xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision a134ebd6e63f658f2d3d04ac0c60d23bcaa86dd7)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsAArch64.h"
90 #include "llvm/IR/IntrinsicsWebAssembly.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PatternMatch.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/MC/MCContext.h"
101 #include "llvm/MC/MCSymbol.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CodeGen.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MachineValueType.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetIntrinsicInfo.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstring>
122 #include <iterator>
123 #include <limits>
124 #include <numeric>
125 #include <tuple>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 using namespace PatternMatch;
131 using namespace SwitchCG;
132 
133 #define DEBUG_TYPE "isel"
134 
135 /// LimitFloatPrecision - Generate low-precision inline sequences for
136 /// some float libcalls (6, 8 or 12 bits).
137 static unsigned LimitFloatPrecision;
138 
139 static cl::opt<unsigned, true>
140     LimitFPPrecision("limit-float-precision",
141                      cl::desc("Generate low-precision inline sequences "
142                               "for some float libcalls"),
143                      cl::location(LimitFloatPrecision), cl::Hidden,
144                      cl::init(0));
145 
146 static cl::opt<unsigned> SwitchPeelThreshold(
147     "switch-peel-threshold", cl::Hidden, cl::init(66),
148     cl::desc("Set the case probability threshold for peeling the case from a "
149              "switch statement. A value greater than 100 will void this "
150              "optimization"));
151 
152 // Limit the width of DAG chains. This is important in general to prevent
153 // DAG-based analysis from blowing up. For example, alias analysis and
154 // load clustering may not complete in reasonable time. It is difficult to
155 // recognize and avoid this situation within each individual analysis, and
156 // future analyses are likely to have the same behavior. Limiting DAG width is
157 // the safe approach and will be especially important with global DAGs.
158 //
159 // MaxParallelChains default is arbitrarily high to avoid affecting
160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161 // sequence over this should have been converted to llvm.memcpy by the
162 // frontend. It is easy to induce this behavior with .ll code such as:
163 // %buffer = alloca [4096 x i8]
164 // %data = load [4096 x i8]* %argPtr
165 // store [4096 x i8] %data, [4096 x i8]* %buffer
166 static const unsigned MaxParallelChains = 64;
167 
168 // Return the calling convention if the Value passed requires ABI mangling as it
169 // is a parameter to a function or a return value from a function which is not
170 // an intrinsic.
171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172   if (auto *R = dyn_cast<ReturnInst>(V))
173     return R->getParent()->getParent()->getCallingConv();
174 
175   if (auto *CI = dyn_cast<CallInst>(V)) {
176     const bool IsInlineAsm = CI->isInlineAsm();
177     const bool IsIndirectFunctionCall =
178         !IsInlineAsm && !CI->getCalledFunction();
179 
180     // It is possible that the call instruction is an inline asm statement or an
181     // indirect function call in which case the return value of
182     // getCalledFunction() would be nullptr.
183     const bool IsInstrinsicCall =
184         !IsInlineAsm && !IsIndirectFunctionCall &&
185         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186 
187     if (!IsInlineAsm && !IsInstrinsicCall)
188       return CI->getCallingConv();
189   }
190 
191   return None;
192 }
193 
194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                       const SDValue *Parts, unsigned NumParts,
196                                       MVT PartVT, EVT ValueVT, const Value *V,
197                                       Optional<CallingConv::ID> CC);
198 
199 /// getCopyFromParts - Create a value that contains the specified legal parts
200 /// combined into the value they represent.  If the parts combine to a type
201 /// larger than ValueVT then AssertOp can be used to specify whether the extra
202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203 /// (ISD::AssertSext).
204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                 const SDValue *Parts, unsigned NumParts,
206                                 MVT PartVT, EVT ValueVT, const Value *V,
207                                 Optional<CallingConv::ID> CC = None,
208                                 Optional<ISD::NodeType> AssertOp = None) {
209   if (ValueVT.isVector())
210     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                   CC);
212 
213   assert(NumParts > 0 && "No parts to assemble!");
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   SDValue Val = Parts[0];
216 
217   if (NumParts > 1) {
218     // Assemble the value from multiple parts.
219     if (ValueVT.isInteger()) {
220       unsigned PartBits = PartVT.getSizeInBits();
221       unsigned ValueBits = ValueVT.getSizeInBits();
222 
223       // Assemble the power of 2 part.
224       unsigned RoundParts =
225           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226       unsigned RoundBits = PartBits * RoundParts;
227       EVT RoundVT = RoundBits == ValueBits ?
228         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229       SDValue Lo, Hi;
230 
231       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232 
233       if (RoundParts > 2) {
234         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                               PartVT, HalfVT, V);
236         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                               RoundParts / 2, PartVT, HalfVT, V);
238       } else {
239         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241       }
242 
243       if (DAG.getDataLayout().isBigEndian())
244         std::swap(Lo, Hi);
245 
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247 
248       if (RoundParts < NumParts) {
249         // Assemble the trailing non-power-of-2 part.
250         unsigned OddParts = NumParts - RoundParts;
251         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                               OddVT, V, CC);
254 
255         // Combine the round and odd parts.
256         Lo = Val;
257         if (DAG.getDataLayout().isBigEndian())
258           std::swap(Lo, Hi);
259         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261         Hi =
262             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                         TLI.getPointerTy(DAG.getDataLayout())));
265         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267       }
268     } else if (PartVT.isFloatingPoint()) {
269       // FP split into multiple FP parts (for ppcf128)
270       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271              "Unexpected split");
272       SDValue Lo, Hi;
273       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276         std::swap(Lo, Hi);
277       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278     } else {
279       // FP split into integer parts (soft fp)
280       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281              !PartVT.isVector() && "Unexpected split");
282       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284     }
285   }
286 
287   // There is now one part, held in Val.  Correct it to match ValueVT.
288   // PartEVT is the type of the register class that holds the value.
289   // ValueVT is the type of the inline asm operation.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296       ValueVT.bitsLT(PartEVT)) {
297     // For an FP value in an integer part, we need to truncate to the right
298     // width first.
299     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301   }
302 
303   // Handle types that have the same size.
304   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307   // Handle types with different sizes.
308   if (PartEVT.isInteger() && ValueVT.isInteger()) {
309     if (ValueVT.bitsLT(PartEVT)) {
310       // For a truncate, see if we have any information to
311       // indicate whether the truncated bits will always be
312       // zero or sign-extension.
313       if (AssertOp.hasValue())
314         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                           DAG.getValueType(ValueVT));
316       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317     }
318     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319   }
320 
321   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     // FP_ROUND's are always exact here.
323     if (ValueVT.bitsLT(Val.getValueType()))
324       return DAG.getNode(
325           ISD::FP_ROUND, DL, ValueVT, Val,
326           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327 
328     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329   }
330 
331   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332   // then truncating.
333   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334       ValueVT.bitsLT(PartEVT)) {
335     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337   }
338 
339   report_fatal_error("Unknown mismatch in getCopyFromParts!");
340 }
341 
342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                               const Twine &ErrMsg) {
344   const Instruction *I = dyn_cast_or_null<Instruction>(V);
345   if (!V)
346     return Ctx.emitError(ErrMsg);
347 
348   const char *AsmError = ", possible invalid constraint for vector type";
349   if (const CallInst *CI = dyn_cast<CallInst>(I))
350     if (isa<InlineAsm>(CI->getCalledValue()))
351       return Ctx.emitError(I, ErrMsg + AsmError);
352 
353   return Ctx.emitError(I, ErrMsg);
354 }
355 
356 /// getCopyFromPartsVector - Create a value that contains the specified legal
357 /// parts combined into the value they represent.  If the parts combine to a
358 /// type larger than ValueVT then AssertOp can be used to specify whether the
359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360 /// ValueVT (ISD::AssertSext).
361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                       const SDValue *Parts, unsigned NumParts,
363                                       MVT PartVT, EVT ValueVT, const Value *V,
364                                       Optional<CallingConv::ID> CallConv) {
365   assert(ValueVT.isVector() && "Not a vector value");
366   assert(NumParts > 0 && "No parts to assemble!");
367   const bool IsABIRegCopy = CallConv.hasValue();
368 
369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370   SDValue Val = Parts[0];
371 
372   // Handle a multi-element vector.
373   if (NumParts > 1) {
374     EVT IntermediateVT;
375     MVT RegisterVT;
376     unsigned NumIntermediates;
377     unsigned NumRegs;
378 
379     if (IsABIRegCopy) {
380       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382           NumIntermediates, RegisterVT);
383     } else {
384       NumRegs =
385           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                      NumIntermediates, RegisterVT);
387     }
388 
389     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390     NumParts = NumRegs; // Silence a compiler warning.
391     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392     assert(RegisterVT.getSizeInBits() ==
393            Parts[0].getSimpleValueType().getSizeInBits() &&
394            "Part type sizes don't match!");
395 
396     // Assemble the parts into intermediate operands.
397     SmallVector<SDValue, 8> Ops(NumIntermediates);
398     if (NumIntermediates == NumParts) {
399       // If the register was not expanded, truncate or copy the value,
400       // as appropriate.
401       for (unsigned i = 0; i != NumParts; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                   PartVT, IntermediateVT, V);
404     } else if (NumParts > 0) {
405       // If the intermediate type was expanded, build the intermediate
406       // operands from the parts.
407       assert(NumParts % NumIntermediates == 0 &&
408              "Must expand into a divisible number of parts!");
409       unsigned Factor = NumParts / NumIntermediates;
410       for (unsigned i = 0; i != NumIntermediates; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                   PartVT, IntermediateVT, V);
413     }
414 
415     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416     // intermediate operands.
417     EVT BuiltVectorTy =
418         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
419                          (IntermediateVT.isVector()
420                               ? IntermediateVT.getVectorNumElements() * NumParts
421                               : NumIntermediates));
422     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
423                                                 : ISD::BUILD_VECTOR,
424                       DL, BuiltVectorTy, Ops);
425   }
426 
427   // There is now one part, held in Val.  Correct it to match ValueVT.
428   EVT PartEVT = Val.getValueType();
429 
430   if (PartEVT == ValueVT)
431     return Val;
432 
433   if (PartEVT.isVector()) {
434     // If the element type of the source/dest vectors are the same, but the
435     // parts vector has more elements than the value vector, then we have a
436     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
437     // elements we want.
438     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
439       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
440              "Cannot narrow, it would be a lossy transformation");
441       return DAG.getNode(
442           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
443           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
444     }
445 
446     // Vector/Vector bitcast.
447     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
448       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
449 
450     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
451       "Cannot handle this kind of promotion");
452     // Promoted vector extract
453     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
454 
455   }
456 
457   // Trivial bitcast if the types are the same size and the destination
458   // vector type is legal.
459   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
460       TLI.isTypeLegal(ValueVT))
461     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462 
463   if (ValueVT.getVectorNumElements() != 1) {
464      // Certain ABIs require that vectors are passed as integers. For vectors
465      // are the same size, this is an obvious bitcast.
466      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
467        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
468      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
469        // Bitcast Val back the original type and extract the corresponding
470        // vector we want.
471        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
472        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
473                                            ValueVT.getVectorElementType(), Elts);
474        Val = DAG.getBitcast(WiderVecType, Val);
475        return DAG.getNode(
476            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
477            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
478      }
479 
480      diagnosePossiblyInvalidConstraint(
481          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
482      return DAG.getUNDEF(ValueVT);
483   }
484 
485   // Handle cases such as i8 -> <1 x i1>
486   EVT ValueSVT = ValueVT.getVectorElementType();
487   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
488     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
489                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
490 
491   return DAG.getBuildVector(ValueVT, DL, Val);
492 }
493 
494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495                                  SDValue Val, SDValue *Parts, unsigned NumParts,
496                                  MVT PartVT, const Value *V,
497                                  Optional<CallingConv::ID> CallConv);
498 
499 /// getCopyToParts - Create a series of nodes that contain the specified value
500 /// split into legal parts.  If the parts contain more bits than Val, then, for
501 /// integers, ExtendKind can be used to specify how to generate the extra bits.
502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
503                            SDValue *Parts, unsigned NumParts, MVT PartVT,
504                            const Value *V,
505                            Optional<CallingConv::ID> CallConv = None,
506                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507   EVT ValueVT = Val.getValueType();
508 
509   // Handle the vector case separately.
510   if (ValueVT.isVector())
511     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
512                                 CallConv);
513 
514   unsigned PartBits = PartVT.getSizeInBits();
515   unsigned OrigNumParts = NumParts;
516   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
517          "Copying to an illegal type!");
518 
519   if (NumParts == 0)
520     return;
521 
522   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
523   EVT PartEVT = PartVT;
524   if (PartEVT == ValueVT) {
525     assert(NumParts == 1 && "No-op copy with multiple parts!");
526     Parts[0] = Val;
527     return;
528   }
529 
530   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
531     // If the parts cover more bits than the value has, promote the value.
532     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
533       assert(NumParts == 1 && "Do not know what to promote to!");
534       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
535     } else {
536       if (ValueVT.isFloatingPoint()) {
537         // FP values need to be bitcast, then extended if they are being put
538         // into a larger container.
539         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
540         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
541       }
542       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543              ValueVT.isInteger() &&
544              "Unknown mismatch!");
545       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
547       if (PartVT == MVT::x86mmx)
548         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549     }
550   } else if (PartBits == ValueVT.getSizeInBits()) {
551     // Different types of the same size.
552     assert(NumParts == 1 && PartEVT != ValueVT);
553     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
555     // If the parts cover less bits than value has, truncate the value.
556     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
557            ValueVT.isInteger() &&
558            "Unknown mismatch!");
559     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
560     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
561     if (PartVT == MVT::x86mmx)
562       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563   }
564 
565   // The value may have changed - recompute ValueVT.
566   ValueVT = Val.getValueType();
567   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
568          "Failed to tile the value with PartVT!");
569 
570   if (NumParts == 1) {
571     if (PartEVT != ValueVT) {
572       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
573                                         "scalar-to-vector conversion failed");
574       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
575     }
576 
577     Parts[0] = Val;
578     return;
579   }
580 
581   // Expand the value into multiple parts.
582   if (NumParts & (NumParts - 1)) {
583     // The number of parts is not a power of 2.  Split off and copy the tail.
584     assert(PartVT.isInteger() && ValueVT.isInteger() &&
585            "Do not know what to expand to!");
586     unsigned RoundParts = 1 << Log2_32(NumParts);
587     unsigned RoundBits = RoundParts * PartBits;
588     unsigned OddParts = NumParts - RoundParts;
589     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
590       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
591 
592     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
593                    CallConv);
594 
595     if (DAG.getDataLayout().isBigEndian())
596       // The odd parts were reversed by getCopyToParts - unreverse them.
597       std::reverse(Parts + RoundParts, Parts + NumParts);
598 
599     NumParts = RoundParts;
600     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
601     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
602   }
603 
604   // The number of parts is a power of 2.  Repeatedly bisect the value using
605   // EXTRACT_ELEMENT.
606   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
607                          EVT::getIntegerVT(*DAG.getContext(),
608                                            ValueVT.getSizeInBits()),
609                          Val);
610 
611   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
612     for (unsigned i = 0; i < NumParts; i += StepSize) {
613       unsigned ThisBits = StepSize * PartBits / 2;
614       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
615       SDValue &Part0 = Parts[i];
616       SDValue &Part1 = Parts[i+StepSize/2];
617 
618       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
619                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
620       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
621                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
622 
623       if (ThisBits == PartBits && ThisVT != PartVT) {
624         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
625         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
626       }
627     }
628   }
629 
630   if (DAG.getDataLayout().isBigEndian())
631     std::reverse(Parts, Parts + OrigNumParts);
632 }
633 
634 static SDValue widenVectorToPartType(SelectionDAG &DAG,
635                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
636   if (!PartVT.isVector())
637     return SDValue();
638 
639   EVT ValueVT = Val.getValueType();
640   unsigned PartNumElts = PartVT.getVectorNumElements();
641   unsigned ValueNumElts = ValueVT.getVectorNumElements();
642   if (PartNumElts > ValueNumElts &&
643       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
644     EVT ElementVT = PartVT.getVectorElementType();
645     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
646     // undef elements.
647     SmallVector<SDValue, 16> Ops;
648     DAG.ExtractVectorElements(Val, Ops);
649     SDValue EltUndef = DAG.getUNDEF(ElementVT);
650     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
651       Ops.push_back(EltUndef);
652 
653     // FIXME: Use CONCAT for 2x -> 4x.
654     return DAG.getBuildVector(PartVT, DL, Ops);
655   }
656 
657   return SDValue();
658 }
659 
660 /// getCopyToPartsVector - Create a series of nodes that contain the specified
661 /// value split into legal parts.
662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
663                                  SDValue Val, SDValue *Parts, unsigned NumParts,
664                                  MVT PartVT, const Value *V,
665                                  Optional<CallingConv::ID> CallConv) {
666   EVT ValueVT = Val.getValueType();
667   assert(ValueVT.isVector() && "Not a vector");
668   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
669   const bool IsABIRegCopy = CallConv.hasValue();
670 
671   if (NumParts == 1) {
672     EVT PartEVT = PartVT;
673     if (PartEVT == ValueVT) {
674       // Nothing to do.
675     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
676       // Bitconvert vector->vector case.
677       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
678     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
679       Val = Widened;
680     } else if (PartVT.isVector() &&
681                PartEVT.getVectorElementType().bitsGE(
682                  ValueVT.getVectorElementType()) &&
683                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
684 
685       // Promoted vector extract
686       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
687     } else {
688       if (ValueVT.getVectorNumElements() == 1) {
689         Val = DAG.getNode(
690             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
691             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
692       } else {
693         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
694                "lossy conversion of vector to scalar type");
695         EVT IntermediateType =
696             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
697         Val = DAG.getBitcast(IntermediateType, Val);
698         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
699       }
700     }
701 
702     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
703     Parts[0] = Val;
704     return;
705   }
706 
707   // Handle a multi-element vector.
708   EVT IntermediateVT;
709   MVT RegisterVT;
710   unsigned NumIntermediates;
711   unsigned NumRegs;
712   if (IsABIRegCopy) {
713     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
714         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
715         NumIntermediates, RegisterVT);
716   } else {
717     NumRegs =
718         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
719                                    NumIntermediates, RegisterVT);
720   }
721 
722   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
723   NumParts = NumRegs; // Silence a compiler warning.
724   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
725 
726   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
727     IntermediateVT.getVectorNumElements() : 1;
728 
729   // Convert the vector to the appropriate type if necessary.
730   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
731 
732   EVT BuiltVectorTy = EVT::getVectorVT(
733       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
734   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
735   if (ValueVT != BuiltVectorTy) {
736     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
737       Val = Widened;
738 
739     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
740   }
741 
742   // Split the vector into intermediate operands.
743   SmallVector<SDValue, 8> Ops(NumIntermediates);
744   for (unsigned i = 0; i != NumIntermediates; ++i) {
745     if (IntermediateVT.isVector()) {
746       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
747                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
748     } else {
749       Ops[i] = DAG.getNode(
750           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
751           DAG.getConstant(i, DL, IdxVT));
752     }
753   }
754 
755   // Split the intermediate operands into legal parts.
756   if (NumParts == NumIntermediates) {
757     // If the register was not expanded, promote or copy the value,
758     // as appropriate.
759     for (unsigned i = 0; i != NumParts; ++i)
760       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
761   } else if (NumParts > 0) {
762     // If the intermediate type was expanded, split each the value into
763     // legal parts.
764     assert(NumIntermediates != 0 && "division by zero");
765     assert(NumParts % NumIntermediates == 0 &&
766            "Must expand into a divisible number of parts!");
767     unsigned Factor = NumParts / NumIntermediates;
768     for (unsigned i = 0; i != NumIntermediates; ++i)
769       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
770                      CallConv);
771   }
772 }
773 
774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
775                            EVT valuevt, Optional<CallingConv::ID> CC)
776     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
777       RegCount(1, regs.size()), CallConv(CC) {}
778 
779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
780                            const DataLayout &DL, unsigned Reg, Type *Ty,
781                            Optional<CallingConv::ID> CC) {
782   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
783 
784   CallConv = CC;
785 
786   for (EVT ValueVT : ValueVTs) {
787     unsigned NumRegs =
788         isABIMangled()
789             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getNumRegisters(Context, ValueVT);
791     MVT RegisterVT =
792         isABIMangled()
793             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
794             : TLI.getRegisterType(Context, ValueVT);
795     for (unsigned i = 0; i != NumRegs; ++i)
796       Regs.push_back(Reg + i);
797     RegVTs.push_back(RegisterVT);
798     RegCount.push_back(NumRegs);
799     Reg += NumRegs;
800   }
801 }
802 
803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
804                                       FunctionLoweringInfo &FuncInfo,
805                                       const SDLoc &dl, SDValue &Chain,
806                                       SDValue *Flag, const Value *V) const {
807   // A Value with type {} or [0 x %t] needs no registers.
808   if (ValueVTs.empty())
809     return SDValue();
810 
811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
812 
813   // Assemble the legal parts into the final values.
814   SmallVector<SDValue, 4> Values(ValueVTs.size());
815   SmallVector<SDValue, 8> Parts;
816   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
817     // Copy the legal parts from the registers.
818     EVT ValueVT = ValueVTs[Value];
819     unsigned NumRegs = RegCount[Value];
820     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
821                                           *DAG.getContext(),
822                                           CallConv.getValue(), RegVTs[Value])
823                                     : RegVTs[Value];
824 
825     Parts.resize(NumRegs);
826     for (unsigned i = 0; i != NumRegs; ++i) {
827       SDValue P;
828       if (!Flag) {
829         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
830       } else {
831         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
832         *Flag = P.getValue(2);
833       }
834 
835       Chain = P.getValue(1);
836       Parts[i] = P;
837 
838       // If the source register was virtual and if we know something about it,
839       // add an assert node.
840       if (!Register::isVirtualRegister(Regs[Part + i]) ||
841           !RegisterVT.isInteger())
842         continue;
843 
844       const FunctionLoweringInfo::LiveOutInfo *LOI =
845         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
846       if (!LOI)
847         continue;
848 
849       unsigned RegSize = RegisterVT.getScalarSizeInBits();
850       unsigned NumSignBits = LOI->NumSignBits;
851       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
852 
853       if (NumZeroBits == RegSize) {
854         // The current value is a zero.
855         // Explicitly express that as it would be easier for
856         // optimizations to kick in.
857         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
858         continue;
859       }
860 
861       // FIXME: We capture more information than the dag can represent.  For
862       // now, just use the tightest assertzext/assertsext possible.
863       bool isSExt;
864       EVT FromVT(MVT::Other);
865       if (NumZeroBits) {
866         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
867         isSExt = false;
868       } else if (NumSignBits > 1) {
869         FromVT =
870             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
871         isSExt = true;
872       } else {
873         continue;
874       }
875       // Add an assertion node.
876       assert(FromVT != MVT::Other);
877       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
878                              RegisterVT, P, DAG.getValueType(FromVT));
879     }
880 
881     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
882                                      RegisterVT, ValueVT, V, CallConv);
883     Part += NumRegs;
884     Parts.clear();
885   }
886 
887   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
888 }
889 
890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
891                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
892                                  const Value *V,
893                                  ISD::NodeType PreferredExtendType) const {
894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
895   ISD::NodeType ExtendKind = PreferredExtendType;
896 
897   // Get the list of the values's legal parts.
898   unsigned NumRegs = Regs.size();
899   SmallVector<SDValue, 8> Parts(NumRegs);
900   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
901     unsigned NumParts = RegCount[Value];
902 
903     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
904                                           *DAG.getContext(),
905                                           CallConv.getValue(), RegVTs[Value])
906                                     : RegVTs[Value];
907 
908     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
909       ExtendKind = ISD::ZERO_EXTEND;
910 
911     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
912                    NumParts, RegisterVT, V, CallConv, ExtendKind);
913     Part += NumParts;
914   }
915 
916   // Copy the parts into the registers.
917   SmallVector<SDValue, 8> Chains(NumRegs);
918   for (unsigned i = 0; i != NumRegs; ++i) {
919     SDValue Part;
920     if (!Flag) {
921       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
922     } else {
923       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
924       *Flag = Part.getValue(1);
925     }
926 
927     Chains[i] = Part.getValue(0);
928   }
929 
930   if (NumRegs == 1 || Flag)
931     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
932     // flagged to it. That is the CopyToReg nodes and the user are considered
933     // a single scheduling unit. If we create a TokenFactor and return it as
934     // chain, then the TokenFactor is both a predecessor (operand) of the
935     // user as well as a successor (the TF operands are flagged to the user).
936     // c1, f1 = CopyToReg
937     // c2, f2 = CopyToReg
938     // c3     = TokenFactor c1, c2
939     // ...
940     //        = op c3, ..., f2
941     Chain = Chains[NumRegs-1];
942   else
943     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
944 }
945 
946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
947                                         unsigned MatchingIdx, const SDLoc &dl,
948                                         SelectionDAG &DAG,
949                                         std::vector<SDValue> &Ops) const {
950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
951 
952   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
953   if (HasMatching)
954     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
955   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
956     // Put the register class of the virtual registers in the flag word.  That
957     // way, later passes can recompute register class constraints for inline
958     // assembly as well as normal instructions.
959     // Don't do this for tied operands that can use the regclass information
960     // from the def.
961     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
962     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
963     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
964   }
965 
966   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
967   Ops.push_back(Res);
968 
969   if (Code == InlineAsm::Kind_Clobber) {
970     // Clobbers should always have a 1:1 mapping with registers, and may
971     // reference registers that have illegal (e.g. vector) types. Hence, we
972     // shouldn't try to apply any sort of splitting logic to them.
973     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
974            "No 1:1 mapping from clobbers to regs?");
975     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
976     (void)SP;
977     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
978       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
979       assert(
980           (Regs[I] != SP ||
981            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
982           "If we clobbered the stack pointer, MFI should know about it.");
983     }
984     return;
985   }
986 
987   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
988     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
989     MVT RegisterVT = RegVTs[Value];
990     for (unsigned i = 0; i != NumRegs; ++i) {
991       assert(Reg < Regs.size() && "Mismatch in # registers expected");
992       unsigned TheReg = Regs[Reg++];
993       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
994     }
995   }
996 }
997 
998 SmallVector<std::pair<unsigned, unsigned>, 4>
999 RegsForValue::getRegsAndSizes() const {
1000   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1001   unsigned I = 0;
1002   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1003     unsigned RegCount = std::get<0>(CountAndVT);
1004     MVT RegisterVT = std::get<1>(CountAndVT);
1005     unsigned RegisterSize = RegisterVT.getSizeInBits();
1006     for (unsigned E = I + RegCount; I != E; ++I)
1007       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1008   }
1009   return OutVec;
1010 }
1011 
1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1013                                const TargetLibraryInfo *li) {
1014   AA = aa;
1015   GFI = gfi;
1016   LibInfo = li;
1017   DL = &DAG.getDataLayout();
1018   Context = DAG.getContext();
1019   LPadToCallSiteMap.clear();
1020   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1021 }
1022 
1023 void SelectionDAGBuilder::clear() {
1024   NodeMap.clear();
1025   UnusedArgNodeMap.clear();
1026   PendingLoads.clear();
1027   PendingExports.clear();
1028   PendingConstrainedFP.clear();
1029   PendingConstrainedFPStrict.clear();
1030   CurInst = nullptr;
1031   HasTailCall = false;
1032   SDNodeOrder = LowestSDNodeOrder;
1033   StatepointLowering.clear();
1034 }
1035 
1036 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1037   DanglingDebugInfoMap.clear();
1038 }
1039 
1040 // Update DAG root to include dependencies on Pending chains.
1041 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1042   SDValue Root = DAG.getRoot();
1043 
1044   if (Pending.empty())
1045     return Root;
1046 
1047   // Add current root to PendingChains, unless we already indirectly
1048   // depend on it.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = Pending.size();
1051     for (; i != e; ++i) {
1052       assert(Pending[i].getNode()->getNumOperands() > 1);
1053       if (Pending[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       Pending.push_back(Root);
1059   }
1060 
1061   if (Pending.size() == 1)
1062     Root = Pending[0];
1063   else
1064     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1065 
1066   DAG.setRoot(Root);
1067   Pending.clear();
1068   return Root;
1069 }
1070 
1071 SDValue SelectionDAGBuilder::getMemoryRoot() {
1072   return updateRoot(PendingLoads);
1073 }
1074 
1075 SDValue SelectionDAGBuilder::getRoot() {
1076   // Chain up all pending constrained intrinsics together with all
1077   // pending loads, by simply appending them to PendingLoads and
1078   // then calling getMemoryRoot().
1079   PendingLoads.reserve(PendingLoads.size() +
1080                        PendingConstrainedFP.size() +
1081                        PendingConstrainedFPStrict.size());
1082   PendingLoads.append(PendingConstrainedFP.begin(),
1083                       PendingConstrainedFP.end());
1084   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1085                       PendingConstrainedFPStrict.end());
1086   PendingConstrainedFP.clear();
1087   PendingConstrainedFPStrict.clear();
1088   return getMemoryRoot();
1089 }
1090 
1091 SDValue SelectionDAGBuilder::getControlRoot() {
1092   // We need to emit pending fpexcept.strict constrained intrinsics,
1093   // so append them to the PendingExports list.
1094   PendingExports.append(PendingConstrainedFPStrict.begin(),
1095                         PendingConstrainedFPStrict.end());
1096   PendingConstrainedFPStrict.clear();
1097   return updateRoot(PendingExports);
1098 }
1099 
1100 void SelectionDAGBuilder::visit(const Instruction &I) {
1101   // Set up outgoing PHI node register values before emitting the terminator.
1102   if (I.isTerminator()) {
1103     HandlePHINodesInSuccessorBlocks(I.getParent());
1104   }
1105 
1106   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1107   if (!isa<DbgInfoIntrinsic>(I))
1108     ++SDNodeOrder;
1109 
1110   CurInst = &I;
1111 
1112   visit(I.getOpcode(), I);
1113 
1114   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1115     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1116     // maps to this instruction.
1117     // TODO: We could handle all flags (nsw, etc) here.
1118     // TODO: If an IR instruction maps to >1 node, only the final node will have
1119     //       flags set.
1120     if (SDNode *Node = getNodeForIRValue(&I)) {
1121       SDNodeFlags IncomingFlags;
1122       IncomingFlags.copyFMF(*FPMO);
1123       if (!Node->getFlags().isDefined())
1124         Node->setFlags(IncomingFlags);
1125       else
1126         Node->intersectFlagsWith(IncomingFlags);
1127     }
1128   }
1129   // Constrained FP intrinsics with fpexcept.ignore should also get
1130   // the NoFPExcept flag.
1131   if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I))
1132     if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore)
1133       if (SDNode *Node = getNodeForIRValue(&I)) {
1134         SDNodeFlags Flags = Node->getFlags();
1135         Flags.setNoFPExcept(true);
1136         Node->setFlags(Flags);
1137       }
1138 
1139   if (!I.isTerminator() && !HasTailCall &&
1140       !isStatepoint(&I)) // statepoints handle their exports internally
1141     CopyToExportRegsIfNeeded(&I);
1142 
1143   CurInst = nullptr;
1144 }
1145 
1146 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1147   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1148 }
1149 
1150 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1151   // Note: this doesn't use InstVisitor, because it has to work with
1152   // ConstantExpr's in addition to instructions.
1153   switch (Opcode) {
1154   default: llvm_unreachable("Unknown instruction type encountered!");
1155     // Build the switch statement using the Instruction.def file.
1156 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1157     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1158 #include "llvm/IR/Instruction.def"
1159   }
1160 }
1161 
1162 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1163                                                 const DIExpression *Expr) {
1164   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1165     const DbgValueInst *DI = DDI.getDI();
1166     DIVariable *DanglingVariable = DI->getVariable();
1167     DIExpression *DanglingExpr = DI->getExpression();
1168     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1169       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1170       return true;
1171     }
1172     return false;
1173   };
1174 
1175   for (auto &DDIMI : DanglingDebugInfoMap) {
1176     DanglingDebugInfoVector &DDIV = DDIMI.second;
1177 
1178     // If debug info is to be dropped, run it through final checks to see
1179     // whether it can be salvaged.
1180     for (auto &DDI : DDIV)
1181       if (isMatchingDbgValue(DDI))
1182         salvageUnresolvedDbgValue(DDI);
1183 
1184     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1185   }
1186 }
1187 
1188 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1189 // generate the debug data structures now that we've seen its definition.
1190 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1191                                                    SDValue Val) {
1192   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1193   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1194     return;
1195 
1196   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1197   for (auto &DDI : DDIV) {
1198     const DbgValueInst *DI = DDI.getDI();
1199     assert(DI && "Ill-formed DanglingDebugInfo");
1200     DebugLoc dl = DDI.getdl();
1201     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1202     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1203     DILocalVariable *Variable = DI->getVariable();
1204     DIExpression *Expr = DI->getExpression();
1205     assert(Variable->isValidLocationForIntrinsic(dl) &&
1206            "Expected inlined-at fields to agree");
1207     SDDbgValue *SDV;
1208     if (Val.getNode()) {
1209       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1210       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1211       // we couldn't resolve it directly when examining the DbgValue intrinsic
1212       // in the first place we should not be more successful here). Unless we
1213       // have some test case that prove this to be correct we should avoid
1214       // calling EmitFuncArgumentDbgValue here.
1215       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1216         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1217                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1218         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1219         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1220         // inserted after the definition of Val when emitting the instructions
1221         // after ISel. An alternative could be to teach
1222         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1223         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1224                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1225                    << ValSDNodeOrder << "\n");
1226         SDV = getDbgValue(Val, Variable, Expr, dl,
1227                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1228         DAG.AddDbgValue(SDV, Val.getNode(), false);
1229       } else
1230         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1231                           << "in EmitFuncArgumentDbgValue\n");
1232     } else {
1233       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1234       auto Undef =
1235           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1236       auto SDV =
1237           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1238       DAG.AddDbgValue(SDV, nullptr, false);
1239     }
1240   }
1241   DDIV.clear();
1242 }
1243 
1244 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1245   Value *V = DDI.getDI()->getValue();
1246   DILocalVariable *Var = DDI.getDI()->getVariable();
1247   DIExpression *Expr = DDI.getDI()->getExpression();
1248   DebugLoc DL = DDI.getdl();
1249   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1250   unsigned SDOrder = DDI.getSDNodeOrder();
1251 
1252   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1253   // that DW_OP_stack_value is desired.
1254   assert(isa<DbgValueInst>(DDI.getDI()));
1255   bool StackValue = true;
1256 
1257   // Can this Value can be encoded without any further work?
1258   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1259     return;
1260 
1261   // Attempt to salvage back through as many instructions as possible. Bail if
1262   // a non-instruction is seen, such as a constant expression or global
1263   // variable. FIXME: Further work could recover those too.
1264   while (isa<Instruction>(V)) {
1265     Instruction &VAsInst = *cast<Instruction>(V);
1266     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1267 
1268     // If we cannot salvage any further, and haven't yet found a suitable debug
1269     // expression, bail out.
1270     if (!NewExpr)
1271       break;
1272 
1273     // New value and expr now represent this debuginfo.
1274     V = VAsInst.getOperand(0);
1275     Expr = NewExpr;
1276 
1277     // Some kind of simplification occurred: check whether the operand of the
1278     // salvaged debug expression can be encoded in this DAG.
1279     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1280       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1281                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1282       return;
1283     }
1284   }
1285 
1286   // This was the final opportunity to salvage this debug information, and it
1287   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1288   // any earlier variable location.
1289   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1290   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1291   DAG.AddDbgValue(SDV, nullptr, false);
1292 
1293   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1294                     << "\n");
1295   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1296                     << "\n");
1297 }
1298 
1299 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1300                                            DIExpression *Expr, DebugLoc dl,
1301                                            DebugLoc InstDL, unsigned Order) {
1302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1303   SDDbgValue *SDV;
1304   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1305       isa<ConstantPointerNull>(V)) {
1306     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1307     DAG.AddDbgValue(SDV, nullptr, false);
1308     return true;
1309   }
1310 
1311   // If the Value is a frame index, we can create a FrameIndex debug value
1312   // without relying on the DAG at all.
1313   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1314     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1315     if (SI != FuncInfo.StaticAllocaMap.end()) {
1316       auto SDV =
1317           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1318                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1319       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1320       // is still available even if the SDNode gets optimized out.
1321       DAG.AddDbgValue(SDV, nullptr, false);
1322       return true;
1323     }
1324   }
1325 
1326   // Do not use getValue() in here; we don't want to generate code at
1327   // this point if it hasn't been done yet.
1328   SDValue N = NodeMap[V];
1329   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1330     N = UnusedArgNodeMap[V];
1331   if (N.getNode()) {
1332     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1333       return true;
1334     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1335     DAG.AddDbgValue(SDV, N.getNode(), false);
1336     return true;
1337   }
1338 
1339   // Special rules apply for the first dbg.values of parameter variables in a
1340   // function. Identify them by the fact they reference Argument Values, that
1341   // they're parameters, and they are parameters of the current function. We
1342   // need to let them dangle until they get an SDNode.
1343   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1344                        !InstDL.getInlinedAt();
1345   if (!IsParamOfFunc) {
1346     // The value is not used in this block yet (or it would have an SDNode).
1347     // We still want the value to appear for the user if possible -- if it has
1348     // an associated VReg, we can refer to that instead.
1349     auto VMI = FuncInfo.ValueMap.find(V);
1350     if (VMI != FuncInfo.ValueMap.end()) {
1351       unsigned Reg = VMI->second;
1352       // If this is a PHI node, it may be split up into several MI PHI nodes
1353       // (in FunctionLoweringInfo::set).
1354       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1355                        V->getType(), None);
1356       if (RFV.occupiesMultipleRegs()) {
1357         unsigned Offset = 0;
1358         unsigned BitsToDescribe = 0;
1359         if (auto VarSize = Var->getSizeInBits())
1360           BitsToDescribe = *VarSize;
1361         if (auto Fragment = Expr->getFragmentInfo())
1362           BitsToDescribe = Fragment->SizeInBits;
1363         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1364           unsigned RegisterSize = RegAndSize.second;
1365           // Bail out if all bits are described already.
1366           if (Offset >= BitsToDescribe)
1367             break;
1368           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1369               ? BitsToDescribe - Offset
1370               : RegisterSize;
1371           auto FragmentExpr = DIExpression::createFragmentExpression(
1372               Expr, Offset, FragmentSize);
1373           if (!FragmentExpr)
1374               continue;
1375           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1376                                     false, dl, SDNodeOrder);
1377           DAG.AddDbgValue(SDV, nullptr, false);
1378           Offset += RegisterSize;
1379         }
1380       } else {
1381         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1382         DAG.AddDbgValue(SDV, nullptr, false);
1383       }
1384       return true;
1385     }
1386   }
1387 
1388   return false;
1389 }
1390 
1391 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1392   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1393   for (auto &Pair : DanglingDebugInfoMap)
1394     for (auto &DDI : Pair.second)
1395       salvageUnresolvedDbgValue(DDI);
1396   clearDanglingDebugInfo();
1397 }
1398 
1399 /// getCopyFromRegs - If there was virtual register allocated for the value V
1400 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1401 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1402   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1403   SDValue Result;
1404 
1405   if (It != FuncInfo.ValueMap.end()) {
1406     unsigned InReg = It->second;
1407 
1408     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1409                      DAG.getDataLayout(), InReg, Ty,
1410                      None); // This is not an ABI copy.
1411     SDValue Chain = DAG.getEntryNode();
1412     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1413                                  V);
1414     resolveDanglingDebugInfo(V, Result);
1415   }
1416 
1417   return Result;
1418 }
1419 
1420 /// getValue - Return an SDValue for the given Value.
1421 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1422   // If we already have an SDValue for this value, use it. It's important
1423   // to do this first, so that we don't create a CopyFromReg if we already
1424   // have a regular SDValue.
1425   SDValue &N = NodeMap[V];
1426   if (N.getNode()) return N;
1427 
1428   // If there's a virtual register allocated and initialized for this
1429   // value, use it.
1430   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1431     return copyFromReg;
1432 
1433   // Otherwise create a new SDValue and remember it.
1434   SDValue Val = getValueImpl(V);
1435   NodeMap[V] = Val;
1436   resolveDanglingDebugInfo(V, Val);
1437   return Val;
1438 }
1439 
1440 // Return true if SDValue exists for the given Value
1441 bool SelectionDAGBuilder::findValue(const Value *V) const {
1442   return (NodeMap.find(V) != NodeMap.end()) ||
1443     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1444 }
1445 
1446 /// getNonRegisterValue - Return an SDValue for the given Value, but
1447 /// don't look in FuncInfo.ValueMap for a virtual register.
1448 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1449   // If we already have an SDValue for this value, use it.
1450   SDValue &N = NodeMap[V];
1451   if (N.getNode()) {
1452     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1453       // Remove the debug location from the node as the node is about to be used
1454       // in a location which may differ from the original debug location.  This
1455       // is relevant to Constant and ConstantFP nodes because they can appear
1456       // as constant expressions inside PHI nodes.
1457       N->setDebugLoc(DebugLoc());
1458     }
1459     return N;
1460   }
1461 
1462   // Otherwise create a new SDValue and remember it.
1463   SDValue Val = getValueImpl(V);
1464   NodeMap[V] = Val;
1465   resolveDanglingDebugInfo(V, Val);
1466   return Val;
1467 }
1468 
1469 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1470 /// Create an SDValue for the given value.
1471 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1472   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1473 
1474   if (const Constant *C = dyn_cast<Constant>(V)) {
1475     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1476 
1477     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1478       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1479 
1480     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1481       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1482 
1483     if (isa<ConstantPointerNull>(C)) {
1484       unsigned AS = V->getType()->getPointerAddressSpace();
1485       return DAG.getConstant(0, getCurSDLoc(),
1486                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1487     }
1488 
1489     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1490       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1491 
1492     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1493       return DAG.getUNDEF(VT);
1494 
1495     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1496       visit(CE->getOpcode(), *CE);
1497       SDValue N1 = NodeMap[V];
1498       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1499       return N1;
1500     }
1501 
1502     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1503       SmallVector<SDValue, 4> Constants;
1504       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1505            OI != OE; ++OI) {
1506         SDNode *Val = getValue(*OI).getNode();
1507         // If the operand is an empty aggregate, there are no values.
1508         if (!Val) continue;
1509         // Add each leaf value from the operand to the Constants list
1510         // to form a flattened list of all the values.
1511         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1512           Constants.push_back(SDValue(Val, i));
1513       }
1514 
1515       return DAG.getMergeValues(Constants, getCurSDLoc());
1516     }
1517 
1518     if (const ConstantDataSequential *CDS =
1519           dyn_cast<ConstantDataSequential>(C)) {
1520       SmallVector<SDValue, 4> Ops;
1521       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1522         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1523         // Add each leaf value from the operand to the Constants list
1524         // to form a flattened list of all the values.
1525         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1526           Ops.push_back(SDValue(Val, i));
1527       }
1528 
1529       if (isa<ArrayType>(CDS->getType()))
1530         return DAG.getMergeValues(Ops, getCurSDLoc());
1531       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1532     }
1533 
1534     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1535       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1536              "Unknown struct or array constant!");
1537 
1538       SmallVector<EVT, 4> ValueVTs;
1539       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1540       unsigned NumElts = ValueVTs.size();
1541       if (NumElts == 0)
1542         return SDValue(); // empty struct
1543       SmallVector<SDValue, 4> Constants(NumElts);
1544       for (unsigned i = 0; i != NumElts; ++i) {
1545         EVT EltVT = ValueVTs[i];
1546         if (isa<UndefValue>(C))
1547           Constants[i] = DAG.getUNDEF(EltVT);
1548         else if (EltVT.isFloatingPoint())
1549           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1550         else
1551           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1552       }
1553 
1554       return DAG.getMergeValues(Constants, getCurSDLoc());
1555     }
1556 
1557     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1558       return DAG.getBlockAddress(BA, VT);
1559 
1560     VectorType *VecTy = cast<VectorType>(V->getType());
1561     unsigned NumElements = VecTy->getNumElements();
1562 
1563     // Now that we know the number and type of the elements, get that number of
1564     // elements into the Ops array based on what kind of constant it is.
1565     SmallVector<SDValue, 16> Ops;
1566     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1567       for (unsigned i = 0; i != NumElements; ++i)
1568         Ops.push_back(getValue(CV->getOperand(i)));
1569     } else {
1570       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1571       EVT EltVT =
1572           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1573 
1574       SDValue Op;
1575       if (EltVT.isFloatingPoint())
1576         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1577       else
1578         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1579       Ops.assign(NumElements, Op);
1580     }
1581 
1582     // Create a BUILD_VECTOR node.
1583     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1584   }
1585 
1586   // If this is a static alloca, generate it as the frameindex instead of
1587   // computation.
1588   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1589     DenseMap<const AllocaInst*, int>::iterator SI =
1590       FuncInfo.StaticAllocaMap.find(AI);
1591     if (SI != FuncInfo.StaticAllocaMap.end())
1592       return DAG.getFrameIndex(SI->second,
1593                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1594   }
1595 
1596   // If this is an instruction which fast-isel has deferred, select it now.
1597   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1598     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1599 
1600     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1601                      Inst->getType(), getABIRegCopyCC(V));
1602     SDValue Chain = DAG.getEntryNode();
1603     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1604   }
1605 
1606   llvm_unreachable("Can't get register for value!");
1607 }
1608 
1609 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1610   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1611   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1612   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1613   bool IsSEH = isAsynchronousEHPersonality(Pers);
1614   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1615   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1616   if (!IsSEH)
1617     CatchPadMBB->setIsEHScopeEntry();
1618   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1619   if (IsMSVCCXX || IsCoreCLR)
1620     CatchPadMBB->setIsEHFuncletEntry();
1621   // Wasm does not need catchpads anymore
1622   if (!IsWasmCXX)
1623     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1624                             getControlRoot()));
1625 }
1626 
1627 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1628   // Update machine-CFG edge.
1629   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1630   FuncInfo.MBB->addSuccessor(TargetMBB);
1631 
1632   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1633   bool IsSEH = isAsynchronousEHPersonality(Pers);
1634   if (IsSEH) {
1635     // If this is not a fall-through branch or optimizations are switched off,
1636     // emit the branch.
1637     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1638         TM.getOptLevel() == CodeGenOpt::None)
1639       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1640                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1641     return;
1642   }
1643 
1644   // Figure out the funclet membership for the catchret's successor.
1645   // This will be used by the FuncletLayout pass to determine how to order the
1646   // BB's.
1647   // A 'catchret' returns to the outer scope's color.
1648   Value *ParentPad = I.getCatchSwitchParentPad();
1649   const BasicBlock *SuccessorColor;
1650   if (isa<ConstantTokenNone>(ParentPad))
1651     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1652   else
1653     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1654   assert(SuccessorColor && "No parent funclet for catchret!");
1655   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1656   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1657 
1658   // Create the terminator node.
1659   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1660                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1661                             DAG.getBasicBlock(SuccessorColorMBB));
1662   DAG.setRoot(Ret);
1663 }
1664 
1665 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1666   // Don't emit any special code for the cleanuppad instruction. It just marks
1667   // the start of an EH scope/funclet.
1668   FuncInfo.MBB->setIsEHScopeEntry();
1669   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1670   if (Pers != EHPersonality::Wasm_CXX) {
1671     FuncInfo.MBB->setIsEHFuncletEntry();
1672     FuncInfo.MBB->setIsCleanupFuncletEntry();
1673   }
1674 }
1675 
1676 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1677 // the control flow always stops at the single catch pad, as it does for a
1678 // cleanup pad. In case the exception caught is not of the types the catch pad
1679 // catches, it will be rethrown by a rethrow.
1680 static void findWasmUnwindDestinations(
1681     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1682     BranchProbability Prob,
1683     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1684         &UnwindDests) {
1685   while (EHPadBB) {
1686     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1687     if (isa<CleanupPadInst>(Pad)) {
1688       // Stop on cleanup pads.
1689       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1690       UnwindDests.back().first->setIsEHScopeEntry();
1691       break;
1692     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1693       // Add the catchpad handlers to the possible destinations. We don't
1694       // continue to the unwind destination of the catchswitch for wasm.
1695       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1696         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1697         UnwindDests.back().first->setIsEHScopeEntry();
1698       }
1699       break;
1700     } else {
1701       continue;
1702     }
1703   }
1704 }
1705 
1706 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1707 /// many places it could ultimately go. In the IR, we have a single unwind
1708 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1709 /// This function skips over imaginary basic blocks that hold catchswitch
1710 /// instructions, and finds all the "real" machine
1711 /// basic block destinations. As those destinations may not be successors of
1712 /// EHPadBB, here we also calculate the edge probability to those destinations.
1713 /// The passed-in Prob is the edge probability to EHPadBB.
1714 static void findUnwindDestinations(
1715     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1716     BranchProbability Prob,
1717     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1718         &UnwindDests) {
1719   EHPersonality Personality =
1720     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1721   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1722   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1723   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1724   bool IsSEH = isAsynchronousEHPersonality(Personality);
1725 
1726   if (IsWasmCXX) {
1727     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1728     assert(UnwindDests.size() <= 1 &&
1729            "There should be at most one unwind destination for wasm");
1730     return;
1731   }
1732 
1733   while (EHPadBB) {
1734     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1735     BasicBlock *NewEHPadBB = nullptr;
1736     if (isa<LandingPadInst>(Pad)) {
1737       // Stop on landingpads. They are not funclets.
1738       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1739       break;
1740     } else if (isa<CleanupPadInst>(Pad)) {
1741       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1742       // personalities.
1743       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1744       UnwindDests.back().first->setIsEHScopeEntry();
1745       UnwindDests.back().first->setIsEHFuncletEntry();
1746       break;
1747     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1748       // Add the catchpad handlers to the possible destinations.
1749       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1750         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1751         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1752         if (IsMSVCCXX || IsCoreCLR)
1753           UnwindDests.back().first->setIsEHFuncletEntry();
1754         if (!IsSEH)
1755           UnwindDests.back().first->setIsEHScopeEntry();
1756       }
1757       NewEHPadBB = CatchSwitch->getUnwindDest();
1758     } else {
1759       continue;
1760     }
1761 
1762     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1763     if (BPI && NewEHPadBB)
1764       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1765     EHPadBB = NewEHPadBB;
1766   }
1767 }
1768 
1769 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1770   // Update successor info.
1771   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1772   auto UnwindDest = I.getUnwindDest();
1773   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1774   BranchProbability UnwindDestProb =
1775       (BPI && UnwindDest)
1776           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1777           : BranchProbability::getZero();
1778   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1779   for (auto &UnwindDest : UnwindDests) {
1780     UnwindDest.first->setIsEHPad();
1781     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1782   }
1783   FuncInfo.MBB->normalizeSuccProbs();
1784 
1785   // Create the terminator node.
1786   SDValue Ret =
1787       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1788   DAG.setRoot(Ret);
1789 }
1790 
1791 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1792   report_fatal_error("visitCatchSwitch not yet implemented!");
1793 }
1794 
1795 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1797   auto &DL = DAG.getDataLayout();
1798   SDValue Chain = getControlRoot();
1799   SmallVector<ISD::OutputArg, 8> Outs;
1800   SmallVector<SDValue, 8> OutVals;
1801 
1802   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1803   // lower
1804   //
1805   //   %val = call <ty> @llvm.experimental.deoptimize()
1806   //   ret <ty> %val
1807   //
1808   // differently.
1809   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1810     LowerDeoptimizingReturn();
1811     return;
1812   }
1813 
1814   if (!FuncInfo.CanLowerReturn) {
1815     unsigned DemoteReg = FuncInfo.DemoteRegister;
1816     const Function *F = I.getParent()->getParent();
1817 
1818     // Emit a store of the return value through the virtual register.
1819     // Leave Outs empty so that LowerReturn won't try to load return
1820     // registers the usual way.
1821     SmallVector<EVT, 1> PtrValueVTs;
1822     ComputeValueVTs(TLI, DL,
1823                     F->getReturnType()->getPointerTo(
1824                         DAG.getDataLayout().getAllocaAddrSpace()),
1825                     PtrValueVTs);
1826 
1827     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1828                                         DemoteReg, PtrValueVTs[0]);
1829     SDValue RetOp = getValue(I.getOperand(0));
1830 
1831     SmallVector<EVT, 4> ValueVTs, MemVTs;
1832     SmallVector<uint64_t, 4> Offsets;
1833     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1834                     &Offsets);
1835     unsigned NumValues = ValueVTs.size();
1836 
1837     SmallVector<SDValue, 4> Chains(NumValues);
1838     for (unsigned i = 0; i != NumValues; ++i) {
1839       // An aggregate return value cannot wrap around the address space, so
1840       // offsets to its parts don't wrap either.
1841       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1842 
1843       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1844       if (MemVTs[i] != ValueVTs[i])
1845         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1846       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1847           // FIXME: better loc info would be nice.
1848           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1849     }
1850 
1851     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1852                         MVT::Other, Chains);
1853   } else if (I.getNumOperands() != 0) {
1854     SmallVector<EVT, 4> ValueVTs;
1855     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1856     unsigned NumValues = ValueVTs.size();
1857     if (NumValues) {
1858       SDValue RetOp = getValue(I.getOperand(0));
1859 
1860       const Function *F = I.getParent()->getParent();
1861 
1862       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1863           I.getOperand(0)->getType(), F->getCallingConv(),
1864           /*IsVarArg*/ false);
1865 
1866       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1867       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1868                                           Attribute::SExt))
1869         ExtendKind = ISD::SIGN_EXTEND;
1870       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1871                                                Attribute::ZExt))
1872         ExtendKind = ISD::ZERO_EXTEND;
1873 
1874       LLVMContext &Context = F->getContext();
1875       bool RetInReg = F->getAttributes().hasAttribute(
1876           AttributeList::ReturnIndex, Attribute::InReg);
1877 
1878       for (unsigned j = 0; j != NumValues; ++j) {
1879         EVT VT = ValueVTs[j];
1880 
1881         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1882           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1883 
1884         CallingConv::ID CC = F->getCallingConv();
1885 
1886         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1887         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1888         SmallVector<SDValue, 4> Parts(NumParts);
1889         getCopyToParts(DAG, getCurSDLoc(),
1890                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1891                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1892 
1893         // 'inreg' on function refers to return value
1894         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1895         if (RetInReg)
1896           Flags.setInReg();
1897 
1898         if (I.getOperand(0)->getType()->isPointerTy()) {
1899           Flags.setPointer();
1900           Flags.setPointerAddrSpace(
1901               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1902         }
1903 
1904         if (NeedsRegBlock) {
1905           Flags.setInConsecutiveRegs();
1906           if (j == NumValues - 1)
1907             Flags.setInConsecutiveRegsLast();
1908         }
1909 
1910         // Propagate extension type if any
1911         if (ExtendKind == ISD::SIGN_EXTEND)
1912           Flags.setSExt();
1913         else if (ExtendKind == ISD::ZERO_EXTEND)
1914           Flags.setZExt();
1915 
1916         for (unsigned i = 0; i < NumParts; ++i) {
1917           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1918                                         VT, /*isfixed=*/true, 0, 0));
1919           OutVals.push_back(Parts[i]);
1920         }
1921       }
1922     }
1923   }
1924 
1925   // Push in swifterror virtual register as the last element of Outs. This makes
1926   // sure swifterror virtual register will be returned in the swifterror
1927   // physical register.
1928   const Function *F = I.getParent()->getParent();
1929   if (TLI.supportSwiftError() &&
1930       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1931     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1932     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1933     Flags.setSwiftError();
1934     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1935                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1936                                   true /*isfixed*/, 1 /*origidx*/,
1937                                   0 /*partOffs*/));
1938     // Create SDNode for the swifterror virtual register.
1939     OutVals.push_back(
1940         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1941                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1942                         EVT(TLI.getPointerTy(DL))));
1943   }
1944 
1945   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1946   CallingConv::ID CallConv =
1947     DAG.getMachineFunction().getFunction().getCallingConv();
1948   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1949       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1950 
1951   // Verify that the target's LowerReturn behaved as expected.
1952   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1953          "LowerReturn didn't return a valid chain!");
1954 
1955   // Update the DAG with the new chain value resulting from return lowering.
1956   DAG.setRoot(Chain);
1957 }
1958 
1959 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1960 /// created for it, emit nodes to copy the value into the virtual
1961 /// registers.
1962 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1963   // Skip empty types
1964   if (V->getType()->isEmptyTy())
1965     return;
1966 
1967   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1968   if (VMI != FuncInfo.ValueMap.end()) {
1969     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1970     CopyValueToVirtualRegister(V, VMI->second);
1971   }
1972 }
1973 
1974 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1975 /// the current basic block, add it to ValueMap now so that we'll get a
1976 /// CopyTo/FromReg.
1977 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1978   // No need to export constants.
1979   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1980 
1981   // Already exported?
1982   if (FuncInfo.isExportedInst(V)) return;
1983 
1984   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1985   CopyValueToVirtualRegister(V, Reg);
1986 }
1987 
1988 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1989                                                      const BasicBlock *FromBB) {
1990   // The operands of the setcc have to be in this block.  We don't know
1991   // how to export them from some other block.
1992   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1993     // Can export from current BB.
1994     if (VI->getParent() == FromBB)
1995       return true;
1996 
1997     // Is already exported, noop.
1998     return FuncInfo.isExportedInst(V);
1999   }
2000 
2001   // If this is an argument, we can export it if the BB is the entry block or
2002   // if it is already exported.
2003   if (isa<Argument>(V)) {
2004     if (FromBB == &FromBB->getParent()->getEntryBlock())
2005       return true;
2006 
2007     // Otherwise, can only export this if it is already exported.
2008     return FuncInfo.isExportedInst(V);
2009   }
2010 
2011   // Otherwise, constants can always be exported.
2012   return true;
2013 }
2014 
2015 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2016 BranchProbability
2017 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2018                                         const MachineBasicBlock *Dst) const {
2019   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2020   const BasicBlock *SrcBB = Src->getBasicBlock();
2021   const BasicBlock *DstBB = Dst->getBasicBlock();
2022   if (!BPI) {
2023     // If BPI is not available, set the default probability as 1 / N, where N is
2024     // the number of successors.
2025     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2026     return BranchProbability(1, SuccSize);
2027   }
2028   return BPI->getEdgeProbability(SrcBB, DstBB);
2029 }
2030 
2031 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2032                                                MachineBasicBlock *Dst,
2033                                                BranchProbability Prob) {
2034   if (!FuncInfo.BPI)
2035     Src->addSuccessorWithoutProb(Dst);
2036   else {
2037     if (Prob.isUnknown())
2038       Prob = getEdgeProbability(Src, Dst);
2039     Src->addSuccessor(Dst, Prob);
2040   }
2041 }
2042 
2043 static bool InBlock(const Value *V, const BasicBlock *BB) {
2044   if (const Instruction *I = dyn_cast<Instruction>(V))
2045     return I->getParent() == BB;
2046   return true;
2047 }
2048 
2049 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2050 /// This function emits a branch and is used at the leaves of an OR or an
2051 /// AND operator tree.
2052 void
2053 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2054                                                   MachineBasicBlock *TBB,
2055                                                   MachineBasicBlock *FBB,
2056                                                   MachineBasicBlock *CurBB,
2057                                                   MachineBasicBlock *SwitchBB,
2058                                                   BranchProbability TProb,
2059                                                   BranchProbability FProb,
2060                                                   bool InvertCond) {
2061   const BasicBlock *BB = CurBB->getBasicBlock();
2062 
2063   // If the leaf of the tree is a comparison, merge the condition into
2064   // the caseblock.
2065   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2066     // The operands of the cmp have to be in this block.  We don't know
2067     // how to export them from some other block.  If this is the first block
2068     // of the sequence, no exporting is needed.
2069     if (CurBB == SwitchBB ||
2070         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2071          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2072       ISD::CondCode Condition;
2073       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2074         ICmpInst::Predicate Pred =
2075             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2076         Condition = getICmpCondCode(Pred);
2077       } else {
2078         const FCmpInst *FC = cast<FCmpInst>(Cond);
2079         FCmpInst::Predicate Pred =
2080             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2081         Condition = getFCmpCondCode(Pred);
2082         if (TM.Options.NoNaNsFPMath)
2083           Condition = getFCmpCodeWithoutNaN(Condition);
2084       }
2085 
2086       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2087                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2088       SL->SwitchCases.push_back(CB);
2089       return;
2090     }
2091   }
2092 
2093   // Create a CaseBlock record representing this branch.
2094   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2095   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2096                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2097   SL->SwitchCases.push_back(CB);
2098 }
2099 
2100 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2101                                                MachineBasicBlock *TBB,
2102                                                MachineBasicBlock *FBB,
2103                                                MachineBasicBlock *CurBB,
2104                                                MachineBasicBlock *SwitchBB,
2105                                                Instruction::BinaryOps Opc,
2106                                                BranchProbability TProb,
2107                                                BranchProbability FProb,
2108                                                bool InvertCond) {
2109   // Skip over not part of the tree and remember to invert op and operands at
2110   // next level.
2111   Value *NotCond;
2112   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2113       InBlock(NotCond, CurBB->getBasicBlock())) {
2114     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2115                          !InvertCond);
2116     return;
2117   }
2118 
2119   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2120   // Compute the effective opcode for Cond, taking into account whether it needs
2121   // to be inverted, e.g.
2122   //   and (not (or A, B)), C
2123   // gets lowered as
2124   //   and (and (not A, not B), C)
2125   unsigned BOpc = 0;
2126   if (BOp) {
2127     BOpc = BOp->getOpcode();
2128     if (InvertCond) {
2129       if (BOpc == Instruction::And)
2130         BOpc = Instruction::Or;
2131       else if (BOpc == Instruction::Or)
2132         BOpc = Instruction::And;
2133     }
2134   }
2135 
2136   // If this node is not part of the or/and tree, emit it as a branch.
2137   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2138       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2139       BOp->getParent() != CurBB->getBasicBlock() ||
2140       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2141       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2142     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2143                                  TProb, FProb, InvertCond);
2144     return;
2145   }
2146 
2147   //  Create TmpBB after CurBB.
2148   MachineFunction::iterator BBI(CurBB);
2149   MachineFunction &MF = DAG.getMachineFunction();
2150   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2151   CurBB->getParent()->insert(++BBI, TmpBB);
2152 
2153   if (Opc == Instruction::Or) {
2154     // Codegen X | Y as:
2155     // BB1:
2156     //   jmp_if_X TBB
2157     //   jmp TmpBB
2158     // TmpBB:
2159     //   jmp_if_Y TBB
2160     //   jmp FBB
2161     //
2162 
2163     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2164     // The requirement is that
2165     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2166     //     = TrueProb for original BB.
2167     // Assuming the original probabilities are A and B, one choice is to set
2168     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2169     // A/(1+B) and 2B/(1+B). This choice assumes that
2170     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2171     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2172     // TmpBB, but the math is more complicated.
2173 
2174     auto NewTrueProb = TProb / 2;
2175     auto NewFalseProb = TProb / 2 + FProb;
2176     // Emit the LHS condition.
2177     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2178                          NewTrueProb, NewFalseProb, InvertCond);
2179 
2180     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2181     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2182     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2183     // Emit the RHS condition into TmpBB.
2184     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2185                          Probs[0], Probs[1], InvertCond);
2186   } else {
2187     assert(Opc == Instruction::And && "Unknown merge op!");
2188     // Codegen X & Y as:
2189     // BB1:
2190     //   jmp_if_X TmpBB
2191     //   jmp FBB
2192     // TmpBB:
2193     //   jmp_if_Y TBB
2194     //   jmp FBB
2195     //
2196     //  This requires creation of TmpBB after CurBB.
2197 
2198     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2199     // The requirement is that
2200     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2201     //     = FalseProb for original BB.
2202     // Assuming the original probabilities are A and B, one choice is to set
2203     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2204     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2205     // TrueProb for BB1 * FalseProb for TmpBB.
2206 
2207     auto NewTrueProb = TProb + FProb / 2;
2208     auto NewFalseProb = FProb / 2;
2209     // Emit the LHS condition.
2210     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2211                          NewTrueProb, NewFalseProb, InvertCond);
2212 
2213     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2214     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2215     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2216     // Emit the RHS condition into TmpBB.
2217     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2218                          Probs[0], Probs[1], InvertCond);
2219   }
2220 }
2221 
2222 /// If the set of cases should be emitted as a series of branches, return true.
2223 /// If we should emit this as a bunch of and/or'd together conditions, return
2224 /// false.
2225 bool
2226 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2227   if (Cases.size() != 2) return true;
2228 
2229   // If this is two comparisons of the same values or'd or and'd together, they
2230   // will get folded into a single comparison, so don't emit two blocks.
2231   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2232        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2233       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2234        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2235     return false;
2236   }
2237 
2238   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2239   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2240   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2241       Cases[0].CC == Cases[1].CC &&
2242       isa<Constant>(Cases[0].CmpRHS) &&
2243       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2244     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2245       return false;
2246     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2247       return false;
2248   }
2249 
2250   return true;
2251 }
2252 
2253 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2254   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2255 
2256   // Update machine-CFG edges.
2257   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2258 
2259   if (I.isUnconditional()) {
2260     // Update machine-CFG edges.
2261     BrMBB->addSuccessor(Succ0MBB);
2262 
2263     // If this is not a fall-through branch or optimizations are switched off,
2264     // emit the branch.
2265     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2266       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2267                               MVT::Other, getControlRoot(),
2268                               DAG.getBasicBlock(Succ0MBB)));
2269 
2270     return;
2271   }
2272 
2273   // If this condition is one of the special cases we handle, do special stuff
2274   // now.
2275   const Value *CondVal = I.getCondition();
2276   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2277 
2278   // If this is a series of conditions that are or'd or and'd together, emit
2279   // this as a sequence of branches instead of setcc's with and/or operations.
2280   // As long as jumps are not expensive, this should improve performance.
2281   // For example, instead of something like:
2282   //     cmp A, B
2283   //     C = seteq
2284   //     cmp D, E
2285   //     F = setle
2286   //     or C, F
2287   //     jnz foo
2288   // Emit:
2289   //     cmp A, B
2290   //     je foo
2291   //     cmp D, E
2292   //     jle foo
2293   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2294     Instruction::BinaryOps Opcode = BOp->getOpcode();
2295     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2296         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2297         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2298       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2299                            Opcode,
2300                            getEdgeProbability(BrMBB, Succ0MBB),
2301                            getEdgeProbability(BrMBB, Succ1MBB),
2302                            /*InvertCond=*/false);
2303       // If the compares in later blocks need to use values not currently
2304       // exported from this block, export them now.  This block should always
2305       // be the first entry.
2306       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2307 
2308       // Allow some cases to be rejected.
2309       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2310         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2311           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2312           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2313         }
2314 
2315         // Emit the branch for this block.
2316         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2317         SL->SwitchCases.erase(SL->SwitchCases.begin());
2318         return;
2319       }
2320 
2321       // Okay, we decided not to do this, remove any inserted MBB's and clear
2322       // SwitchCases.
2323       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2324         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2325 
2326       SL->SwitchCases.clear();
2327     }
2328   }
2329 
2330   // Create a CaseBlock record representing this branch.
2331   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2332                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2333 
2334   // Use visitSwitchCase to actually insert the fast branch sequence for this
2335   // cond branch.
2336   visitSwitchCase(CB, BrMBB);
2337 }
2338 
2339 /// visitSwitchCase - Emits the necessary code to represent a single node in
2340 /// the binary search tree resulting from lowering a switch instruction.
2341 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2342                                           MachineBasicBlock *SwitchBB) {
2343   SDValue Cond;
2344   SDValue CondLHS = getValue(CB.CmpLHS);
2345   SDLoc dl = CB.DL;
2346 
2347   if (CB.CC == ISD::SETTRUE) {
2348     // Branch or fall through to TrueBB.
2349     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2350     SwitchBB->normalizeSuccProbs();
2351     if (CB.TrueBB != NextBlock(SwitchBB)) {
2352       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2353                               DAG.getBasicBlock(CB.TrueBB)));
2354     }
2355     return;
2356   }
2357 
2358   auto &TLI = DAG.getTargetLoweringInfo();
2359   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2360 
2361   // Build the setcc now.
2362   if (!CB.CmpMHS) {
2363     // Fold "(X == true)" to X and "(X == false)" to !X to
2364     // handle common cases produced by branch lowering.
2365     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2366         CB.CC == ISD::SETEQ)
2367       Cond = CondLHS;
2368     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2369              CB.CC == ISD::SETEQ) {
2370       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2371       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2372     } else {
2373       SDValue CondRHS = getValue(CB.CmpRHS);
2374 
2375       // If a pointer's DAG type is larger than its memory type then the DAG
2376       // values are zero-extended. This breaks signed comparisons so truncate
2377       // back to the underlying type before doing the compare.
2378       if (CondLHS.getValueType() != MemVT) {
2379         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2380         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2381       }
2382       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2383     }
2384   } else {
2385     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2386 
2387     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2388     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2389 
2390     SDValue CmpOp = getValue(CB.CmpMHS);
2391     EVT VT = CmpOp.getValueType();
2392 
2393     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2394       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2395                           ISD::SETLE);
2396     } else {
2397       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2398                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2399       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2400                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2401     }
2402   }
2403 
2404   // Update successor info
2405   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2406   // TrueBB and FalseBB are always different unless the incoming IR is
2407   // degenerate. This only happens when running llc on weird IR.
2408   if (CB.TrueBB != CB.FalseBB)
2409     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2410   SwitchBB->normalizeSuccProbs();
2411 
2412   // If the lhs block is the next block, invert the condition so that we can
2413   // fall through to the lhs instead of the rhs block.
2414   if (CB.TrueBB == NextBlock(SwitchBB)) {
2415     std::swap(CB.TrueBB, CB.FalseBB);
2416     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2417     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2418   }
2419 
2420   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2421                                MVT::Other, getControlRoot(), Cond,
2422                                DAG.getBasicBlock(CB.TrueBB));
2423 
2424   // Insert the false branch. Do this even if it's a fall through branch,
2425   // this makes it easier to do DAG optimizations which require inverting
2426   // the branch condition.
2427   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2428                        DAG.getBasicBlock(CB.FalseBB));
2429 
2430   DAG.setRoot(BrCond);
2431 }
2432 
2433 /// visitJumpTable - Emit JumpTable node in the current MBB
2434 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2435   // Emit the code for the jump table
2436   assert(JT.Reg != -1U && "Should lower JT Header first!");
2437   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2438   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2439                                      JT.Reg, PTy);
2440   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2441   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2442                                     MVT::Other, Index.getValue(1),
2443                                     Table, Index);
2444   DAG.setRoot(BrJumpTable);
2445 }
2446 
2447 /// visitJumpTableHeader - This function emits necessary code to produce index
2448 /// in the JumpTable from switch case.
2449 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2450                                                JumpTableHeader &JTH,
2451                                                MachineBasicBlock *SwitchBB) {
2452   SDLoc dl = getCurSDLoc();
2453 
2454   // Subtract the lowest switch case value from the value being switched on.
2455   SDValue SwitchOp = getValue(JTH.SValue);
2456   EVT VT = SwitchOp.getValueType();
2457   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2458                             DAG.getConstant(JTH.First, dl, VT));
2459 
2460   // The SDNode we just created, which holds the value being switched on minus
2461   // the smallest case value, needs to be copied to a virtual register so it
2462   // can be used as an index into the jump table in a subsequent basic block.
2463   // This value may be smaller or larger than the target's pointer type, and
2464   // therefore require extension or truncating.
2465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2466   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2467 
2468   unsigned JumpTableReg =
2469       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2470   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2471                                     JumpTableReg, SwitchOp);
2472   JT.Reg = JumpTableReg;
2473 
2474   if (!JTH.OmitRangeCheck) {
2475     // Emit the range check for the jump table, and branch to the default block
2476     // for the switch statement if the value being switched on exceeds the
2477     // largest case in the switch.
2478     SDValue CMP = DAG.getSetCC(
2479         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2480                                    Sub.getValueType()),
2481         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2482 
2483     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2484                                  MVT::Other, CopyTo, CMP,
2485                                  DAG.getBasicBlock(JT.Default));
2486 
2487     // Avoid emitting unnecessary branches to the next block.
2488     if (JT.MBB != NextBlock(SwitchBB))
2489       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2490                            DAG.getBasicBlock(JT.MBB));
2491 
2492     DAG.setRoot(BrCond);
2493   } else {
2494     // Avoid emitting unnecessary branches to the next block.
2495     if (JT.MBB != NextBlock(SwitchBB))
2496       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2497                               DAG.getBasicBlock(JT.MBB)));
2498     else
2499       DAG.setRoot(CopyTo);
2500   }
2501 }
2502 
2503 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2504 /// variable if there exists one.
2505 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2506                                  SDValue &Chain) {
2507   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2508   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2509   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2510   MachineFunction &MF = DAG.getMachineFunction();
2511   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2512   MachineSDNode *Node =
2513       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2514   if (Global) {
2515     MachinePointerInfo MPInfo(Global);
2516     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2517                  MachineMemOperand::MODereferenceable;
2518     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2519         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2520     DAG.setNodeMemRefs(Node, {MemRef});
2521   }
2522   if (PtrTy != PtrMemTy)
2523     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2524   return SDValue(Node, 0);
2525 }
2526 
2527 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2528 /// tail spliced into a stack protector check success bb.
2529 ///
2530 /// For a high level explanation of how this fits into the stack protector
2531 /// generation see the comment on the declaration of class
2532 /// StackProtectorDescriptor.
2533 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2534                                                   MachineBasicBlock *ParentBB) {
2535 
2536   // First create the loads to the guard/stack slot for the comparison.
2537   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2538   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2539   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2540 
2541   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2542   int FI = MFI.getStackProtectorIndex();
2543 
2544   SDValue Guard;
2545   SDLoc dl = getCurSDLoc();
2546   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2547   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2548   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2549 
2550   // Generate code to load the content of the guard slot.
2551   SDValue GuardVal = DAG.getLoad(
2552       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2553       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2554       MachineMemOperand::MOVolatile);
2555 
2556   if (TLI.useStackGuardXorFP())
2557     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2558 
2559   // Retrieve guard check function, nullptr if instrumentation is inlined.
2560   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2561     // The target provides a guard check function to validate the guard value.
2562     // Generate a call to that function with the content of the guard slot as
2563     // argument.
2564     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2565     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2566 
2567     TargetLowering::ArgListTy Args;
2568     TargetLowering::ArgListEntry Entry;
2569     Entry.Node = GuardVal;
2570     Entry.Ty = FnTy->getParamType(0);
2571     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2572       Entry.IsInReg = true;
2573     Args.push_back(Entry);
2574 
2575     TargetLowering::CallLoweringInfo CLI(DAG);
2576     CLI.setDebugLoc(getCurSDLoc())
2577         .setChain(DAG.getEntryNode())
2578         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2579                    getValue(GuardCheckFn), std::move(Args));
2580 
2581     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2582     DAG.setRoot(Result.second);
2583     return;
2584   }
2585 
2586   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2587   // Otherwise, emit a volatile load to retrieve the stack guard value.
2588   SDValue Chain = DAG.getEntryNode();
2589   if (TLI.useLoadStackGuardNode()) {
2590     Guard = getLoadStackGuard(DAG, dl, Chain);
2591   } else {
2592     const Value *IRGuard = TLI.getSDagStackGuard(M);
2593     SDValue GuardPtr = getValue(IRGuard);
2594 
2595     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2596                         MachinePointerInfo(IRGuard, 0), Align,
2597                         MachineMemOperand::MOVolatile);
2598   }
2599 
2600   // Perform the comparison via a subtract/getsetcc.
2601   EVT VT = Guard.getValueType();
2602   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2603 
2604   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2605                                                         *DAG.getContext(),
2606                                                         Sub.getValueType()),
2607                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2608 
2609   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2610   // branch to failure MBB.
2611   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2612                                MVT::Other, GuardVal.getOperand(0),
2613                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2614   // Otherwise branch to success MBB.
2615   SDValue Br = DAG.getNode(ISD::BR, dl,
2616                            MVT::Other, BrCond,
2617                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2618 
2619   DAG.setRoot(Br);
2620 }
2621 
2622 /// Codegen the failure basic block for a stack protector check.
2623 ///
2624 /// A failure stack protector machine basic block consists simply of a call to
2625 /// __stack_chk_fail().
2626 ///
2627 /// For a high level explanation of how this fits into the stack protector
2628 /// generation see the comment on the declaration of class
2629 /// StackProtectorDescriptor.
2630 void
2631 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2632   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2633   TargetLowering::MakeLibCallOptions CallOptions;
2634   CallOptions.setDiscardResult(true);
2635   SDValue Chain =
2636       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2637                       None, CallOptions, getCurSDLoc()).second;
2638   // On PS4, the "return address" must still be within the calling function,
2639   // even if it's at the very end, so emit an explicit TRAP here.
2640   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2641   if (TM.getTargetTriple().isPS4CPU())
2642     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2643 
2644   DAG.setRoot(Chain);
2645 }
2646 
2647 /// visitBitTestHeader - This function emits necessary code to produce value
2648 /// suitable for "bit tests"
2649 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2650                                              MachineBasicBlock *SwitchBB) {
2651   SDLoc dl = getCurSDLoc();
2652 
2653   // Subtract the minimum value.
2654   SDValue SwitchOp = getValue(B.SValue);
2655   EVT VT = SwitchOp.getValueType();
2656   SDValue RangeSub =
2657       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2658 
2659   // Determine the type of the test operands.
2660   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2661   bool UsePtrType = false;
2662   if (!TLI.isTypeLegal(VT)) {
2663     UsePtrType = true;
2664   } else {
2665     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2666       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2667         // Switch table case range are encoded into series of masks.
2668         // Just use pointer type, it's guaranteed to fit.
2669         UsePtrType = true;
2670         break;
2671       }
2672   }
2673   SDValue Sub = RangeSub;
2674   if (UsePtrType) {
2675     VT = TLI.getPointerTy(DAG.getDataLayout());
2676     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2677   }
2678 
2679   B.RegVT = VT.getSimpleVT();
2680   B.Reg = FuncInfo.CreateReg(B.RegVT);
2681   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2682 
2683   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2684 
2685   if (!B.OmitRangeCheck)
2686     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2687   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2688   SwitchBB->normalizeSuccProbs();
2689 
2690   SDValue Root = CopyTo;
2691   if (!B.OmitRangeCheck) {
2692     // Conditional branch to the default block.
2693     SDValue RangeCmp = DAG.getSetCC(dl,
2694         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2695                                RangeSub.getValueType()),
2696         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2697         ISD::SETUGT);
2698 
2699     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2700                        DAG.getBasicBlock(B.Default));
2701   }
2702 
2703   // Avoid emitting unnecessary branches to the next block.
2704   if (MBB != NextBlock(SwitchBB))
2705     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2706 
2707   DAG.setRoot(Root);
2708 }
2709 
2710 /// visitBitTestCase - this function produces one "bit test"
2711 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2712                                            MachineBasicBlock* NextMBB,
2713                                            BranchProbability BranchProbToNext,
2714                                            unsigned Reg,
2715                                            BitTestCase &B,
2716                                            MachineBasicBlock *SwitchBB) {
2717   SDLoc dl = getCurSDLoc();
2718   MVT VT = BB.RegVT;
2719   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2720   SDValue Cmp;
2721   unsigned PopCount = countPopulation(B.Mask);
2722   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2723   if (PopCount == 1) {
2724     // Testing for a single bit; just compare the shift count with what it
2725     // would need to be to shift a 1 bit in that position.
2726     Cmp = DAG.getSetCC(
2727         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2728         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2729         ISD::SETEQ);
2730   } else if (PopCount == BB.Range) {
2731     // There is only one zero bit in the range, test for it directly.
2732     Cmp = DAG.getSetCC(
2733         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2734         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2735         ISD::SETNE);
2736   } else {
2737     // Make desired shift
2738     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2739                                     DAG.getConstant(1, dl, VT), ShiftOp);
2740 
2741     // Emit bit tests and jumps
2742     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2743                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2744     Cmp = DAG.getSetCC(
2745         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2746         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2747   }
2748 
2749   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2750   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2751   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2752   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2753   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2754   // one as they are relative probabilities (and thus work more like weights),
2755   // and hence we need to normalize them to let the sum of them become one.
2756   SwitchBB->normalizeSuccProbs();
2757 
2758   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2759                               MVT::Other, getControlRoot(),
2760                               Cmp, DAG.getBasicBlock(B.TargetBB));
2761 
2762   // Avoid emitting unnecessary branches to the next block.
2763   if (NextMBB != NextBlock(SwitchBB))
2764     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2765                         DAG.getBasicBlock(NextMBB));
2766 
2767   DAG.setRoot(BrAnd);
2768 }
2769 
2770 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2771   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2772 
2773   // Retrieve successors. Look through artificial IR level blocks like
2774   // catchswitch for successors.
2775   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2776   const BasicBlock *EHPadBB = I.getSuccessor(1);
2777 
2778   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2779   // have to do anything here to lower funclet bundles.
2780   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2781                                         LLVMContext::OB_funclet,
2782                                         LLVMContext::OB_cfguardtarget}) &&
2783          "Cannot lower invokes with arbitrary operand bundles yet!");
2784 
2785   const Value *Callee(I.getCalledValue());
2786   const Function *Fn = dyn_cast<Function>(Callee);
2787   if (isa<InlineAsm>(Callee))
2788     visitInlineAsm(&I);
2789   else if (Fn && Fn->isIntrinsic()) {
2790     switch (Fn->getIntrinsicID()) {
2791     default:
2792       llvm_unreachable("Cannot invoke this intrinsic");
2793     case Intrinsic::donothing:
2794       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2795       break;
2796     case Intrinsic::experimental_patchpoint_void:
2797     case Intrinsic::experimental_patchpoint_i64:
2798       visitPatchpoint(&I, EHPadBB);
2799       break;
2800     case Intrinsic::experimental_gc_statepoint:
2801       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2802       break;
2803     case Intrinsic::wasm_rethrow_in_catch: {
2804       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2805       // special because it can be invoked, so we manually lower it to a DAG
2806       // node here.
2807       SmallVector<SDValue, 8> Ops;
2808       Ops.push_back(getRoot()); // inchain
2809       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2810       Ops.push_back(
2811           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2812                                 TLI.getPointerTy(DAG.getDataLayout())));
2813       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2814       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2815       break;
2816     }
2817     }
2818   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2819     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2820     // Eventually we will support lowering the @llvm.experimental.deoptimize
2821     // intrinsic, and right now there are no plans to support other intrinsics
2822     // with deopt state.
2823     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2824   } else {
2825     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2826   }
2827 
2828   // If the value of the invoke is used outside of its defining block, make it
2829   // available as a virtual register.
2830   // We already took care of the exported value for the statepoint instruction
2831   // during call to the LowerStatepoint.
2832   if (!isStatepoint(I)) {
2833     CopyToExportRegsIfNeeded(&I);
2834   }
2835 
2836   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2837   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2838   BranchProbability EHPadBBProb =
2839       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2840           : BranchProbability::getZero();
2841   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2842 
2843   // Update successor info.
2844   addSuccessorWithProb(InvokeMBB, Return);
2845   for (auto &UnwindDest : UnwindDests) {
2846     UnwindDest.first->setIsEHPad();
2847     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2848   }
2849   InvokeMBB->normalizeSuccProbs();
2850 
2851   // Drop into normal successor.
2852   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2853                           DAG.getBasicBlock(Return)));
2854 }
2855 
2856 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2857   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2858 
2859   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2860   // have to do anything here to lower funclet bundles.
2861   assert(!I.hasOperandBundlesOtherThan(
2862              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2863          "Cannot lower callbrs with arbitrary operand bundles yet!");
2864 
2865   assert(isa<InlineAsm>(I.getCalledValue()) &&
2866          "Only know how to handle inlineasm callbr");
2867   visitInlineAsm(&I);
2868 
2869   // Retrieve successors.
2870   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2871 
2872   // Update successor info.
2873   addSuccessorWithProb(CallBrMBB, Return);
2874   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2875     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2876     addSuccessorWithProb(CallBrMBB, Target);
2877   }
2878   CallBrMBB->normalizeSuccProbs();
2879 
2880   // Drop into default successor.
2881   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2882                           MVT::Other, getControlRoot(),
2883                           DAG.getBasicBlock(Return)));
2884 }
2885 
2886 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2887   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2888 }
2889 
2890 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2891   assert(FuncInfo.MBB->isEHPad() &&
2892          "Call to landingpad not in landing pad!");
2893 
2894   // If there aren't registers to copy the values into (e.g., during SjLj
2895   // exceptions), then don't bother to create these DAG nodes.
2896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2897   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2898   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2899       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2900     return;
2901 
2902   // If landingpad's return type is token type, we don't create DAG nodes
2903   // for its exception pointer and selector value. The extraction of exception
2904   // pointer or selector value from token type landingpads is not currently
2905   // supported.
2906   if (LP.getType()->isTokenTy())
2907     return;
2908 
2909   SmallVector<EVT, 2> ValueVTs;
2910   SDLoc dl = getCurSDLoc();
2911   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2912   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2913 
2914   // Get the two live-in registers as SDValues. The physregs have already been
2915   // copied into virtual registers.
2916   SDValue Ops[2];
2917   if (FuncInfo.ExceptionPointerVirtReg) {
2918     Ops[0] = DAG.getZExtOrTrunc(
2919         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2920                            FuncInfo.ExceptionPointerVirtReg,
2921                            TLI.getPointerTy(DAG.getDataLayout())),
2922         dl, ValueVTs[0]);
2923   } else {
2924     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2925   }
2926   Ops[1] = DAG.getZExtOrTrunc(
2927       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2928                          FuncInfo.ExceptionSelectorVirtReg,
2929                          TLI.getPointerTy(DAG.getDataLayout())),
2930       dl, ValueVTs[1]);
2931 
2932   // Merge into one.
2933   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2934                             DAG.getVTList(ValueVTs), Ops);
2935   setValue(&LP, Res);
2936 }
2937 
2938 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2939                                            MachineBasicBlock *Last) {
2940   // Update JTCases.
2941   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2942     if (SL->JTCases[i].first.HeaderBB == First)
2943       SL->JTCases[i].first.HeaderBB = Last;
2944 
2945   // Update BitTestCases.
2946   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2947     if (SL->BitTestCases[i].Parent == First)
2948       SL->BitTestCases[i].Parent = Last;
2949 }
2950 
2951 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2952   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2953 
2954   // Update machine-CFG edges with unique successors.
2955   SmallSet<BasicBlock*, 32> Done;
2956   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2957     BasicBlock *BB = I.getSuccessor(i);
2958     bool Inserted = Done.insert(BB).second;
2959     if (!Inserted)
2960         continue;
2961 
2962     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2963     addSuccessorWithProb(IndirectBrMBB, Succ);
2964   }
2965   IndirectBrMBB->normalizeSuccProbs();
2966 
2967   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2968                           MVT::Other, getControlRoot(),
2969                           getValue(I.getAddress())));
2970 }
2971 
2972 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2973   if (!DAG.getTarget().Options.TrapUnreachable)
2974     return;
2975 
2976   // We may be able to ignore unreachable behind a noreturn call.
2977   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2978     const BasicBlock &BB = *I.getParent();
2979     if (&I != &BB.front()) {
2980       BasicBlock::const_iterator PredI =
2981         std::prev(BasicBlock::const_iterator(&I));
2982       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2983         if (Call->doesNotReturn())
2984           return;
2985       }
2986     }
2987   }
2988 
2989   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2990 }
2991 
2992 void SelectionDAGBuilder::visitFSub(const User &I) {
2993   // -0.0 - X --> fneg
2994   Type *Ty = I.getType();
2995   if (isa<Constant>(I.getOperand(0)) &&
2996       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2997     SDValue Op2 = getValue(I.getOperand(1));
2998     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2999                              Op2.getValueType(), Op2));
3000     return;
3001   }
3002 
3003   visitBinary(I, ISD::FSUB);
3004 }
3005 
3006 /// Checks if the given instruction performs a vector reduction, in which case
3007 /// we have the freedom to alter the elements in the result as long as the
3008 /// reduction of them stays unchanged.
3009 static bool isVectorReductionOp(const User *I) {
3010   const Instruction *Inst = dyn_cast<Instruction>(I);
3011   if (!Inst || !Inst->getType()->isVectorTy())
3012     return false;
3013 
3014   auto OpCode = Inst->getOpcode();
3015   switch (OpCode) {
3016   case Instruction::Add:
3017   case Instruction::Mul:
3018   case Instruction::And:
3019   case Instruction::Or:
3020   case Instruction::Xor:
3021     break;
3022   case Instruction::FAdd:
3023   case Instruction::FMul:
3024     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3025       if (FPOp->getFastMathFlags().isFast())
3026         break;
3027     LLVM_FALLTHROUGH;
3028   default:
3029     return false;
3030   }
3031 
3032   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3033   // Ensure the reduction size is a power of 2.
3034   if (!isPowerOf2_32(ElemNum))
3035     return false;
3036 
3037   unsigned ElemNumToReduce = ElemNum;
3038 
3039   // Do DFS search on the def-use chain from the given instruction. We only
3040   // allow four kinds of operations during the search until we reach the
3041   // instruction that extracts the first element from the vector:
3042   //
3043   //   1. The reduction operation of the same opcode as the given instruction.
3044   //
3045   //   2. PHI node.
3046   //
3047   //   3. ShuffleVector instruction together with a reduction operation that
3048   //      does a partial reduction.
3049   //
3050   //   4. ExtractElement that extracts the first element from the vector, and we
3051   //      stop searching the def-use chain here.
3052   //
3053   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3054   // from 1-3 to the stack to continue the DFS. The given instruction is not
3055   // a reduction operation if we meet any other instructions other than those
3056   // listed above.
3057 
3058   SmallVector<const User *, 16> UsersToVisit{Inst};
3059   SmallPtrSet<const User *, 16> Visited;
3060   bool ReduxExtracted = false;
3061 
3062   while (!UsersToVisit.empty()) {
3063     auto User = UsersToVisit.back();
3064     UsersToVisit.pop_back();
3065     if (!Visited.insert(User).second)
3066       continue;
3067 
3068     for (const auto *U : User->users()) {
3069       auto Inst = dyn_cast<Instruction>(U);
3070       if (!Inst)
3071         return false;
3072 
3073       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3074         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3075           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3076             return false;
3077         UsersToVisit.push_back(U);
3078       } else if (const ShuffleVectorInst *ShufInst =
3079                      dyn_cast<ShuffleVectorInst>(U)) {
3080         // Detect the following pattern: A ShuffleVector instruction together
3081         // with a reduction that do partial reduction on the first and second
3082         // ElemNumToReduce / 2 elements, and store the result in
3083         // ElemNumToReduce / 2 elements in another vector.
3084 
3085         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3086         if (ResultElements < ElemNum)
3087           return false;
3088 
3089         if (ElemNumToReduce == 1)
3090           return false;
3091         if (!isa<UndefValue>(U->getOperand(1)))
3092           return false;
3093         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3094           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3095             return false;
3096         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3097           if (ShufInst->getMaskValue(i) != -1)
3098             return false;
3099 
3100         // There is only one user of this ShuffleVector instruction, which
3101         // must be a reduction operation.
3102         if (!U->hasOneUse())
3103           return false;
3104 
3105         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3106         if (!U2 || U2->getOpcode() != OpCode)
3107           return false;
3108 
3109         // Check operands of the reduction operation.
3110         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3111             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3112           UsersToVisit.push_back(U2);
3113           ElemNumToReduce /= 2;
3114         } else
3115           return false;
3116       } else if (isa<ExtractElementInst>(U)) {
3117         // At this moment we should have reduced all elements in the vector.
3118         if (ElemNumToReduce != 1)
3119           return false;
3120 
3121         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3122         if (!Val || !Val->isZero())
3123           return false;
3124 
3125         ReduxExtracted = true;
3126       } else
3127         return false;
3128     }
3129   }
3130   return ReduxExtracted;
3131 }
3132 
3133 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3134   SDNodeFlags Flags;
3135 
3136   SDValue Op = getValue(I.getOperand(0));
3137   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3138                                     Op, Flags);
3139   setValue(&I, UnNodeValue);
3140 }
3141 
3142 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3143   SDNodeFlags Flags;
3144   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3145     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3146     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3147   }
3148   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3149     Flags.setExact(ExactOp->isExact());
3150   }
3151   if (isVectorReductionOp(&I)) {
3152     Flags.setVectorReduction(true);
3153     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3154 
3155     // If no flags are set we will propagate the incoming flags, if any flags
3156     // are set, we will intersect them with the incoming flag and so we need to
3157     // copy the FMF flags here.
3158     if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
3159       Flags.copyFMF(*FPOp);
3160     }
3161   }
3162 
3163   SDValue Op1 = getValue(I.getOperand(0));
3164   SDValue Op2 = getValue(I.getOperand(1));
3165   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3166                                      Op1, Op2, Flags);
3167   setValue(&I, BinNodeValue);
3168 }
3169 
3170 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3171   SDValue Op1 = getValue(I.getOperand(0));
3172   SDValue Op2 = getValue(I.getOperand(1));
3173 
3174   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3175       Op1.getValueType(), DAG.getDataLayout());
3176 
3177   // Coerce the shift amount to the right type if we can.
3178   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3179     unsigned ShiftSize = ShiftTy.getSizeInBits();
3180     unsigned Op2Size = Op2.getValueSizeInBits();
3181     SDLoc DL = getCurSDLoc();
3182 
3183     // If the operand is smaller than the shift count type, promote it.
3184     if (ShiftSize > Op2Size)
3185       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3186 
3187     // If the operand is larger than the shift count type but the shift
3188     // count type has enough bits to represent any shift value, truncate
3189     // it now. This is a common case and it exposes the truncate to
3190     // optimization early.
3191     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3192       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3193     // Otherwise we'll need to temporarily settle for some other convenient
3194     // type.  Type legalization will make adjustments once the shiftee is split.
3195     else
3196       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3197   }
3198 
3199   bool nuw = false;
3200   bool nsw = false;
3201   bool exact = false;
3202 
3203   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3204 
3205     if (const OverflowingBinaryOperator *OFBinOp =
3206             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3207       nuw = OFBinOp->hasNoUnsignedWrap();
3208       nsw = OFBinOp->hasNoSignedWrap();
3209     }
3210     if (const PossiblyExactOperator *ExactOp =
3211             dyn_cast<const PossiblyExactOperator>(&I))
3212       exact = ExactOp->isExact();
3213   }
3214   SDNodeFlags Flags;
3215   Flags.setExact(exact);
3216   Flags.setNoSignedWrap(nsw);
3217   Flags.setNoUnsignedWrap(nuw);
3218   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3219                             Flags);
3220   setValue(&I, Res);
3221 }
3222 
3223 void SelectionDAGBuilder::visitSDiv(const User &I) {
3224   SDValue Op1 = getValue(I.getOperand(0));
3225   SDValue Op2 = getValue(I.getOperand(1));
3226 
3227   SDNodeFlags Flags;
3228   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3229                  cast<PossiblyExactOperator>(&I)->isExact());
3230   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3231                            Op2, Flags));
3232 }
3233 
3234 void SelectionDAGBuilder::visitICmp(const User &I) {
3235   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3236   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3237     predicate = IC->getPredicate();
3238   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3239     predicate = ICmpInst::Predicate(IC->getPredicate());
3240   SDValue Op1 = getValue(I.getOperand(0));
3241   SDValue Op2 = getValue(I.getOperand(1));
3242   ISD::CondCode Opcode = getICmpCondCode(predicate);
3243 
3244   auto &TLI = DAG.getTargetLoweringInfo();
3245   EVT MemVT =
3246       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3247 
3248   // If a pointer's DAG type is larger than its memory type then the DAG values
3249   // are zero-extended. This breaks signed comparisons so truncate back to the
3250   // underlying type before doing the compare.
3251   if (Op1.getValueType() != MemVT) {
3252     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3253     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3254   }
3255 
3256   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3257                                                         I.getType());
3258   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3259 }
3260 
3261 void SelectionDAGBuilder::visitFCmp(const User &I) {
3262   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3263   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3264     predicate = FC->getPredicate();
3265   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3266     predicate = FCmpInst::Predicate(FC->getPredicate());
3267   SDValue Op1 = getValue(I.getOperand(0));
3268   SDValue Op2 = getValue(I.getOperand(1));
3269 
3270   ISD::CondCode Condition = getFCmpCondCode(predicate);
3271   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3272   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3273     Condition = getFCmpCodeWithoutNaN(Condition);
3274 
3275   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3276                                                         I.getType());
3277   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3278 }
3279 
3280 // Check if the condition of the select has one use or two users that are both
3281 // selects with the same condition.
3282 static bool hasOnlySelectUsers(const Value *Cond) {
3283   return llvm::all_of(Cond->users(), [](const Value *V) {
3284     return isa<SelectInst>(V);
3285   });
3286 }
3287 
3288 void SelectionDAGBuilder::visitSelect(const User &I) {
3289   SmallVector<EVT, 4> ValueVTs;
3290   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3291                   ValueVTs);
3292   unsigned NumValues = ValueVTs.size();
3293   if (NumValues == 0) return;
3294 
3295   SmallVector<SDValue, 4> Values(NumValues);
3296   SDValue Cond     = getValue(I.getOperand(0));
3297   SDValue LHSVal   = getValue(I.getOperand(1));
3298   SDValue RHSVal   = getValue(I.getOperand(2));
3299   auto BaseOps = {Cond};
3300   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3301     ISD::VSELECT : ISD::SELECT;
3302 
3303   bool IsUnaryAbs = false;
3304 
3305   // Min/max matching is only viable if all output VTs are the same.
3306   if (is_splat(ValueVTs)) {
3307     EVT VT = ValueVTs[0];
3308     LLVMContext &Ctx = *DAG.getContext();
3309     auto &TLI = DAG.getTargetLoweringInfo();
3310 
3311     // We care about the legality of the operation after it has been type
3312     // legalized.
3313     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3314       VT = TLI.getTypeToTransformTo(Ctx, VT);
3315 
3316     // If the vselect is legal, assume we want to leave this as a vector setcc +
3317     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3318     // min/max is legal on the scalar type.
3319     bool UseScalarMinMax = VT.isVector() &&
3320       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3321 
3322     Value *LHS, *RHS;
3323     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3324     ISD::NodeType Opc = ISD::DELETED_NODE;
3325     switch (SPR.Flavor) {
3326     case SPF_UMAX:    Opc = ISD::UMAX; break;
3327     case SPF_UMIN:    Opc = ISD::UMIN; break;
3328     case SPF_SMAX:    Opc = ISD::SMAX; break;
3329     case SPF_SMIN:    Opc = ISD::SMIN; break;
3330     case SPF_FMINNUM:
3331       switch (SPR.NaNBehavior) {
3332       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3333       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3334       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3335       case SPNB_RETURNS_ANY: {
3336         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3337           Opc = ISD::FMINNUM;
3338         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3339           Opc = ISD::FMINIMUM;
3340         else if (UseScalarMinMax)
3341           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3342             ISD::FMINNUM : ISD::FMINIMUM;
3343         break;
3344       }
3345       }
3346       break;
3347     case SPF_FMAXNUM:
3348       switch (SPR.NaNBehavior) {
3349       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3350       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3351       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3352       case SPNB_RETURNS_ANY:
3353 
3354         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3355           Opc = ISD::FMAXNUM;
3356         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3357           Opc = ISD::FMAXIMUM;
3358         else if (UseScalarMinMax)
3359           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3360             ISD::FMAXNUM : ISD::FMAXIMUM;
3361         break;
3362       }
3363       break;
3364     case SPF_ABS:
3365       IsUnaryAbs = true;
3366       Opc = ISD::ABS;
3367       break;
3368     case SPF_NABS:
3369       // TODO: we need to produce sub(0, abs(X)).
3370     default: break;
3371     }
3372 
3373     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3374         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3375          (UseScalarMinMax &&
3376           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3377         // If the underlying comparison instruction is used by any other
3378         // instruction, the consumed instructions won't be destroyed, so it is
3379         // not profitable to convert to a min/max.
3380         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3381       OpCode = Opc;
3382       LHSVal = getValue(LHS);
3383       RHSVal = getValue(RHS);
3384       BaseOps = {};
3385     }
3386 
3387     if (IsUnaryAbs) {
3388       OpCode = Opc;
3389       LHSVal = getValue(LHS);
3390       BaseOps = {};
3391     }
3392   }
3393 
3394   if (IsUnaryAbs) {
3395     for (unsigned i = 0; i != NumValues; ++i) {
3396       Values[i] =
3397           DAG.getNode(OpCode, getCurSDLoc(),
3398                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3399                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3400     }
3401   } else {
3402     for (unsigned i = 0; i != NumValues; ++i) {
3403       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3404       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3405       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3406       Values[i] = DAG.getNode(
3407           OpCode, getCurSDLoc(),
3408           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3409     }
3410   }
3411 
3412   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3413                            DAG.getVTList(ValueVTs), Values));
3414 }
3415 
3416 void SelectionDAGBuilder::visitTrunc(const User &I) {
3417   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3418   SDValue N = getValue(I.getOperand(0));
3419   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3420                                                         I.getType());
3421   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3422 }
3423 
3424 void SelectionDAGBuilder::visitZExt(const User &I) {
3425   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3426   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3427   SDValue N = getValue(I.getOperand(0));
3428   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3429                                                         I.getType());
3430   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3431 }
3432 
3433 void SelectionDAGBuilder::visitSExt(const User &I) {
3434   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3435   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3436   SDValue N = getValue(I.getOperand(0));
3437   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3438                                                         I.getType());
3439   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3440 }
3441 
3442 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3443   // FPTrunc is never a no-op cast, no need to check
3444   SDValue N = getValue(I.getOperand(0));
3445   SDLoc dl = getCurSDLoc();
3446   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3447   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3448   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3449                            DAG.getTargetConstant(
3450                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3451 }
3452 
3453 void SelectionDAGBuilder::visitFPExt(const User &I) {
3454   // FPExt is never a no-op cast, no need to check
3455   SDValue N = getValue(I.getOperand(0));
3456   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3457                                                         I.getType());
3458   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3459 }
3460 
3461 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3462   // FPToUI is never a no-op cast, no need to check
3463   SDValue N = getValue(I.getOperand(0));
3464   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3465                                                         I.getType());
3466   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3467 }
3468 
3469 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3470   // FPToSI is never a no-op cast, no need to check
3471   SDValue N = getValue(I.getOperand(0));
3472   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3473                                                         I.getType());
3474   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3475 }
3476 
3477 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3478   // UIToFP is never a no-op cast, no need to check
3479   SDValue N = getValue(I.getOperand(0));
3480   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3481                                                         I.getType());
3482   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3483 }
3484 
3485 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3486   // SIToFP is never a no-op cast, no need to check
3487   SDValue N = getValue(I.getOperand(0));
3488   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3489                                                         I.getType());
3490   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3491 }
3492 
3493 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3494   // What to do depends on the size of the integer and the size of the pointer.
3495   // We can either truncate, zero extend, or no-op, accordingly.
3496   SDValue N = getValue(I.getOperand(0));
3497   auto &TLI = DAG.getTargetLoweringInfo();
3498   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3499                                                         I.getType());
3500   EVT PtrMemVT =
3501       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3502   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3503   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3504   setValue(&I, N);
3505 }
3506 
3507 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3508   // What to do depends on the size of the integer and the size of the pointer.
3509   // We can either truncate, zero extend, or no-op, accordingly.
3510   SDValue N = getValue(I.getOperand(0));
3511   auto &TLI = DAG.getTargetLoweringInfo();
3512   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3513   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3514   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3515   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3516   setValue(&I, N);
3517 }
3518 
3519 void SelectionDAGBuilder::visitBitCast(const User &I) {
3520   SDValue N = getValue(I.getOperand(0));
3521   SDLoc dl = getCurSDLoc();
3522   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3523                                                         I.getType());
3524 
3525   // BitCast assures us that source and destination are the same size so this is
3526   // either a BITCAST or a no-op.
3527   if (DestVT != N.getValueType())
3528     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3529                              DestVT, N)); // convert types.
3530   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3531   // might fold any kind of constant expression to an integer constant and that
3532   // is not what we are looking for. Only recognize a bitcast of a genuine
3533   // constant integer as an opaque constant.
3534   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3535     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3536                                  /*isOpaque*/true));
3537   else
3538     setValue(&I, N);            // noop cast.
3539 }
3540 
3541 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3543   const Value *SV = I.getOperand(0);
3544   SDValue N = getValue(SV);
3545   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3546 
3547   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3548   unsigned DestAS = I.getType()->getPointerAddressSpace();
3549 
3550   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3551     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3552 
3553   setValue(&I, N);
3554 }
3555 
3556 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3557   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3558   SDValue InVec = getValue(I.getOperand(0));
3559   SDValue InVal = getValue(I.getOperand(1));
3560   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3561                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3562   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3563                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3564                            InVec, InVal, InIdx));
3565 }
3566 
3567 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3568   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3569   SDValue InVec = getValue(I.getOperand(0));
3570   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3571                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3572   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3573                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3574                            InVec, InIdx));
3575 }
3576 
3577 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3578   SDValue Src1 = getValue(I.getOperand(0));
3579   SDValue Src2 = getValue(I.getOperand(1));
3580   Constant *MaskV = cast<Constant>(I.getOperand(2));
3581   SDLoc DL = getCurSDLoc();
3582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3583   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3584   EVT SrcVT = Src1.getValueType();
3585   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3586 
3587   if (MaskV->isNullValue() && VT.isScalableVector()) {
3588     // Canonical splat form of first element of first input vector.
3589     SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3590                                    SrcVT.getScalarType(), Src1,
3591                                    DAG.getConstant(0, DL,
3592                                    TLI.getVectorIdxTy(DAG.getDataLayout())));
3593     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3594     return;
3595   }
3596 
3597   // For now, we only handle splats for scalable vectors.
3598   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3599   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3600   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3601 
3602   SmallVector<int, 8> Mask;
3603   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3604   unsigned MaskNumElts = Mask.size();
3605 
3606   if (SrcNumElts == MaskNumElts) {
3607     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3608     return;
3609   }
3610 
3611   // Normalize the shuffle vector since mask and vector length don't match.
3612   if (SrcNumElts < MaskNumElts) {
3613     // Mask is longer than the source vectors. We can use concatenate vector to
3614     // make the mask and vectors lengths match.
3615 
3616     if (MaskNumElts % SrcNumElts == 0) {
3617       // Mask length is a multiple of the source vector length.
3618       // Check if the shuffle is some kind of concatenation of the input
3619       // vectors.
3620       unsigned NumConcat = MaskNumElts / SrcNumElts;
3621       bool IsConcat = true;
3622       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3623       for (unsigned i = 0; i != MaskNumElts; ++i) {
3624         int Idx = Mask[i];
3625         if (Idx < 0)
3626           continue;
3627         // Ensure the indices in each SrcVT sized piece are sequential and that
3628         // the same source is used for the whole piece.
3629         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3630             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3631              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3632           IsConcat = false;
3633           break;
3634         }
3635         // Remember which source this index came from.
3636         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3637       }
3638 
3639       // The shuffle is concatenating multiple vectors together. Just emit
3640       // a CONCAT_VECTORS operation.
3641       if (IsConcat) {
3642         SmallVector<SDValue, 8> ConcatOps;
3643         for (auto Src : ConcatSrcs) {
3644           if (Src < 0)
3645             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3646           else if (Src == 0)
3647             ConcatOps.push_back(Src1);
3648           else
3649             ConcatOps.push_back(Src2);
3650         }
3651         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3652         return;
3653       }
3654     }
3655 
3656     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3657     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3658     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3659                                     PaddedMaskNumElts);
3660 
3661     // Pad both vectors with undefs to make them the same length as the mask.
3662     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3663 
3664     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3665     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3666     MOps1[0] = Src1;
3667     MOps2[0] = Src2;
3668 
3669     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3670     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3671 
3672     // Readjust mask for new input vector length.
3673     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3674     for (unsigned i = 0; i != MaskNumElts; ++i) {
3675       int Idx = Mask[i];
3676       if (Idx >= (int)SrcNumElts)
3677         Idx -= SrcNumElts - PaddedMaskNumElts;
3678       MappedOps[i] = Idx;
3679     }
3680 
3681     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3682 
3683     // If the concatenated vector was padded, extract a subvector with the
3684     // correct number of elements.
3685     if (MaskNumElts != PaddedMaskNumElts)
3686       Result = DAG.getNode(
3687           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3688           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3689 
3690     setValue(&I, Result);
3691     return;
3692   }
3693 
3694   if (SrcNumElts > MaskNumElts) {
3695     // Analyze the access pattern of the vector to see if we can extract
3696     // two subvectors and do the shuffle.
3697     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3698     bool CanExtract = true;
3699     for (int Idx : Mask) {
3700       unsigned Input = 0;
3701       if (Idx < 0)
3702         continue;
3703 
3704       if (Idx >= (int)SrcNumElts) {
3705         Input = 1;
3706         Idx -= SrcNumElts;
3707       }
3708 
3709       // If all the indices come from the same MaskNumElts sized portion of
3710       // the sources we can use extract. Also make sure the extract wouldn't
3711       // extract past the end of the source.
3712       int NewStartIdx = alignDown(Idx, MaskNumElts);
3713       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3714           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3715         CanExtract = false;
3716       // Make sure we always update StartIdx as we use it to track if all
3717       // elements are undef.
3718       StartIdx[Input] = NewStartIdx;
3719     }
3720 
3721     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3722       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3723       return;
3724     }
3725     if (CanExtract) {
3726       // Extract appropriate subvector and generate a vector shuffle
3727       for (unsigned Input = 0; Input < 2; ++Input) {
3728         SDValue &Src = Input == 0 ? Src1 : Src2;
3729         if (StartIdx[Input] < 0)
3730           Src = DAG.getUNDEF(VT);
3731         else {
3732           Src = DAG.getNode(
3733               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3734               DAG.getConstant(StartIdx[Input], DL,
3735                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3736         }
3737       }
3738 
3739       // Calculate new mask.
3740       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3741       for (int &Idx : MappedOps) {
3742         if (Idx >= (int)SrcNumElts)
3743           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3744         else if (Idx >= 0)
3745           Idx -= StartIdx[0];
3746       }
3747 
3748       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3749       return;
3750     }
3751   }
3752 
3753   // We can't use either concat vectors or extract subvectors so fall back to
3754   // replacing the shuffle with extract and build vector.
3755   // to insert and build vector.
3756   EVT EltVT = VT.getVectorElementType();
3757   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3758   SmallVector<SDValue,8> Ops;
3759   for (int Idx : Mask) {
3760     SDValue Res;
3761 
3762     if (Idx < 0) {
3763       Res = DAG.getUNDEF(EltVT);
3764     } else {
3765       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3766       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3767 
3768       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3769                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3770     }
3771 
3772     Ops.push_back(Res);
3773   }
3774 
3775   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3776 }
3777 
3778 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3779   ArrayRef<unsigned> Indices;
3780   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3781     Indices = IV->getIndices();
3782   else
3783     Indices = cast<ConstantExpr>(&I)->getIndices();
3784 
3785   const Value *Op0 = I.getOperand(0);
3786   const Value *Op1 = I.getOperand(1);
3787   Type *AggTy = I.getType();
3788   Type *ValTy = Op1->getType();
3789   bool IntoUndef = isa<UndefValue>(Op0);
3790   bool FromUndef = isa<UndefValue>(Op1);
3791 
3792   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3793 
3794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3795   SmallVector<EVT, 4> AggValueVTs;
3796   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3797   SmallVector<EVT, 4> ValValueVTs;
3798   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3799 
3800   unsigned NumAggValues = AggValueVTs.size();
3801   unsigned NumValValues = ValValueVTs.size();
3802   SmallVector<SDValue, 4> Values(NumAggValues);
3803 
3804   // Ignore an insertvalue that produces an empty object
3805   if (!NumAggValues) {
3806     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3807     return;
3808   }
3809 
3810   SDValue Agg = getValue(Op0);
3811   unsigned i = 0;
3812   // Copy the beginning value(s) from the original aggregate.
3813   for (; i != LinearIndex; ++i)
3814     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3815                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3816   // Copy values from the inserted value(s).
3817   if (NumValValues) {
3818     SDValue Val = getValue(Op1);
3819     for (; i != LinearIndex + NumValValues; ++i)
3820       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3821                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3822   }
3823   // Copy remaining value(s) from the original aggregate.
3824   for (; i != NumAggValues; ++i)
3825     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3826                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3827 
3828   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3829                            DAG.getVTList(AggValueVTs), Values));
3830 }
3831 
3832 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3833   ArrayRef<unsigned> Indices;
3834   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3835     Indices = EV->getIndices();
3836   else
3837     Indices = cast<ConstantExpr>(&I)->getIndices();
3838 
3839   const Value *Op0 = I.getOperand(0);
3840   Type *AggTy = Op0->getType();
3841   Type *ValTy = I.getType();
3842   bool OutOfUndef = isa<UndefValue>(Op0);
3843 
3844   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3845 
3846   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3847   SmallVector<EVT, 4> ValValueVTs;
3848   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3849 
3850   unsigned NumValValues = ValValueVTs.size();
3851 
3852   // Ignore a extractvalue that produces an empty object
3853   if (!NumValValues) {
3854     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3855     return;
3856   }
3857 
3858   SmallVector<SDValue, 4> Values(NumValValues);
3859 
3860   SDValue Agg = getValue(Op0);
3861   // Copy out the selected value(s).
3862   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3863     Values[i - LinearIndex] =
3864       OutOfUndef ?
3865         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3866         SDValue(Agg.getNode(), Agg.getResNo() + i);
3867 
3868   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3869                            DAG.getVTList(ValValueVTs), Values));
3870 }
3871 
3872 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3873   Value *Op0 = I.getOperand(0);
3874   // Note that the pointer operand may be a vector of pointers. Take the scalar
3875   // element which holds a pointer.
3876   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3877   SDValue N = getValue(Op0);
3878   SDLoc dl = getCurSDLoc();
3879   auto &TLI = DAG.getTargetLoweringInfo();
3880   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3881   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3882 
3883   // Normalize Vector GEP - all scalar operands should be converted to the
3884   // splat vector.
3885   unsigned VectorWidth = I.getType()->isVectorTy() ?
3886     I.getType()->getVectorNumElements() : 0;
3887 
3888   if (VectorWidth && !N.getValueType().isVector()) {
3889     LLVMContext &Context = *DAG.getContext();
3890     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3891     N = DAG.getSplatBuildVector(VT, dl, N);
3892   }
3893 
3894   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3895        GTI != E; ++GTI) {
3896     const Value *Idx = GTI.getOperand();
3897     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3898       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3899       if (Field) {
3900         // N = N + Offset
3901         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3902 
3903         // In an inbounds GEP with an offset that is nonnegative even when
3904         // interpreted as signed, assume there is no unsigned overflow.
3905         SDNodeFlags Flags;
3906         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3907           Flags.setNoUnsignedWrap(true);
3908 
3909         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3910                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3911       }
3912     } else {
3913       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3914       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3915       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3916 
3917       // If this is a scalar constant or a splat vector of constants,
3918       // handle it quickly.
3919       const auto *C = dyn_cast<Constant>(Idx);
3920       if (C && isa<VectorType>(C->getType()))
3921         C = C->getSplatValue();
3922 
3923       if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3924         if (CI->isZero())
3925           continue;
3926         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3927         LLVMContext &Context = *DAG.getContext();
3928         SDValue OffsVal = VectorWidth ?
3929           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3930           DAG.getConstant(Offs, dl, IdxTy);
3931 
3932         // In an inbounds GEP with an offset that is nonnegative even when
3933         // interpreted as signed, assume there is no unsigned overflow.
3934         SDNodeFlags Flags;
3935         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3936           Flags.setNoUnsignedWrap(true);
3937 
3938         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3939 
3940         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3941         continue;
3942       }
3943 
3944       // N = N + Idx * ElementSize;
3945       SDValue IdxN = getValue(Idx);
3946 
3947       if (!IdxN.getValueType().isVector() && VectorWidth) {
3948         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3949         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3950       }
3951 
3952       // If the index is smaller or larger than intptr_t, truncate or extend
3953       // it.
3954       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3955 
3956       // If this is a multiply by a power of two, turn it into a shl
3957       // immediately.  This is a very common case.
3958       if (ElementSize != 1) {
3959         if (ElementSize.isPowerOf2()) {
3960           unsigned Amt = ElementSize.logBase2();
3961           IdxN = DAG.getNode(ISD::SHL, dl,
3962                              N.getValueType(), IdxN,
3963                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3964         } else {
3965           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3966                                           IdxN.getValueType());
3967           IdxN = DAG.getNode(ISD::MUL, dl,
3968                              N.getValueType(), IdxN, Scale);
3969         }
3970       }
3971 
3972       N = DAG.getNode(ISD::ADD, dl,
3973                       N.getValueType(), N, IdxN);
3974     }
3975   }
3976 
3977   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3978     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3979 
3980   setValue(&I, N);
3981 }
3982 
3983 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3984   // If this is a fixed sized alloca in the entry block of the function,
3985   // allocate it statically on the stack.
3986   if (FuncInfo.StaticAllocaMap.count(&I))
3987     return;   // getValue will auto-populate this.
3988 
3989   SDLoc dl = getCurSDLoc();
3990   Type *Ty = I.getAllocatedType();
3991   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3992   auto &DL = DAG.getDataLayout();
3993   uint64_t TySize = DL.getTypeAllocSize(Ty);
3994   unsigned Align =
3995       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3996 
3997   SDValue AllocSize = getValue(I.getArraySize());
3998 
3999   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4000   if (AllocSize.getValueType() != IntPtr)
4001     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4002 
4003   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4004                           AllocSize,
4005                           DAG.getConstant(TySize, dl, IntPtr));
4006 
4007   // Handle alignment.  If the requested alignment is less than or equal to
4008   // the stack alignment, ignore it.  If the size is greater than or equal to
4009   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4010   unsigned StackAlign =
4011       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
4012   if (Align <= StackAlign)
4013     Align = 0;
4014 
4015   // Round the size of the allocation up to the stack alignment size
4016   // by add SA-1 to the size. This doesn't overflow because we're computing
4017   // an address inside an alloca.
4018   SDNodeFlags Flags;
4019   Flags.setNoUnsignedWrap(true);
4020   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4021                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
4022 
4023   // Mask out the low bits for alignment purposes.
4024   AllocSize =
4025       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4026                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
4027 
4028   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4029   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4030   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4031   setValue(&I, DSA);
4032   DAG.setRoot(DSA.getValue(1));
4033 
4034   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4035 }
4036 
4037 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4038   if (I.isAtomic())
4039     return visitAtomicLoad(I);
4040 
4041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4042   const Value *SV = I.getOperand(0);
4043   if (TLI.supportSwiftError()) {
4044     // Swifterror values can come from either a function parameter with
4045     // swifterror attribute or an alloca with swifterror attribute.
4046     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4047       if (Arg->hasSwiftErrorAttr())
4048         return visitLoadFromSwiftError(I);
4049     }
4050 
4051     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4052       if (Alloca->isSwiftError())
4053         return visitLoadFromSwiftError(I);
4054     }
4055   }
4056 
4057   SDValue Ptr = getValue(SV);
4058 
4059   Type *Ty = I.getType();
4060 
4061   bool isVolatile = I.isVolatile();
4062   bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4063   bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4064   bool isDereferenceable =
4065       isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4066   unsigned Alignment = I.getAlignment();
4067 
4068   AAMDNodes AAInfo;
4069   I.getAAMetadata(AAInfo);
4070   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4071 
4072   SmallVector<EVT, 4> ValueVTs, MemVTs;
4073   SmallVector<uint64_t, 4> Offsets;
4074   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4075   unsigned NumValues = ValueVTs.size();
4076   if (NumValues == 0)
4077     return;
4078 
4079   SDValue Root;
4080   bool ConstantMemory = false;
4081   if (isVolatile)
4082     // Serialize volatile loads with other side effects.
4083     Root = getRoot();
4084   else if (NumValues > MaxParallelChains)
4085     Root = getMemoryRoot();
4086   else if (AA &&
4087            AA->pointsToConstantMemory(MemoryLocation(
4088                SV,
4089                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4090                AAInfo))) {
4091     // Do not serialize (non-volatile) loads of constant memory with anything.
4092     Root = DAG.getEntryNode();
4093     ConstantMemory = true;
4094   } else {
4095     // Do not serialize non-volatile loads against each other.
4096     Root = DAG.getRoot();
4097   }
4098 
4099   SDLoc dl = getCurSDLoc();
4100 
4101   if (isVolatile)
4102     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4103 
4104   // An aggregate load cannot wrap around the address space, so offsets to its
4105   // parts don't wrap either.
4106   SDNodeFlags Flags;
4107   Flags.setNoUnsignedWrap(true);
4108 
4109   SmallVector<SDValue, 4> Values(NumValues);
4110   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4111   EVT PtrVT = Ptr.getValueType();
4112   unsigned ChainI = 0;
4113   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4114     // Serializing loads here may result in excessive register pressure, and
4115     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4116     // could recover a bit by hoisting nodes upward in the chain by recognizing
4117     // they are side-effect free or do not alias. The optimizer should really
4118     // avoid this case by converting large object/array copies to llvm.memcpy
4119     // (MaxParallelChains should always remain as failsafe).
4120     if (ChainI == MaxParallelChains) {
4121       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4122       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4123                                   makeArrayRef(Chains.data(), ChainI));
4124       Root = Chain;
4125       ChainI = 0;
4126     }
4127     SDValue A = DAG.getNode(ISD::ADD, dl,
4128                             PtrVT, Ptr,
4129                             DAG.getConstant(Offsets[i], dl, PtrVT),
4130                             Flags);
4131     auto MMOFlags = MachineMemOperand::MONone;
4132     if (isVolatile)
4133       MMOFlags |= MachineMemOperand::MOVolatile;
4134     if (isNonTemporal)
4135       MMOFlags |= MachineMemOperand::MONonTemporal;
4136     if (isInvariant)
4137       MMOFlags |= MachineMemOperand::MOInvariant;
4138     if (isDereferenceable)
4139       MMOFlags |= MachineMemOperand::MODereferenceable;
4140     MMOFlags |= TLI.getMMOFlags(I);
4141 
4142     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4143                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4144                             MMOFlags, AAInfo, Ranges);
4145     Chains[ChainI] = L.getValue(1);
4146 
4147     if (MemVTs[i] != ValueVTs[i])
4148       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4149 
4150     Values[i] = L;
4151   }
4152 
4153   if (!ConstantMemory) {
4154     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4155                                 makeArrayRef(Chains.data(), ChainI));
4156     if (isVolatile)
4157       DAG.setRoot(Chain);
4158     else
4159       PendingLoads.push_back(Chain);
4160   }
4161 
4162   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4163                            DAG.getVTList(ValueVTs), Values));
4164 }
4165 
4166 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4167   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4168          "call visitStoreToSwiftError when backend supports swifterror");
4169 
4170   SmallVector<EVT, 4> ValueVTs;
4171   SmallVector<uint64_t, 4> Offsets;
4172   const Value *SrcV = I.getOperand(0);
4173   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4174                   SrcV->getType(), ValueVTs, &Offsets);
4175   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4176          "expect a single EVT for swifterror");
4177 
4178   SDValue Src = getValue(SrcV);
4179   // Create a virtual register, then update the virtual register.
4180   Register VReg =
4181       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4182   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4183   // Chain can be getRoot or getControlRoot.
4184   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4185                                       SDValue(Src.getNode(), Src.getResNo()));
4186   DAG.setRoot(CopyNode);
4187 }
4188 
4189 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4190   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4191          "call visitLoadFromSwiftError when backend supports swifterror");
4192 
4193   assert(!I.isVolatile() &&
4194          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4195          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4196          "Support volatile, non temporal, invariant for load_from_swift_error");
4197 
4198   const Value *SV = I.getOperand(0);
4199   Type *Ty = I.getType();
4200   AAMDNodes AAInfo;
4201   I.getAAMetadata(AAInfo);
4202   assert(
4203       (!AA ||
4204        !AA->pointsToConstantMemory(MemoryLocation(
4205            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4206            AAInfo))) &&
4207       "load_from_swift_error should not be constant memory");
4208 
4209   SmallVector<EVT, 4> ValueVTs;
4210   SmallVector<uint64_t, 4> Offsets;
4211   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4212                   ValueVTs, &Offsets);
4213   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4214          "expect a single EVT for swifterror");
4215 
4216   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4217   SDValue L = DAG.getCopyFromReg(
4218       getRoot(), getCurSDLoc(),
4219       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4220 
4221   setValue(&I, L);
4222 }
4223 
4224 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4225   if (I.isAtomic())
4226     return visitAtomicStore(I);
4227 
4228   const Value *SrcV = I.getOperand(0);
4229   const Value *PtrV = I.getOperand(1);
4230 
4231   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4232   if (TLI.supportSwiftError()) {
4233     // Swifterror values can come from either a function parameter with
4234     // swifterror attribute or an alloca with swifterror attribute.
4235     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4236       if (Arg->hasSwiftErrorAttr())
4237         return visitStoreToSwiftError(I);
4238     }
4239 
4240     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4241       if (Alloca->isSwiftError())
4242         return visitStoreToSwiftError(I);
4243     }
4244   }
4245 
4246   SmallVector<EVT, 4> ValueVTs, MemVTs;
4247   SmallVector<uint64_t, 4> Offsets;
4248   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4249                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4250   unsigned NumValues = ValueVTs.size();
4251   if (NumValues == 0)
4252     return;
4253 
4254   // Get the lowered operands. Note that we do this after
4255   // checking if NumResults is zero, because with zero results
4256   // the operands won't have values in the map.
4257   SDValue Src = getValue(SrcV);
4258   SDValue Ptr = getValue(PtrV);
4259 
4260   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4261   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4262   SDLoc dl = getCurSDLoc();
4263   unsigned Alignment = I.getAlignment();
4264   AAMDNodes AAInfo;
4265   I.getAAMetadata(AAInfo);
4266 
4267   auto MMOFlags = MachineMemOperand::MONone;
4268   if (I.isVolatile())
4269     MMOFlags |= MachineMemOperand::MOVolatile;
4270   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4271     MMOFlags |= MachineMemOperand::MONonTemporal;
4272   MMOFlags |= TLI.getMMOFlags(I);
4273 
4274   // An aggregate load cannot wrap around the address space, so offsets to its
4275   // parts don't wrap either.
4276   SDNodeFlags Flags;
4277   Flags.setNoUnsignedWrap(true);
4278 
4279   unsigned ChainI = 0;
4280   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4281     // See visitLoad comments.
4282     if (ChainI == MaxParallelChains) {
4283       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4284                                   makeArrayRef(Chains.data(), ChainI));
4285       Root = Chain;
4286       ChainI = 0;
4287     }
4288     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4289     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4290     if (MemVTs[i] != ValueVTs[i])
4291       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4292     SDValue St =
4293         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4294                      Alignment, MMOFlags, AAInfo);
4295     Chains[ChainI] = St;
4296   }
4297 
4298   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4299                                   makeArrayRef(Chains.data(), ChainI));
4300   DAG.setRoot(StoreNode);
4301 }
4302 
4303 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4304                                            bool IsCompressing) {
4305   SDLoc sdl = getCurSDLoc();
4306 
4307   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4308                            unsigned& Alignment) {
4309     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4310     Src0 = I.getArgOperand(0);
4311     Ptr = I.getArgOperand(1);
4312     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4313     Mask = I.getArgOperand(3);
4314   };
4315   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4316                            unsigned& Alignment) {
4317     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4318     Src0 = I.getArgOperand(0);
4319     Ptr = I.getArgOperand(1);
4320     Mask = I.getArgOperand(2);
4321     Alignment = 0;
4322   };
4323 
4324   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4325   unsigned Alignment;
4326   if (IsCompressing)
4327     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4328   else
4329     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4330 
4331   SDValue Ptr = getValue(PtrOperand);
4332   SDValue Src0 = getValue(Src0Operand);
4333   SDValue Mask = getValue(MaskOperand);
4334   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4335 
4336   EVT VT = Src0.getValueType();
4337   if (!Alignment)
4338     Alignment = DAG.getEVTAlignment(VT);
4339 
4340   AAMDNodes AAInfo;
4341   I.getAAMetadata(AAInfo);
4342 
4343   MachineMemOperand *MMO =
4344     DAG.getMachineFunction().
4345     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4346                           MachineMemOperand::MOStore,
4347                           // TODO: Make MachineMemOperands aware of scalable
4348                           // vectors.
4349                           VT.getStoreSize().getKnownMinSize(),
4350                           Alignment, AAInfo);
4351   SDValue StoreNode =
4352       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4353                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4354   DAG.setRoot(StoreNode);
4355   setValue(&I, StoreNode);
4356 }
4357 
4358 // Get a uniform base for the Gather/Scatter intrinsic.
4359 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4360 // We try to represent it as a base pointer + vector of indices.
4361 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4362 // The first operand of the GEP may be a single pointer or a vector of pointers
4363 // Example:
4364 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4365 //  or
4366 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4367 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4368 //
4369 // When the first GEP operand is a single pointer - it is the uniform base we
4370 // are looking for. If first operand of the GEP is a splat vector - we
4371 // extract the splat value and use it as a uniform base.
4372 // In all other cases the function returns 'false'.
4373 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4374                            ISD::MemIndexType &IndexType, SDValue &Scale,
4375                            SelectionDAGBuilder *SDB) {
4376   SelectionDAG& DAG = SDB->DAG;
4377   LLVMContext &Context = *DAG.getContext();
4378 
4379   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4380   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4381   if (!GEP)
4382     return false;
4383 
4384   const Value *GEPPtr = GEP->getPointerOperand();
4385   if (!GEPPtr->getType()->isVectorTy())
4386     Ptr = GEPPtr;
4387   else if (!(Ptr = getSplatValue(GEPPtr)))
4388     return false;
4389 
4390   unsigned FinalIndex = GEP->getNumOperands() - 1;
4391   Value *IndexVal = GEP->getOperand(FinalIndex);
4392   gep_type_iterator GTI = gep_type_begin(*GEP);
4393 
4394   // Ensure all the other indices are 0.
4395   for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4396     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4397     if (!C)
4398       return false;
4399     if (isa<VectorType>(C->getType()))
4400       C = C->getSplatValue();
4401     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4402     if (!CI || !CI->isZero())
4403       return false;
4404   }
4405 
4406   // The operands of the GEP may be defined in another basic block.
4407   // In this case we'll not find nodes for the operands.
4408   if (!SDB->findValue(Ptr))
4409     return false;
4410   Constant *C = dyn_cast<Constant>(IndexVal);
4411   if (!C && !SDB->findValue(IndexVal))
4412     return false;
4413 
4414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4415   const DataLayout &DL = DAG.getDataLayout();
4416   StructType *STy = GTI.getStructTypeOrNull();
4417 
4418   if (STy) {
4419     const StructLayout *SL = DL.getStructLayout(STy);
4420     if (isa<VectorType>(C->getType())) {
4421       C = C->getSplatValue();
4422       // FIXME: If getSplatValue may return nullptr for a structure?
4423       // If not, the following check can be removed.
4424       if (!C)
4425         return false;
4426     }
4427     auto *CI = cast<ConstantInt>(C);
4428     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4429     Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()),
4430                             SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4431   } else {
4432     Scale = DAG.getTargetConstant(
4433                 DL.getTypeAllocSize(GEP->getResultElementType()),
4434                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4435     Index = SDB->getValue(IndexVal);
4436   }
4437   Base = SDB->getValue(Ptr);
4438   IndexType = ISD::SIGNED_SCALED;
4439 
4440   if (STy || !Index.getValueType().isVector()) {
4441     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4442     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4443     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4444   }
4445   return true;
4446 }
4447 
4448 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4449   SDLoc sdl = getCurSDLoc();
4450 
4451   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4452   const Value *Ptr = I.getArgOperand(1);
4453   SDValue Src0 = getValue(I.getArgOperand(0));
4454   SDValue Mask = getValue(I.getArgOperand(3));
4455   EVT VT = Src0.getValueType();
4456   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4457   if (!Alignment)
4458     Alignment = DAG.getEVTAlignment(VT);
4459   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4460 
4461   AAMDNodes AAInfo;
4462   I.getAAMetadata(AAInfo);
4463 
4464   SDValue Base;
4465   SDValue Index;
4466   ISD::MemIndexType IndexType;
4467   SDValue Scale;
4468   const Value *BasePtr = Ptr;
4469   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4470                                     this);
4471 
4472   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4473   MachineMemOperand *MMO = DAG.getMachineFunction().
4474     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4475                          MachineMemOperand::MOStore,
4476                          // TODO: Make MachineMemOperands aware of scalable
4477                          // vectors.
4478                          VT.getStoreSize().getKnownMinSize(),
4479                          Alignment, AAInfo);
4480   if (!UniformBase) {
4481     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4482     Index = getValue(Ptr);
4483     IndexType = ISD::SIGNED_SCALED;
4484     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4485   }
4486   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4487   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4488                                          Ops, MMO, IndexType);
4489   DAG.setRoot(Scatter);
4490   setValue(&I, Scatter);
4491 }
4492 
4493 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4494   SDLoc sdl = getCurSDLoc();
4495 
4496   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4497                            unsigned& Alignment) {
4498     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4499     Ptr = I.getArgOperand(0);
4500     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4501     Mask = I.getArgOperand(2);
4502     Src0 = I.getArgOperand(3);
4503   };
4504   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4505                            unsigned& Alignment) {
4506     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4507     Ptr = I.getArgOperand(0);
4508     Alignment = 0;
4509     Mask = I.getArgOperand(1);
4510     Src0 = I.getArgOperand(2);
4511   };
4512 
4513   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4514   unsigned Alignment;
4515   if (IsExpanding)
4516     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4517   else
4518     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4519 
4520   SDValue Ptr = getValue(PtrOperand);
4521   SDValue Src0 = getValue(Src0Operand);
4522   SDValue Mask = getValue(MaskOperand);
4523   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4524 
4525   EVT VT = Src0.getValueType();
4526   if (!Alignment)
4527     Alignment = DAG.getEVTAlignment(VT);
4528 
4529   AAMDNodes AAInfo;
4530   I.getAAMetadata(AAInfo);
4531   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4532 
4533   // Do not serialize masked loads of constant memory with anything.
4534   MemoryLocation ML;
4535   if (VT.isScalableVector())
4536     ML = MemoryLocation(PtrOperand);
4537   else
4538     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4539                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4540                            AAInfo);
4541   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4542 
4543   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4544 
4545   MachineMemOperand *MMO =
4546     DAG.getMachineFunction().
4547     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4548                           MachineMemOperand::MOLoad,
4549                           // TODO: Make MachineMemOperands aware of scalable
4550                           // vectors.
4551                           VT.getStoreSize().getKnownMinSize(),
4552                           Alignment, AAInfo, Ranges);
4553 
4554   SDValue Load =
4555       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4556                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4557   if (AddToChain)
4558     PendingLoads.push_back(Load.getValue(1));
4559   setValue(&I, Load);
4560 }
4561 
4562 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4563   SDLoc sdl = getCurSDLoc();
4564 
4565   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4566   const Value *Ptr = I.getArgOperand(0);
4567   SDValue Src0 = getValue(I.getArgOperand(3));
4568   SDValue Mask = getValue(I.getArgOperand(2));
4569 
4570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4571   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4572   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4573   if (!Alignment)
4574     Alignment = DAG.getEVTAlignment(VT);
4575 
4576   AAMDNodes AAInfo;
4577   I.getAAMetadata(AAInfo);
4578   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4579 
4580   SDValue Root = DAG.getRoot();
4581   SDValue Base;
4582   SDValue Index;
4583   ISD::MemIndexType IndexType;
4584   SDValue Scale;
4585   const Value *BasePtr = Ptr;
4586   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4587                                     this);
4588   bool ConstantMemory = false;
4589   if (UniformBase && AA &&
4590       AA->pointsToConstantMemory(
4591           MemoryLocation(BasePtr,
4592                          LocationSize::precise(
4593                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4594                          AAInfo))) {
4595     // Do not serialize (non-volatile) loads of constant memory with anything.
4596     Root = DAG.getEntryNode();
4597     ConstantMemory = true;
4598   }
4599 
4600   MachineMemOperand *MMO =
4601     DAG.getMachineFunction().
4602     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4603                          MachineMemOperand::MOLoad,
4604                          // TODO: Make MachineMemOperands aware of scalable
4605                          // vectors.
4606                          VT.getStoreSize().getKnownMinSize(),
4607                          Alignment, AAInfo, Ranges);
4608 
4609   if (!UniformBase) {
4610     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4611     Index = getValue(Ptr);
4612     IndexType = ISD::SIGNED_SCALED;
4613     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4614   }
4615   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4616   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4617                                        Ops, MMO, IndexType);
4618 
4619   SDValue OutChain = Gather.getValue(1);
4620   if (!ConstantMemory)
4621     PendingLoads.push_back(OutChain);
4622   setValue(&I, Gather);
4623 }
4624 
4625 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4626   SDLoc dl = getCurSDLoc();
4627   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4628   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4629   SyncScope::ID SSID = I.getSyncScopeID();
4630 
4631   SDValue InChain = getRoot();
4632 
4633   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4634   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4635 
4636   auto Alignment = DAG.getEVTAlignment(MemVT);
4637 
4638   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4639   if (I.isVolatile())
4640     Flags |= MachineMemOperand::MOVolatile;
4641   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4642 
4643   MachineFunction &MF = DAG.getMachineFunction();
4644   MachineMemOperand *MMO =
4645     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4646                             Flags, MemVT.getStoreSize(), Alignment,
4647                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4648                             FailureOrdering);
4649 
4650   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4651                                    dl, MemVT, VTs, InChain,
4652                                    getValue(I.getPointerOperand()),
4653                                    getValue(I.getCompareOperand()),
4654                                    getValue(I.getNewValOperand()), MMO);
4655 
4656   SDValue OutChain = L.getValue(2);
4657 
4658   setValue(&I, L);
4659   DAG.setRoot(OutChain);
4660 }
4661 
4662 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4663   SDLoc dl = getCurSDLoc();
4664   ISD::NodeType NT;
4665   switch (I.getOperation()) {
4666   default: llvm_unreachable("Unknown atomicrmw operation");
4667   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4668   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4669   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4670   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4671   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4672   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4673   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4674   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4675   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4676   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4677   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4678   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4679   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4680   }
4681   AtomicOrdering Ordering = I.getOrdering();
4682   SyncScope::ID SSID = I.getSyncScopeID();
4683 
4684   SDValue InChain = getRoot();
4685 
4686   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4687   auto Alignment = DAG.getEVTAlignment(MemVT);
4688 
4689   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4690   if (I.isVolatile())
4691     Flags |= MachineMemOperand::MOVolatile;
4692   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4693 
4694   MachineFunction &MF = DAG.getMachineFunction();
4695   MachineMemOperand *MMO =
4696     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4697                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4698                             nullptr, SSID, Ordering);
4699 
4700   SDValue L =
4701     DAG.getAtomic(NT, dl, MemVT, InChain,
4702                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4703                   MMO);
4704 
4705   SDValue OutChain = L.getValue(1);
4706 
4707   setValue(&I, L);
4708   DAG.setRoot(OutChain);
4709 }
4710 
4711 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4712   SDLoc dl = getCurSDLoc();
4713   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4714   SDValue Ops[3];
4715   Ops[0] = getRoot();
4716   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4717                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4718   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4719                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4720   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4721 }
4722 
4723 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4724   SDLoc dl = getCurSDLoc();
4725   AtomicOrdering Order = I.getOrdering();
4726   SyncScope::ID SSID = I.getSyncScopeID();
4727 
4728   SDValue InChain = getRoot();
4729 
4730   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4731   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4732   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4733 
4734   if (!TLI.supportsUnalignedAtomics() &&
4735       I.getAlignment() < MemVT.getSizeInBits() / 8)
4736     report_fatal_error("Cannot generate unaligned atomic load");
4737 
4738   auto Flags = MachineMemOperand::MOLoad;
4739   if (I.isVolatile())
4740     Flags |= MachineMemOperand::MOVolatile;
4741   if (I.hasMetadata(LLVMContext::MD_invariant_load))
4742     Flags |= MachineMemOperand::MOInvariant;
4743   if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4744                                DAG.getDataLayout()))
4745     Flags |= MachineMemOperand::MODereferenceable;
4746 
4747   Flags |= TLI.getMMOFlags(I);
4748 
4749   MachineMemOperand *MMO =
4750       DAG.getMachineFunction().
4751       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4752                            Flags, MemVT.getStoreSize(),
4753                            I.getAlignment() ? I.getAlignment() :
4754                                               DAG.getEVTAlignment(MemVT),
4755                            AAMDNodes(), nullptr, SSID, Order);
4756 
4757   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4758 
4759   SDValue Ptr = getValue(I.getPointerOperand());
4760 
4761   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4762     // TODO: Once this is better exercised by tests, it should be merged with
4763     // the normal path for loads to prevent future divergence.
4764     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4765     if (MemVT != VT)
4766       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4767 
4768     setValue(&I, L);
4769     SDValue OutChain = L.getValue(1);
4770     if (!I.isUnordered())
4771       DAG.setRoot(OutChain);
4772     else
4773       PendingLoads.push_back(OutChain);
4774     return;
4775   }
4776 
4777   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4778                             Ptr, MMO);
4779 
4780   SDValue OutChain = L.getValue(1);
4781   if (MemVT != VT)
4782     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4783 
4784   setValue(&I, L);
4785   DAG.setRoot(OutChain);
4786 }
4787 
4788 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4789   SDLoc dl = getCurSDLoc();
4790 
4791   AtomicOrdering Ordering = I.getOrdering();
4792   SyncScope::ID SSID = I.getSyncScopeID();
4793 
4794   SDValue InChain = getRoot();
4795 
4796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4797   EVT MemVT =
4798       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4799 
4800   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4801     report_fatal_error("Cannot generate unaligned atomic store");
4802 
4803   auto Flags = MachineMemOperand::MOStore;
4804   if (I.isVolatile())
4805     Flags |= MachineMemOperand::MOVolatile;
4806   Flags |= TLI.getMMOFlags(I);
4807 
4808   MachineFunction &MF = DAG.getMachineFunction();
4809   MachineMemOperand *MMO =
4810     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4811                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4812                             nullptr, SSID, Ordering);
4813 
4814   SDValue Val = getValue(I.getValueOperand());
4815   if (Val.getValueType() != MemVT)
4816     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4817   SDValue Ptr = getValue(I.getPointerOperand());
4818 
4819   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4820     // TODO: Once this is better exercised by tests, it should be merged with
4821     // the normal path for stores to prevent future divergence.
4822     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4823     DAG.setRoot(S);
4824     return;
4825   }
4826   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4827                                    Ptr, Val, MMO);
4828 
4829 
4830   DAG.setRoot(OutChain);
4831 }
4832 
4833 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4834 /// node.
4835 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4836                                                unsigned Intrinsic) {
4837   // Ignore the callsite's attributes. A specific call site may be marked with
4838   // readnone, but the lowering code will expect the chain based on the
4839   // definition.
4840   const Function *F = I.getCalledFunction();
4841   bool HasChain = !F->doesNotAccessMemory();
4842   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4843 
4844   // Build the operand list.
4845   SmallVector<SDValue, 8> Ops;
4846   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4847     if (OnlyLoad) {
4848       // We don't need to serialize loads against other loads.
4849       Ops.push_back(DAG.getRoot());
4850     } else {
4851       Ops.push_back(getRoot());
4852     }
4853   }
4854 
4855   // Info is set by getTgtMemInstrinsic
4856   TargetLowering::IntrinsicInfo Info;
4857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4858   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4859                                                DAG.getMachineFunction(),
4860                                                Intrinsic);
4861 
4862   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4863   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4864       Info.opc == ISD::INTRINSIC_W_CHAIN)
4865     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4866                                         TLI.getPointerTy(DAG.getDataLayout())));
4867 
4868   // Add all operands of the call to the operand list.
4869   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4870     const Value *Arg = I.getArgOperand(i);
4871     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4872       Ops.push_back(getValue(Arg));
4873       continue;
4874     }
4875 
4876     // Use TargetConstant instead of a regular constant for immarg.
4877     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4878     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4879       assert(CI->getBitWidth() <= 64 &&
4880              "large intrinsic immediates not handled");
4881       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4882     } else {
4883       Ops.push_back(
4884           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4885     }
4886   }
4887 
4888   SmallVector<EVT, 4> ValueVTs;
4889   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4890 
4891   if (HasChain)
4892     ValueVTs.push_back(MVT::Other);
4893 
4894   SDVTList VTs = DAG.getVTList(ValueVTs);
4895 
4896   // Create the node.
4897   SDValue Result;
4898   if (IsTgtIntrinsic) {
4899     // This is target intrinsic that touches memory
4900     AAMDNodes AAInfo;
4901     I.getAAMetadata(AAInfo);
4902     Result = DAG.getMemIntrinsicNode(
4903         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4904         MachinePointerInfo(Info.ptrVal, Info.offset),
4905         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4906   } else if (!HasChain) {
4907     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4908   } else if (!I.getType()->isVoidTy()) {
4909     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4910   } else {
4911     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4912   }
4913 
4914   if (HasChain) {
4915     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4916     if (OnlyLoad)
4917       PendingLoads.push_back(Chain);
4918     else
4919       DAG.setRoot(Chain);
4920   }
4921 
4922   if (!I.getType()->isVoidTy()) {
4923     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4924       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4925       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4926     } else
4927       Result = lowerRangeToAssertZExt(DAG, I, Result);
4928 
4929     setValue(&I, Result);
4930   }
4931 }
4932 
4933 /// GetSignificand - Get the significand and build it into a floating-point
4934 /// number with exponent of 1:
4935 ///
4936 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4937 ///
4938 /// where Op is the hexadecimal representation of floating point value.
4939 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4940   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4941                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4942   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4943                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4944   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4945 }
4946 
4947 /// GetExponent - Get the exponent:
4948 ///
4949 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4950 ///
4951 /// where Op is the hexadecimal representation of floating point value.
4952 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4953                            const TargetLowering &TLI, const SDLoc &dl) {
4954   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4955                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4956   SDValue t1 = DAG.getNode(
4957       ISD::SRL, dl, MVT::i32, t0,
4958       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4959   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4960                            DAG.getConstant(127, dl, MVT::i32));
4961   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4962 }
4963 
4964 /// getF32Constant - Get 32-bit floating point constant.
4965 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4966                               const SDLoc &dl) {
4967   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4968                            MVT::f32);
4969 }
4970 
4971 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4972                                        SelectionDAG &DAG) {
4973   // TODO: What fast-math-flags should be set on the floating-point nodes?
4974 
4975   //   IntegerPartOfX = ((int32_t)(t0);
4976   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4977 
4978   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4979   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4980   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4981 
4982   //   IntegerPartOfX <<= 23;
4983   IntegerPartOfX = DAG.getNode(
4984       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4985       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4986                                   DAG.getDataLayout())));
4987 
4988   SDValue TwoToFractionalPartOfX;
4989   if (LimitFloatPrecision <= 6) {
4990     // For floating-point precision of 6:
4991     //
4992     //   TwoToFractionalPartOfX =
4993     //     0.997535578f +
4994     //       (0.735607626f + 0.252464424f * x) * x;
4995     //
4996     // error 0.0144103317, which is 6 bits
4997     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4998                              getF32Constant(DAG, 0x3e814304, dl));
4999     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5000                              getF32Constant(DAG, 0x3f3c50c8, dl));
5001     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5002     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5003                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5004   } else if (LimitFloatPrecision <= 12) {
5005     // For floating-point precision of 12:
5006     //
5007     //   TwoToFractionalPartOfX =
5008     //     0.999892986f +
5009     //       (0.696457318f +
5010     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5011     //
5012     // error 0.000107046256, which is 13 to 14 bits
5013     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5014                              getF32Constant(DAG, 0x3da235e3, dl));
5015     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5016                              getF32Constant(DAG, 0x3e65b8f3, dl));
5017     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5018     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5019                              getF32Constant(DAG, 0x3f324b07, dl));
5020     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5021     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5022                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5023   } else { // LimitFloatPrecision <= 18
5024     // For floating-point precision of 18:
5025     //
5026     //   TwoToFractionalPartOfX =
5027     //     0.999999982f +
5028     //       (0.693148872f +
5029     //         (0.240227044f +
5030     //           (0.554906021e-1f +
5031     //             (0.961591928e-2f +
5032     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5033     // error 2.47208000*10^(-7), which is better than 18 bits
5034     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5035                              getF32Constant(DAG, 0x3924b03e, dl));
5036     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5037                              getF32Constant(DAG, 0x3ab24b87, dl));
5038     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5039     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5040                              getF32Constant(DAG, 0x3c1d8c17, dl));
5041     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5042     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5043                              getF32Constant(DAG, 0x3d634a1d, dl));
5044     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5045     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5046                              getF32Constant(DAG, 0x3e75fe14, dl));
5047     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5048     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5049                               getF32Constant(DAG, 0x3f317234, dl));
5050     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5051     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5052                                          getF32Constant(DAG, 0x3f800000, dl));
5053   }
5054 
5055   // Add the exponent into the result in integer domain.
5056   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5057   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5058                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5059 }
5060 
5061 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5062 /// limited-precision mode.
5063 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5064                          const TargetLowering &TLI) {
5065   if (Op.getValueType() == MVT::f32 &&
5066       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5067 
5068     // Put the exponent in the right bit position for later addition to the
5069     // final result:
5070     //
5071     // t0 = Op * log2(e)
5072 
5073     // TODO: What fast-math-flags should be set here?
5074     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5075                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5076     return getLimitedPrecisionExp2(t0, dl, DAG);
5077   }
5078 
5079   // No special expansion.
5080   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5081 }
5082 
5083 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5084 /// limited-precision mode.
5085 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5086                          const TargetLowering &TLI) {
5087   // TODO: What fast-math-flags should be set on the floating-point nodes?
5088 
5089   if (Op.getValueType() == MVT::f32 &&
5090       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5091     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5092 
5093     // Scale the exponent by log(2).
5094     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5095     SDValue LogOfExponent =
5096         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5097                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5098 
5099     // Get the significand and build it into a floating-point number with
5100     // exponent of 1.
5101     SDValue X = GetSignificand(DAG, Op1, dl);
5102 
5103     SDValue LogOfMantissa;
5104     if (LimitFloatPrecision <= 6) {
5105       // For floating-point precision of 6:
5106       //
5107       //   LogofMantissa =
5108       //     -1.1609546f +
5109       //       (1.4034025f - 0.23903021f * x) * x;
5110       //
5111       // error 0.0034276066, which is better than 8 bits
5112       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5113                                getF32Constant(DAG, 0xbe74c456, dl));
5114       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5115                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5116       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5117       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5118                                   getF32Constant(DAG, 0x3f949a29, dl));
5119     } else if (LimitFloatPrecision <= 12) {
5120       // For floating-point precision of 12:
5121       //
5122       //   LogOfMantissa =
5123       //     -1.7417939f +
5124       //       (2.8212026f +
5125       //         (-1.4699568f +
5126       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5127       //
5128       // error 0.000061011436, which is 14 bits
5129       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5130                                getF32Constant(DAG, 0xbd67b6d6, dl));
5131       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5132                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5133       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5134       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5135                                getF32Constant(DAG, 0x3fbc278b, dl));
5136       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5137       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5138                                getF32Constant(DAG, 0x40348e95, dl));
5139       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5140       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5141                                   getF32Constant(DAG, 0x3fdef31a, dl));
5142     } else { // LimitFloatPrecision <= 18
5143       // For floating-point precision of 18:
5144       //
5145       //   LogOfMantissa =
5146       //     -2.1072184f +
5147       //       (4.2372794f +
5148       //         (-3.7029485f +
5149       //           (2.2781945f +
5150       //             (-0.87823314f +
5151       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5152       //
5153       // error 0.0000023660568, which is better than 18 bits
5154       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5155                                getF32Constant(DAG, 0xbc91e5ac, dl));
5156       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5157                                getF32Constant(DAG, 0x3e4350aa, dl));
5158       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5159       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5160                                getF32Constant(DAG, 0x3f60d3e3, dl));
5161       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5162       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5163                                getF32Constant(DAG, 0x4011cdf0, dl));
5164       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5165       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5166                                getF32Constant(DAG, 0x406cfd1c, dl));
5167       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5168       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5169                                getF32Constant(DAG, 0x408797cb, dl));
5170       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5171       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5172                                   getF32Constant(DAG, 0x4006dcab, dl));
5173     }
5174 
5175     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5176   }
5177 
5178   // No special expansion.
5179   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5180 }
5181 
5182 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5183 /// limited-precision mode.
5184 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5185                           const TargetLowering &TLI) {
5186   // TODO: What fast-math-flags should be set on the floating-point nodes?
5187 
5188   if (Op.getValueType() == MVT::f32 &&
5189       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5190     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5191 
5192     // Get the exponent.
5193     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5194 
5195     // Get the significand and build it into a floating-point number with
5196     // exponent of 1.
5197     SDValue X = GetSignificand(DAG, Op1, dl);
5198 
5199     // Different possible minimax approximations of significand in
5200     // floating-point for various degrees of accuracy over [1,2].
5201     SDValue Log2ofMantissa;
5202     if (LimitFloatPrecision <= 6) {
5203       // For floating-point precision of 6:
5204       //
5205       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5206       //
5207       // error 0.0049451742, which is more than 7 bits
5208       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5209                                getF32Constant(DAG, 0xbeb08fe0, dl));
5210       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5211                                getF32Constant(DAG, 0x40019463, dl));
5212       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5213       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5214                                    getF32Constant(DAG, 0x3fd6633d, dl));
5215     } else if (LimitFloatPrecision <= 12) {
5216       // For floating-point precision of 12:
5217       //
5218       //   Log2ofMantissa =
5219       //     -2.51285454f +
5220       //       (4.07009056f +
5221       //         (-2.12067489f +
5222       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5223       //
5224       // error 0.0000876136000, which is better than 13 bits
5225       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5226                                getF32Constant(DAG, 0xbda7262e, dl));
5227       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5228                                getF32Constant(DAG, 0x3f25280b, dl));
5229       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5230       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5231                                getF32Constant(DAG, 0x4007b923, dl));
5232       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5233       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5234                                getF32Constant(DAG, 0x40823e2f, dl));
5235       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5236       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5237                                    getF32Constant(DAG, 0x4020d29c, dl));
5238     } else { // LimitFloatPrecision <= 18
5239       // For floating-point precision of 18:
5240       //
5241       //   Log2ofMantissa =
5242       //     -3.0400495f +
5243       //       (6.1129976f +
5244       //         (-5.3420409f +
5245       //           (3.2865683f +
5246       //             (-1.2669343f +
5247       //               (0.27515199f -
5248       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5249       //
5250       // error 0.0000018516, which is better than 18 bits
5251       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5252                                getF32Constant(DAG, 0xbcd2769e, dl));
5253       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5254                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5255       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5256       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5257                                getF32Constant(DAG, 0x3fa22ae7, dl));
5258       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5259       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5260                                getF32Constant(DAG, 0x40525723, dl));
5261       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5262       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5263                                getF32Constant(DAG, 0x40aaf200, dl));
5264       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5265       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5266                                getF32Constant(DAG, 0x40c39dad, dl));
5267       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5268       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5269                                    getF32Constant(DAG, 0x4042902c, dl));
5270     }
5271 
5272     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5273   }
5274 
5275   // No special expansion.
5276   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5277 }
5278 
5279 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5280 /// limited-precision mode.
5281 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5282                            const TargetLowering &TLI) {
5283   // TODO: What fast-math-flags should be set on the floating-point nodes?
5284 
5285   if (Op.getValueType() == MVT::f32 &&
5286       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5287     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5288 
5289     // Scale the exponent by log10(2) [0.30102999f].
5290     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5291     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5292                                         getF32Constant(DAG, 0x3e9a209a, dl));
5293 
5294     // Get the significand and build it into a floating-point number with
5295     // exponent of 1.
5296     SDValue X = GetSignificand(DAG, Op1, dl);
5297 
5298     SDValue Log10ofMantissa;
5299     if (LimitFloatPrecision <= 6) {
5300       // For floating-point precision of 6:
5301       //
5302       //   Log10ofMantissa =
5303       //     -0.50419619f +
5304       //       (0.60948995f - 0.10380950f * x) * x;
5305       //
5306       // error 0.0014886165, which is 6 bits
5307       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5308                                getF32Constant(DAG, 0xbdd49a13, dl));
5309       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5310                                getF32Constant(DAG, 0x3f1c0789, dl));
5311       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5312       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5313                                     getF32Constant(DAG, 0x3f011300, dl));
5314     } else if (LimitFloatPrecision <= 12) {
5315       // For floating-point precision of 12:
5316       //
5317       //   Log10ofMantissa =
5318       //     -0.64831180f +
5319       //       (0.91751397f +
5320       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5321       //
5322       // error 0.00019228036, which is better than 12 bits
5323       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5324                                getF32Constant(DAG, 0x3d431f31, dl));
5325       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5326                                getF32Constant(DAG, 0x3ea21fb2, dl));
5327       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5328       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5329                                getF32Constant(DAG, 0x3f6ae232, dl));
5330       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5331       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5332                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5333     } else { // LimitFloatPrecision <= 18
5334       // For floating-point precision of 18:
5335       //
5336       //   Log10ofMantissa =
5337       //     -0.84299375f +
5338       //       (1.5327582f +
5339       //         (-1.0688956f +
5340       //           (0.49102474f +
5341       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5342       //
5343       // error 0.0000037995730, which is better than 18 bits
5344       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5345                                getF32Constant(DAG, 0x3c5d51ce, dl));
5346       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5347                                getF32Constant(DAG, 0x3e00685a, dl));
5348       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5349       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5350                                getF32Constant(DAG, 0x3efb6798, dl));
5351       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5352       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5353                                getF32Constant(DAG, 0x3f88d192, dl));
5354       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5355       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5356                                getF32Constant(DAG, 0x3fc4316c, dl));
5357       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5358       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5359                                     getF32Constant(DAG, 0x3f57ce70, dl));
5360     }
5361 
5362     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5363   }
5364 
5365   // No special expansion.
5366   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5367 }
5368 
5369 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5370 /// limited-precision mode.
5371 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5372                           const TargetLowering &TLI) {
5373   if (Op.getValueType() == MVT::f32 &&
5374       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5375     return getLimitedPrecisionExp2(Op, dl, DAG);
5376 
5377   // No special expansion.
5378   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5379 }
5380 
5381 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5382 /// limited-precision mode with x == 10.0f.
5383 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5384                          SelectionDAG &DAG, const TargetLowering &TLI) {
5385   bool IsExp10 = false;
5386   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5387       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5388     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5389       APFloat Ten(10.0f);
5390       IsExp10 = LHSC->isExactlyValue(Ten);
5391     }
5392   }
5393 
5394   // TODO: What fast-math-flags should be set on the FMUL node?
5395   if (IsExp10) {
5396     // Put the exponent in the right bit position for later addition to the
5397     // final result:
5398     //
5399     //   #define LOG2OF10 3.3219281f
5400     //   t0 = Op * LOG2OF10;
5401     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5402                              getF32Constant(DAG, 0x40549a78, dl));
5403     return getLimitedPrecisionExp2(t0, dl, DAG);
5404   }
5405 
5406   // No special expansion.
5407   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5408 }
5409 
5410 /// ExpandPowI - Expand a llvm.powi intrinsic.
5411 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5412                           SelectionDAG &DAG) {
5413   // If RHS is a constant, we can expand this out to a multiplication tree,
5414   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5415   // optimizing for size, we only want to do this if the expansion would produce
5416   // a small number of multiplies, otherwise we do the full expansion.
5417   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5418     // Get the exponent as a positive value.
5419     unsigned Val = RHSC->getSExtValue();
5420     if ((int)Val < 0) Val = -Val;
5421 
5422     // powi(x, 0) -> 1.0
5423     if (Val == 0)
5424       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5425 
5426     bool OptForSize = DAG.shouldOptForSize();
5427     if (!OptForSize ||
5428         // If optimizing for size, don't insert too many multiplies.
5429         // This inserts up to 5 multiplies.
5430         countPopulation(Val) + Log2_32(Val) < 7) {
5431       // We use the simple binary decomposition method to generate the multiply
5432       // sequence.  There are more optimal ways to do this (for example,
5433       // powi(x,15) generates one more multiply than it should), but this has
5434       // the benefit of being both really simple and much better than a libcall.
5435       SDValue Res;  // Logically starts equal to 1.0
5436       SDValue CurSquare = LHS;
5437       // TODO: Intrinsics should have fast-math-flags that propagate to these
5438       // nodes.
5439       while (Val) {
5440         if (Val & 1) {
5441           if (Res.getNode())
5442             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5443           else
5444             Res = CurSquare;  // 1.0*CurSquare.
5445         }
5446 
5447         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5448                                 CurSquare, CurSquare);
5449         Val >>= 1;
5450       }
5451 
5452       // If the original was negative, invert the result, producing 1/(x*x*x).
5453       if (RHSC->getSExtValue() < 0)
5454         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5455                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5456       return Res;
5457     }
5458   }
5459 
5460   // Otherwise, expand to a libcall.
5461   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5462 }
5463 
5464 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5465                             SDValue LHS, SDValue RHS, SDValue Scale,
5466                             SelectionDAG &DAG, const TargetLowering &TLI) {
5467   EVT VT = LHS.getValueType();
5468   bool Signed = Opcode == ISD::SDIVFIX;
5469   LLVMContext &Ctx = *DAG.getContext();
5470 
5471   // If the type is legal but the operation isn't, this node might survive all
5472   // the way to operation legalization. If we end up there and we do not have
5473   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5474   // node.
5475 
5476   // Coax the legalizer into expanding the node during type legalization instead
5477   // by bumping the size by one bit. This will force it to Promote, enabling the
5478   // early expansion and avoiding the need to expand later.
5479 
5480   // We don't have to do this if Scale is 0; that can always be expanded.
5481 
5482   // FIXME: We wouldn't have to do this (or any of the early
5483   // expansion/promotion) if it was possible to expand a libcall of an
5484   // illegal type during operation legalization. But it's not, so things
5485   // get a bit hacky.
5486   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5487   if (ScaleInt > 0 &&
5488       (TLI.isTypeLegal(VT) ||
5489        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5490     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5491         Opcode, VT, ScaleInt);
5492     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5493       EVT PromVT;
5494       if (VT.isScalarInteger())
5495         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5496       else if (VT.isVector()) {
5497         PromVT = VT.getVectorElementType();
5498         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5499         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5500       } else
5501         llvm_unreachable("Wrong VT for DIVFIX?");
5502       if (Signed) {
5503         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5504         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5505       } else {
5506         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5507         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5508       }
5509       // TODO: Saturation.
5510       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5511       return DAG.getZExtOrTrunc(Res, DL, VT);
5512     }
5513   }
5514 
5515   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5516 }
5517 
5518 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5519 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5520 static void
5521 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5522                      const SDValue &N) {
5523   switch (N.getOpcode()) {
5524   case ISD::CopyFromReg: {
5525     SDValue Op = N.getOperand(1);
5526     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5527                       Op.getValueType().getSizeInBits());
5528     return;
5529   }
5530   case ISD::BITCAST:
5531   case ISD::AssertZext:
5532   case ISD::AssertSext:
5533   case ISD::TRUNCATE:
5534     getUnderlyingArgRegs(Regs, N.getOperand(0));
5535     return;
5536   case ISD::BUILD_PAIR:
5537   case ISD::BUILD_VECTOR:
5538   case ISD::CONCAT_VECTORS:
5539     for (SDValue Op : N->op_values())
5540       getUnderlyingArgRegs(Regs, Op);
5541     return;
5542   default:
5543     return;
5544   }
5545 }
5546 
5547 /// If the DbgValueInst is a dbg_value of a function argument, create the
5548 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5549 /// instruction selection, they will be inserted to the entry BB.
5550 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5551     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5552     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5553   const Argument *Arg = dyn_cast<Argument>(V);
5554   if (!Arg)
5555     return false;
5556 
5557   if (!IsDbgDeclare) {
5558     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5559     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5560     // the entry block.
5561     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5562     if (!IsInEntryBlock)
5563       return false;
5564 
5565     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5566     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5567     // variable that also is a param.
5568     //
5569     // Although, if we are at the top of the entry block already, we can still
5570     // emit using ArgDbgValue. This might catch some situations when the
5571     // dbg.value refers to an argument that isn't used in the entry block, so
5572     // any CopyToReg node would be optimized out and the only way to express
5573     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5574     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5575     // we should only emit as ArgDbgValue if the Variable is an argument to the
5576     // current function, and the dbg.value intrinsic is found in the entry
5577     // block.
5578     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5579         !DL->getInlinedAt();
5580     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5581     if (!IsInPrologue && !VariableIsFunctionInputArg)
5582       return false;
5583 
5584     // Here we assume that a function argument on IR level only can be used to
5585     // describe one input parameter on source level. If we for example have
5586     // source code like this
5587     //
5588     //    struct A { long x, y; };
5589     //    void foo(struct A a, long b) {
5590     //      ...
5591     //      b = a.x;
5592     //      ...
5593     //    }
5594     //
5595     // and IR like this
5596     //
5597     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5598     //  entry:
5599     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5600     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5601     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5602     //    ...
5603     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5604     //    ...
5605     //
5606     // then the last dbg.value is describing a parameter "b" using a value that
5607     // is an argument. But since we already has used %a1 to describe a parameter
5608     // we should not handle that last dbg.value here (that would result in an
5609     // incorrect hoisting of the DBG_VALUE to the function entry).
5610     // Notice that we allow one dbg.value per IR level argument, to accommodate
5611     // for the situation with fragments above.
5612     if (VariableIsFunctionInputArg) {
5613       unsigned ArgNo = Arg->getArgNo();
5614       if (ArgNo >= FuncInfo.DescribedArgs.size())
5615         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5616       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5617         return false;
5618       FuncInfo.DescribedArgs.set(ArgNo);
5619     }
5620   }
5621 
5622   MachineFunction &MF = DAG.getMachineFunction();
5623   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5624 
5625   bool IsIndirect = false;
5626   Optional<MachineOperand> Op;
5627   // Some arguments' frame index is recorded during argument lowering.
5628   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5629   if (FI != std::numeric_limits<int>::max())
5630     Op = MachineOperand::CreateFI(FI);
5631 
5632   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5633   if (!Op && N.getNode()) {
5634     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5635     Register Reg;
5636     if (ArgRegsAndSizes.size() == 1)
5637       Reg = ArgRegsAndSizes.front().first;
5638 
5639     if (Reg && Reg.isVirtual()) {
5640       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5641       Register PR = RegInfo.getLiveInPhysReg(Reg);
5642       if (PR)
5643         Reg = PR;
5644     }
5645     if (Reg) {
5646       Op = MachineOperand::CreateReg(Reg, false);
5647       IsIndirect = IsDbgDeclare;
5648     }
5649   }
5650 
5651   if (!Op && N.getNode()) {
5652     // Check if frame index is available.
5653     SDValue LCandidate = peekThroughBitcasts(N);
5654     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5655       if (FrameIndexSDNode *FINode =
5656           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5657         Op = MachineOperand::CreateFI(FINode->getIndex());
5658   }
5659 
5660   if (!Op) {
5661     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5662     auto splitMultiRegDbgValue
5663       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5664       unsigned Offset = 0;
5665       for (auto RegAndSize : SplitRegs) {
5666         // If the expression is already a fragment, the current register
5667         // offset+size might extend beyond the fragment. In this case, only
5668         // the register bits that are inside the fragment are relevant.
5669         int RegFragmentSizeInBits = RegAndSize.second;
5670         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5671           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5672           // The register is entirely outside the expression fragment,
5673           // so is irrelevant for debug info.
5674           if (Offset >= ExprFragmentSizeInBits)
5675             break;
5676           // The register is partially outside the expression fragment, only
5677           // the low bits within the fragment are relevant for debug info.
5678           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5679             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5680           }
5681         }
5682 
5683         auto FragmentExpr = DIExpression::createFragmentExpression(
5684             Expr, Offset, RegFragmentSizeInBits);
5685         Offset += RegAndSize.second;
5686         // If a valid fragment expression cannot be created, the variable's
5687         // correct value cannot be determined and so it is set as Undef.
5688         if (!FragmentExpr) {
5689           SDDbgValue *SDV = DAG.getConstantDbgValue(
5690               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5691           DAG.AddDbgValue(SDV, nullptr, false);
5692           continue;
5693         }
5694         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5695         FuncInfo.ArgDbgValues.push_back(
5696           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5697                   RegAndSize.first, Variable, *FragmentExpr));
5698       }
5699     };
5700 
5701     // Check if ValueMap has reg number.
5702     DenseMap<const Value *, unsigned>::const_iterator
5703       VMI = FuncInfo.ValueMap.find(V);
5704     if (VMI != FuncInfo.ValueMap.end()) {
5705       const auto &TLI = DAG.getTargetLoweringInfo();
5706       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5707                        V->getType(), getABIRegCopyCC(V));
5708       if (RFV.occupiesMultipleRegs()) {
5709         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5710         return true;
5711       }
5712 
5713       Op = MachineOperand::CreateReg(VMI->second, false);
5714       IsIndirect = IsDbgDeclare;
5715     } else if (ArgRegsAndSizes.size() > 1) {
5716       // This was split due to the calling convention, and no virtual register
5717       // mapping exists for the value.
5718       splitMultiRegDbgValue(ArgRegsAndSizes);
5719       return true;
5720     }
5721   }
5722 
5723   if (!Op)
5724     return false;
5725 
5726   assert(Variable->isValidLocationForIntrinsic(DL) &&
5727          "Expected inlined-at fields to agree");
5728   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5729   FuncInfo.ArgDbgValues.push_back(
5730       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5731               *Op, Variable, Expr));
5732 
5733   return true;
5734 }
5735 
5736 /// Return the appropriate SDDbgValue based on N.
5737 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5738                                              DILocalVariable *Variable,
5739                                              DIExpression *Expr,
5740                                              const DebugLoc &dl,
5741                                              unsigned DbgSDNodeOrder) {
5742   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5743     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5744     // stack slot locations.
5745     //
5746     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5747     // debug values here after optimization:
5748     //
5749     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5750     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5751     //
5752     // Both describe the direct values of their associated variables.
5753     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5754                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5755   }
5756   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5757                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5758 }
5759 
5760 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5761   switch (Intrinsic) {
5762   case Intrinsic::smul_fix:
5763     return ISD::SMULFIX;
5764   case Intrinsic::umul_fix:
5765     return ISD::UMULFIX;
5766   case Intrinsic::smul_fix_sat:
5767     return ISD::SMULFIXSAT;
5768   case Intrinsic::umul_fix_sat:
5769     return ISD::UMULFIXSAT;
5770   case Intrinsic::sdiv_fix:
5771     return ISD::SDIVFIX;
5772   case Intrinsic::udiv_fix:
5773     return ISD::UDIVFIX;
5774   default:
5775     llvm_unreachable("Unhandled fixed point intrinsic");
5776   }
5777 }
5778 
5779 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5780                                            const char *FunctionName) {
5781   assert(FunctionName && "FunctionName must not be nullptr");
5782   SDValue Callee = DAG.getExternalSymbol(
5783       FunctionName,
5784       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5785   LowerCallTo(&I, Callee, I.isTailCall());
5786 }
5787 
5788 /// Lower the call to the specified intrinsic function.
5789 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5790                                              unsigned Intrinsic) {
5791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5792   SDLoc sdl = getCurSDLoc();
5793   DebugLoc dl = getCurDebugLoc();
5794   SDValue Res;
5795 
5796   switch (Intrinsic) {
5797   default:
5798     // By default, turn this into a target intrinsic node.
5799     visitTargetIntrinsic(I, Intrinsic);
5800     return;
5801   case Intrinsic::vastart:  visitVAStart(I); return;
5802   case Intrinsic::vaend:    visitVAEnd(I); return;
5803   case Intrinsic::vacopy:   visitVACopy(I); return;
5804   case Intrinsic::returnaddress:
5805     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5806                              TLI.getPointerTy(DAG.getDataLayout()),
5807                              getValue(I.getArgOperand(0))));
5808     return;
5809   case Intrinsic::addressofreturnaddress:
5810     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5811                              TLI.getPointerTy(DAG.getDataLayout())));
5812     return;
5813   case Intrinsic::sponentry:
5814     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5815                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5816     return;
5817   case Intrinsic::frameaddress:
5818     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5819                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5820                              getValue(I.getArgOperand(0))));
5821     return;
5822   case Intrinsic::read_register: {
5823     Value *Reg = I.getArgOperand(0);
5824     SDValue Chain = getRoot();
5825     SDValue RegName =
5826         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5827     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5828     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5829       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5830     setValue(&I, Res);
5831     DAG.setRoot(Res.getValue(1));
5832     return;
5833   }
5834   case Intrinsic::write_register: {
5835     Value *Reg = I.getArgOperand(0);
5836     Value *RegValue = I.getArgOperand(1);
5837     SDValue Chain = getRoot();
5838     SDValue RegName =
5839         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5840     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5841                             RegName, getValue(RegValue)));
5842     return;
5843   }
5844   case Intrinsic::memcpy: {
5845     const auto &MCI = cast<MemCpyInst>(I);
5846     SDValue Op1 = getValue(I.getArgOperand(0));
5847     SDValue Op2 = getValue(I.getArgOperand(1));
5848     SDValue Op3 = getValue(I.getArgOperand(2));
5849     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5850     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5851     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5852     unsigned Align = MinAlign(DstAlign, SrcAlign);
5853     bool isVol = MCI.isVolatile();
5854     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5855     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5856     // node.
5857     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5858     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Align, isVol,
5859                                false, isTC,
5860                                MachinePointerInfo(I.getArgOperand(0)),
5861                                MachinePointerInfo(I.getArgOperand(1)));
5862     updateDAGForMaybeTailCall(MC);
5863     return;
5864   }
5865   case Intrinsic::memset: {
5866     const auto &MSI = cast<MemSetInst>(I);
5867     SDValue Op1 = getValue(I.getArgOperand(0));
5868     SDValue Op2 = getValue(I.getArgOperand(1));
5869     SDValue Op3 = getValue(I.getArgOperand(2));
5870     // @llvm.memset defines 0 and 1 to both mean no alignment.
5871     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5872     bool isVol = MSI.isVolatile();
5873     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5874     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5875     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Align, isVol,
5876                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5877     updateDAGForMaybeTailCall(MS);
5878     return;
5879   }
5880   case Intrinsic::memmove: {
5881     const auto &MMI = cast<MemMoveInst>(I);
5882     SDValue Op1 = getValue(I.getArgOperand(0));
5883     SDValue Op2 = getValue(I.getArgOperand(1));
5884     SDValue Op3 = getValue(I.getArgOperand(2));
5885     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5886     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5887     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5888     unsigned Align = MinAlign(DstAlign, SrcAlign);
5889     bool isVol = MMI.isVolatile();
5890     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5891     // FIXME: Support passing different dest/src alignments to the memmove DAG
5892     // node.
5893     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5894     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Align, isVol,
5895                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5896                                 MachinePointerInfo(I.getArgOperand(1)));
5897     updateDAGForMaybeTailCall(MM);
5898     return;
5899   }
5900   case Intrinsic::memcpy_element_unordered_atomic: {
5901     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5902     SDValue Dst = getValue(MI.getRawDest());
5903     SDValue Src = getValue(MI.getRawSource());
5904     SDValue Length = getValue(MI.getLength());
5905 
5906     unsigned DstAlign = MI.getDestAlignment();
5907     unsigned SrcAlign = MI.getSourceAlignment();
5908     Type *LengthTy = MI.getLength()->getType();
5909     unsigned ElemSz = MI.getElementSizeInBytes();
5910     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5911     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5912                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5913                                      MachinePointerInfo(MI.getRawDest()),
5914                                      MachinePointerInfo(MI.getRawSource()));
5915     updateDAGForMaybeTailCall(MC);
5916     return;
5917   }
5918   case Intrinsic::memmove_element_unordered_atomic: {
5919     auto &MI = cast<AtomicMemMoveInst>(I);
5920     SDValue Dst = getValue(MI.getRawDest());
5921     SDValue Src = getValue(MI.getRawSource());
5922     SDValue Length = getValue(MI.getLength());
5923 
5924     unsigned DstAlign = MI.getDestAlignment();
5925     unsigned SrcAlign = MI.getSourceAlignment();
5926     Type *LengthTy = MI.getLength()->getType();
5927     unsigned ElemSz = MI.getElementSizeInBytes();
5928     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5929     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5930                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5931                                       MachinePointerInfo(MI.getRawDest()),
5932                                       MachinePointerInfo(MI.getRawSource()));
5933     updateDAGForMaybeTailCall(MC);
5934     return;
5935   }
5936   case Intrinsic::memset_element_unordered_atomic: {
5937     auto &MI = cast<AtomicMemSetInst>(I);
5938     SDValue Dst = getValue(MI.getRawDest());
5939     SDValue Val = getValue(MI.getValue());
5940     SDValue Length = getValue(MI.getLength());
5941 
5942     unsigned DstAlign = MI.getDestAlignment();
5943     Type *LengthTy = MI.getLength()->getType();
5944     unsigned ElemSz = MI.getElementSizeInBytes();
5945     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5946     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5947                                      LengthTy, ElemSz, isTC,
5948                                      MachinePointerInfo(MI.getRawDest()));
5949     updateDAGForMaybeTailCall(MC);
5950     return;
5951   }
5952   case Intrinsic::dbg_addr:
5953   case Intrinsic::dbg_declare: {
5954     const auto &DI = cast<DbgVariableIntrinsic>(I);
5955     DILocalVariable *Variable = DI.getVariable();
5956     DIExpression *Expression = DI.getExpression();
5957     dropDanglingDebugInfo(Variable, Expression);
5958     assert(Variable && "Missing variable");
5959 
5960     // Check if address has undef value.
5961     const Value *Address = DI.getVariableLocation();
5962     if (!Address || isa<UndefValue>(Address) ||
5963         (Address->use_empty() && !isa<Argument>(Address))) {
5964       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5965       return;
5966     }
5967 
5968     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5969 
5970     // Check if this variable can be described by a frame index, typically
5971     // either as a static alloca or a byval parameter.
5972     int FI = std::numeric_limits<int>::max();
5973     if (const auto *AI =
5974             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5975       if (AI->isStaticAlloca()) {
5976         auto I = FuncInfo.StaticAllocaMap.find(AI);
5977         if (I != FuncInfo.StaticAllocaMap.end())
5978           FI = I->second;
5979       }
5980     } else if (const auto *Arg = dyn_cast<Argument>(
5981                    Address->stripInBoundsConstantOffsets())) {
5982       FI = FuncInfo.getArgumentFrameIndex(Arg);
5983     }
5984 
5985     // llvm.dbg.addr is control dependent and always generates indirect
5986     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5987     // the MachineFunction variable table.
5988     if (FI != std::numeric_limits<int>::max()) {
5989       if (Intrinsic == Intrinsic::dbg_addr) {
5990         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5991             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5992         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5993       }
5994       return;
5995     }
5996 
5997     SDValue &N = NodeMap[Address];
5998     if (!N.getNode() && isa<Argument>(Address))
5999       // Check unused arguments map.
6000       N = UnusedArgNodeMap[Address];
6001     SDDbgValue *SDV;
6002     if (N.getNode()) {
6003       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6004         Address = BCI->getOperand(0);
6005       // Parameters are handled specially.
6006       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6007       if (isParameter && FINode) {
6008         // Byval parameter. We have a frame index at this point.
6009         SDV =
6010             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6011                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6012       } else if (isa<Argument>(Address)) {
6013         // Address is an argument, so try to emit its dbg value using
6014         // virtual register info from the FuncInfo.ValueMap.
6015         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6016         return;
6017       } else {
6018         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6019                               true, dl, SDNodeOrder);
6020       }
6021       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
6022     } else {
6023       // If Address is an argument then try to emit its dbg value using
6024       // virtual register info from the FuncInfo.ValueMap.
6025       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6026                                     N)) {
6027         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
6028       }
6029     }
6030     return;
6031   }
6032   case Intrinsic::dbg_label: {
6033     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6034     DILabel *Label = DI.getLabel();
6035     assert(Label && "Missing label");
6036 
6037     SDDbgLabel *SDV;
6038     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6039     DAG.AddDbgLabel(SDV);
6040     return;
6041   }
6042   case Intrinsic::dbg_value: {
6043     const DbgValueInst &DI = cast<DbgValueInst>(I);
6044     assert(DI.getVariable() && "Missing variable");
6045 
6046     DILocalVariable *Variable = DI.getVariable();
6047     DIExpression *Expression = DI.getExpression();
6048     dropDanglingDebugInfo(Variable, Expression);
6049     const Value *V = DI.getValue();
6050     if (!V)
6051       return;
6052 
6053     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
6054         SDNodeOrder))
6055       return;
6056 
6057     // TODO: Dangling debug info will eventually either be resolved or produce
6058     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
6059     // between the original dbg.value location and its resolved DBG_VALUE, which
6060     // we should ideally fill with an extra Undef DBG_VALUE.
6061 
6062     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
6063     return;
6064   }
6065 
6066   case Intrinsic::eh_typeid_for: {
6067     // Find the type id for the given typeinfo.
6068     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6069     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6070     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6071     setValue(&I, Res);
6072     return;
6073   }
6074 
6075   case Intrinsic::eh_return_i32:
6076   case Intrinsic::eh_return_i64:
6077     DAG.getMachineFunction().setCallsEHReturn(true);
6078     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6079                             MVT::Other,
6080                             getControlRoot(),
6081                             getValue(I.getArgOperand(0)),
6082                             getValue(I.getArgOperand(1))));
6083     return;
6084   case Intrinsic::eh_unwind_init:
6085     DAG.getMachineFunction().setCallsUnwindInit(true);
6086     return;
6087   case Intrinsic::eh_dwarf_cfa:
6088     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6089                              TLI.getPointerTy(DAG.getDataLayout()),
6090                              getValue(I.getArgOperand(0))));
6091     return;
6092   case Intrinsic::eh_sjlj_callsite: {
6093     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6094     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6095     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6096     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6097 
6098     MMI.setCurrentCallSite(CI->getZExtValue());
6099     return;
6100   }
6101   case Intrinsic::eh_sjlj_functioncontext: {
6102     // Get and store the index of the function context.
6103     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6104     AllocaInst *FnCtx =
6105       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6106     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6107     MFI.setFunctionContextIndex(FI);
6108     return;
6109   }
6110   case Intrinsic::eh_sjlj_setjmp: {
6111     SDValue Ops[2];
6112     Ops[0] = getRoot();
6113     Ops[1] = getValue(I.getArgOperand(0));
6114     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6115                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6116     setValue(&I, Op.getValue(0));
6117     DAG.setRoot(Op.getValue(1));
6118     return;
6119   }
6120   case Intrinsic::eh_sjlj_longjmp:
6121     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6122                             getRoot(), getValue(I.getArgOperand(0))));
6123     return;
6124   case Intrinsic::eh_sjlj_setup_dispatch:
6125     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6126                             getRoot()));
6127     return;
6128   case Intrinsic::masked_gather:
6129     visitMaskedGather(I);
6130     return;
6131   case Intrinsic::masked_load:
6132     visitMaskedLoad(I);
6133     return;
6134   case Intrinsic::masked_scatter:
6135     visitMaskedScatter(I);
6136     return;
6137   case Intrinsic::masked_store:
6138     visitMaskedStore(I);
6139     return;
6140   case Intrinsic::masked_expandload:
6141     visitMaskedLoad(I, true /* IsExpanding */);
6142     return;
6143   case Intrinsic::masked_compressstore:
6144     visitMaskedStore(I, true /* IsCompressing */);
6145     return;
6146   case Intrinsic::powi:
6147     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6148                             getValue(I.getArgOperand(1)), DAG));
6149     return;
6150   case Intrinsic::log:
6151     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6152     return;
6153   case Intrinsic::log2:
6154     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6155     return;
6156   case Intrinsic::log10:
6157     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6158     return;
6159   case Intrinsic::exp:
6160     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6161     return;
6162   case Intrinsic::exp2:
6163     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6164     return;
6165   case Intrinsic::pow:
6166     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6167                            getValue(I.getArgOperand(1)), DAG, TLI));
6168     return;
6169   case Intrinsic::sqrt:
6170   case Intrinsic::fabs:
6171   case Intrinsic::sin:
6172   case Intrinsic::cos:
6173   case Intrinsic::floor:
6174   case Intrinsic::ceil:
6175   case Intrinsic::trunc:
6176   case Intrinsic::rint:
6177   case Intrinsic::nearbyint:
6178   case Intrinsic::round:
6179   case Intrinsic::canonicalize: {
6180     unsigned Opcode;
6181     switch (Intrinsic) {
6182     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6183     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6184     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6185     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6186     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6187     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6188     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6189     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6190     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6191     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6192     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6193     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6194     }
6195 
6196     setValue(&I, DAG.getNode(Opcode, sdl,
6197                              getValue(I.getArgOperand(0)).getValueType(),
6198                              getValue(I.getArgOperand(0))));
6199     return;
6200   }
6201   case Intrinsic::lround:
6202   case Intrinsic::llround:
6203   case Intrinsic::lrint:
6204   case Intrinsic::llrint: {
6205     unsigned Opcode;
6206     switch (Intrinsic) {
6207     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6208     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6209     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6210     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6211     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6212     }
6213 
6214     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6215     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6216                              getValue(I.getArgOperand(0))));
6217     return;
6218   }
6219   case Intrinsic::minnum:
6220     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6221                              getValue(I.getArgOperand(0)).getValueType(),
6222                              getValue(I.getArgOperand(0)),
6223                              getValue(I.getArgOperand(1))));
6224     return;
6225   case Intrinsic::maxnum:
6226     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6227                              getValue(I.getArgOperand(0)).getValueType(),
6228                              getValue(I.getArgOperand(0)),
6229                              getValue(I.getArgOperand(1))));
6230     return;
6231   case Intrinsic::minimum:
6232     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6233                              getValue(I.getArgOperand(0)).getValueType(),
6234                              getValue(I.getArgOperand(0)),
6235                              getValue(I.getArgOperand(1))));
6236     return;
6237   case Intrinsic::maximum:
6238     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6239                              getValue(I.getArgOperand(0)).getValueType(),
6240                              getValue(I.getArgOperand(0)),
6241                              getValue(I.getArgOperand(1))));
6242     return;
6243   case Intrinsic::copysign:
6244     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6245                              getValue(I.getArgOperand(0)).getValueType(),
6246                              getValue(I.getArgOperand(0)),
6247                              getValue(I.getArgOperand(1))));
6248     return;
6249   case Intrinsic::fma:
6250     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6251                              getValue(I.getArgOperand(0)).getValueType(),
6252                              getValue(I.getArgOperand(0)),
6253                              getValue(I.getArgOperand(1)),
6254                              getValue(I.getArgOperand(2))));
6255     return;
6256 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
6257   case Intrinsic::INTRINSIC:
6258 #include "llvm/IR/ConstrainedOps.def"
6259     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6260     return;
6261   case Intrinsic::fmuladd: {
6262     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6263     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6264         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6265       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6266                                getValue(I.getArgOperand(0)).getValueType(),
6267                                getValue(I.getArgOperand(0)),
6268                                getValue(I.getArgOperand(1)),
6269                                getValue(I.getArgOperand(2))));
6270     } else {
6271       // TODO: Intrinsic calls should have fast-math-flags.
6272       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6273                                 getValue(I.getArgOperand(0)).getValueType(),
6274                                 getValue(I.getArgOperand(0)),
6275                                 getValue(I.getArgOperand(1)));
6276       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6277                                 getValue(I.getArgOperand(0)).getValueType(),
6278                                 Mul,
6279                                 getValue(I.getArgOperand(2)));
6280       setValue(&I, Add);
6281     }
6282     return;
6283   }
6284   case Intrinsic::convert_to_fp16:
6285     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6286                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6287                                          getValue(I.getArgOperand(0)),
6288                                          DAG.getTargetConstant(0, sdl,
6289                                                                MVT::i32))));
6290     return;
6291   case Intrinsic::convert_from_fp16:
6292     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6293                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6294                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6295                                          getValue(I.getArgOperand(0)))));
6296     return;
6297   case Intrinsic::pcmarker: {
6298     SDValue Tmp = getValue(I.getArgOperand(0));
6299     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6300     return;
6301   }
6302   case Intrinsic::readcyclecounter: {
6303     SDValue Op = getRoot();
6304     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6305                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6306     setValue(&I, Res);
6307     DAG.setRoot(Res.getValue(1));
6308     return;
6309   }
6310   case Intrinsic::bitreverse:
6311     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6312                              getValue(I.getArgOperand(0)).getValueType(),
6313                              getValue(I.getArgOperand(0))));
6314     return;
6315   case Intrinsic::bswap:
6316     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6317                              getValue(I.getArgOperand(0)).getValueType(),
6318                              getValue(I.getArgOperand(0))));
6319     return;
6320   case Intrinsic::cttz: {
6321     SDValue Arg = getValue(I.getArgOperand(0));
6322     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6323     EVT Ty = Arg.getValueType();
6324     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6325                              sdl, Ty, Arg));
6326     return;
6327   }
6328   case Intrinsic::ctlz: {
6329     SDValue Arg = getValue(I.getArgOperand(0));
6330     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6331     EVT Ty = Arg.getValueType();
6332     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6333                              sdl, Ty, Arg));
6334     return;
6335   }
6336   case Intrinsic::ctpop: {
6337     SDValue Arg = getValue(I.getArgOperand(0));
6338     EVT Ty = Arg.getValueType();
6339     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6340     return;
6341   }
6342   case Intrinsic::fshl:
6343   case Intrinsic::fshr: {
6344     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6345     SDValue X = getValue(I.getArgOperand(0));
6346     SDValue Y = getValue(I.getArgOperand(1));
6347     SDValue Z = getValue(I.getArgOperand(2));
6348     EVT VT = X.getValueType();
6349     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6350     SDValue Zero = DAG.getConstant(0, sdl, VT);
6351     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6352 
6353     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6354     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6355       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6356       return;
6357     }
6358 
6359     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6360     // avoid the select that is necessary in the general case to filter out
6361     // the 0-shift possibility that leads to UB.
6362     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6363       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6364       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6365         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6366         return;
6367       }
6368 
6369       // Some targets only rotate one way. Try the opposite direction.
6370       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6371       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6372         // Negate the shift amount because it is safe to ignore the high bits.
6373         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6374         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6375         return;
6376       }
6377 
6378       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6379       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6380       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6381       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6382       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6383       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6384       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6385       return;
6386     }
6387 
6388     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6389     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6390     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6391     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6392     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6393     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6394 
6395     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6396     // and that is undefined. We must compare and select to avoid UB.
6397     EVT CCVT = MVT::i1;
6398     if (VT.isVector())
6399       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6400 
6401     // For fshl, 0-shift returns the 1st arg (X).
6402     // For fshr, 0-shift returns the 2nd arg (Y).
6403     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6404     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6405     return;
6406   }
6407   case Intrinsic::sadd_sat: {
6408     SDValue Op1 = getValue(I.getArgOperand(0));
6409     SDValue Op2 = getValue(I.getArgOperand(1));
6410     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6411     return;
6412   }
6413   case Intrinsic::uadd_sat: {
6414     SDValue Op1 = getValue(I.getArgOperand(0));
6415     SDValue Op2 = getValue(I.getArgOperand(1));
6416     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6417     return;
6418   }
6419   case Intrinsic::ssub_sat: {
6420     SDValue Op1 = getValue(I.getArgOperand(0));
6421     SDValue Op2 = getValue(I.getArgOperand(1));
6422     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6423     return;
6424   }
6425   case Intrinsic::usub_sat: {
6426     SDValue Op1 = getValue(I.getArgOperand(0));
6427     SDValue Op2 = getValue(I.getArgOperand(1));
6428     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6429     return;
6430   }
6431   case Intrinsic::smul_fix:
6432   case Intrinsic::umul_fix:
6433   case Intrinsic::smul_fix_sat:
6434   case Intrinsic::umul_fix_sat: {
6435     SDValue Op1 = getValue(I.getArgOperand(0));
6436     SDValue Op2 = getValue(I.getArgOperand(1));
6437     SDValue Op3 = getValue(I.getArgOperand(2));
6438     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6439                              Op1.getValueType(), Op1, Op2, Op3));
6440     return;
6441   }
6442   case Intrinsic::sdiv_fix:
6443   case Intrinsic::udiv_fix: {
6444     SDValue Op1 = getValue(I.getArgOperand(0));
6445     SDValue Op2 = getValue(I.getArgOperand(1));
6446     SDValue Op3 = getValue(I.getArgOperand(2));
6447     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6448                               Op1, Op2, Op3, DAG, TLI));
6449     return;
6450   }
6451   case Intrinsic::stacksave: {
6452     SDValue Op = getRoot();
6453     Res = DAG.getNode(
6454         ISD::STACKSAVE, sdl,
6455         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6456     setValue(&I, Res);
6457     DAG.setRoot(Res.getValue(1));
6458     return;
6459   }
6460   case Intrinsic::stackrestore:
6461     Res = getValue(I.getArgOperand(0));
6462     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6463     return;
6464   case Intrinsic::get_dynamic_area_offset: {
6465     SDValue Op = getRoot();
6466     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6467     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6468     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6469     // target.
6470     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6471       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6472                          " intrinsic!");
6473     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6474                       Op);
6475     DAG.setRoot(Op);
6476     setValue(&I, Res);
6477     return;
6478   }
6479   case Intrinsic::stackguard: {
6480     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6481     MachineFunction &MF = DAG.getMachineFunction();
6482     const Module &M = *MF.getFunction().getParent();
6483     SDValue Chain = getRoot();
6484     if (TLI.useLoadStackGuardNode()) {
6485       Res = getLoadStackGuard(DAG, sdl, Chain);
6486     } else {
6487       const Value *Global = TLI.getSDagStackGuard(M);
6488       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6489       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6490                         MachinePointerInfo(Global, 0), Align,
6491                         MachineMemOperand::MOVolatile);
6492     }
6493     if (TLI.useStackGuardXorFP())
6494       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6495     DAG.setRoot(Chain);
6496     setValue(&I, Res);
6497     return;
6498   }
6499   case Intrinsic::stackprotector: {
6500     // Emit code into the DAG to store the stack guard onto the stack.
6501     MachineFunction &MF = DAG.getMachineFunction();
6502     MachineFrameInfo &MFI = MF.getFrameInfo();
6503     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6504     SDValue Src, Chain = getRoot();
6505 
6506     if (TLI.useLoadStackGuardNode())
6507       Src = getLoadStackGuard(DAG, sdl, Chain);
6508     else
6509       Src = getValue(I.getArgOperand(0));   // The guard's value.
6510 
6511     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6512 
6513     int FI = FuncInfo.StaticAllocaMap[Slot];
6514     MFI.setStackProtectorIndex(FI);
6515 
6516     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6517 
6518     // Store the stack protector onto the stack.
6519     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6520                                                  DAG.getMachineFunction(), FI),
6521                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6522     setValue(&I, Res);
6523     DAG.setRoot(Res);
6524     return;
6525   }
6526   case Intrinsic::objectsize:
6527     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6528 
6529   case Intrinsic::is_constant:
6530     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6531 
6532   case Intrinsic::annotation:
6533   case Intrinsic::ptr_annotation:
6534   case Intrinsic::launder_invariant_group:
6535   case Intrinsic::strip_invariant_group:
6536     // Drop the intrinsic, but forward the value
6537     setValue(&I, getValue(I.getOperand(0)));
6538     return;
6539   case Intrinsic::assume:
6540   case Intrinsic::var_annotation:
6541   case Intrinsic::sideeffect:
6542     // Discard annotate attributes, assumptions, and artificial side-effects.
6543     return;
6544 
6545   case Intrinsic::codeview_annotation: {
6546     // Emit a label associated with this metadata.
6547     MachineFunction &MF = DAG.getMachineFunction();
6548     MCSymbol *Label =
6549         MF.getMMI().getContext().createTempSymbol("annotation", true);
6550     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6551     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6552     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6553     DAG.setRoot(Res);
6554     return;
6555   }
6556 
6557   case Intrinsic::init_trampoline: {
6558     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6559 
6560     SDValue Ops[6];
6561     Ops[0] = getRoot();
6562     Ops[1] = getValue(I.getArgOperand(0));
6563     Ops[2] = getValue(I.getArgOperand(1));
6564     Ops[3] = getValue(I.getArgOperand(2));
6565     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6566     Ops[5] = DAG.getSrcValue(F);
6567 
6568     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6569 
6570     DAG.setRoot(Res);
6571     return;
6572   }
6573   case Intrinsic::adjust_trampoline:
6574     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6575                              TLI.getPointerTy(DAG.getDataLayout()),
6576                              getValue(I.getArgOperand(0))));
6577     return;
6578   case Intrinsic::gcroot: {
6579     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6580            "only valid in functions with gc specified, enforced by Verifier");
6581     assert(GFI && "implied by previous");
6582     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6583     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6584 
6585     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6586     GFI->addStackRoot(FI->getIndex(), TypeMap);
6587     return;
6588   }
6589   case Intrinsic::gcread:
6590   case Intrinsic::gcwrite:
6591     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6592   case Intrinsic::flt_rounds:
6593     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6594     return;
6595 
6596   case Intrinsic::expect:
6597     // Just replace __builtin_expect(exp, c) with EXP.
6598     setValue(&I, getValue(I.getArgOperand(0)));
6599     return;
6600 
6601   case Intrinsic::debugtrap:
6602   case Intrinsic::trap: {
6603     StringRef TrapFuncName =
6604         I.getAttributes()
6605             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6606             .getValueAsString();
6607     if (TrapFuncName.empty()) {
6608       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6609         ISD::TRAP : ISD::DEBUGTRAP;
6610       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6611       return;
6612     }
6613     TargetLowering::ArgListTy Args;
6614 
6615     TargetLowering::CallLoweringInfo CLI(DAG);
6616     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6617         CallingConv::C, I.getType(),
6618         DAG.getExternalSymbol(TrapFuncName.data(),
6619                               TLI.getPointerTy(DAG.getDataLayout())),
6620         std::move(Args));
6621 
6622     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6623     DAG.setRoot(Result.second);
6624     return;
6625   }
6626 
6627   case Intrinsic::uadd_with_overflow:
6628   case Intrinsic::sadd_with_overflow:
6629   case Intrinsic::usub_with_overflow:
6630   case Intrinsic::ssub_with_overflow:
6631   case Intrinsic::umul_with_overflow:
6632   case Intrinsic::smul_with_overflow: {
6633     ISD::NodeType Op;
6634     switch (Intrinsic) {
6635     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6636     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6637     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6638     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6639     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6640     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6641     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6642     }
6643     SDValue Op1 = getValue(I.getArgOperand(0));
6644     SDValue Op2 = getValue(I.getArgOperand(1));
6645 
6646     EVT ResultVT = Op1.getValueType();
6647     EVT OverflowVT = MVT::i1;
6648     if (ResultVT.isVector())
6649       OverflowVT = EVT::getVectorVT(
6650           *Context, OverflowVT, ResultVT.getVectorNumElements());
6651 
6652     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6653     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6654     return;
6655   }
6656   case Intrinsic::prefetch: {
6657     SDValue Ops[5];
6658     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6659     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6660     Ops[0] = DAG.getRoot();
6661     Ops[1] = getValue(I.getArgOperand(0));
6662     Ops[2] = getValue(I.getArgOperand(1));
6663     Ops[3] = getValue(I.getArgOperand(2));
6664     Ops[4] = getValue(I.getArgOperand(3));
6665     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6666                                              DAG.getVTList(MVT::Other), Ops,
6667                                              EVT::getIntegerVT(*Context, 8),
6668                                              MachinePointerInfo(I.getArgOperand(0)),
6669                                              0, /* align */
6670                                              Flags);
6671 
6672     // Chain the prefetch in parallell with any pending loads, to stay out of
6673     // the way of later optimizations.
6674     PendingLoads.push_back(Result);
6675     Result = getRoot();
6676     DAG.setRoot(Result);
6677     return;
6678   }
6679   case Intrinsic::lifetime_start:
6680   case Intrinsic::lifetime_end: {
6681     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6682     // Stack coloring is not enabled in O0, discard region information.
6683     if (TM.getOptLevel() == CodeGenOpt::None)
6684       return;
6685 
6686     const int64_t ObjectSize =
6687         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6688     Value *const ObjectPtr = I.getArgOperand(1);
6689     SmallVector<const Value *, 4> Allocas;
6690     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6691 
6692     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6693            E = Allocas.end(); Object != E; ++Object) {
6694       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6695 
6696       // Could not find an Alloca.
6697       if (!LifetimeObject)
6698         continue;
6699 
6700       // First check that the Alloca is static, otherwise it won't have a
6701       // valid frame index.
6702       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6703       if (SI == FuncInfo.StaticAllocaMap.end())
6704         return;
6705 
6706       const int FrameIndex = SI->second;
6707       int64_t Offset;
6708       if (GetPointerBaseWithConstantOffset(
6709               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6710         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6711       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6712                                 Offset);
6713       DAG.setRoot(Res);
6714     }
6715     return;
6716   }
6717   case Intrinsic::invariant_start:
6718     // Discard region information.
6719     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6720     return;
6721   case Intrinsic::invariant_end:
6722     // Discard region information.
6723     return;
6724   case Intrinsic::clear_cache:
6725     /// FunctionName may be null.
6726     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6727       lowerCallToExternalSymbol(I, FunctionName);
6728     return;
6729   case Intrinsic::donothing:
6730     // ignore
6731     return;
6732   case Intrinsic::experimental_stackmap:
6733     visitStackmap(I);
6734     return;
6735   case Intrinsic::experimental_patchpoint_void:
6736   case Intrinsic::experimental_patchpoint_i64:
6737     visitPatchpoint(&I);
6738     return;
6739   case Intrinsic::experimental_gc_statepoint:
6740     LowerStatepoint(ImmutableStatepoint(&I));
6741     return;
6742   case Intrinsic::experimental_gc_result:
6743     visitGCResult(cast<GCResultInst>(I));
6744     return;
6745   case Intrinsic::experimental_gc_relocate:
6746     visitGCRelocate(cast<GCRelocateInst>(I));
6747     return;
6748   case Intrinsic::instrprof_increment:
6749     llvm_unreachable("instrprof failed to lower an increment");
6750   case Intrinsic::instrprof_value_profile:
6751     llvm_unreachable("instrprof failed to lower a value profiling call");
6752   case Intrinsic::localescape: {
6753     MachineFunction &MF = DAG.getMachineFunction();
6754     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6755 
6756     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6757     // is the same on all targets.
6758     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6759       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6760       if (isa<ConstantPointerNull>(Arg))
6761         continue; // Skip null pointers. They represent a hole in index space.
6762       AllocaInst *Slot = cast<AllocaInst>(Arg);
6763       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6764              "can only escape static allocas");
6765       int FI = FuncInfo.StaticAllocaMap[Slot];
6766       MCSymbol *FrameAllocSym =
6767           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6768               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6769       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6770               TII->get(TargetOpcode::LOCAL_ESCAPE))
6771           .addSym(FrameAllocSym)
6772           .addFrameIndex(FI);
6773     }
6774 
6775     return;
6776   }
6777 
6778   case Intrinsic::localrecover: {
6779     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6780     MachineFunction &MF = DAG.getMachineFunction();
6781     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6782 
6783     // Get the symbol that defines the frame offset.
6784     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6785     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6786     unsigned IdxVal =
6787         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6788     MCSymbol *FrameAllocSym =
6789         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6790             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6791 
6792     // Create a MCSymbol for the label to avoid any target lowering
6793     // that would make this PC relative.
6794     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6795     SDValue OffsetVal =
6796         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6797 
6798     // Add the offset to the FP.
6799     Value *FP = I.getArgOperand(1);
6800     SDValue FPVal = getValue(FP);
6801     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6802     setValue(&I, Add);
6803 
6804     return;
6805   }
6806 
6807   case Intrinsic::eh_exceptionpointer:
6808   case Intrinsic::eh_exceptioncode: {
6809     // Get the exception pointer vreg, copy from it, and resize it to fit.
6810     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6811     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6812     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6813     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6814     SDValue N =
6815         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6816     if (Intrinsic == Intrinsic::eh_exceptioncode)
6817       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6818     setValue(&I, N);
6819     return;
6820   }
6821   case Intrinsic::xray_customevent: {
6822     // Here we want to make sure that the intrinsic behaves as if it has a
6823     // specific calling convention, and only for x86_64.
6824     // FIXME: Support other platforms later.
6825     const auto &Triple = DAG.getTarget().getTargetTriple();
6826     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6827       return;
6828 
6829     SDLoc DL = getCurSDLoc();
6830     SmallVector<SDValue, 8> Ops;
6831 
6832     // We want to say that we always want the arguments in registers.
6833     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6834     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6835     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6836     SDValue Chain = getRoot();
6837     Ops.push_back(LogEntryVal);
6838     Ops.push_back(StrSizeVal);
6839     Ops.push_back(Chain);
6840 
6841     // We need to enforce the calling convention for the callsite, so that
6842     // argument ordering is enforced correctly, and that register allocation can
6843     // see that some registers may be assumed clobbered and have to preserve
6844     // them across calls to the intrinsic.
6845     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6846                                            DL, NodeTys, Ops);
6847     SDValue patchableNode = SDValue(MN, 0);
6848     DAG.setRoot(patchableNode);
6849     setValue(&I, patchableNode);
6850     return;
6851   }
6852   case Intrinsic::xray_typedevent: {
6853     // Here we want to make sure that the intrinsic behaves as if it has a
6854     // specific calling convention, and only for x86_64.
6855     // FIXME: Support other platforms later.
6856     const auto &Triple = DAG.getTarget().getTargetTriple();
6857     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6858       return;
6859 
6860     SDLoc DL = getCurSDLoc();
6861     SmallVector<SDValue, 8> Ops;
6862 
6863     // We want to say that we always want the arguments in registers.
6864     // It's unclear to me how manipulating the selection DAG here forces callers
6865     // to provide arguments in registers instead of on the stack.
6866     SDValue LogTypeId = getValue(I.getArgOperand(0));
6867     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6868     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6869     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6870     SDValue Chain = getRoot();
6871     Ops.push_back(LogTypeId);
6872     Ops.push_back(LogEntryVal);
6873     Ops.push_back(StrSizeVal);
6874     Ops.push_back(Chain);
6875 
6876     // We need to enforce the calling convention for the callsite, so that
6877     // argument ordering is enforced correctly, and that register allocation can
6878     // see that some registers may be assumed clobbered and have to preserve
6879     // them across calls to the intrinsic.
6880     MachineSDNode *MN = DAG.getMachineNode(
6881         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6882     SDValue patchableNode = SDValue(MN, 0);
6883     DAG.setRoot(patchableNode);
6884     setValue(&I, patchableNode);
6885     return;
6886   }
6887   case Intrinsic::experimental_deoptimize:
6888     LowerDeoptimizeCall(&I);
6889     return;
6890 
6891   case Intrinsic::experimental_vector_reduce_v2_fadd:
6892   case Intrinsic::experimental_vector_reduce_v2_fmul:
6893   case Intrinsic::experimental_vector_reduce_add:
6894   case Intrinsic::experimental_vector_reduce_mul:
6895   case Intrinsic::experimental_vector_reduce_and:
6896   case Intrinsic::experimental_vector_reduce_or:
6897   case Intrinsic::experimental_vector_reduce_xor:
6898   case Intrinsic::experimental_vector_reduce_smax:
6899   case Intrinsic::experimental_vector_reduce_smin:
6900   case Intrinsic::experimental_vector_reduce_umax:
6901   case Intrinsic::experimental_vector_reduce_umin:
6902   case Intrinsic::experimental_vector_reduce_fmax:
6903   case Intrinsic::experimental_vector_reduce_fmin:
6904     visitVectorReduce(I, Intrinsic);
6905     return;
6906 
6907   case Intrinsic::icall_branch_funnel: {
6908     SmallVector<SDValue, 16> Ops;
6909     Ops.push_back(getValue(I.getArgOperand(0)));
6910 
6911     int64_t Offset;
6912     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6913         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6914     if (!Base)
6915       report_fatal_error(
6916           "llvm.icall.branch.funnel operand must be a GlobalValue");
6917     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6918 
6919     struct BranchFunnelTarget {
6920       int64_t Offset;
6921       SDValue Target;
6922     };
6923     SmallVector<BranchFunnelTarget, 8> Targets;
6924 
6925     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6926       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6927           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6928       if (ElemBase != Base)
6929         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6930                            "to the same GlobalValue");
6931 
6932       SDValue Val = getValue(I.getArgOperand(Op + 1));
6933       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6934       if (!GA)
6935         report_fatal_error(
6936             "llvm.icall.branch.funnel operand must be a GlobalValue");
6937       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6938                                      GA->getGlobal(), getCurSDLoc(),
6939                                      Val.getValueType(), GA->getOffset())});
6940     }
6941     llvm::sort(Targets,
6942                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6943                  return T1.Offset < T2.Offset;
6944                });
6945 
6946     for (auto &T : Targets) {
6947       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6948       Ops.push_back(T.Target);
6949     }
6950 
6951     Ops.push_back(DAG.getRoot()); // Chain
6952     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6953                                  getCurSDLoc(), MVT::Other, Ops),
6954               0);
6955     DAG.setRoot(N);
6956     setValue(&I, N);
6957     HasTailCall = true;
6958     return;
6959   }
6960 
6961   case Intrinsic::wasm_landingpad_index:
6962     // Information this intrinsic contained has been transferred to
6963     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6964     // delete it now.
6965     return;
6966 
6967   case Intrinsic::aarch64_settag:
6968   case Intrinsic::aarch64_settag_zero: {
6969     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6970     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6971     SDValue Val = TSI.EmitTargetCodeForSetTag(
6972         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6973         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6974         ZeroMemory);
6975     DAG.setRoot(Val);
6976     setValue(&I, Val);
6977     return;
6978   }
6979   case Intrinsic::ptrmask: {
6980     SDValue Ptr = getValue(I.getOperand(0));
6981     SDValue Const = getValue(I.getOperand(1));
6982 
6983     EVT DestVT =
6984         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6985 
6986     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6987                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6988     return;
6989   }
6990   }
6991 }
6992 
6993 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6994     const ConstrainedFPIntrinsic &FPI) {
6995   SDLoc sdl = getCurSDLoc();
6996 
6997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6998   SmallVector<EVT, 4> ValueVTs;
6999   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7000   ValueVTs.push_back(MVT::Other); // Out chain
7001 
7002   // We do not need to serialize constrained FP intrinsics against
7003   // each other or against (nonvolatile) loads, so they can be
7004   // chained like loads.
7005   SDValue Chain = DAG.getRoot();
7006   SmallVector<SDValue, 4> Opers;
7007   Opers.push_back(Chain);
7008   if (FPI.isUnaryOp()) {
7009     Opers.push_back(getValue(FPI.getArgOperand(0)));
7010   } else if (FPI.isTernaryOp()) {
7011     Opers.push_back(getValue(FPI.getArgOperand(0)));
7012     Opers.push_back(getValue(FPI.getArgOperand(1)));
7013     Opers.push_back(getValue(FPI.getArgOperand(2)));
7014   } else {
7015     Opers.push_back(getValue(FPI.getArgOperand(0)));
7016     Opers.push_back(getValue(FPI.getArgOperand(1)));
7017   }
7018 
7019   unsigned Opcode;
7020   switch (FPI.getIntrinsicID()) {
7021   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7022 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7023   case Intrinsic::INTRINSIC:                                                   \
7024     Opcode = ISD::STRICT_##DAGN;                                               \
7025     break;
7026 #include "llvm/IR/ConstrainedOps.def"
7027   }
7028 
7029   // A few strict DAG nodes carry additional operands that are not
7030   // set up by the default code above.
7031   switch (Opcode) {
7032   default: break;
7033   case ISD::STRICT_FP_ROUND:
7034     Opers.push_back(
7035         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7036     break;
7037   case ISD::STRICT_FSETCC:
7038   case ISD::STRICT_FSETCCS: {
7039     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7040     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7041     break;
7042   }
7043   }
7044 
7045   SDVTList VTs = DAG.getVTList(ValueVTs);
7046   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers);
7047 
7048   assert(Result.getNode()->getNumValues() == 2);
7049 
7050   // Push node to the appropriate list so that future instructions can be
7051   // chained up correctly.
7052   SDValue OutChain = Result.getValue(1);
7053   switch (FPI.getExceptionBehavior().getValue()) {
7054   case fp::ExceptionBehavior::ebIgnore:
7055     // The only reason why ebIgnore nodes still need to be chained is that
7056     // they might depend on the current rounding mode, and therefore must
7057     // not be moved across instruction that may change that mode.
7058     LLVM_FALLTHROUGH;
7059   case fp::ExceptionBehavior::ebMayTrap:
7060     // These must not be moved across calls or instructions that may change
7061     // floating-point exception masks.
7062     PendingConstrainedFP.push_back(OutChain);
7063     break;
7064   case fp::ExceptionBehavior::ebStrict:
7065     // These must not be moved across calls or instructions that may change
7066     // floating-point exception masks or read floating-point exception flags.
7067     // In addition, they cannot be optimized out even if unused.
7068     PendingConstrainedFPStrict.push_back(OutChain);
7069     break;
7070   }
7071 
7072   SDValue FPResult = Result.getValue(0);
7073   setValue(&FPI, FPResult);
7074 }
7075 
7076 std::pair<SDValue, SDValue>
7077 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7078                                     const BasicBlock *EHPadBB) {
7079   MachineFunction &MF = DAG.getMachineFunction();
7080   MachineModuleInfo &MMI = MF.getMMI();
7081   MCSymbol *BeginLabel = nullptr;
7082 
7083   if (EHPadBB) {
7084     // Insert a label before the invoke call to mark the try range.  This can be
7085     // used to detect deletion of the invoke via the MachineModuleInfo.
7086     BeginLabel = MMI.getContext().createTempSymbol();
7087 
7088     // For SjLj, keep track of which landing pads go with which invokes
7089     // so as to maintain the ordering of pads in the LSDA.
7090     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7091     if (CallSiteIndex) {
7092       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7093       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7094 
7095       // Now that the call site is handled, stop tracking it.
7096       MMI.setCurrentCallSite(0);
7097     }
7098 
7099     // Both PendingLoads and PendingExports must be flushed here;
7100     // this call might not return.
7101     (void)getRoot();
7102     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7103 
7104     CLI.setChain(getRoot());
7105   }
7106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7107   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7108 
7109   assert((CLI.IsTailCall || Result.second.getNode()) &&
7110          "Non-null chain expected with non-tail call!");
7111   assert((Result.second.getNode() || !Result.first.getNode()) &&
7112          "Null value expected with tail call!");
7113 
7114   if (!Result.second.getNode()) {
7115     // As a special case, a null chain means that a tail call has been emitted
7116     // and the DAG root is already updated.
7117     HasTailCall = true;
7118 
7119     // Since there's no actual continuation from this block, nothing can be
7120     // relying on us setting vregs for them.
7121     PendingExports.clear();
7122   } else {
7123     DAG.setRoot(Result.second);
7124   }
7125 
7126   if (EHPadBB) {
7127     // Insert a label at the end of the invoke call to mark the try range.  This
7128     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7129     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7130     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7131 
7132     // Inform MachineModuleInfo of range.
7133     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7134     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7135     // actually use outlined funclets and their LSDA info style.
7136     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7137       assert(CLI.CS);
7138       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7139       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7140                                 BeginLabel, EndLabel);
7141     } else if (!isScopedEHPersonality(Pers)) {
7142       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7143     }
7144   }
7145 
7146   return Result;
7147 }
7148 
7149 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7150                                       bool isTailCall,
7151                                       const BasicBlock *EHPadBB) {
7152   auto &DL = DAG.getDataLayout();
7153   FunctionType *FTy = CS.getFunctionType();
7154   Type *RetTy = CS.getType();
7155 
7156   TargetLowering::ArgListTy Args;
7157   Args.reserve(CS.arg_size());
7158 
7159   const Value *SwiftErrorVal = nullptr;
7160   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7161 
7162   if (isTailCall) {
7163     // Avoid emitting tail calls in functions with the disable-tail-calls
7164     // attribute.
7165     auto *Caller = CS.getInstruction()->getParent()->getParent();
7166     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7167         "true")
7168       isTailCall = false;
7169 
7170     // We can't tail call inside a function with a swifterror argument. Lowering
7171     // does not support this yet. It would have to move into the swifterror
7172     // register before the call.
7173     if (TLI.supportSwiftError() &&
7174         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7175       isTailCall = false;
7176   }
7177 
7178   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7179        i != e; ++i) {
7180     TargetLowering::ArgListEntry Entry;
7181     const Value *V = *i;
7182 
7183     // Skip empty types
7184     if (V->getType()->isEmptyTy())
7185       continue;
7186 
7187     SDValue ArgNode = getValue(V);
7188     Entry.Node = ArgNode; Entry.Ty = V->getType();
7189 
7190     Entry.setAttributes(&CS, i - CS.arg_begin());
7191 
7192     // Use swifterror virtual register as input to the call.
7193     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7194       SwiftErrorVal = V;
7195       // We find the virtual register for the actual swifterror argument.
7196       // Instead of using the Value, we use the virtual register instead.
7197       Entry.Node = DAG.getRegister(
7198           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7199           EVT(TLI.getPointerTy(DL)));
7200     }
7201 
7202     Args.push_back(Entry);
7203 
7204     // If we have an explicit sret argument that is an Instruction, (i.e., it
7205     // might point to function-local memory), we can't meaningfully tail-call.
7206     if (Entry.IsSRet && isa<Instruction>(V))
7207       isTailCall = false;
7208   }
7209 
7210   // If call site has a cfguardtarget operand bundle, create and add an
7211   // additional ArgListEntry.
7212   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7213     TargetLowering::ArgListEntry Entry;
7214     Value *V = Bundle->Inputs[0];
7215     SDValue ArgNode = getValue(V);
7216     Entry.Node = ArgNode;
7217     Entry.Ty = V->getType();
7218     Entry.IsCFGuardTarget = true;
7219     Args.push_back(Entry);
7220   }
7221 
7222   // Check if target-independent constraints permit a tail call here.
7223   // Target-dependent constraints are checked within TLI->LowerCallTo.
7224   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7225     isTailCall = false;
7226 
7227   // Disable tail calls if there is an swifterror argument. Targets have not
7228   // been updated to support tail calls.
7229   if (TLI.supportSwiftError() && SwiftErrorVal)
7230     isTailCall = false;
7231 
7232   TargetLowering::CallLoweringInfo CLI(DAG);
7233   CLI.setDebugLoc(getCurSDLoc())
7234       .setChain(getRoot())
7235       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7236       .setTailCall(isTailCall)
7237       .setConvergent(CS.isConvergent());
7238   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7239 
7240   if (Result.first.getNode()) {
7241     const Instruction *Inst = CS.getInstruction();
7242     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7243     setValue(Inst, Result.first);
7244   }
7245 
7246   // The last element of CLI.InVals has the SDValue for swifterror return.
7247   // Here we copy it to a virtual register and update SwiftErrorMap for
7248   // book-keeping.
7249   if (SwiftErrorVal && TLI.supportSwiftError()) {
7250     // Get the last element of InVals.
7251     SDValue Src = CLI.InVals.back();
7252     Register VReg = SwiftError.getOrCreateVRegDefAt(
7253         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7254     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7255     DAG.setRoot(CopyNode);
7256   }
7257 }
7258 
7259 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7260                              SelectionDAGBuilder &Builder) {
7261   // Check to see if this load can be trivially constant folded, e.g. if the
7262   // input is from a string literal.
7263   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7264     // Cast pointer to the type we really want to load.
7265     Type *LoadTy =
7266         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7267     if (LoadVT.isVector())
7268       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7269 
7270     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7271                                          PointerType::getUnqual(LoadTy));
7272 
7273     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7274             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7275       return Builder.getValue(LoadCst);
7276   }
7277 
7278   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7279   // still constant memory, the input chain can be the entry node.
7280   SDValue Root;
7281   bool ConstantMemory = false;
7282 
7283   // Do not serialize (non-volatile) loads of constant memory with anything.
7284   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7285     Root = Builder.DAG.getEntryNode();
7286     ConstantMemory = true;
7287   } else {
7288     // Do not serialize non-volatile loads against each other.
7289     Root = Builder.DAG.getRoot();
7290   }
7291 
7292   SDValue Ptr = Builder.getValue(PtrVal);
7293   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7294                                         Ptr, MachinePointerInfo(PtrVal),
7295                                         /* Alignment = */ 1);
7296 
7297   if (!ConstantMemory)
7298     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7299   return LoadVal;
7300 }
7301 
7302 /// Record the value for an instruction that produces an integer result,
7303 /// converting the type where necessary.
7304 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7305                                                   SDValue Value,
7306                                                   bool IsSigned) {
7307   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7308                                                     I.getType(), true);
7309   if (IsSigned)
7310     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7311   else
7312     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7313   setValue(&I, Value);
7314 }
7315 
7316 /// See if we can lower a memcmp call into an optimized form. If so, return
7317 /// true and lower it. Otherwise return false, and it will be lowered like a
7318 /// normal call.
7319 /// The caller already checked that \p I calls the appropriate LibFunc with a
7320 /// correct prototype.
7321 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7322   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7323   const Value *Size = I.getArgOperand(2);
7324   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7325   if (CSize && CSize->getZExtValue() == 0) {
7326     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7327                                                           I.getType(), true);
7328     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7329     return true;
7330   }
7331 
7332   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7333   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7334       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7335       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7336   if (Res.first.getNode()) {
7337     processIntegerCallValue(I, Res.first, true);
7338     PendingLoads.push_back(Res.second);
7339     return true;
7340   }
7341 
7342   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7343   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7344   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7345     return false;
7346 
7347   // If the target has a fast compare for the given size, it will return a
7348   // preferred load type for that size. Require that the load VT is legal and
7349   // that the target supports unaligned loads of that type. Otherwise, return
7350   // INVALID.
7351   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7352     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7353     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7354     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7355       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7356       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7357       // TODO: Check alignment of src and dest ptrs.
7358       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7359       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7360       if (!TLI.isTypeLegal(LVT) ||
7361           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7362           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7363         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7364     }
7365 
7366     return LVT;
7367   };
7368 
7369   // This turns into unaligned loads. We only do this if the target natively
7370   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7371   // we'll only produce a small number of byte loads.
7372   MVT LoadVT;
7373   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7374   switch (NumBitsToCompare) {
7375   default:
7376     return false;
7377   case 16:
7378     LoadVT = MVT::i16;
7379     break;
7380   case 32:
7381     LoadVT = MVT::i32;
7382     break;
7383   case 64:
7384   case 128:
7385   case 256:
7386     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7387     break;
7388   }
7389 
7390   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7391     return false;
7392 
7393   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7394   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7395 
7396   // Bitcast to a wide integer type if the loads are vectors.
7397   if (LoadVT.isVector()) {
7398     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7399     LoadL = DAG.getBitcast(CmpVT, LoadL);
7400     LoadR = DAG.getBitcast(CmpVT, LoadR);
7401   }
7402 
7403   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7404   processIntegerCallValue(I, Cmp, false);
7405   return true;
7406 }
7407 
7408 /// See if we can lower a memchr call into an optimized form. If so, return
7409 /// true and lower it. Otherwise return false, and it will be lowered like a
7410 /// normal call.
7411 /// The caller already checked that \p I calls the appropriate LibFunc with a
7412 /// correct prototype.
7413 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7414   const Value *Src = I.getArgOperand(0);
7415   const Value *Char = I.getArgOperand(1);
7416   const Value *Length = I.getArgOperand(2);
7417 
7418   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7419   std::pair<SDValue, SDValue> Res =
7420     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7421                                 getValue(Src), getValue(Char), getValue(Length),
7422                                 MachinePointerInfo(Src));
7423   if (Res.first.getNode()) {
7424     setValue(&I, Res.first);
7425     PendingLoads.push_back(Res.second);
7426     return true;
7427   }
7428 
7429   return false;
7430 }
7431 
7432 /// See if we can lower a mempcpy call into an optimized form. If so, return
7433 /// true and lower it. Otherwise return false, and it will be lowered like a
7434 /// normal call.
7435 /// The caller already checked that \p I calls the appropriate LibFunc with a
7436 /// correct prototype.
7437 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7438   SDValue Dst = getValue(I.getArgOperand(0));
7439   SDValue Src = getValue(I.getArgOperand(1));
7440   SDValue Size = getValue(I.getArgOperand(2));
7441 
7442   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7443   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7444   unsigned Align = std::min(DstAlign, SrcAlign);
7445   if (Align == 0) // Alignment of one or both could not be inferred.
7446     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7447 
7448   bool isVol = false;
7449   SDLoc sdl = getCurSDLoc();
7450 
7451   // In the mempcpy context we need to pass in a false value for isTailCall
7452   // because the return pointer needs to be adjusted by the size of
7453   // the copied memory.
7454   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7455   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Align, isVol,
7456                              false, /*isTailCall=*/false,
7457                              MachinePointerInfo(I.getArgOperand(0)),
7458                              MachinePointerInfo(I.getArgOperand(1)));
7459   assert(MC.getNode() != nullptr &&
7460          "** memcpy should not be lowered as TailCall in mempcpy context **");
7461   DAG.setRoot(MC);
7462 
7463   // Check if Size needs to be truncated or extended.
7464   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7465 
7466   // Adjust return pointer to point just past the last dst byte.
7467   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7468                                     Dst, Size);
7469   setValue(&I, DstPlusSize);
7470   return true;
7471 }
7472 
7473 /// See if we can lower a strcpy call into an optimized form.  If so, return
7474 /// true and lower it, otherwise return false and it will be lowered like a
7475 /// normal call.
7476 /// The caller already checked that \p I calls the appropriate LibFunc with a
7477 /// correct prototype.
7478 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7479   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7480 
7481   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7482   std::pair<SDValue, SDValue> Res =
7483     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7484                                 getValue(Arg0), getValue(Arg1),
7485                                 MachinePointerInfo(Arg0),
7486                                 MachinePointerInfo(Arg1), isStpcpy);
7487   if (Res.first.getNode()) {
7488     setValue(&I, Res.first);
7489     DAG.setRoot(Res.second);
7490     return true;
7491   }
7492 
7493   return false;
7494 }
7495 
7496 /// See if we can lower a strcmp call into an optimized form.  If so, return
7497 /// true and lower it, otherwise return false and it will be lowered like a
7498 /// normal call.
7499 /// The caller already checked that \p I calls the appropriate LibFunc with a
7500 /// correct prototype.
7501 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7502   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7503 
7504   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7505   std::pair<SDValue, SDValue> Res =
7506     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7507                                 getValue(Arg0), getValue(Arg1),
7508                                 MachinePointerInfo(Arg0),
7509                                 MachinePointerInfo(Arg1));
7510   if (Res.first.getNode()) {
7511     processIntegerCallValue(I, Res.first, true);
7512     PendingLoads.push_back(Res.second);
7513     return true;
7514   }
7515 
7516   return false;
7517 }
7518 
7519 /// See if we can lower a strlen call into an optimized form.  If so, return
7520 /// true and lower it, otherwise return false and it will be lowered like a
7521 /// normal call.
7522 /// The caller already checked that \p I calls the appropriate LibFunc with a
7523 /// correct prototype.
7524 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7525   const Value *Arg0 = I.getArgOperand(0);
7526 
7527   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7528   std::pair<SDValue, SDValue> Res =
7529     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7530                                 getValue(Arg0), MachinePointerInfo(Arg0));
7531   if (Res.first.getNode()) {
7532     processIntegerCallValue(I, Res.first, false);
7533     PendingLoads.push_back(Res.second);
7534     return true;
7535   }
7536 
7537   return false;
7538 }
7539 
7540 /// See if we can lower a strnlen call into an optimized form.  If so, return
7541 /// true and lower it, otherwise return false and it will be lowered like a
7542 /// normal call.
7543 /// The caller already checked that \p I calls the appropriate LibFunc with a
7544 /// correct prototype.
7545 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7546   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7547 
7548   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7549   std::pair<SDValue, SDValue> Res =
7550     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7551                                  getValue(Arg0), getValue(Arg1),
7552                                  MachinePointerInfo(Arg0));
7553   if (Res.first.getNode()) {
7554     processIntegerCallValue(I, Res.first, false);
7555     PendingLoads.push_back(Res.second);
7556     return true;
7557   }
7558 
7559   return false;
7560 }
7561 
7562 /// See if we can lower a unary floating-point operation into an SDNode with
7563 /// the specified Opcode.  If so, return true and lower it, otherwise return
7564 /// false and it will be lowered like a normal call.
7565 /// The caller already checked that \p I calls the appropriate LibFunc with a
7566 /// correct prototype.
7567 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7568                                               unsigned Opcode) {
7569   // We already checked this call's prototype; verify it doesn't modify errno.
7570   if (!I.onlyReadsMemory())
7571     return false;
7572 
7573   SDValue Tmp = getValue(I.getArgOperand(0));
7574   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7575   return true;
7576 }
7577 
7578 /// See if we can lower a binary floating-point operation into an SDNode with
7579 /// the specified Opcode. If so, return true and lower it. Otherwise return
7580 /// false, and it will be lowered like a normal call.
7581 /// The caller already checked that \p I calls the appropriate LibFunc with a
7582 /// correct prototype.
7583 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7584                                                unsigned Opcode) {
7585   // We already checked this call's prototype; verify it doesn't modify errno.
7586   if (!I.onlyReadsMemory())
7587     return false;
7588 
7589   SDValue Tmp0 = getValue(I.getArgOperand(0));
7590   SDValue Tmp1 = getValue(I.getArgOperand(1));
7591   EVT VT = Tmp0.getValueType();
7592   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7593   return true;
7594 }
7595 
7596 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7597   // Handle inline assembly differently.
7598   if (isa<InlineAsm>(I.getCalledValue())) {
7599     visitInlineAsm(&I);
7600     return;
7601   }
7602 
7603   if (Function *F = I.getCalledFunction()) {
7604     if (F->isDeclaration()) {
7605       // Is this an LLVM intrinsic or a target-specific intrinsic?
7606       unsigned IID = F->getIntrinsicID();
7607       if (!IID)
7608         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7609           IID = II->getIntrinsicID(F);
7610 
7611       if (IID) {
7612         visitIntrinsicCall(I, IID);
7613         return;
7614       }
7615     }
7616 
7617     // Check for well-known libc/libm calls.  If the function is internal, it
7618     // can't be a library call.  Don't do the check if marked as nobuiltin for
7619     // some reason or the call site requires strict floating point semantics.
7620     LibFunc Func;
7621     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7622         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7623         LibInfo->hasOptimizedCodeGen(Func)) {
7624       switch (Func) {
7625       default: break;
7626       case LibFunc_copysign:
7627       case LibFunc_copysignf:
7628       case LibFunc_copysignl:
7629         // We already checked this call's prototype; verify it doesn't modify
7630         // errno.
7631         if (I.onlyReadsMemory()) {
7632           SDValue LHS = getValue(I.getArgOperand(0));
7633           SDValue RHS = getValue(I.getArgOperand(1));
7634           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7635                                    LHS.getValueType(), LHS, RHS));
7636           return;
7637         }
7638         break;
7639       case LibFunc_fabs:
7640       case LibFunc_fabsf:
7641       case LibFunc_fabsl:
7642         if (visitUnaryFloatCall(I, ISD::FABS))
7643           return;
7644         break;
7645       case LibFunc_fmin:
7646       case LibFunc_fminf:
7647       case LibFunc_fminl:
7648         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7649           return;
7650         break;
7651       case LibFunc_fmax:
7652       case LibFunc_fmaxf:
7653       case LibFunc_fmaxl:
7654         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7655           return;
7656         break;
7657       case LibFunc_sin:
7658       case LibFunc_sinf:
7659       case LibFunc_sinl:
7660         if (visitUnaryFloatCall(I, ISD::FSIN))
7661           return;
7662         break;
7663       case LibFunc_cos:
7664       case LibFunc_cosf:
7665       case LibFunc_cosl:
7666         if (visitUnaryFloatCall(I, ISD::FCOS))
7667           return;
7668         break;
7669       case LibFunc_sqrt:
7670       case LibFunc_sqrtf:
7671       case LibFunc_sqrtl:
7672       case LibFunc_sqrt_finite:
7673       case LibFunc_sqrtf_finite:
7674       case LibFunc_sqrtl_finite:
7675         if (visitUnaryFloatCall(I, ISD::FSQRT))
7676           return;
7677         break;
7678       case LibFunc_floor:
7679       case LibFunc_floorf:
7680       case LibFunc_floorl:
7681         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7682           return;
7683         break;
7684       case LibFunc_nearbyint:
7685       case LibFunc_nearbyintf:
7686       case LibFunc_nearbyintl:
7687         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7688           return;
7689         break;
7690       case LibFunc_ceil:
7691       case LibFunc_ceilf:
7692       case LibFunc_ceill:
7693         if (visitUnaryFloatCall(I, ISD::FCEIL))
7694           return;
7695         break;
7696       case LibFunc_rint:
7697       case LibFunc_rintf:
7698       case LibFunc_rintl:
7699         if (visitUnaryFloatCall(I, ISD::FRINT))
7700           return;
7701         break;
7702       case LibFunc_round:
7703       case LibFunc_roundf:
7704       case LibFunc_roundl:
7705         if (visitUnaryFloatCall(I, ISD::FROUND))
7706           return;
7707         break;
7708       case LibFunc_trunc:
7709       case LibFunc_truncf:
7710       case LibFunc_truncl:
7711         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7712           return;
7713         break;
7714       case LibFunc_log2:
7715       case LibFunc_log2f:
7716       case LibFunc_log2l:
7717         if (visitUnaryFloatCall(I, ISD::FLOG2))
7718           return;
7719         break;
7720       case LibFunc_exp2:
7721       case LibFunc_exp2f:
7722       case LibFunc_exp2l:
7723         if (visitUnaryFloatCall(I, ISD::FEXP2))
7724           return;
7725         break;
7726       case LibFunc_memcmp:
7727         if (visitMemCmpCall(I))
7728           return;
7729         break;
7730       case LibFunc_mempcpy:
7731         if (visitMemPCpyCall(I))
7732           return;
7733         break;
7734       case LibFunc_memchr:
7735         if (visitMemChrCall(I))
7736           return;
7737         break;
7738       case LibFunc_strcpy:
7739         if (visitStrCpyCall(I, false))
7740           return;
7741         break;
7742       case LibFunc_stpcpy:
7743         if (visitStrCpyCall(I, true))
7744           return;
7745         break;
7746       case LibFunc_strcmp:
7747         if (visitStrCmpCall(I))
7748           return;
7749         break;
7750       case LibFunc_strlen:
7751         if (visitStrLenCall(I))
7752           return;
7753         break;
7754       case LibFunc_strnlen:
7755         if (visitStrNLenCall(I))
7756           return;
7757         break;
7758       }
7759     }
7760   }
7761 
7762   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7763   // have to do anything here to lower funclet bundles.
7764   // CFGuardTarget bundles are lowered in LowerCallTo.
7765   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7766                                         LLVMContext::OB_funclet,
7767                                         LLVMContext::OB_cfguardtarget}) &&
7768          "Cannot lower calls with arbitrary operand bundles!");
7769 
7770   SDValue Callee = getValue(I.getCalledValue());
7771 
7772   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7773     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7774   else
7775     // Check if we can potentially perform a tail call. More detailed checking
7776     // is be done within LowerCallTo, after more information about the call is
7777     // known.
7778     LowerCallTo(&I, Callee, I.isTailCall());
7779 }
7780 
7781 namespace {
7782 
7783 /// AsmOperandInfo - This contains information for each constraint that we are
7784 /// lowering.
7785 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7786 public:
7787   /// CallOperand - If this is the result output operand or a clobber
7788   /// this is null, otherwise it is the incoming operand to the CallInst.
7789   /// This gets modified as the asm is processed.
7790   SDValue CallOperand;
7791 
7792   /// AssignedRegs - If this is a register or register class operand, this
7793   /// contains the set of register corresponding to the operand.
7794   RegsForValue AssignedRegs;
7795 
7796   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7797     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7798   }
7799 
7800   /// Whether or not this operand accesses memory
7801   bool hasMemory(const TargetLowering &TLI) const {
7802     // Indirect operand accesses access memory.
7803     if (isIndirect)
7804       return true;
7805 
7806     for (const auto &Code : Codes)
7807       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7808         return true;
7809 
7810     return false;
7811   }
7812 
7813   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7814   /// corresponds to.  If there is no Value* for this operand, it returns
7815   /// MVT::Other.
7816   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7817                            const DataLayout &DL) const {
7818     if (!CallOperandVal) return MVT::Other;
7819 
7820     if (isa<BasicBlock>(CallOperandVal))
7821       return TLI.getPointerTy(DL);
7822 
7823     llvm::Type *OpTy = CallOperandVal->getType();
7824 
7825     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7826     // If this is an indirect operand, the operand is a pointer to the
7827     // accessed type.
7828     if (isIndirect) {
7829       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7830       if (!PtrTy)
7831         report_fatal_error("Indirect operand for inline asm not a pointer!");
7832       OpTy = PtrTy->getElementType();
7833     }
7834 
7835     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7836     if (StructType *STy = dyn_cast<StructType>(OpTy))
7837       if (STy->getNumElements() == 1)
7838         OpTy = STy->getElementType(0);
7839 
7840     // If OpTy is not a single value, it may be a struct/union that we
7841     // can tile with integers.
7842     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7843       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7844       switch (BitSize) {
7845       default: break;
7846       case 1:
7847       case 8:
7848       case 16:
7849       case 32:
7850       case 64:
7851       case 128:
7852         OpTy = IntegerType::get(Context, BitSize);
7853         break;
7854       }
7855     }
7856 
7857     return TLI.getValueType(DL, OpTy, true);
7858   }
7859 };
7860 
7861 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7862 
7863 } // end anonymous namespace
7864 
7865 /// Make sure that the output operand \p OpInfo and its corresponding input
7866 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7867 /// out).
7868 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7869                                SDISelAsmOperandInfo &MatchingOpInfo,
7870                                SelectionDAG &DAG) {
7871   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7872     return;
7873 
7874   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7875   const auto &TLI = DAG.getTargetLoweringInfo();
7876 
7877   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7878       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7879                                        OpInfo.ConstraintVT);
7880   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7881       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7882                                        MatchingOpInfo.ConstraintVT);
7883   if ((OpInfo.ConstraintVT.isInteger() !=
7884        MatchingOpInfo.ConstraintVT.isInteger()) ||
7885       (MatchRC.second != InputRC.second)) {
7886     // FIXME: error out in a more elegant fashion
7887     report_fatal_error("Unsupported asm: input constraint"
7888                        " with a matching output constraint of"
7889                        " incompatible type!");
7890   }
7891   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7892 }
7893 
7894 /// Get a direct memory input to behave well as an indirect operand.
7895 /// This may introduce stores, hence the need for a \p Chain.
7896 /// \return The (possibly updated) chain.
7897 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7898                                         SDISelAsmOperandInfo &OpInfo,
7899                                         SelectionDAG &DAG) {
7900   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7901 
7902   // If we don't have an indirect input, put it in the constpool if we can,
7903   // otherwise spill it to a stack slot.
7904   // TODO: This isn't quite right. We need to handle these according to
7905   // the addressing mode that the constraint wants. Also, this may take
7906   // an additional register for the computation and we don't want that
7907   // either.
7908 
7909   // If the operand is a float, integer, or vector constant, spill to a
7910   // constant pool entry to get its address.
7911   const Value *OpVal = OpInfo.CallOperandVal;
7912   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7913       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7914     OpInfo.CallOperand = DAG.getConstantPool(
7915         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7916     return Chain;
7917   }
7918 
7919   // Otherwise, create a stack slot and emit a store to it before the asm.
7920   Type *Ty = OpVal->getType();
7921   auto &DL = DAG.getDataLayout();
7922   uint64_t TySize = DL.getTypeAllocSize(Ty);
7923   unsigned Align = DL.getPrefTypeAlignment(Ty);
7924   MachineFunction &MF = DAG.getMachineFunction();
7925   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7926   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7927   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7928                             MachinePointerInfo::getFixedStack(MF, SSFI),
7929                             TLI.getMemValueType(DL, Ty));
7930   OpInfo.CallOperand = StackSlot;
7931 
7932   return Chain;
7933 }
7934 
7935 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7936 /// specified operand.  We prefer to assign virtual registers, to allow the
7937 /// register allocator to handle the assignment process.  However, if the asm
7938 /// uses features that we can't model on machineinstrs, we have SDISel do the
7939 /// allocation.  This produces generally horrible, but correct, code.
7940 ///
7941 ///   OpInfo describes the operand
7942 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7943 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7944                                  SDISelAsmOperandInfo &OpInfo,
7945                                  SDISelAsmOperandInfo &RefOpInfo) {
7946   LLVMContext &Context = *DAG.getContext();
7947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7948 
7949   MachineFunction &MF = DAG.getMachineFunction();
7950   SmallVector<unsigned, 4> Regs;
7951   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7952 
7953   // No work to do for memory operations.
7954   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7955     return;
7956 
7957   // If this is a constraint for a single physreg, or a constraint for a
7958   // register class, find it.
7959   unsigned AssignedReg;
7960   const TargetRegisterClass *RC;
7961   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7962       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7963   // RC is unset only on failure. Return immediately.
7964   if (!RC)
7965     return;
7966 
7967   // Get the actual register value type.  This is important, because the user
7968   // may have asked for (e.g.) the AX register in i32 type.  We need to
7969   // remember that AX is actually i16 to get the right extension.
7970   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7971 
7972   if (OpInfo.ConstraintVT != MVT::Other) {
7973     // If this is an FP operand in an integer register (or visa versa), or more
7974     // generally if the operand value disagrees with the register class we plan
7975     // to stick it in, fix the operand type.
7976     //
7977     // If this is an input value, the bitcast to the new type is done now.
7978     // Bitcast for output value is done at the end of visitInlineAsm().
7979     if ((OpInfo.Type == InlineAsm::isOutput ||
7980          OpInfo.Type == InlineAsm::isInput) &&
7981         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7982       // Try to convert to the first EVT that the reg class contains.  If the
7983       // types are identical size, use a bitcast to convert (e.g. two differing
7984       // vector types).  Note: output bitcast is done at the end of
7985       // visitInlineAsm().
7986       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7987         // Exclude indirect inputs while they are unsupported because the code
7988         // to perform the load is missing and thus OpInfo.CallOperand still
7989         // refers to the input address rather than the pointed-to value.
7990         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7991           OpInfo.CallOperand =
7992               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7993         OpInfo.ConstraintVT = RegVT;
7994         // If the operand is an FP value and we want it in integer registers,
7995         // use the corresponding integer type. This turns an f64 value into
7996         // i64, which can be passed with two i32 values on a 32-bit machine.
7997       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7998         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7999         if (OpInfo.Type == InlineAsm::isInput)
8000           OpInfo.CallOperand =
8001               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8002         OpInfo.ConstraintVT = VT;
8003       }
8004     }
8005   }
8006 
8007   // No need to allocate a matching input constraint since the constraint it's
8008   // matching to has already been allocated.
8009   if (OpInfo.isMatchingInputConstraint())
8010     return;
8011 
8012   EVT ValueVT = OpInfo.ConstraintVT;
8013   if (OpInfo.ConstraintVT == MVT::Other)
8014     ValueVT = RegVT;
8015 
8016   // Initialize NumRegs.
8017   unsigned NumRegs = 1;
8018   if (OpInfo.ConstraintVT != MVT::Other)
8019     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8020 
8021   // If this is a constraint for a specific physical register, like {r17},
8022   // assign it now.
8023 
8024   // If this associated to a specific register, initialize iterator to correct
8025   // place. If virtual, make sure we have enough registers
8026 
8027   // Initialize iterator if necessary
8028   TargetRegisterClass::iterator I = RC->begin();
8029   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8030 
8031   // Do not check for single registers.
8032   if (AssignedReg) {
8033       for (; *I != AssignedReg; ++I)
8034         assert(I != RC->end() && "AssignedReg should be member of RC");
8035   }
8036 
8037   for (; NumRegs; --NumRegs, ++I) {
8038     assert(I != RC->end() && "Ran out of registers to allocate!");
8039     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8040     Regs.push_back(R);
8041   }
8042 
8043   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8044 }
8045 
8046 static unsigned
8047 findMatchingInlineAsmOperand(unsigned OperandNo,
8048                              const std::vector<SDValue> &AsmNodeOperands) {
8049   // Scan until we find the definition we already emitted of this operand.
8050   unsigned CurOp = InlineAsm::Op_FirstOperand;
8051   for (; OperandNo; --OperandNo) {
8052     // Advance to the next operand.
8053     unsigned OpFlag =
8054         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8055     assert((InlineAsm::isRegDefKind(OpFlag) ||
8056             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8057             InlineAsm::isMemKind(OpFlag)) &&
8058            "Skipped past definitions?");
8059     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8060   }
8061   return CurOp;
8062 }
8063 
8064 namespace {
8065 
8066 class ExtraFlags {
8067   unsigned Flags = 0;
8068 
8069 public:
8070   explicit ExtraFlags(ImmutableCallSite CS) {
8071     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8072     if (IA->hasSideEffects())
8073       Flags |= InlineAsm::Extra_HasSideEffects;
8074     if (IA->isAlignStack())
8075       Flags |= InlineAsm::Extra_IsAlignStack;
8076     if (CS.isConvergent())
8077       Flags |= InlineAsm::Extra_IsConvergent;
8078     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8079   }
8080 
8081   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8082     // Ideally, we would only check against memory constraints.  However, the
8083     // meaning of an Other constraint can be target-specific and we can't easily
8084     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8085     // for Other constraints as well.
8086     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8087         OpInfo.ConstraintType == TargetLowering::C_Other) {
8088       if (OpInfo.Type == InlineAsm::isInput)
8089         Flags |= InlineAsm::Extra_MayLoad;
8090       else if (OpInfo.Type == InlineAsm::isOutput)
8091         Flags |= InlineAsm::Extra_MayStore;
8092       else if (OpInfo.Type == InlineAsm::isClobber)
8093         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8094     }
8095   }
8096 
8097   unsigned get() const { return Flags; }
8098 };
8099 
8100 } // end anonymous namespace
8101 
8102 /// visitInlineAsm - Handle a call to an InlineAsm object.
8103 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8104   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8105 
8106   /// ConstraintOperands - Information about all of the constraints.
8107   SDISelAsmOperandInfoVector ConstraintOperands;
8108 
8109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8110   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8111       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8112 
8113   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8114   // AsmDialect, MayLoad, MayStore).
8115   bool HasSideEffect = IA->hasSideEffects();
8116   ExtraFlags ExtraInfo(CS);
8117 
8118   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8119   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8120   for (auto &T : TargetConstraints) {
8121     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8122     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8123 
8124     // Compute the value type for each operand.
8125     if (OpInfo.Type == InlineAsm::isInput ||
8126         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8127       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8128 
8129       // Process the call argument. BasicBlocks are labels, currently appearing
8130       // only in asm's.
8131       const Instruction *I = CS.getInstruction();
8132       if (isa<CallBrInst>(I) &&
8133           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8134                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8135         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8136         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8137         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8138       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8139         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8140       } else {
8141         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8142       }
8143 
8144       OpInfo.ConstraintVT =
8145           OpInfo
8146               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8147               .getSimpleVT();
8148     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8149       // The return value of the call is this value.  As such, there is no
8150       // corresponding argument.
8151       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8152       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8153         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8154             DAG.getDataLayout(), STy->getElementType(ResNo));
8155       } else {
8156         assert(ResNo == 0 && "Asm only has one result!");
8157         OpInfo.ConstraintVT =
8158             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8159       }
8160       ++ResNo;
8161     } else {
8162       OpInfo.ConstraintVT = MVT::Other;
8163     }
8164 
8165     if (!HasSideEffect)
8166       HasSideEffect = OpInfo.hasMemory(TLI);
8167 
8168     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8169     // FIXME: Could we compute this on OpInfo rather than T?
8170 
8171     // Compute the constraint code and ConstraintType to use.
8172     TLI.ComputeConstraintToUse(T, SDValue());
8173 
8174     if (T.ConstraintType == TargetLowering::C_Immediate &&
8175         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8176       // We've delayed emitting a diagnostic like the "n" constraint because
8177       // inlining could cause an integer showing up.
8178       return emitInlineAsmError(
8179           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8180                   "integer constant expression");
8181 
8182     ExtraInfo.update(T);
8183   }
8184 
8185 
8186   // We won't need to flush pending loads if this asm doesn't touch
8187   // memory and is nonvolatile.
8188   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8189 
8190   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8191   if (IsCallBr) {
8192     // If this is a callbr we need to flush pending exports since inlineasm_br
8193     // is a terminator. We need to do this before nodes are glued to
8194     // the inlineasm_br node.
8195     Chain = getControlRoot();
8196   }
8197 
8198   // Second pass over the constraints: compute which constraint option to use.
8199   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8200     // If this is an output operand with a matching input operand, look up the
8201     // matching input. If their types mismatch, e.g. one is an integer, the
8202     // other is floating point, or their sizes are different, flag it as an
8203     // error.
8204     if (OpInfo.hasMatchingInput()) {
8205       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8206       patchMatchingInput(OpInfo, Input, DAG);
8207     }
8208 
8209     // Compute the constraint code and ConstraintType to use.
8210     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8211 
8212     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8213         OpInfo.Type == InlineAsm::isClobber)
8214       continue;
8215 
8216     // If this is a memory input, and if the operand is not indirect, do what we
8217     // need to provide an address for the memory input.
8218     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8219         !OpInfo.isIndirect) {
8220       assert((OpInfo.isMultipleAlternative ||
8221               (OpInfo.Type == InlineAsm::isInput)) &&
8222              "Can only indirectify direct input operands!");
8223 
8224       // Memory operands really want the address of the value.
8225       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8226 
8227       // There is no longer a Value* corresponding to this operand.
8228       OpInfo.CallOperandVal = nullptr;
8229 
8230       // It is now an indirect operand.
8231       OpInfo.isIndirect = true;
8232     }
8233 
8234   }
8235 
8236   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8237   std::vector<SDValue> AsmNodeOperands;
8238   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8239   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8240       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8241 
8242   // If we have a !srcloc metadata node associated with it, we want to attach
8243   // this to the ultimately generated inline asm machineinstr.  To do this, we
8244   // pass in the third operand as this (potentially null) inline asm MDNode.
8245   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8246   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8247 
8248   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8249   // bits as operand 3.
8250   AsmNodeOperands.push_back(DAG.getTargetConstant(
8251       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8252 
8253   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8254   // this, assign virtual and physical registers for inputs and otput.
8255   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8256     // Assign Registers.
8257     SDISelAsmOperandInfo &RefOpInfo =
8258         OpInfo.isMatchingInputConstraint()
8259             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8260             : OpInfo;
8261     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8262 
8263     switch (OpInfo.Type) {
8264     case InlineAsm::isOutput:
8265       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8266         unsigned ConstraintID =
8267             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8268         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8269                "Failed to convert memory constraint code to constraint id.");
8270 
8271         // Add information to the INLINEASM node to know about this output.
8272         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8273         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8274         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8275                                                         MVT::i32));
8276         AsmNodeOperands.push_back(OpInfo.CallOperand);
8277       } else {
8278         // Otherwise, this outputs to a register (directly for C_Register /
8279         // C_RegisterClass, and a target-defined fashion for
8280         // C_Immediate/C_Other). Find a register that we can use.
8281         if (OpInfo.AssignedRegs.Regs.empty()) {
8282           emitInlineAsmError(
8283               CS, "couldn't allocate output register for constraint '" +
8284                       Twine(OpInfo.ConstraintCode) + "'");
8285           return;
8286         }
8287 
8288         // Add information to the INLINEASM node to know that this register is
8289         // set.
8290         OpInfo.AssignedRegs.AddInlineAsmOperands(
8291             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8292                                   : InlineAsm::Kind_RegDef,
8293             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8294       }
8295       break;
8296 
8297     case InlineAsm::isInput: {
8298       SDValue InOperandVal = OpInfo.CallOperand;
8299 
8300       if (OpInfo.isMatchingInputConstraint()) {
8301         // If this is required to match an output register we have already set,
8302         // just use its register.
8303         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8304                                                   AsmNodeOperands);
8305         unsigned OpFlag =
8306           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8307         if (InlineAsm::isRegDefKind(OpFlag) ||
8308             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8309           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8310           if (OpInfo.isIndirect) {
8311             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8312             emitInlineAsmError(CS, "inline asm not supported yet:"
8313                                    " don't know how to handle tied "
8314                                    "indirect register inputs");
8315             return;
8316           }
8317 
8318           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8319           SmallVector<unsigned, 4> Regs;
8320 
8321           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8322             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8323             MachineRegisterInfo &RegInfo =
8324                 DAG.getMachineFunction().getRegInfo();
8325             for (unsigned i = 0; i != NumRegs; ++i)
8326               Regs.push_back(RegInfo.createVirtualRegister(RC));
8327           } else {
8328             emitInlineAsmError(CS, "inline asm error: This value type register "
8329                                    "class is not natively supported!");
8330             return;
8331           }
8332 
8333           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8334 
8335           SDLoc dl = getCurSDLoc();
8336           // Use the produced MatchedRegs object to
8337           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8338                                     CS.getInstruction());
8339           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8340                                            true, OpInfo.getMatchedOperand(), dl,
8341                                            DAG, AsmNodeOperands);
8342           break;
8343         }
8344 
8345         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8346         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8347                "Unexpected number of operands");
8348         // Add information to the INLINEASM node to know about this input.
8349         // See InlineAsm.h isUseOperandTiedToDef.
8350         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8351         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8352                                                     OpInfo.getMatchedOperand());
8353         AsmNodeOperands.push_back(DAG.getTargetConstant(
8354             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8355         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8356         break;
8357       }
8358 
8359       // Treat indirect 'X' constraint as memory.
8360       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8361           OpInfo.isIndirect)
8362         OpInfo.ConstraintType = TargetLowering::C_Memory;
8363 
8364       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8365           OpInfo.ConstraintType == TargetLowering::C_Other) {
8366         std::vector<SDValue> Ops;
8367         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8368                                           Ops, DAG);
8369         if (Ops.empty()) {
8370           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8371             if (isa<ConstantSDNode>(InOperandVal)) {
8372               emitInlineAsmError(CS, "value out of range for constraint '" +
8373                                  Twine(OpInfo.ConstraintCode) + "'");
8374               return;
8375             }
8376 
8377           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8378                                      Twine(OpInfo.ConstraintCode) + "'");
8379           return;
8380         }
8381 
8382         // Add information to the INLINEASM node to know about this input.
8383         unsigned ResOpType =
8384           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8385         AsmNodeOperands.push_back(DAG.getTargetConstant(
8386             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8387         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8388         break;
8389       }
8390 
8391       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8392         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8393         assert(InOperandVal.getValueType() ==
8394                    TLI.getPointerTy(DAG.getDataLayout()) &&
8395                "Memory operands expect pointer values");
8396 
8397         unsigned ConstraintID =
8398             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8399         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8400                "Failed to convert memory constraint code to constraint id.");
8401 
8402         // Add information to the INLINEASM node to know about this input.
8403         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8404         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8405         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8406                                                         getCurSDLoc(),
8407                                                         MVT::i32));
8408         AsmNodeOperands.push_back(InOperandVal);
8409         break;
8410       }
8411 
8412       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8413               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8414              "Unknown constraint type!");
8415 
8416       // TODO: Support this.
8417       if (OpInfo.isIndirect) {
8418         emitInlineAsmError(
8419             CS, "Don't know how to handle indirect register inputs yet "
8420                 "for constraint '" +
8421                     Twine(OpInfo.ConstraintCode) + "'");
8422         return;
8423       }
8424 
8425       // Copy the input into the appropriate registers.
8426       if (OpInfo.AssignedRegs.Regs.empty()) {
8427         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8428                                    Twine(OpInfo.ConstraintCode) + "'");
8429         return;
8430       }
8431 
8432       SDLoc dl = getCurSDLoc();
8433 
8434       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8435                                         Chain, &Flag, CS.getInstruction());
8436 
8437       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8438                                                dl, DAG, AsmNodeOperands);
8439       break;
8440     }
8441     case InlineAsm::isClobber:
8442       // Add the clobbered value to the operand list, so that the register
8443       // allocator is aware that the physreg got clobbered.
8444       if (!OpInfo.AssignedRegs.Regs.empty())
8445         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8446                                                  false, 0, getCurSDLoc(), DAG,
8447                                                  AsmNodeOperands);
8448       break;
8449     }
8450   }
8451 
8452   // Finish up input operands.  Set the input chain and add the flag last.
8453   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8454   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8455 
8456   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8457   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8458                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8459   Flag = Chain.getValue(1);
8460 
8461   // Do additional work to generate outputs.
8462 
8463   SmallVector<EVT, 1> ResultVTs;
8464   SmallVector<SDValue, 1> ResultValues;
8465   SmallVector<SDValue, 8> OutChains;
8466 
8467   llvm::Type *CSResultType = CS.getType();
8468   ArrayRef<Type *> ResultTypes;
8469   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8470     ResultTypes = StructResult->elements();
8471   else if (!CSResultType->isVoidTy())
8472     ResultTypes = makeArrayRef(CSResultType);
8473 
8474   auto CurResultType = ResultTypes.begin();
8475   auto handleRegAssign = [&](SDValue V) {
8476     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8477     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8478     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8479     ++CurResultType;
8480     // If the type of the inline asm call site return value is different but has
8481     // same size as the type of the asm output bitcast it.  One example of this
8482     // is for vectors with different width / number of elements.  This can
8483     // happen for register classes that can contain multiple different value
8484     // types.  The preg or vreg allocated may not have the same VT as was
8485     // expected.
8486     //
8487     // This can also happen for a return value that disagrees with the register
8488     // class it is put in, eg. a double in a general-purpose register on a
8489     // 32-bit machine.
8490     if (ResultVT != V.getValueType() &&
8491         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8492       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8493     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8494              V.getValueType().isInteger()) {
8495       // If a result value was tied to an input value, the computed result
8496       // may have a wider width than the expected result.  Extract the
8497       // relevant portion.
8498       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8499     }
8500     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8501     ResultVTs.push_back(ResultVT);
8502     ResultValues.push_back(V);
8503   };
8504 
8505   // Deal with output operands.
8506   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8507     if (OpInfo.Type == InlineAsm::isOutput) {
8508       SDValue Val;
8509       // Skip trivial output operands.
8510       if (OpInfo.AssignedRegs.Regs.empty())
8511         continue;
8512 
8513       switch (OpInfo.ConstraintType) {
8514       case TargetLowering::C_Register:
8515       case TargetLowering::C_RegisterClass:
8516         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8517             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8518         break;
8519       case TargetLowering::C_Immediate:
8520       case TargetLowering::C_Other:
8521         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8522                                               OpInfo, DAG);
8523         break;
8524       case TargetLowering::C_Memory:
8525         break; // Already handled.
8526       case TargetLowering::C_Unknown:
8527         assert(false && "Unexpected unknown constraint");
8528       }
8529 
8530       // Indirect output manifest as stores. Record output chains.
8531       if (OpInfo.isIndirect) {
8532         const Value *Ptr = OpInfo.CallOperandVal;
8533         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8534         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8535                                      MachinePointerInfo(Ptr));
8536         OutChains.push_back(Store);
8537       } else {
8538         // generate CopyFromRegs to associated registers.
8539         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8540         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8541           for (const SDValue &V : Val->op_values())
8542             handleRegAssign(V);
8543         } else
8544           handleRegAssign(Val);
8545       }
8546     }
8547   }
8548 
8549   // Set results.
8550   if (!ResultValues.empty()) {
8551     assert(CurResultType == ResultTypes.end() &&
8552            "Mismatch in number of ResultTypes");
8553     assert(ResultValues.size() == ResultTypes.size() &&
8554            "Mismatch in number of output operands in asm result");
8555 
8556     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8557                             DAG.getVTList(ResultVTs), ResultValues);
8558     setValue(CS.getInstruction(), V);
8559   }
8560 
8561   // Collect store chains.
8562   if (!OutChains.empty())
8563     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8564 
8565   // Only Update Root if inline assembly has a memory effect.
8566   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8567     DAG.setRoot(Chain);
8568 }
8569 
8570 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8571                                              const Twine &Message) {
8572   LLVMContext &Ctx = *DAG.getContext();
8573   Ctx.emitError(CS.getInstruction(), Message);
8574 
8575   // Make sure we leave the DAG in a valid state
8576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8577   SmallVector<EVT, 1> ValueVTs;
8578   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8579 
8580   if (ValueVTs.empty())
8581     return;
8582 
8583   SmallVector<SDValue, 1> Ops;
8584   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8585     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8586 
8587   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8588 }
8589 
8590 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8591   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8592                           MVT::Other, getRoot(),
8593                           getValue(I.getArgOperand(0)),
8594                           DAG.getSrcValue(I.getArgOperand(0))));
8595 }
8596 
8597 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8598   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8599   const DataLayout &DL = DAG.getDataLayout();
8600   SDValue V = DAG.getVAArg(
8601       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8602       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8603       DL.getABITypeAlignment(I.getType()));
8604   DAG.setRoot(V.getValue(1));
8605 
8606   if (I.getType()->isPointerTy())
8607     V = DAG.getPtrExtOrTrunc(
8608         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8609   setValue(&I, V);
8610 }
8611 
8612 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8613   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8614                           MVT::Other, getRoot(),
8615                           getValue(I.getArgOperand(0)),
8616                           DAG.getSrcValue(I.getArgOperand(0))));
8617 }
8618 
8619 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8620   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8621                           MVT::Other, getRoot(),
8622                           getValue(I.getArgOperand(0)),
8623                           getValue(I.getArgOperand(1)),
8624                           DAG.getSrcValue(I.getArgOperand(0)),
8625                           DAG.getSrcValue(I.getArgOperand(1))));
8626 }
8627 
8628 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8629                                                     const Instruction &I,
8630                                                     SDValue Op) {
8631   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8632   if (!Range)
8633     return Op;
8634 
8635   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8636   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8637     return Op;
8638 
8639   APInt Lo = CR.getUnsignedMin();
8640   if (!Lo.isMinValue())
8641     return Op;
8642 
8643   APInt Hi = CR.getUnsignedMax();
8644   unsigned Bits = std::max(Hi.getActiveBits(),
8645                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8646 
8647   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8648 
8649   SDLoc SL = getCurSDLoc();
8650 
8651   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8652                              DAG.getValueType(SmallVT));
8653   unsigned NumVals = Op.getNode()->getNumValues();
8654   if (NumVals == 1)
8655     return ZExt;
8656 
8657   SmallVector<SDValue, 4> Ops;
8658 
8659   Ops.push_back(ZExt);
8660   for (unsigned I = 1; I != NumVals; ++I)
8661     Ops.push_back(Op.getValue(I));
8662 
8663   return DAG.getMergeValues(Ops, SL);
8664 }
8665 
8666 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8667 /// the call being lowered.
8668 ///
8669 /// This is a helper for lowering intrinsics that follow a target calling
8670 /// convention or require stack pointer adjustment. Only a subset of the
8671 /// intrinsic's operands need to participate in the calling convention.
8672 void SelectionDAGBuilder::populateCallLoweringInfo(
8673     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8674     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8675     bool IsPatchPoint) {
8676   TargetLowering::ArgListTy Args;
8677   Args.reserve(NumArgs);
8678 
8679   // Populate the argument list.
8680   // Attributes for args start at offset 1, after the return attribute.
8681   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8682        ArgI != ArgE; ++ArgI) {
8683     const Value *V = Call->getOperand(ArgI);
8684 
8685     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8686 
8687     TargetLowering::ArgListEntry Entry;
8688     Entry.Node = getValue(V);
8689     Entry.Ty = V->getType();
8690     Entry.setAttributes(Call, ArgI);
8691     Args.push_back(Entry);
8692   }
8693 
8694   CLI.setDebugLoc(getCurSDLoc())
8695       .setChain(getRoot())
8696       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8697       .setDiscardResult(Call->use_empty())
8698       .setIsPatchPoint(IsPatchPoint);
8699 }
8700 
8701 /// Add a stack map intrinsic call's live variable operands to a stackmap
8702 /// or patchpoint target node's operand list.
8703 ///
8704 /// Constants are converted to TargetConstants purely as an optimization to
8705 /// avoid constant materialization and register allocation.
8706 ///
8707 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8708 /// generate addess computation nodes, and so FinalizeISel can convert the
8709 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8710 /// address materialization and register allocation, but may also be required
8711 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8712 /// alloca in the entry block, then the runtime may assume that the alloca's
8713 /// StackMap location can be read immediately after compilation and that the
8714 /// location is valid at any point during execution (this is similar to the
8715 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8716 /// only available in a register, then the runtime would need to trap when
8717 /// execution reaches the StackMap in order to read the alloca's location.
8718 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8719                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8720                                 SelectionDAGBuilder &Builder) {
8721   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8722     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8723     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8724       Ops.push_back(
8725         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8726       Ops.push_back(
8727         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8728     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8729       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8730       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8731           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8732     } else
8733       Ops.push_back(OpVal);
8734   }
8735 }
8736 
8737 /// Lower llvm.experimental.stackmap directly to its target opcode.
8738 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8739   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8740   //                                  [live variables...])
8741 
8742   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8743 
8744   SDValue Chain, InFlag, Callee, NullPtr;
8745   SmallVector<SDValue, 32> Ops;
8746 
8747   SDLoc DL = getCurSDLoc();
8748   Callee = getValue(CI.getCalledValue());
8749   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8750 
8751   // The stackmap intrinsic only records the live variables (the arguments
8752   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8753   // intrinsic, this won't be lowered to a function call. This means we don't
8754   // have to worry about calling conventions and target specific lowering code.
8755   // Instead we perform the call lowering right here.
8756   //
8757   // chain, flag = CALLSEQ_START(chain, 0, 0)
8758   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8759   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8760   //
8761   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8762   InFlag = Chain.getValue(1);
8763 
8764   // Add the <id> and <numBytes> constants.
8765   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8766   Ops.push_back(DAG.getTargetConstant(
8767                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8768   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8769   Ops.push_back(DAG.getTargetConstant(
8770                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8771                   MVT::i32));
8772 
8773   // Push live variables for the stack map.
8774   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8775 
8776   // We are not pushing any register mask info here on the operands list,
8777   // because the stackmap doesn't clobber anything.
8778 
8779   // Push the chain and the glue flag.
8780   Ops.push_back(Chain);
8781   Ops.push_back(InFlag);
8782 
8783   // Create the STACKMAP node.
8784   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8785   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8786   Chain = SDValue(SM, 0);
8787   InFlag = Chain.getValue(1);
8788 
8789   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8790 
8791   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8792 
8793   // Set the root to the target-lowered call chain.
8794   DAG.setRoot(Chain);
8795 
8796   // Inform the Frame Information that we have a stackmap in this function.
8797   FuncInfo.MF->getFrameInfo().setHasStackMap();
8798 }
8799 
8800 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8801 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8802                                           const BasicBlock *EHPadBB) {
8803   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8804   //                                                 i32 <numBytes>,
8805   //                                                 i8* <target>,
8806   //                                                 i32 <numArgs>,
8807   //                                                 [Args...],
8808   //                                                 [live variables...])
8809 
8810   CallingConv::ID CC = CS.getCallingConv();
8811   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8812   bool HasDef = !CS->getType()->isVoidTy();
8813   SDLoc dl = getCurSDLoc();
8814   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8815 
8816   // Handle immediate and symbolic callees.
8817   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8818     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8819                                    /*isTarget=*/true);
8820   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8821     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8822                                          SDLoc(SymbolicCallee),
8823                                          SymbolicCallee->getValueType(0));
8824 
8825   // Get the real number of arguments participating in the call <numArgs>
8826   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8827   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8828 
8829   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8830   // Intrinsics include all meta-operands up to but not including CC.
8831   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8832   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8833          "Not enough arguments provided to the patchpoint intrinsic");
8834 
8835   // For AnyRegCC the arguments are lowered later on manually.
8836   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8837   Type *ReturnTy =
8838     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8839 
8840   TargetLowering::CallLoweringInfo CLI(DAG);
8841   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8842                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8843   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8844 
8845   SDNode *CallEnd = Result.second.getNode();
8846   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8847     CallEnd = CallEnd->getOperand(0).getNode();
8848 
8849   /// Get a call instruction from the call sequence chain.
8850   /// Tail calls are not allowed.
8851   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8852          "Expected a callseq node.");
8853   SDNode *Call = CallEnd->getOperand(0).getNode();
8854   bool HasGlue = Call->getGluedNode();
8855 
8856   // Replace the target specific call node with the patchable intrinsic.
8857   SmallVector<SDValue, 8> Ops;
8858 
8859   // Add the <id> and <numBytes> constants.
8860   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8861   Ops.push_back(DAG.getTargetConstant(
8862                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8863   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8864   Ops.push_back(DAG.getTargetConstant(
8865                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8866                   MVT::i32));
8867 
8868   // Add the callee.
8869   Ops.push_back(Callee);
8870 
8871   // Adjust <numArgs> to account for any arguments that have been passed on the
8872   // stack instead.
8873   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8874   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8875   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8876   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8877 
8878   // Add the calling convention
8879   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8880 
8881   // Add the arguments we omitted previously. The register allocator should
8882   // place these in any free register.
8883   if (IsAnyRegCC)
8884     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8885       Ops.push_back(getValue(CS.getArgument(i)));
8886 
8887   // Push the arguments from the call instruction up to the register mask.
8888   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8889   Ops.append(Call->op_begin() + 2, e);
8890 
8891   // Push live variables for the stack map.
8892   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8893 
8894   // Push the register mask info.
8895   if (HasGlue)
8896     Ops.push_back(*(Call->op_end()-2));
8897   else
8898     Ops.push_back(*(Call->op_end()-1));
8899 
8900   // Push the chain (this is originally the first operand of the call, but
8901   // becomes now the last or second to last operand).
8902   Ops.push_back(*(Call->op_begin()));
8903 
8904   // Push the glue flag (last operand).
8905   if (HasGlue)
8906     Ops.push_back(*(Call->op_end()-1));
8907 
8908   SDVTList NodeTys;
8909   if (IsAnyRegCC && HasDef) {
8910     // Create the return types based on the intrinsic definition
8911     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8912     SmallVector<EVT, 3> ValueVTs;
8913     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8914     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8915 
8916     // There is always a chain and a glue type at the end
8917     ValueVTs.push_back(MVT::Other);
8918     ValueVTs.push_back(MVT::Glue);
8919     NodeTys = DAG.getVTList(ValueVTs);
8920   } else
8921     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8922 
8923   // Replace the target specific call node with a PATCHPOINT node.
8924   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8925                                          dl, NodeTys, Ops);
8926 
8927   // Update the NodeMap.
8928   if (HasDef) {
8929     if (IsAnyRegCC)
8930       setValue(CS.getInstruction(), SDValue(MN, 0));
8931     else
8932       setValue(CS.getInstruction(), Result.first);
8933   }
8934 
8935   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8936   // call sequence. Furthermore the location of the chain and glue can change
8937   // when the AnyReg calling convention is used and the intrinsic returns a
8938   // value.
8939   if (IsAnyRegCC && HasDef) {
8940     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8941     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8942     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8943   } else
8944     DAG.ReplaceAllUsesWith(Call, MN);
8945   DAG.DeleteNode(Call);
8946 
8947   // Inform the Frame Information that we have a patchpoint in this function.
8948   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8949 }
8950 
8951 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8952                                             unsigned Intrinsic) {
8953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8954   SDValue Op1 = getValue(I.getArgOperand(0));
8955   SDValue Op2;
8956   if (I.getNumArgOperands() > 1)
8957     Op2 = getValue(I.getArgOperand(1));
8958   SDLoc dl = getCurSDLoc();
8959   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8960   SDValue Res;
8961   FastMathFlags FMF;
8962   if (isa<FPMathOperator>(I))
8963     FMF = I.getFastMathFlags();
8964 
8965   switch (Intrinsic) {
8966   case Intrinsic::experimental_vector_reduce_v2_fadd:
8967     if (FMF.allowReassoc())
8968       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8969                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8970     else
8971       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8972     break;
8973   case Intrinsic::experimental_vector_reduce_v2_fmul:
8974     if (FMF.allowReassoc())
8975       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8976                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8977     else
8978       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8979     break;
8980   case Intrinsic::experimental_vector_reduce_add:
8981     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8982     break;
8983   case Intrinsic::experimental_vector_reduce_mul:
8984     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8985     break;
8986   case Intrinsic::experimental_vector_reduce_and:
8987     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8988     break;
8989   case Intrinsic::experimental_vector_reduce_or:
8990     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8991     break;
8992   case Intrinsic::experimental_vector_reduce_xor:
8993     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8994     break;
8995   case Intrinsic::experimental_vector_reduce_smax:
8996     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8997     break;
8998   case Intrinsic::experimental_vector_reduce_smin:
8999     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9000     break;
9001   case Intrinsic::experimental_vector_reduce_umax:
9002     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9003     break;
9004   case Intrinsic::experimental_vector_reduce_umin:
9005     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9006     break;
9007   case Intrinsic::experimental_vector_reduce_fmax:
9008     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9009     break;
9010   case Intrinsic::experimental_vector_reduce_fmin:
9011     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9012     break;
9013   default:
9014     llvm_unreachable("Unhandled vector reduce intrinsic");
9015   }
9016   setValue(&I, Res);
9017 }
9018 
9019 /// Returns an AttributeList representing the attributes applied to the return
9020 /// value of the given call.
9021 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9022   SmallVector<Attribute::AttrKind, 2> Attrs;
9023   if (CLI.RetSExt)
9024     Attrs.push_back(Attribute::SExt);
9025   if (CLI.RetZExt)
9026     Attrs.push_back(Attribute::ZExt);
9027   if (CLI.IsInReg)
9028     Attrs.push_back(Attribute::InReg);
9029 
9030   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9031                             Attrs);
9032 }
9033 
9034 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9035 /// implementation, which just calls LowerCall.
9036 /// FIXME: When all targets are
9037 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9038 std::pair<SDValue, SDValue>
9039 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9040   // Handle the incoming return values from the call.
9041   CLI.Ins.clear();
9042   Type *OrigRetTy = CLI.RetTy;
9043   SmallVector<EVT, 4> RetTys;
9044   SmallVector<uint64_t, 4> Offsets;
9045   auto &DL = CLI.DAG.getDataLayout();
9046   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9047 
9048   if (CLI.IsPostTypeLegalization) {
9049     // If we are lowering a libcall after legalization, split the return type.
9050     SmallVector<EVT, 4> OldRetTys;
9051     SmallVector<uint64_t, 4> OldOffsets;
9052     RetTys.swap(OldRetTys);
9053     Offsets.swap(OldOffsets);
9054 
9055     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9056       EVT RetVT = OldRetTys[i];
9057       uint64_t Offset = OldOffsets[i];
9058       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9059       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9060       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9061       RetTys.append(NumRegs, RegisterVT);
9062       for (unsigned j = 0; j != NumRegs; ++j)
9063         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9064     }
9065   }
9066 
9067   SmallVector<ISD::OutputArg, 4> Outs;
9068   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9069 
9070   bool CanLowerReturn =
9071       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9072                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9073 
9074   SDValue DemoteStackSlot;
9075   int DemoteStackIdx = -100;
9076   if (!CanLowerReturn) {
9077     // FIXME: equivalent assert?
9078     // assert(!CS.hasInAllocaArgument() &&
9079     //        "sret demotion is incompatible with inalloca");
9080     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9081     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9082     MachineFunction &MF = CLI.DAG.getMachineFunction();
9083     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9084     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9085                                               DL.getAllocaAddrSpace());
9086 
9087     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9088     ArgListEntry Entry;
9089     Entry.Node = DemoteStackSlot;
9090     Entry.Ty = StackSlotPtrType;
9091     Entry.IsSExt = false;
9092     Entry.IsZExt = false;
9093     Entry.IsInReg = false;
9094     Entry.IsSRet = true;
9095     Entry.IsNest = false;
9096     Entry.IsByVal = false;
9097     Entry.IsReturned = false;
9098     Entry.IsSwiftSelf = false;
9099     Entry.IsSwiftError = false;
9100     Entry.IsCFGuardTarget = false;
9101     Entry.Alignment = Align;
9102     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9103     CLI.NumFixedArgs += 1;
9104     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9105 
9106     // sret demotion isn't compatible with tail-calls, since the sret argument
9107     // points into the callers stack frame.
9108     CLI.IsTailCall = false;
9109   } else {
9110     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9111         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9112     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9113       ISD::ArgFlagsTy Flags;
9114       if (NeedsRegBlock) {
9115         Flags.setInConsecutiveRegs();
9116         if (I == RetTys.size() - 1)
9117           Flags.setInConsecutiveRegsLast();
9118       }
9119       EVT VT = RetTys[I];
9120       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9121                                                      CLI.CallConv, VT);
9122       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9123                                                        CLI.CallConv, VT);
9124       for (unsigned i = 0; i != NumRegs; ++i) {
9125         ISD::InputArg MyFlags;
9126         MyFlags.Flags = Flags;
9127         MyFlags.VT = RegisterVT;
9128         MyFlags.ArgVT = VT;
9129         MyFlags.Used = CLI.IsReturnValueUsed;
9130         if (CLI.RetTy->isPointerTy()) {
9131           MyFlags.Flags.setPointer();
9132           MyFlags.Flags.setPointerAddrSpace(
9133               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9134         }
9135         if (CLI.RetSExt)
9136           MyFlags.Flags.setSExt();
9137         if (CLI.RetZExt)
9138           MyFlags.Flags.setZExt();
9139         if (CLI.IsInReg)
9140           MyFlags.Flags.setInReg();
9141         CLI.Ins.push_back(MyFlags);
9142       }
9143     }
9144   }
9145 
9146   // We push in swifterror return as the last element of CLI.Ins.
9147   ArgListTy &Args = CLI.getArgs();
9148   if (supportSwiftError()) {
9149     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9150       if (Args[i].IsSwiftError) {
9151         ISD::InputArg MyFlags;
9152         MyFlags.VT = getPointerTy(DL);
9153         MyFlags.ArgVT = EVT(getPointerTy(DL));
9154         MyFlags.Flags.setSwiftError();
9155         CLI.Ins.push_back(MyFlags);
9156       }
9157     }
9158   }
9159 
9160   // Handle all of the outgoing arguments.
9161   CLI.Outs.clear();
9162   CLI.OutVals.clear();
9163   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9164     SmallVector<EVT, 4> ValueVTs;
9165     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9166     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9167     Type *FinalType = Args[i].Ty;
9168     if (Args[i].IsByVal)
9169       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9170     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9171         FinalType, CLI.CallConv, CLI.IsVarArg);
9172     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9173          ++Value) {
9174       EVT VT = ValueVTs[Value];
9175       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9176       SDValue Op = SDValue(Args[i].Node.getNode(),
9177                            Args[i].Node.getResNo() + Value);
9178       ISD::ArgFlagsTy Flags;
9179 
9180       // Certain targets (such as MIPS), may have a different ABI alignment
9181       // for a type depending on the context. Give the target a chance to
9182       // specify the alignment it wants.
9183       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9184 
9185       if (Args[i].Ty->isPointerTy()) {
9186         Flags.setPointer();
9187         Flags.setPointerAddrSpace(
9188             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9189       }
9190       if (Args[i].IsZExt)
9191         Flags.setZExt();
9192       if (Args[i].IsSExt)
9193         Flags.setSExt();
9194       if (Args[i].IsInReg) {
9195         // If we are using vectorcall calling convention, a structure that is
9196         // passed InReg - is surely an HVA
9197         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9198             isa<StructType>(FinalType)) {
9199           // The first value of a structure is marked
9200           if (0 == Value)
9201             Flags.setHvaStart();
9202           Flags.setHva();
9203         }
9204         // Set InReg Flag
9205         Flags.setInReg();
9206       }
9207       if (Args[i].IsSRet)
9208         Flags.setSRet();
9209       if (Args[i].IsSwiftSelf)
9210         Flags.setSwiftSelf();
9211       if (Args[i].IsSwiftError)
9212         Flags.setSwiftError();
9213       if (Args[i].IsCFGuardTarget)
9214         Flags.setCFGuardTarget();
9215       if (Args[i].IsByVal)
9216         Flags.setByVal();
9217       if (Args[i].IsInAlloca) {
9218         Flags.setInAlloca();
9219         // Set the byval flag for CCAssignFn callbacks that don't know about
9220         // inalloca.  This way we can know how many bytes we should've allocated
9221         // and how many bytes a callee cleanup function will pop.  If we port
9222         // inalloca to more targets, we'll have to add custom inalloca handling
9223         // in the various CC lowering callbacks.
9224         Flags.setByVal();
9225       }
9226       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9227         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9228         Type *ElementTy = Ty->getElementType();
9229 
9230         unsigned FrameSize = DL.getTypeAllocSize(
9231             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9232         Flags.setByValSize(FrameSize);
9233 
9234         // info is not there but there are cases it cannot get right.
9235         unsigned FrameAlign;
9236         if (Args[i].Alignment)
9237           FrameAlign = Args[i].Alignment;
9238         else
9239           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9240         Flags.setByValAlign(Align(FrameAlign));
9241       }
9242       if (Args[i].IsNest)
9243         Flags.setNest();
9244       if (NeedsRegBlock)
9245         Flags.setInConsecutiveRegs();
9246       Flags.setOrigAlign(OriginalAlignment);
9247 
9248       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9249                                                  CLI.CallConv, VT);
9250       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9251                                                         CLI.CallConv, VT);
9252       SmallVector<SDValue, 4> Parts(NumParts);
9253       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9254 
9255       if (Args[i].IsSExt)
9256         ExtendKind = ISD::SIGN_EXTEND;
9257       else if (Args[i].IsZExt)
9258         ExtendKind = ISD::ZERO_EXTEND;
9259 
9260       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9261       // for now.
9262       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9263           CanLowerReturn) {
9264         assert((CLI.RetTy == Args[i].Ty ||
9265                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9266                  CLI.RetTy->getPointerAddressSpace() ==
9267                      Args[i].Ty->getPointerAddressSpace())) &&
9268                RetTys.size() == NumValues && "unexpected use of 'returned'");
9269         // Before passing 'returned' to the target lowering code, ensure that
9270         // either the register MVT and the actual EVT are the same size or that
9271         // the return value and argument are extended in the same way; in these
9272         // cases it's safe to pass the argument register value unchanged as the
9273         // return register value (although it's at the target's option whether
9274         // to do so)
9275         // TODO: allow code generation to take advantage of partially preserved
9276         // registers rather than clobbering the entire register when the
9277         // parameter extension method is not compatible with the return
9278         // extension method
9279         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9280             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9281              CLI.RetZExt == Args[i].IsZExt))
9282           Flags.setReturned();
9283       }
9284 
9285       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9286                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9287 
9288       for (unsigned j = 0; j != NumParts; ++j) {
9289         // if it isn't first piece, alignment must be 1
9290         // For scalable vectors the scalable part is currently handled
9291         // by individual targets, so we just use the known minimum size here.
9292         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9293                     i < CLI.NumFixedArgs, i,
9294                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9295         if (NumParts > 1 && j == 0)
9296           MyFlags.Flags.setSplit();
9297         else if (j != 0) {
9298           MyFlags.Flags.setOrigAlign(Align::None());
9299           if (j == NumParts - 1)
9300             MyFlags.Flags.setSplitEnd();
9301         }
9302 
9303         CLI.Outs.push_back(MyFlags);
9304         CLI.OutVals.push_back(Parts[j]);
9305       }
9306 
9307       if (NeedsRegBlock && Value == NumValues - 1)
9308         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9309     }
9310   }
9311 
9312   SmallVector<SDValue, 4> InVals;
9313   CLI.Chain = LowerCall(CLI, InVals);
9314 
9315   // Update CLI.InVals to use outside of this function.
9316   CLI.InVals = InVals;
9317 
9318   // Verify that the target's LowerCall behaved as expected.
9319   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9320          "LowerCall didn't return a valid chain!");
9321   assert((!CLI.IsTailCall || InVals.empty()) &&
9322          "LowerCall emitted a return value for a tail call!");
9323   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9324          "LowerCall didn't emit the correct number of values!");
9325 
9326   // For a tail call, the return value is merely live-out and there aren't
9327   // any nodes in the DAG representing it. Return a special value to
9328   // indicate that a tail call has been emitted and no more Instructions
9329   // should be processed in the current block.
9330   if (CLI.IsTailCall) {
9331     CLI.DAG.setRoot(CLI.Chain);
9332     return std::make_pair(SDValue(), SDValue());
9333   }
9334 
9335 #ifndef NDEBUG
9336   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9337     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9338     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9339            "LowerCall emitted a value with the wrong type!");
9340   }
9341 #endif
9342 
9343   SmallVector<SDValue, 4> ReturnValues;
9344   if (!CanLowerReturn) {
9345     // The instruction result is the result of loading from the
9346     // hidden sret parameter.
9347     SmallVector<EVT, 1> PVTs;
9348     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9349 
9350     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9351     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9352     EVT PtrVT = PVTs[0];
9353 
9354     unsigned NumValues = RetTys.size();
9355     ReturnValues.resize(NumValues);
9356     SmallVector<SDValue, 4> Chains(NumValues);
9357 
9358     // An aggregate return value cannot wrap around the address space, so
9359     // offsets to its parts don't wrap either.
9360     SDNodeFlags Flags;
9361     Flags.setNoUnsignedWrap(true);
9362 
9363     for (unsigned i = 0; i < NumValues; ++i) {
9364       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9365                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9366                                                         PtrVT), Flags);
9367       SDValue L = CLI.DAG.getLoad(
9368           RetTys[i], CLI.DL, CLI.Chain, Add,
9369           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9370                                             DemoteStackIdx, Offsets[i]),
9371           /* Alignment = */ 1);
9372       ReturnValues[i] = L;
9373       Chains[i] = L.getValue(1);
9374     }
9375 
9376     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9377   } else {
9378     // Collect the legal value parts into potentially illegal values
9379     // that correspond to the original function's return values.
9380     Optional<ISD::NodeType> AssertOp;
9381     if (CLI.RetSExt)
9382       AssertOp = ISD::AssertSext;
9383     else if (CLI.RetZExt)
9384       AssertOp = ISD::AssertZext;
9385     unsigned CurReg = 0;
9386     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9387       EVT VT = RetTys[I];
9388       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9389                                                      CLI.CallConv, VT);
9390       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9391                                                        CLI.CallConv, VT);
9392 
9393       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9394                                               NumRegs, RegisterVT, VT, nullptr,
9395                                               CLI.CallConv, AssertOp));
9396       CurReg += NumRegs;
9397     }
9398 
9399     // For a function returning void, there is no return value. We can't create
9400     // such a node, so we just return a null return value in that case. In
9401     // that case, nothing will actually look at the value.
9402     if (ReturnValues.empty())
9403       return std::make_pair(SDValue(), CLI.Chain);
9404   }
9405 
9406   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9407                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9408   return std::make_pair(Res, CLI.Chain);
9409 }
9410 
9411 void TargetLowering::LowerOperationWrapper(SDNode *N,
9412                                            SmallVectorImpl<SDValue> &Results,
9413                                            SelectionDAG &DAG) const {
9414   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9415     Results.push_back(Res);
9416 }
9417 
9418 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9419   llvm_unreachable("LowerOperation not implemented for this target!");
9420 }
9421 
9422 void
9423 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9424   SDValue Op = getNonRegisterValue(V);
9425   assert((Op.getOpcode() != ISD::CopyFromReg ||
9426           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9427          "Copy from a reg to the same reg!");
9428   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9429 
9430   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9431   // If this is an InlineAsm we have to match the registers required, not the
9432   // notional registers required by the type.
9433 
9434   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9435                    None); // This is not an ABI copy.
9436   SDValue Chain = DAG.getEntryNode();
9437 
9438   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9439                               FuncInfo.PreferredExtendType.end())
9440                                  ? ISD::ANY_EXTEND
9441                                  : FuncInfo.PreferredExtendType[V];
9442   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9443   PendingExports.push_back(Chain);
9444 }
9445 
9446 #include "llvm/CodeGen/SelectionDAGISel.h"
9447 
9448 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9449 /// entry block, return true.  This includes arguments used by switches, since
9450 /// the switch may expand into multiple basic blocks.
9451 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9452   // With FastISel active, we may be splitting blocks, so force creation
9453   // of virtual registers for all non-dead arguments.
9454   if (FastISel)
9455     return A->use_empty();
9456 
9457   const BasicBlock &Entry = A->getParent()->front();
9458   for (const User *U : A->users())
9459     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9460       return false;  // Use not in entry block.
9461 
9462   return true;
9463 }
9464 
9465 using ArgCopyElisionMapTy =
9466     DenseMap<const Argument *,
9467              std::pair<const AllocaInst *, const StoreInst *>>;
9468 
9469 /// Scan the entry block of the function in FuncInfo for arguments that look
9470 /// like copies into a local alloca. Record any copied arguments in
9471 /// ArgCopyElisionCandidates.
9472 static void
9473 findArgumentCopyElisionCandidates(const DataLayout &DL,
9474                                   FunctionLoweringInfo *FuncInfo,
9475                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9476   // Record the state of every static alloca used in the entry block. Argument
9477   // allocas are all used in the entry block, so we need approximately as many
9478   // entries as we have arguments.
9479   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9480   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9481   unsigned NumArgs = FuncInfo->Fn->arg_size();
9482   StaticAllocas.reserve(NumArgs * 2);
9483 
9484   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9485     if (!V)
9486       return nullptr;
9487     V = V->stripPointerCasts();
9488     const auto *AI = dyn_cast<AllocaInst>(V);
9489     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9490       return nullptr;
9491     auto Iter = StaticAllocas.insert({AI, Unknown});
9492     return &Iter.first->second;
9493   };
9494 
9495   // Look for stores of arguments to static allocas. Look through bitcasts and
9496   // GEPs to handle type coercions, as long as the alloca is fully initialized
9497   // by the store. Any non-store use of an alloca escapes it and any subsequent
9498   // unanalyzed store might write it.
9499   // FIXME: Handle structs initialized with multiple stores.
9500   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9501     // Look for stores, and handle non-store uses conservatively.
9502     const auto *SI = dyn_cast<StoreInst>(&I);
9503     if (!SI) {
9504       // We will look through cast uses, so ignore them completely.
9505       if (I.isCast())
9506         continue;
9507       // Ignore debug info intrinsics, they don't escape or store to allocas.
9508       if (isa<DbgInfoIntrinsic>(I))
9509         continue;
9510       // This is an unknown instruction. Assume it escapes or writes to all
9511       // static alloca operands.
9512       for (const Use &U : I.operands()) {
9513         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9514           *Info = StaticAllocaInfo::Clobbered;
9515       }
9516       continue;
9517     }
9518 
9519     // If the stored value is a static alloca, mark it as escaped.
9520     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9521       *Info = StaticAllocaInfo::Clobbered;
9522 
9523     // Check if the destination is a static alloca.
9524     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9525     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9526     if (!Info)
9527       continue;
9528     const AllocaInst *AI = cast<AllocaInst>(Dst);
9529 
9530     // Skip allocas that have been initialized or clobbered.
9531     if (*Info != StaticAllocaInfo::Unknown)
9532       continue;
9533 
9534     // Check if the stored value is an argument, and that this store fully
9535     // initializes the alloca. Don't elide copies from the same argument twice.
9536     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9537     const auto *Arg = dyn_cast<Argument>(Val);
9538     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9539         Arg->getType()->isEmptyTy() ||
9540         DL.getTypeStoreSize(Arg->getType()) !=
9541             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9542         ArgCopyElisionCandidates.count(Arg)) {
9543       *Info = StaticAllocaInfo::Clobbered;
9544       continue;
9545     }
9546 
9547     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9548                       << '\n');
9549 
9550     // Mark this alloca and store for argument copy elision.
9551     *Info = StaticAllocaInfo::Elidable;
9552     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9553 
9554     // Stop scanning if we've seen all arguments. This will happen early in -O0
9555     // builds, which is useful, because -O0 builds have large entry blocks and
9556     // many allocas.
9557     if (ArgCopyElisionCandidates.size() == NumArgs)
9558       break;
9559   }
9560 }
9561 
9562 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9563 /// ArgVal is a load from a suitable fixed stack object.
9564 static void tryToElideArgumentCopy(
9565     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9566     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9567     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9568     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9569     SDValue ArgVal, bool &ArgHasUses) {
9570   // Check if this is a load from a fixed stack object.
9571   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9572   if (!LNode)
9573     return;
9574   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9575   if (!FINode)
9576     return;
9577 
9578   // Check that the fixed stack object is the right size and alignment.
9579   // Look at the alignment that the user wrote on the alloca instead of looking
9580   // at the stack object.
9581   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9582   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9583   const AllocaInst *AI = ArgCopyIter->second.first;
9584   int FixedIndex = FINode->getIndex();
9585   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9586   int OldIndex = AllocaIndex;
9587   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9588   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9589     LLVM_DEBUG(
9590         dbgs() << "  argument copy elision failed due to bad fixed stack "
9591                   "object size\n");
9592     return;
9593   }
9594   unsigned RequiredAlignment = AI->getAlignment();
9595   if (!RequiredAlignment) {
9596     RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment(
9597         AI->getAllocatedType());
9598   }
9599   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9600     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9601                          "greater than stack argument alignment ("
9602                       << RequiredAlignment << " vs "
9603                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9604     return;
9605   }
9606 
9607   // Perform the elision. Delete the old stack object and replace its only use
9608   // in the variable info map. Mark the stack object as mutable.
9609   LLVM_DEBUG({
9610     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9611            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9612            << '\n';
9613   });
9614   MFI.RemoveStackObject(OldIndex);
9615   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9616   AllocaIndex = FixedIndex;
9617   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9618   Chains.push_back(ArgVal.getValue(1));
9619 
9620   // Avoid emitting code for the store implementing the copy.
9621   const StoreInst *SI = ArgCopyIter->second.second;
9622   ElidedArgCopyInstrs.insert(SI);
9623 
9624   // Check for uses of the argument again so that we can avoid exporting ArgVal
9625   // if it is't used by anything other than the store.
9626   for (const Value *U : Arg.users()) {
9627     if (U != SI) {
9628       ArgHasUses = true;
9629       break;
9630     }
9631   }
9632 }
9633 
9634 void SelectionDAGISel::LowerArguments(const Function &F) {
9635   SelectionDAG &DAG = SDB->DAG;
9636   SDLoc dl = SDB->getCurSDLoc();
9637   const DataLayout &DL = DAG.getDataLayout();
9638   SmallVector<ISD::InputArg, 16> Ins;
9639 
9640   if (!FuncInfo->CanLowerReturn) {
9641     // Put in an sret pointer parameter before all the other parameters.
9642     SmallVector<EVT, 1> ValueVTs;
9643     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9644                     F.getReturnType()->getPointerTo(
9645                         DAG.getDataLayout().getAllocaAddrSpace()),
9646                     ValueVTs);
9647 
9648     // NOTE: Assuming that a pointer will never break down to more than one VT
9649     // or one register.
9650     ISD::ArgFlagsTy Flags;
9651     Flags.setSRet();
9652     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9653     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9654                          ISD::InputArg::NoArgIndex, 0);
9655     Ins.push_back(RetArg);
9656   }
9657 
9658   // Look for stores of arguments to static allocas. Mark such arguments with a
9659   // flag to ask the target to give us the memory location of that argument if
9660   // available.
9661   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9662   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9663                                     ArgCopyElisionCandidates);
9664 
9665   // Set up the incoming argument description vector.
9666   for (const Argument &Arg : F.args()) {
9667     unsigned ArgNo = Arg.getArgNo();
9668     SmallVector<EVT, 4> ValueVTs;
9669     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9670     bool isArgValueUsed = !Arg.use_empty();
9671     unsigned PartBase = 0;
9672     Type *FinalType = Arg.getType();
9673     if (Arg.hasAttribute(Attribute::ByVal))
9674       FinalType = Arg.getParamByValType();
9675     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9676         FinalType, F.getCallingConv(), F.isVarArg());
9677     for (unsigned Value = 0, NumValues = ValueVTs.size();
9678          Value != NumValues; ++Value) {
9679       EVT VT = ValueVTs[Value];
9680       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9681       ISD::ArgFlagsTy Flags;
9682 
9683       // Certain targets (such as MIPS), may have a different ABI alignment
9684       // for a type depending on the context. Give the target a chance to
9685       // specify the alignment it wants.
9686       const Align OriginalAlignment(
9687           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9688 
9689       if (Arg.getType()->isPointerTy()) {
9690         Flags.setPointer();
9691         Flags.setPointerAddrSpace(
9692             cast<PointerType>(Arg.getType())->getAddressSpace());
9693       }
9694       if (Arg.hasAttribute(Attribute::ZExt))
9695         Flags.setZExt();
9696       if (Arg.hasAttribute(Attribute::SExt))
9697         Flags.setSExt();
9698       if (Arg.hasAttribute(Attribute::InReg)) {
9699         // If we are using vectorcall calling convention, a structure that is
9700         // passed InReg - is surely an HVA
9701         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9702             isa<StructType>(Arg.getType())) {
9703           // The first value of a structure is marked
9704           if (0 == Value)
9705             Flags.setHvaStart();
9706           Flags.setHva();
9707         }
9708         // Set InReg Flag
9709         Flags.setInReg();
9710       }
9711       if (Arg.hasAttribute(Attribute::StructRet))
9712         Flags.setSRet();
9713       if (Arg.hasAttribute(Attribute::SwiftSelf))
9714         Flags.setSwiftSelf();
9715       if (Arg.hasAttribute(Attribute::SwiftError))
9716         Flags.setSwiftError();
9717       if (Arg.hasAttribute(Attribute::ByVal))
9718         Flags.setByVal();
9719       if (Arg.hasAttribute(Attribute::InAlloca)) {
9720         Flags.setInAlloca();
9721         // Set the byval flag for CCAssignFn callbacks that don't know about
9722         // inalloca.  This way we can know how many bytes we should've allocated
9723         // and how many bytes a callee cleanup function will pop.  If we port
9724         // inalloca to more targets, we'll have to add custom inalloca handling
9725         // in the various CC lowering callbacks.
9726         Flags.setByVal();
9727       }
9728       if (F.getCallingConv() == CallingConv::X86_INTR) {
9729         // IA Interrupt passes frame (1st parameter) by value in the stack.
9730         if (ArgNo == 0)
9731           Flags.setByVal();
9732       }
9733       if (Flags.isByVal() || Flags.isInAlloca()) {
9734         Type *ElementTy = Arg.getParamByValType();
9735 
9736         // For ByVal, size and alignment should be passed from FE.  BE will
9737         // guess if this info is not there but there are cases it cannot get
9738         // right.
9739         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9740         Flags.setByValSize(FrameSize);
9741 
9742         unsigned FrameAlign;
9743         if (Arg.getParamAlignment())
9744           FrameAlign = Arg.getParamAlignment();
9745         else
9746           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9747         Flags.setByValAlign(Align(FrameAlign));
9748       }
9749       if (Arg.hasAttribute(Attribute::Nest))
9750         Flags.setNest();
9751       if (NeedsRegBlock)
9752         Flags.setInConsecutiveRegs();
9753       Flags.setOrigAlign(OriginalAlignment);
9754       if (ArgCopyElisionCandidates.count(&Arg))
9755         Flags.setCopyElisionCandidate();
9756       if (Arg.hasAttribute(Attribute::Returned))
9757         Flags.setReturned();
9758 
9759       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9760           *CurDAG->getContext(), F.getCallingConv(), VT);
9761       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9762           *CurDAG->getContext(), F.getCallingConv(), VT);
9763       for (unsigned i = 0; i != NumRegs; ++i) {
9764         // For scalable vectors, use the minimum size; individual targets
9765         // are responsible for handling scalable vector arguments and
9766         // return values.
9767         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9768                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9769         if (NumRegs > 1 && i == 0)
9770           MyFlags.Flags.setSplit();
9771         // if it isn't first piece, alignment must be 1
9772         else if (i > 0) {
9773           MyFlags.Flags.setOrigAlign(Align::None());
9774           if (i == NumRegs - 1)
9775             MyFlags.Flags.setSplitEnd();
9776         }
9777         Ins.push_back(MyFlags);
9778       }
9779       if (NeedsRegBlock && Value == NumValues - 1)
9780         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9781       PartBase += VT.getStoreSize().getKnownMinSize();
9782     }
9783   }
9784 
9785   // Call the target to set up the argument values.
9786   SmallVector<SDValue, 8> InVals;
9787   SDValue NewRoot = TLI->LowerFormalArguments(
9788       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9789 
9790   // Verify that the target's LowerFormalArguments behaved as expected.
9791   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9792          "LowerFormalArguments didn't return a valid chain!");
9793   assert(InVals.size() == Ins.size() &&
9794          "LowerFormalArguments didn't emit the correct number of values!");
9795   LLVM_DEBUG({
9796     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9797       assert(InVals[i].getNode() &&
9798              "LowerFormalArguments emitted a null value!");
9799       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9800              "LowerFormalArguments emitted a value with the wrong type!");
9801     }
9802   });
9803 
9804   // Update the DAG with the new chain value resulting from argument lowering.
9805   DAG.setRoot(NewRoot);
9806 
9807   // Set up the argument values.
9808   unsigned i = 0;
9809   if (!FuncInfo->CanLowerReturn) {
9810     // Create a virtual register for the sret pointer, and put in a copy
9811     // from the sret argument into it.
9812     SmallVector<EVT, 1> ValueVTs;
9813     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9814                     F.getReturnType()->getPointerTo(
9815                         DAG.getDataLayout().getAllocaAddrSpace()),
9816                     ValueVTs);
9817     MVT VT = ValueVTs[0].getSimpleVT();
9818     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9819     Optional<ISD::NodeType> AssertOp = None;
9820     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9821                                         nullptr, F.getCallingConv(), AssertOp);
9822 
9823     MachineFunction& MF = SDB->DAG.getMachineFunction();
9824     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9825     Register SRetReg =
9826         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9827     FuncInfo->DemoteRegister = SRetReg;
9828     NewRoot =
9829         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9830     DAG.setRoot(NewRoot);
9831 
9832     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9833     ++i;
9834   }
9835 
9836   SmallVector<SDValue, 4> Chains;
9837   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9838   for (const Argument &Arg : F.args()) {
9839     SmallVector<SDValue, 4> ArgValues;
9840     SmallVector<EVT, 4> ValueVTs;
9841     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9842     unsigned NumValues = ValueVTs.size();
9843     if (NumValues == 0)
9844       continue;
9845 
9846     bool ArgHasUses = !Arg.use_empty();
9847 
9848     // Elide the copying store if the target loaded this argument from a
9849     // suitable fixed stack object.
9850     if (Ins[i].Flags.isCopyElisionCandidate()) {
9851       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9852                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9853                              InVals[i], ArgHasUses);
9854     }
9855 
9856     // If this argument is unused then remember its value. It is used to generate
9857     // debugging information.
9858     bool isSwiftErrorArg =
9859         TLI->supportSwiftError() &&
9860         Arg.hasAttribute(Attribute::SwiftError);
9861     if (!ArgHasUses && !isSwiftErrorArg) {
9862       SDB->setUnusedArgValue(&Arg, InVals[i]);
9863 
9864       // Also remember any frame index for use in FastISel.
9865       if (FrameIndexSDNode *FI =
9866           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9867         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9868     }
9869 
9870     for (unsigned Val = 0; Val != NumValues; ++Val) {
9871       EVT VT = ValueVTs[Val];
9872       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9873                                                       F.getCallingConv(), VT);
9874       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9875           *CurDAG->getContext(), F.getCallingConv(), VT);
9876 
9877       // Even an apparent 'unused' swifterror argument needs to be returned. So
9878       // we do generate a copy for it that can be used on return from the
9879       // function.
9880       if (ArgHasUses || isSwiftErrorArg) {
9881         Optional<ISD::NodeType> AssertOp;
9882         if (Arg.hasAttribute(Attribute::SExt))
9883           AssertOp = ISD::AssertSext;
9884         else if (Arg.hasAttribute(Attribute::ZExt))
9885           AssertOp = ISD::AssertZext;
9886 
9887         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9888                                              PartVT, VT, nullptr,
9889                                              F.getCallingConv(), AssertOp));
9890       }
9891 
9892       i += NumParts;
9893     }
9894 
9895     // We don't need to do anything else for unused arguments.
9896     if (ArgValues.empty())
9897       continue;
9898 
9899     // Note down frame index.
9900     if (FrameIndexSDNode *FI =
9901         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9902       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9903 
9904     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9905                                      SDB->getCurSDLoc());
9906 
9907     SDB->setValue(&Arg, Res);
9908     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9909       // We want to associate the argument with the frame index, among
9910       // involved operands, that correspond to the lowest address. The
9911       // getCopyFromParts function, called earlier, is swapping the order of
9912       // the operands to BUILD_PAIR depending on endianness. The result of
9913       // that swapping is that the least significant bits of the argument will
9914       // be in the first operand of the BUILD_PAIR node, and the most
9915       // significant bits will be in the second operand.
9916       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9917       if (LoadSDNode *LNode =
9918           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9919         if (FrameIndexSDNode *FI =
9920             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9921           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9922     }
9923 
9924     // Analyses past this point are naive and don't expect an assertion.
9925     if (Res.getOpcode() == ISD::AssertZext)
9926       Res = Res.getOperand(0);
9927 
9928     // Update the SwiftErrorVRegDefMap.
9929     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9930       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9931       if (Register::isVirtualRegister(Reg))
9932         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9933                                    Reg);
9934     }
9935 
9936     // If this argument is live outside of the entry block, insert a copy from
9937     // wherever we got it to the vreg that other BB's will reference it as.
9938     if (Res.getOpcode() == ISD::CopyFromReg) {
9939       // If we can, though, try to skip creating an unnecessary vreg.
9940       // FIXME: This isn't very clean... it would be nice to make this more
9941       // general.
9942       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9943       if (Register::isVirtualRegister(Reg)) {
9944         FuncInfo->ValueMap[&Arg] = Reg;
9945         continue;
9946       }
9947     }
9948     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9949       FuncInfo->InitializeRegForValue(&Arg);
9950       SDB->CopyToExportRegsIfNeeded(&Arg);
9951     }
9952   }
9953 
9954   if (!Chains.empty()) {
9955     Chains.push_back(NewRoot);
9956     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9957   }
9958 
9959   DAG.setRoot(NewRoot);
9960 
9961   assert(i == InVals.size() && "Argument register count mismatch!");
9962 
9963   // If any argument copy elisions occurred and we have debug info, update the
9964   // stale frame indices used in the dbg.declare variable info table.
9965   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9966   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9967     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9968       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9969       if (I != ArgCopyElisionFrameIndexMap.end())
9970         VI.Slot = I->second;
9971     }
9972   }
9973 
9974   // Finally, if the target has anything special to do, allow it to do so.
9975   EmitFunctionEntryCode();
9976 }
9977 
9978 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9979 /// ensure constants are generated when needed.  Remember the virtual registers
9980 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9981 /// directly add them, because expansion might result in multiple MBB's for one
9982 /// BB.  As such, the start of the BB might correspond to a different MBB than
9983 /// the end.
9984 void
9985 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9986   const Instruction *TI = LLVMBB->getTerminator();
9987 
9988   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9989 
9990   // Check PHI nodes in successors that expect a value to be available from this
9991   // block.
9992   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9993     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9994     if (!isa<PHINode>(SuccBB->begin())) continue;
9995     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9996 
9997     // If this terminator has multiple identical successors (common for
9998     // switches), only handle each succ once.
9999     if (!SuccsHandled.insert(SuccMBB).second)
10000       continue;
10001 
10002     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10003 
10004     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10005     // nodes and Machine PHI nodes, but the incoming operands have not been
10006     // emitted yet.
10007     for (const PHINode &PN : SuccBB->phis()) {
10008       // Ignore dead phi's.
10009       if (PN.use_empty())
10010         continue;
10011 
10012       // Skip empty types
10013       if (PN.getType()->isEmptyTy())
10014         continue;
10015 
10016       unsigned Reg;
10017       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10018 
10019       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10020         unsigned &RegOut = ConstantsOut[C];
10021         if (RegOut == 0) {
10022           RegOut = FuncInfo.CreateRegs(C);
10023           CopyValueToVirtualRegister(C, RegOut);
10024         }
10025         Reg = RegOut;
10026       } else {
10027         DenseMap<const Value *, unsigned>::iterator I =
10028           FuncInfo.ValueMap.find(PHIOp);
10029         if (I != FuncInfo.ValueMap.end())
10030           Reg = I->second;
10031         else {
10032           assert(isa<AllocaInst>(PHIOp) &&
10033                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10034                  "Didn't codegen value into a register!??");
10035           Reg = FuncInfo.CreateRegs(PHIOp);
10036           CopyValueToVirtualRegister(PHIOp, Reg);
10037         }
10038       }
10039 
10040       // Remember that this register needs to added to the machine PHI node as
10041       // the input for this MBB.
10042       SmallVector<EVT, 4> ValueVTs;
10043       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10044       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10045       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10046         EVT VT = ValueVTs[vti];
10047         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10048         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10049           FuncInfo.PHINodesToUpdate.push_back(
10050               std::make_pair(&*MBBI++, Reg + i));
10051         Reg += NumRegisters;
10052       }
10053     }
10054   }
10055 
10056   ConstantsOut.clear();
10057 }
10058 
10059 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10060 /// is 0.
10061 MachineBasicBlock *
10062 SelectionDAGBuilder::StackProtectorDescriptor::
10063 AddSuccessorMBB(const BasicBlock *BB,
10064                 MachineBasicBlock *ParentMBB,
10065                 bool IsLikely,
10066                 MachineBasicBlock *SuccMBB) {
10067   // If SuccBB has not been created yet, create it.
10068   if (!SuccMBB) {
10069     MachineFunction *MF = ParentMBB->getParent();
10070     MachineFunction::iterator BBI(ParentMBB);
10071     SuccMBB = MF->CreateMachineBasicBlock(BB);
10072     MF->insert(++BBI, SuccMBB);
10073   }
10074   // Add it as a successor of ParentMBB.
10075   ParentMBB->addSuccessor(
10076       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10077   return SuccMBB;
10078 }
10079 
10080 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10081   MachineFunction::iterator I(MBB);
10082   if (++I == FuncInfo.MF->end())
10083     return nullptr;
10084   return &*I;
10085 }
10086 
10087 /// During lowering new call nodes can be created (such as memset, etc.).
10088 /// Those will become new roots of the current DAG, but complications arise
10089 /// when they are tail calls. In such cases, the call lowering will update
10090 /// the root, but the builder still needs to know that a tail call has been
10091 /// lowered in order to avoid generating an additional return.
10092 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10093   // If the node is null, we do have a tail call.
10094   if (MaybeTC.getNode() != nullptr)
10095     DAG.setRoot(MaybeTC);
10096   else
10097     HasTailCall = true;
10098 }
10099 
10100 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10101                                         MachineBasicBlock *SwitchMBB,
10102                                         MachineBasicBlock *DefaultMBB) {
10103   MachineFunction *CurMF = FuncInfo.MF;
10104   MachineBasicBlock *NextMBB = nullptr;
10105   MachineFunction::iterator BBI(W.MBB);
10106   if (++BBI != FuncInfo.MF->end())
10107     NextMBB = &*BBI;
10108 
10109   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10110 
10111   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10112 
10113   if (Size == 2 && W.MBB == SwitchMBB) {
10114     // If any two of the cases has the same destination, and if one value
10115     // is the same as the other, but has one bit unset that the other has set,
10116     // use bit manipulation to do two compares at once.  For example:
10117     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10118     // TODO: This could be extended to merge any 2 cases in switches with 3
10119     // cases.
10120     // TODO: Handle cases where W.CaseBB != SwitchBB.
10121     CaseCluster &Small = *W.FirstCluster;
10122     CaseCluster &Big = *W.LastCluster;
10123 
10124     if (Small.Low == Small.High && Big.Low == Big.High &&
10125         Small.MBB == Big.MBB) {
10126       const APInt &SmallValue = Small.Low->getValue();
10127       const APInt &BigValue = Big.Low->getValue();
10128 
10129       // Check that there is only one bit different.
10130       APInt CommonBit = BigValue ^ SmallValue;
10131       if (CommonBit.isPowerOf2()) {
10132         SDValue CondLHS = getValue(Cond);
10133         EVT VT = CondLHS.getValueType();
10134         SDLoc DL = getCurSDLoc();
10135 
10136         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10137                                  DAG.getConstant(CommonBit, DL, VT));
10138         SDValue Cond = DAG.getSetCC(
10139             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10140             ISD::SETEQ);
10141 
10142         // Update successor info.
10143         // Both Small and Big will jump to Small.BB, so we sum up the
10144         // probabilities.
10145         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10146         if (BPI)
10147           addSuccessorWithProb(
10148               SwitchMBB, DefaultMBB,
10149               // The default destination is the first successor in IR.
10150               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10151         else
10152           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10153 
10154         // Insert the true branch.
10155         SDValue BrCond =
10156             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10157                         DAG.getBasicBlock(Small.MBB));
10158         // Insert the false branch.
10159         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10160                              DAG.getBasicBlock(DefaultMBB));
10161 
10162         DAG.setRoot(BrCond);
10163         return;
10164       }
10165     }
10166   }
10167 
10168   if (TM.getOptLevel() != CodeGenOpt::None) {
10169     // Here, we order cases by probability so the most likely case will be
10170     // checked first. However, two clusters can have the same probability in
10171     // which case their relative ordering is non-deterministic. So we use Low
10172     // as a tie-breaker as clusters are guaranteed to never overlap.
10173     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10174                [](const CaseCluster &a, const CaseCluster &b) {
10175       return a.Prob != b.Prob ?
10176              a.Prob > b.Prob :
10177              a.Low->getValue().slt(b.Low->getValue());
10178     });
10179 
10180     // Rearrange the case blocks so that the last one falls through if possible
10181     // without changing the order of probabilities.
10182     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10183       --I;
10184       if (I->Prob > W.LastCluster->Prob)
10185         break;
10186       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10187         std::swap(*I, *W.LastCluster);
10188         break;
10189       }
10190     }
10191   }
10192 
10193   // Compute total probability.
10194   BranchProbability DefaultProb = W.DefaultProb;
10195   BranchProbability UnhandledProbs = DefaultProb;
10196   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10197     UnhandledProbs += I->Prob;
10198 
10199   MachineBasicBlock *CurMBB = W.MBB;
10200   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10201     bool FallthroughUnreachable = false;
10202     MachineBasicBlock *Fallthrough;
10203     if (I == W.LastCluster) {
10204       // For the last cluster, fall through to the default destination.
10205       Fallthrough = DefaultMBB;
10206       FallthroughUnreachable = isa<UnreachableInst>(
10207           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10208     } else {
10209       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10210       CurMF->insert(BBI, Fallthrough);
10211       // Put Cond in a virtual register to make it available from the new blocks.
10212       ExportFromCurrentBlock(Cond);
10213     }
10214     UnhandledProbs -= I->Prob;
10215 
10216     switch (I->Kind) {
10217       case CC_JumpTable: {
10218         // FIXME: Optimize away range check based on pivot comparisons.
10219         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10220         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10221 
10222         // The jump block hasn't been inserted yet; insert it here.
10223         MachineBasicBlock *JumpMBB = JT->MBB;
10224         CurMF->insert(BBI, JumpMBB);
10225 
10226         auto JumpProb = I->Prob;
10227         auto FallthroughProb = UnhandledProbs;
10228 
10229         // If the default statement is a target of the jump table, we evenly
10230         // distribute the default probability to successors of CurMBB. Also
10231         // update the probability on the edge from JumpMBB to Fallthrough.
10232         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10233                                               SE = JumpMBB->succ_end();
10234              SI != SE; ++SI) {
10235           if (*SI == DefaultMBB) {
10236             JumpProb += DefaultProb / 2;
10237             FallthroughProb -= DefaultProb / 2;
10238             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10239             JumpMBB->normalizeSuccProbs();
10240             break;
10241           }
10242         }
10243 
10244         if (FallthroughUnreachable) {
10245           // Skip the range check if the fallthrough block is unreachable.
10246           JTH->OmitRangeCheck = true;
10247         }
10248 
10249         if (!JTH->OmitRangeCheck)
10250           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10251         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10252         CurMBB->normalizeSuccProbs();
10253 
10254         // The jump table header will be inserted in our current block, do the
10255         // range check, and fall through to our fallthrough block.
10256         JTH->HeaderBB = CurMBB;
10257         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10258 
10259         // If we're in the right place, emit the jump table header right now.
10260         if (CurMBB == SwitchMBB) {
10261           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10262           JTH->Emitted = true;
10263         }
10264         break;
10265       }
10266       case CC_BitTests: {
10267         // FIXME: Optimize away range check based on pivot comparisons.
10268         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10269 
10270         // The bit test blocks haven't been inserted yet; insert them here.
10271         for (BitTestCase &BTC : BTB->Cases)
10272           CurMF->insert(BBI, BTC.ThisBB);
10273 
10274         // Fill in fields of the BitTestBlock.
10275         BTB->Parent = CurMBB;
10276         BTB->Default = Fallthrough;
10277 
10278         BTB->DefaultProb = UnhandledProbs;
10279         // If the cases in bit test don't form a contiguous range, we evenly
10280         // distribute the probability on the edge to Fallthrough to two
10281         // successors of CurMBB.
10282         if (!BTB->ContiguousRange) {
10283           BTB->Prob += DefaultProb / 2;
10284           BTB->DefaultProb -= DefaultProb / 2;
10285         }
10286 
10287         if (FallthroughUnreachable) {
10288           // Skip the range check if the fallthrough block is unreachable.
10289           BTB->OmitRangeCheck = true;
10290         }
10291 
10292         // If we're in the right place, emit the bit test header right now.
10293         if (CurMBB == SwitchMBB) {
10294           visitBitTestHeader(*BTB, SwitchMBB);
10295           BTB->Emitted = true;
10296         }
10297         break;
10298       }
10299       case CC_Range: {
10300         const Value *RHS, *LHS, *MHS;
10301         ISD::CondCode CC;
10302         if (I->Low == I->High) {
10303           // Check Cond == I->Low.
10304           CC = ISD::SETEQ;
10305           LHS = Cond;
10306           RHS=I->Low;
10307           MHS = nullptr;
10308         } else {
10309           // Check I->Low <= Cond <= I->High.
10310           CC = ISD::SETLE;
10311           LHS = I->Low;
10312           MHS = Cond;
10313           RHS = I->High;
10314         }
10315 
10316         // If Fallthrough is unreachable, fold away the comparison.
10317         if (FallthroughUnreachable)
10318           CC = ISD::SETTRUE;
10319 
10320         // The false probability is the sum of all unhandled cases.
10321         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10322                      getCurSDLoc(), I->Prob, UnhandledProbs);
10323 
10324         if (CurMBB == SwitchMBB)
10325           visitSwitchCase(CB, SwitchMBB);
10326         else
10327           SL->SwitchCases.push_back(CB);
10328 
10329         break;
10330       }
10331     }
10332     CurMBB = Fallthrough;
10333   }
10334 }
10335 
10336 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10337                                               CaseClusterIt First,
10338                                               CaseClusterIt Last) {
10339   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10340     if (X.Prob != CC.Prob)
10341       return X.Prob > CC.Prob;
10342 
10343     // Ties are broken by comparing the case value.
10344     return X.Low->getValue().slt(CC.Low->getValue());
10345   });
10346 }
10347 
10348 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10349                                         const SwitchWorkListItem &W,
10350                                         Value *Cond,
10351                                         MachineBasicBlock *SwitchMBB) {
10352   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10353          "Clusters not sorted?");
10354 
10355   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10356 
10357   // Balance the tree based on branch probabilities to create a near-optimal (in
10358   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10359   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10360   CaseClusterIt LastLeft = W.FirstCluster;
10361   CaseClusterIt FirstRight = W.LastCluster;
10362   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10363   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10364 
10365   // Move LastLeft and FirstRight towards each other from opposite directions to
10366   // find a partitioning of the clusters which balances the probability on both
10367   // sides. If LeftProb and RightProb are equal, alternate which side is
10368   // taken to ensure 0-probability nodes are distributed evenly.
10369   unsigned I = 0;
10370   while (LastLeft + 1 < FirstRight) {
10371     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10372       LeftProb += (++LastLeft)->Prob;
10373     else
10374       RightProb += (--FirstRight)->Prob;
10375     I++;
10376   }
10377 
10378   while (true) {
10379     // Our binary search tree differs from a typical BST in that ours can have up
10380     // to three values in each leaf. The pivot selection above doesn't take that
10381     // into account, which means the tree might require more nodes and be less
10382     // efficient. We compensate for this here.
10383 
10384     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10385     unsigned NumRight = W.LastCluster - FirstRight + 1;
10386 
10387     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10388       // If one side has less than 3 clusters, and the other has more than 3,
10389       // consider taking a cluster from the other side.
10390 
10391       if (NumLeft < NumRight) {
10392         // Consider moving the first cluster on the right to the left side.
10393         CaseCluster &CC = *FirstRight;
10394         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10395         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10396         if (LeftSideRank <= RightSideRank) {
10397           // Moving the cluster to the left does not demote it.
10398           ++LastLeft;
10399           ++FirstRight;
10400           continue;
10401         }
10402       } else {
10403         assert(NumRight < NumLeft);
10404         // Consider moving the last element on the left to the right side.
10405         CaseCluster &CC = *LastLeft;
10406         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10407         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10408         if (RightSideRank <= LeftSideRank) {
10409           // Moving the cluster to the right does not demot it.
10410           --LastLeft;
10411           --FirstRight;
10412           continue;
10413         }
10414       }
10415     }
10416     break;
10417   }
10418 
10419   assert(LastLeft + 1 == FirstRight);
10420   assert(LastLeft >= W.FirstCluster);
10421   assert(FirstRight <= W.LastCluster);
10422 
10423   // Use the first element on the right as pivot since we will make less-than
10424   // comparisons against it.
10425   CaseClusterIt PivotCluster = FirstRight;
10426   assert(PivotCluster > W.FirstCluster);
10427   assert(PivotCluster <= W.LastCluster);
10428 
10429   CaseClusterIt FirstLeft = W.FirstCluster;
10430   CaseClusterIt LastRight = W.LastCluster;
10431 
10432   const ConstantInt *Pivot = PivotCluster->Low;
10433 
10434   // New blocks will be inserted immediately after the current one.
10435   MachineFunction::iterator BBI(W.MBB);
10436   ++BBI;
10437 
10438   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10439   // we can branch to its destination directly if it's squeezed exactly in
10440   // between the known lower bound and Pivot - 1.
10441   MachineBasicBlock *LeftMBB;
10442   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10443       FirstLeft->Low == W.GE &&
10444       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10445     LeftMBB = FirstLeft->MBB;
10446   } else {
10447     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10448     FuncInfo.MF->insert(BBI, LeftMBB);
10449     WorkList.push_back(
10450         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10451     // Put Cond in a virtual register to make it available from the new blocks.
10452     ExportFromCurrentBlock(Cond);
10453   }
10454 
10455   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10456   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10457   // directly if RHS.High equals the current upper bound.
10458   MachineBasicBlock *RightMBB;
10459   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10460       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10461     RightMBB = FirstRight->MBB;
10462   } else {
10463     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10464     FuncInfo.MF->insert(BBI, RightMBB);
10465     WorkList.push_back(
10466         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10467     // Put Cond in a virtual register to make it available from the new blocks.
10468     ExportFromCurrentBlock(Cond);
10469   }
10470 
10471   // Create the CaseBlock record that will be used to lower the branch.
10472   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10473                getCurSDLoc(), LeftProb, RightProb);
10474 
10475   if (W.MBB == SwitchMBB)
10476     visitSwitchCase(CB, SwitchMBB);
10477   else
10478     SL->SwitchCases.push_back(CB);
10479 }
10480 
10481 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10482 // from the swith statement.
10483 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10484                                             BranchProbability PeeledCaseProb) {
10485   if (PeeledCaseProb == BranchProbability::getOne())
10486     return BranchProbability::getZero();
10487   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10488 
10489   uint32_t Numerator = CaseProb.getNumerator();
10490   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10491   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10492 }
10493 
10494 // Try to peel the top probability case if it exceeds the threshold.
10495 // Return current MachineBasicBlock for the switch statement if the peeling
10496 // does not occur.
10497 // If the peeling is performed, return the newly created MachineBasicBlock
10498 // for the peeled switch statement. Also update Clusters to remove the peeled
10499 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10500 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10501     const SwitchInst &SI, CaseClusterVector &Clusters,
10502     BranchProbability &PeeledCaseProb) {
10503   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10504   // Don't perform if there is only one cluster or optimizing for size.
10505   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10506       TM.getOptLevel() == CodeGenOpt::None ||
10507       SwitchMBB->getParent()->getFunction().hasMinSize())
10508     return SwitchMBB;
10509 
10510   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10511   unsigned PeeledCaseIndex = 0;
10512   bool SwitchPeeled = false;
10513   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10514     CaseCluster &CC = Clusters[Index];
10515     if (CC.Prob < TopCaseProb)
10516       continue;
10517     TopCaseProb = CC.Prob;
10518     PeeledCaseIndex = Index;
10519     SwitchPeeled = true;
10520   }
10521   if (!SwitchPeeled)
10522     return SwitchMBB;
10523 
10524   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10525                     << TopCaseProb << "\n");
10526 
10527   // Record the MBB for the peeled switch statement.
10528   MachineFunction::iterator BBI(SwitchMBB);
10529   ++BBI;
10530   MachineBasicBlock *PeeledSwitchMBB =
10531       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10532   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10533 
10534   ExportFromCurrentBlock(SI.getCondition());
10535   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10536   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10537                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10538   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10539 
10540   Clusters.erase(PeeledCaseIt);
10541   for (CaseCluster &CC : Clusters) {
10542     LLVM_DEBUG(
10543         dbgs() << "Scale the probablity for one cluster, before scaling: "
10544                << CC.Prob << "\n");
10545     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10546     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10547   }
10548   PeeledCaseProb = TopCaseProb;
10549   return PeeledSwitchMBB;
10550 }
10551 
10552 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10553   // Extract cases from the switch.
10554   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10555   CaseClusterVector Clusters;
10556   Clusters.reserve(SI.getNumCases());
10557   for (auto I : SI.cases()) {
10558     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10559     const ConstantInt *CaseVal = I.getCaseValue();
10560     BranchProbability Prob =
10561         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10562             : BranchProbability(1, SI.getNumCases() + 1);
10563     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10564   }
10565 
10566   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10567 
10568   // Cluster adjacent cases with the same destination. We do this at all
10569   // optimization levels because it's cheap to do and will make codegen faster
10570   // if there are many clusters.
10571   sortAndRangeify(Clusters);
10572 
10573   // The branch probablity of the peeled case.
10574   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10575   MachineBasicBlock *PeeledSwitchMBB =
10576       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10577 
10578   // If there is only the default destination, jump there directly.
10579   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10580   if (Clusters.empty()) {
10581     assert(PeeledSwitchMBB == SwitchMBB);
10582     SwitchMBB->addSuccessor(DefaultMBB);
10583     if (DefaultMBB != NextBlock(SwitchMBB)) {
10584       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10585                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10586     }
10587     return;
10588   }
10589 
10590   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10591   SL->findBitTestClusters(Clusters, &SI);
10592 
10593   LLVM_DEBUG({
10594     dbgs() << "Case clusters: ";
10595     for (const CaseCluster &C : Clusters) {
10596       if (C.Kind == CC_JumpTable)
10597         dbgs() << "JT:";
10598       if (C.Kind == CC_BitTests)
10599         dbgs() << "BT:";
10600 
10601       C.Low->getValue().print(dbgs(), true);
10602       if (C.Low != C.High) {
10603         dbgs() << '-';
10604         C.High->getValue().print(dbgs(), true);
10605       }
10606       dbgs() << ' ';
10607     }
10608     dbgs() << '\n';
10609   });
10610 
10611   assert(!Clusters.empty());
10612   SwitchWorkList WorkList;
10613   CaseClusterIt First = Clusters.begin();
10614   CaseClusterIt Last = Clusters.end() - 1;
10615   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10616   // Scale the branchprobability for DefaultMBB if the peel occurs and
10617   // DefaultMBB is not replaced.
10618   if (PeeledCaseProb != BranchProbability::getZero() &&
10619       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10620     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10621   WorkList.push_back(
10622       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10623 
10624   while (!WorkList.empty()) {
10625     SwitchWorkListItem W = WorkList.back();
10626     WorkList.pop_back();
10627     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10628 
10629     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10630         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10631       // For optimized builds, lower large range as a balanced binary tree.
10632       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10633       continue;
10634     }
10635 
10636     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10637   }
10638 }
10639 
10640 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10641   SDValue N = getValue(I.getOperand(0));
10642   setValue(&I, N);
10643 }
10644