1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstddef> 116 #include <cstdint> 117 #include <cstring> 118 #include <iterator> 119 #include <limits> 120 #include <numeric> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace PatternMatch; 127 using namespace SwitchCG; 128 129 #define DEBUG_TYPE "isel" 130 131 /// LimitFloatPrecision - Generate low-precision inline sequences for 132 /// some float libcalls (6, 8 or 12 bits). 133 static unsigned LimitFloatPrecision; 134 135 static cl::opt<unsigned, true> 136 LimitFPPrecision("limit-float-precision", 137 cl::desc("Generate low-precision inline sequences " 138 "for some float libcalls"), 139 cl::location(LimitFloatPrecision), cl::Hidden, 140 cl::init(0)); 141 142 static cl::opt<unsigned> SwitchPeelThreshold( 143 "switch-peel-threshold", cl::Hidden, cl::init(66), 144 cl::desc("Set the case probability threshold for peeling the case from a " 145 "switch statement. A value greater than 100 will void this " 146 "optimization")); 147 148 // Limit the width of DAG chains. This is important in general to prevent 149 // DAG-based analysis from blowing up. For example, alias analysis and 150 // load clustering may not complete in reasonable time. It is difficult to 151 // recognize and avoid this situation within each individual analysis, and 152 // future analyses are likely to have the same behavior. Limiting DAG width is 153 // the safe approach and will be especially important with global DAGs. 154 // 155 // MaxParallelChains default is arbitrarily high to avoid affecting 156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 157 // sequence over this should have been converted to llvm.memcpy by the 158 // frontend. It is easy to induce this behavior with .ll code such as: 159 // %buffer = alloca [4096 x i8] 160 // %data = load [4096 x i8]* %argPtr 161 // store [4096 x i8] %data, [4096 x i8]* %buffer 162 static const unsigned MaxParallelChains = 64; 163 164 // Return the calling convention if the Value passed requires ABI mangling as it 165 // is a parameter to a function or a return value from a function which is not 166 // an intrinsic. 167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 168 if (auto *R = dyn_cast<ReturnInst>(V)) 169 return R->getParent()->getParent()->getCallingConv(); 170 171 if (auto *CI = dyn_cast<CallInst>(V)) { 172 const bool IsInlineAsm = CI->isInlineAsm(); 173 const bool IsIndirectFunctionCall = 174 !IsInlineAsm && !CI->getCalledFunction(); 175 176 // It is possible that the call instruction is an inline asm statement or an 177 // indirect function call in which case the return value of 178 // getCalledFunction() would be nullptr. 179 const bool IsInstrinsicCall = 180 !IsInlineAsm && !IsIndirectFunctionCall && 181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 182 183 if (!IsInlineAsm && !IsInstrinsicCall) 184 return CI->getCallingConv(); 185 } 186 187 return None; 188 } 189 190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<CallingConv::ID> CC); 194 195 /// getCopyFromParts - Create a value that contains the specified legal parts 196 /// combined into the value they represent. If the parts combine to a type 197 /// larger than ValueVT then AssertOp can be used to specify whether the extra 198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 199 /// (ISD::AssertSext). 200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 201 const SDValue *Parts, unsigned NumParts, 202 MVT PartVT, EVT ValueVT, const Value *V, 203 Optional<CallingConv::ID> CC = None, 204 Optional<ISD::NodeType> AssertOp = None) { 205 if (ValueVT.isVector()) 206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 207 CC); 208 209 assert(NumParts > 0 && "No parts to assemble!"); 210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 211 SDValue Val = Parts[0]; 212 213 if (NumParts > 1) { 214 // Assemble the value from multiple parts. 215 if (ValueVT.isInteger()) { 216 unsigned PartBits = PartVT.getSizeInBits(); 217 unsigned ValueBits = ValueVT.getSizeInBits(); 218 219 // Assemble the power of 2 part. 220 unsigned RoundParts = 221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 222 unsigned RoundBits = PartBits * RoundParts; 223 EVT RoundVT = RoundBits == ValueBits ? 224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 225 SDValue Lo, Hi; 226 227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 228 229 if (RoundParts > 2) { 230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 231 PartVT, HalfVT, V); 232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 233 RoundParts / 2, PartVT, HalfVT, V); 234 } else { 235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 237 } 238 239 if (DAG.getDataLayout().isBigEndian()) 240 std::swap(Lo, Hi); 241 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 243 244 if (RoundParts < NumParts) { 245 // Assemble the trailing non-power-of-2 part. 246 unsigned OddParts = NumParts - RoundParts; 247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 249 OddVT, V, CC); 250 251 // Combine the round and odd parts. 252 Lo = Val; 253 if (DAG.getDataLayout().isBigEndian()) 254 std::swap(Lo, Hi); 255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 257 Hi = 258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 259 DAG.getConstant(Lo.getValueSizeInBits(), DL, 260 TLI.getPointerTy(DAG.getDataLayout()))); 261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 263 } 264 } else if (PartVT.isFloatingPoint()) { 265 // FP split into multiple FP parts (for ppcf128) 266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 267 "Unexpected split"); 268 SDValue Lo, Hi; 269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 272 std::swap(Lo, Hi); 273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 274 } else { 275 // FP split into integer parts (soft fp) 276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 277 !PartVT.isVector() && "Unexpected split"); 278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 280 } 281 } 282 283 // There is now one part, held in Val. Correct it to match ValueVT. 284 // PartEVT is the type of the register class that holds the value. 285 // ValueVT is the type of the inline asm operation. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 292 ValueVT.bitsLT(PartEVT)) { 293 // For an FP value in an integer part, we need to truncate to the right 294 // width first. 295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 297 } 298 299 // Handle types that have the same size. 300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 302 303 // Handle types with different sizes. 304 if (PartEVT.isInteger() && ValueVT.isInteger()) { 305 if (ValueVT.bitsLT(PartEVT)) { 306 // For a truncate, see if we have any information to 307 // indicate whether the truncated bits will always be 308 // zero or sign-extension. 309 if (AssertOp.hasValue()) 310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 311 DAG.getValueType(ValueVT)); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 315 } 316 317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 318 // FP_ROUND's are always exact here. 319 if (ValueVT.bitsLT(Val.getValueType())) 320 return DAG.getNode( 321 ISD::FP_ROUND, DL, ValueVT, Val, 322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 323 324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 325 } 326 327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 328 // then truncating. 329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 330 ValueVT.bitsLT(PartEVT)) { 331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 336 } 337 338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 339 const Twine &ErrMsg) { 340 const Instruction *I = dyn_cast_or_null<Instruction>(V); 341 if (!V) 342 return Ctx.emitError(ErrMsg); 343 344 const char *AsmError = ", possible invalid constraint for vector type"; 345 if (const CallInst *CI = dyn_cast<CallInst>(I)) 346 if (isa<InlineAsm>(CI->getCalledValue())) 347 return Ctx.emitError(I, ErrMsg + AsmError); 348 349 return Ctx.emitError(I, ErrMsg); 350 } 351 352 /// getCopyFromPartsVector - Create a value that contains the specified legal 353 /// parts combined into the value they represent. If the parts combine to a 354 /// type larger than ValueVT then AssertOp can be used to specify whether the 355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 356 /// ValueVT (ISD::AssertSext). 357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 358 const SDValue *Parts, unsigned NumParts, 359 MVT PartVT, EVT ValueVT, const Value *V, 360 Optional<CallingConv::ID> CallConv) { 361 assert(ValueVT.isVector() && "Not a vector value"); 362 assert(NumParts > 0 && "No parts to assemble!"); 363 const bool IsABIRegCopy = CallConv.hasValue(); 364 365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 366 SDValue Val = Parts[0]; 367 368 // Handle a multi-element vector. 369 if (NumParts > 1) { 370 EVT IntermediateVT; 371 MVT RegisterVT; 372 unsigned NumIntermediates; 373 unsigned NumRegs; 374 375 if (IsABIRegCopy) { 376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 378 NumIntermediates, RegisterVT); 379 } else { 380 NumRegs = 381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } 384 385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 386 NumParts = NumRegs; // Silence a compiler warning. 387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 388 assert(RegisterVT.getSizeInBits() == 389 Parts[0].getSimpleValueType().getSizeInBits() && 390 "Part type sizes don't match!"); 391 392 // Assemble the parts into intermediate operands. 393 SmallVector<SDValue, 8> Ops(NumIntermediates); 394 if (NumIntermediates == NumParts) { 395 // If the register was not expanded, truncate or copy the value, 396 // as appropriate. 397 for (unsigned i = 0; i != NumParts; ++i) 398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 399 PartVT, IntermediateVT, V); 400 } else if (NumParts > 0) { 401 // If the intermediate type was expanded, build the intermediate 402 // operands from the parts. 403 assert(NumParts % NumIntermediates == 0 && 404 "Must expand into a divisible number of parts!"); 405 unsigned Factor = NumParts / NumIntermediates; 406 for (unsigned i = 0; i != NumIntermediates; ++i) 407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 408 PartVT, IntermediateVT, V); 409 } 410 411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 412 // intermediate operands. 413 EVT BuiltVectorTy = 414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 415 (IntermediateVT.isVector() 416 ? IntermediateVT.getVectorNumElements() * NumParts 417 : NumIntermediates)); 418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 419 : ISD::BUILD_VECTOR, 420 DL, BuiltVectorTy, Ops); 421 } 422 423 // There is now one part, held in Val. Correct it to match ValueVT. 424 EVT PartEVT = Val.getValueType(); 425 426 if (PartEVT == ValueVT) 427 return Val; 428 429 if (PartEVT.isVector()) { 430 // If the element type of the source/dest vectors are the same, but the 431 // parts vector has more elements than the value vector, then we have a 432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 433 // elements we want. 434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 436 "Cannot narrow, it would be a lossy transformation"); 437 return DAG.getNode( 438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 440 } 441 442 // Vector/Vector bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 447 "Cannot handle this kind of promotion"); 448 // Promoted vector extract 449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 450 451 } 452 453 // Trivial bitcast if the types are the same size and the destination 454 // vector type is legal. 455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 456 TLI.isTypeLegal(ValueVT)) 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 459 if (ValueVT.getVectorNumElements() != 1) { 460 // Certain ABIs require that vectors are passed as integers. For vectors 461 // are the same size, this is an obvious bitcast. 462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 465 // Bitcast Val back the original type and extract the corresponding 466 // vector we want. 467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 469 ValueVT.getVectorElementType(), Elts); 470 Val = DAG.getBitcast(WiderVecType, Val); 471 return DAG.getNode( 472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 474 } 475 476 diagnosePossiblyInvalidConstraint( 477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 478 return DAG.getUNDEF(ValueVT); 479 } 480 481 // Handle cases such as i8 -> <1 x i1> 482 EVT ValueSVT = ValueVT.getVectorElementType(); 483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 486 487 return DAG.getBuildVector(ValueVT, DL, Val); 488 } 489 490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 491 SDValue Val, SDValue *Parts, unsigned NumParts, 492 MVT PartVT, const Value *V, 493 Optional<CallingConv::ID> CallConv); 494 495 /// getCopyToParts - Create a series of nodes that contain the specified value 496 /// split into legal parts. If the parts contain more bits than Val, then, for 497 /// integers, ExtendKind can be used to specify how to generate the extra bits. 498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 499 SDValue *Parts, unsigned NumParts, MVT PartVT, 500 const Value *V, 501 Optional<CallingConv::ID> CallConv = None, 502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 503 EVT ValueVT = Val.getValueType(); 504 505 // Handle the vector case separately. 506 if (ValueVT.isVector()) 507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 508 CallConv); 509 510 unsigned PartBits = PartVT.getSizeInBits(); 511 unsigned OrigNumParts = NumParts; 512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 513 "Copying to an illegal type!"); 514 515 if (NumParts == 0) 516 return; 517 518 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 assert(NumParts == 1 && "No-op copy with multiple parts!"); 522 Parts[0] = Val; 523 return; 524 } 525 526 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 527 // If the parts cover more bits than the value has, promote the value. 528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 529 assert(NumParts == 1 && "Do not know what to promote to!"); 530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 531 } else { 532 if (ValueVT.isFloatingPoint()) { 533 // FP values need to be bitcast, then extended if they are being put 534 // into a larger container. 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 537 } 538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 539 ValueVT.isInteger() && 540 "Unknown mismatch!"); 541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 543 if (PartVT == MVT::x86mmx) 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } 546 } else if (PartBits == ValueVT.getSizeInBits()) { 547 // Different types of the same size. 548 assert(NumParts == 1 && PartEVT != ValueVT); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 551 // If the parts cover less bits than value has, truncate the value. 552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 553 ValueVT.isInteger() && 554 "Unknown mismatch!"); 555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 557 if (PartVT == MVT::x86mmx) 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 // The value may have changed - recompute ValueVT. 562 ValueVT = Val.getValueType(); 563 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 564 "Failed to tile the value with PartVT!"); 565 566 if (NumParts == 1) { 567 if (PartEVT != ValueVT) { 568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 569 "scalar-to-vector conversion failed"); 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 Parts[0] = Val; 574 return; 575 } 576 577 // Expand the value into multiple parts. 578 if (NumParts & (NumParts - 1)) { 579 // The number of parts is not a power of 2. Split off and copy the tail. 580 assert(PartVT.isInteger() && ValueVT.isInteger() && 581 "Do not know what to expand to!"); 582 unsigned RoundParts = 1 << Log2_32(NumParts); 583 unsigned RoundBits = RoundParts * PartBits; 584 unsigned OddParts = NumParts - RoundParts; 585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 587 588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 589 CallConv); 590 591 if (DAG.getDataLayout().isBigEndian()) 592 // The odd parts were reversed by getCopyToParts - unreverse them. 593 std::reverse(Parts + RoundParts, Parts + NumParts); 594 595 NumParts = RoundParts; 596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 598 } 599 600 // The number of parts is a power of 2. Repeatedly bisect the value using 601 // EXTRACT_ELEMENT. 602 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 603 EVT::getIntegerVT(*DAG.getContext(), 604 ValueVT.getSizeInBits()), 605 Val); 606 607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 608 for (unsigned i = 0; i < NumParts; i += StepSize) { 609 unsigned ThisBits = StepSize * PartBits / 2; 610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 611 SDValue &Part0 = Parts[i]; 612 SDValue &Part1 = Parts[i+StepSize/2]; 613 614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 618 619 if (ThisBits == PartBits && ThisVT != PartVT) { 620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 622 } 623 } 624 } 625 626 if (DAG.getDataLayout().isBigEndian()) 627 std::reverse(Parts, Parts + OrigNumParts); 628 } 629 630 static SDValue widenVectorToPartType(SelectionDAG &DAG, 631 SDValue Val, const SDLoc &DL, EVT PartVT) { 632 if (!PartVT.isVector()) 633 return SDValue(); 634 635 EVT ValueVT = Val.getValueType(); 636 unsigned PartNumElts = PartVT.getVectorNumElements(); 637 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 638 if (PartNumElts > ValueNumElts && 639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 640 EVT ElementVT = PartVT.getVectorElementType(); 641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 642 // undef elements. 643 SmallVector<SDValue, 16> Ops; 644 DAG.ExtractVectorElements(Val, Ops); 645 SDValue EltUndef = DAG.getUNDEF(ElementVT); 646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 647 Ops.push_back(EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 return SDValue(); 654 } 655 656 /// getCopyToPartsVector - Create a series of nodes that contain the specified 657 /// value split into legal parts. 658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 659 SDValue Val, SDValue *Parts, unsigned NumParts, 660 MVT PartVT, const Value *V, 661 Optional<CallingConv::ID> CallConv) { 662 EVT ValueVT = Val.getValueType(); 663 assert(ValueVT.isVector() && "Not a vector"); 664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 665 const bool IsABIRegCopy = CallConv.hasValue(); 666 667 if (NumParts == 1) { 668 EVT PartEVT = PartVT; 669 if (PartEVT == ValueVT) { 670 // Nothing to do. 671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 672 // Bitconvert vector->vector case. 673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 675 Val = Widened; 676 } else if (PartVT.isVector() && 677 PartEVT.getVectorElementType().bitsGE( 678 ValueVT.getVectorElementType()) && 679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 680 681 // Promoted vector extract 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } else { 684 if (ValueVT.getVectorNumElements() == 1) { 685 Val = DAG.getNode( 686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 688 } else { 689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 690 "lossy conversion of vector to scalar type"); 691 EVT IntermediateType = 692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 693 Val = DAG.getBitcast(IntermediateType, Val); 694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 695 } 696 } 697 698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 699 Parts[0] = Val; 700 return; 701 } 702 703 // Handle a multi-element vector. 704 EVT IntermediateVT; 705 MVT RegisterVT; 706 unsigned NumIntermediates; 707 unsigned NumRegs; 708 if (IsABIRegCopy) { 709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } else { 713 NumRegs = 714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } 717 718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 719 NumParts = NumRegs; // Silence a compiler warning. 720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 721 722 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 723 IntermediateVT.getVectorNumElements() : 1; 724 725 // Convert the vector to the appropiate type if necessary. 726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 731 if (ValueVT != BuiltVectorTy) { 732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 733 Val = Widened; 734 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } 737 738 // Split the vector into intermediate operands. 739 SmallVector<SDValue, 8> Ops(NumIntermediates); 740 for (unsigned i = 0; i != NumIntermediates; ++i) { 741 if (IntermediateVT.isVector()) { 742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 744 } else { 745 Ops[i] = DAG.getNode( 746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 747 DAG.getConstant(i, DL, IdxVT)); 748 } 749 } 750 751 // Split the intermediate operands into legal parts. 752 if (NumParts == NumIntermediates) { 753 // If the register was not expanded, promote or copy the value, 754 // as appropriate. 755 for (unsigned i = 0; i != NumParts; ++i) 756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 757 } else if (NumParts > 0) { 758 // If the intermediate type was expanded, split each the value into 759 // legal parts. 760 assert(NumIntermediates != 0 && "division by zero"); 761 assert(NumParts % NumIntermediates == 0 && 762 "Must expand into a divisible number of parts!"); 763 unsigned Factor = NumParts / NumIntermediates; 764 for (unsigned i = 0; i != NumIntermediates; ++i) 765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 766 CallConv); 767 } 768 } 769 770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 771 EVT valuevt, Optional<CallingConv::ID> CC) 772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 773 RegCount(1, regs.size()), CallConv(CC) {} 774 775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 776 const DataLayout &DL, unsigned Reg, Type *Ty, 777 Optional<CallingConv::ID> CC) { 778 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 779 780 CallConv = CC; 781 782 for (EVT ValueVT : ValueVTs) { 783 unsigned NumRegs = 784 isABIMangled() 785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 786 : TLI.getNumRegisters(Context, ValueVT); 787 MVT RegisterVT = 788 isABIMangled() 789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getRegisterType(Context, ValueVT); 791 for (unsigned i = 0; i != NumRegs; ++i) 792 Regs.push_back(Reg + i); 793 RegVTs.push_back(RegisterVT); 794 RegCount.push_back(NumRegs); 795 Reg += NumRegs; 796 } 797 } 798 799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 800 FunctionLoweringInfo &FuncInfo, 801 const SDLoc &dl, SDValue &Chain, 802 SDValue *Flag, const Value *V) const { 803 // A Value with type {} or [0 x %t] needs no registers. 804 if (ValueVTs.empty()) 805 return SDValue(); 806 807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 808 809 // Assemble the legal parts into the final values. 810 SmallVector<SDValue, 4> Values(ValueVTs.size()); 811 SmallVector<SDValue, 8> Parts; 812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 // Copy the legal parts from the registers. 814 EVT ValueVT = ValueVTs[Value]; 815 unsigned NumRegs = RegCount[Value]; 816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 817 *DAG.getContext(), 818 CallConv.getValue(), RegVTs[Value]) 819 : RegVTs[Value]; 820 821 Parts.resize(NumRegs); 822 for (unsigned i = 0; i != NumRegs; ++i) { 823 SDValue P; 824 if (!Flag) { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 826 } else { 827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 828 *Flag = P.getValue(2); 829 } 830 831 Chain = P.getValue(1); 832 Parts[i] = P; 833 834 // If the source register was virtual and if we know something about it, 835 // add an assert node. 836 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 837 !RegisterVT.isInteger()) 838 continue; 839 840 const FunctionLoweringInfo::LiveOutInfo *LOI = 841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 842 if (!LOI) 843 continue; 844 845 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 846 unsigned NumSignBits = LOI->NumSignBits; 847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 848 849 if (NumZeroBits == RegSize) { 850 // The current value is a zero. 851 // Explicitly express that as it would be easier for 852 // optimizations to kick in. 853 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 854 continue; 855 } 856 857 // FIXME: We capture more information than the dag can represent. For 858 // now, just use the tightest assertzext/assertsext possible. 859 bool isSExt; 860 EVT FromVT(MVT::Other); 861 if (NumZeroBits) { 862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 863 isSExt = false; 864 } else if (NumSignBits > 1) { 865 FromVT = 866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 867 isSExt = true; 868 } else { 869 continue; 870 } 871 // Add an assertion node. 872 assert(FromVT != MVT::Other); 873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 874 RegisterVT, P, DAG.getValueType(FromVT)); 875 } 876 877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 878 RegisterVT, ValueVT, V, CallConv); 879 Part += NumRegs; 880 Parts.clear(); 881 } 882 883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 884 } 885 886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 887 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 888 const Value *V, 889 ISD::NodeType PreferredExtendType) const { 890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 891 ISD::NodeType ExtendKind = PreferredExtendType; 892 893 // Get the list of the values's legal parts. 894 unsigned NumRegs = Regs.size(); 895 SmallVector<SDValue, 8> Parts(NumRegs); 896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 897 unsigned NumParts = RegCount[Value]; 898 899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 900 *DAG.getContext(), 901 CallConv.getValue(), RegVTs[Value]) 902 : RegVTs[Value]; 903 904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 905 ExtendKind = ISD::ZERO_EXTEND; 906 907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 908 NumParts, RegisterVT, V, CallConv, ExtendKind); 909 Part += NumParts; 910 } 911 912 // Copy the parts into the registers. 913 SmallVector<SDValue, 8> Chains(NumRegs); 914 for (unsigned i = 0; i != NumRegs; ++i) { 915 SDValue Part; 916 if (!Flag) { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 918 } else { 919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 920 *Flag = Part.getValue(1); 921 } 922 923 Chains[i] = Part.getValue(0); 924 } 925 926 if (NumRegs == 1 || Flag) 927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 928 // flagged to it. That is the CopyToReg nodes and the user are considered 929 // a single scheduling unit. If we create a TokenFactor and return it as 930 // chain, then the TokenFactor is both a predecessor (operand) of the 931 // user as well as a successor (the TF operands are flagged to the user). 932 // c1, f1 = CopyToReg 933 // c2, f2 = CopyToReg 934 // c3 = TokenFactor c1, c2 935 // ... 936 // = op c3, ..., f2 937 Chain = Chains[NumRegs-1]; 938 else 939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 940 } 941 942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 943 unsigned MatchingIdx, const SDLoc &dl, 944 SelectionDAG &DAG, 945 std::vector<SDValue> &Ops) const { 946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 947 948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 949 if (HasMatching) 950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 951 else if (!Regs.empty() && 952 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 953 // Put the register class of the virtual registers in the flag word. That 954 // way, later passes can recompute register class constraints for inline 955 // assembly as well as normal instructions. 956 // Don't do this for tied operands that can use the regclass information 957 // from the def. 958 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 959 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 960 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 961 } 962 963 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 964 Ops.push_back(Res); 965 966 if (Code == InlineAsm::Kind_Clobber) { 967 // Clobbers should always have a 1:1 mapping with registers, and may 968 // reference registers that have illegal (e.g. vector) types. Hence, we 969 // shouldn't try to apply any sort of splitting logic to them. 970 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 971 "No 1:1 mapping from clobbers to regs?"); 972 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 973 (void)SP; 974 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 975 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 976 assert( 977 (Regs[I] != SP || 978 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 979 "If we clobbered the stack pointer, MFI should know about it."); 980 } 981 return; 982 } 983 984 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 985 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 986 MVT RegisterVT = RegVTs[Value]; 987 for (unsigned i = 0; i != NumRegs; ++i) { 988 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 989 unsigned TheReg = Regs[Reg++]; 990 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 991 } 992 } 993 } 994 995 SmallVector<std::pair<unsigned, unsigned>, 4> 996 RegsForValue::getRegsAndSizes() const { 997 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 998 unsigned I = 0; 999 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1000 unsigned RegCount = std::get<0>(CountAndVT); 1001 MVT RegisterVT = std::get<1>(CountAndVT); 1002 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1003 for (unsigned E = I + RegCount; I != E; ++I) 1004 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1005 } 1006 return OutVec; 1007 } 1008 1009 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1010 const TargetLibraryInfo *li) { 1011 AA = aa; 1012 GFI = gfi; 1013 LibInfo = li; 1014 DL = &DAG.getDataLayout(); 1015 Context = DAG.getContext(); 1016 LPadToCallSiteMap.clear(); 1017 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1018 } 1019 1020 void SelectionDAGBuilder::clear() { 1021 NodeMap.clear(); 1022 UnusedArgNodeMap.clear(); 1023 PendingLoads.clear(); 1024 PendingExports.clear(); 1025 CurInst = nullptr; 1026 HasTailCall = false; 1027 SDNodeOrder = LowestSDNodeOrder; 1028 StatepointLowering.clear(); 1029 } 1030 1031 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1032 DanglingDebugInfoMap.clear(); 1033 } 1034 1035 SDValue SelectionDAGBuilder::getRoot() { 1036 if (PendingLoads.empty()) 1037 return DAG.getRoot(); 1038 1039 if (PendingLoads.size() == 1) { 1040 SDValue Root = PendingLoads[0]; 1041 DAG.setRoot(Root); 1042 PendingLoads.clear(); 1043 return Root; 1044 } 1045 1046 // Otherwise, we have to make a token factor node. 1047 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1048 PendingLoads.clear(); 1049 DAG.setRoot(Root); 1050 return Root; 1051 } 1052 1053 SDValue SelectionDAGBuilder::getControlRoot() { 1054 SDValue Root = DAG.getRoot(); 1055 1056 if (PendingExports.empty()) 1057 return Root; 1058 1059 // Turn all of the CopyToReg chains into one factored node. 1060 if (Root.getOpcode() != ISD::EntryToken) { 1061 unsigned i = 0, e = PendingExports.size(); 1062 for (; i != e; ++i) { 1063 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1064 if (PendingExports[i].getNode()->getOperand(0) == Root) 1065 break; // Don't add the root if we already indirectly depend on it. 1066 } 1067 1068 if (i == e) 1069 PendingExports.push_back(Root); 1070 } 1071 1072 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1073 PendingExports); 1074 PendingExports.clear(); 1075 DAG.setRoot(Root); 1076 return Root; 1077 } 1078 1079 void SelectionDAGBuilder::visit(const Instruction &I) { 1080 // Set up outgoing PHI node register values before emitting the terminator. 1081 if (I.isTerminator()) { 1082 HandlePHINodesInSuccessorBlocks(I.getParent()); 1083 } 1084 1085 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1086 if (!isa<DbgInfoIntrinsic>(I)) 1087 ++SDNodeOrder; 1088 1089 CurInst = &I; 1090 1091 visit(I.getOpcode(), I); 1092 1093 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1094 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1095 // maps to this instruction. 1096 // TODO: We could handle all flags (nsw, etc) here. 1097 // TODO: If an IR instruction maps to >1 node, only the final node will have 1098 // flags set. 1099 if (SDNode *Node = getNodeForIRValue(&I)) { 1100 SDNodeFlags IncomingFlags; 1101 IncomingFlags.copyFMF(*FPMO); 1102 if (!Node->getFlags().isDefined()) 1103 Node->setFlags(IncomingFlags); 1104 else 1105 Node->intersectFlagsWith(IncomingFlags); 1106 } 1107 } 1108 1109 if (!I.isTerminator() && !HasTailCall && 1110 !isStatepoint(&I)) // statepoints handle their exports internally 1111 CopyToExportRegsIfNeeded(&I); 1112 1113 CurInst = nullptr; 1114 } 1115 1116 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1117 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1118 } 1119 1120 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1121 // Note: this doesn't use InstVisitor, because it has to work with 1122 // ConstantExpr's in addition to instructions. 1123 switch (Opcode) { 1124 default: llvm_unreachable("Unknown instruction type encountered!"); 1125 // Build the switch statement using the Instruction.def file. 1126 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1127 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1128 #include "llvm/IR/Instruction.def" 1129 } 1130 } 1131 1132 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1133 const DIExpression *Expr) { 1134 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1135 const DbgValueInst *DI = DDI.getDI(); 1136 DIVariable *DanglingVariable = DI->getVariable(); 1137 DIExpression *DanglingExpr = DI->getExpression(); 1138 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1139 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1140 return true; 1141 } 1142 return false; 1143 }; 1144 1145 for (auto &DDIMI : DanglingDebugInfoMap) { 1146 DanglingDebugInfoVector &DDIV = DDIMI.second; 1147 1148 // If debug info is to be dropped, run it through final checks to see 1149 // whether it can be salvaged. 1150 for (auto &DDI : DDIV) 1151 if (isMatchingDbgValue(DDI)) 1152 salvageUnresolvedDbgValue(DDI); 1153 1154 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1155 } 1156 } 1157 1158 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1159 // generate the debug data structures now that we've seen its definition. 1160 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1161 SDValue Val) { 1162 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1163 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1164 return; 1165 1166 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1167 for (auto &DDI : DDIV) { 1168 const DbgValueInst *DI = DDI.getDI(); 1169 assert(DI && "Ill-formed DanglingDebugInfo"); 1170 DebugLoc dl = DDI.getdl(); 1171 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1172 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1173 DILocalVariable *Variable = DI->getVariable(); 1174 DIExpression *Expr = DI->getExpression(); 1175 assert(Variable->isValidLocationForIntrinsic(dl) && 1176 "Expected inlined-at fields to agree"); 1177 SDDbgValue *SDV; 1178 if (Val.getNode()) { 1179 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1180 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1181 // we couldn't resolve it directly when examining the DbgValue intrinsic 1182 // in the first place we should not be more successful here). Unless we 1183 // have some test case that prove this to be correct we should avoid 1184 // calling EmitFuncArgumentDbgValue here. 1185 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1186 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1187 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1188 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1189 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1190 // inserted after the definition of Val when emitting the instructions 1191 // after ISel. An alternative could be to teach 1192 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1193 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1194 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1195 << ValSDNodeOrder << "\n"); 1196 SDV = getDbgValue(Val, Variable, Expr, dl, 1197 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1198 DAG.AddDbgValue(SDV, Val.getNode(), false); 1199 } else 1200 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1201 << "in EmitFuncArgumentDbgValue\n"); 1202 } else { 1203 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1204 auto Undef = 1205 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1206 auto SDV = 1207 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1208 DAG.AddDbgValue(SDV, nullptr, false); 1209 } 1210 } 1211 DDIV.clear(); 1212 } 1213 1214 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1215 Value *V = DDI.getDI()->getValue(); 1216 DILocalVariable *Var = DDI.getDI()->getVariable(); 1217 DIExpression *Expr = DDI.getDI()->getExpression(); 1218 DebugLoc DL = DDI.getdl(); 1219 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1220 unsigned SDOrder = DDI.getSDNodeOrder(); 1221 1222 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1223 // that DW_OP_stack_value is desired. 1224 assert(isa<DbgValueInst>(DDI.getDI())); 1225 bool StackValue = true; 1226 1227 // Can this Value can be encoded without any further work? 1228 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1229 return; 1230 1231 // Attempt to salvage back through as many instructions as possible. Bail if 1232 // a non-instruction is seen, such as a constant expression or global 1233 // variable. FIXME: Further work could recover those too. 1234 while (isa<Instruction>(V)) { 1235 Instruction &VAsInst = *cast<Instruction>(V); 1236 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1237 1238 // If we cannot salvage any further, and haven't yet found a suitable debug 1239 // expression, bail out. 1240 if (!NewExpr) 1241 break; 1242 1243 // New value and expr now represent this debuginfo. 1244 V = VAsInst.getOperand(0); 1245 Expr = NewExpr; 1246 1247 // Some kind of simplification occurred: check whether the operand of the 1248 // salvaged debug expression can be encoded in this DAG. 1249 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1250 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1251 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1252 return; 1253 } 1254 } 1255 1256 // This was the final opportunity to salvage this debug information, and it 1257 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1258 // any earlier variable location. 1259 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1260 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1261 DAG.AddDbgValue(SDV, nullptr, false); 1262 1263 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1264 << "\n"); 1265 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1266 << "\n"); 1267 } 1268 1269 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1270 DIExpression *Expr, DebugLoc dl, 1271 DebugLoc InstDL, unsigned Order) { 1272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1273 SDDbgValue *SDV; 1274 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1275 isa<ConstantPointerNull>(V)) { 1276 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1277 DAG.AddDbgValue(SDV, nullptr, false); 1278 return true; 1279 } 1280 1281 // If the Value is a frame index, we can create a FrameIndex debug value 1282 // without relying on the DAG at all. 1283 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1284 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1285 if (SI != FuncInfo.StaticAllocaMap.end()) { 1286 auto SDV = 1287 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1288 /*IsIndirect*/ false, dl, SDNodeOrder); 1289 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1290 // is still available even if the SDNode gets optimized out. 1291 DAG.AddDbgValue(SDV, nullptr, false); 1292 return true; 1293 } 1294 } 1295 1296 // Do not use getValue() in here; we don't want to generate code at 1297 // this point if it hasn't been done yet. 1298 SDValue N = NodeMap[V]; 1299 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1300 N = UnusedArgNodeMap[V]; 1301 if (N.getNode()) { 1302 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1303 return true; 1304 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, N.getNode(), false); 1306 return true; 1307 } 1308 1309 // Special rules apply for the first dbg.values of parameter variables in a 1310 // function. Identify them by the fact they reference Argument Values, that 1311 // they're parameters, and they are parameters of the current function. We 1312 // need to let them dangle until they get an SDNode. 1313 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1314 !InstDL.getInlinedAt(); 1315 if (!IsParamOfFunc) { 1316 // The value is not used in this block yet (or it would have an SDNode). 1317 // We still want the value to appear for the user if possible -- if it has 1318 // an associated VReg, we can refer to that instead. 1319 auto VMI = FuncInfo.ValueMap.find(V); 1320 if (VMI != FuncInfo.ValueMap.end()) { 1321 unsigned Reg = VMI->second; 1322 // If this is a PHI node, it may be split up into several MI PHI nodes 1323 // (in FunctionLoweringInfo::set). 1324 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1325 V->getType(), None); 1326 if (RFV.occupiesMultipleRegs()) { 1327 unsigned Offset = 0; 1328 unsigned BitsToDescribe = 0; 1329 if (auto VarSize = Var->getSizeInBits()) 1330 BitsToDescribe = *VarSize; 1331 if (auto Fragment = Expr->getFragmentInfo()) 1332 BitsToDescribe = Fragment->SizeInBits; 1333 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1334 unsigned RegisterSize = RegAndSize.second; 1335 // Bail out if all bits are described already. 1336 if (Offset >= BitsToDescribe) 1337 break; 1338 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1339 ? BitsToDescribe - Offset 1340 : RegisterSize; 1341 auto FragmentExpr = DIExpression::createFragmentExpression( 1342 Expr, Offset, FragmentSize); 1343 if (!FragmentExpr) 1344 continue; 1345 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1346 false, dl, SDNodeOrder); 1347 DAG.AddDbgValue(SDV, nullptr, false); 1348 Offset += RegisterSize; 1349 } 1350 } else { 1351 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1352 DAG.AddDbgValue(SDV, nullptr, false); 1353 } 1354 return true; 1355 } 1356 } 1357 1358 return false; 1359 } 1360 1361 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1362 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1363 for (auto &Pair : DanglingDebugInfoMap) 1364 for (auto &DDI : Pair.second) 1365 salvageUnresolvedDbgValue(DDI); 1366 clearDanglingDebugInfo(); 1367 } 1368 1369 /// getCopyFromRegs - If there was virtual register allocated for the value V 1370 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1371 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1372 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1373 SDValue Result; 1374 1375 if (It != FuncInfo.ValueMap.end()) { 1376 unsigned InReg = It->second; 1377 1378 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1379 DAG.getDataLayout(), InReg, Ty, 1380 None); // This is not an ABI copy. 1381 SDValue Chain = DAG.getEntryNode(); 1382 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1383 V); 1384 resolveDanglingDebugInfo(V, Result); 1385 } 1386 1387 return Result; 1388 } 1389 1390 /// getValue - Return an SDValue for the given Value. 1391 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1392 // If we already have an SDValue for this value, use it. It's important 1393 // to do this first, so that we don't create a CopyFromReg if we already 1394 // have a regular SDValue. 1395 SDValue &N = NodeMap[V]; 1396 if (N.getNode()) return N; 1397 1398 // If there's a virtual register allocated and initialized for this 1399 // value, use it. 1400 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1401 return copyFromReg; 1402 1403 // Otherwise create a new SDValue and remember it. 1404 SDValue Val = getValueImpl(V); 1405 NodeMap[V] = Val; 1406 resolveDanglingDebugInfo(V, Val); 1407 return Val; 1408 } 1409 1410 // Return true if SDValue exists for the given Value 1411 bool SelectionDAGBuilder::findValue(const Value *V) const { 1412 return (NodeMap.find(V) != NodeMap.end()) || 1413 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1414 } 1415 1416 /// getNonRegisterValue - Return an SDValue for the given Value, but 1417 /// don't look in FuncInfo.ValueMap for a virtual register. 1418 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1419 // If we already have an SDValue for this value, use it. 1420 SDValue &N = NodeMap[V]; 1421 if (N.getNode()) { 1422 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1423 // Remove the debug location from the node as the node is about to be used 1424 // in a location which may differ from the original debug location. This 1425 // is relevant to Constant and ConstantFP nodes because they can appear 1426 // as constant expressions inside PHI nodes. 1427 N->setDebugLoc(DebugLoc()); 1428 } 1429 return N; 1430 } 1431 1432 // Otherwise create a new SDValue and remember it. 1433 SDValue Val = getValueImpl(V); 1434 NodeMap[V] = Val; 1435 resolveDanglingDebugInfo(V, Val); 1436 return Val; 1437 } 1438 1439 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1440 /// Create an SDValue for the given value. 1441 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1443 1444 if (const Constant *C = dyn_cast<Constant>(V)) { 1445 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1446 1447 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1448 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1449 1450 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1451 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1452 1453 if (isa<ConstantPointerNull>(C)) { 1454 unsigned AS = V->getType()->getPointerAddressSpace(); 1455 return DAG.getConstant(0, getCurSDLoc(), 1456 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1457 } 1458 1459 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1460 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1461 1462 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1463 return DAG.getUNDEF(VT); 1464 1465 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1466 visit(CE->getOpcode(), *CE); 1467 SDValue N1 = NodeMap[V]; 1468 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1469 return N1; 1470 } 1471 1472 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1473 SmallVector<SDValue, 4> Constants; 1474 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1475 OI != OE; ++OI) { 1476 SDNode *Val = getValue(*OI).getNode(); 1477 // If the operand is an empty aggregate, there are no values. 1478 if (!Val) continue; 1479 // Add each leaf value from the operand to the Constants list 1480 // to form a flattened list of all the values. 1481 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1482 Constants.push_back(SDValue(Val, i)); 1483 } 1484 1485 return DAG.getMergeValues(Constants, getCurSDLoc()); 1486 } 1487 1488 if (const ConstantDataSequential *CDS = 1489 dyn_cast<ConstantDataSequential>(C)) { 1490 SmallVector<SDValue, 4> Ops; 1491 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1492 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1493 // Add each leaf value from the operand to the Constants list 1494 // to form a flattened list of all the values. 1495 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1496 Ops.push_back(SDValue(Val, i)); 1497 } 1498 1499 if (isa<ArrayType>(CDS->getType())) 1500 return DAG.getMergeValues(Ops, getCurSDLoc()); 1501 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1502 } 1503 1504 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1505 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1506 "Unknown struct or array constant!"); 1507 1508 SmallVector<EVT, 4> ValueVTs; 1509 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1510 unsigned NumElts = ValueVTs.size(); 1511 if (NumElts == 0) 1512 return SDValue(); // empty struct 1513 SmallVector<SDValue, 4> Constants(NumElts); 1514 for (unsigned i = 0; i != NumElts; ++i) { 1515 EVT EltVT = ValueVTs[i]; 1516 if (isa<UndefValue>(C)) 1517 Constants[i] = DAG.getUNDEF(EltVT); 1518 else if (EltVT.isFloatingPoint()) 1519 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1520 else 1521 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1522 } 1523 1524 return DAG.getMergeValues(Constants, getCurSDLoc()); 1525 } 1526 1527 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1528 return DAG.getBlockAddress(BA, VT); 1529 1530 VectorType *VecTy = cast<VectorType>(V->getType()); 1531 unsigned NumElements = VecTy->getNumElements(); 1532 1533 // Now that we know the number and type of the elements, get that number of 1534 // elements into the Ops array based on what kind of constant it is. 1535 SmallVector<SDValue, 16> Ops; 1536 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1537 for (unsigned i = 0; i != NumElements; ++i) 1538 Ops.push_back(getValue(CV->getOperand(i))); 1539 } else { 1540 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1541 EVT EltVT = 1542 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1543 1544 SDValue Op; 1545 if (EltVT.isFloatingPoint()) 1546 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1547 else 1548 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1549 Ops.assign(NumElements, Op); 1550 } 1551 1552 // Create a BUILD_VECTOR node. 1553 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1554 } 1555 1556 // If this is a static alloca, generate it as the frameindex instead of 1557 // computation. 1558 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1559 DenseMap<const AllocaInst*, int>::iterator SI = 1560 FuncInfo.StaticAllocaMap.find(AI); 1561 if (SI != FuncInfo.StaticAllocaMap.end()) 1562 return DAG.getFrameIndex(SI->second, 1563 TLI.getFrameIndexTy(DAG.getDataLayout())); 1564 } 1565 1566 // If this is an instruction which fast-isel has deferred, select it now. 1567 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1568 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1569 1570 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1571 Inst->getType(), getABIRegCopyCC(V)); 1572 SDValue Chain = DAG.getEntryNode(); 1573 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1574 } 1575 1576 llvm_unreachable("Can't get register for value!"); 1577 } 1578 1579 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1580 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1581 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1582 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1583 bool IsSEH = isAsynchronousEHPersonality(Pers); 1584 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1585 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1586 if (!IsSEH) 1587 CatchPadMBB->setIsEHScopeEntry(); 1588 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1589 if (IsMSVCCXX || IsCoreCLR) 1590 CatchPadMBB->setIsEHFuncletEntry(); 1591 // Wasm does not need catchpads anymore 1592 if (!IsWasmCXX) 1593 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1594 getControlRoot())); 1595 } 1596 1597 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1598 // Update machine-CFG edge. 1599 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1600 FuncInfo.MBB->addSuccessor(TargetMBB); 1601 1602 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1603 bool IsSEH = isAsynchronousEHPersonality(Pers); 1604 if (IsSEH) { 1605 // If this is not a fall-through branch or optimizations are switched off, 1606 // emit the branch. 1607 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1608 TM.getOptLevel() == CodeGenOpt::None) 1609 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1610 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1611 return; 1612 } 1613 1614 // Figure out the funclet membership for the catchret's successor. 1615 // This will be used by the FuncletLayout pass to determine how to order the 1616 // BB's. 1617 // A 'catchret' returns to the outer scope's color. 1618 Value *ParentPad = I.getCatchSwitchParentPad(); 1619 const BasicBlock *SuccessorColor; 1620 if (isa<ConstantTokenNone>(ParentPad)) 1621 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1622 else 1623 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1624 assert(SuccessorColor && "No parent funclet for catchret!"); 1625 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1626 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1627 1628 // Create the terminator node. 1629 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1630 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1631 DAG.getBasicBlock(SuccessorColorMBB)); 1632 DAG.setRoot(Ret); 1633 } 1634 1635 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1636 // Don't emit any special code for the cleanuppad instruction. It just marks 1637 // the start of an EH scope/funclet. 1638 FuncInfo.MBB->setIsEHScopeEntry(); 1639 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1640 if (Pers != EHPersonality::Wasm_CXX) { 1641 FuncInfo.MBB->setIsEHFuncletEntry(); 1642 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1643 } 1644 } 1645 1646 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1647 // the control flow always stops at the single catch pad, as it does for a 1648 // cleanup pad. In case the exception caught is not of the types the catch pad 1649 // catches, it will be rethrown by a rethrow. 1650 static void findWasmUnwindDestinations( 1651 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1652 BranchProbability Prob, 1653 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1654 &UnwindDests) { 1655 while (EHPadBB) { 1656 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1657 if (isa<CleanupPadInst>(Pad)) { 1658 // Stop on cleanup pads. 1659 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1660 UnwindDests.back().first->setIsEHScopeEntry(); 1661 break; 1662 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1663 // Add the catchpad handlers to the possible destinations. We don't 1664 // continue to the unwind destination of the catchswitch for wasm. 1665 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1666 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1667 UnwindDests.back().first->setIsEHScopeEntry(); 1668 } 1669 break; 1670 } else { 1671 continue; 1672 } 1673 } 1674 } 1675 1676 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1677 /// many places it could ultimately go. In the IR, we have a single unwind 1678 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1679 /// This function skips over imaginary basic blocks that hold catchswitch 1680 /// instructions, and finds all the "real" machine 1681 /// basic block destinations. As those destinations may not be successors of 1682 /// EHPadBB, here we also calculate the edge probability to those destinations. 1683 /// The passed-in Prob is the edge probability to EHPadBB. 1684 static void findUnwindDestinations( 1685 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1686 BranchProbability Prob, 1687 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1688 &UnwindDests) { 1689 EHPersonality Personality = 1690 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1691 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1692 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1693 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1694 bool IsSEH = isAsynchronousEHPersonality(Personality); 1695 1696 if (IsWasmCXX) { 1697 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1698 assert(UnwindDests.size() <= 1 && 1699 "There should be at most one unwind destination for wasm"); 1700 return; 1701 } 1702 1703 while (EHPadBB) { 1704 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1705 BasicBlock *NewEHPadBB = nullptr; 1706 if (isa<LandingPadInst>(Pad)) { 1707 // Stop on landingpads. They are not funclets. 1708 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1709 break; 1710 } else if (isa<CleanupPadInst>(Pad)) { 1711 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1712 // personalities. 1713 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 UnwindDests.back().first->setIsEHFuncletEntry(); 1716 break; 1717 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1718 // Add the catchpad handlers to the possible destinations. 1719 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1720 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1721 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1722 if (IsMSVCCXX || IsCoreCLR) 1723 UnwindDests.back().first->setIsEHFuncletEntry(); 1724 if (!IsSEH) 1725 UnwindDests.back().first->setIsEHScopeEntry(); 1726 } 1727 NewEHPadBB = CatchSwitch->getUnwindDest(); 1728 } else { 1729 continue; 1730 } 1731 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 if (BPI && NewEHPadBB) 1734 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1735 EHPadBB = NewEHPadBB; 1736 } 1737 } 1738 1739 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1740 // Update successor info. 1741 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1742 auto UnwindDest = I.getUnwindDest(); 1743 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1744 BranchProbability UnwindDestProb = 1745 (BPI && UnwindDest) 1746 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1747 : BranchProbability::getZero(); 1748 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1749 for (auto &UnwindDest : UnwindDests) { 1750 UnwindDest.first->setIsEHPad(); 1751 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1752 } 1753 FuncInfo.MBB->normalizeSuccProbs(); 1754 1755 // Create the terminator node. 1756 SDValue Ret = 1757 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1758 DAG.setRoot(Ret); 1759 } 1760 1761 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1762 report_fatal_error("visitCatchSwitch not yet implemented!"); 1763 } 1764 1765 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1767 auto &DL = DAG.getDataLayout(); 1768 SDValue Chain = getControlRoot(); 1769 SmallVector<ISD::OutputArg, 8> Outs; 1770 SmallVector<SDValue, 8> OutVals; 1771 1772 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1773 // lower 1774 // 1775 // %val = call <ty> @llvm.experimental.deoptimize() 1776 // ret <ty> %val 1777 // 1778 // differently. 1779 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1780 LowerDeoptimizingReturn(); 1781 return; 1782 } 1783 1784 if (!FuncInfo.CanLowerReturn) { 1785 unsigned DemoteReg = FuncInfo.DemoteRegister; 1786 const Function *F = I.getParent()->getParent(); 1787 1788 // Emit a store of the return value through the virtual register. 1789 // Leave Outs empty so that LowerReturn won't try to load return 1790 // registers the usual way. 1791 SmallVector<EVT, 1> PtrValueVTs; 1792 ComputeValueVTs(TLI, DL, 1793 F->getReturnType()->getPointerTo( 1794 DAG.getDataLayout().getAllocaAddrSpace()), 1795 PtrValueVTs); 1796 1797 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1798 DemoteReg, PtrValueVTs[0]); 1799 SDValue RetOp = getValue(I.getOperand(0)); 1800 1801 SmallVector<EVT, 4> ValueVTs, MemVTs; 1802 SmallVector<uint64_t, 4> Offsets; 1803 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1804 &Offsets); 1805 unsigned NumValues = ValueVTs.size(); 1806 1807 SmallVector<SDValue, 4> Chains(NumValues); 1808 for (unsigned i = 0; i != NumValues; ++i) { 1809 // An aggregate return value cannot wrap around the address space, so 1810 // offsets to its parts don't wrap either. 1811 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1812 1813 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1814 if (MemVTs[i] != ValueVTs[i]) 1815 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1816 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1817 // FIXME: better loc info would be nice. 1818 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1819 } 1820 1821 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1822 MVT::Other, Chains); 1823 } else if (I.getNumOperands() != 0) { 1824 SmallVector<EVT, 4> ValueVTs; 1825 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1826 unsigned NumValues = ValueVTs.size(); 1827 if (NumValues) { 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 const Function *F = I.getParent()->getParent(); 1831 1832 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1833 I.getOperand(0)->getType(), F->getCallingConv(), 1834 /*IsVarArg*/ false); 1835 1836 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1837 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1838 Attribute::SExt)) 1839 ExtendKind = ISD::SIGN_EXTEND; 1840 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1841 Attribute::ZExt)) 1842 ExtendKind = ISD::ZERO_EXTEND; 1843 1844 LLVMContext &Context = F->getContext(); 1845 bool RetInReg = F->getAttributes().hasAttribute( 1846 AttributeList::ReturnIndex, Attribute::InReg); 1847 1848 for (unsigned j = 0; j != NumValues; ++j) { 1849 EVT VT = ValueVTs[j]; 1850 1851 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1852 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1853 1854 CallingConv::ID CC = F->getCallingConv(); 1855 1856 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1857 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1858 SmallVector<SDValue, 4> Parts(NumParts); 1859 getCopyToParts(DAG, getCurSDLoc(), 1860 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1861 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1862 1863 // 'inreg' on function refers to return value 1864 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1865 if (RetInReg) 1866 Flags.setInReg(); 1867 1868 if (I.getOperand(0)->getType()->isPointerTy()) { 1869 Flags.setPointer(); 1870 Flags.setPointerAddrSpace( 1871 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1872 } 1873 1874 if (NeedsRegBlock) { 1875 Flags.setInConsecutiveRegs(); 1876 if (j == NumValues - 1) 1877 Flags.setInConsecutiveRegsLast(); 1878 } 1879 1880 // Propagate extension type if any 1881 if (ExtendKind == ISD::SIGN_EXTEND) 1882 Flags.setSExt(); 1883 else if (ExtendKind == ISD::ZERO_EXTEND) 1884 Flags.setZExt(); 1885 1886 for (unsigned i = 0; i < NumParts; ++i) { 1887 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1888 VT, /*isfixed=*/true, 0, 0)); 1889 OutVals.push_back(Parts[i]); 1890 } 1891 } 1892 } 1893 } 1894 1895 // Push in swifterror virtual register as the last element of Outs. This makes 1896 // sure swifterror virtual register will be returned in the swifterror 1897 // physical register. 1898 const Function *F = I.getParent()->getParent(); 1899 if (TLI.supportSwiftError() && 1900 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1901 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1902 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1903 Flags.setSwiftError(); 1904 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1905 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1906 true /*isfixed*/, 1 /*origidx*/, 1907 0 /*partOffs*/)); 1908 // Create SDNode for the swifterror virtual register. 1909 OutVals.push_back( 1910 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1911 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1912 EVT(TLI.getPointerTy(DL)))); 1913 } 1914 1915 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1916 CallingConv::ID CallConv = 1917 DAG.getMachineFunction().getFunction().getCallingConv(); 1918 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1919 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1920 1921 // Verify that the target's LowerReturn behaved as expected. 1922 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1923 "LowerReturn didn't return a valid chain!"); 1924 1925 // Update the DAG with the new chain value resulting from return lowering. 1926 DAG.setRoot(Chain); 1927 } 1928 1929 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1930 /// created for it, emit nodes to copy the value into the virtual 1931 /// registers. 1932 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1933 // Skip empty types 1934 if (V->getType()->isEmptyTy()) 1935 return; 1936 1937 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1938 if (VMI != FuncInfo.ValueMap.end()) { 1939 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1940 CopyValueToVirtualRegister(V, VMI->second); 1941 } 1942 } 1943 1944 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1945 /// the current basic block, add it to ValueMap now so that we'll get a 1946 /// CopyTo/FromReg. 1947 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1948 // No need to export constants. 1949 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1950 1951 // Already exported? 1952 if (FuncInfo.isExportedInst(V)) return; 1953 1954 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1955 CopyValueToVirtualRegister(V, Reg); 1956 } 1957 1958 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1959 const BasicBlock *FromBB) { 1960 // The operands of the setcc have to be in this block. We don't know 1961 // how to export them from some other block. 1962 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1963 // Can export from current BB. 1964 if (VI->getParent() == FromBB) 1965 return true; 1966 1967 // Is already exported, noop. 1968 return FuncInfo.isExportedInst(V); 1969 } 1970 1971 // If this is an argument, we can export it if the BB is the entry block or 1972 // if it is already exported. 1973 if (isa<Argument>(V)) { 1974 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1975 return true; 1976 1977 // Otherwise, can only export this if it is already exported. 1978 return FuncInfo.isExportedInst(V); 1979 } 1980 1981 // Otherwise, constants can always be exported. 1982 return true; 1983 } 1984 1985 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1986 BranchProbability 1987 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1988 const MachineBasicBlock *Dst) const { 1989 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1990 const BasicBlock *SrcBB = Src->getBasicBlock(); 1991 const BasicBlock *DstBB = Dst->getBasicBlock(); 1992 if (!BPI) { 1993 // If BPI is not available, set the default probability as 1 / N, where N is 1994 // the number of successors. 1995 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1996 return BranchProbability(1, SuccSize); 1997 } 1998 return BPI->getEdgeProbability(SrcBB, DstBB); 1999 } 2000 2001 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2002 MachineBasicBlock *Dst, 2003 BranchProbability Prob) { 2004 if (!FuncInfo.BPI) 2005 Src->addSuccessorWithoutProb(Dst); 2006 else { 2007 if (Prob.isUnknown()) 2008 Prob = getEdgeProbability(Src, Dst); 2009 Src->addSuccessor(Dst, Prob); 2010 } 2011 } 2012 2013 static bool InBlock(const Value *V, const BasicBlock *BB) { 2014 if (const Instruction *I = dyn_cast<Instruction>(V)) 2015 return I->getParent() == BB; 2016 return true; 2017 } 2018 2019 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2020 /// This function emits a branch and is used at the leaves of an OR or an 2021 /// AND operator tree. 2022 void 2023 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2024 MachineBasicBlock *TBB, 2025 MachineBasicBlock *FBB, 2026 MachineBasicBlock *CurBB, 2027 MachineBasicBlock *SwitchBB, 2028 BranchProbability TProb, 2029 BranchProbability FProb, 2030 bool InvertCond) { 2031 const BasicBlock *BB = CurBB->getBasicBlock(); 2032 2033 // If the leaf of the tree is a comparison, merge the condition into 2034 // the caseblock. 2035 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2036 // The operands of the cmp have to be in this block. We don't know 2037 // how to export them from some other block. If this is the first block 2038 // of the sequence, no exporting is needed. 2039 if (CurBB == SwitchBB || 2040 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2041 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2042 ISD::CondCode Condition; 2043 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2044 ICmpInst::Predicate Pred = 2045 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2046 Condition = getICmpCondCode(Pred); 2047 } else { 2048 const FCmpInst *FC = cast<FCmpInst>(Cond); 2049 FCmpInst::Predicate Pred = 2050 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2051 Condition = getFCmpCondCode(Pred); 2052 if (TM.Options.NoNaNsFPMath) 2053 Condition = getFCmpCodeWithoutNaN(Condition); 2054 } 2055 2056 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2057 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2058 SL->SwitchCases.push_back(CB); 2059 return; 2060 } 2061 } 2062 2063 // Create a CaseBlock record representing this branch. 2064 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2065 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2066 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2067 SL->SwitchCases.push_back(CB); 2068 } 2069 2070 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2071 MachineBasicBlock *TBB, 2072 MachineBasicBlock *FBB, 2073 MachineBasicBlock *CurBB, 2074 MachineBasicBlock *SwitchBB, 2075 Instruction::BinaryOps Opc, 2076 BranchProbability TProb, 2077 BranchProbability FProb, 2078 bool InvertCond) { 2079 // Skip over not part of the tree and remember to invert op and operands at 2080 // next level. 2081 Value *NotCond; 2082 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2083 InBlock(NotCond, CurBB->getBasicBlock())) { 2084 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2085 !InvertCond); 2086 return; 2087 } 2088 2089 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2090 // Compute the effective opcode for Cond, taking into account whether it needs 2091 // to be inverted, e.g. 2092 // and (not (or A, B)), C 2093 // gets lowered as 2094 // and (and (not A, not B), C) 2095 unsigned BOpc = 0; 2096 if (BOp) { 2097 BOpc = BOp->getOpcode(); 2098 if (InvertCond) { 2099 if (BOpc == Instruction::And) 2100 BOpc = Instruction::Or; 2101 else if (BOpc == Instruction::Or) 2102 BOpc = Instruction::And; 2103 } 2104 } 2105 2106 // If this node is not part of the or/and tree, emit it as a branch. 2107 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2108 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2109 BOp->getParent() != CurBB->getBasicBlock() || 2110 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2111 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2112 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2113 TProb, FProb, InvertCond); 2114 return; 2115 } 2116 2117 // Create TmpBB after CurBB. 2118 MachineFunction::iterator BBI(CurBB); 2119 MachineFunction &MF = DAG.getMachineFunction(); 2120 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2121 CurBB->getParent()->insert(++BBI, TmpBB); 2122 2123 if (Opc == Instruction::Or) { 2124 // Codegen X | Y as: 2125 // BB1: 2126 // jmp_if_X TBB 2127 // jmp TmpBB 2128 // TmpBB: 2129 // jmp_if_Y TBB 2130 // jmp FBB 2131 // 2132 2133 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2134 // The requirement is that 2135 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2136 // = TrueProb for original BB. 2137 // Assuming the original probabilities are A and B, one choice is to set 2138 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2139 // A/(1+B) and 2B/(1+B). This choice assumes that 2140 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2141 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2142 // TmpBB, but the math is more complicated. 2143 2144 auto NewTrueProb = TProb / 2; 2145 auto NewFalseProb = TProb / 2 + FProb; 2146 // Emit the LHS condition. 2147 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2148 NewTrueProb, NewFalseProb, InvertCond); 2149 2150 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2151 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2152 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2153 // Emit the RHS condition into TmpBB. 2154 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2155 Probs[0], Probs[1], InvertCond); 2156 } else { 2157 assert(Opc == Instruction::And && "Unknown merge op!"); 2158 // Codegen X & Y as: 2159 // BB1: 2160 // jmp_if_X TmpBB 2161 // jmp FBB 2162 // TmpBB: 2163 // jmp_if_Y TBB 2164 // jmp FBB 2165 // 2166 // This requires creation of TmpBB after CurBB. 2167 2168 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2169 // The requirement is that 2170 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2171 // = FalseProb for original BB. 2172 // Assuming the original probabilities are A and B, one choice is to set 2173 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2174 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2175 // TrueProb for BB1 * FalseProb for TmpBB. 2176 2177 auto NewTrueProb = TProb + FProb / 2; 2178 auto NewFalseProb = FProb / 2; 2179 // Emit the LHS condition. 2180 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2181 NewTrueProb, NewFalseProb, InvertCond); 2182 2183 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2184 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2185 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2186 // Emit the RHS condition into TmpBB. 2187 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2188 Probs[0], Probs[1], InvertCond); 2189 } 2190 } 2191 2192 /// If the set of cases should be emitted as a series of branches, return true. 2193 /// If we should emit this as a bunch of and/or'd together conditions, return 2194 /// false. 2195 bool 2196 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2197 if (Cases.size() != 2) return true; 2198 2199 // If this is two comparisons of the same values or'd or and'd together, they 2200 // will get folded into a single comparison, so don't emit two blocks. 2201 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2202 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2203 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2204 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2205 return false; 2206 } 2207 2208 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2209 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2210 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2211 Cases[0].CC == Cases[1].CC && 2212 isa<Constant>(Cases[0].CmpRHS) && 2213 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2214 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2215 return false; 2216 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2217 return false; 2218 } 2219 2220 return true; 2221 } 2222 2223 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2224 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2225 2226 // Update machine-CFG edges. 2227 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2228 2229 if (I.isUnconditional()) { 2230 // Update machine-CFG edges. 2231 BrMBB->addSuccessor(Succ0MBB); 2232 2233 // If this is not a fall-through branch or optimizations are switched off, 2234 // emit the branch. 2235 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2236 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2237 MVT::Other, getControlRoot(), 2238 DAG.getBasicBlock(Succ0MBB))); 2239 2240 return; 2241 } 2242 2243 // If this condition is one of the special cases we handle, do special stuff 2244 // now. 2245 const Value *CondVal = I.getCondition(); 2246 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2247 2248 // If this is a series of conditions that are or'd or and'd together, emit 2249 // this as a sequence of branches instead of setcc's with and/or operations. 2250 // As long as jumps are not expensive, this should improve performance. 2251 // For example, instead of something like: 2252 // cmp A, B 2253 // C = seteq 2254 // cmp D, E 2255 // F = setle 2256 // or C, F 2257 // jnz foo 2258 // Emit: 2259 // cmp A, B 2260 // je foo 2261 // cmp D, E 2262 // jle foo 2263 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2264 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2265 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2266 !I.getMetadata(LLVMContext::MD_unpredictable) && 2267 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2268 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2269 Opcode, 2270 getEdgeProbability(BrMBB, Succ0MBB), 2271 getEdgeProbability(BrMBB, Succ1MBB), 2272 /*InvertCond=*/false); 2273 // If the compares in later blocks need to use values not currently 2274 // exported from this block, export them now. This block should always 2275 // be the first entry. 2276 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2277 2278 // Allow some cases to be rejected. 2279 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2280 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2282 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2283 } 2284 2285 // Emit the branch for this block. 2286 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2287 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2288 return; 2289 } 2290 2291 // Okay, we decided not to do this, remove any inserted MBB's and clear 2292 // SwitchCases. 2293 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2294 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2295 2296 SL->SwitchCases.clear(); 2297 } 2298 } 2299 2300 // Create a CaseBlock record representing this branch. 2301 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2302 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2303 2304 // Use visitSwitchCase to actually insert the fast branch sequence for this 2305 // cond branch. 2306 visitSwitchCase(CB, BrMBB); 2307 } 2308 2309 /// visitSwitchCase - Emits the necessary code to represent a single node in 2310 /// the binary search tree resulting from lowering a switch instruction. 2311 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2312 MachineBasicBlock *SwitchBB) { 2313 SDValue Cond; 2314 SDValue CondLHS = getValue(CB.CmpLHS); 2315 SDLoc dl = CB.DL; 2316 2317 if (CB.CC == ISD::SETTRUE) { 2318 // Branch or fall through to TrueBB. 2319 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2320 SwitchBB->normalizeSuccProbs(); 2321 if (CB.TrueBB != NextBlock(SwitchBB)) { 2322 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2323 DAG.getBasicBlock(CB.TrueBB))); 2324 } 2325 return; 2326 } 2327 2328 auto &TLI = DAG.getTargetLoweringInfo(); 2329 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2330 2331 // Build the setcc now. 2332 if (!CB.CmpMHS) { 2333 // Fold "(X == true)" to X and "(X == false)" to !X to 2334 // handle common cases produced by branch lowering. 2335 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2336 CB.CC == ISD::SETEQ) 2337 Cond = CondLHS; 2338 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) { 2340 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2341 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2342 } else { 2343 SDValue CondRHS = getValue(CB.CmpRHS); 2344 2345 // If a pointer's DAG type is larger than its memory type then the DAG 2346 // values are zero-extended. This breaks signed comparisons so truncate 2347 // back to the underlying type before doing the compare. 2348 if (CondLHS.getValueType() != MemVT) { 2349 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2350 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2351 } 2352 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2353 } 2354 } else { 2355 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2356 2357 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2358 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2359 2360 SDValue CmpOp = getValue(CB.CmpMHS); 2361 EVT VT = CmpOp.getValueType(); 2362 2363 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2364 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2365 ISD::SETLE); 2366 } else { 2367 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2368 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2369 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2370 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2371 } 2372 } 2373 2374 // Update successor info 2375 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2376 // TrueBB and FalseBB are always different unless the incoming IR is 2377 // degenerate. This only happens when running llc on weird IR. 2378 if (CB.TrueBB != CB.FalseBB) 2379 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2380 SwitchBB->normalizeSuccProbs(); 2381 2382 // If the lhs block is the next block, invert the condition so that we can 2383 // fall through to the lhs instead of the rhs block. 2384 if (CB.TrueBB == NextBlock(SwitchBB)) { 2385 std::swap(CB.TrueBB, CB.FalseBB); 2386 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2387 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2388 } 2389 2390 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2391 MVT::Other, getControlRoot(), Cond, 2392 DAG.getBasicBlock(CB.TrueBB)); 2393 2394 // Insert the false branch. Do this even if it's a fall through branch, 2395 // this makes it easier to do DAG optimizations which require inverting 2396 // the branch condition. 2397 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2398 DAG.getBasicBlock(CB.FalseBB)); 2399 2400 DAG.setRoot(BrCond); 2401 } 2402 2403 /// visitJumpTable - Emit JumpTable node in the current MBB 2404 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2405 // Emit the code for the jump table 2406 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2407 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2408 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2409 JT.Reg, PTy); 2410 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2411 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2412 MVT::Other, Index.getValue(1), 2413 Table, Index); 2414 DAG.setRoot(BrJumpTable); 2415 } 2416 2417 /// visitJumpTableHeader - This function emits necessary code to produce index 2418 /// in the JumpTable from switch case. 2419 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2420 JumpTableHeader &JTH, 2421 MachineBasicBlock *SwitchBB) { 2422 SDLoc dl = getCurSDLoc(); 2423 2424 // Subtract the lowest switch case value from the value being switched on. 2425 SDValue SwitchOp = getValue(JTH.SValue); 2426 EVT VT = SwitchOp.getValueType(); 2427 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2428 DAG.getConstant(JTH.First, dl, VT)); 2429 2430 // The SDNode we just created, which holds the value being switched on minus 2431 // the smallest case value, needs to be copied to a virtual register so it 2432 // can be used as an index into the jump table in a subsequent basic block. 2433 // This value may be smaller or larger than the target's pointer type, and 2434 // therefore require extension or truncating. 2435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2436 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2437 2438 unsigned JumpTableReg = 2439 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2440 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2441 JumpTableReg, SwitchOp); 2442 JT.Reg = JumpTableReg; 2443 2444 if (!JTH.OmitRangeCheck) { 2445 // Emit the range check for the jump table, and branch to the default block 2446 // for the switch statement if the value being switched on exceeds the 2447 // largest case in the switch. 2448 SDValue CMP = DAG.getSetCC( 2449 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2450 Sub.getValueType()), 2451 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2452 2453 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2454 MVT::Other, CopyTo, CMP, 2455 DAG.getBasicBlock(JT.Default)); 2456 2457 // Avoid emitting unnecessary branches to the next block. 2458 if (JT.MBB != NextBlock(SwitchBB)) 2459 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2460 DAG.getBasicBlock(JT.MBB)); 2461 2462 DAG.setRoot(BrCond); 2463 } else { 2464 // Avoid emitting unnecessary branches to the next block. 2465 if (JT.MBB != NextBlock(SwitchBB)) 2466 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2467 DAG.getBasicBlock(JT.MBB))); 2468 else 2469 DAG.setRoot(CopyTo); 2470 } 2471 } 2472 2473 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2474 /// variable if there exists one. 2475 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2476 SDValue &Chain) { 2477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2478 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2479 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2480 MachineFunction &MF = DAG.getMachineFunction(); 2481 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2482 MachineSDNode *Node = 2483 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2484 if (Global) { 2485 MachinePointerInfo MPInfo(Global); 2486 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2487 MachineMemOperand::MODereferenceable; 2488 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2489 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2490 DAG.setNodeMemRefs(Node, {MemRef}); 2491 } 2492 if (PtrTy != PtrMemTy) 2493 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2494 return SDValue(Node, 0); 2495 } 2496 2497 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2498 /// tail spliced into a stack protector check success bb. 2499 /// 2500 /// For a high level explanation of how this fits into the stack protector 2501 /// generation see the comment on the declaration of class 2502 /// StackProtectorDescriptor. 2503 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2504 MachineBasicBlock *ParentBB) { 2505 2506 // First create the loads to the guard/stack slot for the comparison. 2507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2508 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2509 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2510 2511 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2512 int FI = MFI.getStackProtectorIndex(); 2513 2514 SDValue Guard; 2515 SDLoc dl = getCurSDLoc(); 2516 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2517 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2518 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2519 2520 // Generate code to load the content of the guard slot. 2521 SDValue GuardVal = DAG.getLoad( 2522 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2523 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2524 MachineMemOperand::MOVolatile); 2525 2526 if (TLI.useStackGuardXorFP()) 2527 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2528 2529 // Retrieve guard check function, nullptr if instrumentation is inlined. 2530 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2531 // The target provides a guard check function to validate the guard value. 2532 // Generate a call to that function with the content of the guard slot as 2533 // argument. 2534 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2535 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2536 2537 TargetLowering::ArgListTy Args; 2538 TargetLowering::ArgListEntry Entry; 2539 Entry.Node = GuardVal; 2540 Entry.Ty = FnTy->getParamType(0); 2541 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2542 Entry.IsInReg = true; 2543 Args.push_back(Entry); 2544 2545 TargetLowering::CallLoweringInfo CLI(DAG); 2546 CLI.setDebugLoc(getCurSDLoc()) 2547 .setChain(DAG.getEntryNode()) 2548 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2549 getValue(GuardCheckFn), std::move(Args)); 2550 2551 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2552 DAG.setRoot(Result.second); 2553 return; 2554 } 2555 2556 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2557 // Otherwise, emit a volatile load to retrieve the stack guard value. 2558 SDValue Chain = DAG.getEntryNode(); 2559 if (TLI.useLoadStackGuardNode()) { 2560 Guard = getLoadStackGuard(DAG, dl, Chain); 2561 } else { 2562 const Value *IRGuard = TLI.getSDagStackGuard(M); 2563 SDValue GuardPtr = getValue(IRGuard); 2564 2565 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2566 MachinePointerInfo(IRGuard, 0), Align, 2567 MachineMemOperand::MOVolatile); 2568 } 2569 2570 // Perform the comparison via a subtract/getsetcc. 2571 EVT VT = Guard.getValueType(); 2572 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2573 2574 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2575 *DAG.getContext(), 2576 Sub.getValueType()), 2577 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2578 2579 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2580 // branch to failure MBB. 2581 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2582 MVT::Other, GuardVal.getOperand(0), 2583 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2584 // Otherwise branch to success MBB. 2585 SDValue Br = DAG.getNode(ISD::BR, dl, 2586 MVT::Other, BrCond, 2587 DAG.getBasicBlock(SPD.getSuccessMBB())); 2588 2589 DAG.setRoot(Br); 2590 } 2591 2592 /// Codegen the failure basic block for a stack protector check. 2593 /// 2594 /// A failure stack protector machine basic block consists simply of a call to 2595 /// __stack_chk_fail(). 2596 /// 2597 /// For a high level explanation of how this fits into the stack protector 2598 /// generation see the comment on the declaration of class 2599 /// StackProtectorDescriptor. 2600 void 2601 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2603 SDValue Chain = 2604 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2605 None, false, getCurSDLoc(), false, false).second; 2606 // On PS4, the "return address" must still be within the calling function, 2607 // even if it's at the very end, so emit an explicit TRAP here. 2608 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2609 if (TM.getTargetTriple().isPS4CPU()) 2610 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2611 2612 DAG.setRoot(Chain); 2613 } 2614 2615 /// visitBitTestHeader - This function emits necessary code to produce value 2616 /// suitable for "bit tests" 2617 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2618 MachineBasicBlock *SwitchBB) { 2619 SDLoc dl = getCurSDLoc(); 2620 2621 // Subtract the minimum value 2622 SDValue SwitchOp = getValue(B.SValue); 2623 EVT VT = SwitchOp.getValueType(); 2624 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2625 DAG.getConstant(B.First, dl, VT)); 2626 2627 // Check range 2628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2629 SDValue RangeCmp = DAG.getSetCC( 2630 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2631 Sub.getValueType()), 2632 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2633 2634 // Determine the type of the test operands. 2635 bool UsePtrType = false; 2636 if (!TLI.isTypeLegal(VT)) 2637 UsePtrType = true; 2638 else { 2639 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2640 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2641 // Switch table case range are encoded into series of masks. 2642 // Just use pointer type, it's guaranteed to fit. 2643 UsePtrType = true; 2644 break; 2645 } 2646 } 2647 if (UsePtrType) { 2648 VT = TLI.getPointerTy(DAG.getDataLayout()); 2649 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2650 } 2651 2652 B.RegVT = VT.getSimpleVT(); 2653 B.Reg = FuncInfo.CreateReg(B.RegVT); 2654 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2655 2656 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2657 2658 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2659 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2660 SwitchBB->normalizeSuccProbs(); 2661 2662 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2663 MVT::Other, CopyTo, RangeCmp, 2664 DAG.getBasicBlock(B.Default)); 2665 2666 // Avoid emitting unnecessary branches to the next block. 2667 if (MBB != NextBlock(SwitchBB)) 2668 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2669 DAG.getBasicBlock(MBB)); 2670 2671 DAG.setRoot(BrRange); 2672 } 2673 2674 /// visitBitTestCase - this function produces one "bit test" 2675 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2676 MachineBasicBlock* NextMBB, 2677 BranchProbability BranchProbToNext, 2678 unsigned Reg, 2679 BitTestCase &B, 2680 MachineBasicBlock *SwitchBB) { 2681 SDLoc dl = getCurSDLoc(); 2682 MVT VT = BB.RegVT; 2683 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2684 SDValue Cmp; 2685 unsigned PopCount = countPopulation(B.Mask); 2686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2687 if (PopCount == 1) { 2688 // Testing for a single bit; just compare the shift count with what it 2689 // would need to be to shift a 1 bit in that position. 2690 Cmp = DAG.getSetCC( 2691 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2692 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2693 ISD::SETEQ); 2694 } else if (PopCount == BB.Range) { 2695 // There is only one zero bit in the range, test for it directly. 2696 Cmp = DAG.getSetCC( 2697 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2698 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2699 ISD::SETNE); 2700 } else { 2701 // Make desired shift 2702 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2703 DAG.getConstant(1, dl, VT), ShiftOp); 2704 2705 // Emit bit tests and jumps 2706 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2707 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2708 Cmp = DAG.getSetCC( 2709 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2710 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2711 } 2712 2713 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2714 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2715 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2716 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2717 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2718 // one as they are relative probabilities (and thus work more like weights), 2719 // and hence we need to normalize them to let the sum of them become one. 2720 SwitchBB->normalizeSuccProbs(); 2721 2722 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2723 MVT::Other, getControlRoot(), 2724 Cmp, DAG.getBasicBlock(B.TargetBB)); 2725 2726 // Avoid emitting unnecessary branches to the next block. 2727 if (NextMBB != NextBlock(SwitchBB)) 2728 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2729 DAG.getBasicBlock(NextMBB)); 2730 2731 DAG.setRoot(BrAnd); 2732 } 2733 2734 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2735 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2736 2737 // Retrieve successors. Look through artificial IR level blocks like 2738 // catchswitch for successors. 2739 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2740 const BasicBlock *EHPadBB = I.getSuccessor(1); 2741 2742 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2743 // have to do anything here to lower funclet bundles. 2744 assert(!I.hasOperandBundlesOtherThan( 2745 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2746 "Cannot lower invokes with arbitrary operand bundles yet!"); 2747 2748 const Value *Callee(I.getCalledValue()); 2749 const Function *Fn = dyn_cast<Function>(Callee); 2750 if (isa<InlineAsm>(Callee)) 2751 visitInlineAsm(&I); 2752 else if (Fn && Fn->isIntrinsic()) { 2753 switch (Fn->getIntrinsicID()) { 2754 default: 2755 llvm_unreachable("Cannot invoke this intrinsic"); 2756 case Intrinsic::donothing: 2757 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2758 break; 2759 case Intrinsic::experimental_patchpoint_void: 2760 case Intrinsic::experimental_patchpoint_i64: 2761 visitPatchpoint(&I, EHPadBB); 2762 break; 2763 case Intrinsic::experimental_gc_statepoint: 2764 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2765 break; 2766 case Intrinsic::wasm_rethrow_in_catch: { 2767 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2768 // special because it can be invoked, so we manually lower it to a DAG 2769 // node here. 2770 SmallVector<SDValue, 8> Ops; 2771 Ops.push_back(getRoot()); // inchain 2772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2773 Ops.push_back( 2774 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2775 TLI.getPointerTy(DAG.getDataLayout()))); 2776 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2777 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2778 break; 2779 } 2780 } 2781 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2782 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2783 // Eventually we will support lowering the @llvm.experimental.deoptimize 2784 // intrinsic, and right now there are no plans to support other intrinsics 2785 // with deopt state. 2786 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2787 } else { 2788 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2789 } 2790 2791 // If the value of the invoke is used outside of its defining block, make it 2792 // available as a virtual register. 2793 // We already took care of the exported value for the statepoint instruction 2794 // during call to the LowerStatepoint. 2795 if (!isStatepoint(I)) { 2796 CopyToExportRegsIfNeeded(&I); 2797 } 2798 2799 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2800 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2801 BranchProbability EHPadBBProb = 2802 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2803 : BranchProbability::getZero(); 2804 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2805 2806 // Update successor info. 2807 addSuccessorWithProb(InvokeMBB, Return); 2808 for (auto &UnwindDest : UnwindDests) { 2809 UnwindDest.first->setIsEHPad(); 2810 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2811 } 2812 InvokeMBB->normalizeSuccProbs(); 2813 2814 // Drop into normal successor. 2815 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2816 DAG.getBasicBlock(Return))); 2817 } 2818 2819 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2820 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2821 2822 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2823 // have to do anything here to lower funclet bundles. 2824 assert(!I.hasOperandBundlesOtherThan( 2825 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2826 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2827 2828 assert(isa<InlineAsm>(I.getCalledValue()) && 2829 "Only know how to handle inlineasm callbr"); 2830 visitInlineAsm(&I); 2831 2832 // Retrieve successors. 2833 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2834 2835 // Update successor info. 2836 addSuccessorWithProb(CallBrMBB, Return); 2837 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2838 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2839 addSuccessorWithProb(CallBrMBB, Target); 2840 } 2841 CallBrMBB->normalizeSuccProbs(); 2842 2843 // Drop into default successor. 2844 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2845 MVT::Other, getControlRoot(), 2846 DAG.getBasicBlock(Return))); 2847 } 2848 2849 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2850 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2851 } 2852 2853 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2854 assert(FuncInfo.MBB->isEHPad() && 2855 "Call to landingpad not in landing pad!"); 2856 2857 // If there aren't registers to copy the values into (e.g., during SjLj 2858 // exceptions), then don't bother to create these DAG nodes. 2859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2860 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2861 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2862 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2863 return; 2864 2865 // If landingpad's return type is token type, we don't create DAG nodes 2866 // for its exception pointer and selector value. The extraction of exception 2867 // pointer or selector value from token type landingpads is not currently 2868 // supported. 2869 if (LP.getType()->isTokenTy()) 2870 return; 2871 2872 SmallVector<EVT, 2> ValueVTs; 2873 SDLoc dl = getCurSDLoc(); 2874 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2875 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2876 2877 // Get the two live-in registers as SDValues. The physregs have already been 2878 // copied into virtual registers. 2879 SDValue Ops[2]; 2880 if (FuncInfo.ExceptionPointerVirtReg) { 2881 Ops[0] = DAG.getZExtOrTrunc( 2882 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2883 FuncInfo.ExceptionPointerVirtReg, 2884 TLI.getPointerTy(DAG.getDataLayout())), 2885 dl, ValueVTs[0]); 2886 } else { 2887 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2888 } 2889 Ops[1] = DAG.getZExtOrTrunc( 2890 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2891 FuncInfo.ExceptionSelectorVirtReg, 2892 TLI.getPointerTy(DAG.getDataLayout())), 2893 dl, ValueVTs[1]); 2894 2895 // Merge into one. 2896 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2897 DAG.getVTList(ValueVTs), Ops); 2898 setValue(&LP, Res); 2899 } 2900 2901 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2902 MachineBasicBlock *Last) { 2903 // Update JTCases. 2904 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2905 if (SL->JTCases[i].first.HeaderBB == First) 2906 SL->JTCases[i].first.HeaderBB = Last; 2907 2908 // Update BitTestCases. 2909 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2910 if (SL->BitTestCases[i].Parent == First) 2911 SL->BitTestCases[i].Parent = Last; 2912 } 2913 2914 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2915 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2916 2917 // Update machine-CFG edges with unique successors. 2918 SmallSet<BasicBlock*, 32> Done; 2919 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2920 BasicBlock *BB = I.getSuccessor(i); 2921 bool Inserted = Done.insert(BB).second; 2922 if (!Inserted) 2923 continue; 2924 2925 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2926 addSuccessorWithProb(IndirectBrMBB, Succ); 2927 } 2928 IndirectBrMBB->normalizeSuccProbs(); 2929 2930 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2931 MVT::Other, getControlRoot(), 2932 getValue(I.getAddress()))); 2933 } 2934 2935 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2936 if (!DAG.getTarget().Options.TrapUnreachable) 2937 return; 2938 2939 // We may be able to ignore unreachable behind a noreturn call. 2940 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2941 const BasicBlock &BB = *I.getParent(); 2942 if (&I != &BB.front()) { 2943 BasicBlock::const_iterator PredI = 2944 std::prev(BasicBlock::const_iterator(&I)); 2945 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2946 if (Call->doesNotReturn()) 2947 return; 2948 } 2949 } 2950 } 2951 2952 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2953 } 2954 2955 void SelectionDAGBuilder::visitFSub(const User &I) { 2956 // -0.0 - X --> fneg 2957 Type *Ty = I.getType(); 2958 if (isa<Constant>(I.getOperand(0)) && 2959 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2960 SDValue Op2 = getValue(I.getOperand(1)); 2961 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2962 Op2.getValueType(), Op2)); 2963 return; 2964 } 2965 2966 visitBinary(I, ISD::FSUB); 2967 } 2968 2969 /// Checks if the given instruction performs a vector reduction, in which case 2970 /// we have the freedom to alter the elements in the result as long as the 2971 /// reduction of them stays unchanged. 2972 static bool isVectorReductionOp(const User *I) { 2973 const Instruction *Inst = dyn_cast<Instruction>(I); 2974 if (!Inst || !Inst->getType()->isVectorTy()) 2975 return false; 2976 2977 auto OpCode = Inst->getOpcode(); 2978 switch (OpCode) { 2979 case Instruction::Add: 2980 case Instruction::Mul: 2981 case Instruction::And: 2982 case Instruction::Or: 2983 case Instruction::Xor: 2984 break; 2985 case Instruction::FAdd: 2986 case Instruction::FMul: 2987 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2988 if (FPOp->getFastMathFlags().isFast()) 2989 break; 2990 LLVM_FALLTHROUGH; 2991 default: 2992 return false; 2993 } 2994 2995 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2996 // Ensure the reduction size is a power of 2. 2997 if (!isPowerOf2_32(ElemNum)) 2998 return false; 2999 3000 unsigned ElemNumToReduce = ElemNum; 3001 3002 // Do DFS search on the def-use chain from the given instruction. We only 3003 // allow four kinds of operations during the search until we reach the 3004 // instruction that extracts the first element from the vector: 3005 // 3006 // 1. The reduction operation of the same opcode as the given instruction. 3007 // 3008 // 2. PHI node. 3009 // 3010 // 3. ShuffleVector instruction together with a reduction operation that 3011 // does a partial reduction. 3012 // 3013 // 4. ExtractElement that extracts the first element from the vector, and we 3014 // stop searching the def-use chain here. 3015 // 3016 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3017 // from 1-3 to the stack to continue the DFS. The given instruction is not 3018 // a reduction operation if we meet any other instructions other than those 3019 // listed above. 3020 3021 SmallVector<const User *, 16> UsersToVisit{Inst}; 3022 SmallPtrSet<const User *, 16> Visited; 3023 bool ReduxExtracted = false; 3024 3025 while (!UsersToVisit.empty()) { 3026 auto User = UsersToVisit.back(); 3027 UsersToVisit.pop_back(); 3028 if (!Visited.insert(User).second) 3029 continue; 3030 3031 for (const auto &U : User->users()) { 3032 auto Inst = dyn_cast<Instruction>(U); 3033 if (!Inst) 3034 return false; 3035 3036 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3037 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3038 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3039 return false; 3040 UsersToVisit.push_back(U); 3041 } else if (const ShuffleVectorInst *ShufInst = 3042 dyn_cast<ShuffleVectorInst>(U)) { 3043 // Detect the following pattern: A ShuffleVector instruction together 3044 // with a reduction that do partial reduction on the first and second 3045 // ElemNumToReduce / 2 elements, and store the result in 3046 // ElemNumToReduce / 2 elements in another vector. 3047 3048 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3049 if (ResultElements < ElemNum) 3050 return false; 3051 3052 if (ElemNumToReduce == 1) 3053 return false; 3054 if (!isa<UndefValue>(U->getOperand(1))) 3055 return false; 3056 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3057 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3058 return false; 3059 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3060 if (ShufInst->getMaskValue(i) != -1) 3061 return false; 3062 3063 // There is only one user of this ShuffleVector instruction, which 3064 // must be a reduction operation. 3065 if (!U->hasOneUse()) 3066 return false; 3067 3068 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3069 if (!U2 || U2->getOpcode() != OpCode) 3070 return false; 3071 3072 // Check operands of the reduction operation. 3073 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3074 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3075 UsersToVisit.push_back(U2); 3076 ElemNumToReduce /= 2; 3077 } else 3078 return false; 3079 } else if (isa<ExtractElementInst>(U)) { 3080 // At this moment we should have reduced all elements in the vector. 3081 if (ElemNumToReduce != 1) 3082 return false; 3083 3084 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3085 if (!Val || !Val->isZero()) 3086 return false; 3087 3088 ReduxExtracted = true; 3089 } else 3090 return false; 3091 } 3092 } 3093 return ReduxExtracted; 3094 } 3095 3096 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3097 SDNodeFlags Flags; 3098 3099 SDValue Op = getValue(I.getOperand(0)); 3100 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3101 Op, Flags); 3102 setValue(&I, UnNodeValue); 3103 } 3104 3105 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3106 SDNodeFlags Flags; 3107 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3108 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3109 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3110 } 3111 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3112 Flags.setExact(ExactOp->isExact()); 3113 } 3114 if (isVectorReductionOp(&I)) { 3115 Flags.setVectorReduction(true); 3116 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3117 } 3118 3119 SDValue Op1 = getValue(I.getOperand(0)); 3120 SDValue Op2 = getValue(I.getOperand(1)); 3121 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3122 Op1, Op2, Flags); 3123 setValue(&I, BinNodeValue); 3124 } 3125 3126 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3127 SDValue Op1 = getValue(I.getOperand(0)); 3128 SDValue Op2 = getValue(I.getOperand(1)); 3129 3130 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3131 Op1.getValueType(), DAG.getDataLayout()); 3132 3133 // Coerce the shift amount to the right type if we can. 3134 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3135 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3136 unsigned Op2Size = Op2.getValueSizeInBits(); 3137 SDLoc DL = getCurSDLoc(); 3138 3139 // If the operand is smaller than the shift count type, promote it. 3140 if (ShiftSize > Op2Size) 3141 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3142 3143 // If the operand is larger than the shift count type but the shift 3144 // count type has enough bits to represent any shift value, truncate 3145 // it now. This is a common case and it exposes the truncate to 3146 // optimization early. 3147 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3148 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3149 // Otherwise we'll need to temporarily settle for some other convenient 3150 // type. Type legalization will make adjustments once the shiftee is split. 3151 else 3152 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3153 } 3154 3155 bool nuw = false; 3156 bool nsw = false; 3157 bool exact = false; 3158 3159 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3160 3161 if (const OverflowingBinaryOperator *OFBinOp = 3162 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3163 nuw = OFBinOp->hasNoUnsignedWrap(); 3164 nsw = OFBinOp->hasNoSignedWrap(); 3165 } 3166 if (const PossiblyExactOperator *ExactOp = 3167 dyn_cast<const PossiblyExactOperator>(&I)) 3168 exact = ExactOp->isExact(); 3169 } 3170 SDNodeFlags Flags; 3171 Flags.setExact(exact); 3172 Flags.setNoSignedWrap(nsw); 3173 Flags.setNoUnsignedWrap(nuw); 3174 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3175 Flags); 3176 setValue(&I, Res); 3177 } 3178 3179 void SelectionDAGBuilder::visitSDiv(const User &I) { 3180 SDValue Op1 = getValue(I.getOperand(0)); 3181 SDValue Op2 = getValue(I.getOperand(1)); 3182 3183 SDNodeFlags Flags; 3184 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3185 cast<PossiblyExactOperator>(&I)->isExact()); 3186 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3187 Op2, Flags)); 3188 } 3189 3190 void SelectionDAGBuilder::visitICmp(const User &I) { 3191 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3192 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3193 predicate = IC->getPredicate(); 3194 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3195 predicate = ICmpInst::Predicate(IC->getPredicate()); 3196 SDValue Op1 = getValue(I.getOperand(0)); 3197 SDValue Op2 = getValue(I.getOperand(1)); 3198 ISD::CondCode Opcode = getICmpCondCode(predicate); 3199 3200 auto &TLI = DAG.getTargetLoweringInfo(); 3201 EVT MemVT = 3202 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3203 3204 // If a pointer's DAG type is larger than its memory type then the DAG values 3205 // are zero-extended. This breaks signed comparisons so truncate back to the 3206 // underlying type before doing the compare. 3207 if (Op1.getValueType() != MemVT) { 3208 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3209 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3210 } 3211 3212 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3213 I.getType()); 3214 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3215 } 3216 3217 void SelectionDAGBuilder::visitFCmp(const User &I) { 3218 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3219 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3220 predicate = FC->getPredicate(); 3221 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3222 predicate = FCmpInst::Predicate(FC->getPredicate()); 3223 SDValue Op1 = getValue(I.getOperand(0)); 3224 SDValue Op2 = getValue(I.getOperand(1)); 3225 3226 ISD::CondCode Condition = getFCmpCondCode(predicate); 3227 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3228 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3229 Condition = getFCmpCodeWithoutNaN(Condition); 3230 3231 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3232 I.getType()); 3233 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3234 } 3235 3236 // Check if the condition of the select has one use or two users that are both 3237 // selects with the same condition. 3238 static bool hasOnlySelectUsers(const Value *Cond) { 3239 return llvm::all_of(Cond->users(), [](const Value *V) { 3240 return isa<SelectInst>(V); 3241 }); 3242 } 3243 3244 void SelectionDAGBuilder::visitSelect(const User &I) { 3245 SmallVector<EVT, 4> ValueVTs; 3246 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3247 ValueVTs); 3248 unsigned NumValues = ValueVTs.size(); 3249 if (NumValues == 0) return; 3250 3251 SmallVector<SDValue, 4> Values(NumValues); 3252 SDValue Cond = getValue(I.getOperand(0)); 3253 SDValue LHSVal = getValue(I.getOperand(1)); 3254 SDValue RHSVal = getValue(I.getOperand(2)); 3255 auto BaseOps = {Cond}; 3256 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3257 ISD::VSELECT : ISD::SELECT; 3258 3259 bool IsUnaryAbs = false; 3260 3261 // Min/max matching is only viable if all output VTs are the same. 3262 if (is_splat(ValueVTs)) { 3263 EVT VT = ValueVTs[0]; 3264 LLVMContext &Ctx = *DAG.getContext(); 3265 auto &TLI = DAG.getTargetLoweringInfo(); 3266 3267 // We care about the legality of the operation after it has been type 3268 // legalized. 3269 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3270 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3271 VT = TLI.getTypeToTransformTo(Ctx, VT); 3272 3273 // If the vselect is legal, assume we want to leave this as a vector setcc + 3274 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3275 // min/max is legal on the scalar type. 3276 bool UseScalarMinMax = VT.isVector() && 3277 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3278 3279 Value *LHS, *RHS; 3280 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3281 ISD::NodeType Opc = ISD::DELETED_NODE; 3282 switch (SPR.Flavor) { 3283 case SPF_UMAX: Opc = ISD::UMAX; break; 3284 case SPF_UMIN: Opc = ISD::UMIN; break; 3285 case SPF_SMAX: Opc = ISD::SMAX; break; 3286 case SPF_SMIN: Opc = ISD::SMIN; break; 3287 case SPF_FMINNUM: 3288 switch (SPR.NaNBehavior) { 3289 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3290 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3291 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3292 case SPNB_RETURNS_ANY: { 3293 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3294 Opc = ISD::FMINNUM; 3295 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3296 Opc = ISD::FMINIMUM; 3297 else if (UseScalarMinMax) 3298 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3299 ISD::FMINNUM : ISD::FMINIMUM; 3300 break; 3301 } 3302 } 3303 break; 3304 case SPF_FMAXNUM: 3305 switch (SPR.NaNBehavior) { 3306 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3307 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3308 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3309 case SPNB_RETURNS_ANY: 3310 3311 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3312 Opc = ISD::FMAXNUM; 3313 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3314 Opc = ISD::FMAXIMUM; 3315 else if (UseScalarMinMax) 3316 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3317 ISD::FMAXNUM : ISD::FMAXIMUM; 3318 break; 3319 } 3320 break; 3321 case SPF_ABS: 3322 IsUnaryAbs = true; 3323 Opc = ISD::ABS; 3324 break; 3325 case SPF_NABS: 3326 // TODO: we need to produce sub(0, abs(X)). 3327 default: break; 3328 } 3329 3330 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3331 (TLI.isOperationLegalOrCustom(Opc, VT) || 3332 (UseScalarMinMax && 3333 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3334 // If the underlying comparison instruction is used by any other 3335 // instruction, the consumed instructions won't be destroyed, so it is 3336 // not profitable to convert to a min/max. 3337 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3338 OpCode = Opc; 3339 LHSVal = getValue(LHS); 3340 RHSVal = getValue(RHS); 3341 BaseOps = {}; 3342 } 3343 3344 if (IsUnaryAbs) { 3345 OpCode = Opc; 3346 LHSVal = getValue(LHS); 3347 BaseOps = {}; 3348 } 3349 } 3350 3351 if (IsUnaryAbs) { 3352 for (unsigned i = 0; i != NumValues; ++i) { 3353 Values[i] = 3354 DAG.getNode(OpCode, getCurSDLoc(), 3355 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3356 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3357 } 3358 } else { 3359 for (unsigned i = 0; i != NumValues; ++i) { 3360 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3361 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3362 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3363 Values[i] = DAG.getNode( 3364 OpCode, getCurSDLoc(), 3365 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3366 } 3367 } 3368 3369 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3370 DAG.getVTList(ValueVTs), Values)); 3371 } 3372 3373 void SelectionDAGBuilder::visitTrunc(const User &I) { 3374 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3375 SDValue N = getValue(I.getOperand(0)); 3376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3377 I.getType()); 3378 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3379 } 3380 3381 void SelectionDAGBuilder::visitZExt(const User &I) { 3382 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3383 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3384 SDValue N = getValue(I.getOperand(0)); 3385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3386 I.getType()); 3387 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3388 } 3389 3390 void SelectionDAGBuilder::visitSExt(const User &I) { 3391 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3392 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3393 SDValue N = getValue(I.getOperand(0)); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3397 } 3398 3399 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3400 // FPTrunc is never a no-op cast, no need to check 3401 SDValue N = getValue(I.getOperand(0)); 3402 SDLoc dl = getCurSDLoc(); 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3405 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3406 DAG.getTargetConstant( 3407 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3408 } 3409 3410 void SelectionDAGBuilder::visitFPExt(const User &I) { 3411 // FPExt is never a no-op cast, no need to check 3412 SDValue N = getValue(I.getOperand(0)); 3413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3414 I.getType()); 3415 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3416 } 3417 3418 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3419 // FPToUI is never a no-op cast, no need to check 3420 SDValue N = getValue(I.getOperand(0)); 3421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3422 I.getType()); 3423 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3427 // FPToSI is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3435 // UIToFP is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3443 // SIToFP is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3451 // What to do depends on the size of the integer and the size of the pointer. 3452 // We can either truncate, zero extend, or no-op, accordingly. 3453 SDValue N = getValue(I.getOperand(0)); 3454 auto &TLI = DAG.getTargetLoweringInfo(); 3455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3456 I.getType()); 3457 EVT PtrMemVT = 3458 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3459 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3460 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3461 setValue(&I, N); 3462 } 3463 3464 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3465 // What to do depends on the size of the integer and the size of the pointer. 3466 // We can either truncate, zero extend, or no-op, accordingly. 3467 SDValue N = getValue(I.getOperand(0)); 3468 auto &TLI = DAG.getTargetLoweringInfo(); 3469 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3470 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3471 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3472 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3473 setValue(&I, N); 3474 } 3475 3476 void SelectionDAGBuilder::visitBitCast(const User &I) { 3477 SDValue N = getValue(I.getOperand(0)); 3478 SDLoc dl = getCurSDLoc(); 3479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3480 I.getType()); 3481 3482 // BitCast assures us that source and destination are the same size so this is 3483 // either a BITCAST or a no-op. 3484 if (DestVT != N.getValueType()) 3485 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3486 DestVT, N)); // convert types. 3487 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3488 // might fold any kind of constant expression to an integer constant and that 3489 // is not what we are looking for. Only recognize a bitcast of a genuine 3490 // constant integer as an opaque constant. 3491 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3492 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3493 /*isOpaque*/true)); 3494 else 3495 setValue(&I, N); // noop cast. 3496 } 3497 3498 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3500 const Value *SV = I.getOperand(0); 3501 SDValue N = getValue(SV); 3502 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3503 3504 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3505 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3506 3507 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3508 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3509 3510 setValue(&I, N); 3511 } 3512 3513 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3515 SDValue InVec = getValue(I.getOperand(0)); 3516 SDValue InVal = getValue(I.getOperand(1)); 3517 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3518 TLI.getVectorIdxTy(DAG.getDataLayout())); 3519 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3520 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3521 InVec, InVal, InIdx)); 3522 } 3523 3524 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3526 SDValue InVec = getValue(I.getOperand(0)); 3527 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3528 TLI.getVectorIdxTy(DAG.getDataLayout())); 3529 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3530 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3531 InVec, InIdx)); 3532 } 3533 3534 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3535 SDValue Src1 = getValue(I.getOperand(0)); 3536 SDValue Src2 = getValue(I.getOperand(1)); 3537 SDLoc DL = getCurSDLoc(); 3538 3539 SmallVector<int, 8> Mask; 3540 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3541 unsigned MaskNumElts = Mask.size(); 3542 3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3544 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3545 EVT SrcVT = Src1.getValueType(); 3546 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3547 3548 if (SrcNumElts == MaskNumElts) { 3549 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3550 return; 3551 } 3552 3553 // Normalize the shuffle vector since mask and vector length don't match. 3554 if (SrcNumElts < MaskNumElts) { 3555 // Mask is longer than the source vectors. We can use concatenate vector to 3556 // make the mask and vectors lengths match. 3557 3558 if (MaskNumElts % SrcNumElts == 0) { 3559 // Mask length is a multiple of the source vector length. 3560 // Check if the shuffle is some kind of concatenation of the input 3561 // vectors. 3562 unsigned NumConcat = MaskNumElts / SrcNumElts; 3563 bool IsConcat = true; 3564 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3565 for (unsigned i = 0; i != MaskNumElts; ++i) { 3566 int Idx = Mask[i]; 3567 if (Idx < 0) 3568 continue; 3569 // Ensure the indices in each SrcVT sized piece are sequential and that 3570 // the same source is used for the whole piece. 3571 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3572 (ConcatSrcs[i / SrcNumElts] >= 0 && 3573 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3574 IsConcat = false; 3575 break; 3576 } 3577 // Remember which source this index came from. 3578 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3579 } 3580 3581 // The shuffle is concatenating multiple vectors together. Just emit 3582 // a CONCAT_VECTORS operation. 3583 if (IsConcat) { 3584 SmallVector<SDValue, 8> ConcatOps; 3585 for (auto Src : ConcatSrcs) { 3586 if (Src < 0) 3587 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3588 else if (Src == 0) 3589 ConcatOps.push_back(Src1); 3590 else 3591 ConcatOps.push_back(Src2); 3592 } 3593 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3594 return; 3595 } 3596 } 3597 3598 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3599 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3600 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3601 PaddedMaskNumElts); 3602 3603 // Pad both vectors with undefs to make them the same length as the mask. 3604 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3605 3606 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3607 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3608 MOps1[0] = Src1; 3609 MOps2[0] = Src2; 3610 3611 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3612 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3613 3614 // Readjust mask for new input vector length. 3615 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3616 for (unsigned i = 0; i != MaskNumElts; ++i) { 3617 int Idx = Mask[i]; 3618 if (Idx >= (int)SrcNumElts) 3619 Idx -= SrcNumElts - PaddedMaskNumElts; 3620 MappedOps[i] = Idx; 3621 } 3622 3623 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3624 3625 // If the concatenated vector was padded, extract a subvector with the 3626 // correct number of elements. 3627 if (MaskNumElts != PaddedMaskNumElts) 3628 Result = DAG.getNode( 3629 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3630 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3631 3632 setValue(&I, Result); 3633 return; 3634 } 3635 3636 if (SrcNumElts > MaskNumElts) { 3637 // Analyze the access pattern of the vector to see if we can extract 3638 // two subvectors and do the shuffle. 3639 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3640 bool CanExtract = true; 3641 for (int Idx : Mask) { 3642 unsigned Input = 0; 3643 if (Idx < 0) 3644 continue; 3645 3646 if (Idx >= (int)SrcNumElts) { 3647 Input = 1; 3648 Idx -= SrcNumElts; 3649 } 3650 3651 // If all the indices come from the same MaskNumElts sized portion of 3652 // the sources we can use extract. Also make sure the extract wouldn't 3653 // extract past the end of the source. 3654 int NewStartIdx = alignDown(Idx, MaskNumElts); 3655 if (NewStartIdx + MaskNumElts > SrcNumElts || 3656 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3657 CanExtract = false; 3658 // Make sure we always update StartIdx as we use it to track if all 3659 // elements are undef. 3660 StartIdx[Input] = NewStartIdx; 3661 } 3662 3663 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3664 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3665 return; 3666 } 3667 if (CanExtract) { 3668 // Extract appropriate subvector and generate a vector shuffle 3669 for (unsigned Input = 0; Input < 2; ++Input) { 3670 SDValue &Src = Input == 0 ? Src1 : Src2; 3671 if (StartIdx[Input] < 0) 3672 Src = DAG.getUNDEF(VT); 3673 else { 3674 Src = DAG.getNode( 3675 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3676 DAG.getConstant(StartIdx[Input], DL, 3677 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3678 } 3679 } 3680 3681 // Calculate new mask. 3682 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3683 for (int &Idx : MappedOps) { 3684 if (Idx >= (int)SrcNumElts) 3685 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3686 else if (Idx >= 0) 3687 Idx -= StartIdx[0]; 3688 } 3689 3690 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3691 return; 3692 } 3693 } 3694 3695 // We can't use either concat vectors or extract subvectors so fall back to 3696 // replacing the shuffle with extract and build vector. 3697 // to insert and build vector. 3698 EVT EltVT = VT.getVectorElementType(); 3699 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3700 SmallVector<SDValue,8> Ops; 3701 for (int Idx : Mask) { 3702 SDValue Res; 3703 3704 if (Idx < 0) { 3705 Res = DAG.getUNDEF(EltVT); 3706 } else { 3707 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3708 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3709 3710 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3711 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3712 } 3713 3714 Ops.push_back(Res); 3715 } 3716 3717 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3718 } 3719 3720 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3721 ArrayRef<unsigned> Indices; 3722 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3723 Indices = IV->getIndices(); 3724 else 3725 Indices = cast<ConstantExpr>(&I)->getIndices(); 3726 3727 const Value *Op0 = I.getOperand(0); 3728 const Value *Op1 = I.getOperand(1); 3729 Type *AggTy = I.getType(); 3730 Type *ValTy = Op1->getType(); 3731 bool IntoUndef = isa<UndefValue>(Op0); 3732 bool FromUndef = isa<UndefValue>(Op1); 3733 3734 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3735 3736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3737 SmallVector<EVT, 4> AggValueVTs; 3738 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3739 SmallVector<EVT, 4> ValValueVTs; 3740 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3741 3742 unsigned NumAggValues = AggValueVTs.size(); 3743 unsigned NumValValues = ValValueVTs.size(); 3744 SmallVector<SDValue, 4> Values(NumAggValues); 3745 3746 // Ignore an insertvalue that produces an empty object 3747 if (!NumAggValues) { 3748 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3749 return; 3750 } 3751 3752 SDValue Agg = getValue(Op0); 3753 unsigned i = 0; 3754 // Copy the beginning value(s) from the original aggregate. 3755 for (; i != LinearIndex; ++i) 3756 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3757 SDValue(Agg.getNode(), Agg.getResNo() + i); 3758 // Copy values from the inserted value(s). 3759 if (NumValValues) { 3760 SDValue Val = getValue(Op1); 3761 for (; i != LinearIndex + NumValValues; ++i) 3762 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3763 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3764 } 3765 // Copy remaining value(s) from the original aggregate. 3766 for (; i != NumAggValues; ++i) 3767 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3768 SDValue(Agg.getNode(), Agg.getResNo() + i); 3769 3770 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3771 DAG.getVTList(AggValueVTs), Values)); 3772 } 3773 3774 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3775 ArrayRef<unsigned> Indices; 3776 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3777 Indices = EV->getIndices(); 3778 else 3779 Indices = cast<ConstantExpr>(&I)->getIndices(); 3780 3781 const Value *Op0 = I.getOperand(0); 3782 Type *AggTy = Op0->getType(); 3783 Type *ValTy = I.getType(); 3784 bool OutOfUndef = isa<UndefValue>(Op0); 3785 3786 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3787 3788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3789 SmallVector<EVT, 4> ValValueVTs; 3790 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3791 3792 unsigned NumValValues = ValValueVTs.size(); 3793 3794 // Ignore a extractvalue that produces an empty object 3795 if (!NumValValues) { 3796 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3797 return; 3798 } 3799 3800 SmallVector<SDValue, 4> Values(NumValValues); 3801 3802 SDValue Agg = getValue(Op0); 3803 // Copy out the selected value(s). 3804 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3805 Values[i - LinearIndex] = 3806 OutOfUndef ? 3807 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3808 SDValue(Agg.getNode(), Agg.getResNo() + i); 3809 3810 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3811 DAG.getVTList(ValValueVTs), Values)); 3812 } 3813 3814 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3815 Value *Op0 = I.getOperand(0); 3816 // Note that the pointer operand may be a vector of pointers. Take the scalar 3817 // element which holds a pointer. 3818 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3819 SDValue N = getValue(Op0); 3820 SDLoc dl = getCurSDLoc(); 3821 auto &TLI = DAG.getTargetLoweringInfo(); 3822 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3823 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3824 3825 // Normalize Vector GEP - all scalar operands should be converted to the 3826 // splat vector. 3827 unsigned VectorWidth = I.getType()->isVectorTy() ? 3828 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3829 3830 if (VectorWidth && !N.getValueType().isVector()) { 3831 LLVMContext &Context = *DAG.getContext(); 3832 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3833 N = DAG.getSplatBuildVector(VT, dl, N); 3834 } 3835 3836 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3837 GTI != E; ++GTI) { 3838 const Value *Idx = GTI.getOperand(); 3839 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3840 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3841 if (Field) { 3842 // N = N + Offset 3843 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3844 3845 // In an inbounds GEP with an offset that is nonnegative even when 3846 // interpreted as signed, assume there is no unsigned overflow. 3847 SDNodeFlags Flags; 3848 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3849 Flags.setNoUnsignedWrap(true); 3850 3851 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3852 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3853 } 3854 } else { 3855 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3856 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3857 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3858 3859 // If this is a scalar constant or a splat vector of constants, 3860 // handle it quickly. 3861 const auto *CI = dyn_cast<ConstantInt>(Idx); 3862 if (!CI && isa<ConstantDataVector>(Idx) && 3863 cast<ConstantDataVector>(Idx)->getSplatValue()) 3864 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3865 3866 if (CI) { 3867 if (CI->isZero()) 3868 continue; 3869 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3870 LLVMContext &Context = *DAG.getContext(); 3871 SDValue OffsVal = VectorWidth ? 3872 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3873 DAG.getConstant(Offs, dl, IdxTy); 3874 3875 // In an inbouds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3882 3883 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3884 continue; 3885 } 3886 3887 // N = N + Idx * ElementSize; 3888 SDValue IdxN = getValue(Idx); 3889 3890 if (!IdxN.getValueType().isVector() && VectorWidth) { 3891 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3892 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3893 } 3894 3895 // If the index is smaller or larger than intptr_t, truncate or extend 3896 // it. 3897 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3898 3899 // If this is a multiply by a power of two, turn it into a shl 3900 // immediately. This is a very common case. 3901 if (ElementSize != 1) { 3902 if (ElementSize.isPowerOf2()) { 3903 unsigned Amt = ElementSize.logBase2(); 3904 IdxN = DAG.getNode(ISD::SHL, dl, 3905 N.getValueType(), IdxN, 3906 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3907 } else { 3908 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3909 IdxN.getValueType()); 3910 IdxN = DAG.getNode(ISD::MUL, dl, 3911 N.getValueType(), IdxN, Scale); 3912 } 3913 } 3914 3915 N = DAG.getNode(ISD::ADD, dl, 3916 N.getValueType(), N, IdxN); 3917 } 3918 } 3919 3920 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3921 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3922 3923 setValue(&I, N); 3924 } 3925 3926 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3927 // If this is a fixed sized alloca in the entry block of the function, 3928 // allocate it statically on the stack. 3929 if (FuncInfo.StaticAllocaMap.count(&I)) 3930 return; // getValue will auto-populate this. 3931 3932 SDLoc dl = getCurSDLoc(); 3933 Type *Ty = I.getAllocatedType(); 3934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3935 auto &DL = DAG.getDataLayout(); 3936 uint64_t TySize = DL.getTypeAllocSize(Ty); 3937 unsigned Align = 3938 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3939 3940 SDValue AllocSize = getValue(I.getArraySize()); 3941 3942 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3943 if (AllocSize.getValueType() != IntPtr) 3944 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3945 3946 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3947 AllocSize, 3948 DAG.getConstant(TySize, dl, IntPtr)); 3949 3950 // Handle alignment. If the requested alignment is less than or equal to 3951 // the stack alignment, ignore it. If the size is greater than or equal to 3952 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3953 unsigned StackAlign = 3954 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3955 if (Align <= StackAlign) 3956 Align = 0; 3957 3958 // Round the size of the allocation up to the stack alignment size 3959 // by add SA-1 to the size. This doesn't overflow because we're computing 3960 // an address inside an alloca. 3961 SDNodeFlags Flags; 3962 Flags.setNoUnsignedWrap(true); 3963 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3964 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3965 3966 // Mask out the low bits for alignment purposes. 3967 AllocSize = 3968 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3969 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3970 3971 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3972 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3973 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3974 setValue(&I, DSA); 3975 DAG.setRoot(DSA.getValue(1)); 3976 3977 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3978 } 3979 3980 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3981 if (I.isAtomic()) 3982 return visitAtomicLoad(I); 3983 3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3985 const Value *SV = I.getOperand(0); 3986 if (TLI.supportSwiftError()) { 3987 // Swifterror values can come from either a function parameter with 3988 // swifterror attribute or an alloca with swifterror attribute. 3989 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3990 if (Arg->hasSwiftErrorAttr()) 3991 return visitLoadFromSwiftError(I); 3992 } 3993 3994 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3995 if (Alloca->isSwiftError()) 3996 return visitLoadFromSwiftError(I); 3997 } 3998 } 3999 4000 SDValue Ptr = getValue(SV); 4001 4002 Type *Ty = I.getType(); 4003 4004 bool isVolatile = I.isVolatile(); 4005 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 4006 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 4007 bool isDereferenceable = 4008 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4009 unsigned Alignment = I.getAlignment(); 4010 4011 AAMDNodes AAInfo; 4012 I.getAAMetadata(AAInfo); 4013 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4014 4015 SmallVector<EVT, 4> ValueVTs, MemVTs; 4016 SmallVector<uint64_t, 4> Offsets; 4017 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4018 unsigned NumValues = ValueVTs.size(); 4019 if (NumValues == 0) 4020 return; 4021 4022 SDValue Root; 4023 bool ConstantMemory = false; 4024 if (isVolatile || NumValues > MaxParallelChains) 4025 // Serialize volatile loads with other side effects. 4026 Root = getRoot(); 4027 else if (AA && 4028 AA->pointsToConstantMemory(MemoryLocation( 4029 SV, 4030 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4031 AAInfo))) { 4032 // Do not serialize (non-volatile) loads of constant memory with anything. 4033 Root = DAG.getEntryNode(); 4034 ConstantMemory = true; 4035 } else { 4036 // Do not serialize non-volatile loads against each other. 4037 Root = DAG.getRoot(); 4038 } 4039 4040 SDLoc dl = getCurSDLoc(); 4041 4042 if (isVolatile) 4043 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4044 4045 // An aggregate load cannot wrap around the address space, so offsets to its 4046 // parts don't wrap either. 4047 SDNodeFlags Flags; 4048 Flags.setNoUnsignedWrap(true); 4049 4050 SmallVector<SDValue, 4> Values(NumValues); 4051 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4052 EVT PtrVT = Ptr.getValueType(); 4053 unsigned ChainI = 0; 4054 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4055 // Serializing loads here may result in excessive register pressure, and 4056 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4057 // could recover a bit by hoisting nodes upward in the chain by recognizing 4058 // they are side-effect free or do not alias. The optimizer should really 4059 // avoid this case by converting large object/array copies to llvm.memcpy 4060 // (MaxParallelChains should always remain as failsafe). 4061 if (ChainI == MaxParallelChains) { 4062 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4063 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4064 makeArrayRef(Chains.data(), ChainI)); 4065 Root = Chain; 4066 ChainI = 0; 4067 } 4068 SDValue A = DAG.getNode(ISD::ADD, dl, 4069 PtrVT, Ptr, 4070 DAG.getConstant(Offsets[i], dl, PtrVT), 4071 Flags); 4072 auto MMOFlags = MachineMemOperand::MONone; 4073 if (isVolatile) 4074 MMOFlags |= MachineMemOperand::MOVolatile; 4075 if (isNonTemporal) 4076 MMOFlags |= MachineMemOperand::MONonTemporal; 4077 if (isInvariant) 4078 MMOFlags |= MachineMemOperand::MOInvariant; 4079 if (isDereferenceable) 4080 MMOFlags |= MachineMemOperand::MODereferenceable; 4081 MMOFlags |= TLI.getMMOFlags(I); 4082 4083 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4084 MachinePointerInfo(SV, Offsets[i]), Alignment, 4085 MMOFlags, AAInfo, Ranges); 4086 Chains[ChainI] = L.getValue(1); 4087 4088 if (MemVTs[i] != ValueVTs[i]) 4089 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4090 4091 Values[i] = L; 4092 } 4093 4094 if (!ConstantMemory) { 4095 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4096 makeArrayRef(Chains.data(), ChainI)); 4097 if (isVolatile) 4098 DAG.setRoot(Chain); 4099 else 4100 PendingLoads.push_back(Chain); 4101 } 4102 4103 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4104 DAG.getVTList(ValueVTs), Values)); 4105 } 4106 4107 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4108 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4109 "call visitStoreToSwiftError when backend supports swifterror"); 4110 4111 SmallVector<EVT, 4> ValueVTs; 4112 SmallVector<uint64_t, 4> Offsets; 4113 const Value *SrcV = I.getOperand(0); 4114 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4115 SrcV->getType(), ValueVTs, &Offsets); 4116 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4117 "expect a single EVT for swifterror"); 4118 4119 SDValue Src = getValue(SrcV); 4120 // Create a virtual register, then update the virtual register. 4121 unsigned VReg = 4122 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4123 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4124 // Chain can be getRoot or getControlRoot. 4125 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4126 SDValue(Src.getNode(), Src.getResNo())); 4127 DAG.setRoot(CopyNode); 4128 } 4129 4130 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4131 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4132 "call visitLoadFromSwiftError when backend supports swifterror"); 4133 4134 assert(!I.isVolatile() && 4135 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4136 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4137 "Support volatile, non temporal, invariant for load_from_swift_error"); 4138 4139 const Value *SV = I.getOperand(0); 4140 Type *Ty = I.getType(); 4141 AAMDNodes AAInfo; 4142 I.getAAMetadata(AAInfo); 4143 assert( 4144 (!AA || 4145 !AA->pointsToConstantMemory(MemoryLocation( 4146 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4147 AAInfo))) && 4148 "load_from_swift_error should not be constant memory"); 4149 4150 SmallVector<EVT, 4> ValueVTs; 4151 SmallVector<uint64_t, 4> Offsets; 4152 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4153 ValueVTs, &Offsets); 4154 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4155 "expect a single EVT for swifterror"); 4156 4157 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4158 SDValue L = DAG.getCopyFromReg( 4159 getRoot(), getCurSDLoc(), 4160 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4161 4162 setValue(&I, L); 4163 } 4164 4165 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4166 if (I.isAtomic()) 4167 return visitAtomicStore(I); 4168 4169 const Value *SrcV = I.getOperand(0); 4170 const Value *PtrV = I.getOperand(1); 4171 4172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4173 if (TLI.supportSwiftError()) { 4174 // Swifterror values can come from either a function parameter with 4175 // swifterror attribute or an alloca with swifterror attribute. 4176 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4177 if (Arg->hasSwiftErrorAttr()) 4178 return visitStoreToSwiftError(I); 4179 } 4180 4181 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4182 if (Alloca->isSwiftError()) 4183 return visitStoreToSwiftError(I); 4184 } 4185 } 4186 4187 SmallVector<EVT, 4> ValueVTs, MemVTs; 4188 SmallVector<uint64_t, 4> Offsets; 4189 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4190 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4191 unsigned NumValues = ValueVTs.size(); 4192 if (NumValues == 0) 4193 return; 4194 4195 // Get the lowered operands. Note that we do this after 4196 // checking if NumResults is zero, because with zero results 4197 // the operands won't have values in the map. 4198 SDValue Src = getValue(SrcV); 4199 SDValue Ptr = getValue(PtrV); 4200 4201 SDValue Root = getRoot(); 4202 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4203 SDLoc dl = getCurSDLoc(); 4204 EVT PtrVT = Ptr.getValueType(); 4205 unsigned Alignment = I.getAlignment(); 4206 AAMDNodes AAInfo; 4207 I.getAAMetadata(AAInfo); 4208 4209 auto MMOFlags = MachineMemOperand::MONone; 4210 if (I.isVolatile()) 4211 MMOFlags |= MachineMemOperand::MOVolatile; 4212 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4213 MMOFlags |= MachineMemOperand::MONonTemporal; 4214 MMOFlags |= TLI.getMMOFlags(I); 4215 4216 // An aggregate load cannot wrap around the address space, so offsets to its 4217 // parts don't wrap either. 4218 SDNodeFlags Flags; 4219 Flags.setNoUnsignedWrap(true); 4220 4221 unsigned ChainI = 0; 4222 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4223 // See visitLoad comments. 4224 if (ChainI == MaxParallelChains) { 4225 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4226 makeArrayRef(Chains.data(), ChainI)); 4227 Root = Chain; 4228 ChainI = 0; 4229 } 4230 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4231 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4232 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4233 if (MemVTs[i] != ValueVTs[i]) 4234 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4235 SDValue St = 4236 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4237 Alignment, MMOFlags, AAInfo); 4238 Chains[ChainI] = St; 4239 } 4240 4241 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4242 makeArrayRef(Chains.data(), ChainI)); 4243 DAG.setRoot(StoreNode); 4244 } 4245 4246 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4247 bool IsCompressing) { 4248 SDLoc sdl = getCurSDLoc(); 4249 4250 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4251 unsigned& Alignment) { 4252 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4253 Src0 = I.getArgOperand(0); 4254 Ptr = I.getArgOperand(1); 4255 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4256 Mask = I.getArgOperand(3); 4257 }; 4258 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4259 unsigned& Alignment) { 4260 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4261 Src0 = I.getArgOperand(0); 4262 Ptr = I.getArgOperand(1); 4263 Mask = I.getArgOperand(2); 4264 Alignment = 0; 4265 }; 4266 4267 Value *PtrOperand, *MaskOperand, *Src0Operand; 4268 unsigned Alignment; 4269 if (IsCompressing) 4270 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4271 else 4272 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4273 4274 SDValue Ptr = getValue(PtrOperand); 4275 SDValue Src0 = getValue(Src0Operand); 4276 SDValue Mask = getValue(MaskOperand); 4277 4278 EVT VT = Src0.getValueType(); 4279 if (!Alignment) 4280 Alignment = DAG.getEVTAlignment(VT); 4281 4282 AAMDNodes AAInfo; 4283 I.getAAMetadata(AAInfo); 4284 4285 MachineMemOperand *MMO = 4286 DAG.getMachineFunction(). 4287 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4288 MachineMemOperand::MOStore, VT.getStoreSize(), 4289 Alignment, AAInfo); 4290 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4291 MMO, false /* Truncating */, 4292 IsCompressing); 4293 DAG.setRoot(StoreNode); 4294 setValue(&I, StoreNode); 4295 } 4296 4297 // Get a uniform base for the Gather/Scatter intrinsic. 4298 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4299 // We try to represent it as a base pointer + vector of indices. 4300 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4301 // The first operand of the GEP may be a single pointer or a vector of pointers 4302 // Example: 4303 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4304 // or 4305 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4306 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4307 // 4308 // When the first GEP operand is a single pointer - it is the uniform base we 4309 // are looking for. If first operand of the GEP is a splat vector - we 4310 // extract the splat value and use it as a uniform base. 4311 // In all other cases the function returns 'false'. 4312 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4313 SDValue &Scale, SelectionDAGBuilder* SDB) { 4314 SelectionDAG& DAG = SDB->DAG; 4315 LLVMContext &Context = *DAG.getContext(); 4316 4317 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4318 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4319 if (!GEP) 4320 return false; 4321 4322 const Value *GEPPtr = GEP->getPointerOperand(); 4323 if (!GEPPtr->getType()->isVectorTy()) 4324 Ptr = GEPPtr; 4325 else if (!(Ptr = getSplatValue(GEPPtr))) 4326 return false; 4327 4328 unsigned FinalIndex = GEP->getNumOperands() - 1; 4329 Value *IndexVal = GEP->getOperand(FinalIndex); 4330 4331 // Ensure all the other indices are 0. 4332 for (unsigned i = 1; i < FinalIndex; ++i) { 4333 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4334 if (!C || !C->isZero()) 4335 return false; 4336 } 4337 4338 // The operands of the GEP may be defined in another basic block. 4339 // In this case we'll not find nodes for the operands. 4340 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4341 return false; 4342 4343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4344 const DataLayout &DL = DAG.getDataLayout(); 4345 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4346 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4347 Base = SDB->getValue(Ptr); 4348 Index = SDB->getValue(IndexVal); 4349 4350 if (!Index.getValueType().isVector()) { 4351 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4352 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4353 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4354 } 4355 return true; 4356 } 4357 4358 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4359 SDLoc sdl = getCurSDLoc(); 4360 4361 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4362 const Value *Ptr = I.getArgOperand(1); 4363 SDValue Src0 = getValue(I.getArgOperand(0)); 4364 SDValue Mask = getValue(I.getArgOperand(3)); 4365 EVT VT = Src0.getValueType(); 4366 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4367 if (!Alignment) 4368 Alignment = DAG.getEVTAlignment(VT); 4369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4370 4371 AAMDNodes AAInfo; 4372 I.getAAMetadata(AAInfo); 4373 4374 SDValue Base; 4375 SDValue Index; 4376 SDValue Scale; 4377 const Value *BasePtr = Ptr; 4378 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4379 4380 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4381 MachineMemOperand *MMO = DAG.getMachineFunction(). 4382 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4383 MachineMemOperand::MOStore, VT.getStoreSize(), 4384 Alignment, AAInfo); 4385 if (!UniformBase) { 4386 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4387 Index = getValue(Ptr); 4388 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4389 } 4390 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4391 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4392 Ops, MMO); 4393 DAG.setRoot(Scatter); 4394 setValue(&I, Scatter); 4395 } 4396 4397 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4398 SDLoc sdl = getCurSDLoc(); 4399 4400 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4401 unsigned& Alignment) { 4402 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4403 Ptr = I.getArgOperand(0); 4404 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4405 Mask = I.getArgOperand(2); 4406 Src0 = I.getArgOperand(3); 4407 }; 4408 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4409 unsigned& Alignment) { 4410 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4411 Ptr = I.getArgOperand(0); 4412 Alignment = 0; 4413 Mask = I.getArgOperand(1); 4414 Src0 = I.getArgOperand(2); 4415 }; 4416 4417 Value *PtrOperand, *MaskOperand, *Src0Operand; 4418 unsigned Alignment; 4419 if (IsExpanding) 4420 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4421 else 4422 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4423 4424 SDValue Ptr = getValue(PtrOperand); 4425 SDValue Src0 = getValue(Src0Operand); 4426 SDValue Mask = getValue(MaskOperand); 4427 4428 EVT VT = Src0.getValueType(); 4429 if (!Alignment) 4430 Alignment = DAG.getEVTAlignment(VT); 4431 4432 AAMDNodes AAInfo; 4433 I.getAAMetadata(AAInfo); 4434 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4435 4436 // Do not serialize masked loads of constant memory with anything. 4437 bool AddToChain = 4438 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4439 PtrOperand, 4440 LocationSize::precise( 4441 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4442 AAInfo)); 4443 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4444 4445 MachineMemOperand *MMO = 4446 DAG.getMachineFunction(). 4447 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4448 MachineMemOperand::MOLoad, VT.getStoreSize(), 4449 Alignment, AAInfo, Ranges); 4450 4451 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4452 ISD::NON_EXTLOAD, IsExpanding); 4453 if (AddToChain) 4454 PendingLoads.push_back(Load.getValue(1)); 4455 setValue(&I, Load); 4456 } 4457 4458 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4459 SDLoc sdl = getCurSDLoc(); 4460 4461 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4462 const Value *Ptr = I.getArgOperand(0); 4463 SDValue Src0 = getValue(I.getArgOperand(3)); 4464 SDValue Mask = getValue(I.getArgOperand(2)); 4465 4466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4467 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4468 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4469 if (!Alignment) 4470 Alignment = DAG.getEVTAlignment(VT); 4471 4472 AAMDNodes AAInfo; 4473 I.getAAMetadata(AAInfo); 4474 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4475 4476 SDValue Root = DAG.getRoot(); 4477 SDValue Base; 4478 SDValue Index; 4479 SDValue Scale; 4480 const Value *BasePtr = Ptr; 4481 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4482 bool ConstantMemory = false; 4483 if (UniformBase && AA && 4484 AA->pointsToConstantMemory( 4485 MemoryLocation(BasePtr, 4486 LocationSize::precise( 4487 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4488 AAInfo))) { 4489 // Do not serialize (non-volatile) loads of constant memory with anything. 4490 Root = DAG.getEntryNode(); 4491 ConstantMemory = true; 4492 } 4493 4494 MachineMemOperand *MMO = 4495 DAG.getMachineFunction(). 4496 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4497 MachineMemOperand::MOLoad, VT.getStoreSize(), 4498 Alignment, AAInfo, Ranges); 4499 4500 if (!UniformBase) { 4501 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4502 Index = getValue(Ptr); 4503 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4504 } 4505 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4506 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4507 Ops, MMO); 4508 4509 SDValue OutChain = Gather.getValue(1); 4510 if (!ConstantMemory) 4511 PendingLoads.push_back(OutChain); 4512 setValue(&I, Gather); 4513 } 4514 4515 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4516 SDLoc dl = getCurSDLoc(); 4517 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4518 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4519 SyncScope::ID SSID = I.getSyncScopeID(); 4520 4521 SDValue InChain = getRoot(); 4522 4523 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4524 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4525 4526 auto Alignment = DAG.getEVTAlignment(MemVT); 4527 4528 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4529 if (I.isVolatile()) 4530 Flags |= MachineMemOperand::MOVolatile; 4531 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4532 4533 MachineFunction &MF = DAG.getMachineFunction(); 4534 MachineMemOperand *MMO = 4535 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4536 Flags, MemVT.getStoreSize(), Alignment, 4537 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4538 FailureOrdering); 4539 4540 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4541 dl, MemVT, VTs, InChain, 4542 getValue(I.getPointerOperand()), 4543 getValue(I.getCompareOperand()), 4544 getValue(I.getNewValOperand()), MMO); 4545 4546 SDValue OutChain = L.getValue(2); 4547 4548 setValue(&I, L); 4549 DAG.setRoot(OutChain); 4550 } 4551 4552 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4553 SDLoc dl = getCurSDLoc(); 4554 ISD::NodeType NT; 4555 switch (I.getOperation()) { 4556 default: llvm_unreachable("Unknown atomicrmw operation"); 4557 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4558 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4559 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4560 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4561 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4562 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4563 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4564 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4565 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4566 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4567 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4568 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4569 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4570 } 4571 AtomicOrdering Ordering = I.getOrdering(); 4572 SyncScope::ID SSID = I.getSyncScopeID(); 4573 4574 SDValue InChain = getRoot(); 4575 4576 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4577 auto Alignment = DAG.getEVTAlignment(MemVT); 4578 4579 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4580 if (I.isVolatile()) 4581 Flags |= MachineMemOperand::MOVolatile; 4582 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4583 4584 MachineFunction &MF = DAG.getMachineFunction(); 4585 MachineMemOperand *MMO = 4586 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4587 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4588 nullptr, SSID, Ordering); 4589 4590 SDValue L = 4591 DAG.getAtomic(NT, dl, MemVT, InChain, 4592 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4593 MMO); 4594 4595 SDValue OutChain = L.getValue(1); 4596 4597 setValue(&I, L); 4598 DAG.setRoot(OutChain); 4599 } 4600 4601 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4602 SDLoc dl = getCurSDLoc(); 4603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4604 SDValue Ops[3]; 4605 Ops[0] = getRoot(); 4606 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4607 TLI.getFenceOperandTy(DAG.getDataLayout())); 4608 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4609 TLI.getFenceOperandTy(DAG.getDataLayout())); 4610 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4611 } 4612 4613 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4614 SDLoc dl = getCurSDLoc(); 4615 AtomicOrdering Order = I.getOrdering(); 4616 SyncScope::ID SSID = I.getSyncScopeID(); 4617 4618 SDValue InChain = getRoot(); 4619 4620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4621 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4622 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4623 4624 if (!TLI.supportsUnalignedAtomics() && 4625 I.getAlignment() < MemVT.getSizeInBits() / 8) 4626 report_fatal_error("Cannot generate unaligned atomic load"); 4627 4628 auto Flags = MachineMemOperand::MOLoad; 4629 if (I.isVolatile()) 4630 Flags |= MachineMemOperand::MOVolatile; 4631 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4632 Flags |= MachineMemOperand::MOInvariant; 4633 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4634 DAG.getDataLayout())) 4635 Flags |= MachineMemOperand::MODereferenceable; 4636 4637 Flags |= TLI.getMMOFlags(I); 4638 4639 MachineMemOperand *MMO = 4640 DAG.getMachineFunction(). 4641 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4642 Flags, MemVT.getStoreSize(), 4643 I.getAlignment() ? I.getAlignment() : 4644 DAG.getEVTAlignment(MemVT), 4645 AAMDNodes(), nullptr, SSID, Order); 4646 4647 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4648 SDValue L = 4649 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4650 getValue(I.getPointerOperand()), MMO); 4651 4652 SDValue OutChain = L.getValue(1); 4653 if (MemVT != VT) 4654 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4655 4656 setValue(&I, L); 4657 DAG.setRoot(OutChain); 4658 } 4659 4660 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4661 SDLoc dl = getCurSDLoc(); 4662 4663 AtomicOrdering Ordering = I.getOrdering(); 4664 SyncScope::ID SSID = I.getSyncScopeID(); 4665 4666 SDValue InChain = getRoot(); 4667 4668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4669 EVT MemVT = 4670 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4671 4672 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4673 report_fatal_error("Cannot generate unaligned atomic store"); 4674 4675 auto Flags = MachineMemOperand::MOStore; 4676 if (I.isVolatile()) 4677 Flags |= MachineMemOperand::MOVolatile; 4678 Flags |= TLI.getMMOFlags(I); 4679 4680 MachineFunction &MF = DAG.getMachineFunction(); 4681 MachineMemOperand *MMO = 4682 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4683 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4684 nullptr, SSID, Ordering); 4685 4686 SDValue Val = getValue(I.getValueOperand()); 4687 if (Val.getValueType() != MemVT) 4688 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4689 4690 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4691 getValue(I.getPointerOperand()), Val, MMO); 4692 4693 4694 DAG.setRoot(OutChain); 4695 } 4696 4697 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4698 /// node. 4699 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4700 unsigned Intrinsic) { 4701 // Ignore the callsite's attributes. A specific call site may be marked with 4702 // readnone, but the lowering code will expect the chain based on the 4703 // definition. 4704 const Function *F = I.getCalledFunction(); 4705 bool HasChain = !F->doesNotAccessMemory(); 4706 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4707 4708 // Build the operand list. 4709 SmallVector<SDValue, 8> Ops; 4710 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4711 if (OnlyLoad) { 4712 // We don't need to serialize loads against other loads. 4713 Ops.push_back(DAG.getRoot()); 4714 } else { 4715 Ops.push_back(getRoot()); 4716 } 4717 } 4718 4719 // Info is set by getTgtMemInstrinsic 4720 TargetLowering::IntrinsicInfo Info; 4721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4722 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4723 DAG.getMachineFunction(), 4724 Intrinsic); 4725 4726 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4727 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4728 Info.opc == ISD::INTRINSIC_W_CHAIN) 4729 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4730 TLI.getPointerTy(DAG.getDataLayout()))); 4731 4732 // Add all operands of the call to the operand list. 4733 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4734 SDValue Op = getValue(I.getArgOperand(i)); 4735 Ops.push_back(Op); 4736 } 4737 4738 SmallVector<EVT, 4> ValueVTs; 4739 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4740 4741 if (HasChain) 4742 ValueVTs.push_back(MVT::Other); 4743 4744 SDVTList VTs = DAG.getVTList(ValueVTs); 4745 4746 // Create the node. 4747 SDValue Result; 4748 if (IsTgtIntrinsic) { 4749 // This is target intrinsic that touches memory 4750 AAMDNodes AAInfo; 4751 I.getAAMetadata(AAInfo); 4752 Result = 4753 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4754 MachinePointerInfo(Info.ptrVal, Info.offset), 4755 Info.align, Info.flags, Info.size, AAInfo); 4756 } else if (!HasChain) { 4757 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4758 } else if (!I.getType()->isVoidTy()) { 4759 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4760 } else { 4761 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4762 } 4763 4764 if (HasChain) { 4765 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4766 if (OnlyLoad) 4767 PendingLoads.push_back(Chain); 4768 else 4769 DAG.setRoot(Chain); 4770 } 4771 4772 if (!I.getType()->isVoidTy()) { 4773 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4774 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4775 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4776 } else 4777 Result = lowerRangeToAssertZExt(DAG, I, Result); 4778 4779 setValue(&I, Result); 4780 } 4781 } 4782 4783 /// GetSignificand - Get the significand and build it into a floating-point 4784 /// number with exponent of 1: 4785 /// 4786 /// Op = (Op & 0x007fffff) | 0x3f800000; 4787 /// 4788 /// where Op is the hexadecimal representation of floating point value. 4789 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4790 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4791 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4792 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4793 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4794 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4795 } 4796 4797 /// GetExponent - Get the exponent: 4798 /// 4799 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4800 /// 4801 /// where Op is the hexadecimal representation of floating point value. 4802 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4803 const TargetLowering &TLI, const SDLoc &dl) { 4804 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4805 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4806 SDValue t1 = DAG.getNode( 4807 ISD::SRL, dl, MVT::i32, t0, 4808 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4809 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4810 DAG.getConstant(127, dl, MVT::i32)); 4811 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4812 } 4813 4814 /// getF32Constant - Get 32-bit floating point constant. 4815 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4816 const SDLoc &dl) { 4817 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4818 MVT::f32); 4819 } 4820 4821 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4822 SelectionDAG &DAG) { 4823 // TODO: What fast-math-flags should be set on the floating-point nodes? 4824 4825 // IntegerPartOfX = ((int32_t)(t0); 4826 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4827 4828 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4829 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4830 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4831 4832 // IntegerPartOfX <<= 23; 4833 IntegerPartOfX = DAG.getNode( 4834 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4835 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4836 DAG.getDataLayout()))); 4837 4838 SDValue TwoToFractionalPartOfX; 4839 if (LimitFloatPrecision <= 6) { 4840 // For floating-point precision of 6: 4841 // 4842 // TwoToFractionalPartOfX = 4843 // 0.997535578f + 4844 // (0.735607626f + 0.252464424f * x) * x; 4845 // 4846 // error 0.0144103317, which is 6 bits 4847 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4848 getF32Constant(DAG, 0x3e814304, dl)); 4849 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4850 getF32Constant(DAG, 0x3f3c50c8, dl)); 4851 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4852 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4853 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4854 } else if (LimitFloatPrecision <= 12) { 4855 // For floating-point precision of 12: 4856 // 4857 // TwoToFractionalPartOfX = 4858 // 0.999892986f + 4859 // (0.696457318f + 4860 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4861 // 4862 // error 0.000107046256, which is 13 to 14 bits 4863 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4864 getF32Constant(DAG, 0x3da235e3, dl)); 4865 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4866 getF32Constant(DAG, 0x3e65b8f3, dl)); 4867 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4868 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4869 getF32Constant(DAG, 0x3f324b07, dl)); 4870 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4871 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4872 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4873 } else { // LimitFloatPrecision <= 18 4874 // For floating-point precision of 18: 4875 // 4876 // TwoToFractionalPartOfX = 4877 // 0.999999982f + 4878 // (0.693148872f + 4879 // (0.240227044f + 4880 // (0.554906021e-1f + 4881 // (0.961591928e-2f + 4882 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4883 // error 2.47208000*10^(-7), which is better than 18 bits 4884 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4885 getF32Constant(DAG, 0x3924b03e, dl)); 4886 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4887 getF32Constant(DAG, 0x3ab24b87, dl)); 4888 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4889 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4890 getF32Constant(DAG, 0x3c1d8c17, dl)); 4891 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4892 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4893 getF32Constant(DAG, 0x3d634a1d, dl)); 4894 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4895 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4896 getF32Constant(DAG, 0x3e75fe14, dl)); 4897 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4898 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4899 getF32Constant(DAG, 0x3f317234, dl)); 4900 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4901 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4902 getF32Constant(DAG, 0x3f800000, dl)); 4903 } 4904 4905 // Add the exponent into the result in integer domain. 4906 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4907 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4908 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4909 } 4910 4911 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4912 /// limited-precision mode. 4913 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4914 const TargetLowering &TLI) { 4915 if (Op.getValueType() == MVT::f32 && 4916 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4917 4918 // Put the exponent in the right bit position for later addition to the 4919 // final result: 4920 // 4921 // #define LOG2OFe 1.4426950f 4922 // t0 = Op * LOG2OFe 4923 4924 // TODO: What fast-math-flags should be set here? 4925 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4926 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4927 return getLimitedPrecisionExp2(t0, dl, DAG); 4928 } 4929 4930 // No special expansion. 4931 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4932 } 4933 4934 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4935 /// limited-precision mode. 4936 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4937 const TargetLowering &TLI) { 4938 // TODO: What fast-math-flags should be set on the floating-point nodes? 4939 4940 if (Op.getValueType() == MVT::f32 && 4941 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4942 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4943 4944 // Scale the exponent by log(2) [0.69314718f]. 4945 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4946 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4947 getF32Constant(DAG, 0x3f317218, dl)); 4948 4949 // Get the significand and build it into a floating-point number with 4950 // exponent of 1. 4951 SDValue X = GetSignificand(DAG, Op1, dl); 4952 4953 SDValue LogOfMantissa; 4954 if (LimitFloatPrecision <= 6) { 4955 // For floating-point precision of 6: 4956 // 4957 // LogofMantissa = 4958 // -1.1609546f + 4959 // (1.4034025f - 0.23903021f * x) * x; 4960 // 4961 // error 0.0034276066, which is better than 8 bits 4962 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4963 getF32Constant(DAG, 0xbe74c456, dl)); 4964 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4965 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4966 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4967 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4968 getF32Constant(DAG, 0x3f949a29, dl)); 4969 } else if (LimitFloatPrecision <= 12) { 4970 // For floating-point precision of 12: 4971 // 4972 // LogOfMantissa = 4973 // -1.7417939f + 4974 // (2.8212026f + 4975 // (-1.4699568f + 4976 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4977 // 4978 // error 0.000061011436, which is 14 bits 4979 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4980 getF32Constant(DAG, 0xbd67b6d6, dl)); 4981 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4982 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4984 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4985 getF32Constant(DAG, 0x3fbc278b, dl)); 4986 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4987 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4988 getF32Constant(DAG, 0x40348e95, dl)); 4989 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4990 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4991 getF32Constant(DAG, 0x3fdef31a, dl)); 4992 } else { // LimitFloatPrecision <= 18 4993 // For floating-point precision of 18: 4994 // 4995 // LogOfMantissa = 4996 // -2.1072184f + 4997 // (4.2372794f + 4998 // (-3.7029485f + 4999 // (2.2781945f + 5000 // (-0.87823314f + 5001 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5002 // 5003 // error 0.0000023660568, which is better than 18 bits 5004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5005 getF32Constant(DAG, 0xbc91e5ac, dl)); 5006 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5007 getF32Constant(DAG, 0x3e4350aa, dl)); 5008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5009 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5010 getF32Constant(DAG, 0x3f60d3e3, dl)); 5011 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5012 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5013 getF32Constant(DAG, 0x4011cdf0, dl)); 5014 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5015 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5016 getF32Constant(DAG, 0x406cfd1c, dl)); 5017 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5018 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5019 getF32Constant(DAG, 0x408797cb, dl)); 5020 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5021 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5022 getF32Constant(DAG, 0x4006dcab, dl)); 5023 } 5024 5025 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5026 } 5027 5028 // No special expansion. 5029 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5030 } 5031 5032 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5033 /// limited-precision mode. 5034 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5035 const TargetLowering &TLI) { 5036 // TODO: What fast-math-flags should be set on the floating-point nodes? 5037 5038 if (Op.getValueType() == MVT::f32 && 5039 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5040 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5041 5042 // Get the exponent. 5043 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5044 5045 // Get the significand and build it into a floating-point number with 5046 // exponent of 1. 5047 SDValue X = GetSignificand(DAG, Op1, dl); 5048 5049 // Different possible minimax approximations of significand in 5050 // floating-point for various degrees of accuracy over [1,2]. 5051 SDValue Log2ofMantissa; 5052 if (LimitFloatPrecision <= 6) { 5053 // For floating-point precision of 6: 5054 // 5055 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5056 // 5057 // error 0.0049451742, which is more than 7 bits 5058 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5059 getF32Constant(DAG, 0xbeb08fe0, dl)); 5060 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5061 getF32Constant(DAG, 0x40019463, dl)); 5062 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5063 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5064 getF32Constant(DAG, 0x3fd6633d, dl)); 5065 } else if (LimitFloatPrecision <= 12) { 5066 // For floating-point precision of 12: 5067 // 5068 // Log2ofMantissa = 5069 // -2.51285454f + 5070 // (4.07009056f + 5071 // (-2.12067489f + 5072 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5073 // 5074 // error 0.0000876136000, which is better than 13 bits 5075 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5076 getF32Constant(DAG, 0xbda7262e, dl)); 5077 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5078 getF32Constant(DAG, 0x3f25280b, dl)); 5079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5080 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5081 getF32Constant(DAG, 0x4007b923, dl)); 5082 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5083 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5084 getF32Constant(DAG, 0x40823e2f, dl)); 5085 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5086 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5087 getF32Constant(DAG, 0x4020d29c, dl)); 5088 } else { // LimitFloatPrecision <= 18 5089 // For floating-point precision of 18: 5090 // 5091 // Log2ofMantissa = 5092 // -3.0400495f + 5093 // (6.1129976f + 5094 // (-5.3420409f + 5095 // (3.2865683f + 5096 // (-1.2669343f + 5097 // (0.27515199f - 5098 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5099 // 5100 // error 0.0000018516, which is better than 18 bits 5101 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5102 getF32Constant(DAG, 0xbcd2769e, dl)); 5103 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5104 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5105 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5106 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5107 getF32Constant(DAG, 0x3fa22ae7, dl)); 5108 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5109 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5110 getF32Constant(DAG, 0x40525723, dl)); 5111 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5112 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5113 getF32Constant(DAG, 0x40aaf200, dl)); 5114 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5115 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5116 getF32Constant(DAG, 0x40c39dad, dl)); 5117 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5118 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5119 getF32Constant(DAG, 0x4042902c, dl)); 5120 } 5121 5122 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5123 } 5124 5125 // No special expansion. 5126 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5127 } 5128 5129 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5130 /// limited-precision mode. 5131 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5132 const TargetLowering &TLI) { 5133 // TODO: What fast-math-flags should be set on the floating-point nodes? 5134 5135 if (Op.getValueType() == MVT::f32 && 5136 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5137 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5138 5139 // Scale the exponent by log10(2) [0.30102999f]. 5140 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5141 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5142 getF32Constant(DAG, 0x3e9a209a, dl)); 5143 5144 // Get the significand and build it into a floating-point number with 5145 // exponent of 1. 5146 SDValue X = GetSignificand(DAG, Op1, dl); 5147 5148 SDValue Log10ofMantissa; 5149 if (LimitFloatPrecision <= 6) { 5150 // For floating-point precision of 6: 5151 // 5152 // Log10ofMantissa = 5153 // -0.50419619f + 5154 // (0.60948995f - 0.10380950f * x) * x; 5155 // 5156 // error 0.0014886165, which is 6 bits 5157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5158 getF32Constant(DAG, 0xbdd49a13, dl)); 5159 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5160 getF32Constant(DAG, 0x3f1c0789, dl)); 5161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5162 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5163 getF32Constant(DAG, 0x3f011300, dl)); 5164 } else if (LimitFloatPrecision <= 12) { 5165 // For floating-point precision of 12: 5166 // 5167 // Log10ofMantissa = 5168 // -0.64831180f + 5169 // (0.91751397f + 5170 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5171 // 5172 // error 0.00019228036, which is better than 12 bits 5173 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5174 getF32Constant(DAG, 0x3d431f31, dl)); 5175 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5176 getF32Constant(DAG, 0x3ea21fb2, dl)); 5177 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5178 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5179 getF32Constant(DAG, 0x3f6ae232, dl)); 5180 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5181 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5182 getF32Constant(DAG, 0x3f25f7c3, dl)); 5183 } else { // LimitFloatPrecision <= 18 5184 // For floating-point precision of 18: 5185 // 5186 // Log10ofMantissa = 5187 // -0.84299375f + 5188 // (1.5327582f + 5189 // (-1.0688956f + 5190 // (0.49102474f + 5191 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5192 // 5193 // error 0.0000037995730, which is better than 18 bits 5194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5195 getF32Constant(DAG, 0x3c5d51ce, dl)); 5196 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5197 getF32Constant(DAG, 0x3e00685a, dl)); 5198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5199 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5200 getF32Constant(DAG, 0x3efb6798, dl)); 5201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5202 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5203 getF32Constant(DAG, 0x3f88d192, dl)); 5204 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5205 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5206 getF32Constant(DAG, 0x3fc4316c, dl)); 5207 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5208 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5209 getF32Constant(DAG, 0x3f57ce70, dl)); 5210 } 5211 5212 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5213 } 5214 5215 // No special expansion. 5216 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5217 } 5218 5219 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5220 /// limited-precision mode. 5221 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5222 const TargetLowering &TLI) { 5223 if (Op.getValueType() == MVT::f32 && 5224 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5225 return getLimitedPrecisionExp2(Op, dl, DAG); 5226 5227 // No special expansion. 5228 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5229 } 5230 5231 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5232 /// limited-precision mode with x == 10.0f. 5233 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5234 SelectionDAG &DAG, const TargetLowering &TLI) { 5235 bool IsExp10 = false; 5236 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5237 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5238 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5239 APFloat Ten(10.0f); 5240 IsExp10 = LHSC->isExactlyValue(Ten); 5241 } 5242 } 5243 5244 // TODO: What fast-math-flags should be set on the FMUL node? 5245 if (IsExp10) { 5246 // Put the exponent in the right bit position for later addition to the 5247 // final result: 5248 // 5249 // #define LOG2OF10 3.3219281f 5250 // t0 = Op * LOG2OF10; 5251 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5252 getF32Constant(DAG, 0x40549a78, dl)); 5253 return getLimitedPrecisionExp2(t0, dl, DAG); 5254 } 5255 5256 // No special expansion. 5257 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5258 } 5259 5260 /// ExpandPowI - Expand a llvm.powi intrinsic. 5261 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5262 SelectionDAG &DAG) { 5263 // If RHS is a constant, we can expand this out to a multiplication tree, 5264 // otherwise we end up lowering to a call to __powidf2 (for example). When 5265 // optimizing for size, we only want to do this if the expansion would produce 5266 // a small number of multiplies, otherwise we do the full expansion. 5267 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5268 // Get the exponent as a positive value. 5269 unsigned Val = RHSC->getSExtValue(); 5270 if ((int)Val < 0) Val = -Val; 5271 5272 // powi(x, 0) -> 1.0 5273 if (Val == 0) 5274 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5275 5276 const Function &F = DAG.getMachineFunction().getFunction(); 5277 if (!F.hasOptSize() || 5278 // If optimizing for size, don't insert too many multiplies. 5279 // This inserts up to 5 multiplies. 5280 countPopulation(Val) + Log2_32(Val) < 7) { 5281 // We use the simple binary decomposition method to generate the multiply 5282 // sequence. There are more optimal ways to do this (for example, 5283 // powi(x,15) generates one more multiply than it should), but this has 5284 // the benefit of being both really simple and much better than a libcall. 5285 SDValue Res; // Logically starts equal to 1.0 5286 SDValue CurSquare = LHS; 5287 // TODO: Intrinsics should have fast-math-flags that propagate to these 5288 // nodes. 5289 while (Val) { 5290 if (Val & 1) { 5291 if (Res.getNode()) 5292 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5293 else 5294 Res = CurSquare; // 1.0*CurSquare. 5295 } 5296 5297 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5298 CurSquare, CurSquare); 5299 Val >>= 1; 5300 } 5301 5302 // If the original was negative, invert the result, producing 1/(x*x*x). 5303 if (RHSC->getSExtValue() < 0) 5304 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5305 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5306 return Res; 5307 } 5308 } 5309 5310 // Otherwise, expand to a libcall. 5311 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5312 } 5313 5314 // getUnderlyingArgReg - Find underlying register used for a truncated or 5315 // bitcasted argument. 5316 static unsigned getUnderlyingArgReg(const SDValue &N) { 5317 switch (N.getOpcode()) { 5318 case ISD::CopyFromReg: 5319 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5320 case ISD::BITCAST: 5321 case ISD::AssertZext: 5322 case ISD::AssertSext: 5323 case ISD::TRUNCATE: 5324 return getUnderlyingArgReg(N.getOperand(0)); 5325 default: 5326 return 0; 5327 } 5328 } 5329 5330 /// If the DbgValueInst is a dbg_value of a function argument, create the 5331 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5332 /// instruction selection, they will be inserted to the entry BB. 5333 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5334 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5335 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5336 const Argument *Arg = dyn_cast<Argument>(V); 5337 if (!Arg) 5338 return false; 5339 5340 if (!IsDbgDeclare) { 5341 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5342 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5343 // the entry block. 5344 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5345 if (!IsInEntryBlock) 5346 return false; 5347 5348 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5349 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5350 // variable that also is a param. 5351 // 5352 // Although, if we are at the top of the entry block already, we can still 5353 // emit using ArgDbgValue. This might catch some situations when the 5354 // dbg.value refers to an argument that isn't used in the entry block, so 5355 // any CopyToReg node would be optimized out and the only way to express 5356 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5357 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5358 // we should only emit as ArgDbgValue if the Variable is an argument to the 5359 // current function, and the dbg.value intrinsic is found in the entry 5360 // block. 5361 bool VariableIsFunctionInputArg = Variable->isParameter() && 5362 !DL->getInlinedAt(); 5363 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5364 if (!IsInPrologue && !VariableIsFunctionInputArg) 5365 return false; 5366 5367 // Here we assume that a function argument on IR level only can be used to 5368 // describe one input parameter on source level. If we for example have 5369 // source code like this 5370 // 5371 // struct A { long x, y; }; 5372 // void foo(struct A a, long b) { 5373 // ... 5374 // b = a.x; 5375 // ... 5376 // } 5377 // 5378 // and IR like this 5379 // 5380 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5381 // entry: 5382 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5383 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5384 // call void @llvm.dbg.value(metadata i32 %b, "b", 5385 // ... 5386 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5387 // ... 5388 // 5389 // then the last dbg.value is describing a parameter "b" using a value that 5390 // is an argument. But since we already has used %a1 to describe a parameter 5391 // we should not handle that last dbg.value here (that would result in an 5392 // incorrect hoisting of the DBG_VALUE to the function entry). 5393 // Notice that we allow one dbg.value per IR level argument, to accomodate 5394 // for the situation with fragments above. 5395 if (VariableIsFunctionInputArg) { 5396 unsigned ArgNo = Arg->getArgNo(); 5397 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5398 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5399 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5400 return false; 5401 FuncInfo.DescribedArgs.set(ArgNo); 5402 } 5403 } 5404 5405 MachineFunction &MF = DAG.getMachineFunction(); 5406 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5407 5408 bool IsIndirect = false; 5409 Optional<MachineOperand> Op; 5410 // Some arguments' frame index is recorded during argument lowering. 5411 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5412 if (FI != std::numeric_limits<int>::max()) 5413 Op = MachineOperand::CreateFI(FI); 5414 5415 if (!Op && N.getNode()) { 5416 unsigned Reg = getUnderlyingArgReg(N); 5417 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5418 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5419 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5420 if (PR) 5421 Reg = PR; 5422 } 5423 if (Reg) { 5424 Op = MachineOperand::CreateReg(Reg, false); 5425 IsIndirect = IsDbgDeclare; 5426 } 5427 } 5428 5429 if (!Op && N.getNode()) { 5430 // Check if frame index is available. 5431 SDValue LCandidate = peekThroughBitcasts(N); 5432 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5433 if (FrameIndexSDNode *FINode = 5434 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5435 Op = MachineOperand::CreateFI(FINode->getIndex()); 5436 } 5437 5438 if (!Op) { 5439 // Check if ValueMap has reg number. 5440 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5441 if (VMI != FuncInfo.ValueMap.end()) { 5442 const auto &TLI = DAG.getTargetLoweringInfo(); 5443 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5444 V->getType(), getABIRegCopyCC(V)); 5445 if (RFV.occupiesMultipleRegs()) { 5446 unsigned Offset = 0; 5447 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5448 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5449 auto FragmentExpr = DIExpression::createFragmentExpression( 5450 Expr, Offset, RegAndSize.second); 5451 if (!FragmentExpr) 5452 continue; 5453 FuncInfo.ArgDbgValues.push_back( 5454 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5455 Op->getReg(), Variable, *FragmentExpr)); 5456 Offset += RegAndSize.second; 5457 } 5458 return true; 5459 } 5460 Op = MachineOperand::CreateReg(VMI->second, false); 5461 IsIndirect = IsDbgDeclare; 5462 } 5463 } 5464 5465 if (!Op) 5466 return false; 5467 5468 assert(Variable->isValidLocationForIntrinsic(DL) && 5469 "Expected inlined-at fields to agree"); 5470 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5471 FuncInfo.ArgDbgValues.push_back( 5472 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5473 *Op, Variable, Expr)); 5474 5475 return true; 5476 } 5477 5478 /// Return the appropriate SDDbgValue based on N. 5479 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5480 DILocalVariable *Variable, 5481 DIExpression *Expr, 5482 const DebugLoc &dl, 5483 unsigned DbgSDNodeOrder) { 5484 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5485 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5486 // stack slot locations. 5487 // 5488 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5489 // debug values here after optimization: 5490 // 5491 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5492 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5493 // 5494 // Both describe the direct values of their associated variables. 5495 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5496 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5497 } 5498 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5499 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5500 } 5501 5502 // VisualStudio defines setjmp as _setjmp 5503 #if defined(_MSC_VER) && defined(setjmp) && \ 5504 !defined(setjmp_undefined_for_msvc) 5505 # pragma push_macro("setjmp") 5506 # undef setjmp 5507 # define setjmp_undefined_for_msvc 5508 #endif 5509 5510 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5511 switch (Intrinsic) { 5512 case Intrinsic::smul_fix: 5513 return ISD::SMULFIX; 5514 case Intrinsic::umul_fix: 5515 return ISD::UMULFIX; 5516 default: 5517 llvm_unreachable("Unhandled fixed point intrinsic"); 5518 } 5519 } 5520 5521 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5522 const char *FunctionName) { 5523 assert(FunctionName && "FunctionName must not be nullptr"); 5524 SDValue Callee = DAG.getExternalSymbol( 5525 FunctionName, 5526 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5527 LowerCallTo(&I, Callee, I.isTailCall()); 5528 } 5529 5530 /// Lower the call to the specified intrinsic function. 5531 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5532 unsigned Intrinsic) { 5533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5534 SDLoc sdl = getCurSDLoc(); 5535 DebugLoc dl = getCurDebugLoc(); 5536 SDValue Res; 5537 5538 switch (Intrinsic) { 5539 default: 5540 // By default, turn this into a target intrinsic node. 5541 visitTargetIntrinsic(I, Intrinsic); 5542 return; 5543 case Intrinsic::vastart: visitVAStart(I); return; 5544 case Intrinsic::vaend: visitVAEnd(I); return; 5545 case Intrinsic::vacopy: visitVACopy(I); return; 5546 case Intrinsic::returnaddress: 5547 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5548 TLI.getPointerTy(DAG.getDataLayout()), 5549 getValue(I.getArgOperand(0)))); 5550 return; 5551 case Intrinsic::addressofreturnaddress: 5552 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5553 TLI.getPointerTy(DAG.getDataLayout()))); 5554 return; 5555 case Intrinsic::sponentry: 5556 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5557 TLI.getPointerTy(DAG.getDataLayout()))); 5558 return; 5559 case Intrinsic::frameaddress: 5560 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5561 TLI.getPointerTy(DAG.getDataLayout()), 5562 getValue(I.getArgOperand(0)))); 5563 return; 5564 case Intrinsic::read_register: { 5565 Value *Reg = I.getArgOperand(0); 5566 SDValue Chain = getRoot(); 5567 SDValue RegName = 5568 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5569 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5570 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5571 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5572 setValue(&I, Res); 5573 DAG.setRoot(Res.getValue(1)); 5574 return; 5575 } 5576 case Intrinsic::write_register: { 5577 Value *Reg = I.getArgOperand(0); 5578 Value *RegValue = I.getArgOperand(1); 5579 SDValue Chain = getRoot(); 5580 SDValue RegName = 5581 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5582 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5583 RegName, getValue(RegValue))); 5584 return; 5585 } 5586 case Intrinsic::setjmp: 5587 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5588 return; 5589 case Intrinsic::longjmp: 5590 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5591 return; 5592 case Intrinsic::memcpy: { 5593 const auto &MCI = cast<MemCpyInst>(I); 5594 SDValue Op1 = getValue(I.getArgOperand(0)); 5595 SDValue Op2 = getValue(I.getArgOperand(1)); 5596 SDValue Op3 = getValue(I.getArgOperand(2)); 5597 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5598 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5599 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5600 unsigned Align = MinAlign(DstAlign, SrcAlign); 5601 bool isVol = MCI.isVolatile(); 5602 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5603 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5604 // node. 5605 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5606 false, isTC, 5607 MachinePointerInfo(I.getArgOperand(0)), 5608 MachinePointerInfo(I.getArgOperand(1))); 5609 updateDAGForMaybeTailCall(MC); 5610 return; 5611 } 5612 case Intrinsic::memset: { 5613 const auto &MSI = cast<MemSetInst>(I); 5614 SDValue Op1 = getValue(I.getArgOperand(0)); 5615 SDValue Op2 = getValue(I.getArgOperand(1)); 5616 SDValue Op3 = getValue(I.getArgOperand(2)); 5617 // @llvm.memset defines 0 and 1 to both mean no alignment. 5618 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5619 bool isVol = MSI.isVolatile(); 5620 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5621 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5622 isTC, MachinePointerInfo(I.getArgOperand(0))); 5623 updateDAGForMaybeTailCall(MS); 5624 return; 5625 } 5626 case Intrinsic::memmove: { 5627 const auto &MMI = cast<MemMoveInst>(I); 5628 SDValue Op1 = getValue(I.getArgOperand(0)); 5629 SDValue Op2 = getValue(I.getArgOperand(1)); 5630 SDValue Op3 = getValue(I.getArgOperand(2)); 5631 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5632 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5633 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5634 unsigned Align = MinAlign(DstAlign, SrcAlign); 5635 bool isVol = MMI.isVolatile(); 5636 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5637 // FIXME: Support passing different dest/src alignments to the memmove DAG 5638 // node. 5639 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5640 isTC, MachinePointerInfo(I.getArgOperand(0)), 5641 MachinePointerInfo(I.getArgOperand(1))); 5642 updateDAGForMaybeTailCall(MM); 5643 return; 5644 } 5645 case Intrinsic::memcpy_element_unordered_atomic: { 5646 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5647 SDValue Dst = getValue(MI.getRawDest()); 5648 SDValue Src = getValue(MI.getRawSource()); 5649 SDValue Length = getValue(MI.getLength()); 5650 5651 unsigned DstAlign = MI.getDestAlignment(); 5652 unsigned SrcAlign = MI.getSourceAlignment(); 5653 Type *LengthTy = MI.getLength()->getType(); 5654 unsigned ElemSz = MI.getElementSizeInBytes(); 5655 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5656 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5657 SrcAlign, Length, LengthTy, ElemSz, isTC, 5658 MachinePointerInfo(MI.getRawDest()), 5659 MachinePointerInfo(MI.getRawSource())); 5660 updateDAGForMaybeTailCall(MC); 5661 return; 5662 } 5663 case Intrinsic::memmove_element_unordered_atomic: { 5664 auto &MI = cast<AtomicMemMoveInst>(I); 5665 SDValue Dst = getValue(MI.getRawDest()); 5666 SDValue Src = getValue(MI.getRawSource()); 5667 SDValue Length = getValue(MI.getLength()); 5668 5669 unsigned DstAlign = MI.getDestAlignment(); 5670 unsigned SrcAlign = MI.getSourceAlignment(); 5671 Type *LengthTy = MI.getLength()->getType(); 5672 unsigned ElemSz = MI.getElementSizeInBytes(); 5673 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5674 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5675 SrcAlign, Length, LengthTy, ElemSz, isTC, 5676 MachinePointerInfo(MI.getRawDest()), 5677 MachinePointerInfo(MI.getRawSource())); 5678 updateDAGForMaybeTailCall(MC); 5679 return; 5680 } 5681 case Intrinsic::memset_element_unordered_atomic: { 5682 auto &MI = cast<AtomicMemSetInst>(I); 5683 SDValue Dst = getValue(MI.getRawDest()); 5684 SDValue Val = getValue(MI.getValue()); 5685 SDValue Length = getValue(MI.getLength()); 5686 5687 unsigned DstAlign = MI.getDestAlignment(); 5688 Type *LengthTy = MI.getLength()->getType(); 5689 unsigned ElemSz = MI.getElementSizeInBytes(); 5690 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5691 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5692 LengthTy, ElemSz, isTC, 5693 MachinePointerInfo(MI.getRawDest())); 5694 updateDAGForMaybeTailCall(MC); 5695 return; 5696 } 5697 case Intrinsic::dbg_addr: 5698 case Intrinsic::dbg_declare: { 5699 const auto &DI = cast<DbgVariableIntrinsic>(I); 5700 DILocalVariable *Variable = DI.getVariable(); 5701 DIExpression *Expression = DI.getExpression(); 5702 dropDanglingDebugInfo(Variable, Expression); 5703 assert(Variable && "Missing variable"); 5704 5705 // Check if address has undef value. 5706 const Value *Address = DI.getVariableLocation(); 5707 if (!Address || isa<UndefValue>(Address) || 5708 (Address->use_empty() && !isa<Argument>(Address))) { 5709 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5710 return; 5711 } 5712 5713 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5714 5715 // Check if this variable can be described by a frame index, typically 5716 // either as a static alloca or a byval parameter. 5717 int FI = std::numeric_limits<int>::max(); 5718 if (const auto *AI = 5719 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5720 if (AI->isStaticAlloca()) { 5721 auto I = FuncInfo.StaticAllocaMap.find(AI); 5722 if (I != FuncInfo.StaticAllocaMap.end()) 5723 FI = I->second; 5724 } 5725 } else if (const auto *Arg = dyn_cast<Argument>( 5726 Address->stripInBoundsConstantOffsets())) { 5727 FI = FuncInfo.getArgumentFrameIndex(Arg); 5728 } 5729 5730 // llvm.dbg.addr is control dependent and always generates indirect 5731 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5732 // the MachineFunction variable table. 5733 if (FI != std::numeric_limits<int>::max()) { 5734 if (Intrinsic == Intrinsic::dbg_addr) { 5735 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5736 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5737 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5738 } 5739 return; 5740 } 5741 5742 SDValue &N = NodeMap[Address]; 5743 if (!N.getNode() && isa<Argument>(Address)) 5744 // Check unused arguments map. 5745 N = UnusedArgNodeMap[Address]; 5746 SDDbgValue *SDV; 5747 if (N.getNode()) { 5748 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5749 Address = BCI->getOperand(0); 5750 // Parameters are handled specially. 5751 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5752 if (isParameter && FINode) { 5753 // Byval parameter. We have a frame index at this point. 5754 SDV = 5755 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5756 /*IsIndirect*/ true, dl, SDNodeOrder); 5757 } else if (isa<Argument>(Address)) { 5758 // Address is an argument, so try to emit its dbg value using 5759 // virtual register info from the FuncInfo.ValueMap. 5760 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5761 return; 5762 } else { 5763 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5764 true, dl, SDNodeOrder); 5765 } 5766 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5767 } else { 5768 // If Address is an argument then try to emit its dbg value using 5769 // virtual register info from the FuncInfo.ValueMap. 5770 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5771 N)) { 5772 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5773 } 5774 } 5775 return; 5776 } 5777 case Intrinsic::dbg_label: { 5778 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5779 DILabel *Label = DI.getLabel(); 5780 assert(Label && "Missing label"); 5781 5782 SDDbgLabel *SDV; 5783 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5784 DAG.AddDbgLabel(SDV); 5785 return; 5786 } 5787 case Intrinsic::dbg_value: { 5788 const DbgValueInst &DI = cast<DbgValueInst>(I); 5789 assert(DI.getVariable() && "Missing variable"); 5790 5791 DILocalVariable *Variable = DI.getVariable(); 5792 DIExpression *Expression = DI.getExpression(); 5793 dropDanglingDebugInfo(Variable, Expression); 5794 const Value *V = DI.getValue(); 5795 if (!V) 5796 return; 5797 5798 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5799 SDNodeOrder)) 5800 return; 5801 5802 // TODO: Dangling debug info will eventually either be resolved or produce 5803 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5804 // between the original dbg.value location and its resolved DBG_VALUE, which 5805 // we should ideally fill with an extra Undef DBG_VALUE. 5806 5807 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5808 return; 5809 } 5810 5811 case Intrinsic::eh_typeid_for: { 5812 // Find the type id for the given typeinfo. 5813 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5814 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5815 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5816 setValue(&I, Res); 5817 return; 5818 } 5819 5820 case Intrinsic::eh_return_i32: 5821 case Intrinsic::eh_return_i64: 5822 DAG.getMachineFunction().setCallsEHReturn(true); 5823 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5824 MVT::Other, 5825 getControlRoot(), 5826 getValue(I.getArgOperand(0)), 5827 getValue(I.getArgOperand(1)))); 5828 return; 5829 case Intrinsic::eh_unwind_init: 5830 DAG.getMachineFunction().setCallsUnwindInit(true); 5831 return; 5832 case Intrinsic::eh_dwarf_cfa: 5833 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5834 TLI.getPointerTy(DAG.getDataLayout()), 5835 getValue(I.getArgOperand(0)))); 5836 return; 5837 case Intrinsic::eh_sjlj_callsite: { 5838 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5839 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5840 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5841 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5842 5843 MMI.setCurrentCallSite(CI->getZExtValue()); 5844 return; 5845 } 5846 case Intrinsic::eh_sjlj_functioncontext: { 5847 // Get and store the index of the function context. 5848 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5849 AllocaInst *FnCtx = 5850 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5851 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5852 MFI.setFunctionContextIndex(FI); 5853 return; 5854 } 5855 case Intrinsic::eh_sjlj_setjmp: { 5856 SDValue Ops[2]; 5857 Ops[0] = getRoot(); 5858 Ops[1] = getValue(I.getArgOperand(0)); 5859 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5860 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5861 setValue(&I, Op.getValue(0)); 5862 DAG.setRoot(Op.getValue(1)); 5863 return; 5864 } 5865 case Intrinsic::eh_sjlj_longjmp: 5866 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5867 getRoot(), getValue(I.getArgOperand(0)))); 5868 return; 5869 case Intrinsic::eh_sjlj_setup_dispatch: 5870 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5871 getRoot())); 5872 return; 5873 case Intrinsic::masked_gather: 5874 visitMaskedGather(I); 5875 return; 5876 case Intrinsic::masked_load: 5877 visitMaskedLoad(I); 5878 return; 5879 case Intrinsic::masked_scatter: 5880 visitMaskedScatter(I); 5881 return; 5882 case Intrinsic::masked_store: 5883 visitMaskedStore(I); 5884 return; 5885 case Intrinsic::masked_expandload: 5886 visitMaskedLoad(I, true /* IsExpanding */); 5887 return; 5888 case Intrinsic::masked_compressstore: 5889 visitMaskedStore(I, true /* IsCompressing */); 5890 return; 5891 case Intrinsic::x86_mmx_pslli_w: 5892 case Intrinsic::x86_mmx_pslli_d: 5893 case Intrinsic::x86_mmx_pslli_q: 5894 case Intrinsic::x86_mmx_psrli_w: 5895 case Intrinsic::x86_mmx_psrli_d: 5896 case Intrinsic::x86_mmx_psrli_q: 5897 case Intrinsic::x86_mmx_psrai_w: 5898 case Intrinsic::x86_mmx_psrai_d: { 5899 SDValue ShAmt = getValue(I.getArgOperand(1)); 5900 if (isa<ConstantSDNode>(ShAmt)) { 5901 visitTargetIntrinsic(I, Intrinsic); 5902 return; 5903 } 5904 unsigned NewIntrinsic = 0; 5905 EVT ShAmtVT = MVT::v2i32; 5906 switch (Intrinsic) { 5907 case Intrinsic::x86_mmx_pslli_w: 5908 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5909 break; 5910 case Intrinsic::x86_mmx_pslli_d: 5911 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5912 break; 5913 case Intrinsic::x86_mmx_pslli_q: 5914 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5915 break; 5916 case Intrinsic::x86_mmx_psrli_w: 5917 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5918 break; 5919 case Intrinsic::x86_mmx_psrli_d: 5920 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5921 break; 5922 case Intrinsic::x86_mmx_psrli_q: 5923 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5924 break; 5925 case Intrinsic::x86_mmx_psrai_w: 5926 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5927 break; 5928 case Intrinsic::x86_mmx_psrai_d: 5929 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5930 break; 5931 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5932 } 5933 5934 // The vector shift intrinsics with scalars uses 32b shift amounts but 5935 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5936 // to be zero. 5937 // We must do this early because v2i32 is not a legal type. 5938 SDValue ShOps[2]; 5939 ShOps[0] = ShAmt; 5940 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5941 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5942 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5943 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5944 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5945 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5946 getValue(I.getArgOperand(0)), ShAmt); 5947 setValue(&I, Res); 5948 return; 5949 } 5950 case Intrinsic::powi: 5951 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5952 getValue(I.getArgOperand(1)), DAG)); 5953 return; 5954 case Intrinsic::log: 5955 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5956 return; 5957 case Intrinsic::log2: 5958 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5959 return; 5960 case Intrinsic::log10: 5961 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5962 return; 5963 case Intrinsic::exp: 5964 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5965 return; 5966 case Intrinsic::exp2: 5967 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5968 return; 5969 case Intrinsic::pow: 5970 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5971 getValue(I.getArgOperand(1)), DAG, TLI)); 5972 return; 5973 case Intrinsic::sqrt: 5974 case Intrinsic::fabs: 5975 case Intrinsic::sin: 5976 case Intrinsic::cos: 5977 case Intrinsic::floor: 5978 case Intrinsic::ceil: 5979 case Intrinsic::trunc: 5980 case Intrinsic::rint: 5981 case Intrinsic::nearbyint: 5982 case Intrinsic::round: 5983 case Intrinsic::canonicalize: { 5984 unsigned Opcode; 5985 switch (Intrinsic) { 5986 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5987 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5988 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5989 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5990 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5991 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5992 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5993 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5994 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5995 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5996 case Intrinsic::round: Opcode = ISD::FROUND; break; 5997 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5998 } 5999 6000 setValue(&I, DAG.getNode(Opcode, sdl, 6001 getValue(I.getArgOperand(0)).getValueType(), 6002 getValue(I.getArgOperand(0)))); 6003 return; 6004 } 6005 case Intrinsic::lround: 6006 case Intrinsic::llround: 6007 case Intrinsic::lrint: 6008 case Intrinsic::llrint: { 6009 unsigned Opcode; 6010 switch (Intrinsic) { 6011 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6012 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6013 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6014 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6015 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6016 } 6017 6018 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6019 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6020 getValue(I.getArgOperand(0)))); 6021 return; 6022 } 6023 case Intrinsic::minnum: 6024 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6025 getValue(I.getArgOperand(0)).getValueType(), 6026 getValue(I.getArgOperand(0)), 6027 getValue(I.getArgOperand(1)))); 6028 return; 6029 case Intrinsic::maxnum: 6030 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6031 getValue(I.getArgOperand(0)).getValueType(), 6032 getValue(I.getArgOperand(0)), 6033 getValue(I.getArgOperand(1)))); 6034 return; 6035 case Intrinsic::minimum: 6036 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6037 getValue(I.getArgOperand(0)).getValueType(), 6038 getValue(I.getArgOperand(0)), 6039 getValue(I.getArgOperand(1)))); 6040 return; 6041 case Intrinsic::maximum: 6042 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6043 getValue(I.getArgOperand(0)).getValueType(), 6044 getValue(I.getArgOperand(0)), 6045 getValue(I.getArgOperand(1)))); 6046 return; 6047 case Intrinsic::copysign: 6048 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6049 getValue(I.getArgOperand(0)).getValueType(), 6050 getValue(I.getArgOperand(0)), 6051 getValue(I.getArgOperand(1)))); 6052 return; 6053 case Intrinsic::fma: 6054 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6055 getValue(I.getArgOperand(0)).getValueType(), 6056 getValue(I.getArgOperand(0)), 6057 getValue(I.getArgOperand(1)), 6058 getValue(I.getArgOperand(2)))); 6059 return; 6060 case Intrinsic::experimental_constrained_fadd: 6061 case Intrinsic::experimental_constrained_fsub: 6062 case Intrinsic::experimental_constrained_fmul: 6063 case Intrinsic::experimental_constrained_fdiv: 6064 case Intrinsic::experimental_constrained_frem: 6065 case Intrinsic::experimental_constrained_fma: 6066 case Intrinsic::experimental_constrained_fptrunc: 6067 case Intrinsic::experimental_constrained_fpext: 6068 case Intrinsic::experimental_constrained_sqrt: 6069 case Intrinsic::experimental_constrained_pow: 6070 case Intrinsic::experimental_constrained_powi: 6071 case Intrinsic::experimental_constrained_sin: 6072 case Intrinsic::experimental_constrained_cos: 6073 case Intrinsic::experimental_constrained_exp: 6074 case Intrinsic::experimental_constrained_exp2: 6075 case Intrinsic::experimental_constrained_log: 6076 case Intrinsic::experimental_constrained_log10: 6077 case Intrinsic::experimental_constrained_log2: 6078 case Intrinsic::experimental_constrained_rint: 6079 case Intrinsic::experimental_constrained_nearbyint: 6080 case Intrinsic::experimental_constrained_maxnum: 6081 case Intrinsic::experimental_constrained_minnum: 6082 case Intrinsic::experimental_constrained_ceil: 6083 case Intrinsic::experimental_constrained_floor: 6084 case Intrinsic::experimental_constrained_round: 6085 case Intrinsic::experimental_constrained_trunc: 6086 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6087 return; 6088 case Intrinsic::fmuladd: { 6089 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6090 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6091 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6092 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6093 getValue(I.getArgOperand(0)).getValueType(), 6094 getValue(I.getArgOperand(0)), 6095 getValue(I.getArgOperand(1)), 6096 getValue(I.getArgOperand(2)))); 6097 } else { 6098 // TODO: Intrinsic calls should have fast-math-flags. 6099 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6100 getValue(I.getArgOperand(0)).getValueType(), 6101 getValue(I.getArgOperand(0)), 6102 getValue(I.getArgOperand(1))); 6103 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6104 getValue(I.getArgOperand(0)).getValueType(), 6105 Mul, 6106 getValue(I.getArgOperand(2))); 6107 setValue(&I, Add); 6108 } 6109 return; 6110 } 6111 case Intrinsic::convert_to_fp16: 6112 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6113 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6114 getValue(I.getArgOperand(0)), 6115 DAG.getTargetConstant(0, sdl, 6116 MVT::i32)))); 6117 return; 6118 case Intrinsic::convert_from_fp16: 6119 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6120 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6121 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6122 getValue(I.getArgOperand(0))))); 6123 return; 6124 case Intrinsic::pcmarker: { 6125 SDValue Tmp = getValue(I.getArgOperand(0)); 6126 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6127 return; 6128 } 6129 case Intrinsic::readcyclecounter: { 6130 SDValue Op = getRoot(); 6131 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6132 DAG.getVTList(MVT::i64, MVT::Other), Op); 6133 setValue(&I, Res); 6134 DAG.setRoot(Res.getValue(1)); 6135 return; 6136 } 6137 case Intrinsic::bitreverse: 6138 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6139 getValue(I.getArgOperand(0)).getValueType(), 6140 getValue(I.getArgOperand(0)))); 6141 return; 6142 case Intrinsic::bswap: 6143 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6144 getValue(I.getArgOperand(0)).getValueType(), 6145 getValue(I.getArgOperand(0)))); 6146 return; 6147 case Intrinsic::cttz: { 6148 SDValue Arg = getValue(I.getArgOperand(0)); 6149 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6150 EVT Ty = Arg.getValueType(); 6151 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6152 sdl, Ty, Arg)); 6153 return; 6154 } 6155 case Intrinsic::ctlz: { 6156 SDValue Arg = getValue(I.getArgOperand(0)); 6157 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6158 EVT Ty = Arg.getValueType(); 6159 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6160 sdl, Ty, Arg)); 6161 return; 6162 } 6163 case Intrinsic::ctpop: { 6164 SDValue Arg = getValue(I.getArgOperand(0)); 6165 EVT Ty = Arg.getValueType(); 6166 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6167 return; 6168 } 6169 case Intrinsic::fshl: 6170 case Intrinsic::fshr: { 6171 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6172 SDValue X = getValue(I.getArgOperand(0)); 6173 SDValue Y = getValue(I.getArgOperand(1)); 6174 SDValue Z = getValue(I.getArgOperand(2)); 6175 EVT VT = X.getValueType(); 6176 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6177 SDValue Zero = DAG.getConstant(0, sdl, VT); 6178 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6179 6180 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6181 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6182 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6183 return; 6184 } 6185 6186 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6187 // avoid the select that is necessary in the general case to filter out 6188 // the 0-shift possibility that leads to UB. 6189 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6190 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6191 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6192 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6193 return; 6194 } 6195 6196 // Some targets only rotate one way. Try the opposite direction. 6197 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6198 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6199 // Negate the shift amount because it is safe to ignore the high bits. 6200 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6201 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6202 return; 6203 } 6204 6205 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6206 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6207 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6208 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6209 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6210 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6211 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6212 return; 6213 } 6214 6215 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6216 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6217 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6218 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6219 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6220 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6221 6222 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6223 // and that is undefined. We must compare and select to avoid UB. 6224 EVT CCVT = MVT::i1; 6225 if (VT.isVector()) 6226 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6227 6228 // For fshl, 0-shift returns the 1st arg (X). 6229 // For fshr, 0-shift returns the 2nd arg (Y). 6230 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6231 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6232 return; 6233 } 6234 case Intrinsic::sadd_sat: { 6235 SDValue Op1 = getValue(I.getArgOperand(0)); 6236 SDValue Op2 = getValue(I.getArgOperand(1)); 6237 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6238 return; 6239 } 6240 case Intrinsic::uadd_sat: { 6241 SDValue Op1 = getValue(I.getArgOperand(0)); 6242 SDValue Op2 = getValue(I.getArgOperand(1)); 6243 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6244 return; 6245 } 6246 case Intrinsic::ssub_sat: { 6247 SDValue Op1 = getValue(I.getArgOperand(0)); 6248 SDValue Op2 = getValue(I.getArgOperand(1)); 6249 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6250 return; 6251 } 6252 case Intrinsic::usub_sat: { 6253 SDValue Op1 = getValue(I.getArgOperand(0)); 6254 SDValue Op2 = getValue(I.getArgOperand(1)); 6255 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6256 return; 6257 } 6258 case Intrinsic::smul_fix: 6259 case Intrinsic::umul_fix: { 6260 SDValue Op1 = getValue(I.getArgOperand(0)); 6261 SDValue Op2 = getValue(I.getArgOperand(1)); 6262 SDValue Op3 = getValue(I.getArgOperand(2)); 6263 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6264 Op1.getValueType(), Op1, Op2, Op3)); 6265 return; 6266 } 6267 case Intrinsic::smul_fix_sat: { 6268 SDValue Op1 = getValue(I.getArgOperand(0)); 6269 SDValue Op2 = getValue(I.getArgOperand(1)); 6270 SDValue Op3 = getValue(I.getArgOperand(2)); 6271 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6272 Op3)); 6273 return; 6274 } 6275 case Intrinsic::stacksave: { 6276 SDValue Op = getRoot(); 6277 Res = DAG.getNode( 6278 ISD::STACKSAVE, sdl, 6279 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6280 setValue(&I, Res); 6281 DAG.setRoot(Res.getValue(1)); 6282 return; 6283 } 6284 case Intrinsic::stackrestore: 6285 Res = getValue(I.getArgOperand(0)); 6286 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6287 return; 6288 case Intrinsic::get_dynamic_area_offset: { 6289 SDValue Op = getRoot(); 6290 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6291 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6292 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6293 // target. 6294 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6295 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6296 " intrinsic!"); 6297 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6298 Op); 6299 DAG.setRoot(Op); 6300 setValue(&I, Res); 6301 return; 6302 } 6303 case Intrinsic::stackguard: { 6304 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6305 MachineFunction &MF = DAG.getMachineFunction(); 6306 const Module &M = *MF.getFunction().getParent(); 6307 SDValue Chain = getRoot(); 6308 if (TLI.useLoadStackGuardNode()) { 6309 Res = getLoadStackGuard(DAG, sdl, Chain); 6310 } else { 6311 const Value *Global = TLI.getSDagStackGuard(M); 6312 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6313 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6314 MachinePointerInfo(Global, 0), Align, 6315 MachineMemOperand::MOVolatile); 6316 } 6317 if (TLI.useStackGuardXorFP()) 6318 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6319 DAG.setRoot(Chain); 6320 setValue(&I, Res); 6321 return; 6322 } 6323 case Intrinsic::stackprotector: { 6324 // Emit code into the DAG to store the stack guard onto the stack. 6325 MachineFunction &MF = DAG.getMachineFunction(); 6326 MachineFrameInfo &MFI = MF.getFrameInfo(); 6327 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6328 SDValue Src, Chain = getRoot(); 6329 6330 if (TLI.useLoadStackGuardNode()) 6331 Src = getLoadStackGuard(DAG, sdl, Chain); 6332 else 6333 Src = getValue(I.getArgOperand(0)); // The guard's value. 6334 6335 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6336 6337 int FI = FuncInfo.StaticAllocaMap[Slot]; 6338 MFI.setStackProtectorIndex(FI); 6339 6340 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6341 6342 // Store the stack protector onto the stack. 6343 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6344 DAG.getMachineFunction(), FI), 6345 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6346 setValue(&I, Res); 6347 DAG.setRoot(Res); 6348 return; 6349 } 6350 case Intrinsic::objectsize: { 6351 // If we don't know by now, we're never going to know. 6352 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6353 6354 assert(CI && "Non-constant type in __builtin_object_size?"); 6355 6356 SDValue Arg = getValue(I.getCalledValue()); 6357 EVT Ty = Arg.getValueType(); 6358 6359 if (CI->isZero()) 6360 Res = DAG.getConstant(-1ULL, sdl, Ty); 6361 else 6362 Res = DAG.getConstant(0, sdl, Ty); 6363 6364 setValue(&I, Res); 6365 return; 6366 } 6367 6368 case Intrinsic::is_constant: 6369 // If this wasn't constant-folded away by now, then it's not a 6370 // constant. 6371 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6372 return; 6373 6374 case Intrinsic::annotation: 6375 case Intrinsic::ptr_annotation: 6376 case Intrinsic::launder_invariant_group: 6377 case Intrinsic::strip_invariant_group: 6378 // Drop the intrinsic, but forward the value 6379 setValue(&I, getValue(I.getOperand(0))); 6380 return; 6381 case Intrinsic::assume: 6382 case Intrinsic::var_annotation: 6383 case Intrinsic::sideeffect: 6384 // Discard annotate attributes, assumptions, and artificial side-effects. 6385 return; 6386 6387 case Intrinsic::codeview_annotation: { 6388 // Emit a label associated with this metadata. 6389 MachineFunction &MF = DAG.getMachineFunction(); 6390 MCSymbol *Label = 6391 MF.getMMI().getContext().createTempSymbol("annotation", true); 6392 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6393 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6394 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6395 DAG.setRoot(Res); 6396 return; 6397 } 6398 6399 case Intrinsic::init_trampoline: { 6400 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6401 6402 SDValue Ops[6]; 6403 Ops[0] = getRoot(); 6404 Ops[1] = getValue(I.getArgOperand(0)); 6405 Ops[2] = getValue(I.getArgOperand(1)); 6406 Ops[3] = getValue(I.getArgOperand(2)); 6407 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6408 Ops[5] = DAG.getSrcValue(F); 6409 6410 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6411 6412 DAG.setRoot(Res); 6413 return; 6414 } 6415 case Intrinsic::adjust_trampoline: 6416 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6417 TLI.getPointerTy(DAG.getDataLayout()), 6418 getValue(I.getArgOperand(0)))); 6419 return; 6420 case Intrinsic::gcroot: { 6421 assert(DAG.getMachineFunction().getFunction().hasGC() && 6422 "only valid in functions with gc specified, enforced by Verifier"); 6423 assert(GFI && "implied by previous"); 6424 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6425 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6426 6427 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6428 GFI->addStackRoot(FI->getIndex(), TypeMap); 6429 return; 6430 } 6431 case Intrinsic::gcread: 6432 case Intrinsic::gcwrite: 6433 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6434 case Intrinsic::flt_rounds: 6435 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6436 return; 6437 6438 case Intrinsic::expect: 6439 // Just replace __builtin_expect(exp, c) with EXP. 6440 setValue(&I, getValue(I.getArgOperand(0))); 6441 return; 6442 6443 case Intrinsic::debugtrap: 6444 case Intrinsic::trap: { 6445 StringRef TrapFuncName = 6446 I.getAttributes() 6447 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6448 .getValueAsString(); 6449 if (TrapFuncName.empty()) { 6450 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6451 ISD::TRAP : ISD::DEBUGTRAP; 6452 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6453 return; 6454 } 6455 TargetLowering::ArgListTy Args; 6456 6457 TargetLowering::CallLoweringInfo CLI(DAG); 6458 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6459 CallingConv::C, I.getType(), 6460 DAG.getExternalSymbol(TrapFuncName.data(), 6461 TLI.getPointerTy(DAG.getDataLayout())), 6462 std::move(Args)); 6463 6464 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6465 DAG.setRoot(Result.second); 6466 return; 6467 } 6468 6469 case Intrinsic::uadd_with_overflow: 6470 case Intrinsic::sadd_with_overflow: 6471 case Intrinsic::usub_with_overflow: 6472 case Intrinsic::ssub_with_overflow: 6473 case Intrinsic::umul_with_overflow: 6474 case Intrinsic::smul_with_overflow: { 6475 ISD::NodeType Op; 6476 switch (Intrinsic) { 6477 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6478 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6479 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6480 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6481 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6482 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6483 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6484 } 6485 SDValue Op1 = getValue(I.getArgOperand(0)); 6486 SDValue Op2 = getValue(I.getArgOperand(1)); 6487 6488 EVT ResultVT = Op1.getValueType(); 6489 EVT OverflowVT = MVT::i1; 6490 if (ResultVT.isVector()) 6491 OverflowVT = EVT::getVectorVT( 6492 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6493 6494 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6495 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6496 return; 6497 } 6498 case Intrinsic::prefetch: { 6499 SDValue Ops[5]; 6500 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6501 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6502 Ops[0] = DAG.getRoot(); 6503 Ops[1] = getValue(I.getArgOperand(0)); 6504 Ops[2] = getValue(I.getArgOperand(1)); 6505 Ops[3] = getValue(I.getArgOperand(2)); 6506 Ops[4] = getValue(I.getArgOperand(3)); 6507 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6508 DAG.getVTList(MVT::Other), Ops, 6509 EVT::getIntegerVT(*Context, 8), 6510 MachinePointerInfo(I.getArgOperand(0)), 6511 0, /* align */ 6512 Flags); 6513 6514 // Chain the prefetch in parallell with any pending loads, to stay out of 6515 // the way of later optimizations. 6516 PendingLoads.push_back(Result); 6517 Result = getRoot(); 6518 DAG.setRoot(Result); 6519 return; 6520 } 6521 case Intrinsic::lifetime_start: 6522 case Intrinsic::lifetime_end: { 6523 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6524 // Stack coloring is not enabled in O0, discard region information. 6525 if (TM.getOptLevel() == CodeGenOpt::None) 6526 return; 6527 6528 const int64_t ObjectSize = 6529 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6530 Value *const ObjectPtr = I.getArgOperand(1); 6531 SmallVector<const Value *, 4> Allocas; 6532 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6533 6534 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6535 E = Allocas.end(); Object != E; ++Object) { 6536 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6537 6538 // Could not find an Alloca. 6539 if (!LifetimeObject) 6540 continue; 6541 6542 // First check that the Alloca is static, otherwise it won't have a 6543 // valid frame index. 6544 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6545 if (SI == FuncInfo.StaticAllocaMap.end()) 6546 return; 6547 6548 const int FrameIndex = SI->second; 6549 int64_t Offset; 6550 if (GetPointerBaseWithConstantOffset( 6551 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6552 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6553 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6554 Offset); 6555 DAG.setRoot(Res); 6556 } 6557 return; 6558 } 6559 case Intrinsic::invariant_start: 6560 // Discard region information. 6561 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6562 return; 6563 case Intrinsic::invariant_end: 6564 // Discard region information. 6565 return; 6566 case Intrinsic::clear_cache: 6567 /// FunctionName may be null. 6568 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6569 lowerCallToExternalSymbol(I, FunctionName); 6570 return; 6571 case Intrinsic::donothing: 6572 // ignore 6573 return; 6574 case Intrinsic::experimental_stackmap: 6575 visitStackmap(I); 6576 return; 6577 case Intrinsic::experimental_patchpoint_void: 6578 case Intrinsic::experimental_patchpoint_i64: 6579 visitPatchpoint(&I); 6580 return; 6581 case Intrinsic::experimental_gc_statepoint: 6582 LowerStatepoint(ImmutableStatepoint(&I)); 6583 return; 6584 case Intrinsic::experimental_gc_result: 6585 visitGCResult(cast<GCResultInst>(I)); 6586 return; 6587 case Intrinsic::experimental_gc_relocate: 6588 visitGCRelocate(cast<GCRelocateInst>(I)); 6589 return; 6590 case Intrinsic::instrprof_increment: 6591 llvm_unreachable("instrprof failed to lower an increment"); 6592 case Intrinsic::instrprof_value_profile: 6593 llvm_unreachable("instrprof failed to lower a value profiling call"); 6594 case Intrinsic::localescape: { 6595 MachineFunction &MF = DAG.getMachineFunction(); 6596 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6597 6598 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6599 // is the same on all targets. 6600 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6601 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6602 if (isa<ConstantPointerNull>(Arg)) 6603 continue; // Skip null pointers. They represent a hole in index space. 6604 AllocaInst *Slot = cast<AllocaInst>(Arg); 6605 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6606 "can only escape static allocas"); 6607 int FI = FuncInfo.StaticAllocaMap[Slot]; 6608 MCSymbol *FrameAllocSym = 6609 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6610 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6611 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6612 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6613 .addSym(FrameAllocSym) 6614 .addFrameIndex(FI); 6615 } 6616 6617 return; 6618 } 6619 6620 case Intrinsic::localrecover: { 6621 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6622 MachineFunction &MF = DAG.getMachineFunction(); 6623 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6624 6625 // Get the symbol that defines the frame offset. 6626 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6627 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6628 unsigned IdxVal = 6629 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6630 MCSymbol *FrameAllocSym = 6631 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6632 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6633 6634 // Create a MCSymbol for the label to avoid any target lowering 6635 // that would make this PC relative. 6636 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6637 SDValue OffsetVal = 6638 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6639 6640 // Add the offset to the FP. 6641 Value *FP = I.getArgOperand(1); 6642 SDValue FPVal = getValue(FP); 6643 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6644 setValue(&I, Add); 6645 6646 return; 6647 } 6648 6649 case Intrinsic::eh_exceptionpointer: 6650 case Intrinsic::eh_exceptioncode: { 6651 // Get the exception pointer vreg, copy from it, and resize it to fit. 6652 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6653 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6654 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6655 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6656 SDValue N = 6657 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6658 if (Intrinsic == Intrinsic::eh_exceptioncode) 6659 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6660 setValue(&I, N); 6661 return; 6662 } 6663 case Intrinsic::xray_customevent: { 6664 // Here we want to make sure that the intrinsic behaves as if it has a 6665 // specific calling convention, and only for x86_64. 6666 // FIXME: Support other platforms later. 6667 const auto &Triple = DAG.getTarget().getTargetTriple(); 6668 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6669 return; 6670 6671 SDLoc DL = getCurSDLoc(); 6672 SmallVector<SDValue, 8> Ops; 6673 6674 // We want to say that we always want the arguments in registers. 6675 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6676 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6677 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6678 SDValue Chain = getRoot(); 6679 Ops.push_back(LogEntryVal); 6680 Ops.push_back(StrSizeVal); 6681 Ops.push_back(Chain); 6682 6683 // We need to enforce the calling convention for the callsite, so that 6684 // argument ordering is enforced correctly, and that register allocation can 6685 // see that some registers may be assumed clobbered and have to preserve 6686 // them across calls to the intrinsic. 6687 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6688 DL, NodeTys, Ops); 6689 SDValue patchableNode = SDValue(MN, 0); 6690 DAG.setRoot(patchableNode); 6691 setValue(&I, patchableNode); 6692 return; 6693 } 6694 case Intrinsic::xray_typedevent: { 6695 // Here we want to make sure that the intrinsic behaves as if it has a 6696 // specific calling convention, and only for x86_64. 6697 // FIXME: Support other platforms later. 6698 const auto &Triple = DAG.getTarget().getTargetTriple(); 6699 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6700 return; 6701 6702 SDLoc DL = getCurSDLoc(); 6703 SmallVector<SDValue, 8> Ops; 6704 6705 // We want to say that we always want the arguments in registers. 6706 // It's unclear to me how manipulating the selection DAG here forces callers 6707 // to provide arguments in registers instead of on the stack. 6708 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6709 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6710 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6711 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6712 SDValue Chain = getRoot(); 6713 Ops.push_back(LogTypeId); 6714 Ops.push_back(LogEntryVal); 6715 Ops.push_back(StrSizeVal); 6716 Ops.push_back(Chain); 6717 6718 // We need to enforce the calling convention for the callsite, so that 6719 // argument ordering is enforced correctly, and that register allocation can 6720 // see that some registers may be assumed clobbered and have to preserve 6721 // them across calls to the intrinsic. 6722 MachineSDNode *MN = DAG.getMachineNode( 6723 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6724 SDValue patchableNode = SDValue(MN, 0); 6725 DAG.setRoot(patchableNode); 6726 setValue(&I, patchableNode); 6727 return; 6728 } 6729 case Intrinsic::experimental_deoptimize: 6730 LowerDeoptimizeCall(&I); 6731 return; 6732 6733 case Intrinsic::experimental_vector_reduce_v2_fadd: 6734 case Intrinsic::experimental_vector_reduce_v2_fmul: 6735 case Intrinsic::experimental_vector_reduce_add: 6736 case Intrinsic::experimental_vector_reduce_mul: 6737 case Intrinsic::experimental_vector_reduce_and: 6738 case Intrinsic::experimental_vector_reduce_or: 6739 case Intrinsic::experimental_vector_reduce_xor: 6740 case Intrinsic::experimental_vector_reduce_smax: 6741 case Intrinsic::experimental_vector_reduce_smin: 6742 case Intrinsic::experimental_vector_reduce_umax: 6743 case Intrinsic::experimental_vector_reduce_umin: 6744 case Intrinsic::experimental_vector_reduce_fmax: 6745 case Intrinsic::experimental_vector_reduce_fmin: 6746 visitVectorReduce(I, Intrinsic); 6747 return; 6748 6749 case Intrinsic::icall_branch_funnel: { 6750 SmallVector<SDValue, 16> Ops; 6751 Ops.push_back(getValue(I.getArgOperand(0))); 6752 6753 int64_t Offset; 6754 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6755 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6756 if (!Base) 6757 report_fatal_error( 6758 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6759 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6760 6761 struct BranchFunnelTarget { 6762 int64_t Offset; 6763 SDValue Target; 6764 }; 6765 SmallVector<BranchFunnelTarget, 8> Targets; 6766 6767 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6768 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6769 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6770 if (ElemBase != Base) 6771 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6772 "to the same GlobalValue"); 6773 6774 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6775 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6776 if (!GA) 6777 report_fatal_error( 6778 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6779 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6780 GA->getGlobal(), getCurSDLoc(), 6781 Val.getValueType(), GA->getOffset())}); 6782 } 6783 llvm::sort(Targets, 6784 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6785 return T1.Offset < T2.Offset; 6786 }); 6787 6788 for (auto &T : Targets) { 6789 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6790 Ops.push_back(T.Target); 6791 } 6792 6793 Ops.push_back(DAG.getRoot()); // Chain 6794 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6795 getCurSDLoc(), MVT::Other, Ops), 6796 0); 6797 DAG.setRoot(N); 6798 setValue(&I, N); 6799 HasTailCall = true; 6800 return; 6801 } 6802 6803 case Intrinsic::wasm_landingpad_index: 6804 // Information this intrinsic contained has been transferred to 6805 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6806 // delete it now. 6807 return; 6808 6809 case Intrinsic::aarch64_settag: 6810 case Intrinsic::aarch64_settag_zero: { 6811 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6812 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6813 SDValue Val = TSI.EmitTargetCodeForSetTag( 6814 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6815 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6816 ZeroMemory); 6817 DAG.setRoot(Val); 6818 setValue(&I, Val); 6819 return; 6820 } 6821 } 6822 } 6823 6824 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6825 const ConstrainedFPIntrinsic &FPI) { 6826 SDLoc sdl = getCurSDLoc(); 6827 unsigned Opcode; 6828 switch (FPI.getIntrinsicID()) { 6829 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6830 case Intrinsic::experimental_constrained_fadd: 6831 Opcode = ISD::STRICT_FADD; 6832 break; 6833 case Intrinsic::experimental_constrained_fsub: 6834 Opcode = ISD::STRICT_FSUB; 6835 break; 6836 case Intrinsic::experimental_constrained_fmul: 6837 Opcode = ISD::STRICT_FMUL; 6838 break; 6839 case Intrinsic::experimental_constrained_fdiv: 6840 Opcode = ISD::STRICT_FDIV; 6841 break; 6842 case Intrinsic::experimental_constrained_frem: 6843 Opcode = ISD::STRICT_FREM; 6844 break; 6845 case Intrinsic::experimental_constrained_fma: 6846 Opcode = ISD::STRICT_FMA; 6847 break; 6848 case Intrinsic::experimental_constrained_fptrunc: 6849 Opcode = ISD::STRICT_FP_ROUND; 6850 break; 6851 case Intrinsic::experimental_constrained_fpext: 6852 Opcode = ISD::STRICT_FP_EXTEND; 6853 break; 6854 case Intrinsic::experimental_constrained_sqrt: 6855 Opcode = ISD::STRICT_FSQRT; 6856 break; 6857 case Intrinsic::experimental_constrained_pow: 6858 Opcode = ISD::STRICT_FPOW; 6859 break; 6860 case Intrinsic::experimental_constrained_powi: 6861 Opcode = ISD::STRICT_FPOWI; 6862 break; 6863 case Intrinsic::experimental_constrained_sin: 6864 Opcode = ISD::STRICT_FSIN; 6865 break; 6866 case Intrinsic::experimental_constrained_cos: 6867 Opcode = ISD::STRICT_FCOS; 6868 break; 6869 case Intrinsic::experimental_constrained_exp: 6870 Opcode = ISD::STRICT_FEXP; 6871 break; 6872 case Intrinsic::experimental_constrained_exp2: 6873 Opcode = ISD::STRICT_FEXP2; 6874 break; 6875 case Intrinsic::experimental_constrained_log: 6876 Opcode = ISD::STRICT_FLOG; 6877 break; 6878 case Intrinsic::experimental_constrained_log10: 6879 Opcode = ISD::STRICT_FLOG10; 6880 break; 6881 case Intrinsic::experimental_constrained_log2: 6882 Opcode = ISD::STRICT_FLOG2; 6883 break; 6884 case Intrinsic::experimental_constrained_rint: 6885 Opcode = ISD::STRICT_FRINT; 6886 break; 6887 case Intrinsic::experimental_constrained_nearbyint: 6888 Opcode = ISD::STRICT_FNEARBYINT; 6889 break; 6890 case Intrinsic::experimental_constrained_maxnum: 6891 Opcode = ISD::STRICT_FMAXNUM; 6892 break; 6893 case Intrinsic::experimental_constrained_minnum: 6894 Opcode = ISD::STRICT_FMINNUM; 6895 break; 6896 case Intrinsic::experimental_constrained_ceil: 6897 Opcode = ISD::STRICT_FCEIL; 6898 break; 6899 case Intrinsic::experimental_constrained_floor: 6900 Opcode = ISD::STRICT_FFLOOR; 6901 break; 6902 case Intrinsic::experimental_constrained_round: 6903 Opcode = ISD::STRICT_FROUND; 6904 break; 6905 case Intrinsic::experimental_constrained_trunc: 6906 Opcode = ISD::STRICT_FTRUNC; 6907 break; 6908 } 6909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6910 SDValue Chain = getRoot(); 6911 SmallVector<EVT, 4> ValueVTs; 6912 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6913 ValueVTs.push_back(MVT::Other); // Out chain 6914 6915 SDVTList VTs = DAG.getVTList(ValueVTs); 6916 SDValue Result; 6917 if (Opcode == ISD::STRICT_FP_ROUND) 6918 Result = DAG.getNode(Opcode, sdl, VTs, 6919 { Chain, getValue(FPI.getArgOperand(0)), 6920 DAG.getTargetConstant(0, sdl, 6921 TLI.getPointerTy(DAG.getDataLayout())) }); 6922 else if (FPI.isUnaryOp()) 6923 Result = DAG.getNode(Opcode, sdl, VTs, 6924 { Chain, getValue(FPI.getArgOperand(0)) }); 6925 else if (FPI.isTernaryOp()) 6926 Result = DAG.getNode(Opcode, sdl, VTs, 6927 { Chain, getValue(FPI.getArgOperand(0)), 6928 getValue(FPI.getArgOperand(1)), 6929 getValue(FPI.getArgOperand(2)) }); 6930 else 6931 Result = DAG.getNode(Opcode, sdl, VTs, 6932 { Chain, getValue(FPI.getArgOperand(0)), 6933 getValue(FPI.getArgOperand(1)) }); 6934 6935 if (FPI.getExceptionBehavior() != 6936 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { 6937 SDNodeFlags Flags; 6938 Flags.setFPExcept(true); 6939 Result->setFlags(Flags); 6940 } 6941 6942 assert(Result.getNode()->getNumValues() == 2); 6943 SDValue OutChain = Result.getValue(1); 6944 DAG.setRoot(OutChain); 6945 SDValue FPResult = Result.getValue(0); 6946 setValue(&FPI, FPResult); 6947 } 6948 6949 std::pair<SDValue, SDValue> 6950 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6951 const BasicBlock *EHPadBB) { 6952 MachineFunction &MF = DAG.getMachineFunction(); 6953 MachineModuleInfo &MMI = MF.getMMI(); 6954 MCSymbol *BeginLabel = nullptr; 6955 6956 if (EHPadBB) { 6957 // Insert a label before the invoke call to mark the try range. This can be 6958 // used to detect deletion of the invoke via the MachineModuleInfo. 6959 BeginLabel = MMI.getContext().createTempSymbol(); 6960 6961 // For SjLj, keep track of which landing pads go with which invokes 6962 // so as to maintain the ordering of pads in the LSDA. 6963 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6964 if (CallSiteIndex) { 6965 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6966 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6967 6968 // Now that the call site is handled, stop tracking it. 6969 MMI.setCurrentCallSite(0); 6970 } 6971 6972 // Both PendingLoads and PendingExports must be flushed here; 6973 // this call might not return. 6974 (void)getRoot(); 6975 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6976 6977 CLI.setChain(getRoot()); 6978 } 6979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6980 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6981 6982 assert((CLI.IsTailCall || Result.second.getNode()) && 6983 "Non-null chain expected with non-tail call!"); 6984 assert((Result.second.getNode() || !Result.first.getNode()) && 6985 "Null value expected with tail call!"); 6986 6987 if (!Result.second.getNode()) { 6988 // As a special case, a null chain means that a tail call has been emitted 6989 // and the DAG root is already updated. 6990 HasTailCall = true; 6991 6992 // Since there's no actual continuation from this block, nothing can be 6993 // relying on us setting vregs for them. 6994 PendingExports.clear(); 6995 } else { 6996 DAG.setRoot(Result.second); 6997 } 6998 6999 if (EHPadBB) { 7000 // Insert a label at the end of the invoke call to mark the try range. This 7001 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7002 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7003 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7004 7005 // Inform MachineModuleInfo of range. 7006 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7007 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7008 // actually use outlined funclets and their LSDA info style. 7009 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7010 assert(CLI.CS); 7011 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7012 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7013 BeginLabel, EndLabel); 7014 } else if (!isScopedEHPersonality(Pers)) { 7015 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7016 } 7017 } 7018 7019 return Result; 7020 } 7021 7022 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7023 bool isTailCall, 7024 const BasicBlock *EHPadBB) { 7025 auto &DL = DAG.getDataLayout(); 7026 FunctionType *FTy = CS.getFunctionType(); 7027 Type *RetTy = CS.getType(); 7028 7029 TargetLowering::ArgListTy Args; 7030 Args.reserve(CS.arg_size()); 7031 7032 const Value *SwiftErrorVal = nullptr; 7033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7034 7035 // We can't tail call inside a function with a swifterror argument. Lowering 7036 // does not support this yet. It would have to move into the swifterror 7037 // register before the call. 7038 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7039 if (TLI.supportSwiftError() && 7040 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7041 isTailCall = false; 7042 7043 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7044 i != e; ++i) { 7045 TargetLowering::ArgListEntry Entry; 7046 const Value *V = *i; 7047 7048 // Skip empty types 7049 if (V->getType()->isEmptyTy()) 7050 continue; 7051 7052 SDValue ArgNode = getValue(V); 7053 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7054 7055 Entry.setAttributes(&CS, i - CS.arg_begin()); 7056 7057 // Use swifterror virtual register as input to the call. 7058 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7059 SwiftErrorVal = V; 7060 // We find the virtual register for the actual swifterror argument. 7061 // Instead of using the Value, we use the virtual register instead. 7062 Entry.Node = DAG.getRegister( 7063 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7064 EVT(TLI.getPointerTy(DL))); 7065 } 7066 7067 Args.push_back(Entry); 7068 7069 // If we have an explicit sret argument that is an Instruction, (i.e., it 7070 // might point to function-local memory), we can't meaningfully tail-call. 7071 if (Entry.IsSRet && isa<Instruction>(V)) 7072 isTailCall = false; 7073 } 7074 7075 // Check if target-independent constraints permit a tail call here. 7076 // Target-dependent constraints are checked within TLI->LowerCallTo. 7077 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7078 isTailCall = false; 7079 7080 // Disable tail calls if there is an swifterror argument. Targets have not 7081 // been updated to support tail calls. 7082 if (TLI.supportSwiftError() && SwiftErrorVal) 7083 isTailCall = false; 7084 7085 TargetLowering::CallLoweringInfo CLI(DAG); 7086 CLI.setDebugLoc(getCurSDLoc()) 7087 .setChain(getRoot()) 7088 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7089 .setTailCall(isTailCall) 7090 .setConvergent(CS.isConvergent()); 7091 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7092 7093 if (Result.first.getNode()) { 7094 const Instruction *Inst = CS.getInstruction(); 7095 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7096 setValue(Inst, Result.first); 7097 } 7098 7099 // The last element of CLI.InVals has the SDValue for swifterror return. 7100 // Here we copy it to a virtual register and update SwiftErrorMap for 7101 // book-keeping. 7102 if (SwiftErrorVal && TLI.supportSwiftError()) { 7103 // Get the last element of InVals. 7104 SDValue Src = CLI.InVals.back(); 7105 unsigned VReg = SwiftError.getOrCreateVRegDefAt( 7106 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7107 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7108 DAG.setRoot(CopyNode); 7109 } 7110 } 7111 7112 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7113 SelectionDAGBuilder &Builder) { 7114 // Check to see if this load can be trivially constant folded, e.g. if the 7115 // input is from a string literal. 7116 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7117 // Cast pointer to the type we really want to load. 7118 Type *LoadTy = 7119 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7120 if (LoadVT.isVector()) 7121 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7122 7123 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7124 PointerType::getUnqual(LoadTy)); 7125 7126 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7127 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7128 return Builder.getValue(LoadCst); 7129 } 7130 7131 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7132 // still constant memory, the input chain can be the entry node. 7133 SDValue Root; 7134 bool ConstantMemory = false; 7135 7136 // Do not serialize (non-volatile) loads of constant memory with anything. 7137 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7138 Root = Builder.DAG.getEntryNode(); 7139 ConstantMemory = true; 7140 } else { 7141 // Do not serialize non-volatile loads against each other. 7142 Root = Builder.DAG.getRoot(); 7143 } 7144 7145 SDValue Ptr = Builder.getValue(PtrVal); 7146 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7147 Ptr, MachinePointerInfo(PtrVal), 7148 /* Alignment = */ 1); 7149 7150 if (!ConstantMemory) 7151 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7152 return LoadVal; 7153 } 7154 7155 /// Record the value for an instruction that produces an integer result, 7156 /// converting the type where necessary. 7157 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7158 SDValue Value, 7159 bool IsSigned) { 7160 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7161 I.getType(), true); 7162 if (IsSigned) 7163 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7164 else 7165 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7166 setValue(&I, Value); 7167 } 7168 7169 /// See if we can lower a memcmp call into an optimized form. If so, return 7170 /// true and lower it. Otherwise return false, and it will be lowered like a 7171 /// normal call. 7172 /// The caller already checked that \p I calls the appropriate LibFunc with a 7173 /// correct prototype. 7174 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7175 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7176 const Value *Size = I.getArgOperand(2); 7177 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7178 if (CSize && CSize->getZExtValue() == 0) { 7179 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7180 I.getType(), true); 7181 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7182 return true; 7183 } 7184 7185 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7186 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7187 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7188 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7189 if (Res.first.getNode()) { 7190 processIntegerCallValue(I, Res.first, true); 7191 PendingLoads.push_back(Res.second); 7192 return true; 7193 } 7194 7195 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7196 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7197 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7198 return false; 7199 7200 // If the target has a fast compare for the given size, it will return a 7201 // preferred load type for that size. Require that the load VT is legal and 7202 // that the target supports unaligned loads of that type. Otherwise, return 7203 // INVALID. 7204 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7206 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7207 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7208 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7209 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7210 // TODO: Check alignment of src and dest ptrs. 7211 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7212 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7213 if (!TLI.isTypeLegal(LVT) || 7214 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7215 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7216 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7217 } 7218 7219 return LVT; 7220 }; 7221 7222 // This turns into unaligned loads. We only do this if the target natively 7223 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7224 // we'll only produce a small number of byte loads. 7225 MVT LoadVT; 7226 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7227 switch (NumBitsToCompare) { 7228 default: 7229 return false; 7230 case 16: 7231 LoadVT = MVT::i16; 7232 break; 7233 case 32: 7234 LoadVT = MVT::i32; 7235 break; 7236 case 64: 7237 case 128: 7238 case 256: 7239 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7240 break; 7241 } 7242 7243 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7244 return false; 7245 7246 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7247 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7248 7249 // Bitcast to a wide integer type if the loads are vectors. 7250 if (LoadVT.isVector()) { 7251 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7252 LoadL = DAG.getBitcast(CmpVT, LoadL); 7253 LoadR = DAG.getBitcast(CmpVT, LoadR); 7254 } 7255 7256 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7257 processIntegerCallValue(I, Cmp, false); 7258 return true; 7259 } 7260 7261 /// See if we can lower a memchr call into an optimized form. If so, return 7262 /// true and lower it. Otherwise return false, and it will be lowered like a 7263 /// normal call. 7264 /// The caller already checked that \p I calls the appropriate LibFunc with a 7265 /// correct prototype. 7266 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7267 const Value *Src = I.getArgOperand(0); 7268 const Value *Char = I.getArgOperand(1); 7269 const Value *Length = I.getArgOperand(2); 7270 7271 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7272 std::pair<SDValue, SDValue> Res = 7273 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7274 getValue(Src), getValue(Char), getValue(Length), 7275 MachinePointerInfo(Src)); 7276 if (Res.first.getNode()) { 7277 setValue(&I, Res.first); 7278 PendingLoads.push_back(Res.second); 7279 return true; 7280 } 7281 7282 return false; 7283 } 7284 7285 /// See if we can lower a mempcpy call into an optimized form. If so, return 7286 /// true and lower it. Otherwise return false, and it will be lowered like a 7287 /// normal call. 7288 /// The caller already checked that \p I calls the appropriate LibFunc with a 7289 /// correct prototype. 7290 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7291 SDValue Dst = getValue(I.getArgOperand(0)); 7292 SDValue Src = getValue(I.getArgOperand(1)); 7293 SDValue Size = getValue(I.getArgOperand(2)); 7294 7295 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7296 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7297 unsigned Align = std::min(DstAlign, SrcAlign); 7298 if (Align == 0) // Alignment of one or both could not be inferred. 7299 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7300 7301 bool isVol = false; 7302 SDLoc sdl = getCurSDLoc(); 7303 7304 // In the mempcpy context we need to pass in a false value for isTailCall 7305 // because the return pointer needs to be adjusted by the size of 7306 // the copied memory. 7307 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7308 false, /*isTailCall=*/false, 7309 MachinePointerInfo(I.getArgOperand(0)), 7310 MachinePointerInfo(I.getArgOperand(1))); 7311 assert(MC.getNode() != nullptr && 7312 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7313 DAG.setRoot(MC); 7314 7315 // Check if Size needs to be truncated or extended. 7316 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7317 7318 // Adjust return pointer to point just past the last dst byte. 7319 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7320 Dst, Size); 7321 setValue(&I, DstPlusSize); 7322 return true; 7323 } 7324 7325 /// See if we can lower a strcpy call into an optimized form. If so, return 7326 /// true and lower it, otherwise return false and it will be lowered like a 7327 /// normal call. 7328 /// The caller already checked that \p I calls the appropriate LibFunc with a 7329 /// correct prototype. 7330 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7331 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7332 7333 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7334 std::pair<SDValue, SDValue> Res = 7335 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7336 getValue(Arg0), getValue(Arg1), 7337 MachinePointerInfo(Arg0), 7338 MachinePointerInfo(Arg1), isStpcpy); 7339 if (Res.first.getNode()) { 7340 setValue(&I, Res.first); 7341 DAG.setRoot(Res.second); 7342 return true; 7343 } 7344 7345 return false; 7346 } 7347 7348 /// See if we can lower a strcmp call into an optimized form. If so, return 7349 /// true and lower it, otherwise return false and it will be lowered like a 7350 /// normal call. 7351 /// The caller already checked that \p I calls the appropriate LibFunc with a 7352 /// correct prototype. 7353 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7354 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7355 7356 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7357 std::pair<SDValue, SDValue> Res = 7358 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7359 getValue(Arg0), getValue(Arg1), 7360 MachinePointerInfo(Arg0), 7361 MachinePointerInfo(Arg1)); 7362 if (Res.first.getNode()) { 7363 processIntegerCallValue(I, Res.first, true); 7364 PendingLoads.push_back(Res.second); 7365 return true; 7366 } 7367 7368 return false; 7369 } 7370 7371 /// See if we can lower a strlen call into an optimized form. If so, return 7372 /// true and lower it, otherwise return false and it will be lowered like a 7373 /// normal call. 7374 /// The caller already checked that \p I calls the appropriate LibFunc with a 7375 /// correct prototype. 7376 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7377 const Value *Arg0 = I.getArgOperand(0); 7378 7379 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7380 std::pair<SDValue, SDValue> Res = 7381 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7382 getValue(Arg0), MachinePointerInfo(Arg0)); 7383 if (Res.first.getNode()) { 7384 processIntegerCallValue(I, Res.first, false); 7385 PendingLoads.push_back(Res.second); 7386 return true; 7387 } 7388 7389 return false; 7390 } 7391 7392 /// See if we can lower a strnlen call into an optimized form. If so, return 7393 /// true and lower it, otherwise return false and it will be lowered like a 7394 /// normal call. 7395 /// The caller already checked that \p I calls the appropriate LibFunc with a 7396 /// correct prototype. 7397 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7398 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7399 7400 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7401 std::pair<SDValue, SDValue> Res = 7402 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7403 getValue(Arg0), getValue(Arg1), 7404 MachinePointerInfo(Arg0)); 7405 if (Res.first.getNode()) { 7406 processIntegerCallValue(I, Res.first, false); 7407 PendingLoads.push_back(Res.second); 7408 return true; 7409 } 7410 7411 return false; 7412 } 7413 7414 /// See if we can lower a unary floating-point operation into an SDNode with 7415 /// the specified Opcode. If so, return true and lower it, otherwise return 7416 /// false and it will be lowered like a normal call. 7417 /// The caller already checked that \p I calls the appropriate LibFunc with a 7418 /// correct prototype. 7419 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7420 unsigned Opcode) { 7421 // We already checked this call's prototype; verify it doesn't modify errno. 7422 if (!I.onlyReadsMemory()) 7423 return false; 7424 7425 SDValue Tmp = getValue(I.getArgOperand(0)); 7426 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7427 return true; 7428 } 7429 7430 /// See if we can lower a binary floating-point operation into an SDNode with 7431 /// the specified Opcode. If so, return true and lower it. Otherwise return 7432 /// false, and it will be lowered like a normal call. 7433 /// The caller already checked that \p I calls the appropriate LibFunc with a 7434 /// correct prototype. 7435 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7436 unsigned Opcode) { 7437 // We already checked this call's prototype; verify it doesn't modify errno. 7438 if (!I.onlyReadsMemory()) 7439 return false; 7440 7441 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7442 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7443 EVT VT = Tmp0.getValueType(); 7444 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7445 return true; 7446 } 7447 7448 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7449 // Handle inline assembly differently. 7450 if (isa<InlineAsm>(I.getCalledValue())) { 7451 visitInlineAsm(&I); 7452 return; 7453 } 7454 7455 if (Function *F = I.getCalledFunction()) { 7456 if (F->isDeclaration()) { 7457 // Is this an LLVM intrinsic or a target-specific intrinsic? 7458 unsigned IID = F->getIntrinsicID(); 7459 if (!IID) 7460 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7461 IID = II->getIntrinsicID(F); 7462 7463 if (IID) { 7464 visitIntrinsicCall(I, IID); 7465 return; 7466 } 7467 } 7468 7469 // Check for well-known libc/libm calls. If the function is internal, it 7470 // can't be a library call. Don't do the check if marked as nobuiltin for 7471 // some reason or the call site requires strict floating point semantics. 7472 LibFunc Func; 7473 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7474 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7475 LibInfo->hasOptimizedCodeGen(Func)) { 7476 switch (Func) { 7477 default: break; 7478 case LibFunc_copysign: 7479 case LibFunc_copysignf: 7480 case LibFunc_copysignl: 7481 // We already checked this call's prototype; verify it doesn't modify 7482 // errno. 7483 if (I.onlyReadsMemory()) { 7484 SDValue LHS = getValue(I.getArgOperand(0)); 7485 SDValue RHS = getValue(I.getArgOperand(1)); 7486 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7487 LHS.getValueType(), LHS, RHS)); 7488 return; 7489 } 7490 break; 7491 case LibFunc_fabs: 7492 case LibFunc_fabsf: 7493 case LibFunc_fabsl: 7494 if (visitUnaryFloatCall(I, ISD::FABS)) 7495 return; 7496 break; 7497 case LibFunc_fmin: 7498 case LibFunc_fminf: 7499 case LibFunc_fminl: 7500 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7501 return; 7502 break; 7503 case LibFunc_fmax: 7504 case LibFunc_fmaxf: 7505 case LibFunc_fmaxl: 7506 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7507 return; 7508 break; 7509 case LibFunc_sin: 7510 case LibFunc_sinf: 7511 case LibFunc_sinl: 7512 if (visitUnaryFloatCall(I, ISD::FSIN)) 7513 return; 7514 break; 7515 case LibFunc_cos: 7516 case LibFunc_cosf: 7517 case LibFunc_cosl: 7518 if (visitUnaryFloatCall(I, ISD::FCOS)) 7519 return; 7520 break; 7521 case LibFunc_sqrt: 7522 case LibFunc_sqrtf: 7523 case LibFunc_sqrtl: 7524 case LibFunc_sqrt_finite: 7525 case LibFunc_sqrtf_finite: 7526 case LibFunc_sqrtl_finite: 7527 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7528 return; 7529 break; 7530 case LibFunc_floor: 7531 case LibFunc_floorf: 7532 case LibFunc_floorl: 7533 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7534 return; 7535 break; 7536 case LibFunc_nearbyint: 7537 case LibFunc_nearbyintf: 7538 case LibFunc_nearbyintl: 7539 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7540 return; 7541 break; 7542 case LibFunc_ceil: 7543 case LibFunc_ceilf: 7544 case LibFunc_ceill: 7545 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7546 return; 7547 break; 7548 case LibFunc_rint: 7549 case LibFunc_rintf: 7550 case LibFunc_rintl: 7551 if (visitUnaryFloatCall(I, ISD::FRINT)) 7552 return; 7553 break; 7554 case LibFunc_round: 7555 case LibFunc_roundf: 7556 case LibFunc_roundl: 7557 if (visitUnaryFloatCall(I, ISD::FROUND)) 7558 return; 7559 break; 7560 case LibFunc_trunc: 7561 case LibFunc_truncf: 7562 case LibFunc_truncl: 7563 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7564 return; 7565 break; 7566 case LibFunc_log2: 7567 case LibFunc_log2f: 7568 case LibFunc_log2l: 7569 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7570 return; 7571 break; 7572 case LibFunc_exp2: 7573 case LibFunc_exp2f: 7574 case LibFunc_exp2l: 7575 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7576 return; 7577 break; 7578 case LibFunc_memcmp: 7579 if (visitMemCmpCall(I)) 7580 return; 7581 break; 7582 case LibFunc_mempcpy: 7583 if (visitMemPCpyCall(I)) 7584 return; 7585 break; 7586 case LibFunc_memchr: 7587 if (visitMemChrCall(I)) 7588 return; 7589 break; 7590 case LibFunc_strcpy: 7591 if (visitStrCpyCall(I, false)) 7592 return; 7593 break; 7594 case LibFunc_stpcpy: 7595 if (visitStrCpyCall(I, true)) 7596 return; 7597 break; 7598 case LibFunc_strcmp: 7599 if (visitStrCmpCall(I)) 7600 return; 7601 break; 7602 case LibFunc_strlen: 7603 if (visitStrLenCall(I)) 7604 return; 7605 break; 7606 case LibFunc_strnlen: 7607 if (visitStrNLenCall(I)) 7608 return; 7609 break; 7610 } 7611 } 7612 } 7613 7614 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7615 // have to do anything here to lower funclet bundles. 7616 assert(!I.hasOperandBundlesOtherThan( 7617 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7618 "Cannot lower calls with arbitrary operand bundles!"); 7619 7620 SDValue Callee = getValue(I.getCalledValue()); 7621 7622 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7623 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7624 else 7625 // Check if we can potentially perform a tail call. More detailed checking 7626 // is be done within LowerCallTo, after more information about the call is 7627 // known. 7628 LowerCallTo(&I, Callee, I.isTailCall()); 7629 } 7630 7631 namespace { 7632 7633 /// AsmOperandInfo - This contains information for each constraint that we are 7634 /// lowering. 7635 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7636 public: 7637 /// CallOperand - If this is the result output operand or a clobber 7638 /// this is null, otherwise it is the incoming operand to the CallInst. 7639 /// This gets modified as the asm is processed. 7640 SDValue CallOperand; 7641 7642 /// AssignedRegs - If this is a register or register class operand, this 7643 /// contains the set of register corresponding to the operand. 7644 RegsForValue AssignedRegs; 7645 7646 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7647 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7648 } 7649 7650 /// Whether or not this operand accesses memory 7651 bool hasMemory(const TargetLowering &TLI) const { 7652 // Indirect operand accesses access memory. 7653 if (isIndirect) 7654 return true; 7655 7656 for (const auto &Code : Codes) 7657 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7658 return true; 7659 7660 return false; 7661 } 7662 7663 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7664 /// corresponds to. If there is no Value* for this operand, it returns 7665 /// MVT::Other. 7666 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7667 const DataLayout &DL) const { 7668 if (!CallOperandVal) return MVT::Other; 7669 7670 if (isa<BasicBlock>(CallOperandVal)) 7671 return TLI.getPointerTy(DL); 7672 7673 llvm::Type *OpTy = CallOperandVal->getType(); 7674 7675 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7676 // If this is an indirect operand, the operand is a pointer to the 7677 // accessed type. 7678 if (isIndirect) { 7679 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7680 if (!PtrTy) 7681 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7682 OpTy = PtrTy->getElementType(); 7683 } 7684 7685 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7686 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7687 if (STy->getNumElements() == 1) 7688 OpTy = STy->getElementType(0); 7689 7690 // If OpTy is not a single value, it may be a struct/union that we 7691 // can tile with integers. 7692 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7693 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7694 switch (BitSize) { 7695 default: break; 7696 case 1: 7697 case 8: 7698 case 16: 7699 case 32: 7700 case 64: 7701 case 128: 7702 OpTy = IntegerType::get(Context, BitSize); 7703 break; 7704 } 7705 } 7706 7707 return TLI.getValueType(DL, OpTy, true); 7708 } 7709 }; 7710 7711 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7712 7713 } // end anonymous namespace 7714 7715 /// Make sure that the output operand \p OpInfo and its corresponding input 7716 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7717 /// out). 7718 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7719 SDISelAsmOperandInfo &MatchingOpInfo, 7720 SelectionDAG &DAG) { 7721 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7722 return; 7723 7724 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7725 const auto &TLI = DAG.getTargetLoweringInfo(); 7726 7727 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7728 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7729 OpInfo.ConstraintVT); 7730 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7731 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7732 MatchingOpInfo.ConstraintVT); 7733 if ((OpInfo.ConstraintVT.isInteger() != 7734 MatchingOpInfo.ConstraintVT.isInteger()) || 7735 (MatchRC.second != InputRC.second)) { 7736 // FIXME: error out in a more elegant fashion 7737 report_fatal_error("Unsupported asm: input constraint" 7738 " with a matching output constraint of" 7739 " incompatible type!"); 7740 } 7741 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7742 } 7743 7744 /// Get a direct memory input to behave well as an indirect operand. 7745 /// This may introduce stores, hence the need for a \p Chain. 7746 /// \return The (possibly updated) chain. 7747 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7748 SDISelAsmOperandInfo &OpInfo, 7749 SelectionDAG &DAG) { 7750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7751 7752 // If we don't have an indirect input, put it in the constpool if we can, 7753 // otherwise spill it to a stack slot. 7754 // TODO: This isn't quite right. We need to handle these according to 7755 // the addressing mode that the constraint wants. Also, this may take 7756 // an additional register for the computation and we don't want that 7757 // either. 7758 7759 // If the operand is a float, integer, or vector constant, spill to a 7760 // constant pool entry to get its address. 7761 const Value *OpVal = OpInfo.CallOperandVal; 7762 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7763 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7764 OpInfo.CallOperand = DAG.getConstantPool( 7765 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7766 return Chain; 7767 } 7768 7769 // Otherwise, create a stack slot and emit a store to it before the asm. 7770 Type *Ty = OpVal->getType(); 7771 auto &DL = DAG.getDataLayout(); 7772 uint64_t TySize = DL.getTypeAllocSize(Ty); 7773 unsigned Align = DL.getPrefTypeAlignment(Ty); 7774 MachineFunction &MF = DAG.getMachineFunction(); 7775 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7776 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7777 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7778 MachinePointerInfo::getFixedStack(MF, SSFI), 7779 TLI.getMemValueType(DL, Ty)); 7780 OpInfo.CallOperand = StackSlot; 7781 7782 return Chain; 7783 } 7784 7785 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7786 /// specified operand. We prefer to assign virtual registers, to allow the 7787 /// register allocator to handle the assignment process. However, if the asm 7788 /// uses features that we can't model on machineinstrs, we have SDISel do the 7789 /// allocation. This produces generally horrible, but correct, code. 7790 /// 7791 /// OpInfo describes the operand 7792 /// RefOpInfo describes the matching operand if any, the operand otherwise 7793 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7794 SDISelAsmOperandInfo &OpInfo, 7795 SDISelAsmOperandInfo &RefOpInfo) { 7796 LLVMContext &Context = *DAG.getContext(); 7797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7798 7799 MachineFunction &MF = DAG.getMachineFunction(); 7800 SmallVector<unsigned, 4> Regs; 7801 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7802 7803 // No work to do for memory operations. 7804 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7805 return; 7806 7807 // If this is a constraint for a single physreg, or a constraint for a 7808 // register class, find it. 7809 unsigned AssignedReg; 7810 const TargetRegisterClass *RC; 7811 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7812 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7813 // RC is unset only on failure. Return immediately. 7814 if (!RC) 7815 return; 7816 7817 // Get the actual register value type. This is important, because the user 7818 // may have asked for (e.g.) the AX register in i32 type. We need to 7819 // remember that AX is actually i16 to get the right extension. 7820 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7821 7822 if (OpInfo.ConstraintVT != MVT::Other) { 7823 // If this is an FP operand in an integer register (or visa versa), or more 7824 // generally if the operand value disagrees with the register class we plan 7825 // to stick it in, fix the operand type. 7826 // 7827 // If this is an input value, the bitcast to the new type is done now. 7828 // Bitcast for output value is done at the end of visitInlineAsm(). 7829 if ((OpInfo.Type == InlineAsm::isOutput || 7830 OpInfo.Type == InlineAsm::isInput) && 7831 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7832 // Try to convert to the first EVT that the reg class contains. If the 7833 // types are identical size, use a bitcast to convert (e.g. two differing 7834 // vector types). Note: output bitcast is done at the end of 7835 // visitInlineAsm(). 7836 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7837 // Exclude indirect inputs while they are unsupported because the code 7838 // to perform the load is missing and thus OpInfo.CallOperand still 7839 // refers to the input address rather than the pointed-to value. 7840 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7841 OpInfo.CallOperand = 7842 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7843 OpInfo.ConstraintVT = RegVT; 7844 // If the operand is an FP value and we want it in integer registers, 7845 // use the corresponding integer type. This turns an f64 value into 7846 // i64, which can be passed with two i32 values on a 32-bit machine. 7847 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7848 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7849 if (OpInfo.Type == InlineAsm::isInput) 7850 OpInfo.CallOperand = 7851 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7852 OpInfo.ConstraintVT = VT; 7853 } 7854 } 7855 } 7856 7857 // No need to allocate a matching input constraint since the constraint it's 7858 // matching to has already been allocated. 7859 if (OpInfo.isMatchingInputConstraint()) 7860 return; 7861 7862 EVT ValueVT = OpInfo.ConstraintVT; 7863 if (OpInfo.ConstraintVT == MVT::Other) 7864 ValueVT = RegVT; 7865 7866 // Initialize NumRegs. 7867 unsigned NumRegs = 1; 7868 if (OpInfo.ConstraintVT != MVT::Other) 7869 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7870 7871 // If this is a constraint for a specific physical register, like {r17}, 7872 // assign it now. 7873 7874 // If this associated to a specific register, initialize iterator to correct 7875 // place. If virtual, make sure we have enough registers 7876 7877 // Initialize iterator if necessary 7878 TargetRegisterClass::iterator I = RC->begin(); 7879 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7880 7881 // Do not check for single registers. 7882 if (AssignedReg) { 7883 for (; *I != AssignedReg; ++I) 7884 assert(I != RC->end() && "AssignedReg should be member of RC"); 7885 } 7886 7887 for (; NumRegs; --NumRegs, ++I) { 7888 assert(I != RC->end() && "Ran out of registers to allocate!"); 7889 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7890 Regs.push_back(R); 7891 } 7892 7893 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7894 } 7895 7896 static unsigned 7897 findMatchingInlineAsmOperand(unsigned OperandNo, 7898 const std::vector<SDValue> &AsmNodeOperands) { 7899 // Scan until we find the definition we already emitted of this operand. 7900 unsigned CurOp = InlineAsm::Op_FirstOperand; 7901 for (; OperandNo; --OperandNo) { 7902 // Advance to the next operand. 7903 unsigned OpFlag = 7904 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7905 assert((InlineAsm::isRegDefKind(OpFlag) || 7906 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7907 InlineAsm::isMemKind(OpFlag)) && 7908 "Skipped past definitions?"); 7909 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7910 } 7911 return CurOp; 7912 } 7913 7914 namespace { 7915 7916 class ExtraFlags { 7917 unsigned Flags = 0; 7918 7919 public: 7920 explicit ExtraFlags(ImmutableCallSite CS) { 7921 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7922 if (IA->hasSideEffects()) 7923 Flags |= InlineAsm::Extra_HasSideEffects; 7924 if (IA->isAlignStack()) 7925 Flags |= InlineAsm::Extra_IsAlignStack; 7926 if (CS.isConvergent()) 7927 Flags |= InlineAsm::Extra_IsConvergent; 7928 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7929 } 7930 7931 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7932 // Ideally, we would only check against memory constraints. However, the 7933 // meaning of an Other constraint can be target-specific and we can't easily 7934 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7935 // for Other constraints as well. 7936 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7937 OpInfo.ConstraintType == TargetLowering::C_Other) { 7938 if (OpInfo.Type == InlineAsm::isInput) 7939 Flags |= InlineAsm::Extra_MayLoad; 7940 else if (OpInfo.Type == InlineAsm::isOutput) 7941 Flags |= InlineAsm::Extra_MayStore; 7942 else if (OpInfo.Type == InlineAsm::isClobber) 7943 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7944 } 7945 } 7946 7947 unsigned get() const { return Flags; } 7948 }; 7949 7950 } // end anonymous namespace 7951 7952 /// visitInlineAsm - Handle a call to an InlineAsm object. 7953 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7954 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7955 7956 /// ConstraintOperands - Information about all of the constraints. 7957 SDISelAsmOperandInfoVector ConstraintOperands; 7958 7959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7960 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7961 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7962 7963 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7964 // AsmDialect, MayLoad, MayStore). 7965 bool HasSideEffect = IA->hasSideEffects(); 7966 ExtraFlags ExtraInfo(CS); 7967 7968 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7969 unsigned ResNo = 0; // ResNo - The result number of the next output. 7970 for (auto &T : TargetConstraints) { 7971 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7972 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7973 7974 // Compute the value type for each operand. 7975 if (OpInfo.Type == InlineAsm::isInput || 7976 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7977 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7978 7979 // Process the call argument. BasicBlocks are labels, currently appearing 7980 // only in asm's. 7981 const Instruction *I = CS.getInstruction(); 7982 if (isa<CallBrInst>(I) && 7983 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7984 cast<CallBrInst>(I)->getNumIndirectDests())) { 7985 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7986 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7987 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7988 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7989 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7990 } else { 7991 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7992 } 7993 7994 OpInfo.ConstraintVT = 7995 OpInfo 7996 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7997 .getSimpleVT(); 7998 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7999 // The return value of the call is this value. As such, there is no 8000 // corresponding argument. 8001 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8002 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8003 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8004 DAG.getDataLayout(), STy->getElementType(ResNo)); 8005 } else { 8006 assert(ResNo == 0 && "Asm only has one result!"); 8007 OpInfo.ConstraintVT = 8008 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8009 } 8010 ++ResNo; 8011 } else { 8012 OpInfo.ConstraintVT = MVT::Other; 8013 } 8014 8015 if (!HasSideEffect) 8016 HasSideEffect = OpInfo.hasMemory(TLI); 8017 8018 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8019 // FIXME: Could we compute this on OpInfo rather than T? 8020 8021 // Compute the constraint code and ConstraintType to use. 8022 TLI.ComputeConstraintToUse(T, SDValue()); 8023 8024 if (T.ConstraintType == TargetLowering::C_Immediate && 8025 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8026 // We've delayed emitting a diagnostic like the "n" constraint because 8027 // inlining could cause an integer showing up. 8028 return emitInlineAsmError( 8029 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8030 "integer constant expression"); 8031 8032 ExtraInfo.update(T); 8033 } 8034 8035 8036 // We won't need to flush pending loads if this asm doesn't touch 8037 // memory and is nonvolatile. 8038 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8039 8040 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8041 if (IsCallBr) { 8042 // If this is a callbr we need to flush pending exports since inlineasm_br 8043 // is a terminator. We need to do this before nodes are glued to 8044 // the inlineasm_br node. 8045 Chain = getControlRoot(); 8046 } 8047 8048 // Second pass over the constraints: compute which constraint option to use. 8049 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8050 // If this is an output operand with a matching input operand, look up the 8051 // matching input. If their types mismatch, e.g. one is an integer, the 8052 // other is floating point, or their sizes are different, flag it as an 8053 // error. 8054 if (OpInfo.hasMatchingInput()) { 8055 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8056 patchMatchingInput(OpInfo, Input, DAG); 8057 } 8058 8059 // Compute the constraint code and ConstraintType to use. 8060 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8061 8062 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8063 OpInfo.Type == InlineAsm::isClobber) 8064 continue; 8065 8066 // If this is a memory input, and if the operand is not indirect, do what we 8067 // need to provide an address for the memory input. 8068 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8069 !OpInfo.isIndirect) { 8070 assert((OpInfo.isMultipleAlternative || 8071 (OpInfo.Type == InlineAsm::isInput)) && 8072 "Can only indirectify direct input operands!"); 8073 8074 // Memory operands really want the address of the value. 8075 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8076 8077 // There is no longer a Value* corresponding to this operand. 8078 OpInfo.CallOperandVal = nullptr; 8079 8080 // It is now an indirect operand. 8081 OpInfo.isIndirect = true; 8082 } 8083 8084 } 8085 8086 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8087 std::vector<SDValue> AsmNodeOperands; 8088 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8089 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8090 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8091 8092 // If we have a !srcloc metadata node associated with it, we want to attach 8093 // this to the ultimately generated inline asm machineinstr. To do this, we 8094 // pass in the third operand as this (potentially null) inline asm MDNode. 8095 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8096 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8097 8098 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8099 // bits as operand 3. 8100 AsmNodeOperands.push_back(DAG.getTargetConstant( 8101 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8102 8103 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8104 // this, assign virtual and physical registers for inputs and otput. 8105 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8106 // Assign Registers. 8107 SDISelAsmOperandInfo &RefOpInfo = 8108 OpInfo.isMatchingInputConstraint() 8109 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8110 : OpInfo; 8111 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8112 8113 switch (OpInfo.Type) { 8114 case InlineAsm::isOutput: 8115 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8116 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8117 OpInfo.ConstraintType == TargetLowering::C_Other) && 8118 OpInfo.isIndirect)) { 8119 unsigned ConstraintID = 8120 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8121 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8122 "Failed to convert memory constraint code to constraint id."); 8123 8124 // Add information to the INLINEASM node to know about this output. 8125 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8126 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8127 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8128 MVT::i32)); 8129 AsmNodeOperands.push_back(OpInfo.CallOperand); 8130 break; 8131 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8132 OpInfo.ConstraintType == TargetLowering::C_Other) && 8133 !OpInfo.isIndirect) || 8134 OpInfo.ConstraintType == TargetLowering::C_Register || 8135 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8136 // Otherwise, this outputs to a register (directly for C_Register / 8137 // C_RegisterClass, and a target-defined fashion for 8138 // C_Immediate/C_Other). Find a register that we can use. 8139 if (OpInfo.AssignedRegs.Regs.empty()) { 8140 emitInlineAsmError( 8141 CS, "couldn't allocate output register for constraint '" + 8142 Twine(OpInfo.ConstraintCode) + "'"); 8143 return; 8144 } 8145 8146 // Add information to the INLINEASM node to know that this register is 8147 // set. 8148 OpInfo.AssignedRegs.AddInlineAsmOperands( 8149 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8150 : InlineAsm::Kind_RegDef, 8151 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8152 } 8153 break; 8154 8155 case InlineAsm::isInput: { 8156 SDValue InOperandVal = OpInfo.CallOperand; 8157 8158 if (OpInfo.isMatchingInputConstraint()) { 8159 // If this is required to match an output register we have already set, 8160 // just use its register. 8161 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8162 AsmNodeOperands); 8163 unsigned OpFlag = 8164 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8165 if (InlineAsm::isRegDefKind(OpFlag) || 8166 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8167 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8168 if (OpInfo.isIndirect) { 8169 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8170 emitInlineAsmError(CS, "inline asm not supported yet:" 8171 " don't know how to handle tied " 8172 "indirect register inputs"); 8173 return; 8174 } 8175 8176 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8177 SmallVector<unsigned, 4> Regs; 8178 8179 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8180 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8181 MachineRegisterInfo &RegInfo = 8182 DAG.getMachineFunction().getRegInfo(); 8183 for (unsigned i = 0; i != NumRegs; ++i) 8184 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8185 } else { 8186 emitInlineAsmError(CS, "inline asm error: This value type register " 8187 "class is not natively supported!"); 8188 return; 8189 } 8190 8191 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8192 8193 SDLoc dl = getCurSDLoc(); 8194 // Use the produced MatchedRegs object to 8195 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8196 CS.getInstruction()); 8197 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8198 true, OpInfo.getMatchedOperand(), dl, 8199 DAG, AsmNodeOperands); 8200 break; 8201 } 8202 8203 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8204 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8205 "Unexpected number of operands"); 8206 // Add information to the INLINEASM node to know about this input. 8207 // See InlineAsm.h isUseOperandTiedToDef. 8208 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8209 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8210 OpInfo.getMatchedOperand()); 8211 AsmNodeOperands.push_back(DAG.getTargetConstant( 8212 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8213 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8214 break; 8215 } 8216 8217 // Treat indirect 'X' constraint as memory. 8218 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8219 OpInfo.ConstraintType == TargetLowering::C_Other) && 8220 OpInfo.isIndirect) 8221 OpInfo.ConstraintType = TargetLowering::C_Memory; 8222 8223 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8224 OpInfo.ConstraintType == TargetLowering::C_Other) { 8225 std::vector<SDValue> Ops; 8226 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8227 Ops, DAG); 8228 if (Ops.empty()) { 8229 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8230 if (isa<ConstantSDNode>(InOperandVal)) { 8231 emitInlineAsmError(CS, "value out of range for constraint '" + 8232 Twine(OpInfo.ConstraintCode) + "'"); 8233 return; 8234 } 8235 8236 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8237 Twine(OpInfo.ConstraintCode) + "'"); 8238 return; 8239 } 8240 8241 // Add information to the INLINEASM node to know about this input. 8242 unsigned ResOpType = 8243 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8244 AsmNodeOperands.push_back(DAG.getTargetConstant( 8245 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8246 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8247 break; 8248 } 8249 8250 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8251 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8252 assert(InOperandVal.getValueType() == 8253 TLI.getPointerTy(DAG.getDataLayout()) && 8254 "Memory operands expect pointer values"); 8255 8256 unsigned ConstraintID = 8257 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8258 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8259 "Failed to convert memory constraint code to constraint id."); 8260 8261 // Add information to the INLINEASM node to know about this input. 8262 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8263 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8264 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8265 getCurSDLoc(), 8266 MVT::i32)); 8267 AsmNodeOperands.push_back(InOperandVal); 8268 break; 8269 } 8270 8271 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8272 OpInfo.ConstraintType == TargetLowering::C_Register || 8273 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8274 "Unknown constraint type!"); 8275 8276 // TODO: Support this. 8277 if (OpInfo.isIndirect) { 8278 emitInlineAsmError( 8279 CS, "Don't know how to handle indirect register inputs yet " 8280 "for constraint '" + 8281 Twine(OpInfo.ConstraintCode) + "'"); 8282 return; 8283 } 8284 8285 // Copy the input into the appropriate registers. 8286 if (OpInfo.AssignedRegs.Regs.empty()) { 8287 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8288 Twine(OpInfo.ConstraintCode) + "'"); 8289 return; 8290 } 8291 8292 SDLoc dl = getCurSDLoc(); 8293 8294 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8295 Chain, &Flag, CS.getInstruction()); 8296 8297 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8298 dl, DAG, AsmNodeOperands); 8299 break; 8300 } 8301 case InlineAsm::isClobber: 8302 // Add the clobbered value to the operand list, so that the register 8303 // allocator is aware that the physreg got clobbered. 8304 if (!OpInfo.AssignedRegs.Regs.empty()) 8305 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8306 false, 0, getCurSDLoc(), DAG, 8307 AsmNodeOperands); 8308 break; 8309 } 8310 } 8311 8312 // Finish up input operands. Set the input chain and add the flag last. 8313 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8314 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8315 8316 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8317 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8318 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8319 Flag = Chain.getValue(1); 8320 8321 // Do additional work to generate outputs. 8322 8323 SmallVector<EVT, 1> ResultVTs; 8324 SmallVector<SDValue, 1> ResultValues; 8325 SmallVector<SDValue, 8> OutChains; 8326 8327 llvm::Type *CSResultType = CS.getType(); 8328 ArrayRef<Type *> ResultTypes; 8329 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8330 ResultTypes = StructResult->elements(); 8331 else if (!CSResultType->isVoidTy()) 8332 ResultTypes = makeArrayRef(CSResultType); 8333 8334 auto CurResultType = ResultTypes.begin(); 8335 auto handleRegAssign = [&](SDValue V) { 8336 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8337 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8338 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8339 ++CurResultType; 8340 // If the type of the inline asm call site return value is different but has 8341 // same size as the type of the asm output bitcast it. One example of this 8342 // is for vectors with different width / number of elements. This can 8343 // happen for register classes that can contain multiple different value 8344 // types. The preg or vreg allocated may not have the same VT as was 8345 // expected. 8346 // 8347 // This can also happen for a return value that disagrees with the register 8348 // class it is put in, eg. a double in a general-purpose register on a 8349 // 32-bit machine. 8350 if (ResultVT != V.getValueType() && 8351 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8352 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8353 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8354 V.getValueType().isInteger()) { 8355 // If a result value was tied to an input value, the computed result 8356 // may have a wider width than the expected result. Extract the 8357 // relevant portion. 8358 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8359 } 8360 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8361 ResultVTs.push_back(ResultVT); 8362 ResultValues.push_back(V); 8363 }; 8364 8365 // Deal with output operands. 8366 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8367 if (OpInfo.Type == InlineAsm::isOutput) { 8368 SDValue Val; 8369 // Skip trivial output operands. 8370 if (OpInfo.AssignedRegs.Regs.empty()) 8371 continue; 8372 8373 switch (OpInfo.ConstraintType) { 8374 case TargetLowering::C_Register: 8375 case TargetLowering::C_RegisterClass: 8376 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8377 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8378 break; 8379 case TargetLowering::C_Immediate: 8380 case TargetLowering::C_Other: 8381 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8382 OpInfo, DAG); 8383 break; 8384 case TargetLowering::C_Memory: 8385 break; // Already handled. 8386 case TargetLowering::C_Unknown: 8387 assert(false && "Unexpected unknown constraint"); 8388 } 8389 8390 // Indirect output manifest as stores. Record output chains. 8391 if (OpInfo.isIndirect) { 8392 const Value *Ptr = OpInfo.CallOperandVal; 8393 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8394 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8395 MachinePointerInfo(Ptr)); 8396 OutChains.push_back(Store); 8397 } else { 8398 // generate CopyFromRegs to associated registers. 8399 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8400 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8401 for (const SDValue &V : Val->op_values()) 8402 handleRegAssign(V); 8403 } else 8404 handleRegAssign(Val); 8405 } 8406 } 8407 } 8408 8409 // Set results. 8410 if (!ResultValues.empty()) { 8411 assert(CurResultType == ResultTypes.end() && 8412 "Mismatch in number of ResultTypes"); 8413 assert(ResultValues.size() == ResultTypes.size() && 8414 "Mismatch in number of output operands in asm result"); 8415 8416 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8417 DAG.getVTList(ResultVTs), ResultValues); 8418 setValue(CS.getInstruction(), V); 8419 } 8420 8421 // Collect store chains. 8422 if (!OutChains.empty()) 8423 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8424 8425 // Only Update Root if inline assembly has a memory effect. 8426 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8427 DAG.setRoot(Chain); 8428 } 8429 8430 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8431 const Twine &Message) { 8432 LLVMContext &Ctx = *DAG.getContext(); 8433 Ctx.emitError(CS.getInstruction(), Message); 8434 8435 // Make sure we leave the DAG in a valid state 8436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8437 SmallVector<EVT, 1> ValueVTs; 8438 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8439 8440 if (ValueVTs.empty()) 8441 return; 8442 8443 SmallVector<SDValue, 1> Ops; 8444 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8445 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8446 8447 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8448 } 8449 8450 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8451 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8452 MVT::Other, getRoot(), 8453 getValue(I.getArgOperand(0)), 8454 DAG.getSrcValue(I.getArgOperand(0)))); 8455 } 8456 8457 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8459 const DataLayout &DL = DAG.getDataLayout(); 8460 SDValue V = DAG.getVAArg( 8461 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8462 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8463 DL.getABITypeAlignment(I.getType())); 8464 DAG.setRoot(V.getValue(1)); 8465 8466 if (I.getType()->isPointerTy()) 8467 V = DAG.getPtrExtOrTrunc( 8468 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8469 setValue(&I, V); 8470 } 8471 8472 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8473 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8474 MVT::Other, getRoot(), 8475 getValue(I.getArgOperand(0)), 8476 DAG.getSrcValue(I.getArgOperand(0)))); 8477 } 8478 8479 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8480 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8481 MVT::Other, getRoot(), 8482 getValue(I.getArgOperand(0)), 8483 getValue(I.getArgOperand(1)), 8484 DAG.getSrcValue(I.getArgOperand(0)), 8485 DAG.getSrcValue(I.getArgOperand(1)))); 8486 } 8487 8488 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8489 const Instruction &I, 8490 SDValue Op) { 8491 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8492 if (!Range) 8493 return Op; 8494 8495 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8496 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8497 return Op; 8498 8499 APInt Lo = CR.getUnsignedMin(); 8500 if (!Lo.isMinValue()) 8501 return Op; 8502 8503 APInt Hi = CR.getUnsignedMax(); 8504 unsigned Bits = std::max(Hi.getActiveBits(), 8505 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8506 8507 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8508 8509 SDLoc SL = getCurSDLoc(); 8510 8511 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8512 DAG.getValueType(SmallVT)); 8513 unsigned NumVals = Op.getNode()->getNumValues(); 8514 if (NumVals == 1) 8515 return ZExt; 8516 8517 SmallVector<SDValue, 4> Ops; 8518 8519 Ops.push_back(ZExt); 8520 for (unsigned I = 1; I != NumVals; ++I) 8521 Ops.push_back(Op.getValue(I)); 8522 8523 return DAG.getMergeValues(Ops, SL); 8524 } 8525 8526 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8527 /// the call being lowered. 8528 /// 8529 /// This is a helper for lowering intrinsics that follow a target calling 8530 /// convention or require stack pointer adjustment. Only a subset of the 8531 /// intrinsic's operands need to participate in the calling convention. 8532 void SelectionDAGBuilder::populateCallLoweringInfo( 8533 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8534 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8535 bool IsPatchPoint) { 8536 TargetLowering::ArgListTy Args; 8537 Args.reserve(NumArgs); 8538 8539 // Populate the argument list. 8540 // Attributes for args start at offset 1, after the return attribute. 8541 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8542 ArgI != ArgE; ++ArgI) { 8543 const Value *V = Call->getOperand(ArgI); 8544 8545 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8546 8547 TargetLowering::ArgListEntry Entry; 8548 Entry.Node = getValue(V); 8549 Entry.Ty = V->getType(); 8550 Entry.setAttributes(Call, ArgI); 8551 Args.push_back(Entry); 8552 } 8553 8554 CLI.setDebugLoc(getCurSDLoc()) 8555 .setChain(getRoot()) 8556 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8557 .setDiscardResult(Call->use_empty()) 8558 .setIsPatchPoint(IsPatchPoint); 8559 } 8560 8561 /// Add a stack map intrinsic call's live variable operands to a stackmap 8562 /// or patchpoint target node's operand list. 8563 /// 8564 /// Constants are converted to TargetConstants purely as an optimization to 8565 /// avoid constant materialization and register allocation. 8566 /// 8567 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8568 /// generate addess computation nodes, and so FinalizeISel can convert the 8569 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8570 /// address materialization and register allocation, but may also be required 8571 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8572 /// alloca in the entry block, then the runtime may assume that the alloca's 8573 /// StackMap location can be read immediately after compilation and that the 8574 /// location is valid at any point during execution (this is similar to the 8575 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8576 /// only available in a register, then the runtime would need to trap when 8577 /// execution reaches the StackMap in order to read the alloca's location. 8578 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8579 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8580 SelectionDAGBuilder &Builder) { 8581 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8582 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8583 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8584 Ops.push_back( 8585 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8586 Ops.push_back( 8587 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8588 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8589 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8590 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8591 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8592 } else 8593 Ops.push_back(OpVal); 8594 } 8595 } 8596 8597 /// Lower llvm.experimental.stackmap directly to its target opcode. 8598 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8599 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8600 // [live variables...]) 8601 8602 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8603 8604 SDValue Chain, InFlag, Callee, NullPtr; 8605 SmallVector<SDValue, 32> Ops; 8606 8607 SDLoc DL = getCurSDLoc(); 8608 Callee = getValue(CI.getCalledValue()); 8609 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8610 8611 // The stackmap intrinsic only records the live variables (the arguemnts 8612 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8613 // intrinsic, this won't be lowered to a function call. This means we don't 8614 // have to worry about calling conventions and target specific lowering code. 8615 // Instead we perform the call lowering right here. 8616 // 8617 // chain, flag = CALLSEQ_START(chain, 0, 0) 8618 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8619 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8620 // 8621 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8622 InFlag = Chain.getValue(1); 8623 8624 // Add the <id> and <numBytes> constants. 8625 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8626 Ops.push_back(DAG.getTargetConstant( 8627 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8628 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8629 Ops.push_back(DAG.getTargetConstant( 8630 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8631 MVT::i32)); 8632 8633 // Push live variables for the stack map. 8634 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8635 8636 // We are not pushing any register mask info here on the operands list, 8637 // because the stackmap doesn't clobber anything. 8638 8639 // Push the chain and the glue flag. 8640 Ops.push_back(Chain); 8641 Ops.push_back(InFlag); 8642 8643 // Create the STACKMAP node. 8644 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8645 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8646 Chain = SDValue(SM, 0); 8647 InFlag = Chain.getValue(1); 8648 8649 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8650 8651 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8652 8653 // Set the root to the target-lowered call chain. 8654 DAG.setRoot(Chain); 8655 8656 // Inform the Frame Information that we have a stackmap in this function. 8657 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8658 } 8659 8660 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8661 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8662 const BasicBlock *EHPadBB) { 8663 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8664 // i32 <numBytes>, 8665 // i8* <target>, 8666 // i32 <numArgs>, 8667 // [Args...], 8668 // [live variables...]) 8669 8670 CallingConv::ID CC = CS.getCallingConv(); 8671 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8672 bool HasDef = !CS->getType()->isVoidTy(); 8673 SDLoc dl = getCurSDLoc(); 8674 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8675 8676 // Handle immediate and symbolic callees. 8677 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8678 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8679 /*isTarget=*/true); 8680 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8681 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8682 SDLoc(SymbolicCallee), 8683 SymbolicCallee->getValueType(0)); 8684 8685 // Get the real number of arguments participating in the call <numArgs> 8686 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8687 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8688 8689 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8690 // Intrinsics include all meta-operands up to but not including CC. 8691 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8692 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8693 "Not enough arguments provided to the patchpoint intrinsic"); 8694 8695 // For AnyRegCC the arguments are lowered later on manually. 8696 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8697 Type *ReturnTy = 8698 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8699 8700 TargetLowering::CallLoweringInfo CLI(DAG); 8701 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8702 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8703 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8704 8705 SDNode *CallEnd = Result.second.getNode(); 8706 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8707 CallEnd = CallEnd->getOperand(0).getNode(); 8708 8709 /// Get a call instruction from the call sequence chain. 8710 /// Tail calls are not allowed. 8711 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8712 "Expected a callseq node."); 8713 SDNode *Call = CallEnd->getOperand(0).getNode(); 8714 bool HasGlue = Call->getGluedNode(); 8715 8716 // Replace the target specific call node with the patchable intrinsic. 8717 SmallVector<SDValue, 8> Ops; 8718 8719 // Add the <id> and <numBytes> constants. 8720 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8721 Ops.push_back(DAG.getTargetConstant( 8722 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8723 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8724 Ops.push_back(DAG.getTargetConstant( 8725 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8726 MVT::i32)); 8727 8728 // Add the callee. 8729 Ops.push_back(Callee); 8730 8731 // Adjust <numArgs> to account for any arguments that have been passed on the 8732 // stack instead. 8733 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8734 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8735 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8736 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8737 8738 // Add the calling convention 8739 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8740 8741 // Add the arguments we omitted previously. The register allocator should 8742 // place these in any free register. 8743 if (IsAnyRegCC) 8744 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8745 Ops.push_back(getValue(CS.getArgument(i))); 8746 8747 // Push the arguments from the call instruction up to the register mask. 8748 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8749 Ops.append(Call->op_begin() + 2, e); 8750 8751 // Push live variables for the stack map. 8752 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8753 8754 // Push the register mask info. 8755 if (HasGlue) 8756 Ops.push_back(*(Call->op_end()-2)); 8757 else 8758 Ops.push_back(*(Call->op_end()-1)); 8759 8760 // Push the chain (this is originally the first operand of the call, but 8761 // becomes now the last or second to last operand). 8762 Ops.push_back(*(Call->op_begin())); 8763 8764 // Push the glue flag (last operand). 8765 if (HasGlue) 8766 Ops.push_back(*(Call->op_end()-1)); 8767 8768 SDVTList NodeTys; 8769 if (IsAnyRegCC && HasDef) { 8770 // Create the return types based on the intrinsic definition 8771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8772 SmallVector<EVT, 3> ValueVTs; 8773 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8774 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8775 8776 // There is always a chain and a glue type at the end 8777 ValueVTs.push_back(MVT::Other); 8778 ValueVTs.push_back(MVT::Glue); 8779 NodeTys = DAG.getVTList(ValueVTs); 8780 } else 8781 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8782 8783 // Replace the target specific call node with a PATCHPOINT node. 8784 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8785 dl, NodeTys, Ops); 8786 8787 // Update the NodeMap. 8788 if (HasDef) { 8789 if (IsAnyRegCC) 8790 setValue(CS.getInstruction(), SDValue(MN, 0)); 8791 else 8792 setValue(CS.getInstruction(), Result.first); 8793 } 8794 8795 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8796 // call sequence. Furthermore the location of the chain and glue can change 8797 // when the AnyReg calling convention is used and the intrinsic returns a 8798 // value. 8799 if (IsAnyRegCC && HasDef) { 8800 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8801 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8802 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8803 } else 8804 DAG.ReplaceAllUsesWith(Call, MN); 8805 DAG.DeleteNode(Call); 8806 8807 // Inform the Frame Information that we have a patchpoint in this function. 8808 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8809 } 8810 8811 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8812 unsigned Intrinsic) { 8813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8814 SDValue Op1 = getValue(I.getArgOperand(0)); 8815 SDValue Op2; 8816 if (I.getNumArgOperands() > 1) 8817 Op2 = getValue(I.getArgOperand(1)); 8818 SDLoc dl = getCurSDLoc(); 8819 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8820 SDValue Res; 8821 FastMathFlags FMF; 8822 if (isa<FPMathOperator>(I)) 8823 FMF = I.getFastMathFlags(); 8824 8825 switch (Intrinsic) { 8826 case Intrinsic::experimental_vector_reduce_v2_fadd: 8827 if (FMF.allowReassoc()) 8828 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8829 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8830 else 8831 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8832 break; 8833 case Intrinsic::experimental_vector_reduce_v2_fmul: 8834 if (FMF.allowReassoc()) 8835 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8836 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8837 else 8838 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8839 break; 8840 case Intrinsic::experimental_vector_reduce_add: 8841 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8842 break; 8843 case Intrinsic::experimental_vector_reduce_mul: 8844 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8845 break; 8846 case Intrinsic::experimental_vector_reduce_and: 8847 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8848 break; 8849 case Intrinsic::experimental_vector_reduce_or: 8850 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8851 break; 8852 case Intrinsic::experimental_vector_reduce_xor: 8853 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8854 break; 8855 case Intrinsic::experimental_vector_reduce_smax: 8856 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8857 break; 8858 case Intrinsic::experimental_vector_reduce_smin: 8859 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8860 break; 8861 case Intrinsic::experimental_vector_reduce_umax: 8862 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8863 break; 8864 case Intrinsic::experimental_vector_reduce_umin: 8865 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8866 break; 8867 case Intrinsic::experimental_vector_reduce_fmax: 8868 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8869 break; 8870 case Intrinsic::experimental_vector_reduce_fmin: 8871 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8872 break; 8873 default: 8874 llvm_unreachable("Unhandled vector reduce intrinsic"); 8875 } 8876 setValue(&I, Res); 8877 } 8878 8879 /// Returns an AttributeList representing the attributes applied to the return 8880 /// value of the given call. 8881 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8882 SmallVector<Attribute::AttrKind, 2> Attrs; 8883 if (CLI.RetSExt) 8884 Attrs.push_back(Attribute::SExt); 8885 if (CLI.RetZExt) 8886 Attrs.push_back(Attribute::ZExt); 8887 if (CLI.IsInReg) 8888 Attrs.push_back(Attribute::InReg); 8889 8890 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8891 Attrs); 8892 } 8893 8894 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8895 /// implementation, which just calls LowerCall. 8896 /// FIXME: When all targets are 8897 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8898 std::pair<SDValue, SDValue> 8899 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8900 // Handle the incoming return values from the call. 8901 CLI.Ins.clear(); 8902 Type *OrigRetTy = CLI.RetTy; 8903 SmallVector<EVT, 4> RetTys; 8904 SmallVector<uint64_t, 4> Offsets; 8905 auto &DL = CLI.DAG.getDataLayout(); 8906 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8907 8908 if (CLI.IsPostTypeLegalization) { 8909 // If we are lowering a libcall after legalization, split the return type. 8910 SmallVector<EVT, 4> OldRetTys; 8911 SmallVector<uint64_t, 4> OldOffsets; 8912 RetTys.swap(OldRetTys); 8913 Offsets.swap(OldOffsets); 8914 8915 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8916 EVT RetVT = OldRetTys[i]; 8917 uint64_t Offset = OldOffsets[i]; 8918 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8919 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8920 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8921 RetTys.append(NumRegs, RegisterVT); 8922 for (unsigned j = 0; j != NumRegs; ++j) 8923 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8924 } 8925 } 8926 8927 SmallVector<ISD::OutputArg, 4> Outs; 8928 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8929 8930 bool CanLowerReturn = 8931 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8932 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8933 8934 SDValue DemoteStackSlot; 8935 int DemoteStackIdx = -100; 8936 if (!CanLowerReturn) { 8937 // FIXME: equivalent assert? 8938 // assert(!CS.hasInAllocaArgument() && 8939 // "sret demotion is incompatible with inalloca"); 8940 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8941 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8942 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8943 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8944 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8945 DL.getAllocaAddrSpace()); 8946 8947 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8948 ArgListEntry Entry; 8949 Entry.Node = DemoteStackSlot; 8950 Entry.Ty = StackSlotPtrType; 8951 Entry.IsSExt = false; 8952 Entry.IsZExt = false; 8953 Entry.IsInReg = false; 8954 Entry.IsSRet = true; 8955 Entry.IsNest = false; 8956 Entry.IsByVal = false; 8957 Entry.IsReturned = false; 8958 Entry.IsSwiftSelf = false; 8959 Entry.IsSwiftError = false; 8960 Entry.Alignment = Align; 8961 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8962 CLI.NumFixedArgs += 1; 8963 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8964 8965 // sret demotion isn't compatible with tail-calls, since the sret argument 8966 // points into the callers stack frame. 8967 CLI.IsTailCall = false; 8968 } else { 8969 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8970 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 8971 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8972 ISD::ArgFlagsTy Flags; 8973 if (NeedsRegBlock) { 8974 Flags.setInConsecutiveRegs(); 8975 if (I == RetTys.size() - 1) 8976 Flags.setInConsecutiveRegsLast(); 8977 } 8978 EVT VT = RetTys[I]; 8979 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8980 CLI.CallConv, VT); 8981 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8982 CLI.CallConv, VT); 8983 for (unsigned i = 0; i != NumRegs; ++i) { 8984 ISD::InputArg MyFlags; 8985 MyFlags.Flags = Flags; 8986 MyFlags.VT = RegisterVT; 8987 MyFlags.ArgVT = VT; 8988 MyFlags.Used = CLI.IsReturnValueUsed; 8989 if (CLI.RetTy->isPointerTy()) { 8990 MyFlags.Flags.setPointer(); 8991 MyFlags.Flags.setPointerAddrSpace( 8992 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 8993 } 8994 if (CLI.RetSExt) 8995 MyFlags.Flags.setSExt(); 8996 if (CLI.RetZExt) 8997 MyFlags.Flags.setZExt(); 8998 if (CLI.IsInReg) 8999 MyFlags.Flags.setInReg(); 9000 CLI.Ins.push_back(MyFlags); 9001 } 9002 } 9003 } 9004 9005 // We push in swifterror return as the last element of CLI.Ins. 9006 ArgListTy &Args = CLI.getArgs(); 9007 if (supportSwiftError()) { 9008 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9009 if (Args[i].IsSwiftError) { 9010 ISD::InputArg MyFlags; 9011 MyFlags.VT = getPointerTy(DL); 9012 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9013 MyFlags.Flags.setSwiftError(); 9014 CLI.Ins.push_back(MyFlags); 9015 } 9016 } 9017 } 9018 9019 // Handle all of the outgoing arguments. 9020 CLI.Outs.clear(); 9021 CLI.OutVals.clear(); 9022 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9023 SmallVector<EVT, 4> ValueVTs; 9024 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9025 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9026 Type *FinalType = Args[i].Ty; 9027 if (Args[i].IsByVal) 9028 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9029 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9030 FinalType, CLI.CallConv, CLI.IsVarArg); 9031 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9032 ++Value) { 9033 EVT VT = ValueVTs[Value]; 9034 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9035 SDValue Op = SDValue(Args[i].Node.getNode(), 9036 Args[i].Node.getResNo() + Value); 9037 ISD::ArgFlagsTy Flags; 9038 9039 // Certain targets (such as MIPS), may have a different ABI alignment 9040 // for a type depending on the context. Give the target a chance to 9041 // specify the alignment it wants. 9042 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 9043 9044 if (Args[i].Ty->isPointerTy()) { 9045 Flags.setPointer(); 9046 Flags.setPointerAddrSpace( 9047 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9048 } 9049 if (Args[i].IsZExt) 9050 Flags.setZExt(); 9051 if (Args[i].IsSExt) 9052 Flags.setSExt(); 9053 if (Args[i].IsInReg) { 9054 // If we are using vectorcall calling convention, a structure that is 9055 // passed InReg - is surely an HVA 9056 if (CLI.CallConv == CallingConv::X86_VectorCall && 9057 isa<StructType>(FinalType)) { 9058 // The first value of a structure is marked 9059 if (0 == Value) 9060 Flags.setHvaStart(); 9061 Flags.setHva(); 9062 } 9063 // Set InReg Flag 9064 Flags.setInReg(); 9065 } 9066 if (Args[i].IsSRet) 9067 Flags.setSRet(); 9068 if (Args[i].IsSwiftSelf) 9069 Flags.setSwiftSelf(); 9070 if (Args[i].IsSwiftError) 9071 Flags.setSwiftError(); 9072 if (Args[i].IsByVal) 9073 Flags.setByVal(); 9074 if (Args[i].IsInAlloca) { 9075 Flags.setInAlloca(); 9076 // Set the byval flag for CCAssignFn callbacks that don't know about 9077 // inalloca. This way we can know how many bytes we should've allocated 9078 // and how many bytes a callee cleanup function will pop. If we port 9079 // inalloca to more targets, we'll have to add custom inalloca handling 9080 // in the various CC lowering callbacks. 9081 Flags.setByVal(); 9082 } 9083 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9084 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9085 Type *ElementTy = Ty->getElementType(); 9086 9087 unsigned FrameSize = DL.getTypeAllocSize( 9088 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9089 Flags.setByValSize(FrameSize); 9090 9091 // info is not there but there are cases it cannot get right. 9092 unsigned FrameAlign; 9093 if (Args[i].Alignment) 9094 FrameAlign = Args[i].Alignment; 9095 else 9096 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9097 Flags.setByValAlign(FrameAlign); 9098 } 9099 if (Args[i].IsNest) 9100 Flags.setNest(); 9101 if (NeedsRegBlock) 9102 Flags.setInConsecutiveRegs(); 9103 Flags.setOrigAlign(OriginalAlignment); 9104 9105 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9106 CLI.CallConv, VT); 9107 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9108 CLI.CallConv, VT); 9109 SmallVector<SDValue, 4> Parts(NumParts); 9110 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9111 9112 if (Args[i].IsSExt) 9113 ExtendKind = ISD::SIGN_EXTEND; 9114 else if (Args[i].IsZExt) 9115 ExtendKind = ISD::ZERO_EXTEND; 9116 9117 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9118 // for now. 9119 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9120 CanLowerReturn) { 9121 assert((CLI.RetTy == Args[i].Ty || 9122 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9123 CLI.RetTy->getPointerAddressSpace() == 9124 Args[i].Ty->getPointerAddressSpace())) && 9125 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9126 // Before passing 'returned' to the target lowering code, ensure that 9127 // either the register MVT and the actual EVT are the same size or that 9128 // the return value and argument are extended in the same way; in these 9129 // cases it's safe to pass the argument register value unchanged as the 9130 // return register value (although it's at the target's option whether 9131 // to do so) 9132 // TODO: allow code generation to take advantage of partially preserved 9133 // registers rather than clobbering the entire register when the 9134 // parameter extension method is not compatible with the return 9135 // extension method 9136 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9137 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9138 CLI.RetZExt == Args[i].IsZExt)) 9139 Flags.setReturned(); 9140 } 9141 9142 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9143 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9144 9145 for (unsigned j = 0; j != NumParts; ++j) { 9146 // if it isn't first piece, alignment must be 1 9147 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9148 i < CLI.NumFixedArgs, 9149 i, j*Parts[j].getValueType().getStoreSize()); 9150 if (NumParts > 1 && j == 0) 9151 MyFlags.Flags.setSplit(); 9152 else if (j != 0) { 9153 MyFlags.Flags.setOrigAlign(1); 9154 if (j == NumParts - 1) 9155 MyFlags.Flags.setSplitEnd(); 9156 } 9157 9158 CLI.Outs.push_back(MyFlags); 9159 CLI.OutVals.push_back(Parts[j]); 9160 } 9161 9162 if (NeedsRegBlock && Value == NumValues - 1) 9163 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9164 } 9165 } 9166 9167 SmallVector<SDValue, 4> InVals; 9168 CLI.Chain = LowerCall(CLI, InVals); 9169 9170 // Update CLI.InVals to use outside of this function. 9171 CLI.InVals = InVals; 9172 9173 // Verify that the target's LowerCall behaved as expected. 9174 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9175 "LowerCall didn't return a valid chain!"); 9176 assert((!CLI.IsTailCall || InVals.empty()) && 9177 "LowerCall emitted a return value for a tail call!"); 9178 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9179 "LowerCall didn't emit the correct number of values!"); 9180 9181 // For a tail call, the return value is merely live-out and there aren't 9182 // any nodes in the DAG representing it. Return a special value to 9183 // indicate that a tail call has been emitted and no more Instructions 9184 // should be processed in the current block. 9185 if (CLI.IsTailCall) { 9186 CLI.DAG.setRoot(CLI.Chain); 9187 return std::make_pair(SDValue(), SDValue()); 9188 } 9189 9190 #ifndef NDEBUG 9191 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9192 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9193 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9194 "LowerCall emitted a value with the wrong type!"); 9195 } 9196 #endif 9197 9198 SmallVector<SDValue, 4> ReturnValues; 9199 if (!CanLowerReturn) { 9200 // The instruction result is the result of loading from the 9201 // hidden sret parameter. 9202 SmallVector<EVT, 1> PVTs; 9203 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9204 9205 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9206 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9207 EVT PtrVT = PVTs[0]; 9208 9209 unsigned NumValues = RetTys.size(); 9210 ReturnValues.resize(NumValues); 9211 SmallVector<SDValue, 4> Chains(NumValues); 9212 9213 // An aggregate return value cannot wrap around the address space, so 9214 // offsets to its parts don't wrap either. 9215 SDNodeFlags Flags; 9216 Flags.setNoUnsignedWrap(true); 9217 9218 for (unsigned i = 0; i < NumValues; ++i) { 9219 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9220 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9221 PtrVT), Flags); 9222 SDValue L = CLI.DAG.getLoad( 9223 RetTys[i], CLI.DL, CLI.Chain, Add, 9224 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9225 DemoteStackIdx, Offsets[i]), 9226 /* Alignment = */ 1); 9227 ReturnValues[i] = L; 9228 Chains[i] = L.getValue(1); 9229 } 9230 9231 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9232 } else { 9233 // Collect the legal value parts into potentially illegal values 9234 // that correspond to the original function's return values. 9235 Optional<ISD::NodeType> AssertOp; 9236 if (CLI.RetSExt) 9237 AssertOp = ISD::AssertSext; 9238 else if (CLI.RetZExt) 9239 AssertOp = ISD::AssertZext; 9240 unsigned CurReg = 0; 9241 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9242 EVT VT = RetTys[I]; 9243 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9244 CLI.CallConv, VT); 9245 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9246 CLI.CallConv, VT); 9247 9248 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9249 NumRegs, RegisterVT, VT, nullptr, 9250 CLI.CallConv, AssertOp)); 9251 CurReg += NumRegs; 9252 } 9253 9254 // For a function returning void, there is no return value. We can't create 9255 // such a node, so we just return a null return value in that case. In 9256 // that case, nothing will actually look at the value. 9257 if (ReturnValues.empty()) 9258 return std::make_pair(SDValue(), CLI.Chain); 9259 } 9260 9261 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9262 CLI.DAG.getVTList(RetTys), ReturnValues); 9263 return std::make_pair(Res, CLI.Chain); 9264 } 9265 9266 void TargetLowering::LowerOperationWrapper(SDNode *N, 9267 SmallVectorImpl<SDValue> &Results, 9268 SelectionDAG &DAG) const { 9269 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9270 Results.push_back(Res); 9271 } 9272 9273 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9274 llvm_unreachable("LowerOperation not implemented for this target!"); 9275 } 9276 9277 void 9278 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9279 SDValue Op = getNonRegisterValue(V); 9280 assert((Op.getOpcode() != ISD::CopyFromReg || 9281 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9282 "Copy from a reg to the same reg!"); 9283 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9284 9285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9286 // If this is an InlineAsm we have to match the registers required, not the 9287 // notional registers required by the type. 9288 9289 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9290 None); // This is not an ABI copy. 9291 SDValue Chain = DAG.getEntryNode(); 9292 9293 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9294 FuncInfo.PreferredExtendType.end()) 9295 ? ISD::ANY_EXTEND 9296 : FuncInfo.PreferredExtendType[V]; 9297 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9298 PendingExports.push_back(Chain); 9299 } 9300 9301 #include "llvm/CodeGen/SelectionDAGISel.h" 9302 9303 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9304 /// entry block, return true. This includes arguments used by switches, since 9305 /// the switch may expand into multiple basic blocks. 9306 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9307 // With FastISel active, we may be splitting blocks, so force creation 9308 // of virtual registers for all non-dead arguments. 9309 if (FastISel) 9310 return A->use_empty(); 9311 9312 const BasicBlock &Entry = A->getParent()->front(); 9313 for (const User *U : A->users()) 9314 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9315 return false; // Use not in entry block. 9316 9317 return true; 9318 } 9319 9320 using ArgCopyElisionMapTy = 9321 DenseMap<const Argument *, 9322 std::pair<const AllocaInst *, const StoreInst *>>; 9323 9324 /// Scan the entry block of the function in FuncInfo for arguments that look 9325 /// like copies into a local alloca. Record any copied arguments in 9326 /// ArgCopyElisionCandidates. 9327 static void 9328 findArgumentCopyElisionCandidates(const DataLayout &DL, 9329 FunctionLoweringInfo *FuncInfo, 9330 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9331 // Record the state of every static alloca used in the entry block. Argument 9332 // allocas are all used in the entry block, so we need approximately as many 9333 // entries as we have arguments. 9334 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9335 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9336 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9337 StaticAllocas.reserve(NumArgs * 2); 9338 9339 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9340 if (!V) 9341 return nullptr; 9342 V = V->stripPointerCasts(); 9343 const auto *AI = dyn_cast<AllocaInst>(V); 9344 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9345 return nullptr; 9346 auto Iter = StaticAllocas.insert({AI, Unknown}); 9347 return &Iter.first->second; 9348 }; 9349 9350 // Look for stores of arguments to static allocas. Look through bitcasts and 9351 // GEPs to handle type coercions, as long as the alloca is fully initialized 9352 // by the store. Any non-store use of an alloca escapes it and any subsequent 9353 // unanalyzed store might write it. 9354 // FIXME: Handle structs initialized with multiple stores. 9355 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9356 // Look for stores, and handle non-store uses conservatively. 9357 const auto *SI = dyn_cast<StoreInst>(&I); 9358 if (!SI) { 9359 // We will look through cast uses, so ignore them completely. 9360 if (I.isCast()) 9361 continue; 9362 // Ignore debug info intrinsics, they don't escape or store to allocas. 9363 if (isa<DbgInfoIntrinsic>(I)) 9364 continue; 9365 // This is an unknown instruction. Assume it escapes or writes to all 9366 // static alloca operands. 9367 for (const Use &U : I.operands()) { 9368 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9369 *Info = StaticAllocaInfo::Clobbered; 9370 } 9371 continue; 9372 } 9373 9374 // If the stored value is a static alloca, mark it as escaped. 9375 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9376 *Info = StaticAllocaInfo::Clobbered; 9377 9378 // Check if the destination is a static alloca. 9379 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9380 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9381 if (!Info) 9382 continue; 9383 const AllocaInst *AI = cast<AllocaInst>(Dst); 9384 9385 // Skip allocas that have been initialized or clobbered. 9386 if (*Info != StaticAllocaInfo::Unknown) 9387 continue; 9388 9389 // Check if the stored value is an argument, and that this store fully 9390 // initializes the alloca. Don't elide copies from the same argument twice. 9391 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9392 const auto *Arg = dyn_cast<Argument>(Val); 9393 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9394 Arg->getType()->isEmptyTy() || 9395 DL.getTypeStoreSize(Arg->getType()) != 9396 DL.getTypeAllocSize(AI->getAllocatedType()) || 9397 ArgCopyElisionCandidates.count(Arg)) { 9398 *Info = StaticAllocaInfo::Clobbered; 9399 continue; 9400 } 9401 9402 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9403 << '\n'); 9404 9405 // Mark this alloca and store for argument copy elision. 9406 *Info = StaticAllocaInfo::Elidable; 9407 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9408 9409 // Stop scanning if we've seen all arguments. This will happen early in -O0 9410 // builds, which is useful, because -O0 builds have large entry blocks and 9411 // many allocas. 9412 if (ArgCopyElisionCandidates.size() == NumArgs) 9413 break; 9414 } 9415 } 9416 9417 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9418 /// ArgVal is a load from a suitable fixed stack object. 9419 static void tryToElideArgumentCopy( 9420 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9421 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9422 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9423 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9424 SDValue ArgVal, bool &ArgHasUses) { 9425 // Check if this is a load from a fixed stack object. 9426 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9427 if (!LNode) 9428 return; 9429 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9430 if (!FINode) 9431 return; 9432 9433 // Check that the fixed stack object is the right size and alignment. 9434 // Look at the alignment that the user wrote on the alloca instead of looking 9435 // at the stack object. 9436 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9437 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9438 const AllocaInst *AI = ArgCopyIter->second.first; 9439 int FixedIndex = FINode->getIndex(); 9440 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9441 int OldIndex = AllocaIndex; 9442 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9443 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9444 LLVM_DEBUG( 9445 dbgs() << " argument copy elision failed due to bad fixed stack " 9446 "object size\n"); 9447 return; 9448 } 9449 unsigned RequiredAlignment = AI->getAlignment(); 9450 if (!RequiredAlignment) { 9451 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9452 AI->getAllocatedType()); 9453 } 9454 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9455 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9456 "greater than stack argument alignment (" 9457 << RequiredAlignment << " vs " 9458 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9459 return; 9460 } 9461 9462 // Perform the elision. Delete the old stack object and replace its only use 9463 // in the variable info map. Mark the stack object as mutable. 9464 LLVM_DEBUG({ 9465 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9466 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9467 << '\n'; 9468 }); 9469 MFI.RemoveStackObject(OldIndex); 9470 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9471 AllocaIndex = FixedIndex; 9472 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9473 Chains.push_back(ArgVal.getValue(1)); 9474 9475 // Avoid emitting code for the store implementing the copy. 9476 const StoreInst *SI = ArgCopyIter->second.second; 9477 ElidedArgCopyInstrs.insert(SI); 9478 9479 // Check for uses of the argument again so that we can avoid exporting ArgVal 9480 // if it is't used by anything other than the store. 9481 for (const Value *U : Arg.users()) { 9482 if (U != SI) { 9483 ArgHasUses = true; 9484 break; 9485 } 9486 } 9487 } 9488 9489 void SelectionDAGISel::LowerArguments(const Function &F) { 9490 SelectionDAG &DAG = SDB->DAG; 9491 SDLoc dl = SDB->getCurSDLoc(); 9492 const DataLayout &DL = DAG.getDataLayout(); 9493 SmallVector<ISD::InputArg, 16> Ins; 9494 9495 if (!FuncInfo->CanLowerReturn) { 9496 // Put in an sret pointer parameter before all the other parameters. 9497 SmallVector<EVT, 1> ValueVTs; 9498 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9499 F.getReturnType()->getPointerTo( 9500 DAG.getDataLayout().getAllocaAddrSpace()), 9501 ValueVTs); 9502 9503 // NOTE: Assuming that a pointer will never break down to more than one VT 9504 // or one register. 9505 ISD::ArgFlagsTy Flags; 9506 Flags.setSRet(); 9507 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9508 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9509 ISD::InputArg::NoArgIndex, 0); 9510 Ins.push_back(RetArg); 9511 } 9512 9513 // Look for stores of arguments to static allocas. Mark such arguments with a 9514 // flag to ask the target to give us the memory location of that argument if 9515 // available. 9516 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9517 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9518 9519 // Set up the incoming argument description vector. 9520 for (const Argument &Arg : F.args()) { 9521 unsigned ArgNo = Arg.getArgNo(); 9522 SmallVector<EVT, 4> ValueVTs; 9523 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9524 bool isArgValueUsed = !Arg.use_empty(); 9525 unsigned PartBase = 0; 9526 Type *FinalType = Arg.getType(); 9527 if (Arg.hasAttribute(Attribute::ByVal)) 9528 FinalType = Arg.getParamByValType(); 9529 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9530 FinalType, F.getCallingConv(), F.isVarArg()); 9531 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9532 Value != NumValues; ++Value) { 9533 EVT VT = ValueVTs[Value]; 9534 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9535 ISD::ArgFlagsTy Flags; 9536 9537 // Certain targets (such as MIPS), may have a different ABI alignment 9538 // for a type depending on the context. Give the target a chance to 9539 // specify the alignment it wants. 9540 unsigned OriginalAlignment = 9541 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9542 9543 if (Arg.getType()->isPointerTy()) { 9544 Flags.setPointer(); 9545 Flags.setPointerAddrSpace( 9546 cast<PointerType>(Arg.getType())->getAddressSpace()); 9547 } 9548 if (Arg.hasAttribute(Attribute::ZExt)) 9549 Flags.setZExt(); 9550 if (Arg.hasAttribute(Attribute::SExt)) 9551 Flags.setSExt(); 9552 if (Arg.hasAttribute(Attribute::InReg)) { 9553 // If we are using vectorcall calling convention, a structure that is 9554 // passed InReg - is surely an HVA 9555 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9556 isa<StructType>(Arg.getType())) { 9557 // The first value of a structure is marked 9558 if (0 == Value) 9559 Flags.setHvaStart(); 9560 Flags.setHva(); 9561 } 9562 // Set InReg Flag 9563 Flags.setInReg(); 9564 } 9565 if (Arg.hasAttribute(Attribute::StructRet)) 9566 Flags.setSRet(); 9567 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9568 Flags.setSwiftSelf(); 9569 if (Arg.hasAttribute(Attribute::SwiftError)) 9570 Flags.setSwiftError(); 9571 if (Arg.hasAttribute(Attribute::ByVal)) 9572 Flags.setByVal(); 9573 if (Arg.hasAttribute(Attribute::InAlloca)) { 9574 Flags.setInAlloca(); 9575 // Set the byval flag for CCAssignFn callbacks that don't know about 9576 // inalloca. This way we can know how many bytes we should've allocated 9577 // and how many bytes a callee cleanup function will pop. If we port 9578 // inalloca to more targets, we'll have to add custom inalloca handling 9579 // in the various CC lowering callbacks. 9580 Flags.setByVal(); 9581 } 9582 if (F.getCallingConv() == CallingConv::X86_INTR) { 9583 // IA Interrupt passes frame (1st parameter) by value in the stack. 9584 if (ArgNo == 0) 9585 Flags.setByVal(); 9586 } 9587 if (Flags.isByVal() || Flags.isInAlloca()) { 9588 Type *ElementTy = Arg.getParamByValType(); 9589 9590 // For ByVal, size and alignment should be passed from FE. BE will 9591 // guess if this info is not there but there are cases it cannot get 9592 // right. 9593 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9594 Flags.setByValSize(FrameSize); 9595 9596 unsigned FrameAlign; 9597 if (Arg.getParamAlignment()) 9598 FrameAlign = Arg.getParamAlignment(); 9599 else 9600 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9601 Flags.setByValAlign(FrameAlign); 9602 } 9603 if (Arg.hasAttribute(Attribute::Nest)) 9604 Flags.setNest(); 9605 if (NeedsRegBlock) 9606 Flags.setInConsecutiveRegs(); 9607 Flags.setOrigAlign(OriginalAlignment); 9608 if (ArgCopyElisionCandidates.count(&Arg)) 9609 Flags.setCopyElisionCandidate(); 9610 9611 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9612 *CurDAG->getContext(), F.getCallingConv(), VT); 9613 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9614 *CurDAG->getContext(), F.getCallingConv(), VT); 9615 for (unsigned i = 0; i != NumRegs; ++i) { 9616 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9617 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9618 if (NumRegs > 1 && i == 0) 9619 MyFlags.Flags.setSplit(); 9620 // if it isn't first piece, alignment must be 1 9621 else if (i > 0) { 9622 MyFlags.Flags.setOrigAlign(1); 9623 if (i == NumRegs - 1) 9624 MyFlags.Flags.setSplitEnd(); 9625 } 9626 Ins.push_back(MyFlags); 9627 } 9628 if (NeedsRegBlock && Value == NumValues - 1) 9629 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9630 PartBase += VT.getStoreSize(); 9631 } 9632 } 9633 9634 // Call the target to set up the argument values. 9635 SmallVector<SDValue, 8> InVals; 9636 SDValue NewRoot = TLI->LowerFormalArguments( 9637 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9638 9639 // Verify that the target's LowerFormalArguments behaved as expected. 9640 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9641 "LowerFormalArguments didn't return a valid chain!"); 9642 assert(InVals.size() == Ins.size() && 9643 "LowerFormalArguments didn't emit the correct number of values!"); 9644 LLVM_DEBUG({ 9645 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9646 assert(InVals[i].getNode() && 9647 "LowerFormalArguments emitted a null value!"); 9648 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9649 "LowerFormalArguments emitted a value with the wrong type!"); 9650 } 9651 }); 9652 9653 // Update the DAG with the new chain value resulting from argument lowering. 9654 DAG.setRoot(NewRoot); 9655 9656 // Set up the argument values. 9657 unsigned i = 0; 9658 if (!FuncInfo->CanLowerReturn) { 9659 // Create a virtual register for the sret pointer, and put in a copy 9660 // from the sret argument into it. 9661 SmallVector<EVT, 1> ValueVTs; 9662 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9663 F.getReturnType()->getPointerTo( 9664 DAG.getDataLayout().getAllocaAddrSpace()), 9665 ValueVTs); 9666 MVT VT = ValueVTs[0].getSimpleVT(); 9667 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9668 Optional<ISD::NodeType> AssertOp = None; 9669 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9670 nullptr, F.getCallingConv(), AssertOp); 9671 9672 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9673 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9674 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9675 FuncInfo->DemoteRegister = SRetReg; 9676 NewRoot = 9677 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9678 DAG.setRoot(NewRoot); 9679 9680 // i indexes lowered arguments. Bump it past the hidden sret argument. 9681 ++i; 9682 } 9683 9684 SmallVector<SDValue, 4> Chains; 9685 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9686 for (const Argument &Arg : F.args()) { 9687 SmallVector<SDValue, 4> ArgValues; 9688 SmallVector<EVT, 4> ValueVTs; 9689 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9690 unsigned NumValues = ValueVTs.size(); 9691 if (NumValues == 0) 9692 continue; 9693 9694 bool ArgHasUses = !Arg.use_empty(); 9695 9696 // Elide the copying store if the target loaded this argument from a 9697 // suitable fixed stack object. 9698 if (Ins[i].Flags.isCopyElisionCandidate()) { 9699 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9700 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9701 InVals[i], ArgHasUses); 9702 } 9703 9704 // If this argument is unused then remember its value. It is used to generate 9705 // debugging information. 9706 bool isSwiftErrorArg = 9707 TLI->supportSwiftError() && 9708 Arg.hasAttribute(Attribute::SwiftError); 9709 if (!ArgHasUses && !isSwiftErrorArg) { 9710 SDB->setUnusedArgValue(&Arg, InVals[i]); 9711 9712 // Also remember any frame index for use in FastISel. 9713 if (FrameIndexSDNode *FI = 9714 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9715 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9716 } 9717 9718 for (unsigned Val = 0; Val != NumValues; ++Val) { 9719 EVT VT = ValueVTs[Val]; 9720 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9721 F.getCallingConv(), VT); 9722 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9723 *CurDAG->getContext(), F.getCallingConv(), VT); 9724 9725 // Even an apparant 'unused' swifterror argument needs to be returned. So 9726 // we do generate a copy for it that can be used on return from the 9727 // function. 9728 if (ArgHasUses || isSwiftErrorArg) { 9729 Optional<ISD::NodeType> AssertOp; 9730 if (Arg.hasAttribute(Attribute::SExt)) 9731 AssertOp = ISD::AssertSext; 9732 else if (Arg.hasAttribute(Attribute::ZExt)) 9733 AssertOp = ISD::AssertZext; 9734 9735 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9736 PartVT, VT, nullptr, 9737 F.getCallingConv(), AssertOp)); 9738 } 9739 9740 i += NumParts; 9741 } 9742 9743 // We don't need to do anything else for unused arguments. 9744 if (ArgValues.empty()) 9745 continue; 9746 9747 // Note down frame index. 9748 if (FrameIndexSDNode *FI = 9749 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9750 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9751 9752 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9753 SDB->getCurSDLoc()); 9754 9755 SDB->setValue(&Arg, Res); 9756 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9757 // We want to associate the argument with the frame index, among 9758 // involved operands, that correspond to the lowest address. The 9759 // getCopyFromParts function, called earlier, is swapping the order of 9760 // the operands to BUILD_PAIR depending on endianness. The result of 9761 // that swapping is that the least significant bits of the argument will 9762 // be in the first operand of the BUILD_PAIR node, and the most 9763 // significant bits will be in the second operand. 9764 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9765 if (LoadSDNode *LNode = 9766 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9767 if (FrameIndexSDNode *FI = 9768 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9769 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9770 } 9771 9772 // Update the SwiftErrorVRegDefMap. 9773 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9774 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9775 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9776 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9777 Reg); 9778 } 9779 9780 // If this argument is live outside of the entry block, insert a copy from 9781 // wherever we got it to the vreg that other BB's will reference it as. 9782 if (Res.getOpcode() == ISD::CopyFromReg) { 9783 // If we can, though, try to skip creating an unnecessary vreg. 9784 // FIXME: This isn't very clean... it would be nice to make this more 9785 // general. 9786 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9787 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9788 FuncInfo->ValueMap[&Arg] = Reg; 9789 continue; 9790 } 9791 } 9792 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9793 FuncInfo->InitializeRegForValue(&Arg); 9794 SDB->CopyToExportRegsIfNeeded(&Arg); 9795 } 9796 } 9797 9798 if (!Chains.empty()) { 9799 Chains.push_back(NewRoot); 9800 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9801 } 9802 9803 DAG.setRoot(NewRoot); 9804 9805 assert(i == InVals.size() && "Argument register count mismatch!"); 9806 9807 // If any argument copy elisions occurred and we have debug info, update the 9808 // stale frame indices used in the dbg.declare variable info table. 9809 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9810 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9811 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9812 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9813 if (I != ArgCopyElisionFrameIndexMap.end()) 9814 VI.Slot = I->second; 9815 } 9816 } 9817 9818 // Finally, if the target has anything special to do, allow it to do so. 9819 EmitFunctionEntryCode(); 9820 } 9821 9822 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9823 /// ensure constants are generated when needed. Remember the virtual registers 9824 /// that need to be added to the Machine PHI nodes as input. We cannot just 9825 /// directly add them, because expansion might result in multiple MBB's for one 9826 /// BB. As such, the start of the BB might correspond to a different MBB than 9827 /// the end. 9828 void 9829 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9830 const Instruction *TI = LLVMBB->getTerminator(); 9831 9832 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9833 9834 // Check PHI nodes in successors that expect a value to be available from this 9835 // block. 9836 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9837 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9838 if (!isa<PHINode>(SuccBB->begin())) continue; 9839 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9840 9841 // If this terminator has multiple identical successors (common for 9842 // switches), only handle each succ once. 9843 if (!SuccsHandled.insert(SuccMBB).second) 9844 continue; 9845 9846 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9847 9848 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9849 // nodes and Machine PHI nodes, but the incoming operands have not been 9850 // emitted yet. 9851 for (const PHINode &PN : SuccBB->phis()) { 9852 // Ignore dead phi's. 9853 if (PN.use_empty()) 9854 continue; 9855 9856 // Skip empty types 9857 if (PN.getType()->isEmptyTy()) 9858 continue; 9859 9860 unsigned Reg; 9861 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9862 9863 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9864 unsigned &RegOut = ConstantsOut[C]; 9865 if (RegOut == 0) { 9866 RegOut = FuncInfo.CreateRegs(C); 9867 CopyValueToVirtualRegister(C, RegOut); 9868 } 9869 Reg = RegOut; 9870 } else { 9871 DenseMap<const Value *, unsigned>::iterator I = 9872 FuncInfo.ValueMap.find(PHIOp); 9873 if (I != FuncInfo.ValueMap.end()) 9874 Reg = I->second; 9875 else { 9876 assert(isa<AllocaInst>(PHIOp) && 9877 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9878 "Didn't codegen value into a register!??"); 9879 Reg = FuncInfo.CreateRegs(PHIOp); 9880 CopyValueToVirtualRegister(PHIOp, Reg); 9881 } 9882 } 9883 9884 // Remember that this register needs to added to the machine PHI node as 9885 // the input for this MBB. 9886 SmallVector<EVT, 4> ValueVTs; 9887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9888 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9889 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9890 EVT VT = ValueVTs[vti]; 9891 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9892 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9893 FuncInfo.PHINodesToUpdate.push_back( 9894 std::make_pair(&*MBBI++, Reg + i)); 9895 Reg += NumRegisters; 9896 } 9897 } 9898 } 9899 9900 ConstantsOut.clear(); 9901 } 9902 9903 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9904 /// is 0. 9905 MachineBasicBlock * 9906 SelectionDAGBuilder::StackProtectorDescriptor:: 9907 AddSuccessorMBB(const BasicBlock *BB, 9908 MachineBasicBlock *ParentMBB, 9909 bool IsLikely, 9910 MachineBasicBlock *SuccMBB) { 9911 // If SuccBB has not been created yet, create it. 9912 if (!SuccMBB) { 9913 MachineFunction *MF = ParentMBB->getParent(); 9914 MachineFunction::iterator BBI(ParentMBB); 9915 SuccMBB = MF->CreateMachineBasicBlock(BB); 9916 MF->insert(++BBI, SuccMBB); 9917 } 9918 // Add it as a successor of ParentMBB. 9919 ParentMBB->addSuccessor( 9920 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9921 return SuccMBB; 9922 } 9923 9924 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9925 MachineFunction::iterator I(MBB); 9926 if (++I == FuncInfo.MF->end()) 9927 return nullptr; 9928 return &*I; 9929 } 9930 9931 /// During lowering new call nodes can be created (such as memset, etc.). 9932 /// Those will become new roots of the current DAG, but complications arise 9933 /// when they are tail calls. In such cases, the call lowering will update 9934 /// the root, but the builder still needs to know that a tail call has been 9935 /// lowered in order to avoid generating an additional return. 9936 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9937 // If the node is null, we do have a tail call. 9938 if (MaybeTC.getNode() != nullptr) 9939 DAG.setRoot(MaybeTC); 9940 else 9941 HasTailCall = true; 9942 } 9943 9944 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9945 MachineBasicBlock *SwitchMBB, 9946 MachineBasicBlock *DefaultMBB) { 9947 MachineFunction *CurMF = FuncInfo.MF; 9948 MachineBasicBlock *NextMBB = nullptr; 9949 MachineFunction::iterator BBI(W.MBB); 9950 if (++BBI != FuncInfo.MF->end()) 9951 NextMBB = &*BBI; 9952 9953 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9954 9955 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9956 9957 if (Size == 2 && W.MBB == SwitchMBB) { 9958 // If any two of the cases has the same destination, and if one value 9959 // is the same as the other, but has one bit unset that the other has set, 9960 // use bit manipulation to do two compares at once. For example: 9961 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9962 // TODO: This could be extended to merge any 2 cases in switches with 3 9963 // cases. 9964 // TODO: Handle cases where W.CaseBB != SwitchBB. 9965 CaseCluster &Small = *W.FirstCluster; 9966 CaseCluster &Big = *W.LastCluster; 9967 9968 if (Small.Low == Small.High && Big.Low == Big.High && 9969 Small.MBB == Big.MBB) { 9970 const APInt &SmallValue = Small.Low->getValue(); 9971 const APInt &BigValue = Big.Low->getValue(); 9972 9973 // Check that there is only one bit different. 9974 APInt CommonBit = BigValue ^ SmallValue; 9975 if (CommonBit.isPowerOf2()) { 9976 SDValue CondLHS = getValue(Cond); 9977 EVT VT = CondLHS.getValueType(); 9978 SDLoc DL = getCurSDLoc(); 9979 9980 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9981 DAG.getConstant(CommonBit, DL, VT)); 9982 SDValue Cond = DAG.getSetCC( 9983 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9984 ISD::SETEQ); 9985 9986 // Update successor info. 9987 // Both Small and Big will jump to Small.BB, so we sum up the 9988 // probabilities. 9989 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9990 if (BPI) 9991 addSuccessorWithProb( 9992 SwitchMBB, DefaultMBB, 9993 // The default destination is the first successor in IR. 9994 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9995 else 9996 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9997 9998 // Insert the true branch. 9999 SDValue BrCond = 10000 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10001 DAG.getBasicBlock(Small.MBB)); 10002 // Insert the false branch. 10003 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10004 DAG.getBasicBlock(DefaultMBB)); 10005 10006 DAG.setRoot(BrCond); 10007 return; 10008 } 10009 } 10010 } 10011 10012 if (TM.getOptLevel() != CodeGenOpt::None) { 10013 // Here, we order cases by probability so the most likely case will be 10014 // checked first. However, two clusters can have the same probability in 10015 // which case their relative ordering is non-deterministic. So we use Low 10016 // as a tie-breaker as clusters are guaranteed to never overlap. 10017 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10018 [](const CaseCluster &a, const CaseCluster &b) { 10019 return a.Prob != b.Prob ? 10020 a.Prob > b.Prob : 10021 a.Low->getValue().slt(b.Low->getValue()); 10022 }); 10023 10024 // Rearrange the case blocks so that the last one falls through if possible 10025 // without changing the order of probabilities. 10026 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10027 --I; 10028 if (I->Prob > W.LastCluster->Prob) 10029 break; 10030 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10031 std::swap(*I, *W.LastCluster); 10032 break; 10033 } 10034 } 10035 } 10036 10037 // Compute total probability. 10038 BranchProbability DefaultProb = W.DefaultProb; 10039 BranchProbability UnhandledProbs = DefaultProb; 10040 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10041 UnhandledProbs += I->Prob; 10042 10043 MachineBasicBlock *CurMBB = W.MBB; 10044 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10045 bool FallthroughUnreachable = false; 10046 MachineBasicBlock *Fallthrough; 10047 if (I == W.LastCluster) { 10048 // For the last cluster, fall through to the default destination. 10049 Fallthrough = DefaultMBB; 10050 FallthroughUnreachable = isa<UnreachableInst>( 10051 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10052 } else { 10053 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10054 CurMF->insert(BBI, Fallthrough); 10055 // Put Cond in a virtual register to make it available from the new blocks. 10056 ExportFromCurrentBlock(Cond); 10057 } 10058 UnhandledProbs -= I->Prob; 10059 10060 switch (I->Kind) { 10061 case CC_JumpTable: { 10062 // FIXME: Optimize away range check based on pivot comparisons. 10063 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10064 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10065 10066 // The jump block hasn't been inserted yet; insert it here. 10067 MachineBasicBlock *JumpMBB = JT->MBB; 10068 CurMF->insert(BBI, JumpMBB); 10069 10070 auto JumpProb = I->Prob; 10071 auto FallthroughProb = UnhandledProbs; 10072 10073 // If the default statement is a target of the jump table, we evenly 10074 // distribute the default probability to successors of CurMBB. Also 10075 // update the probability on the edge from JumpMBB to Fallthrough. 10076 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10077 SE = JumpMBB->succ_end(); 10078 SI != SE; ++SI) { 10079 if (*SI == DefaultMBB) { 10080 JumpProb += DefaultProb / 2; 10081 FallthroughProb -= DefaultProb / 2; 10082 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10083 JumpMBB->normalizeSuccProbs(); 10084 break; 10085 } 10086 } 10087 10088 if (FallthroughUnreachable) { 10089 // Skip the range check if the fallthrough block is unreachable. 10090 JTH->OmitRangeCheck = true; 10091 } 10092 10093 if (!JTH->OmitRangeCheck) 10094 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10095 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10096 CurMBB->normalizeSuccProbs(); 10097 10098 // The jump table header will be inserted in our current block, do the 10099 // range check, and fall through to our fallthrough block. 10100 JTH->HeaderBB = CurMBB; 10101 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10102 10103 // If we're in the right place, emit the jump table header right now. 10104 if (CurMBB == SwitchMBB) { 10105 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10106 JTH->Emitted = true; 10107 } 10108 break; 10109 } 10110 case CC_BitTests: { 10111 // FIXME: If Fallthrough is unreachable, skip the range check. 10112 10113 // FIXME: Optimize away range check based on pivot comparisons. 10114 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10115 10116 // The bit test blocks haven't been inserted yet; insert them here. 10117 for (BitTestCase &BTC : BTB->Cases) 10118 CurMF->insert(BBI, BTC.ThisBB); 10119 10120 // Fill in fields of the BitTestBlock. 10121 BTB->Parent = CurMBB; 10122 BTB->Default = Fallthrough; 10123 10124 BTB->DefaultProb = UnhandledProbs; 10125 // If the cases in bit test don't form a contiguous range, we evenly 10126 // distribute the probability on the edge to Fallthrough to two 10127 // successors of CurMBB. 10128 if (!BTB->ContiguousRange) { 10129 BTB->Prob += DefaultProb / 2; 10130 BTB->DefaultProb -= DefaultProb / 2; 10131 } 10132 10133 // If we're in the right place, emit the bit test header right now. 10134 if (CurMBB == SwitchMBB) { 10135 visitBitTestHeader(*BTB, SwitchMBB); 10136 BTB->Emitted = true; 10137 } 10138 break; 10139 } 10140 case CC_Range: { 10141 const Value *RHS, *LHS, *MHS; 10142 ISD::CondCode CC; 10143 if (I->Low == I->High) { 10144 // Check Cond == I->Low. 10145 CC = ISD::SETEQ; 10146 LHS = Cond; 10147 RHS=I->Low; 10148 MHS = nullptr; 10149 } else { 10150 // Check I->Low <= Cond <= I->High. 10151 CC = ISD::SETLE; 10152 LHS = I->Low; 10153 MHS = Cond; 10154 RHS = I->High; 10155 } 10156 10157 // If Fallthrough is unreachable, fold away the comparison. 10158 if (FallthroughUnreachable) 10159 CC = ISD::SETTRUE; 10160 10161 // The false probability is the sum of all unhandled cases. 10162 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10163 getCurSDLoc(), I->Prob, UnhandledProbs); 10164 10165 if (CurMBB == SwitchMBB) 10166 visitSwitchCase(CB, SwitchMBB); 10167 else 10168 SL->SwitchCases.push_back(CB); 10169 10170 break; 10171 } 10172 } 10173 CurMBB = Fallthrough; 10174 } 10175 } 10176 10177 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10178 CaseClusterIt First, 10179 CaseClusterIt Last) { 10180 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10181 if (X.Prob != CC.Prob) 10182 return X.Prob > CC.Prob; 10183 10184 // Ties are broken by comparing the case value. 10185 return X.Low->getValue().slt(CC.Low->getValue()); 10186 }); 10187 } 10188 10189 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10190 const SwitchWorkListItem &W, 10191 Value *Cond, 10192 MachineBasicBlock *SwitchMBB) { 10193 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10194 "Clusters not sorted?"); 10195 10196 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10197 10198 // Balance the tree based on branch probabilities to create a near-optimal (in 10199 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10200 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10201 CaseClusterIt LastLeft = W.FirstCluster; 10202 CaseClusterIt FirstRight = W.LastCluster; 10203 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10204 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10205 10206 // Move LastLeft and FirstRight towards each other from opposite directions to 10207 // find a partitioning of the clusters which balances the probability on both 10208 // sides. If LeftProb and RightProb are equal, alternate which side is 10209 // taken to ensure 0-probability nodes are distributed evenly. 10210 unsigned I = 0; 10211 while (LastLeft + 1 < FirstRight) { 10212 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10213 LeftProb += (++LastLeft)->Prob; 10214 else 10215 RightProb += (--FirstRight)->Prob; 10216 I++; 10217 } 10218 10219 while (true) { 10220 // Our binary search tree differs from a typical BST in that ours can have up 10221 // to three values in each leaf. The pivot selection above doesn't take that 10222 // into account, which means the tree might require more nodes and be less 10223 // efficient. We compensate for this here. 10224 10225 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10226 unsigned NumRight = W.LastCluster - FirstRight + 1; 10227 10228 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10229 // If one side has less than 3 clusters, and the other has more than 3, 10230 // consider taking a cluster from the other side. 10231 10232 if (NumLeft < NumRight) { 10233 // Consider moving the first cluster on the right to the left side. 10234 CaseCluster &CC = *FirstRight; 10235 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10236 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10237 if (LeftSideRank <= RightSideRank) { 10238 // Moving the cluster to the left does not demote it. 10239 ++LastLeft; 10240 ++FirstRight; 10241 continue; 10242 } 10243 } else { 10244 assert(NumRight < NumLeft); 10245 // Consider moving the last element on the left to the right side. 10246 CaseCluster &CC = *LastLeft; 10247 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10248 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10249 if (RightSideRank <= LeftSideRank) { 10250 // Moving the cluster to the right does not demot it. 10251 --LastLeft; 10252 --FirstRight; 10253 continue; 10254 } 10255 } 10256 } 10257 break; 10258 } 10259 10260 assert(LastLeft + 1 == FirstRight); 10261 assert(LastLeft >= W.FirstCluster); 10262 assert(FirstRight <= W.LastCluster); 10263 10264 // Use the first element on the right as pivot since we will make less-than 10265 // comparisons against it. 10266 CaseClusterIt PivotCluster = FirstRight; 10267 assert(PivotCluster > W.FirstCluster); 10268 assert(PivotCluster <= W.LastCluster); 10269 10270 CaseClusterIt FirstLeft = W.FirstCluster; 10271 CaseClusterIt LastRight = W.LastCluster; 10272 10273 const ConstantInt *Pivot = PivotCluster->Low; 10274 10275 // New blocks will be inserted immediately after the current one. 10276 MachineFunction::iterator BBI(W.MBB); 10277 ++BBI; 10278 10279 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10280 // we can branch to its destination directly if it's squeezed exactly in 10281 // between the known lower bound and Pivot - 1. 10282 MachineBasicBlock *LeftMBB; 10283 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10284 FirstLeft->Low == W.GE && 10285 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10286 LeftMBB = FirstLeft->MBB; 10287 } else { 10288 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10289 FuncInfo.MF->insert(BBI, LeftMBB); 10290 WorkList.push_back( 10291 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10292 // Put Cond in a virtual register to make it available from the new blocks. 10293 ExportFromCurrentBlock(Cond); 10294 } 10295 10296 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10297 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10298 // directly if RHS.High equals the current upper bound. 10299 MachineBasicBlock *RightMBB; 10300 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10301 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10302 RightMBB = FirstRight->MBB; 10303 } else { 10304 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10305 FuncInfo.MF->insert(BBI, RightMBB); 10306 WorkList.push_back( 10307 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10308 // Put Cond in a virtual register to make it available from the new blocks. 10309 ExportFromCurrentBlock(Cond); 10310 } 10311 10312 // Create the CaseBlock record that will be used to lower the branch. 10313 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10314 getCurSDLoc(), LeftProb, RightProb); 10315 10316 if (W.MBB == SwitchMBB) 10317 visitSwitchCase(CB, SwitchMBB); 10318 else 10319 SL->SwitchCases.push_back(CB); 10320 } 10321 10322 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10323 // from the swith statement. 10324 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10325 BranchProbability PeeledCaseProb) { 10326 if (PeeledCaseProb == BranchProbability::getOne()) 10327 return BranchProbability::getZero(); 10328 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10329 10330 uint32_t Numerator = CaseProb.getNumerator(); 10331 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10332 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10333 } 10334 10335 // Try to peel the top probability case if it exceeds the threshold. 10336 // Return current MachineBasicBlock for the switch statement if the peeling 10337 // does not occur. 10338 // If the peeling is performed, return the newly created MachineBasicBlock 10339 // for the peeled switch statement. Also update Clusters to remove the peeled 10340 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10341 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10342 const SwitchInst &SI, CaseClusterVector &Clusters, 10343 BranchProbability &PeeledCaseProb) { 10344 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10345 // Don't perform if there is only one cluster or optimizing for size. 10346 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10347 TM.getOptLevel() == CodeGenOpt::None || 10348 SwitchMBB->getParent()->getFunction().hasMinSize()) 10349 return SwitchMBB; 10350 10351 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10352 unsigned PeeledCaseIndex = 0; 10353 bool SwitchPeeled = false; 10354 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10355 CaseCluster &CC = Clusters[Index]; 10356 if (CC.Prob < TopCaseProb) 10357 continue; 10358 TopCaseProb = CC.Prob; 10359 PeeledCaseIndex = Index; 10360 SwitchPeeled = true; 10361 } 10362 if (!SwitchPeeled) 10363 return SwitchMBB; 10364 10365 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10366 << TopCaseProb << "\n"); 10367 10368 // Record the MBB for the peeled switch statement. 10369 MachineFunction::iterator BBI(SwitchMBB); 10370 ++BBI; 10371 MachineBasicBlock *PeeledSwitchMBB = 10372 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10373 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10374 10375 ExportFromCurrentBlock(SI.getCondition()); 10376 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10377 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10378 nullptr, nullptr, TopCaseProb.getCompl()}; 10379 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10380 10381 Clusters.erase(PeeledCaseIt); 10382 for (CaseCluster &CC : Clusters) { 10383 LLVM_DEBUG( 10384 dbgs() << "Scale the probablity for one cluster, before scaling: " 10385 << CC.Prob << "\n"); 10386 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10387 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10388 } 10389 PeeledCaseProb = TopCaseProb; 10390 return PeeledSwitchMBB; 10391 } 10392 10393 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10394 // Extract cases from the switch. 10395 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10396 CaseClusterVector Clusters; 10397 Clusters.reserve(SI.getNumCases()); 10398 for (auto I : SI.cases()) { 10399 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10400 const ConstantInt *CaseVal = I.getCaseValue(); 10401 BranchProbability Prob = 10402 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10403 : BranchProbability(1, SI.getNumCases() + 1); 10404 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10405 } 10406 10407 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10408 10409 // Cluster adjacent cases with the same destination. We do this at all 10410 // optimization levels because it's cheap to do and will make codegen faster 10411 // if there are many clusters. 10412 sortAndRangeify(Clusters); 10413 10414 // The branch probablity of the peeled case. 10415 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10416 MachineBasicBlock *PeeledSwitchMBB = 10417 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10418 10419 // If there is only the default destination, jump there directly. 10420 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10421 if (Clusters.empty()) { 10422 assert(PeeledSwitchMBB == SwitchMBB); 10423 SwitchMBB->addSuccessor(DefaultMBB); 10424 if (DefaultMBB != NextBlock(SwitchMBB)) { 10425 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10426 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10427 } 10428 return; 10429 } 10430 10431 SL->findJumpTables(Clusters, &SI, DefaultMBB); 10432 SL->findBitTestClusters(Clusters, &SI); 10433 10434 LLVM_DEBUG({ 10435 dbgs() << "Case clusters: "; 10436 for (const CaseCluster &C : Clusters) { 10437 if (C.Kind == CC_JumpTable) 10438 dbgs() << "JT:"; 10439 if (C.Kind == CC_BitTests) 10440 dbgs() << "BT:"; 10441 10442 C.Low->getValue().print(dbgs(), true); 10443 if (C.Low != C.High) { 10444 dbgs() << '-'; 10445 C.High->getValue().print(dbgs(), true); 10446 } 10447 dbgs() << ' '; 10448 } 10449 dbgs() << '\n'; 10450 }); 10451 10452 assert(!Clusters.empty()); 10453 SwitchWorkList WorkList; 10454 CaseClusterIt First = Clusters.begin(); 10455 CaseClusterIt Last = Clusters.end() - 1; 10456 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10457 // Scale the branchprobability for DefaultMBB if the peel occurs and 10458 // DefaultMBB is not replaced. 10459 if (PeeledCaseProb != BranchProbability::getZero() && 10460 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10461 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10462 WorkList.push_back( 10463 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10464 10465 while (!WorkList.empty()) { 10466 SwitchWorkListItem W = WorkList.back(); 10467 WorkList.pop_back(); 10468 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10469 10470 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10471 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10472 // For optimized builds, lower large range as a balanced binary tree. 10473 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10474 continue; 10475 } 10476 10477 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10478 } 10479 } 10480