SDValue(SM, 0); 9278 InFlag = Chain.getValue(1); 9279 9280 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9281 9282 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9283 9284 // Set the root to the target-lowered call chain. 9285 DAG.setRoot(Chain); 9286 9287 // Inform the Frame Information that we have a stackmap in this function. 9288 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9289 } 9290 9291 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9292 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9293 const BasicBlock *EHPadBB) { 9294 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9295 // i32 <numBytes>, 9296 // i8* <target>, 9297 // i32 <numArgs>, 9298 // [Args...], 9299 // [live variables...]) 9300 9301 CallingConv::ID CC = CB.getCallingConv(); 9302 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9303 bool HasDef = !CB.getType()->isVoidTy(); 9304 SDLoc dl = getCurSDLoc(); 9305 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9306 9307 // Handle immediate and symbolic callees. 9308 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9309 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9310 /*isTarget=*/true); 9311 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9312 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9313 SDLoc(SymbolicCallee), 9314 SymbolicCallee->getValueType(0)); 9315 9316 // Get the real number of arguments participating in the call <numArgs> 9317 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9318 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9319 9320 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9321 // Intrinsics include all meta-operands up to but not including CC. 9322 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9323 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9324 "Not enough arguments provided to the patchpoint intrinsic"); 9325 9326 // For AnyRegCC the arguments are lowered later on manually. 9327 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9328 Type *ReturnTy = 9329 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9330 9331 TargetLowering::CallLoweringInfo CLI(DAG); 9332 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9333 ReturnTy, true); 9334 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9335 9336 SDNode *CallEnd = Result.second.getNode(); 9337 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9338 CallEnd = CallEnd->getOperand(0).getNode(); 9339 9340 /// Get a call instruction from the call sequence chain. 9341 /// Tail calls are not allowed. 9342 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9343 "Expected a callseq node."); 9344 SDNode *Call = CallEnd->getOperand(0).getNode(); 9345 bool HasGlue = Call->getGluedNode(); 9346 9347 // Replace the target specific call node with the patchable intrinsic. 9348 SmallVector<SDValue, 8> Ops; 9349 9350 // Add the <id> and <numBytes> constants. 9351 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9352 Ops.push_back(DAG.getTargetConstant( 9353 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9354 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9355 Ops.push_back(DAG.getTargetConstant( 9356 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9357 MVT::i32)); 9358 9359 // Add the callee. 9360 Ops.push_back(Callee); 9361 9362 // Adjust <numArgs> to account for any arguments that have been passed on the 9363 // stack instead. 9364 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9365 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9366 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9367 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9368 9369 // Add the calling convention 9370 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9371 9372 // Add the arguments we omitted previously. The register allocator should 9373 // place these in any free register. 9374 if (IsAnyRegCC) 9375 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9376 Ops.push_back(getValue(CB.getArgOperand(i))); 9377 9378 // Push the arguments from the call instruction up to the register mask. 9379 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9380 Ops.append(Call->op_begin() + 2, e); 9381 9382 // Push live variables for the stack map. 9383 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9384 9385 // Push the register mask info. 9386 if (HasGlue) 9387 Ops.push_back(*(Call->op_end()-2)); 9388 else 9389 Ops.push_back(*(Call->op_end()-1)); 9390 9391 // Push the chain (this is originally the first operand of the call, but 9392 // becomes now the last or second to last operand). 9393 Ops.push_back(*(Call->op_begin())); 9394 9395 // Push the glue flag (last operand). 9396 if (HasGlue) 9397 Ops.push_back(*(Call->op_end()-1)); 9398 9399 SDVTList NodeTys; 9400 if (IsAnyRegCC && HasDef) { 9401 // Create the return types based on the intrinsic definition 9402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9403 SmallVector<EVT, 3> ValueVTs; 9404 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9405 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9406 9407 // There is always a chain and a glue type at the end 9408 ValueVTs.push_back(MVT::Other); 9409 ValueVTs.push_back(MVT::Glue); 9410 NodeTys = DAG.getVTList(ValueVTs); 9411 } else 9412 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9413 9414 // Replace the target specific call node with a PATCHPOINT node. 9415 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9416 dl, NodeTys, Ops); 9417 9418 // Update the NodeMap. 9419 if (HasDef) { 9420 if (IsAnyRegCC) 9421 setValue(&CB, SDValue(MN, 0)); 9422 else 9423 setValue(&CB, Result.first); 9424 } 9425 9426 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9427 // call sequence. Furthermore the location of the chain and glue can change 9428 // when the AnyReg calling convention is used and the intrinsic returns a 9429 // value. 9430 if (IsAnyRegCC && HasDef) { 9431 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9432 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9433 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9434 } else 9435 DAG.ReplaceAllUsesWith(Call, MN); 9436 DAG.DeleteNode(Call); 9437 9438 // Inform the Frame Information that we have a patchpoint in this function. 9439 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9440 } 9441 9442 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9443 unsigned Intrinsic) { 9444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9445 SDValue Op1 = getValue(I.getArgOperand(0)); 9446 SDValue Op2; 9447 if (I.arg_size() > 1) 9448 Op2 = getValue(I.getArgOperand(1)); 9449 SDLoc dl = getCurSDLoc(); 9450 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9451 SDValue Res; 9452 SDNodeFlags SDFlags; 9453 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9454 SDFlags.copyFMF(*FPMO); 9455 9456 switch (Intrinsic) { 9457 case Intrinsic::vector_reduce_fadd: 9458 if (SDFlags.hasAllowReassociation()) 9459 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9460 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9461 SDFlags); 9462 else 9463 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9464 break; 9465 case Intrinsic::vector_reduce_fmul: 9466 if (SDFlags.hasAllowReassociation()) 9467 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9468 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9469 SDFlags); 9470 else 9471 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9472 break; 9473 case Intrinsic::vector_reduce_add: 9474 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9475 break; 9476 case Intrinsic::vector_reduce_mul: 9477 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9478 break; 9479 case Intrinsic::vector_reduce_and: 9480 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9481 break; 9482 case Intrinsic::vector_reduce_or: 9483 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9484 break; 9485 case Intrinsic::vector_reduce_xor: 9486 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9487 break; 9488 case Intrinsic::vector_reduce_smax: 9489 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9490 break; 9491 case Intrinsic::vector_reduce_smin: 9492 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9493 break; 9494 case Intrinsic::vector_reduce_umax: 9495 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9496 break; 9497 case Intrinsic::vector_reduce_umin: 9498 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9499 break; 9500 case Intrinsic::vector_reduce_fmax: 9501 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9502 break; 9503 case Intrinsic::vector_reduce_fmin: 9504 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9505 break; 9506 default: 9507 llvm_unreachable("Unhandled vector reduce intrinsic"); 9508 } 9509 setValue(&I, Res); 9510 } 9511 9512 /// Returns an AttributeList representing the attributes applied to the return 9513 /// value of the given call. 9514 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9515 SmallVector<Attribute::AttrKind, 2> Attrs; 9516 if (CLI.RetSExt) 9517 Attrs.push_back(Attribute::SExt); 9518 if (CLI.RetZExt) 9519 Attrs.push_back(Attribute::ZExt); 9520 if (CLI.IsInReg) 9521 Attrs.push_back(Attribute::InReg); 9522 9523 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9524 Attrs); 9525 } 9526 9527 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9528 /// implementation, which just calls LowerCall. 9529 /// FIXME: When all targets are 9530 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9531 std::pair<SDValue, SDValue> 9532 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9533 // Handle the incoming return values from the call. 9534 CLI.Ins.clear(); 9535 Type *OrigRetTy = CLI.RetTy; 9536 SmallVector<EVT, 4> RetTys; 9537 SmallVector<uint64_t, 4> Offsets; 9538 auto &DL = CLI.DAG.getDataLayout(); 9539 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9540 9541 if (CLI.IsPostTypeLegalization) { 9542 // If we are lowering a libcall after legalization, split the return type. 9543 SmallVector<EVT, 4> OldRetTys; 9544 SmallVector<uint64_t, 4> OldOffsets; 9545 RetTys.swap(OldRetTys); 9546 Offsets.swap(OldOffsets); 9547 9548 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9549 EVT RetVT = OldRetTys[i]; 9550 uint64_t Offset = OldOffsets[i]; 9551 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9552 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9553 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9554 RetTys.append(NumRegs, RegisterVT); 9555 for (unsigned j = 0; j != NumRegs; ++j) 9556 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9557 } 9558 } 9559 9560 SmallVector<ISD::OutputArg, 4> Outs; 9561 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9562 9563 bool CanLowerReturn = 9564 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9565 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9566 9567 SDValue DemoteStackSlot; 9568 int DemoteStackIdx = -100; 9569 if (!CanLowerReturn) { 9570 // FIXME: equivalent assert? 9571 // assert(!CS.hasInAllocaArgument() && 9572 // "sret demotion is incompatible with inalloca"); 9573 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9574 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9575 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9576 DemoteStackIdx = 9577 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9578 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9579 DL.getAllocaAddrSpace()); 9580 9581 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9582 ArgListEntry Entry; 9583 Entry.Node = DemoteStackSlot; 9584 Entry.Ty = StackSlotPtrType; 9585 Entry.IsSExt = false; 9586 Entry.IsZExt = false; 9587 Entry.IsInReg = false; 9588 Entry.IsSRet = true; 9589 Entry.IsNest = false; 9590 Entry.IsByVal = false; 9591 Entry.IsByRef = false; 9592 Entry.IsReturned = false; 9593 Entry.IsSwiftSelf = false; 9594 Entry.IsSwiftAsync = false; 9595 Entry.IsSwiftError = false; 9596 Entry.IsCFGuardTarget = false; 9597 Entry.Alignment = Alignment; 9598 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9599 CLI.NumFixedArgs += 1; 9600 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9601 9602 // sret demotion isn't compatible with tail-calls, since the sret argument 9603 // points into the callers stack frame. 9604 CLI.IsTailCall = false; 9605 } else { 9606 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9607 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9608 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9609 ISD::ArgFlagsTy Flags; 9610 if (NeedsRegBlock) { 9611 Flags.setInConsecutiveRegs(); 9612 if (I == RetTys.size() - 1) 9613 Flags.setInConsecutiveRegsLast(); 9614 } 9615 EVT VT = RetTys[I]; 9616 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9617 CLI.CallConv, VT); 9618 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9619 CLI.CallConv, VT); 9620 for (unsigned i = 0; i != NumRegs; ++i) { 9621 ISD::InputArg MyFlags; 9622 MyFlags.Flags = Flags; 9623 MyFlags.VT = RegisterVT; 9624 MyFlags.ArgVT = VT; 9625 MyFlags.Used = CLI.IsReturnValueUsed; 9626 if (CLI.RetTy->isPointerTy()) { 9627 MyFlags.Flags.setPointer(); 9628 MyFlags.Flags.setPointerAddrSpace( 9629 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9630 } 9631 if (CLI.RetSExt) 9632 MyFlags.Flags.setSExt(); 9633 if (CLI.RetZExt) 9634 MyFlags.Flags.setZExt(); 9635 if (CLI.IsInReg) 9636 MyFlags.Flags.setInReg(); 9637 CLI.Ins.push_back(MyFlags); 9638 } 9639 } 9640 } 9641 9642 // We push in swifterror return as the last element of CLI.Ins. 9643 ArgListTy &Args = CLI.getArgs(); 9644 if (supportSwiftError()) { 9645 for (const ArgListEntry &Arg : Args) { 9646 if (Arg.IsSwiftError) { 9647 ISD::InputArg MyFlags; 9648 MyFlags.VT = getPointerTy(DL); 9649 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9650 MyFlags.Flags.setSwiftError(); 9651 CLI.Ins.push_back(MyFlags); 9652 } 9653 } 9654 } 9655 9656 // Handle all of the outgoing arguments. 9657 CLI.Outs.clear(); 9658 CLI.OutVals.clear(); 9659 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9660 SmallVector<EVT, 4> ValueVTs; 9661 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9662 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9663 Type *FinalType = Args[i].Ty; 9664 if (Args[i].IsByVal) 9665 FinalType = Args[i].IndirectType; 9666 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9667 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9668 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9669 ++Value) { 9670 EVT VT = ValueVTs[Value]; 9671 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9672 SDValue Op = SDValue(Args[i].Node.getNode(), 9673 Args[i].Node.getResNo() + Value); 9674 ISD::ArgFlagsTy Flags; 9675 9676 // Certain targets (such as MIPS), may have a different ABI alignment 9677 // for a type depending on the context. Give the target a chance to 9678 // specify the alignment it wants. 9679 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9680 Flags.setOrigAlign(OriginalAlignment); 9681 9682 if (Args[i].Ty->isPointerTy()) { 9683 Flags.setPointer(); 9684 Flags.setPointerAddrSpace( 9685 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9686 } 9687 if (Args[i].IsZExt) 9688 Flags.setZExt(); 9689 if (Args[i].IsSExt) 9690 Flags.setSExt(); 9691 if (Args[i].IsInReg) { 9692 // If we are using vectorcall calling convention, a structure that is 9693 // passed InReg - is surely an HVA 9694 if (CLI.CallConv == CallingConv::X86_VectorCall && 9695 isa<StructType>(FinalType)) { 9696 // The first value of a structure is marked 9697 if (0 == Value) 9698 Flags.setHvaStart(); 9699 Flags.setHva(); 9700 } 9701 // Set InReg Flag 9702 Flags.setInReg(); 9703 } 9704 if (Args[i].IsSRet) 9705 Flags.setSRet(); 9706 if (Args[i].IsSwiftSelf) 9707 Flags.setSwiftSelf(); 9708 if (Args[i].IsSwiftAsync) 9709 Flags.setSwiftAsync(); 9710 if (Args[i].IsSwiftError) 9711 Flags.setSwiftError(); 9712 if (Args[i].IsCFGuardTarget) 9713 Flags.setCFGuardTarget(); 9714 if (Args[i].IsByVal) 9715 Flags.setByVal(); 9716 if (Args[i].IsByRef) 9717 Flags.setByRef(); 9718 if (Args[i].IsPreallocated) { 9719 Flags.setPreallocated(); 9720 // Set the byval flag for CCAssignFn callbacks that don't know about 9721 // preallocated. This way we can know how many bytes we should've 9722 // allocated and how many bytes a callee cleanup function will pop. If 9723 // we port preallocated to more targets, we'll have to add custom 9724 // preallocated handling in the various CC lowering callbacks. 9725 Flags.setByVal(); 9726 } 9727 if (Args[i].IsInAlloca) { 9728 Flags.setInAlloca(); 9729 // Set the byval flag for CCAssignFn callbacks that don't know about 9730 // inalloca. This way we can know how many bytes we should've allocated 9731 // and how many bytes a callee cleanup function will pop. If we port 9732 // inalloca to more targets, we'll have to add custom inalloca handling 9733 // in the various CC lowering callbacks. 9734 Flags.setByVal(); 9735 } 9736 Align MemAlign; 9737 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9738 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9739 Flags.setByValSize(FrameSize); 9740 9741 // info is not there but there are cases it cannot get right. 9742 if (auto MA = Args[i].Alignment) 9743 MemAlign = *MA; 9744 else 9745 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9746 } else if (auto MA = Args[i].Alignment) { 9747 MemAlign = *MA; 9748 } else { 9749 MemAlign = OriginalAlignment; 9750 } 9751 Flags.setMemAlign(MemAlign); 9752 if (Args[i].IsNest) 9753 Flags.setNest(); 9754 if (NeedsRegBlock) 9755 Flags.setInConsecutiveRegs(); 9756 9757 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9758 CLI.CallConv, VT); 9759 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9760 CLI.CallConv, VT); 9761 SmallVector<SDValue, 4> Parts(NumParts); 9762 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9763 9764 if (Args[i].IsSExt) 9765 ExtendKind = ISD::SIGN_EXTEND; 9766 else if (Args[i].IsZExt) 9767 ExtendKind = ISD::ZERO_EXTEND; 9768 9769 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9770 // for now. 9771 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9772 CanLowerReturn) { 9773 assert((CLI.RetTy == Args[i].Ty || 9774 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9775 CLI.RetTy->getPointerAddressSpace() == 9776 Args[i].Ty->getPointerAddressSpace())) && 9777 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9778 // Before passing 'returned' to the target lowering code, ensure that 9779 // either the register MVT and the actual EVT are the same size or that 9780 // the return value and argument are extended in the same way; in these 9781 // cases it's safe to pass the argument register value unchanged as the 9782 // return register value (although it's at the target's option whether 9783 // to do so) 9784 // TODO: allow code generation to take advantage of partially preserved 9785 // registers rather than clobbering the entire register when the 9786 // parameter extension method is not compatible with the return 9787 // extension method 9788 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9789 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9790 CLI.RetZExt == Args[i].IsZExt)) 9791 Flags.setReturned(); 9792 } 9793 9794 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9795 CLI.CallConv, ExtendKind); 9796 9797 for (unsigned j = 0; j != NumParts; ++j) { 9798 // if it isn't first piece, alignment must be 1 9799 // For scalable vectors the scalable part is currently handled 9800 // by individual targets, so we just use the known minimum size here. 9801 ISD::OutputArg MyFlags( 9802 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9803 i < CLI.NumFixedArgs, i, 9804 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9805 if (NumParts > 1 && j == 0) 9806 MyFlags.Flags.setSplit(); 9807 else if (j != 0) { 9808 MyFlags.Flags.setOrigAlign(Align(1)); 9809 if (j == NumParts - 1) 9810 MyFlags.Flags.setSplitEnd(); 9811 } 9812 9813 CLI.Outs.push_back(MyFlags); 9814 CLI.OutVals.push_back(Parts[j]); 9815 } 9816 9817 if (NeedsRegBlock && Value == NumValues - 1) 9818 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9819 } 9820 } 9821 9822 SmallVector<SDValue, 4> InVals; 9823 CLI.Chain = LowerCall(CLI, InVals); 9824 9825 // Update CLI.InVals to use outside of this function. 9826 CLI.InVals = InVals; 9827 9828 // Verify that the target's LowerCall behaved as expected. 9829 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9830 "LowerCall didn't return a valid chain!"); 9831 assert((!CLI.IsTailCall || InVals.empty()) && 9832 "LowerCall emitted a return value for a tail call!"); 9833 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9834 "LowerCall didn't emit the correct number of values!"); 9835 9836 // For a tail call, the return value is merely live-out and there aren't 9837 // any nodes in the DAG representing it. Return a special value to 9838 // indicate that a tail call has been emitted and no more Instructions 9839 // should be processed in the current block. 9840 if (CLI.IsTailCall) { 9841 CLI.DAG.setRoot(CLI.Chain); 9842 return std::make_pair(SDValue(), SDValue()); 9843 } 9844 9845 #ifndef NDEBUG 9846 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9847 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9848 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9849 "LowerCall emitted a value with the wrong type!"); 9850 } 9851 #endif 9852 9853 SmallVector<SDValue, 4> ReturnValues; 9854 if (!CanLowerReturn) { 9855 // The instruction result is the result of loading from the 9856 // hidden sret parameter. 9857 SmallVector<EVT, 1> PVTs; 9858 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9859 9860 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9861 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9862 EVT PtrVT = PVTs[0]; 9863 9864 unsigned NumValues = RetTys.size(); 9865 ReturnValues.resize(NumValues); 9866 SmallVector<SDValue, 4> Chains(NumValues); 9867 9868 // An aggregate return value cannot wrap around the address space, so 9869 // offsets to its parts don't wrap either. 9870 SDNodeFlags Flags; 9871 Flags.setNoUnsignedWrap(true); 9872 9873 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9874 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9875 for (unsigned i = 0; i < NumValues; ++i) { 9876 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9877 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9878 PtrVT), Flags); 9879 SDValue L = CLI.DAG.getLoad( 9880 RetTys[i], CLI.DL, CLI.Chain, Add, 9881 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9882 DemoteStackIdx, Offsets[i]), 9883 HiddenSRetAlign); 9884 ReturnValues[i] = L; 9885 Chains[i] = L.getValue(1); 9886 } 9887 9888 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9889 } else { 9890 // Collect the legal value parts into potentially illegal values 9891 // that correspond to the original function's return values. 9892 Optional<ISD::NodeType> AssertOp; 9893 if (CLI.RetSExt) 9894 AssertOp = ISD::AssertSext; 9895 else if (CLI.RetZExt) 9896 AssertOp = ISD::AssertZext; 9897 unsigned CurReg = 0; 9898 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9899 EVT VT = RetTys[I]; 9900 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9901 CLI.CallConv, VT); 9902 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9903 CLI.CallConv, VT); 9904 9905 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9906 NumRegs, RegisterVT, VT, nullptr, 9907 CLI.CallConv, AssertOp)); 9908 CurReg += NumRegs; 9909 } 9910 9911 // For a function returning void, there is no return value. We can't create 9912 // such a node, so we just return a null return value in that case. In 9913 // that case, nothing will actually look at the value. 9914 if (ReturnValues.empty()) 9915 return std::make_pair(SDValue(), CLI.Chain); 9916 } 9917 9918 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9919 CLI.DAG.getVTList(RetTys), ReturnValues); 9920 return std::make_pair(Res, CLI.Chain); 9921 } 9922 9923 /// Places new result values for the node in Results (their number 9924 /// and types must exactly match those of the original return values of 9925 /// the node), or leaves Results empty, which indicates that the node is not 9926 /// to be custom lowered after all. 9927 void TargetLowering::LowerOperationWrapper(SDNode *N, 9928 SmallVectorImpl<SDValue> &Results, 9929 SelectionDAG &DAG) const { 9930 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9931 9932 if (!Res.getNode()) 9933 return; 9934 9935 // If the original node has one result, take the return value from 9936 // LowerOperation as is. It might not be result number 0. 9937 if (N->getNumValues() == 1) { 9938 Results.push_back(Res); 9939 return; 9940 } 9941 9942 // If the original node has multiple results, then the return node should 9943 // have the same number of results. 9944 assert((N->getNumValues() == Res->getNumValues()) && 9945 "Lowering returned the wrong number of results!"); 9946 9947 // Places new result values base on N result number. 9948 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9949 Results.push_back(Res.getValue(I)); 9950 } 9951 9952 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9953 llvm_unreachable("LowerOperation not implemented for this target!"); 9954 } 9955 9956 void 9957 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9958 SDValue Op = getNonRegisterValue(V); 9959 assert((Op.getOpcode() != ISD::CopyFromReg || 9960 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9961 "Copy from a reg to the same reg!"); 9962 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9963 9964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9965 // If this is an InlineAsm we have to match the registers required, not the 9966 // notional registers required by the type. 9967 9968 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9969 None); // This is not an ABI copy. 9970 SDValue Chain = DAG.getEntryNode(); 9971 9972 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 9973 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 9974 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 9975 ExtendType = PreferredExtendIt->second; 9976 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9977 PendingExports.push_back(Chain); 9978 } 9979 9980 #include "llvm/CodeGen/SelectionDAGISel.h" 9981 9982 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9983 /// entry block, return true. This includes arguments used by switches, since 9984 /// the switch may expand into multiple basic blocks. 9985 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9986 // With FastISel active, we may be splitting blocks, so force creation 9987 // of virtual registers for all non-dead arguments. 9988 if (FastISel) 9989 return A->use_empty(); 9990 9991 const BasicBlock &Entry = A->getParent()->front(); 9992 for (const User *U : A->users()) 9993 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9994 return false; // Use not in entry block. 9995 9996 return true; 9997 } 9998 9999 using ArgCopyElisionMapTy = 10000 DenseMap<const Argument *, 10001 std::pair<const AllocaInst *, const StoreInst *>>; 10002 10003 /// Scan the entry block of the function in FuncInfo for arguments that look 10004 /// like copies into a local alloca. Record any copied arguments in 10005 /// ArgCopyElisionCandidates. 10006 static void 10007 findArgumentCopyElisionCandidates(const DataLayout &DL, 10008 FunctionLoweringInfo *FuncInfo, 10009 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10010 // Record the state of every static alloca used in the entry block. Argument 10011 // allocas are all used in the entry block, so we need approximately as many 10012 // entries as we have arguments. 10013 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10014 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10015 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10016 StaticAllocas.reserve(NumArgs * 2); 10017 10018 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10019 if (!V) 10020 return nullptr; 10021 V = V->stripPointerCasts(); 10022 const auto *AI = dyn_cast<AllocaInst>(V); 10023 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10024 return nullptr; 10025 auto Iter = StaticAllocas.insert({AI, Unknown}); 10026 return &Iter.first->second; 10027 }; 10028 10029 // Look for stores of arguments to static allocas. Look through bitcasts and 10030 // GEPs to handle type coercions, as long as the alloca is fully initialized 10031 // by the store. Any non-store use of an alloca escapes it and any subsequent 10032 // unanalyzed store might write it. 10033 // FIXME: Handle structs initialized with multiple stores. 10034 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10035 // Look for stores, and handle non-store uses conservatively. 10036 const auto *SI = dyn_cast<StoreInst>(&I); 10037 if (!SI) { 10038 // We will look through cast uses, so ignore them completely. 10039 if (I.isCast()) 10040 continue; 10041 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10042 // to allocas. 10043 if (I.isDebugOrPseudoInst()) 10044 continue; 10045 // This is an unknown instruction. Assume it escapes or writes to all 10046 // static alloca operands. 10047 for (const Use &U : I.operands()) { 10048 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10049 *Info = StaticAllocaInfo::Clobbered; 10050 } 10051 continue; 10052 } 10053 10054 // If the stored value is a static alloca, mark it as escaped. 10055 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10056 *Info = StaticAllocaInfo::Clobbered; 10057 10058 // Check if the destination is a static alloca. 10059 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10060 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10061 if (!Info) 10062 continue; 10063 const AllocaInst *AI = cast<AllocaInst>(Dst); 10064 10065 // Skip allocas that have been initialized or clobbered. 10066 if (*Info != StaticAllocaInfo::Unknown) 10067 continue; 10068 10069 // Check if the stored value is an argument, and that this store fully 10070 // initializes the alloca. 10071 // If the argument type has padding bits we can't directly forward a pointer 10072 // as the upper bits may contain garbage. 10073 // Don't elide copies from the same argument twice. 10074 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10075 const auto *Arg = dyn_cast<Argument>(Val); 10076 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10077 Arg->getType()->isEmptyTy() || 10078 DL.getTypeStoreSize(Arg->getType()) != 10079 DL.getTypeAllocSize(AI->getAllocatedType()) || 10080 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10081 ArgCopyElisionCandidates.count(Arg)) { 10082 *Info = StaticAllocaInfo::Clobbered; 10083 continue; 10084 } 10085 10086 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10087 << '\n'); 10088 10089 // Mark this alloca and store for argument copy elision. 10090 *Info = StaticAllocaInfo::Elidable; 10091 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10092 10093 // Stop scanning if we've seen all arguments. This will happen early in -O0 10094 // builds, which is useful, because -O0 builds have large entry blocks and 10095 // many allocas. 10096 if (ArgCopyElisionCandidates.size() == NumArgs) 10097 break; 10098 } 10099 } 10100 10101 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10102 /// ArgVal is a load from a suitable fixed stack object. 10103 static void tryToElideArgumentCopy( 10104 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10105 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10106 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10107 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10108 SDValue ArgVal, bool &ArgHasUses) { 10109 // Check if this is a load from a fixed stack object. 10110 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10111 if (!LNode) 10112 return; 10113 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10114 if (!FINode) 10115 return; 10116 10117 // Check that the fixed stack object is the right size and alignment. 10118 // Look at the alignment that the user wrote on the alloca instead of looking 10119 // at the stack object. 10120 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10121 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10122 const AllocaInst *AI = ArgCopyIter->second.first; 10123 int FixedIndex = FINode->getIndex(); 10124 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10125 int OldIndex = AllocaIndex; 10126 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10127 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10128 LLVM_DEBUG( 10129 dbgs() << " argument copy elision failed due to bad fixed stack " 10130 "object size\n"); 10131 return; 10132 } 10133 Align RequiredAlignment = AI->getAlign(); 10134 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10135 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10136 "greater than stack argument alignment (" 10137 << DebugStr(RequiredAlignment) << " vs " 10138 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10139 return; 10140 } 10141 10142 // Perform the elision. Delete the old stack object and replace its only use 10143 // in the variable info map. Mark the stack object as mutable. 10144 LLVM_DEBUG({ 10145 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10146 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10147 << '\n'; 10148 }); 10149 MFI.RemoveStackObject(OldIndex); 10150 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10151 AllocaIndex = FixedIndex; 10152 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10153 Chains.push_back(ArgVal.getValue(1)); 10154 10155 // Avoid emitting code for the store implementing the copy. 10156 const StoreInst *SI = ArgCopyIter->second.second; 10157 ElidedArgCopyInstrs.insert(SI); 10158 10159 // Check for uses of the argument again so that we can avoid exporting ArgVal 10160 // if it is't used by anything other than the store. 10161 for (const Value *U : Arg.users()) { 10162 if (U != SI) { 10163 ArgHasUses = true; 10164 break; 10165 } 10166 } 10167 } 10168 10169 void SelectionDAGISel::LowerArguments(const Function &F) { 10170 SelectionDAG &DAG = SDB->DAG; 10171 SDLoc dl = SDB->getCurSDLoc(); 10172 const DataLayout &DL = DAG.getDataLayout(); 10173 SmallVector<ISD::InputArg, 16> Ins; 10174 10175 // In Naked functions we aren't going to save any registers. 10176 if (F.hasFnAttribute(Attribute::Naked)) 10177 return; 10178 10179 if (!FuncInfo->CanLowerReturn) { 10180 // Put in an sret pointer parameter before all the other parameters. 10181 SmallVector<EVT, 1> ValueVTs; 10182 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10183 F.getReturnType()->getPointerTo( 10184 DAG.getDataLayout().getAllocaAddrSpace()), 10185 ValueVTs); 10186 10187 // NOTE: Assuming that a pointer will never break down to more than one VT 10188 // or one register. 10189 ISD::ArgFlagsTy Flags; 10190 Flags.setSRet(); 10191 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10192 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10193 ISD::InputArg::NoArgIndex, 0); 10194 Ins.push_back(RetArg); 10195 } 10196 10197 // Look for stores of arguments to static allocas. Mark such arguments with a 10198 // flag to ask the target to give us the memory location of that argument if 10199 // available. 10200 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10201 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10202 ArgCopyElisionCandidates); 10203 10204 // Set up the incoming argument description vector. 10205 for (const Argument &Arg : F.args()) { 10206 unsigned ArgNo = Arg.getArgNo(); 10207 SmallVector<EVT, 4> ValueVTs; 10208 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10209 bool isArgValueUsed = !Arg.use_empty(); 10210 unsigned PartBase = 0; 10211 Type *FinalType = Arg.getType(); 10212 if (Arg.hasAttribute(Attribute::ByVal)) 10213 FinalType = Arg.getParamByValType(); 10214 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10215 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10216 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10217 Value != NumValues; ++Value) { 10218 EVT VT = ValueVTs[Value]; 10219 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10220 ISD::ArgFlagsTy Flags; 10221 10222 10223 if (Arg.getType()->isPointerTy()) { 10224 Flags.setPointer(); 10225 Flags.setPointerAddrSpace( 10226 cast<PointerType>(Arg.getType())->getAddressSpace()); 10227 } 10228 if (Arg.hasAttribute(Attribute::ZExt)) 10229 Flags.setZExt(); 10230 if (Arg.hasAttribute(Attribute::SExt)) 10231 Flags.setSExt(); 10232 if (Arg.hasAttribute(Attribute::InReg)) { 10233 // If we are using vectorcall calling convention, a structure that is 10234 // passed InReg - is surely an HVA 10235 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10236 isa<StructType>(Arg.getType())) { 10237 // The first value of a structure is marked 10238 if (0 == Value) 10239 Flags.setHvaStart(); 10240 Flags.setHva(); 10241 } 10242 // Set InReg Flag 10243 Flags.setInReg(); 10244 } 10245 if (Arg.hasAttribute(Attribute::StructRet)) 10246 Flags.setSRet(); 10247 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10248 Flags.setSwiftSelf(); 10249 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10250 Flags.setSwiftAsync(); 10251 if (Arg.hasAttribute(Attribute::SwiftError)) 10252 Flags.setSwiftError(); 10253 if (Arg.hasAttribute(Attribute::ByVal)) 10254 Flags.setByVal(); 10255 if (Arg.hasAttribute(Attribute::ByRef)) 10256 Flags.setByRef(); 10257 if (Arg.hasAttribute(Attribute::InAlloca)) { 10258 Flags.setInAlloca(); 10259 // Set the byval flag for CCAssignFn callbacks that don't know about 10260 // inalloca. This way we can know how many bytes we should've allocated 10261 // and how many bytes a callee cleanup function will pop. If we port 10262 // inalloca to more targets, we'll have to add custom inalloca handling 10263 // in the various CC lowering callbacks. 10264 Flags.setByVal(); 10265 } 10266 if (Arg.hasAttribute(Attribute::Preallocated)) { 10267 Flags.setPreallocated(); 10268 // Set the byval flag for CCAssignFn callbacks that don't know about 10269 // preallocated. This way we can know how many bytes we should've 10270 // allocated and how many bytes a callee cleanup function will pop. If 10271 // we port preallocated to more targets, we'll have to add custom 10272 // preallocated handling in the various CC lowering callbacks. 10273 Flags.setByVal(); 10274 } 10275 10276 // Certain targets (such as MIPS), may have a different ABI alignment 10277 // for a type depending on the context. Give the target a chance to 10278 // specify the alignment it wants. 10279 const Align OriginalAlignment( 10280 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10281 Flags.setOrigAlign(OriginalAlignment); 10282 10283 Align MemAlign; 10284 Type *ArgMemTy = nullptr; 10285 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10286 Flags.isByRef()) { 10287 if (!ArgMemTy) 10288 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10289 10290 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10291 10292 // For in-memory arguments, size and alignment should be passed from FE. 10293 // BE will guess if this info is not there but there are cases it cannot 10294 // get right. 10295 if (auto ParamAlign = Arg.getParamStackAlign()) 10296 MemAlign = *ParamAlign; 10297 else if ((ParamAlign = Arg.getParamAlign())) 10298 MemAlign = *ParamAlign; 10299 else 10300 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10301 if (Flags.isByRef()) 10302 Flags.setByRefSize(MemSize); 10303 else 10304 Flags.setByValSize(MemSize); 10305 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10306 MemAlign = *ParamAlign; 10307 } else { 10308 MemAlign = OriginalAlignment; 10309 } 10310 Flags.setMemAlign(MemAlign); 10311 10312 if (Arg.hasAttribute(Attribute::Nest)) 10313 Flags.setNest(); 10314 if (NeedsRegBlock) 10315 Flags.setInConsecutiveRegs(); 10316 if (ArgCopyElisionCandidates.count(&Arg)) 10317 Flags.setCopyElisionCandidate(); 10318 if (Arg.hasAttribute(Attribute::Returned)) 10319 Flags.setReturned(); 10320 10321 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10322 *CurDAG->getContext(), F.getCallingConv(), VT); 10323 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10324 *CurDAG->getContext(), F.getCallingConv(), VT); 10325 for (unsigned i = 0; i != NumRegs; ++i) { 10326 // For scalable vectors, use the minimum size; individual targets 10327 // are responsible for handling scalable vector arguments and 10328 // return values. 10329 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10330 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10331 if (NumRegs > 1 && i == 0) 10332 MyFlags.Flags.setSplit(); 10333 // if it isn't first piece, alignment must be 1 10334 else if (i > 0) { 10335 MyFlags.Flags.setOrigAlign(Align(1)); 10336 if (i == NumRegs - 1) 10337 MyFlags.Flags.setSplitEnd(); 10338 } 10339 Ins.push_back(MyFlags); 10340 } 10341 if (NeedsRegBlock && Value == NumValues - 1) 10342 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10343 PartBase += VT.getStoreSize().getKnownMinSize(); 10344 } 10345 } 10346 10347 // Call the target to set up the argument values. 10348 SmallVector<SDValue, 8> InVals; 10349 SDValue NewRoot = TLI->LowerFormalArguments( 10350 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10351 10352 // Verify that the target's LowerFormalArguments behaved as expected. 10353 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10354 "LowerFormalArguments didn't return a valid chain!"); 10355 assert(InVals.size() == Ins.size() && 10356 "LowerFormalArguments didn't emit the correct number of values!"); 10357 LLVM_DEBUG({ 10358 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10359 assert(InVals[i].getNode() && 10360 "LowerFormalArguments emitted a null value!"); 10361 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10362 "LowerFormalArguments emitted a value with the wrong type!"); 10363 } 10364 }); 10365 10366 // Update the DAG with the new chain value resulting from argument lowering. 10367 DAG.setRoot(NewRoot); 10368 10369 // Set up the argument values. 10370 unsigned i = 0; 10371 if (!FuncInfo->CanLowerReturn) { 10372 // Create a virtual register for the sret pointer, and put in a copy 10373 // from the sret argument into it. 10374 SmallVector<EVT, 1> ValueVTs; 10375 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10376 F.getReturnType()->getPointerTo( 10377 DAG.getDataLayout().getAllocaAddrSpace()), 10378 ValueVTs); 10379 MVT VT = ValueVTs[0].getSimpleVT(); 10380 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10381 Optional<ISD::NodeType> AssertOp = None; 10382 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10383 nullptr, F.getCallingConv(), AssertOp); 10384 10385 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10386 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10387 Register SRetReg = 10388 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10389 FuncInfo->DemoteRegister = SRetReg; 10390 NewRoot = 10391 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10392 DAG.setRoot(NewRoot); 10393 10394 // i indexes lowered arguments. Bump it past the hidden sret argument. 10395 ++i; 10396 } 10397 10398 SmallVector<SDValue, 4> Chains; 10399 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10400 for (const Argument &Arg : F.args()) { 10401 SmallVector<SDValue, 4> ArgValues; 10402 SmallVector<EVT, 4> ValueVTs; 10403 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10404 unsigned NumValues = ValueVTs.size(); 10405 if (NumValues == 0) 10406 continue; 10407 10408 bool ArgHasUses = !Arg.use_empty(); 10409 10410 // Elide the copying store if the target loaded this argument from a 10411 // suitable fixed stack object. 10412 if (Ins[i].Flags.isCopyElisionCandidate()) { 10413 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10414 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10415 InVals[i], ArgHasUses); 10416 } 10417 10418 // If this argument is unused then remember its value. It is used to generate 10419 // debugging information. 10420 bool isSwiftErrorArg = 10421 TLI->supportSwiftError() && 10422 Arg.hasAttribute(Attribute::SwiftError); 10423 if (!ArgHasUses && !isSwiftErrorArg) { 10424 SDB->setUnusedArgValue(&Arg, InVals[i]); 10425 10426 // Also remember any frame index for use in FastISel. 10427 if (FrameIndexSDNode *FI = 10428 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10429 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10430 } 10431 10432 for (unsigned Val = 0; Val != NumValues; ++Val) { 10433 EVT VT = ValueVTs[Val]; 10434 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10435 F.getCallingConv(), VT); 10436 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10437 *CurDAG->getContext(), F.getCallingConv(), VT); 10438 10439 // Even an apparent 'unused' swifterror argument needs to be returned. So 10440 // we do generate a copy for it that can be used on return from the 10441 // function. 10442 if (ArgHasUses || isSwiftErrorArg) { 10443 Optional<ISD::NodeType> AssertOp; 10444 if (Arg.hasAttribute(Attribute::SExt)) 10445 AssertOp = ISD::AssertSext; 10446 else if (Arg.hasAttribute(Attribute::ZExt)) 10447 AssertOp = ISD::AssertZext; 10448 10449 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10450 PartVT, VT, nullptr, 10451 F.getCallingConv(), AssertOp)); 10452 } 10453 10454 i += NumParts; 10455 } 10456 10457 // We don't need to do anything else for unused arguments. 10458 if (ArgValues.empty()) 10459 continue; 10460 10461 // Note down frame index. 10462 if (FrameIndexSDNode *FI = 10463 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10464 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10465 10466 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10467 SDB->getCurSDLoc()); 10468 10469 SDB->setValue(&Arg, Res); 10470 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10471 // We want to associate the argument with the frame index, among 10472 // involved operands, that correspond to the lowest address. The 10473 // getCopyFromParts function, called earlier, is swapping the order of 10474 // the operands to BUILD_PAIR depending on endianness. The result of 10475 // that swapping is that the least significant bits of the argument will 10476 // be in the first operand of the BUILD_PAIR node, and the most 10477 // significant bits will be in the second operand. 10478 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10479 if (LoadSDNode *LNode = 10480 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10481 if (FrameIndexSDNode *FI = 10482 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10483 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10484 } 10485 10486 // Analyses past this point are naive and don't expect an assertion. 10487 if (Res.getOpcode() == ISD::AssertZext) 10488 Res = Res.getOperand(0); 10489 10490 // Update the SwiftErrorVRegDefMap. 10491 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10492 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10493 if (Register::isVirtualRegister(Reg)) 10494 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10495 Reg); 10496 } 10497 10498 // If this argument is live outside of the entry block, insert a copy from 10499 // wherever we got it to the vreg that other BB's will reference it as. 10500 if (Res.getOpcode() == ISD::CopyFromReg) { 10501 // If we can, though, try to skip creating an unnecessary vreg. 10502 // FIXME: This isn't very clean... it would be nice to make this more 10503 // general. 10504 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10505 if (Register::isVirtualRegister(Reg)) { 10506 FuncInfo->ValueMap[&Arg] = Reg; 10507 continue; 10508 } 10509 } 10510 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10511 FuncInfo->InitializeRegForValue(&Arg); 10512 SDB->CopyToExportRegsIfNeeded(&Arg); 10513 } 10514 } 10515 10516 if (!Chains.empty()) { 10517 Chains.push_back(NewRoot); 10518 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10519 } 10520 10521 DAG.setRoot(NewRoot); 10522 10523 assert(i == InVals.size() && "Argument register count mismatch!"); 10524 10525 // If any argument copy elisions occurred and we have debug info, update the 10526 // stale frame indices used in the dbg.declare variable info table. 10527 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10528 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10529 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10530 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10531 if (I != ArgCopyElisionFrameIndexMap.end()) 10532 VI.Slot = I->second; 10533 } 10534 } 10535 10536 // Finally, if the target has anything special to do, allow it to do so. 10537 emitFunctionEntryCode(); 10538 } 10539 10540 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10541 /// ensure constants are generated when needed. Remember the virtual registers 10542 /// that need to be added to the Machine PHI nodes as input. We cannot just 10543 /// directly add them, because expansion might result in multiple MBB's for one 10544 /// BB. As such, the start of the BB might correspond to a different MBB than 10545 /// the end. 10546 void 10547 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10548 const Instruction *TI = LLVMBB->getTerminator(); 10549 10550 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10551 10552 // Check PHI nodes in successors that expect a value to be available from this 10553 // block. 10554 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10555 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10556 if (!isa<PHINode>(SuccBB->begin())) continue; 10557 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10558 10559 // If this terminator has multiple identical successors (common for 10560 // switches), only handle each succ once. 10561 if (!SuccsHandled.insert(SuccMBB).second) 10562 continue; 10563 10564 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10565 10566 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10567 // nodes and Machine PHI nodes, but the incoming operands have not been 10568 // emitted yet. 10569 for (const PHINode &PN : SuccBB->phis()) { 10570 // Ignore dead phi's. 10571 if (PN.use_empty()) 10572 continue; 10573 10574 // Skip empty types 10575 if (PN.getType()->isEmptyTy()) 10576 continue; 10577 10578 unsigned Reg; 10579 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10580 10581 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10582 unsigned &RegOut = ConstantsOut[C]; 10583 if (RegOut == 0) { 10584 RegOut = FuncInfo.CreateRegs(C); 10585 CopyValueToVirtualRegister(C, RegOut); 10586 } 10587 Reg = RegOut; 10588 } else { 10589 DenseMap<const Value *, Register>::iterator I = 10590 FuncInfo.ValueMap.find(PHIOp); 10591 if (I != FuncInfo.ValueMap.end()) 10592 Reg = I->second; 10593 else { 10594 assert(isa<AllocaInst>(PHIOp) && 10595 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10596 "Didn't codegen value into a register!??"); 10597 Reg = FuncInfo.CreateRegs(PHIOp); 10598 CopyValueToVirtualRegister(PHIOp, Reg); 10599 } 10600 } 10601 10602 // Remember that this register needs to added to the machine PHI node as 10603 // the input for this MBB. 10604 SmallVector<EVT, 4> ValueVTs; 10605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10606 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10607 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10608 EVT VT = ValueVTs[vti]; 10609 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10610 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10611 FuncInfo.PHINodesToUpdate.push_back( 10612 std::make_pair(&*MBBI++, Reg + i)); 10613 Reg += NumRegisters; 10614 } 10615 } 10616 } 10617 10618 ConstantsOut.clear(); 10619 } 10620 10621 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10622 MachineFunction::iterator I(MBB); 10623 if (++I == FuncInfo.MF->end()) 10624 return nullptr; 10625 return &*I; 10626 } 10627 10628 /// During lowering new call nodes can be created (such as memset, etc.). 10629 /// Those will become new roots of the current DAG, but complications arise 10630 /// when they are tail calls. In such cases, the call lowering will update 10631 /// the root, but the builder still needs to know that a tail call has been 10632 /// lowered in order to avoid generating an additional return. 10633 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10634 // If the node is null, we do have a tail call. 10635 if (MaybeTC.getNode() != nullptr) 10636 DAG.setRoot(MaybeTC); 10637 else 10638 HasTailCall = true; 10639 } 10640 10641 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10642 MachineBasicBlock *SwitchMBB, 10643 MachineBasicBlock *DefaultMBB) { 10644 MachineFunction *CurMF = FuncInfo.MF; 10645 MachineBasicBlock *NextMBB = nullptr; 10646 MachineFunction::iterator BBI(W.MBB); 10647 if (++BBI != FuncInfo.MF->end()) 10648 NextMBB = &*BBI; 10649 10650 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10651 10652 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10653 10654 if (Size == 2 && W.MBB == SwitchMBB) { 10655 // If any two of the cases has the same destination, and if one value 10656 // is the same as the other, but has one bit unset that the other has set, 10657 // use bit manipulation to do two compares at once. For example: 10658 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10659 // TODO: This could be extended to merge any 2 cases in switches with 3 10660 // cases. 10661 // TODO: Handle cases where W.CaseBB != SwitchBB. 10662 CaseCluster &Small = *W.FirstCluster; 10663 CaseCluster &Big = *W.LastCluster; 10664 10665 if (Small.Low == Small.High && Big.Low == Big.High && 10666 Small.MBB == Big.MBB) { 10667 const APInt &SmallValue = Small.Low->getValue(); 10668 const APInt &BigValue = Big.Low->getValue(); 10669 10670 // Check that there is only one bit different. 10671 APInt CommonBit = BigValue ^ SmallValue; 10672 if (CommonBit.isPowerOf2()) { 10673 SDValue CondLHS = getValue(Cond); 10674 EVT VT = CondLHS.getValueType(); 10675 SDLoc DL = getCurSDLoc(); 10676 10677 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10678 DAG.getConstant(CommonBit, DL, VT)); 10679 SDValue Cond = DAG.getSetCC( 10680 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10681 ISD::SETEQ); 10682 10683 // Update successor info. 10684 // Both Small and Big will jump to Small.BB, so we sum up the 10685 // probabilities. 10686 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10687 if (BPI) 10688 addSuccessorWithProb( 10689 SwitchMBB, DefaultMBB, 10690 // The default destination is the first successor in IR. 10691 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10692 else 10693 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10694 10695 // Insert the true branch. 10696 SDValue BrCond = 10697 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10698 DAG.getBasicBlock(Small.MBB)); 10699 // Insert the false branch. 10700 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10701 DAG.getBasicBlock(DefaultMBB)); 10702 10703 DAG.setRoot(BrCond); 10704 return; 10705 } 10706 } 10707 } 10708 10709 if (TM.getOptLevel() != CodeGenOpt::None) { 10710 // Here, we order cases by probability so the most likely case will be 10711 // checked first. However, two clusters can have the same probability in 10712 // which case their relative ordering is non-deterministic. So we use Low 10713 // as a tie-breaker as clusters are guaranteed to never overlap. 10714 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10715 [](const CaseCluster &a, const CaseCluster &b) { 10716 return a.Prob != b.Prob ? 10717 a.Prob > b.Prob : 10718 a.Low->getValue().slt(b.Low->getValue()); 10719 }); 10720 10721 // Rearrange the case blocks so that the last one falls through if possible 10722 // without changing the order of probabilities. 10723 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10724 --I; 10725 if (I->Prob > W.LastCluster->Prob) 10726 break; 10727 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10728 std::swap(*I, *W.LastCluster); 10729 break; 10730 } 10731 } 10732 } 10733 10734 // Compute total probability. 10735 BranchProbability DefaultProb = W.DefaultProb; 10736 BranchProbability UnhandledProbs = DefaultProb; 10737 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10738 UnhandledProbs += I->Prob; 10739 10740 MachineBasicBlock *CurMBB = W.MBB; 10741 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10742 bool FallthroughUnreachable = false; 10743 MachineBasicBlock *Fallthrough; 10744 if (I == W.LastCluster) { 10745 // For the last cluster, fall through to the default destination. 10746 Fallthrough = DefaultMBB; 10747 FallthroughUnreachable = isa<UnreachableInst>( 10748 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10749 } else { 10750 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10751 CurMF->insert(BBI, Fallthrough); 10752 // Put Cond in a virtual register to make it available from the new blocks. 10753 ExportFromCurrentBlock(Cond); 10754 } 10755 UnhandledProbs -= I->Prob; 10756 10757 switch (I->Kind) { 10758 case CC_JumpTable: { 10759 // FIXME: Optimize away range check based on pivot comparisons. 10760 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10761 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10762 10763 // The jump block hasn't been inserted yet; insert it here. 10764 MachineBasicBlock *JumpMBB = JT->MBB; 10765 CurMF->insert(BBI, JumpMBB); 10766 10767 auto JumpProb = I->Prob; 10768 auto FallthroughProb = UnhandledProbs; 10769 10770 // If the default statement is a target of the jump table, we evenly 10771 // distribute the default probability to successors of CurMBB. Also 10772 // update the probability on the edge from JumpMBB to Fallthrough. 10773 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10774 SE = JumpMBB->succ_end(); 10775 SI != SE; ++SI) { 10776 if (*SI == DefaultMBB) { 10777 JumpProb += DefaultProb / 2; 10778 FallthroughProb -= DefaultProb / 2; 10779 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10780 JumpMBB->normalizeSuccProbs(); 10781 break; 10782 } 10783 } 10784 10785 if (FallthroughUnreachable) 10786 JTH->FallthroughUnreachable = true; 10787 10788 if (!JTH->FallthroughUnreachable) 10789 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10790 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10791 CurMBB->normalizeSuccProbs(); 10792 10793 // The jump table header will be inserted in our current block, do the 10794 // range check, and fall through to our fallthrough block. 10795 JTH->HeaderBB = CurMBB; 10796 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10797 10798 // If we're in the right place, emit the jump table header right now. 10799 if (CurMBB == SwitchMBB) { 10800 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10801 JTH->Emitted = true; 10802 } 10803 break; 10804 } 10805 case CC_BitTests: { 10806 // FIXME: Optimize away range check based on pivot comparisons. 10807 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10808 10809 // The bit test blocks haven't been inserted yet; insert them here. 10810 for (BitTestCase &BTC : BTB->Cases) 10811 CurMF->insert(BBI, BTC.ThisBB); 10812 10813 // Fill in fields of the BitTestBlock. 10814 BTB->Parent = CurMBB; 10815 BTB->Default = Fallthrough; 10816 10817 BTB->DefaultProb = UnhandledProbs; 10818 // If the cases in bit test don't form a contiguous range, we evenly 10819 // distribute the probability on the edge to Fallthrough to two 10820 // successors of CurMBB. 10821 if (!BTB->ContiguousRange) { 10822 BTB->Prob += DefaultProb / 2; 10823 BTB->DefaultProb -= DefaultProb / 2; 10824 } 10825 10826 if (FallthroughUnreachable) 10827 BTB->FallthroughUnreachable = true; 10828 10829 // If we're in the right place, emit the bit test header right now. 10830 if (CurMBB == SwitchMBB) { 10831 visitBitTestHeader(*BTB, SwitchMBB); 10832 BTB->Emitted = true; 10833 } 10834 break; 10835 } 10836 case CC_Range: { 10837 const Value *RHS, *LHS, *MHS; 10838 ISD::CondCode CC; 10839 if (I->Low == I->High) { 10840 // Check Cond == I->Low. 10841 CC = ISD::SETEQ; 10842 LHS = Cond; 10843 RHS=I->Low; 10844 MHS = nullptr; 10845 } else { 10846 // Check I->Low <= Cond <= I->High. 10847 CC = ISD::SETLE; 10848 LHS = I->Low; 10849 MHS = Cond; 10850 RHS = I->High; 10851 } 10852 10853 // If Fallthrough is unreachable, fold away the comparison. 10854 if (FallthroughUnreachable) 10855 CC = ISD::SETTRUE; 10856 10857 // The false probability is the sum of all unhandled cases. 10858 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10859 getCurSDLoc(), I->Prob, UnhandledProbs); 10860 10861 if (CurMBB == SwitchMBB) 10862 visitSwitchCase(CB, SwitchMBB); 10863 else 10864 SL->SwitchCases.push_back(CB); 10865 10866 break; 10867 } 10868 } 10869 CurMBB = Fallthrough; 10870 } 10871 } 10872 10873 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10874 CaseClusterIt First, 10875 CaseClusterIt Last) { 10876 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10877 if (X.Prob != CC.Prob) 10878 return X.Prob > CC.Prob; 10879 10880 // Ties are broken by comparing the case value. 10881 return X.Low->getValue().slt(CC.Low->getValue()); 10882 }); 10883 } 10884 10885 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10886 const SwitchWorkListItem &W, 10887 Value *Cond, 10888 MachineBasicBlock *SwitchMBB) { 10889 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10890 "Clusters not sorted?"); 10891 10892 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10893 10894 // Balance the tree based on branch probabilities to create a near-optimal (in 10895 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10896 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10897 CaseClusterIt LastLeft = W.FirstCluster; 10898 CaseClusterIt FirstRight = W.LastCluster; 10899 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10900 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10901 10902 // Move LastLeft and FirstRight towards each other from opposite directions to 10903 // find a partitioning of the clusters which balances the probability on both 10904 // sides. If LeftProb and RightProb are equal, alternate which side is 10905 // taken to ensure 0-probability nodes are distributed evenly. 10906 unsigned I = 0; 10907 while (LastLeft + 1 < FirstRight) { 10908 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10909 LeftProb += (++LastLeft)->Prob; 10910 else 10911 RightProb += (--FirstRight)->Prob; 10912 I++; 10913 } 10914 10915 while (true) { 10916 // Our binary search tree differs from a typical BST in that ours can have up 10917 // to three values in each leaf. The pivot selection above doesn't take that 10918 // into account, which means the tree might require more nodes and be less 10919 // efficient. We compensate for this here. 10920 10921 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10922 unsigned NumRight = W.LastCluster - FirstRight + 1; 10923 10924 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10925 // If one side has less than 3 clusters, and the other has more than 3, 10926 // consider taking a cluster from the other side. 10927 10928 if (NumLeft < NumRight) { 10929 // Consider moving the first cluster on the right to the left side. 10930 CaseCluster &CC = *FirstRight; 10931 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10932 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10933 if (LeftSideRank <= RightSideRank) { 10934 // Moving the cluster to the left does not demote it. 10935 ++LastLeft; 10936 ++FirstRight; 10937 continue; 10938 } 10939 } else { 10940 assert(NumRight < NumLeft); 10941 // Consider moving the last element on the left to the right side. 10942 CaseCluster &CC = *LastLeft; 10943 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10944 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10945 if (RightSideRank <= LeftSideRank) { 10946 // Moving the cluster to the right does not demot it. 10947 --LastLeft; 10948 --FirstRight; 10949 continue; 10950 } 10951 } 10952 } 10953 break; 10954 } 10955 10956 assert(LastLeft + 1 == FirstRight); 10957 assert(LastLeft >= W.FirstCluster); 10958 assert(FirstRight <= W.LastCluster); 10959 10960 // Use the first element on the right as pivot since we will make less-than 10961 // comparisons against it. 10962 CaseClusterIt PivotCluster = FirstRight; 10963 assert(PivotCluster > W.FirstCluster); 10964 assert(PivotCluster <= W.LastCluster); 10965 10966 CaseClusterIt FirstLeft = W.FirstCluster; 10967 CaseClusterIt LastRight = W.LastCluster; 10968 10969 const ConstantInt *Pivot = PivotCluster->Low; 10970 10971 // New blocks will be inserted immediately after the current one. 10972 MachineFunction::iterator BBI(W.MBB); 10973 ++BBI; 10974 10975 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10976 // we can branch to its destination directly if it's squeezed exactly in 10977 // between the known lower bound and Pivot - 1. 10978 MachineBasicBlock *LeftMBB; 10979 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10980 FirstLeft->Low == W.GE && 10981 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10982 LeftMBB = FirstLeft->MBB; 10983 } else { 10984 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10985 FuncInfo.MF->insert(BBI, LeftMBB); 10986 WorkList.push_back( 10987 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10988 // Put Cond in a virtual register to make it available from the new blocks. 10989 ExportFromCurrentBlock(Cond); 10990 } 10991 10992 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10993 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10994 // directly if RHS.High equals the current upper bound. 10995 MachineBasicBlock *RightMBB; 10996 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10997 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10998 RightMBB = FirstRight->MBB; 10999 } else { 11000 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11001 FuncInfo.MF->insert(BBI, RightMBB); 11002 WorkList.push_back( 11003 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11004 // Put Cond in a virtual register to make it available from the new blocks. 11005 ExportFromCurrentBlock(Cond); 11006 } 11007 11008 // Create the CaseBlock record that will be used to lower the branch. 11009 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11010 getCurSDLoc(), LeftProb, RightProb); 11011 11012 if (W.MBB == SwitchMBB) 11013 visitSwitchCase(CB, SwitchMBB); 11014 else 11015 SL->SwitchCases.push_back(CB); 11016 } 11017 11018 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11019 // from the swith statement. 11020 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11021 BranchProbability PeeledCaseProb) { 11022 if (PeeledCaseProb == BranchProbability::getOne()) 11023 return BranchProbability::getZero(); 11024 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11025 11026 uint32_t Numerator = CaseProb.getNumerator(); 11027 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11028 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11029 } 11030 11031 // Try to peel the top probability case if it exceeds the threshold. 11032 // Return current MachineBasicBlock for the switch statement if the peeling 11033 // does not occur. 11034 // If the peeling is performed, return the newly created MachineBasicBlock 11035 // for the peeled switch statement. Also update Clusters to remove the peeled 11036 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11037 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11038 const SwitchInst &SI, CaseClusterVector &Clusters, 11039 BranchProbability &PeeledCaseProb) { 11040 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11041 // Don't perform if there is only one cluster or optimizing for size. 11042 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11043 TM.getOptLevel() == CodeGenOpt::None || 11044 SwitchMBB->getParent()->getFunction().hasMinSize()) 11045 return SwitchMBB; 11046 11047 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11048 unsigned PeeledCaseIndex = 0; 11049 bool SwitchPeeled = false; 11050 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11051 CaseCluster &CC = Clusters[Index]; 11052 if (CC.Prob < TopCaseProb) 11053 continue; 11054 TopCaseProb = CC.Prob; 11055 PeeledCaseIndex = Index; 11056 SwitchPeeled = true; 11057 } 11058 if (!SwitchPeeled) 11059 return SwitchMBB; 11060 11061 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11062 << TopCaseProb << "\n"); 11063 11064 // Record the MBB for the peeled switch statement. 11065 MachineFunction::iterator BBI(SwitchMBB); 11066 ++BBI; 11067 MachineBasicBlock *PeeledSwitchMBB = 11068 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11069 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11070 11071 ExportFromCurrentBlock(SI.getCondition()); 11072 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11073 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11074 nullptr, nullptr, TopCaseProb.getCompl()}; 11075 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11076 11077 Clusters.erase(PeeledCaseIt); 11078 for (CaseCluster &CC : Clusters) { 11079 LLVM_DEBUG( 11080 dbgs() << "Scale the probablity for one cluster, before scaling: " 11081 << CC.Prob << "\n"); 11082 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11083 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11084 } 11085 PeeledCaseProb = TopCaseProb; 11086 return PeeledSwitchMBB; 11087 } 11088 11089 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11090 // Extract cases from the switch. 11091 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11092 CaseClusterVector Clusters; 11093 Clusters.reserve(SI.getNumCases()); 11094 for (auto I : SI.cases()) { 11095 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11096 const ConstantInt *CaseVal = I.getCaseValue(); 11097 BranchProbability Prob = 11098 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11099 : BranchProbability(1, SI.getNumCases() + 1); 11100 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11101 } 11102 11103 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11104 11105 // Cluster adjacent cases with the same destination. We do this at all 11106 // optimization levels because it's cheap to do and will make codegen faster 11107 // if there are many clusters. 11108 sortAndRangeify(Clusters); 11109 11110 // The branch probablity of the peeled case. 11111 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11112 MachineBasicBlock *PeeledSwitchMBB = 11113 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11114 11115 // If there is only the default destination, jump there directly. 11116 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11117 if (Clusters.empty()) { 11118 assert(PeeledSwitchMBB == SwitchMBB); 11119 SwitchMBB->addSuccessor(DefaultMBB); 11120 if (DefaultMBB != NextBlock(SwitchMBB)) { 11121 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11122 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11123 } 11124 return; 11125 } 11126 11127 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11128 SL->findBitTestClusters(Clusters, &SI); 11129 11130 LLVM_DEBUG({ 11131 dbgs() << "Case clusters: "; 11132 for (const CaseCluster &C : Clusters) { 11133 if (C.Kind == CC_JumpTable) 11134 dbgs() << "JT:"; 11135 if (C.Kind == CC_BitTests) 11136 dbgs() << "BT:"; 11137 11138 C.Low->getValue().print(dbgs(), true); 11139 if (C.Low != C.High) { 11140 dbgs() << '-'; 11141 C.High->getValue().print(dbgs(), true); 11142 } 11143 dbgs() << ' '; 11144 } 11145 dbgs() << '\n'; 11146 }); 11147 11148 assert(!Clusters.empty()); 11149 SwitchWorkList WorkList; 11150 CaseClusterIt First = Clusters.begin(); 11151 CaseClusterIt Last = Clusters.end() - 1; 11152 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11153 // Scale the branchprobability for DefaultMBB if the peel occurs and 11154 // DefaultMBB is not replaced. 11155 if (PeeledCaseProb != BranchProbability::getZero() && 11156 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11157 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11158 WorkList.push_back( 11159 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11160 11161 while (!WorkList.empty()) { 11162 SwitchWorkListItem W = WorkList.pop_back_val(); 11163 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11164 11165 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11166 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11167 // For optimized builds, lower large range as a balanced binary tree. 11168 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11169 continue; 11170 } 11171 11172 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11173 } 11174 } 11175 11176 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11178 auto DL = getCurSDLoc(); 11179 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11180 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11181 } 11182 11183 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11185 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11186 11187 SDLoc DL = getCurSDLoc(); 11188 SDValue V = getValue(I.getOperand(0)); 11189 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11190 11191 if (VT.isScalableVector()) { 11192 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11193 return; 11194 } 11195 11196 // Use VECTOR_SHUFFLE for the fixed-length vector 11197 // to maintain existing behavior. 11198 SmallVector<int, 8> Mask; 11199 unsigned NumElts = VT.getVectorMinNumElements(); 11200 for (unsigned i = 0; i != NumElts; ++i) 11201 Mask.push_back(NumElts - 1 - i); 11202 11203 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11204 } 11205 11206 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11207 SmallVector<EVT, 4> ValueVTs; 11208 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11209 ValueVTs); 11210 unsigned NumValues = ValueVTs.size(); 11211 if (NumValues == 0) return; 11212 11213 SmallVector<SDValue, 4> Values(NumValues); 11214 SDValue Op = getValue(I.getOperand(0)); 11215 11216 for (unsigned i = 0; i != NumValues; ++i) 11217 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11218 SDValue(Op.getNode(), Op.getResNo() + i)); 11219 11220 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11221 DAG.getVTList(ValueVTs), Values)); 11222 } 11223 11224 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11226 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11227 11228 SDLoc DL = getCurSDLoc(); 11229 SDValue V1 = getValue(I.getOperand(0)); 11230 SDValue V2 = getValue(I.getOperand(1)); 11231 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11232 11233 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11234 if (VT.isScalableVector()) { 11235 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11236 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11237 DAG.getConstant(Imm, DL, IdxVT))); 11238 return; 11239 } 11240 11241 unsigned NumElts = VT.getVectorNumElements(); 11242 11243 uint64_t Idx = (NumElts + Imm) % NumElts; 11244 11245 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11246 SmallVector<int, 8> Mask; 11247 for (unsigned i = 0; i < NumElts; ++i) 11248 Mask.push_back(Idx + i); 11249 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11250 } 11251