1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/Loads.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/IntrinsicsAArch64.h" 78 #include "llvm/IR/IntrinsicsWebAssembly.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Statepoint.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/Support/AtomicOrdering.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <cstddef> 101 #include <iterator> 102 #include <limits> 103 #include <optional> 104 #include <tuple> 105 106 using namespace llvm; 107 using namespace PatternMatch; 108 using namespace SwitchCG; 109 110 #define DEBUG_TYPE "isel" 111 112 /// LimitFloatPrecision - Generate low-precision inline sequences for 113 /// some float libcalls (6, 8 or 12 bits). 114 static unsigned LimitFloatPrecision; 115 116 static cl::opt<bool> 117 InsertAssertAlign("insert-assert-align", cl::init(true), 118 cl::desc("Insert the experimental `assertalign` node."), 119 cl::ReallyHidden); 120 121 static cl::opt<unsigned, true> 122 LimitFPPrecision("limit-float-precision", 123 cl::desc("Generate low-precision inline sequences " 124 "for some float libcalls"), 125 cl::location(LimitFloatPrecision), cl::Hidden, 126 cl::init(0)); 127 128 static cl::opt<unsigned> SwitchPeelThreshold( 129 "switch-peel-threshold", cl::Hidden, cl::init(66), 130 cl::desc("Set the case probability threshold for peeling the case from a " 131 "switch statement. A value greater than 100 will void this " 132 "optimization")); 133 134 // Limit the width of DAG chains. This is important in general to prevent 135 // DAG-based analysis from blowing up. For example, alias analysis and 136 // load clustering may not complete in reasonable time. It is difficult to 137 // recognize and avoid this situation within each individual analysis, and 138 // future analyses are likely to have the same behavior. Limiting DAG width is 139 // the safe approach and will be especially important with global DAGs. 140 // 141 // MaxParallelChains default is arbitrarily high to avoid affecting 142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 143 // sequence over this should have been converted to llvm.memcpy by the 144 // frontend. It is easy to induce this behavior with .ll code such as: 145 // %buffer = alloca [4096 x i8] 146 // %data = load [4096 x i8]* %argPtr 147 // store [4096 x i8] %data, [4096 x i8]* %buffer 148 static const unsigned MaxParallelChains = 64; 149 150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 151 const SDValue *Parts, unsigned NumParts, 152 MVT PartVT, EVT ValueVT, const Value *V, 153 std::optional<CallingConv::ID> CC); 154 155 /// getCopyFromParts - Create a value that contains the specified legal parts 156 /// combined into the value they represent. If the parts combine to a type 157 /// larger than ValueVT then AssertOp can be used to specify whether the extra 158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 159 /// (ISD::AssertSext). 160 static SDValue 161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 162 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 163 std::optional<CallingConv::ID> CC = std::nullopt, 164 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 165 // Let the target assemble the parts if it wants to 166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 167 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 168 PartVT, ValueVT, CC)) 169 return Val; 170 171 if (ValueVT.isVector()) 172 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 173 CC); 174 175 assert(NumParts > 0 && "No parts to assemble!"); 176 SDValue Val = Parts[0]; 177 178 if (NumParts > 1) { 179 // Assemble the value from multiple parts. 180 if (ValueVT.isInteger()) { 181 unsigned PartBits = PartVT.getSizeInBits(); 182 unsigned ValueBits = ValueVT.getSizeInBits(); 183 184 // Assemble the power of 2 part. 185 unsigned RoundParts = llvm::bit_floor(NumParts); 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 std::optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the parts vector has more elements than the value vector, then we 402 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 403 // Extract the elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 421 // Promoted vector extract 422 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 423 } 424 425 // Trivial bitcast if the types are the same size and the destination 426 // vector type is legal. 427 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 428 TLI.isTypeLegal(ValueVT)) 429 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 430 431 if (ValueVT.getVectorNumElements() != 1) { 432 // Certain ABIs require that vectors are passed as integers. For vectors 433 // are the same size, this is an obvious bitcast. 434 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 } else if (ValueVT.bitsLT(PartEVT)) { 437 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 438 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 439 // Drop the extra bits. 440 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 441 return DAG.getBitcast(ValueVT, Val); 442 } 443 444 diagnosePossiblyInvalidConstraint( 445 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 446 return DAG.getUNDEF(ValueVT); 447 } 448 449 // Handle cases such as i8 -> <1 x i1> 450 EVT ValueSVT = ValueVT.getVectorElementType(); 451 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 452 unsigned ValueSize = ValueSVT.getSizeInBits(); 453 if (ValueSize == PartEVT.getSizeInBits()) { 454 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 455 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 456 // It's possible a scalar floating point type gets softened to integer and 457 // then promoted to a larger integer. If PartEVT is the larger integer 458 // we need to truncate it and then bitcast to the FP type. 459 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 Val = DAG.getBitcast(ValueSVT, Val); 463 } else { 464 Val = ValueVT.isFloatingPoint() 465 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 } 468 } 469 470 return DAG.getBuildVector(ValueVT, DL, Val); 471 } 472 473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V, 476 std::optional<CallingConv::ID> CallConv); 477 478 /// getCopyToParts - Create a series of nodes that contain the specified value 479 /// split into legal parts. If the parts contain more bits than Val, then, for 480 /// integers, ExtendKind can be used to specify how to generate the extra bits. 481 static void 482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 483 unsigned NumParts, MVT PartVT, const Value *V, 484 std::optional<CallingConv::ID> CallConv = std::nullopt, 485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 486 // Let the target split the parts if it wants to 487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 488 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 489 CallConv)) 490 return; 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = llvm::bit_floor(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 575 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 619 const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 ElementCount PartNumElts = PartVT.getVectorElementCount(); 625 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 626 627 // We only support widening vectors with equivalent element types and 628 // fixed/scalable properties. If a target needs to widen a fixed-length type 629 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 630 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 631 PartNumElts.isScalable() != ValueNumElts.isScalable() || 632 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 633 return SDValue(); 634 635 // Widening a scalable vector to another scalable vector is done by inserting 636 // the vector into a larger undef one. 637 if (PartNumElts.isScalable()) 638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 639 Val, DAG.getVectorIdxConstant(0, DL)); 640 641 EVT ElementVT = PartVT.getVectorElementType(); 642 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 643 // undef elements. 644 SmallVector<SDValue, 16> Ops; 645 DAG.ExtractVectorElements(Val, Ops); 646 SDValue EltUndef = DAG.getUNDEF(ElementVT); 647 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 /// getCopyToPartsVector - Create a series of nodes that contain the specified 654 /// value split into legal parts. 655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 656 SDValue Val, SDValue *Parts, unsigned NumParts, 657 MVT PartVT, const Value *V, 658 std::optional<CallingConv::ID> CallConv) { 659 EVT ValueVT = Val.getValueType(); 660 assert(ValueVT.isVector() && "Not a vector"); 661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 662 const bool IsABIRegCopy = CallConv.has_value(); 663 664 if (NumParts == 1) { 665 EVT PartEVT = PartVT; 666 if (PartEVT == ValueVT) { 667 // Nothing to do. 668 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 669 // Bitconvert vector->vector case. 670 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 671 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 672 Val = Widened; 673 } else if (PartVT.isVector() && 674 PartEVT.getVectorElementType().bitsGE( 675 ValueVT.getVectorElementType()) && 676 PartEVT.getVectorElementCount() == 677 ValueVT.getVectorElementCount()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else if (PartEVT.isVector() && 682 PartEVT.getVectorElementType() != 683 ValueVT.getVectorElementType() && 684 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 685 TargetLowering::TypeWidenVector) { 686 // Combination of widening and promotion. 687 EVT WidenVT = 688 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 689 PartVT.getVectorElementCount()); 690 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 691 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 692 } else { 693 // Don't extract an integer from a float vector. This can happen if the 694 // FP type gets softened to integer and then promoted. The promotion 695 // prevents it from being picked up by the earlier bitcast case. 696 if (ValueVT.getVectorElementCount().isScalar() && 697 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 698 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 699 DAG.getVectorIdxConstant(0, DL)); 700 } else { 701 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 702 assert(PartVT.getFixedSizeInBits() > ValueSize && 703 "lossy conversion of vector to scalar type"); 704 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 705 Val = DAG.getBitcast(IntermediateType, Val); 706 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 707 } 708 } 709 710 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 711 Parts[0] = Val; 712 return; 713 } 714 715 // Handle a multi-element vector. 716 EVT IntermediateVT; 717 MVT RegisterVT; 718 unsigned NumIntermediates; 719 unsigned NumRegs; 720 if (IsABIRegCopy) { 721 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 722 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 723 RegisterVT); 724 } else { 725 NumRegs = 726 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 727 NumIntermediates, RegisterVT); 728 } 729 730 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 731 NumParts = NumRegs; // Silence a compiler warning. 732 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 733 734 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 735 "Mixing scalable and fixed vectors when copying in parts"); 736 737 std::optional<ElementCount> DestEltCnt; 738 739 if (IntermediateVT.isVector()) 740 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 741 else 742 DestEltCnt = ElementCount::getFixed(NumIntermediates); 743 744 EVT BuiltVectorTy = EVT::getVectorVT( 745 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 746 747 if (ValueVT == BuiltVectorTy) { 748 // Nothing to do. 749 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 750 // Bitconvert vector->vector case. 751 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 752 } else { 753 if (BuiltVectorTy.getVectorElementType().bitsGT( 754 ValueVT.getVectorElementType())) { 755 // Integer promotion. 756 ValueVT = EVT::getVectorVT(*DAG.getContext(), 757 BuiltVectorTy.getVectorElementType(), 758 ValueVT.getVectorElementCount()); 759 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 760 } 761 762 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 763 Val = Widened; 764 } 765 } 766 767 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 768 769 // Split the vector into intermediate operands. 770 SmallVector<SDValue, 8> Ops(NumIntermediates); 771 for (unsigned i = 0; i != NumIntermediates; ++i) { 772 if (IntermediateVT.isVector()) { 773 // This does something sensible for scalable vectors - see the 774 // definition of EXTRACT_SUBVECTOR for further details. 775 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 776 Ops[i] = 777 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 778 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 779 } else { 780 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 781 DAG.getVectorIdxConstant(i, DL)); 782 } 783 } 784 785 // Split the intermediate operands into legal parts. 786 if (NumParts == NumIntermediates) { 787 // If the register was not expanded, promote or copy the value, 788 // as appropriate. 789 for (unsigned i = 0; i != NumParts; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 791 } else if (NumParts > 0) { 792 // If the intermediate type was expanded, split each the value into 793 // legal parts. 794 assert(NumIntermediates != 0 && "division by zero"); 795 assert(NumParts % NumIntermediates == 0 && 796 "Must expand into a divisible number of parts!"); 797 unsigned Factor = NumParts / NumIntermediates; 798 for (unsigned i = 0; i != NumIntermediates; ++i) 799 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 800 CallConv); 801 } 802 } 803 804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 805 EVT valuevt, std::optional<CallingConv::ID> CC) 806 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 807 RegCount(1, regs.size()), CallConv(CC) {} 808 809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 810 const DataLayout &DL, unsigned Reg, Type *Ty, 811 std::optional<CallingConv::ID> CC) { 812 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 813 814 CallConv = CC; 815 816 for (EVT ValueVT : ValueVTs) { 817 unsigned NumRegs = 818 isABIMangled() 819 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 820 : TLI.getNumRegisters(Context, ValueVT); 821 MVT RegisterVT = 822 isABIMangled() 823 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 824 : TLI.getRegisterType(Context, ValueVT); 825 for (unsigned i = 0; i != NumRegs; ++i) 826 Regs.push_back(Reg + i); 827 RegVTs.push_back(RegisterVT); 828 RegCount.push_back(NumRegs); 829 Reg += NumRegs; 830 } 831 } 832 833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 834 FunctionLoweringInfo &FuncInfo, 835 const SDLoc &dl, SDValue &Chain, 836 SDValue *Flag, const Value *V) const { 837 // A Value with type {} or [0 x %t] needs no registers. 838 if (ValueVTs.empty()) 839 return SDValue(); 840 841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 842 843 // Assemble the legal parts into the final values. 844 SmallVector<SDValue, 4> Values(ValueVTs.size()); 845 SmallVector<SDValue, 8> Parts; 846 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 // Copy the legal parts from the registers. 848 EVT ValueVT = ValueVTs[Value]; 849 unsigned NumRegs = RegCount[Value]; 850 MVT RegisterVT = isABIMangled() 851 ? TLI.getRegisterTypeForCallingConv( 852 *DAG.getContext(), *CallConv, RegVTs[Value]) 853 : RegVTs[Value]; 854 855 Parts.resize(NumRegs); 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 SDValue P; 858 if (!Flag) { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 860 } else { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 862 *Flag = P.getValue(2); 863 } 864 865 Chain = P.getValue(1); 866 Parts[i] = P; 867 868 // If the source register was virtual and if we know something about it, 869 // add an assert node. 870 if (!Register::isVirtualRegister(Regs[Part + i]) || 871 !RegisterVT.isInteger()) 872 continue; 873 874 const FunctionLoweringInfo::LiveOutInfo *LOI = 875 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 876 if (!LOI) 877 continue; 878 879 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 880 unsigned NumSignBits = LOI->NumSignBits; 881 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 882 883 if (NumZeroBits == RegSize) { 884 // The current value is a zero. 885 // Explicitly express that as it would be easier for 886 // optimizations to kick in. 887 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 888 continue; 889 } 890 891 // FIXME: We capture more information than the dag can represent. For 892 // now, just use the tightest assertzext/assertsext possible. 893 bool isSExt; 894 EVT FromVT(MVT::Other); 895 if (NumZeroBits) { 896 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 897 isSExt = false; 898 } else if (NumSignBits > 1) { 899 FromVT = 900 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 901 isSExt = true; 902 } else { 903 continue; 904 } 905 // Add an assertion node. 906 assert(FromVT != MVT::Other); 907 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 908 RegisterVT, P, DAG.getValueType(FromVT)); 909 } 910 911 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 912 RegisterVT, ValueVT, V, CallConv); 913 Part += NumRegs; 914 Parts.clear(); 915 } 916 917 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 918 } 919 920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 921 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 922 const Value *V, 923 ISD::NodeType PreferredExtendType) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 ISD::NodeType ExtendKind = PreferredExtendType; 926 927 // Get the list of the values's legal parts. 928 unsigned NumRegs = Regs.size(); 929 SmallVector<SDValue, 8> Parts(NumRegs); 930 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 931 unsigned NumParts = RegCount[Value]; 932 933 MVT RegisterVT = isABIMangled() 934 ? TLI.getRegisterTypeForCallingConv( 935 *DAG.getContext(), *CallConv, RegVTs[Value]) 936 : RegVTs[Value]; 937 938 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 939 ExtendKind = ISD::ZERO_EXTEND; 940 941 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 942 NumParts, RegisterVT, V, CallConv, ExtendKind); 943 Part += NumParts; 944 } 945 946 // Copy the parts into the registers. 947 SmallVector<SDValue, 8> Chains(NumRegs); 948 for (unsigned i = 0; i != NumRegs; ++i) { 949 SDValue Part; 950 if (!Flag) { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 952 } else { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 954 *Flag = Part.getValue(1); 955 } 956 957 Chains[i] = Part.getValue(0); 958 } 959 960 if (NumRegs == 1 || Flag) 961 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 962 // flagged to it. That is the CopyToReg nodes and the user are considered 963 // a single scheduling unit. If we create a TokenFactor and return it as 964 // chain, then the TokenFactor is both a predecessor (operand) of the 965 // user as well as a successor (the TF operands are flagged to the user). 966 // c1, f1 = CopyToReg 967 // c2, f2 = CopyToReg 968 // c3 = TokenFactor c1, c2 969 // ... 970 // = op c3, ..., f2 971 Chain = Chains[NumRegs-1]; 972 else 973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 974 } 975 976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 977 unsigned MatchingIdx, const SDLoc &dl, 978 SelectionDAG &DAG, 979 std::vector<SDValue> &Ops) const { 980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 981 982 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 983 if (HasMatching) 984 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 985 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 986 // Put the register class of the virtual registers in the flag word. That 987 // way, later passes can recompute register class constraints for inline 988 // assembly as well as normal instructions. 989 // Don't do this for tied operands that can use the regclass information 990 // from the def. 991 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 992 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 993 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 994 } 995 996 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 997 Ops.push_back(Res); 998 999 if (Code == InlineAsm::Kind_Clobber) { 1000 // Clobbers should always have a 1:1 mapping with registers, and may 1001 // reference registers that have illegal (e.g. vector) types. Hence, we 1002 // shouldn't try to apply any sort of splitting logic to them. 1003 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1004 "No 1:1 mapping from clobbers to regs?"); 1005 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1006 (void)SP; 1007 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1008 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1009 assert( 1010 (Regs[I] != SP || 1011 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1012 "If we clobbered the stack pointer, MFI should know about it."); 1013 } 1014 return; 1015 } 1016 1017 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1018 MVT RegisterVT = RegVTs[Value]; 1019 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1020 RegisterVT); 1021 for (unsigned i = 0; i != NumRegs; ++i) { 1022 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1023 unsigned TheReg = Regs[Reg++]; 1024 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1025 } 1026 } 1027 } 1028 1029 SmallVector<std::pair<unsigned, TypeSize>, 4> 1030 RegsForValue::getRegsAndSizes() const { 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1032 unsigned I = 0; 1033 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1034 unsigned RegCount = std::get<0>(CountAndVT); 1035 MVT RegisterVT = std::get<1>(CountAndVT); 1036 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1037 for (unsigned E = I + RegCount; I != E; ++I) 1038 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1039 } 1040 return OutVec; 1041 } 1042 1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1044 AssumptionCache *ac, 1045 const TargetLibraryInfo *li) { 1046 AA = aa; 1047 AC = ac; 1048 GFI = gfi; 1049 LibInfo = li; 1050 Context = DAG.getContext(); 1051 LPadToCallSiteMap.clear(); 1052 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1053 } 1054 1055 void SelectionDAGBuilder::clear() { 1056 NodeMap.clear(); 1057 UnusedArgNodeMap.clear(); 1058 PendingLoads.clear(); 1059 PendingExports.clear(); 1060 PendingConstrainedFP.clear(); 1061 PendingConstrainedFPStrict.clear(); 1062 CurInst = nullptr; 1063 HasTailCall = false; 1064 SDNodeOrder = LowestSDNodeOrder; 1065 StatepointLowering.clear(); 1066 } 1067 1068 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1069 DanglingDebugInfoMap.clear(); 1070 } 1071 1072 // Update DAG root to include dependencies on Pending chains. 1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1074 SDValue Root = DAG.getRoot(); 1075 1076 if (Pending.empty()) 1077 return Root; 1078 1079 // Add current root to PendingChains, unless we already indirectly 1080 // depend on it. 1081 if (Root.getOpcode() != ISD::EntryToken) { 1082 unsigned i = 0, e = Pending.size(); 1083 for (; i != e; ++i) { 1084 assert(Pending[i].getNode()->getNumOperands() > 1); 1085 if (Pending[i].getNode()->getOperand(0) == Root) 1086 break; // Don't add the root if we already indirectly depend on it. 1087 } 1088 1089 if (i == e) 1090 Pending.push_back(Root); 1091 } 1092 1093 if (Pending.size() == 1) 1094 Root = Pending[0]; 1095 else 1096 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1097 1098 DAG.setRoot(Root); 1099 Pending.clear(); 1100 return Root; 1101 } 1102 1103 SDValue SelectionDAGBuilder::getMemoryRoot() { 1104 return updateRoot(PendingLoads); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getRoot() { 1108 // Chain up all pending constrained intrinsics together with all 1109 // pending loads, by simply appending them to PendingLoads and 1110 // then calling getMemoryRoot(). 1111 PendingLoads.reserve(PendingLoads.size() + 1112 PendingConstrainedFP.size() + 1113 PendingConstrainedFPStrict.size()); 1114 PendingLoads.append(PendingConstrainedFP.begin(), 1115 PendingConstrainedFP.end()); 1116 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFP.clear(); 1119 PendingConstrainedFPStrict.clear(); 1120 return getMemoryRoot(); 1121 } 1122 1123 SDValue SelectionDAGBuilder::getControlRoot() { 1124 // We need to emit pending fpexcept.strict constrained intrinsics, 1125 // so append them to the PendingExports list. 1126 PendingExports.append(PendingConstrainedFPStrict.begin(), 1127 PendingConstrainedFPStrict.end()); 1128 PendingConstrainedFPStrict.clear(); 1129 return updateRoot(PendingExports); 1130 } 1131 1132 void SelectionDAGBuilder::visit(const Instruction &I) { 1133 // Set up outgoing PHI node register values before emitting the terminator. 1134 if (I.isTerminator()) { 1135 HandlePHINodesInSuccessorBlocks(I.getParent()); 1136 } 1137 1138 // Add SDDbgValue nodes for any var locs here. Do so before updating 1139 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1140 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1141 // Add SDDbgValue nodes for any var locs here. Do so before updating 1142 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1143 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1144 It != End; ++It) { 1145 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1146 dropDanglingDebugInfo(Var, It->Expr); 1147 if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder, 1148 /*IsVariadic=*/false)) 1149 addDanglingDebugInfo(It, SDNodeOrder); 1150 } 1151 } 1152 1153 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1154 if (!isa<DbgInfoIntrinsic>(I)) 1155 ++SDNodeOrder; 1156 1157 CurInst = &I; 1158 1159 // Set inserted listener only if required. 1160 bool NodeInserted = false; 1161 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1162 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1163 if (PCSectionsMD) { 1164 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1165 DAG, [&](SDNode *) { NodeInserted = true; }); 1166 } 1167 1168 visit(I.getOpcode(), I); 1169 1170 if (!I.isTerminator() && !HasTailCall && 1171 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1172 CopyToExportRegsIfNeeded(&I); 1173 1174 // Handle metadata. 1175 if (PCSectionsMD) { 1176 auto It = NodeMap.find(&I); 1177 if (It != NodeMap.end()) { 1178 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1179 } else if (NodeInserted) { 1180 // This should not happen; if it does, don't let it go unnoticed so we can 1181 // fix it. Relevant visit*() function is probably missing a setValue(). 1182 errs() << "warning: loosing !pcsections metadata [" 1183 << I.getModule()->getName() << "]\n"; 1184 LLVM_DEBUG(I.dump()); 1185 assert(false); 1186 } 1187 } 1188 1189 CurInst = nullptr; 1190 } 1191 1192 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1193 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1194 } 1195 1196 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1197 // Note: this doesn't use InstVisitor, because it has to work with 1198 // ConstantExpr's in addition to instructions. 1199 switch (Opcode) { 1200 default: llvm_unreachable("Unknown instruction type encountered!"); 1201 // Build the switch statement using the Instruction.def file. 1202 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1203 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1204 #include "llvm/IR/Instruction.def" 1205 } 1206 } 1207 1208 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1209 unsigned Order) { 1210 DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order); 1211 } 1212 1213 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1214 unsigned Order) { 1215 // We treat variadic dbg_values differently at this stage. 1216 if (DI->hasArgList()) { 1217 // For variadic dbg_values we will now insert an undef. 1218 // FIXME: We can potentially recover these! 1219 SmallVector<SDDbgOperand, 2> Locs; 1220 for (const Value *V : DI->getValues()) { 1221 auto Undef = UndefValue::get(V->getType()); 1222 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1223 } 1224 SDDbgValue *SDV = DAG.getDbgValueList( 1225 DI->getVariable(), DI->getExpression(), Locs, {}, 1226 /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true); 1227 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1228 } else { 1229 // TODO: Dangling debug info will eventually either be resolved or produce 1230 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1231 // between the original dbg.value location and its resolved DBG_VALUE, 1232 // which we should ideally fill with an extra Undef DBG_VALUE. 1233 assert(DI->getNumVariableLocationOps() == 1 && 1234 "DbgValueInst without an ArgList should have a single location " 1235 "operand."); 1236 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1237 } 1238 } 1239 1240 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1241 const DIExpression *Expr) { 1242 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1243 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1244 DIExpression *DanglingExpr = DDI.getExpression(); 1245 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1246 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1247 << "\n"); 1248 return true; 1249 } 1250 return false; 1251 }; 1252 1253 for (auto &DDIMI : DanglingDebugInfoMap) { 1254 DanglingDebugInfoVector &DDIV = DDIMI.second; 1255 1256 // If debug info is to be dropped, run it through final checks to see 1257 // whether it can be salvaged. 1258 for (auto &DDI : DDIV) 1259 if (isMatchingDbgValue(DDI)) 1260 salvageUnresolvedDbgValue(DDI); 1261 1262 erase_if(DDIV, isMatchingDbgValue); 1263 } 1264 } 1265 1266 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1267 // generate the debug data structures now that we've seen its definition. 1268 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1269 SDValue Val) { 1270 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1271 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1272 return; 1273 1274 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1275 for (auto &DDI : DDIV) { 1276 DebugLoc DL = DDI.getDebugLoc(); 1277 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1278 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1279 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1280 DIExpression *Expr = DDI.getExpression(); 1281 assert(Variable->isValidLocationForIntrinsic(DL) && 1282 "Expected inlined-at fields to agree"); 1283 SDDbgValue *SDV; 1284 if (Val.getNode()) { 1285 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1286 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1287 // we couldn't resolve it directly when examining the DbgValue intrinsic 1288 // in the first place we should not be more successful here). Unless we 1289 // have some test case that prove this to be correct we should avoid 1290 // calling EmitFuncArgumentDbgValue here. 1291 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1292 FuncArgumentDbgValueKind::Value, Val)) { 1293 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1294 << "\n"); 1295 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1296 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1297 // inserted after the definition of Val when emitting the instructions 1298 // after ISel. An alternative could be to teach 1299 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1300 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1301 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1302 << ValSDNodeOrder << "\n"); 1303 SDV = getDbgValue(Val, Variable, Expr, DL, 1304 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1305 DAG.AddDbgValue(SDV, false); 1306 } else 1307 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1308 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1309 } else { 1310 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1311 auto Undef = UndefValue::get(V->getType()); 1312 auto SDV = 1313 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1314 DAG.AddDbgValue(SDV, false); 1315 } 1316 } 1317 DDIV.clear(); 1318 } 1319 1320 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1321 // TODO: For the variadic implementation, instead of only checking the fail 1322 // state of `handleDebugValue`, we need know specifically which values were 1323 // invalid, so that we attempt to salvage only those values when processing 1324 // a DIArgList. 1325 Value *V = DDI.getVariableLocationOp(0); 1326 Value *OrigV = V; 1327 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1328 DIExpression *Expr = DDI.getExpression(); 1329 DebugLoc DL = DDI.getDebugLoc(); 1330 unsigned SDOrder = DDI.getSDNodeOrder(); 1331 1332 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1333 // that DW_OP_stack_value is desired. 1334 bool StackValue = true; 1335 1336 // Can this Value can be encoded without any further work? 1337 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1338 return; 1339 1340 // Attempt to salvage back through as many instructions as possible. Bail if 1341 // a non-instruction is seen, such as a constant expression or global 1342 // variable. FIXME: Further work could recover those too. 1343 while (isa<Instruction>(V)) { 1344 Instruction &VAsInst = *cast<Instruction>(V); 1345 // Temporary "0", awaiting real implementation. 1346 SmallVector<uint64_t, 16> Ops; 1347 SmallVector<Value *, 4> AdditionalValues; 1348 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1349 AdditionalValues); 1350 // If we cannot salvage any further, and haven't yet found a suitable debug 1351 // expression, bail out. 1352 if (!V) 1353 break; 1354 1355 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1356 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1357 // here for variadic dbg_values, remove that condition. 1358 if (!AdditionalValues.empty()) 1359 break; 1360 1361 // New value and expr now represent this debuginfo. 1362 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1363 1364 // Some kind of simplification occurred: check whether the operand of the 1365 // salvaged debug expression can be encoded in this DAG. 1366 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1367 LLVM_DEBUG( 1368 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1369 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1370 return; 1371 } 1372 } 1373 1374 // This was the final opportunity to salvage this debug information, and it 1375 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1376 // any earlier variable location. 1377 assert(OrigV && "V shouldn't be null"); 1378 auto *Undef = UndefValue::get(OrigV->getType()); 1379 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, false); 1381 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1382 << "\n"); 1383 } 1384 1385 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1386 DILocalVariable *Var, 1387 DIExpression *Expr, DebugLoc DbgLoc, 1388 unsigned Order, bool IsVariadic) { 1389 if (Values.empty()) 1390 return true; 1391 SmallVector<SDDbgOperand> LocationOps; 1392 SmallVector<SDNode *> Dependencies; 1393 for (const Value *V : Values) { 1394 // Constant value. 1395 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1396 isa<ConstantPointerNull>(V)) { 1397 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1398 continue; 1399 } 1400 1401 // Look through IntToPtr constants. 1402 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1403 if (CE->getOpcode() == Instruction::IntToPtr) { 1404 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1405 continue; 1406 } 1407 1408 // If the Value is a frame index, we can create a FrameIndex debug value 1409 // without relying on the DAG at all. 1410 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1411 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1412 if (SI != FuncInfo.StaticAllocaMap.end()) { 1413 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1414 continue; 1415 } 1416 } 1417 1418 // Do not use getValue() in here; we don't want to generate code at 1419 // this point if it hasn't been done yet. 1420 SDValue N = NodeMap[V]; 1421 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1422 N = UnusedArgNodeMap[V]; 1423 if (N.getNode()) { 1424 // Only emit func arg dbg value for non-variadic dbg.values for now. 1425 if (!IsVariadic && 1426 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1427 FuncArgumentDbgValueKind::Value, N)) 1428 return true; 1429 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1430 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1431 // describe stack slot locations. 1432 // 1433 // Consider "int x = 0; int *px = &x;". There are two kinds of 1434 // interesting debug values here after optimization: 1435 // 1436 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1437 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1438 // 1439 // Both describe the direct values of their associated variables. 1440 Dependencies.push_back(N.getNode()); 1441 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1442 continue; 1443 } 1444 LocationOps.emplace_back( 1445 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1446 continue; 1447 } 1448 1449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1450 // Special rules apply for the first dbg.values of parameter variables in a 1451 // function. Identify them by the fact they reference Argument Values, that 1452 // they're parameters, and they are parameters of the current function. We 1453 // need to let them dangle until they get an SDNode. 1454 bool IsParamOfFunc = 1455 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1456 if (IsParamOfFunc) 1457 return false; 1458 1459 // The value is not used in this block yet (or it would have an SDNode). 1460 // We still want the value to appear for the user if possible -- if it has 1461 // an associated VReg, we can refer to that instead. 1462 auto VMI = FuncInfo.ValueMap.find(V); 1463 if (VMI != FuncInfo.ValueMap.end()) { 1464 unsigned Reg = VMI->second; 1465 // If this is a PHI node, it may be split up into several MI PHI nodes 1466 // (in FunctionLoweringInfo::set). 1467 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1468 V->getType(), std::nullopt); 1469 if (RFV.occupiesMultipleRegs()) { 1470 // FIXME: We could potentially support variadic dbg_values here. 1471 if (IsVariadic) 1472 return false; 1473 unsigned Offset = 0; 1474 unsigned BitsToDescribe = 0; 1475 if (auto VarSize = Var->getSizeInBits()) 1476 BitsToDescribe = *VarSize; 1477 if (auto Fragment = Expr->getFragmentInfo()) 1478 BitsToDescribe = Fragment->SizeInBits; 1479 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1480 // Bail out if all bits are described already. 1481 if (Offset >= BitsToDescribe) 1482 break; 1483 // TODO: handle scalable vectors. 1484 unsigned RegisterSize = RegAndSize.second; 1485 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1486 ? BitsToDescribe - Offset 1487 : RegisterSize; 1488 auto FragmentExpr = DIExpression::createFragmentExpression( 1489 Expr, Offset, FragmentSize); 1490 if (!FragmentExpr) 1491 continue; 1492 SDDbgValue *SDV = DAG.getVRegDbgValue( 1493 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1494 DAG.AddDbgValue(SDV, false); 1495 Offset += RegisterSize; 1496 } 1497 return true; 1498 } 1499 // We can use simple vreg locations for variadic dbg_values as well. 1500 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1501 continue; 1502 } 1503 // We failed to create a SDDbgOperand for V. 1504 return false; 1505 } 1506 1507 // We have created a SDDbgOperand for each Value in Values. 1508 // Should use Order instead of SDNodeOrder? 1509 assert(!LocationOps.empty()); 1510 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1511 /*IsIndirect=*/false, DbgLoc, 1512 SDNodeOrder, IsVariadic); 1513 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1514 return true; 1515 } 1516 1517 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1518 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1519 for (auto &Pair : DanglingDebugInfoMap) 1520 for (auto &DDI : Pair.second) 1521 salvageUnresolvedDbgValue(DDI); 1522 clearDanglingDebugInfo(); 1523 } 1524 1525 /// getCopyFromRegs - If there was virtual register allocated for the value V 1526 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1527 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1528 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1529 SDValue Result; 1530 1531 if (It != FuncInfo.ValueMap.end()) { 1532 Register InReg = It->second; 1533 1534 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1535 DAG.getDataLayout(), InReg, Ty, 1536 std::nullopt); // This is not an ABI copy. 1537 SDValue Chain = DAG.getEntryNode(); 1538 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1539 V); 1540 resolveDanglingDebugInfo(V, Result); 1541 } 1542 1543 return Result; 1544 } 1545 1546 /// getValue - Return an SDValue for the given Value. 1547 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1548 // If we already have an SDValue for this value, use it. It's important 1549 // to do this first, so that we don't create a CopyFromReg if we already 1550 // have a regular SDValue. 1551 SDValue &N = NodeMap[V]; 1552 if (N.getNode()) return N; 1553 1554 // If there's a virtual register allocated and initialized for this 1555 // value, use it. 1556 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1557 return copyFromReg; 1558 1559 // Otherwise create a new SDValue and remember it. 1560 SDValue Val = getValueImpl(V); 1561 NodeMap[V] = Val; 1562 resolveDanglingDebugInfo(V, Val); 1563 return Val; 1564 } 1565 1566 /// getNonRegisterValue - Return an SDValue for the given Value, but 1567 /// don't look in FuncInfo.ValueMap for a virtual register. 1568 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1569 // If we already have an SDValue for this value, use it. 1570 SDValue &N = NodeMap[V]; 1571 if (N.getNode()) { 1572 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1573 // Remove the debug location from the node as the node is about to be used 1574 // in a location which may differ from the original debug location. This 1575 // is relevant to Constant and ConstantFP nodes because they can appear 1576 // as constant expressions inside PHI nodes. 1577 N->setDebugLoc(DebugLoc()); 1578 } 1579 return N; 1580 } 1581 1582 // Otherwise create a new SDValue and remember it. 1583 SDValue Val = getValueImpl(V); 1584 NodeMap[V] = Val; 1585 resolveDanglingDebugInfo(V, Val); 1586 return Val; 1587 } 1588 1589 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1590 /// Create an SDValue for the given value. 1591 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1592 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1593 1594 if (const Constant *C = dyn_cast<Constant>(V)) { 1595 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1596 1597 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1598 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1599 1600 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1601 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1602 1603 if (isa<ConstantPointerNull>(C)) { 1604 unsigned AS = V->getType()->getPointerAddressSpace(); 1605 return DAG.getConstant(0, getCurSDLoc(), 1606 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1607 } 1608 1609 if (match(C, m_VScale(DAG.getDataLayout()))) 1610 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1611 1612 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1613 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1614 1615 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1616 return DAG.getUNDEF(VT); 1617 1618 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1619 visit(CE->getOpcode(), *CE); 1620 SDValue N1 = NodeMap[V]; 1621 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1622 return N1; 1623 } 1624 1625 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1626 SmallVector<SDValue, 4> Constants; 1627 for (const Use &U : C->operands()) { 1628 SDNode *Val = getValue(U).getNode(); 1629 // If the operand is an empty aggregate, there are no values. 1630 if (!Val) continue; 1631 // Add each leaf value from the operand to the Constants list 1632 // to form a flattened list of all the values. 1633 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1634 Constants.push_back(SDValue(Val, i)); 1635 } 1636 1637 return DAG.getMergeValues(Constants, getCurSDLoc()); 1638 } 1639 1640 if (const ConstantDataSequential *CDS = 1641 dyn_cast<ConstantDataSequential>(C)) { 1642 SmallVector<SDValue, 4> Ops; 1643 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1644 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1645 // Add each leaf value from the operand to the Constants list 1646 // to form a flattened list of all the values. 1647 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1648 Ops.push_back(SDValue(Val, i)); 1649 } 1650 1651 if (isa<ArrayType>(CDS->getType())) 1652 return DAG.getMergeValues(Ops, getCurSDLoc()); 1653 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1654 } 1655 1656 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1657 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1658 "Unknown struct or array constant!"); 1659 1660 SmallVector<EVT, 4> ValueVTs; 1661 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1662 unsigned NumElts = ValueVTs.size(); 1663 if (NumElts == 0) 1664 return SDValue(); // empty struct 1665 SmallVector<SDValue, 4> Constants(NumElts); 1666 for (unsigned i = 0; i != NumElts; ++i) { 1667 EVT EltVT = ValueVTs[i]; 1668 if (isa<UndefValue>(C)) 1669 Constants[i] = DAG.getUNDEF(EltVT); 1670 else if (EltVT.isFloatingPoint()) 1671 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1672 else 1673 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1674 } 1675 1676 return DAG.getMergeValues(Constants, getCurSDLoc()); 1677 } 1678 1679 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1680 return DAG.getBlockAddress(BA, VT); 1681 1682 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1683 return getValue(Equiv->getGlobalValue()); 1684 1685 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1686 return getValue(NC->getGlobalValue()); 1687 1688 VectorType *VecTy = cast<VectorType>(V->getType()); 1689 1690 // Now that we know the number and type of the elements, get that number of 1691 // elements into the Ops array based on what kind of constant it is. 1692 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1693 SmallVector<SDValue, 16> Ops; 1694 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1695 for (unsigned i = 0; i != NumElements; ++i) 1696 Ops.push_back(getValue(CV->getOperand(i))); 1697 1698 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1699 } 1700 1701 if (isa<ConstantAggregateZero>(C)) { 1702 EVT EltVT = 1703 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1704 1705 SDValue Op; 1706 if (EltVT.isFloatingPoint()) 1707 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1708 else 1709 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1710 1711 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1712 } 1713 1714 llvm_unreachable("Unknown vector constant"); 1715 } 1716 1717 // If this is a static alloca, generate it as the frameindex instead of 1718 // computation. 1719 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1720 DenseMap<const AllocaInst*, int>::iterator SI = 1721 FuncInfo.StaticAllocaMap.find(AI); 1722 if (SI != FuncInfo.StaticAllocaMap.end()) 1723 return DAG.getFrameIndex( 1724 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1725 } 1726 1727 // If this is an instruction which fast-isel has deferred, select it now. 1728 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1729 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1730 1731 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1732 Inst->getType(), std::nullopt); 1733 SDValue Chain = DAG.getEntryNode(); 1734 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1735 } 1736 1737 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1738 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1739 1740 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1741 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1742 1743 llvm_unreachable("Can't get register for value!"); 1744 } 1745 1746 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1747 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1748 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1749 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1750 bool IsSEH = isAsynchronousEHPersonality(Pers); 1751 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1752 if (!IsSEH) 1753 CatchPadMBB->setIsEHScopeEntry(); 1754 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1755 if (IsMSVCCXX || IsCoreCLR) 1756 CatchPadMBB->setIsEHFuncletEntry(); 1757 } 1758 1759 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1760 // Update machine-CFG edge. 1761 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1762 FuncInfo.MBB->addSuccessor(TargetMBB); 1763 TargetMBB->setIsEHCatchretTarget(true); 1764 DAG.getMachineFunction().setHasEHCatchret(true); 1765 1766 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1767 bool IsSEH = isAsynchronousEHPersonality(Pers); 1768 if (IsSEH) { 1769 // If this is not a fall-through branch or optimizations are switched off, 1770 // emit the branch. 1771 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1772 TM.getOptLevel() == CodeGenOpt::None) 1773 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1774 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1775 return; 1776 } 1777 1778 // Figure out the funclet membership for the catchret's successor. 1779 // This will be used by the FuncletLayout pass to determine how to order the 1780 // BB's. 1781 // A 'catchret' returns to the outer scope's color. 1782 Value *ParentPad = I.getCatchSwitchParentPad(); 1783 const BasicBlock *SuccessorColor; 1784 if (isa<ConstantTokenNone>(ParentPad)) 1785 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1786 else 1787 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1788 assert(SuccessorColor && "No parent funclet for catchret!"); 1789 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1790 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1791 1792 // Create the terminator node. 1793 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1794 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1795 DAG.getBasicBlock(SuccessorColorMBB)); 1796 DAG.setRoot(Ret); 1797 } 1798 1799 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1800 // Don't emit any special code for the cleanuppad instruction. It just marks 1801 // the start of an EH scope/funclet. 1802 FuncInfo.MBB->setIsEHScopeEntry(); 1803 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1804 if (Pers != EHPersonality::Wasm_CXX) { 1805 FuncInfo.MBB->setIsEHFuncletEntry(); 1806 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1807 } 1808 } 1809 1810 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1811 // not match, it is OK to add only the first unwind destination catchpad to the 1812 // successors, because there will be at least one invoke instruction within the 1813 // catch scope that points to the next unwind destination, if one exists, so 1814 // CFGSort cannot mess up with BB sorting order. 1815 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1816 // call within them, and catchpads only consisting of 'catch (...)' have a 1817 // '__cxa_end_catch' call within them, both of which generate invokes in case 1818 // the next unwind destination exists, i.e., the next unwind destination is not 1819 // the caller.) 1820 // 1821 // Having at most one EH pad successor is also simpler and helps later 1822 // transformations. 1823 // 1824 // For example, 1825 // current: 1826 // invoke void @foo to ... unwind label %catch.dispatch 1827 // catch.dispatch: 1828 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1829 // catch.start: 1830 // ... 1831 // ... in this BB or some other child BB dominated by this BB there will be an 1832 // invoke that points to 'next' BB as an unwind destination 1833 // 1834 // next: ; We don't need to add this to 'current' BB's successor 1835 // ... 1836 static void findWasmUnwindDestinations( 1837 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1838 BranchProbability Prob, 1839 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1840 &UnwindDests) { 1841 while (EHPadBB) { 1842 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1843 if (isa<CleanupPadInst>(Pad)) { 1844 // Stop on cleanup pads. 1845 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1846 UnwindDests.back().first->setIsEHScopeEntry(); 1847 break; 1848 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1849 // Add the catchpad handlers to the possible destinations. We don't 1850 // continue to the unwind destination of the catchswitch for wasm. 1851 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1852 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1853 UnwindDests.back().first->setIsEHScopeEntry(); 1854 } 1855 break; 1856 } else { 1857 continue; 1858 } 1859 } 1860 } 1861 1862 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1863 /// many places it could ultimately go. In the IR, we have a single unwind 1864 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1865 /// This function skips over imaginary basic blocks that hold catchswitch 1866 /// instructions, and finds all the "real" machine 1867 /// basic block destinations. As those destinations may not be successors of 1868 /// EHPadBB, here we also calculate the edge probability to those destinations. 1869 /// The passed-in Prob is the edge probability to EHPadBB. 1870 static void findUnwindDestinations( 1871 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1872 BranchProbability Prob, 1873 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1874 &UnwindDests) { 1875 EHPersonality Personality = 1876 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1877 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1878 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1879 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1880 bool IsSEH = isAsynchronousEHPersonality(Personality); 1881 1882 if (IsWasmCXX) { 1883 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1884 assert(UnwindDests.size() <= 1 && 1885 "There should be at most one unwind destination for wasm"); 1886 return; 1887 } 1888 1889 while (EHPadBB) { 1890 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1891 BasicBlock *NewEHPadBB = nullptr; 1892 if (isa<LandingPadInst>(Pad)) { 1893 // Stop on landingpads. They are not funclets. 1894 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1895 break; 1896 } else if (isa<CleanupPadInst>(Pad)) { 1897 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1898 // personalities. 1899 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1900 UnwindDests.back().first->setIsEHScopeEntry(); 1901 UnwindDests.back().first->setIsEHFuncletEntry(); 1902 break; 1903 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1904 // Add the catchpad handlers to the possible destinations. 1905 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1906 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1907 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1908 if (IsMSVCCXX || IsCoreCLR) 1909 UnwindDests.back().first->setIsEHFuncletEntry(); 1910 if (!IsSEH) 1911 UnwindDests.back().first->setIsEHScopeEntry(); 1912 } 1913 NewEHPadBB = CatchSwitch->getUnwindDest(); 1914 } else { 1915 continue; 1916 } 1917 1918 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1919 if (BPI && NewEHPadBB) 1920 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1921 EHPadBB = NewEHPadBB; 1922 } 1923 } 1924 1925 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1926 // Update successor info. 1927 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1928 auto UnwindDest = I.getUnwindDest(); 1929 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1930 BranchProbability UnwindDestProb = 1931 (BPI && UnwindDest) 1932 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1933 : BranchProbability::getZero(); 1934 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1935 for (auto &UnwindDest : UnwindDests) { 1936 UnwindDest.first->setIsEHPad(); 1937 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1938 } 1939 FuncInfo.MBB->normalizeSuccProbs(); 1940 1941 // Create the terminator node. 1942 SDValue Ret = 1943 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1944 DAG.setRoot(Ret); 1945 } 1946 1947 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1948 report_fatal_error("visitCatchSwitch not yet implemented!"); 1949 } 1950 1951 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1953 auto &DL = DAG.getDataLayout(); 1954 SDValue Chain = getControlRoot(); 1955 SmallVector<ISD::OutputArg, 8> Outs; 1956 SmallVector<SDValue, 8> OutVals; 1957 1958 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1959 // lower 1960 // 1961 // %val = call <ty> @llvm.experimental.deoptimize() 1962 // ret <ty> %val 1963 // 1964 // differently. 1965 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1966 LowerDeoptimizingReturn(); 1967 return; 1968 } 1969 1970 if (!FuncInfo.CanLowerReturn) { 1971 unsigned DemoteReg = FuncInfo.DemoteRegister; 1972 const Function *F = I.getParent()->getParent(); 1973 1974 // Emit a store of the return value through the virtual register. 1975 // Leave Outs empty so that LowerReturn won't try to load return 1976 // registers the usual way. 1977 SmallVector<EVT, 1> PtrValueVTs; 1978 ComputeValueVTs(TLI, DL, 1979 F->getReturnType()->getPointerTo( 1980 DAG.getDataLayout().getAllocaAddrSpace()), 1981 PtrValueVTs); 1982 1983 SDValue RetPtr = 1984 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1985 SDValue RetOp = getValue(I.getOperand(0)); 1986 1987 SmallVector<EVT, 4> ValueVTs, MemVTs; 1988 SmallVector<uint64_t, 4> Offsets; 1989 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1990 &Offsets); 1991 unsigned NumValues = ValueVTs.size(); 1992 1993 SmallVector<SDValue, 4> Chains(NumValues); 1994 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1995 for (unsigned i = 0; i != NumValues; ++i) { 1996 // An aggregate return value cannot wrap around the address space, so 1997 // offsets to its parts don't wrap either. 1998 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1999 TypeSize::Fixed(Offsets[i])); 2000 2001 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2002 if (MemVTs[i] != ValueVTs[i]) 2003 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2004 Chains[i] = DAG.getStore( 2005 Chain, getCurSDLoc(), Val, 2006 // FIXME: better loc info would be nice. 2007 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2008 commonAlignment(BaseAlign, Offsets[i])); 2009 } 2010 2011 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2012 MVT::Other, Chains); 2013 } else if (I.getNumOperands() != 0) { 2014 SmallVector<EVT, 4> ValueVTs; 2015 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2016 unsigned NumValues = ValueVTs.size(); 2017 if (NumValues) { 2018 SDValue RetOp = getValue(I.getOperand(0)); 2019 2020 const Function *F = I.getParent()->getParent(); 2021 2022 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2023 I.getOperand(0)->getType(), F->getCallingConv(), 2024 /*IsVarArg*/ false, DL); 2025 2026 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2027 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2028 ExtendKind = ISD::SIGN_EXTEND; 2029 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2030 ExtendKind = ISD::ZERO_EXTEND; 2031 2032 LLVMContext &Context = F->getContext(); 2033 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2034 2035 for (unsigned j = 0; j != NumValues; ++j) { 2036 EVT VT = ValueVTs[j]; 2037 2038 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2039 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2040 2041 CallingConv::ID CC = F->getCallingConv(); 2042 2043 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2044 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2045 SmallVector<SDValue, 4> Parts(NumParts); 2046 getCopyToParts(DAG, getCurSDLoc(), 2047 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2048 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2049 2050 // 'inreg' on function refers to return value 2051 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2052 if (RetInReg) 2053 Flags.setInReg(); 2054 2055 if (I.getOperand(0)->getType()->isPointerTy()) { 2056 Flags.setPointer(); 2057 Flags.setPointerAddrSpace( 2058 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2059 } 2060 2061 if (NeedsRegBlock) { 2062 Flags.setInConsecutiveRegs(); 2063 if (j == NumValues - 1) 2064 Flags.setInConsecutiveRegsLast(); 2065 } 2066 2067 // Propagate extension type if any 2068 if (ExtendKind == ISD::SIGN_EXTEND) 2069 Flags.setSExt(); 2070 else if (ExtendKind == ISD::ZERO_EXTEND) 2071 Flags.setZExt(); 2072 2073 for (unsigned i = 0; i < NumParts; ++i) { 2074 Outs.push_back(ISD::OutputArg(Flags, 2075 Parts[i].getValueType().getSimpleVT(), 2076 VT, /*isfixed=*/true, 0, 0)); 2077 OutVals.push_back(Parts[i]); 2078 } 2079 } 2080 } 2081 } 2082 2083 // Push in swifterror virtual register as the last element of Outs. This makes 2084 // sure swifterror virtual register will be returned in the swifterror 2085 // physical register. 2086 const Function *F = I.getParent()->getParent(); 2087 if (TLI.supportSwiftError() && 2088 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2089 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2090 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2091 Flags.setSwiftError(); 2092 Outs.push_back(ISD::OutputArg( 2093 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2094 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2095 // Create SDNode for the swifterror virtual register. 2096 OutVals.push_back( 2097 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2098 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2099 EVT(TLI.getPointerTy(DL)))); 2100 } 2101 2102 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2103 CallingConv::ID CallConv = 2104 DAG.getMachineFunction().getFunction().getCallingConv(); 2105 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2106 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2107 2108 // Verify that the target's LowerReturn behaved as expected. 2109 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2110 "LowerReturn didn't return a valid chain!"); 2111 2112 // Update the DAG with the new chain value resulting from return lowering. 2113 DAG.setRoot(Chain); 2114 } 2115 2116 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2117 /// created for it, emit nodes to copy the value into the virtual 2118 /// registers. 2119 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2120 // Skip empty types 2121 if (V->getType()->isEmptyTy()) 2122 return; 2123 2124 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2125 if (VMI != FuncInfo.ValueMap.end()) { 2126 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2127 CopyValueToVirtualRegister(V, VMI->second); 2128 } 2129 } 2130 2131 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2132 /// the current basic block, add it to ValueMap now so that we'll get a 2133 /// CopyTo/FromReg. 2134 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2135 // No need to export constants. 2136 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2137 2138 // Already exported? 2139 if (FuncInfo.isExportedInst(V)) return; 2140 2141 Register Reg = FuncInfo.InitializeRegForValue(V); 2142 CopyValueToVirtualRegister(V, Reg); 2143 } 2144 2145 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2146 const BasicBlock *FromBB) { 2147 // The operands of the setcc have to be in this block. We don't know 2148 // how to export them from some other block. 2149 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2150 // Can export from current BB. 2151 if (VI->getParent() == FromBB) 2152 return true; 2153 2154 // Is already exported, noop. 2155 return FuncInfo.isExportedInst(V); 2156 } 2157 2158 // If this is an argument, we can export it if the BB is the entry block or 2159 // if it is already exported. 2160 if (isa<Argument>(V)) { 2161 if (FromBB->isEntryBlock()) 2162 return true; 2163 2164 // Otherwise, can only export this if it is already exported. 2165 return FuncInfo.isExportedInst(V); 2166 } 2167 2168 // Otherwise, constants can always be exported. 2169 return true; 2170 } 2171 2172 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2173 BranchProbability 2174 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2175 const MachineBasicBlock *Dst) const { 2176 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2177 const BasicBlock *SrcBB = Src->getBasicBlock(); 2178 const BasicBlock *DstBB = Dst->getBasicBlock(); 2179 if (!BPI) { 2180 // If BPI is not available, set the default probability as 1 / N, where N is 2181 // the number of successors. 2182 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2183 return BranchProbability(1, SuccSize); 2184 } 2185 return BPI->getEdgeProbability(SrcBB, DstBB); 2186 } 2187 2188 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2189 MachineBasicBlock *Dst, 2190 BranchProbability Prob) { 2191 if (!FuncInfo.BPI) 2192 Src->addSuccessorWithoutProb(Dst); 2193 else { 2194 if (Prob.isUnknown()) 2195 Prob = getEdgeProbability(Src, Dst); 2196 Src->addSuccessor(Dst, Prob); 2197 } 2198 } 2199 2200 static bool InBlock(const Value *V, const BasicBlock *BB) { 2201 if (const Instruction *I = dyn_cast<Instruction>(V)) 2202 return I->getParent() == BB; 2203 return true; 2204 } 2205 2206 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2207 /// This function emits a branch and is used at the leaves of an OR or an 2208 /// AND operator tree. 2209 void 2210 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2211 MachineBasicBlock *TBB, 2212 MachineBasicBlock *FBB, 2213 MachineBasicBlock *CurBB, 2214 MachineBasicBlock *SwitchBB, 2215 BranchProbability TProb, 2216 BranchProbability FProb, 2217 bool InvertCond) { 2218 const BasicBlock *BB = CurBB->getBasicBlock(); 2219 2220 // If the leaf of the tree is a comparison, merge the condition into 2221 // the caseblock. 2222 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2223 // The operands of the cmp have to be in this block. We don't know 2224 // how to export them from some other block. If this is the first block 2225 // of the sequence, no exporting is needed. 2226 if (CurBB == SwitchBB || 2227 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2228 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2229 ISD::CondCode Condition; 2230 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2231 ICmpInst::Predicate Pred = 2232 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2233 Condition = getICmpCondCode(Pred); 2234 } else { 2235 const FCmpInst *FC = cast<FCmpInst>(Cond); 2236 FCmpInst::Predicate Pred = 2237 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2238 Condition = getFCmpCondCode(Pred); 2239 if (TM.Options.NoNaNsFPMath) 2240 Condition = getFCmpCodeWithoutNaN(Condition); 2241 } 2242 2243 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2244 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2245 SL->SwitchCases.push_back(CB); 2246 return; 2247 } 2248 } 2249 2250 // Create a CaseBlock record representing this branch. 2251 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2252 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2253 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2254 SL->SwitchCases.push_back(CB); 2255 } 2256 2257 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2258 MachineBasicBlock *TBB, 2259 MachineBasicBlock *FBB, 2260 MachineBasicBlock *CurBB, 2261 MachineBasicBlock *SwitchBB, 2262 Instruction::BinaryOps Opc, 2263 BranchProbability TProb, 2264 BranchProbability FProb, 2265 bool InvertCond) { 2266 // Skip over not part of the tree and remember to invert op and operands at 2267 // next level. 2268 Value *NotCond; 2269 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2270 InBlock(NotCond, CurBB->getBasicBlock())) { 2271 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2272 !InvertCond); 2273 return; 2274 } 2275 2276 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2277 const Value *BOpOp0, *BOpOp1; 2278 // Compute the effective opcode for Cond, taking into account whether it needs 2279 // to be inverted, e.g. 2280 // and (not (or A, B)), C 2281 // gets lowered as 2282 // and (and (not A, not B), C) 2283 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2284 if (BOp) { 2285 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2286 ? Instruction::And 2287 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2288 ? Instruction::Or 2289 : (Instruction::BinaryOps)0); 2290 if (InvertCond) { 2291 if (BOpc == Instruction::And) 2292 BOpc = Instruction::Or; 2293 else if (BOpc == Instruction::Or) 2294 BOpc = Instruction::And; 2295 } 2296 } 2297 2298 // If this node is not part of the or/and tree, emit it as a branch. 2299 // Note that all nodes in the tree should have same opcode. 2300 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2301 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2302 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2303 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2304 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2305 TProb, FProb, InvertCond); 2306 return; 2307 } 2308 2309 // Create TmpBB after CurBB. 2310 MachineFunction::iterator BBI(CurBB); 2311 MachineFunction &MF = DAG.getMachineFunction(); 2312 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2313 CurBB->getParent()->insert(++BBI, TmpBB); 2314 2315 if (Opc == Instruction::Or) { 2316 // Codegen X | Y as: 2317 // BB1: 2318 // jmp_if_X TBB 2319 // jmp TmpBB 2320 // TmpBB: 2321 // jmp_if_Y TBB 2322 // jmp FBB 2323 // 2324 2325 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2326 // The requirement is that 2327 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2328 // = TrueProb for original BB. 2329 // Assuming the original probabilities are A and B, one choice is to set 2330 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2331 // A/(1+B) and 2B/(1+B). This choice assumes that 2332 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2333 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2334 // TmpBB, but the math is more complicated. 2335 2336 auto NewTrueProb = TProb / 2; 2337 auto NewFalseProb = TProb / 2 + FProb; 2338 // Emit the LHS condition. 2339 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2340 NewFalseProb, InvertCond); 2341 2342 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2343 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2344 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2345 // Emit the RHS condition into TmpBB. 2346 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2347 Probs[1], InvertCond); 2348 } else { 2349 assert(Opc == Instruction::And && "Unknown merge op!"); 2350 // Codegen X & Y as: 2351 // BB1: 2352 // jmp_if_X TmpBB 2353 // jmp FBB 2354 // TmpBB: 2355 // jmp_if_Y TBB 2356 // jmp FBB 2357 // 2358 // This requires creation of TmpBB after CurBB. 2359 2360 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2361 // The requirement is that 2362 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2363 // = FalseProb for original BB. 2364 // Assuming the original probabilities are A and B, one choice is to set 2365 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2366 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2367 // TrueProb for BB1 * FalseProb for TmpBB. 2368 2369 auto NewTrueProb = TProb + FProb / 2; 2370 auto NewFalseProb = FProb / 2; 2371 // Emit the LHS condition. 2372 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2373 NewFalseProb, InvertCond); 2374 2375 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2376 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2377 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2378 // Emit the RHS condition into TmpBB. 2379 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2380 Probs[1], InvertCond); 2381 } 2382 } 2383 2384 /// If the set of cases should be emitted as a series of branches, return true. 2385 /// If we should emit this as a bunch of and/or'd together conditions, return 2386 /// false. 2387 bool 2388 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2389 if (Cases.size() != 2) return true; 2390 2391 // If this is two comparisons of the same values or'd or and'd together, they 2392 // will get folded into a single comparison, so don't emit two blocks. 2393 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2394 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2395 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2396 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2397 return false; 2398 } 2399 2400 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2401 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2402 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2403 Cases[0].CC == Cases[1].CC && 2404 isa<Constant>(Cases[0].CmpRHS) && 2405 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2406 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2407 return false; 2408 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2409 return false; 2410 } 2411 2412 return true; 2413 } 2414 2415 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2416 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2417 2418 // Update machine-CFG edges. 2419 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2420 2421 if (I.isUnconditional()) { 2422 // Update machine-CFG edges. 2423 BrMBB->addSuccessor(Succ0MBB); 2424 2425 // If this is not a fall-through branch or optimizations are switched off, 2426 // emit the branch. 2427 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2428 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2429 MVT::Other, getControlRoot(), 2430 DAG.getBasicBlock(Succ0MBB))); 2431 2432 return; 2433 } 2434 2435 // If this condition is one of the special cases we handle, do special stuff 2436 // now. 2437 const Value *CondVal = I.getCondition(); 2438 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2439 2440 // If this is a series of conditions that are or'd or and'd together, emit 2441 // this as a sequence of branches instead of setcc's with and/or operations. 2442 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2443 // unpredictable branches, and vector extracts because those jumps are likely 2444 // expensive for any target), this should improve performance. 2445 // For example, instead of something like: 2446 // cmp A, B 2447 // C = seteq 2448 // cmp D, E 2449 // F = setle 2450 // or C, F 2451 // jnz foo 2452 // Emit: 2453 // cmp A, B 2454 // je foo 2455 // cmp D, E 2456 // jle foo 2457 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2458 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2459 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2460 Value *Vec; 2461 const Value *BOp0, *BOp1; 2462 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2463 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2464 Opcode = Instruction::And; 2465 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2466 Opcode = Instruction::Or; 2467 2468 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2469 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2470 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2471 getEdgeProbability(BrMBB, Succ0MBB), 2472 getEdgeProbability(BrMBB, Succ1MBB), 2473 /*InvertCond=*/false); 2474 // If the compares in later blocks need to use values not currently 2475 // exported from this block, export them now. This block should always 2476 // be the first entry. 2477 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2478 2479 // Allow some cases to be rejected. 2480 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2481 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2482 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2483 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2484 } 2485 2486 // Emit the branch for this block. 2487 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2488 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2489 return; 2490 } 2491 2492 // Okay, we decided not to do this, remove any inserted MBB's and clear 2493 // SwitchCases. 2494 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2495 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2496 2497 SL->SwitchCases.clear(); 2498 } 2499 } 2500 2501 // Create a CaseBlock record representing this branch. 2502 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2503 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2504 2505 // Use visitSwitchCase to actually insert the fast branch sequence for this 2506 // cond branch. 2507 visitSwitchCase(CB, BrMBB); 2508 } 2509 2510 /// visitSwitchCase - Emits the necessary code to represent a single node in 2511 /// the binary search tree resulting from lowering a switch instruction. 2512 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2513 MachineBasicBlock *SwitchBB) { 2514 SDValue Cond; 2515 SDValue CondLHS = getValue(CB.CmpLHS); 2516 SDLoc dl = CB.DL; 2517 2518 if (CB.CC == ISD::SETTRUE) { 2519 // Branch or fall through to TrueBB. 2520 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2521 SwitchBB->normalizeSuccProbs(); 2522 if (CB.TrueBB != NextBlock(SwitchBB)) { 2523 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2524 DAG.getBasicBlock(CB.TrueBB))); 2525 } 2526 return; 2527 } 2528 2529 auto &TLI = DAG.getTargetLoweringInfo(); 2530 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2531 2532 // Build the setcc now. 2533 if (!CB.CmpMHS) { 2534 // Fold "(X == true)" to X and "(X == false)" to !X to 2535 // handle common cases produced by branch lowering. 2536 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2537 CB.CC == ISD::SETEQ) 2538 Cond = CondLHS; 2539 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2540 CB.CC == ISD::SETEQ) { 2541 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2542 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2543 } else { 2544 SDValue CondRHS = getValue(CB.CmpRHS); 2545 2546 // If a pointer's DAG type is larger than its memory type then the DAG 2547 // values are zero-extended. This breaks signed comparisons so truncate 2548 // back to the underlying type before doing the compare. 2549 if (CondLHS.getValueType() != MemVT) { 2550 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2551 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2552 } 2553 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2554 } 2555 } else { 2556 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2557 2558 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2559 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2560 2561 SDValue CmpOp = getValue(CB.CmpMHS); 2562 EVT VT = CmpOp.getValueType(); 2563 2564 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2565 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2566 ISD::SETLE); 2567 } else { 2568 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2569 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2570 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2571 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2572 } 2573 } 2574 2575 // Update successor info 2576 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2577 // TrueBB and FalseBB are always different unless the incoming IR is 2578 // degenerate. This only happens when running llc on weird IR. 2579 if (CB.TrueBB != CB.FalseBB) 2580 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2581 SwitchBB->normalizeSuccProbs(); 2582 2583 // If the lhs block is the next block, invert the condition so that we can 2584 // fall through to the lhs instead of the rhs block. 2585 if (CB.TrueBB == NextBlock(SwitchBB)) { 2586 std::swap(CB.TrueBB, CB.FalseBB); 2587 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2588 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2589 } 2590 2591 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2592 MVT::Other, getControlRoot(), Cond, 2593 DAG.getBasicBlock(CB.TrueBB)); 2594 2595 setValue(CurInst, BrCond); 2596 2597 // Insert the false branch. Do this even if it's a fall through branch, 2598 // this makes it easier to do DAG optimizations which require inverting 2599 // the branch condition. 2600 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2601 DAG.getBasicBlock(CB.FalseBB)); 2602 2603 DAG.setRoot(BrCond); 2604 } 2605 2606 /// visitJumpTable - Emit JumpTable node in the current MBB 2607 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2608 // Emit the code for the jump table 2609 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2610 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2611 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2612 JT.Reg, PTy); 2613 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2614 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2615 MVT::Other, Index.getValue(1), 2616 Table, Index); 2617 DAG.setRoot(BrJumpTable); 2618 } 2619 2620 /// visitJumpTableHeader - This function emits necessary code to produce index 2621 /// in the JumpTable from switch case. 2622 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2623 JumpTableHeader &JTH, 2624 MachineBasicBlock *SwitchBB) { 2625 SDLoc dl = getCurSDLoc(); 2626 2627 // Subtract the lowest switch case value from the value being switched on. 2628 SDValue SwitchOp = getValue(JTH.SValue); 2629 EVT VT = SwitchOp.getValueType(); 2630 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2631 DAG.getConstant(JTH.First, dl, VT)); 2632 2633 // The SDNode we just created, which holds the value being switched on minus 2634 // the smallest case value, needs to be copied to a virtual register so it 2635 // can be used as an index into the jump table in a subsequent basic block. 2636 // This value may be smaller or larger than the target's pointer type, and 2637 // therefore require extension or truncating. 2638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2639 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2640 2641 unsigned JumpTableReg = 2642 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2643 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2644 JumpTableReg, SwitchOp); 2645 JT.Reg = JumpTableReg; 2646 2647 if (!JTH.FallthroughUnreachable) { 2648 // Emit the range check for the jump table, and branch to the default block 2649 // for the switch statement if the value being switched on exceeds the 2650 // largest case in the switch. 2651 SDValue CMP = DAG.getSetCC( 2652 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2653 Sub.getValueType()), 2654 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2655 2656 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2657 MVT::Other, CopyTo, CMP, 2658 DAG.getBasicBlock(JT.Default)); 2659 2660 // Avoid emitting unnecessary branches to the next block. 2661 if (JT.MBB != NextBlock(SwitchBB)) 2662 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2663 DAG.getBasicBlock(JT.MBB)); 2664 2665 DAG.setRoot(BrCond); 2666 } else { 2667 // Avoid emitting unnecessary branches to the next block. 2668 if (JT.MBB != NextBlock(SwitchBB)) 2669 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2670 DAG.getBasicBlock(JT.MBB))); 2671 else 2672 DAG.setRoot(CopyTo); 2673 } 2674 } 2675 2676 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2677 /// variable if there exists one. 2678 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2679 SDValue &Chain) { 2680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2681 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2682 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2683 MachineFunction &MF = DAG.getMachineFunction(); 2684 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2685 MachineSDNode *Node = 2686 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2687 if (Global) { 2688 MachinePointerInfo MPInfo(Global); 2689 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2690 MachineMemOperand::MODereferenceable; 2691 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2692 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2693 DAG.setNodeMemRefs(Node, {MemRef}); 2694 } 2695 if (PtrTy != PtrMemTy) 2696 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2697 return SDValue(Node, 0); 2698 } 2699 2700 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2701 /// tail spliced into a stack protector check success bb. 2702 /// 2703 /// For a high level explanation of how this fits into the stack protector 2704 /// generation see the comment on the declaration of class 2705 /// StackProtectorDescriptor. 2706 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2707 MachineBasicBlock *ParentBB) { 2708 2709 // First create the loads to the guard/stack slot for the comparison. 2710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2711 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2712 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2713 2714 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2715 int FI = MFI.getStackProtectorIndex(); 2716 2717 SDValue Guard; 2718 SDLoc dl = getCurSDLoc(); 2719 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2720 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2721 Align Align = 2722 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2723 2724 // Generate code to load the content of the guard slot. 2725 SDValue GuardVal = DAG.getLoad( 2726 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2727 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2728 MachineMemOperand::MOVolatile); 2729 2730 if (TLI.useStackGuardXorFP()) 2731 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2732 2733 // Retrieve guard check function, nullptr if instrumentation is inlined. 2734 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2735 // The target provides a guard check function to validate the guard value. 2736 // Generate a call to that function with the content of the guard slot as 2737 // argument. 2738 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2739 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2740 2741 TargetLowering::ArgListTy Args; 2742 TargetLowering::ArgListEntry Entry; 2743 Entry.Node = GuardVal; 2744 Entry.Ty = FnTy->getParamType(0); 2745 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2746 Entry.IsInReg = true; 2747 Args.push_back(Entry); 2748 2749 TargetLowering::CallLoweringInfo CLI(DAG); 2750 CLI.setDebugLoc(getCurSDLoc()) 2751 .setChain(DAG.getEntryNode()) 2752 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2753 getValue(GuardCheckFn), std::move(Args)); 2754 2755 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2756 DAG.setRoot(Result.second); 2757 return; 2758 } 2759 2760 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2761 // Otherwise, emit a volatile load to retrieve the stack guard value. 2762 SDValue Chain = DAG.getEntryNode(); 2763 if (TLI.useLoadStackGuardNode()) { 2764 Guard = getLoadStackGuard(DAG, dl, Chain); 2765 } else { 2766 const Value *IRGuard = TLI.getSDagStackGuard(M); 2767 SDValue GuardPtr = getValue(IRGuard); 2768 2769 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2770 MachinePointerInfo(IRGuard, 0), Align, 2771 MachineMemOperand::MOVolatile); 2772 } 2773 2774 // Perform the comparison via a getsetcc. 2775 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2776 *DAG.getContext(), 2777 Guard.getValueType()), 2778 Guard, GuardVal, ISD::SETNE); 2779 2780 // If the guard/stackslot do not equal, branch to failure MBB. 2781 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2782 MVT::Other, GuardVal.getOperand(0), 2783 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2784 // Otherwise branch to success MBB. 2785 SDValue Br = DAG.getNode(ISD::BR, dl, 2786 MVT::Other, BrCond, 2787 DAG.getBasicBlock(SPD.getSuccessMBB())); 2788 2789 DAG.setRoot(Br); 2790 } 2791 2792 /// Codegen the failure basic block for a stack protector check. 2793 /// 2794 /// A failure stack protector machine basic block consists simply of a call to 2795 /// __stack_chk_fail(). 2796 /// 2797 /// For a high level explanation of how this fits into the stack protector 2798 /// generation see the comment on the declaration of class 2799 /// StackProtectorDescriptor. 2800 void 2801 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2803 TargetLowering::MakeLibCallOptions CallOptions; 2804 CallOptions.setDiscardResult(true); 2805 SDValue Chain = 2806 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2807 std::nullopt, CallOptions, getCurSDLoc()) 2808 .second; 2809 // On PS4/PS5, the "return address" must still be within the calling 2810 // function, even if it's at the very end, so emit an explicit TRAP here. 2811 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2812 if (TM.getTargetTriple().isPS()) 2813 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2814 // WebAssembly needs an unreachable instruction after a non-returning call, 2815 // because the function return type can be different from __stack_chk_fail's 2816 // return type (void). 2817 if (TM.getTargetTriple().isWasm()) 2818 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2819 2820 DAG.setRoot(Chain); 2821 } 2822 2823 /// visitBitTestHeader - This function emits necessary code to produce value 2824 /// suitable for "bit tests" 2825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2826 MachineBasicBlock *SwitchBB) { 2827 SDLoc dl = getCurSDLoc(); 2828 2829 // Subtract the minimum value. 2830 SDValue SwitchOp = getValue(B.SValue); 2831 EVT VT = SwitchOp.getValueType(); 2832 SDValue RangeSub = 2833 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2834 2835 // Determine the type of the test operands. 2836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2837 bool UsePtrType = false; 2838 if (!TLI.isTypeLegal(VT)) { 2839 UsePtrType = true; 2840 } else { 2841 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2842 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2843 // Switch table case range are encoded into series of masks. 2844 // Just use pointer type, it's guaranteed to fit. 2845 UsePtrType = true; 2846 break; 2847 } 2848 } 2849 SDValue Sub = RangeSub; 2850 if (UsePtrType) { 2851 VT = TLI.getPointerTy(DAG.getDataLayout()); 2852 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2853 } 2854 2855 B.RegVT = VT.getSimpleVT(); 2856 B.Reg = FuncInfo.CreateReg(B.RegVT); 2857 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2858 2859 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2860 2861 if (!B.FallthroughUnreachable) 2862 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2863 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2864 SwitchBB->normalizeSuccProbs(); 2865 2866 SDValue Root = CopyTo; 2867 if (!B.FallthroughUnreachable) { 2868 // Conditional branch to the default block. 2869 SDValue RangeCmp = DAG.getSetCC(dl, 2870 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2871 RangeSub.getValueType()), 2872 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2873 ISD::SETUGT); 2874 2875 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2876 DAG.getBasicBlock(B.Default)); 2877 } 2878 2879 // Avoid emitting unnecessary branches to the next block. 2880 if (MBB != NextBlock(SwitchBB)) 2881 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2882 2883 DAG.setRoot(Root); 2884 } 2885 2886 /// visitBitTestCase - this function produces one "bit test" 2887 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2888 MachineBasicBlock* NextMBB, 2889 BranchProbability BranchProbToNext, 2890 unsigned Reg, 2891 BitTestCase &B, 2892 MachineBasicBlock *SwitchBB) { 2893 SDLoc dl = getCurSDLoc(); 2894 MVT VT = BB.RegVT; 2895 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2896 SDValue Cmp; 2897 unsigned PopCount = llvm::popcount(B.Mask); 2898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2899 if (PopCount == 1) { 2900 // Testing for a single bit; just compare the shift count with what it 2901 // would need to be to shift a 1 bit in that position. 2902 Cmp = DAG.getSetCC( 2903 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2904 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2905 ISD::SETEQ); 2906 } else if (PopCount == BB.Range) { 2907 // There is only one zero bit in the range, test for it directly. 2908 Cmp = DAG.getSetCC( 2909 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2910 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2911 ISD::SETNE); 2912 } else { 2913 // Make desired shift 2914 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2915 DAG.getConstant(1, dl, VT), ShiftOp); 2916 2917 // Emit bit tests and jumps 2918 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2919 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2920 Cmp = DAG.getSetCC( 2921 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2922 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2923 } 2924 2925 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2926 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2927 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2928 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2929 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2930 // one as they are relative probabilities (and thus work more like weights), 2931 // and hence we need to normalize them to let the sum of them become one. 2932 SwitchBB->normalizeSuccProbs(); 2933 2934 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2935 MVT::Other, getControlRoot(), 2936 Cmp, DAG.getBasicBlock(B.TargetBB)); 2937 2938 // Avoid emitting unnecessary branches to the next block. 2939 if (NextMBB != NextBlock(SwitchBB)) 2940 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2941 DAG.getBasicBlock(NextMBB)); 2942 2943 DAG.setRoot(BrAnd); 2944 } 2945 2946 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2947 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2948 2949 // Retrieve successors. Look through artificial IR level blocks like 2950 // catchswitch for successors. 2951 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2952 const BasicBlock *EHPadBB = I.getSuccessor(1); 2953 2954 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2955 // have to do anything here to lower funclet bundles. 2956 assert(!I.hasOperandBundlesOtherThan( 2957 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2958 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2959 LLVMContext::OB_cfguardtarget, 2960 LLVMContext::OB_clang_arc_attachedcall}) && 2961 "Cannot lower invokes with arbitrary operand bundles yet!"); 2962 2963 const Value *Callee(I.getCalledOperand()); 2964 const Function *Fn = dyn_cast<Function>(Callee); 2965 if (isa<InlineAsm>(Callee)) 2966 visitInlineAsm(I, EHPadBB); 2967 else if (Fn && Fn->isIntrinsic()) { 2968 switch (Fn->getIntrinsicID()) { 2969 default: 2970 llvm_unreachable("Cannot invoke this intrinsic"); 2971 case Intrinsic::donothing: 2972 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2973 case Intrinsic::seh_try_begin: 2974 case Intrinsic::seh_scope_begin: 2975 case Intrinsic::seh_try_end: 2976 case Intrinsic::seh_scope_end: 2977 break; 2978 case Intrinsic::experimental_patchpoint_void: 2979 case Intrinsic::experimental_patchpoint_i64: 2980 visitPatchpoint(I, EHPadBB); 2981 break; 2982 case Intrinsic::experimental_gc_statepoint: 2983 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2984 break; 2985 case Intrinsic::wasm_rethrow: { 2986 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2987 // special because it can be invoked, so we manually lower it to a DAG 2988 // node here. 2989 SmallVector<SDValue, 8> Ops; 2990 Ops.push_back(getRoot()); // inchain 2991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2992 Ops.push_back( 2993 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2994 TLI.getPointerTy(DAG.getDataLayout()))); 2995 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2996 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2997 break; 2998 } 2999 } 3000 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3001 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3002 // Eventually we will support lowering the @llvm.experimental.deoptimize 3003 // intrinsic, and right now there are no plans to support other intrinsics 3004 // with deopt state. 3005 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3006 } else { 3007 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3008 } 3009 3010 // If the value of the invoke is used outside of its defining block, make it 3011 // available as a virtual register. 3012 // We already took care of the exported value for the statepoint instruction 3013 // during call to the LowerStatepoint. 3014 if (!isa<GCStatepointInst>(I)) { 3015 CopyToExportRegsIfNeeded(&I); 3016 } 3017 3018 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3019 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3020 BranchProbability EHPadBBProb = 3021 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3022 : BranchProbability::getZero(); 3023 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3024 3025 // Update successor info. 3026 addSuccessorWithProb(InvokeMBB, Return); 3027 for (auto &UnwindDest : UnwindDests) { 3028 UnwindDest.first->setIsEHPad(); 3029 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3030 } 3031 InvokeMBB->normalizeSuccProbs(); 3032 3033 // Drop into normal successor. 3034 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3035 DAG.getBasicBlock(Return))); 3036 } 3037 3038 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3039 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3040 3041 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3042 // have to do anything here to lower funclet bundles. 3043 assert(!I.hasOperandBundlesOtherThan( 3044 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3045 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3046 3047 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3048 visitInlineAsm(I); 3049 CopyToExportRegsIfNeeded(&I); 3050 3051 // Retrieve successors. 3052 SmallPtrSet<BasicBlock *, 8> Dests; 3053 Dests.insert(I.getDefaultDest()); 3054 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3055 3056 // Update successor info. 3057 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3058 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3059 BasicBlock *Dest = I.getIndirectDest(i); 3060 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3061 Target->setIsInlineAsmBrIndirectTarget(); 3062 Target->setMachineBlockAddressTaken(); 3063 Target->setLabelMustBeEmitted(); 3064 // Don't add duplicate machine successors. 3065 if (Dests.insert(Dest).second) 3066 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3067 } 3068 CallBrMBB->normalizeSuccProbs(); 3069 3070 // Drop into default successor. 3071 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3072 MVT::Other, getControlRoot(), 3073 DAG.getBasicBlock(Return))); 3074 } 3075 3076 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3077 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3078 } 3079 3080 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3081 assert(FuncInfo.MBB->isEHPad() && 3082 "Call to landingpad not in landing pad!"); 3083 3084 // If there aren't registers to copy the values into (e.g., during SjLj 3085 // exceptions), then don't bother to create these DAG nodes. 3086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3087 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3088 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3089 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3090 return; 3091 3092 // If landingpad's return type is token type, we don't create DAG nodes 3093 // for its exception pointer and selector value. The extraction of exception 3094 // pointer or selector value from token type landingpads is not currently 3095 // supported. 3096 if (LP.getType()->isTokenTy()) 3097 return; 3098 3099 SmallVector<EVT, 2> ValueVTs; 3100 SDLoc dl = getCurSDLoc(); 3101 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3102 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3103 3104 // Get the two live-in registers as SDValues. The physregs have already been 3105 // copied into virtual registers. 3106 SDValue Ops[2]; 3107 if (FuncInfo.ExceptionPointerVirtReg) { 3108 Ops[0] = DAG.getZExtOrTrunc( 3109 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3110 FuncInfo.ExceptionPointerVirtReg, 3111 TLI.getPointerTy(DAG.getDataLayout())), 3112 dl, ValueVTs[0]); 3113 } else { 3114 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3115 } 3116 Ops[1] = DAG.getZExtOrTrunc( 3117 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3118 FuncInfo.ExceptionSelectorVirtReg, 3119 TLI.getPointerTy(DAG.getDataLayout())), 3120 dl, ValueVTs[1]); 3121 3122 // Merge into one. 3123 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3124 DAG.getVTList(ValueVTs), Ops); 3125 setValue(&LP, Res); 3126 } 3127 3128 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3129 MachineBasicBlock *Last) { 3130 // Update JTCases. 3131 for (JumpTableBlock &JTB : SL->JTCases) 3132 if (JTB.first.HeaderBB == First) 3133 JTB.first.HeaderBB = Last; 3134 3135 // Update BitTestCases. 3136 for (BitTestBlock &BTB : SL->BitTestCases) 3137 if (BTB.Parent == First) 3138 BTB.Parent = Last; 3139 } 3140 3141 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3142 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3143 3144 // Update machine-CFG edges with unique successors. 3145 SmallSet<BasicBlock*, 32> Done; 3146 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3147 BasicBlock *BB = I.getSuccessor(i); 3148 bool Inserted = Done.insert(BB).second; 3149 if (!Inserted) 3150 continue; 3151 3152 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3153 addSuccessorWithProb(IndirectBrMBB, Succ); 3154 } 3155 IndirectBrMBB->normalizeSuccProbs(); 3156 3157 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3158 MVT::Other, getControlRoot(), 3159 getValue(I.getAddress()))); 3160 } 3161 3162 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3163 if (!DAG.getTarget().Options.TrapUnreachable) 3164 return; 3165 3166 // We may be able to ignore unreachable behind a noreturn call. 3167 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3168 const BasicBlock &BB = *I.getParent(); 3169 if (&I != &BB.front()) { 3170 BasicBlock::const_iterator PredI = 3171 std::prev(BasicBlock::const_iterator(&I)); 3172 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3173 if (Call->doesNotReturn()) 3174 return; 3175 } 3176 } 3177 } 3178 3179 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3180 } 3181 3182 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3183 SDNodeFlags Flags; 3184 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3185 Flags.copyFMF(*FPOp); 3186 3187 SDValue Op = getValue(I.getOperand(0)); 3188 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3189 Op, Flags); 3190 setValue(&I, UnNodeValue); 3191 } 3192 3193 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3194 SDNodeFlags Flags; 3195 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3196 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3197 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3198 } 3199 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3200 Flags.setExact(ExactOp->isExact()); 3201 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3202 Flags.copyFMF(*FPOp); 3203 3204 SDValue Op1 = getValue(I.getOperand(0)); 3205 SDValue Op2 = getValue(I.getOperand(1)); 3206 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3207 Op1, Op2, Flags); 3208 setValue(&I, BinNodeValue); 3209 } 3210 3211 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3212 SDValue Op1 = getValue(I.getOperand(0)); 3213 SDValue Op2 = getValue(I.getOperand(1)); 3214 3215 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3216 Op1.getValueType(), DAG.getDataLayout()); 3217 3218 // Coerce the shift amount to the right type if we can. This exposes the 3219 // truncate or zext to optimization early. 3220 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3221 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3222 "Unexpected shift type"); 3223 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3224 } 3225 3226 bool nuw = false; 3227 bool nsw = false; 3228 bool exact = false; 3229 3230 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3231 3232 if (const OverflowingBinaryOperator *OFBinOp = 3233 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3234 nuw = OFBinOp->hasNoUnsignedWrap(); 3235 nsw = OFBinOp->hasNoSignedWrap(); 3236 } 3237 if (const PossiblyExactOperator *ExactOp = 3238 dyn_cast<const PossiblyExactOperator>(&I)) 3239 exact = ExactOp->isExact(); 3240 } 3241 SDNodeFlags Flags; 3242 Flags.setExact(exact); 3243 Flags.setNoSignedWrap(nsw); 3244 Flags.setNoUnsignedWrap(nuw); 3245 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3246 Flags); 3247 setValue(&I, Res); 3248 } 3249 3250 void SelectionDAGBuilder::visitSDiv(const User &I) { 3251 SDValue Op1 = getValue(I.getOperand(0)); 3252 SDValue Op2 = getValue(I.getOperand(1)); 3253 3254 SDNodeFlags Flags; 3255 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3256 cast<PossiblyExactOperator>(&I)->isExact()); 3257 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3258 Op2, Flags)); 3259 } 3260 3261 void SelectionDAGBuilder::visitICmp(const User &I) { 3262 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3263 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3264 predicate = IC->getPredicate(); 3265 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3266 predicate = ICmpInst::Predicate(IC->getPredicate()); 3267 SDValue Op1 = getValue(I.getOperand(0)); 3268 SDValue Op2 = getValue(I.getOperand(1)); 3269 ISD::CondCode Opcode = getICmpCondCode(predicate); 3270 3271 auto &TLI = DAG.getTargetLoweringInfo(); 3272 EVT MemVT = 3273 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3274 3275 // If a pointer's DAG type is larger than its memory type then the DAG values 3276 // are zero-extended. This breaks signed comparisons so truncate back to the 3277 // underlying type before doing the compare. 3278 if (Op1.getValueType() != MemVT) { 3279 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3280 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3281 } 3282 3283 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3284 I.getType()); 3285 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3286 } 3287 3288 void SelectionDAGBuilder::visitFCmp(const User &I) { 3289 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3290 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3291 predicate = FC->getPredicate(); 3292 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3293 predicate = FCmpInst::Predicate(FC->getPredicate()); 3294 SDValue Op1 = getValue(I.getOperand(0)); 3295 SDValue Op2 = getValue(I.getOperand(1)); 3296 3297 ISD::CondCode Condition = getFCmpCondCode(predicate); 3298 auto *FPMO = cast<FPMathOperator>(&I); 3299 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3300 Condition = getFCmpCodeWithoutNaN(Condition); 3301 3302 SDNodeFlags Flags; 3303 Flags.copyFMF(*FPMO); 3304 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3305 3306 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3307 I.getType()); 3308 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3309 } 3310 3311 // Check if the condition of the select has one use or two users that are both 3312 // selects with the same condition. 3313 static bool hasOnlySelectUsers(const Value *Cond) { 3314 return llvm::all_of(Cond->users(), [](const Value *V) { 3315 return isa<SelectInst>(V); 3316 }); 3317 } 3318 3319 void SelectionDAGBuilder::visitSelect(const User &I) { 3320 SmallVector<EVT, 4> ValueVTs; 3321 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3322 ValueVTs); 3323 unsigned NumValues = ValueVTs.size(); 3324 if (NumValues == 0) return; 3325 3326 SmallVector<SDValue, 4> Values(NumValues); 3327 SDValue Cond = getValue(I.getOperand(0)); 3328 SDValue LHSVal = getValue(I.getOperand(1)); 3329 SDValue RHSVal = getValue(I.getOperand(2)); 3330 SmallVector<SDValue, 1> BaseOps(1, Cond); 3331 ISD::NodeType OpCode = 3332 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3333 3334 bool IsUnaryAbs = false; 3335 bool Negate = false; 3336 3337 SDNodeFlags Flags; 3338 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3339 Flags.copyFMF(*FPOp); 3340 3341 // Min/max matching is only viable if all output VTs are the same. 3342 if (all_equal(ValueVTs)) { 3343 EVT VT = ValueVTs[0]; 3344 LLVMContext &Ctx = *DAG.getContext(); 3345 auto &TLI = DAG.getTargetLoweringInfo(); 3346 3347 // We care about the legality of the operation after it has been type 3348 // legalized. 3349 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3350 VT = TLI.getTypeToTransformTo(Ctx, VT); 3351 3352 // If the vselect is legal, assume we want to leave this as a vector setcc + 3353 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3354 // min/max is legal on the scalar type. 3355 bool UseScalarMinMax = VT.isVector() && 3356 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3357 3358 Value *LHS, *RHS; 3359 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3360 ISD::NodeType Opc = ISD::DELETED_NODE; 3361 switch (SPR.Flavor) { 3362 case SPF_UMAX: Opc = ISD::UMAX; break; 3363 case SPF_UMIN: Opc = ISD::UMIN; break; 3364 case SPF_SMAX: Opc = ISD::SMAX; break; 3365 case SPF_SMIN: Opc = ISD::SMIN; break; 3366 case SPF_FMINNUM: 3367 switch (SPR.NaNBehavior) { 3368 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3369 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3370 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3371 case SPNB_RETURNS_ANY: { 3372 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3373 Opc = ISD::FMINNUM; 3374 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3375 Opc = ISD::FMINIMUM; 3376 else if (UseScalarMinMax) 3377 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3378 ISD::FMINNUM : ISD::FMINIMUM; 3379 break; 3380 } 3381 } 3382 break; 3383 case SPF_FMAXNUM: 3384 switch (SPR.NaNBehavior) { 3385 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3386 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3387 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3388 case SPNB_RETURNS_ANY: 3389 3390 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3391 Opc = ISD::FMAXNUM; 3392 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3393 Opc = ISD::FMAXIMUM; 3394 else if (UseScalarMinMax) 3395 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3396 ISD::FMAXNUM : ISD::FMAXIMUM; 3397 break; 3398 } 3399 break; 3400 case SPF_NABS: 3401 Negate = true; 3402 [[fallthrough]]; 3403 case SPF_ABS: 3404 IsUnaryAbs = true; 3405 Opc = ISD::ABS; 3406 break; 3407 default: break; 3408 } 3409 3410 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3411 (TLI.isOperationLegalOrCustom(Opc, VT) || 3412 (UseScalarMinMax && 3413 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3414 // If the underlying comparison instruction is used by any other 3415 // instruction, the consumed instructions won't be destroyed, so it is 3416 // not profitable to convert to a min/max. 3417 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3418 OpCode = Opc; 3419 LHSVal = getValue(LHS); 3420 RHSVal = getValue(RHS); 3421 BaseOps.clear(); 3422 } 3423 3424 if (IsUnaryAbs) { 3425 OpCode = Opc; 3426 LHSVal = getValue(LHS); 3427 BaseOps.clear(); 3428 } 3429 } 3430 3431 if (IsUnaryAbs) { 3432 for (unsigned i = 0; i != NumValues; ++i) { 3433 SDLoc dl = getCurSDLoc(); 3434 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3435 Values[i] = 3436 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3437 if (Negate) 3438 Values[i] = DAG.getNegative(Values[i], dl, VT); 3439 } 3440 } else { 3441 for (unsigned i = 0; i != NumValues; ++i) { 3442 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3443 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3444 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3445 Values[i] = DAG.getNode( 3446 OpCode, getCurSDLoc(), 3447 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3448 } 3449 } 3450 3451 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3452 DAG.getVTList(ValueVTs), Values)); 3453 } 3454 3455 void SelectionDAGBuilder::visitTrunc(const User &I) { 3456 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3457 SDValue N = getValue(I.getOperand(0)); 3458 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3459 I.getType()); 3460 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3461 } 3462 3463 void SelectionDAGBuilder::visitZExt(const User &I) { 3464 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3465 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3466 SDValue N = getValue(I.getOperand(0)); 3467 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3468 I.getType()); 3469 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3470 } 3471 3472 void SelectionDAGBuilder::visitSExt(const User &I) { 3473 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3474 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3475 SDValue N = getValue(I.getOperand(0)); 3476 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3477 I.getType()); 3478 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3479 } 3480 3481 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3482 // FPTrunc is never a no-op cast, no need to check 3483 SDValue N = getValue(I.getOperand(0)); 3484 SDLoc dl = getCurSDLoc(); 3485 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3486 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3487 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3488 DAG.getTargetConstant( 3489 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3490 } 3491 3492 void SelectionDAGBuilder::visitFPExt(const User &I) { 3493 // FPExt is never a no-op cast, no need to check 3494 SDValue N = getValue(I.getOperand(0)); 3495 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3496 I.getType()); 3497 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3498 } 3499 3500 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3501 // FPToUI is never a no-op cast, no need to check 3502 SDValue N = getValue(I.getOperand(0)); 3503 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3504 I.getType()); 3505 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3506 } 3507 3508 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3509 // FPToSI is never a no-op cast, no need to check 3510 SDValue N = getValue(I.getOperand(0)); 3511 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3512 I.getType()); 3513 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3514 } 3515 3516 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3517 // UIToFP is never a no-op cast, no need to check 3518 SDValue N = getValue(I.getOperand(0)); 3519 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3520 I.getType()); 3521 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3522 } 3523 3524 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3525 // SIToFP is never a no-op cast, no need to check 3526 SDValue N = getValue(I.getOperand(0)); 3527 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3528 I.getType()); 3529 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3530 } 3531 3532 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3533 // What to do depends on the size of the integer and the size of the pointer. 3534 // We can either truncate, zero extend, or no-op, accordingly. 3535 SDValue N = getValue(I.getOperand(0)); 3536 auto &TLI = DAG.getTargetLoweringInfo(); 3537 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3538 I.getType()); 3539 EVT PtrMemVT = 3540 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3541 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3542 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3543 setValue(&I, N); 3544 } 3545 3546 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3547 // What to do depends on the size of the integer and the size of the pointer. 3548 // We can either truncate, zero extend, or no-op, accordingly. 3549 SDValue N = getValue(I.getOperand(0)); 3550 auto &TLI = DAG.getTargetLoweringInfo(); 3551 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3552 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3553 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3554 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3555 setValue(&I, N); 3556 } 3557 3558 void SelectionDAGBuilder::visitBitCast(const User &I) { 3559 SDValue N = getValue(I.getOperand(0)); 3560 SDLoc dl = getCurSDLoc(); 3561 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3562 I.getType()); 3563 3564 // BitCast assures us that source and destination are the same size so this is 3565 // either a BITCAST or a no-op. 3566 if (DestVT != N.getValueType()) 3567 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3568 DestVT, N)); // convert types. 3569 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3570 // might fold any kind of constant expression to an integer constant and that 3571 // is not what we are looking for. Only recognize a bitcast of a genuine 3572 // constant integer as an opaque constant. 3573 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3574 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3575 /*isOpaque*/true)); 3576 else 3577 setValue(&I, N); // noop cast. 3578 } 3579 3580 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3582 const Value *SV = I.getOperand(0); 3583 SDValue N = getValue(SV); 3584 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3585 3586 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3587 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3588 3589 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3590 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3591 3592 setValue(&I, N); 3593 } 3594 3595 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3596 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3597 SDValue InVec = getValue(I.getOperand(0)); 3598 SDValue InVal = getValue(I.getOperand(1)); 3599 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3600 TLI.getVectorIdxTy(DAG.getDataLayout())); 3601 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3602 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3603 InVec, InVal, InIdx)); 3604 } 3605 3606 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3607 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3608 SDValue InVec = getValue(I.getOperand(0)); 3609 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3610 TLI.getVectorIdxTy(DAG.getDataLayout())); 3611 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3612 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3613 InVec, InIdx)); 3614 } 3615 3616 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3617 SDValue Src1 = getValue(I.getOperand(0)); 3618 SDValue Src2 = getValue(I.getOperand(1)); 3619 ArrayRef<int> Mask; 3620 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3621 Mask = SVI->getShuffleMask(); 3622 else 3623 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3624 SDLoc DL = getCurSDLoc(); 3625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3626 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3627 EVT SrcVT = Src1.getValueType(); 3628 3629 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3630 VT.isScalableVector()) { 3631 // Canonical splat form of first element of first input vector. 3632 SDValue FirstElt = 3633 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3634 DAG.getVectorIdxConstant(0, DL)); 3635 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3636 return; 3637 } 3638 3639 // For now, we only handle splats for scalable vectors. 3640 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3641 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3642 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3643 3644 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3645 unsigned MaskNumElts = Mask.size(); 3646 3647 if (SrcNumElts == MaskNumElts) { 3648 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3649 return; 3650 } 3651 3652 // Normalize the shuffle vector since mask and vector length don't match. 3653 if (SrcNumElts < MaskNumElts) { 3654 // Mask is longer than the source vectors. We can use concatenate vector to 3655 // make the mask and vectors lengths match. 3656 3657 if (MaskNumElts % SrcNumElts == 0) { 3658 // Mask length is a multiple of the source vector length. 3659 // Check if the shuffle is some kind of concatenation of the input 3660 // vectors. 3661 unsigned NumConcat = MaskNumElts / SrcNumElts; 3662 bool IsConcat = true; 3663 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3664 for (unsigned i = 0; i != MaskNumElts; ++i) { 3665 int Idx = Mask[i]; 3666 if (Idx < 0) 3667 continue; 3668 // Ensure the indices in each SrcVT sized piece are sequential and that 3669 // the same source is used for the whole piece. 3670 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3671 (ConcatSrcs[i / SrcNumElts] >= 0 && 3672 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3673 IsConcat = false; 3674 break; 3675 } 3676 // Remember which source this index came from. 3677 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3678 } 3679 3680 // The shuffle is concatenating multiple vectors together. Just emit 3681 // a CONCAT_VECTORS operation. 3682 if (IsConcat) { 3683 SmallVector<SDValue, 8> ConcatOps; 3684 for (auto Src : ConcatSrcs) { 3685 if (Src < 0) 3686 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3687 else if (Src == 0) 3688 ConcatOps.push_back(Src1); 3689 else 3690 ConcatOps.push_back(Src2); 3691 } 3692 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3693 return; 3694 } 3695 } 3696 3697 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3698 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3699 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3700 PaddedMaskNumElts); 3701 3702 // Pad both vectors with undefs to make them the same length as the mask. 3703 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3704 3705 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3706 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3707 MOps1[0] = Src1; 3708 MOps2[0] = Src2; 3709 3710 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3711 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3712 3713 // Readjust mask for new input vector length. 3714 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3715 for (unsigned i = 0; i != MaskNumElts; ++i) { 3716 int Idx = Mask[i]; 3717 if (Idx >= (int)SrcNumElts) 3718 Idx -= SrcNumElts - PaddedMaskNumElts; 3719 MappedOps[i] = Idx; 3720 } 3721 3722 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3723 3724 // If the concatenated vector was padded, extract a subvector with the 3725 // correct number of elements. 3726 if (MaskNumElts != PaddedMaskNumElts) 3727 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3728 DAG.getVectorIdxConstant(0, DL)); 3729 3730 setValue(&I, Result); 3731 return; 3732 } 3733 3734 if (SrcNumElts > MaskNumElts) { 3735 // Analyze the access pattern of the vector to see if we can extract 3736 // two subvectors and do the shuffle. 3737 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3738 bool CanExtract = true; 3739 for (int Idx : Mask) { 3740 unsigned Input = 0; 3741 if (Idx < 0) 3742 continue; 3743 3744 if (Idx >= (int)SrcNumElts) { 3745 Input = 1; 3746 Idx -= SrcNumElts; 3747 } 3748 3749 // If all the indices come from the same MaskNumElts sized portion of 3750 // the sources we can use extract. Also make sure the extract wouldn't 3751 // extract past the end of the source. 3752 int NewStartIdx = alignDown(Idx, MaskNumElts); 3753 if (NewStartIdx + MaskNumElts > SrcNumElts || 3754 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3755 CanExtract = false; 3756 // Make sure we always update StartIdx as we use it to track if all 3757 // elements are undef. 3758 StartIdx[Input] = NewStartIdx; 3759 } 3760 3761 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3762 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3763 return; 3764 } 3765 if (CanExtract) { 3766 // Extract appropriate subvector and generate a vector shuffle 3767 for (unsigned Input = 0; Input < 2; ++Input) { 3768 SDValue &Src = Input == 0 ? Src1 : Src2; 3769 if (StartIdx[Input] < 0) 3770 Src = DAG.getUNDEF(VT); 3771 else { 3772 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3773 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3774 } 3775 } 3776 3777 // Calculate new mask. 3778 SmallVector<int, 8> MappedOps(Mask); 3779 for (int &Idx : MappedOps) { 3780 if (Idx >= (int)SrcNumElts) 3781 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3782 else if (Idx >= 0) 3783 Idx -= StartIdx[0]; 3784 } 3785 3786 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3787 return; 3788 } 3789 } 3790 3791 // We can't use either concat vectors or extract subvectors so fall back to 3792 // replacing the shuffle with extract and build vector. 3793 // to insert and build vector. 3794 EVT EltVT = VT.getVectorElementType(); 3795 SmallVector<SDValue,8> Ops; 3796 for (int Idx : Mask) { 3797 SDValue Res; 3798 3799 if (Idx < 0) { 3800 Res = DAG.getUNDEF(EltVT); 3801 } else { 3802 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3803 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3804 3805 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3806 DAG.getVectorIdxConstant(Idx, DL)); 3807 } 3808 3809 Ops.push_back(Res); 3810 } 3811 3812 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3813 } 3814 3815 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3816 ArrayRef<unsigned> Indices = I.getIndices(); 3817 const Value *Op0 = I.getOperand(0); 3818 const Value *Op1 = I.getOperand(1); 3819 Type *AggTy = I.getType(); 3820 Type *ValTy = Op1->getType(); 3821 bool IntoUndef = isa<UndefValue>(Op0); 3822 bool FromUndef = isa<UndefValue>(Op1); 3823 3824 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3825 3826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3827 SmallVector<EVT, 4> AggValueVTs; 3828 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3829 SmallVector<EVT, 4> ValValueVTs; 3830 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3831 3832 unsigned NumAggValues = AggValueVTs.size(); 3833 unsigned NumValValues = ValValueVTs.size(); 3834 SmallVector<SDValue, 4> Values(NumAggValues); 3835 3836 // Ignore an insertvalue that produces an empty object 3837 if (!NumAggValues) { 3838 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3839 return; 3840 } 3841 3842 SDValue Agg = getValue(Op0); 3843 unsigned i = 0; 3844 // Copy the beginning value(s) from the original aggregate. 3845 for (; i != LinearIndex; ++i) 3846 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3847 SDValue(Agg.getNode(), Agg.getResNo() + i); 3848 // Copy values from the inserted value(s). 3849 if (NumValValues) { 3850 SDValue Val = getValue(Op1); 3851 for (; i != LinearIndex + NumValValues; ++i) 3852 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3853 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3854 } 3855 // Copy remaining value(s) from the original aggregate. 3856 for (; i != NumAggValues; ++i) 3857 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3858 SDValue(Agg.getNode(), Agg.getResNo() + i); 3859 3860 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3861 DAG.getVTList(AggValueVTs), Values)); 3862 } 3863 3864 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3865 ArrayRef<unsigned> Indices = I.getIndices(); 3866 const Value *Op0 = I.getOperand(0); 3867 Type *AggTy = Op0->getType(); 3868 Type *ValTy = I.getType(); 3869 bool OutOfUndef = isa<UndefValue>(Op0); 3870 3871 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3872 3873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3874 SmallVector<EVT, 4> ValValueVTs; 3875 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3876 3877 unsigned NumValValues = ValValueVTs.size(); 3878 3879 // Ignore a extractvalue that produces an empty object 3880 if (!NumValValues) { 3881 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3882 return; 3883 } 3884 3885 SmallVector<SDValue, 4> Values(NumValValues); 3886 3887 SDValue Agg = getValue(Op0); 3888 // Copy out the selected value(s). 3889 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3890 Values[i - LinearIndex] = 3891 OutOfUndef ? 3892 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3893 SDValue(Agg.getNode(), Agg.getResNo() + i); 3894 3895 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3896 DAG.getVTList(ValValueVTs), Values)); 3897 } 3898 3899 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3900 Value *Op0 = I.getOperand(0); 3901 // Note that the pointer operand may be a vector of pointers. Take the scalar 3902 // element which holds a pointer. 3903 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3904 SDValue N = getValue(Op0); 3905 SDLoc dl = getCurSDLoc(); 3906 auto &TLI = DAG.getTargetLoweringInfo(); 3907 3908 // Normalize Vector GEP - all scalar operands should be converted to the 3909 // splat vector. 3910 bool IsVectorGEP = I.getType()->isVectorTy(); 3911 ElementCount VectorElementCount = 3912 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3913 : ElementCount::getFixed(0); 3914 3915 if (IsVectorGEP && !N.getValueType().isVector()) { 3916 LLVMContext &Context = *DAG.getContext(); 3917 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3918 N = DAG.getSplat(VT, dl, N); 3919 } 3920 3921 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3922 GTI != E; ++GTI) { 3923 const Value *Idx = GTI.getOperand(); 3924 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3925 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3926 if (Field) { 3927 // N = N + Offset 3928 uint64_t Offset = 3929 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3930 3931 // In an inbounds GEP with an offset that is nonnegative even when 3932 // interpreted as signed, assume there is no unsigned overflow. 3933 SDNodeFlags Flags; 3934 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3935 Flags.setNoUnsignedWrap(true); 3936 3937 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3938 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3939 } 3940 } else { 3941 // IdxSize is the width of the arithmetic according to IR semantics. 3942 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3943 // (and fix up the result later). 3944 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3945 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3946 TypeSize ElementSize = 3947 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3948 // We intentionally mask away the high bits here; ElementSize may not 3949 // fit in IdxTy. 3950 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 3951 bool ElementScalable = ElementSize.isScalable(); 3952 3953 // If this is a scalar constant or a splat vector of constants, 3954 // handle it quickly. 3955 const auto *C = dyn_cast<Constant>(Idx); 3956 if (C && isa<VectorType>(C->getType())) 3957 C = C->getSplatValue(); 3958 3959 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3960 if (CI && CI->isZero()) 3961 continue; 3962 if (CI && !ElementScalable) { 3963 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3964 LLVMContext &Context = *DAG.getContext(); 3965 SDValue OffsVal; 3966 if (IsVectorGEP) 3967 OffsVal = DAG.getConstant( 3968 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3969 else 3970 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3971 3972 // In an inbounds GEP with an offset that is nonnegative even when 3973 // interpreted as signed, assume there is no unsigned overflow. 3974 SDNodeFlags Flags; 3975 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3976 Flags.setNoUnsignedWrap(true); 3977 3978 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3979 3980 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3981 continue; 3982 } 3983 3984 // N = N + Idx * ElementMul; 3985 SDValue IdxN = getValue(Idx); 3986 3987 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3988 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3989 VectorElementCount); 3990 IdxN = DAG.getSplat(VT, dl, IdxN); 3991 } 3992 3993 // If the index is smaller or larger than intptr_t, truncate or extend 3994 // it. 3995 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3996 3997 if (ElementScalable) { 3998 EVT VScaleTy = N.getValueType().getScalarType(); 3999 SDValue VScale = DAG.getNode( 4000 ISD::VSCALE, dl, VScaleTy, 4001 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4002 if (IsVectorGEP) 4003 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4004 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4005 } else { 4006 // If this is a multiply by a power of two, turn it into a shl 4007 // immediately. This is a very common case. 4008 if (ElementMul != 1) { 4009 if (ElementMul.isPowerOf2()) { 4010 unsigned Amt = ElementMul.logBase2(); 4011 IdxN = DAG.getNode(ISD::SHL, dl, 4012 N.getValueType(), IdxN, 4013 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4014 } else { 4015 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4016 IdxN.getValueType()); 4017 IdxN = DAG.getNode(ISD::MUL, dl, 4018 N.getValueType(), IdxN, Scale); 4019 } 4020 } 4021 } 4022 4023 N = DAG.getNode(ISD::ADD, dl, 4024 N.getValueType(), N, IdxN); 4025 } 4026 } 4027 4028 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4029 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4030 if (IsVectorGEP) { 4031 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4032 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4033 } 4034 4035 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4036 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4037 4038 setValue(&I, N); 4039 } 4040 4041 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4042 // If this is a fixed sized alloca in the entry block of the function, 4043 // allocate it statically on the stack. 4044 if (FuncInfo.StaticAllocaMap.count(&I)) 4045 return; // getValue will auto-populate this. 4046 4047 SDLoc dl = getCurSDLoc(); 4048 Type *Ty = I.getAllocatedType(); 4049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4050 auto &DL = DAG.getDataLayout(); 4051 TypeSize TySize = DL.getTypeAllocSize(Ty); 4052 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4053 4054 SDValue AllocSize = getValue(I.getArraySize()); 4055 4056 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4057 if (AllocSize.getValueType() != IntPtr) 4058 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4059 4060 if (TySize.isScalable()) 4061 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4062 DAG.getVScale(dl, IntPtr, 4063 APInt(IntPtr.getScalarSizeInBits(), 4064 TySize.getKnownMinValue()))); 4065 else 4066 AllocSize = 4067 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4068 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4069 4070 // Handle alignment. If the requested alignment is less than or equal to 4071 // the stack alignment, ignore it. If the size is greater than or equal to 4072 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4073 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4074 if (*Alignment <= StackAlign) 4075 Alignment = std::nullopt; 4076 4077 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4078 // Round the size of the allocation up to the stack alignment size 4079 // by add SA-1 to the size. This doesn't overflow because we're computing 4080 // an address inside an alloca. 4081 SDNodeFlags Flags; 4082 Flags.setNoUnsignedWrap(true); 4083 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4084 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4085 4086 // Mask out the low bits for alignment purposes. 4087 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4088 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4089 4090 SDValue Ops[] = { 4091 getRoot(), AllocSize, 4092 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4093 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4094 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4095 setValue(&I, DSA); 4096 DAG.setRoot(DSA.getValue(1)); 4097 4098 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4099 } 4100 4101 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4102 if (I.isAtomic()) 4103 return visitAtomicLoad(I); 4104 4105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4106 const Value *SV = I.getOperand(0); 4107 if (TLI.supportSwiftError()) { 4108 // Swifterror values can come from either a function parameter with 4109 // swifterror attribute or an alloca with swifterror attribute. 4110 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4111 if (Arg->hasSwiftErrorAttr()) 4112 return visitLoadFromSwiftError(I); 4113 } 4114 4115 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4116 if (Alloca->isSwiftError()) 4117 return visitLoadFromSwiftError(I); 4118 } 4119 } 4120 4121 SDValue Ptr = getValue(SV); 4122 4123 Type *Ty = I.getType(); 4124 SmallVector<EVT, 4> ValueVTs, MemVTs; 4125 SmallVector<uint64_t, 4> Offsets; 4126 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4127 unsigned NumValues = ValueVTs.size(); 4128 if (NumValues == 0) 4129 return; 4130 4131 Align Alignment = I.getAlign(); 4132 AAMDNodes AAInfo = I.getAAMetadata(); 4133 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4134 bool isVolatile = I.isVolatile(); 4135 MachineMemOperand::Flags MMOFlags = 4136 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4137 4138 SDValue Root; 4139 bool ConstantMemory = false; 4140 if (isVolatile) 4141 // Serialize volatile loads with other side effects. 4142 Root = getRoot(); 4143 else if (NumValues > MaxParallelChains) 4144 Root = getMemoryRoot(); 4145 else if (AA && 4146 AA->pointsToConstantMemory(MemoryLocation( 4147 SV, 4148 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4149 AAInfo))) { 4150 // Do not serialize (non-volatile) loads of constant memory with anything. 4151 Root = DAG.getEntryNode(); 4152 ConstantMemory = true; 4153 MMOFlags |= MachineMemOperand::MOInvariant; 4154 } else { 4155 // Do not serialize non-volatile loads against each other. 4156 Root = DAG.getRoot(); 4157 } 4158 4159 SDLoc dl = getCurSDLoc(); 4160 4161 if (isVolatile) 4162 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4163 4164 // An aggregate load cannot wrap around the address space, so offsets to its 4165 // parts don't wrap either. 4166 SDNodeFlags Flags; 4167 Flags.setNoUnsignedWrap(true); 4168 4169 SmallVector<SDValue, 4> Values(NumValues); 4170 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4171 EVT PtrVT = Ptr.getValueType(); 4172 4173 unsigned ChainI = 0; 4174 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4175 // Serializing loads here may result in excessive register pressure, and 4176 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4177 // could recover a bit by hoisting nodes upward in the chain by recognizing 4178 // they are side-effect free or do not alias. The optimizer should really 4179 // avoid this case by converting large object/array copies to llvm.memcpy 4180 // (MaxParallelChains should always remain as failsafe). 4181 if (ChainI == MaxParallelChains) { 4182 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4183 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4184 ArrayRef(Chains.data(), ChainI)); 4185 Root = Chain; 4186 ChainI = 0; 4187 } 4188 SDValue A = DAG.getNode(ISD::ADD, dl, 4189 PtrVT, Ptr, 4190 DAG.getConstant(Offsets[i], dl, PtrVT), 4191 Flags); 4192 4193 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4194 MachinePointerInfo(SV, Offsets[i]), Alignment, 4195 MMOFlags, AAInfo, Ranges); 4196 Chains[ChainI] = L.getValue(1); 4197 4198 if (MemVTs[i] != ValueVTs[i]) 4199 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4200 4201 Values[i] = L; 4202 } 4203 4204 if (!ConstantMemory) { 4205 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4206 ArrayRef(Chains.data(), ChainI)); 4207 if (isVolatile) 4208 DAG.setRoot(Chain); 4209 else 4210 PendingLoads.push_back(Chain); 4211 } 4212 4213 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4214 DAG.getVTList(ValueVTs), Values)); 4215 } 4216 4217 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4218 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4219 "call visitStoreToSwiftError when backend supports swifterror"); 4220 4221 SmallVector<EVT, 4> ValueVTs; 4222 SmallVector<uint64_t, 4> Offsets; 4223 const Value *SrcV = I.getOperand(0); 4224 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4225 SrcV->getType(), ValueVTs, &Offsets); 4226 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4227 "expect a single EVT for swifterror"); 4228 4229 SDValue Src = getValue(SrcV); 4230 // Create a virtual register, then update the virtual register. 4231 Register VReg = 4232 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4233 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4234 // Chain can be getRoot or getControlRoot. 4235 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4236 SDValue(Src.getNode(), Src.getResNo())); 4237 DAG.setRoot(CopyNode); 4238 } 4239 4240 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4241 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4242 "call visitLoadFromSwiftError when backend supports swifterror"); 4243 4244 assert(!I.isVolatile() && 4245 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4246 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4247 "Support volatile, non temporal, invariant for load_from_swift_error"); 4248 4249 const Value *SV = I.getOperand(0); 4250 Type *Ty = I.getType(); 4251 assert( 4252 (!AA || 4253 !AA->pointsToConstantMemory(MemoryLocation( 4254 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4255 I.getAAMetadata()))) && 4256 "load_from_swift_error should not be constant memory"); 4257 4258 SmallVector<EVT, 4> ValueVTs; 4259 SmallVector<uint64_t, 4> Offsets; 4260 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4261 ValueVTs, &Offsets); 4262 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4263 "expect a single EVT for swifterror"); 4264 4265 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4266 SDValue L = DAG.getCopyFromReg( 4267 getRoot(), getCurSDLoc(), 4268 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4269 4270 setValue(&I, L); 4271 } 4272 4273 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4274 if (I.isAtomic()) 4275 return visitAtomicStore(I); 4276 4277 const Value *SrcV = I.getOperand(0); 4278 const Value *PtrV = I.getOperand(1); 4279 4280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4281 if (TLI.supportSwiftError()) { 4282 // Swifterror values can come from either a function parameter with 4283 // swifterror attribute or an alloca with swifterror attribute. 4284 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4285 if (Arg->hasSwiftErrorAttr()) 4286 return visitStoreToSwiftError(I); 4287 } 4288 4289 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4290 if (Alloca->isSwiftError()) 4291 return visitStoreToSwiftError(I); 4292 } 4293 } 4294 4295 SmallVector<EVT, 4> ValueVTs, MemVTs; 4296 SmallVector<uint64_t, 4> Offsets; 4297 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4298 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4299 unsigned NumValues = ValueVTs.size(); 4300 if (NumValues == 0) 4301 return; 4302 4303 // Get the lowered operands. Note that we do this after 4304 // checking if NumResults is zero, because with zero results 4305 // the operands won't have values in the map. 4306 SDValue Src = getValue(SrcV); 4307 SDValue Ptr = getValue(PtrV); 4308 4309 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4310 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4311 SDLoc dl = getCurSDLoc(); 4312 Align Alignment = I.getAlign(); 4313 AAMDNodes AAInfo = I.getAAMetadata(); 4314 4315 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4316 4317 // An aggregate load cannot wrap around the address space, so offsets to its 4318 // parts don't wrap either. 4319 SDNodeFlags Flags; 4320 Flags.setNoUnsignedWrap(true); 4321 4322 unsigned ChainI = 0; 4323 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4324 // See visitLoad comments. 4325 if (ChainI == MaxParallelChains) { 4326 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4327 ArrayRef(Chains.data(), ChainI)); 4328 Root = Chain; 4329 ChainI = 0; 4330 } 4331 SDValue Add = 4332 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4333 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4334 if (MemVTs[i] != ValueVTs[i]) 4335 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4336 SDValue St = 4337 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4338 Alignment, MMOFlags, AAInfo); 4339 Chains[ChainI] = St; 4340 } 4341 4342 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4343 ArrayRef(Chains.data(), ChainI)); 4344 setValue(&I, StoreNode); 4345 DAG.setRoot(StoreNode); 4346 } 4347 4348 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4349 bool IsCompressing) { 4350 SDLoc sdl = getCurSDLoc(); 4351 4352 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4353 MaybeAlign &Alignment) { 4354 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4355 Src0 = I.getArgOperand(0); 4356 Ptr = I.getArgOperand(1); 4357 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4358 Mask = I.getArgOperand(3); 4359 }; 4360 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4361 MaybeAlign &Alignment) { 4362 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4363 Src0 = I.getArgOperand(0); 4364 Ptr = I.getArgOperand(1); 4365 Mask = I.getArgOperand(2); 4366 Alignment = std::nullopt; 4367 }; 4368 4369 Value *PtrOperand, *MaskOperand, *Src0Operand; 4370 MaybeAlign Alignment; 4371 if (IsCompressing) 4372 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4373 else 4374 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4375 4376 SDValue Ptr = getValue(PtrOperand); 4377 SDValue Src0 = getValue(Src0Operand); 4378 SDValue Mask = getValue(MaskOperand); 4379 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4380 4381 EVT VT = Src0.getValueType(); 4382 if (!Alignment) 4383 Alignment = DAG.getEVTAlign(VT); 4384 4385 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4386 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4387 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4388 SDValue StoreNode = 4389 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4390 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4391 DAG.setRoot(StoreNode); 4392 setValue(&I, StoreNode); 4393 } 4394 4395 // Get a uniform base for the Gather/Scatter intrinsic. 4396 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4397 // We try to represent it as a base pointer + vector of indices. 4398 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4399 // The first operand of the GEP may be a single pointer or a vector of pointers 4400 // Example: 4401 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4402 // or 4403 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4404 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4405 // 4406 // When the first GEP operand is a single pointer - it is the uniform base we 4407 // are looking for. If first operand of the GEP is a splat vector - we 4408 // extract the splat value and use it as a uniform base. 4409 // In all other cases the function returns 'false'. 4410 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4411 ISD::MemIndexType &IndexType, SDValue &Scale, 4412 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4413 uint64_t ElemSize) { 4414 SelectionDAG& DAG = SDB->DAG; 4415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4416 const DataLayout &DL = DAG.getDataLayout(); 4417 4418 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4419 4420 // Handle splat constant pointer. 4421 if (auto *C = dyn_cast<Constant>(Ptr)) { 4422 C = C->getSplatValue(); 4423 if (!C) 4424 return false; 4425 4426 Base = SDB->getValue(C); 4427 4428 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4429 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4430 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4431 IndexType = ISD::SIGNED_SCALED; 4432 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4433 return true; 4434 } 4435 4436 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4437 if (!GEP || GEP->getParent() != CurBB) 4438 return false; 4439 4440 if (GEP->getNumOperands() != 2) 4441 return false; 4442 4443 const Value *BasePtr = GEP->getPointerOperand(); 4444 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4445 4446 // Make sure the base is scalar and the index is a vector. 4447 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4448 return false; 4449 4450 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4451 4452 // Target may not support the required addressing mode. 4453 if (ScaleVal != 1 && 4454 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4455 return false; 4456 4457 Base = SDB->getValue(BasePtr); 4458 Index = SDB->getValue(IndexVal); 4459 IndexType = ISD::SIGNED_SCALED; 4460 4461 Scale = 4462 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4463 return true; 4464 } 4465 4466 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4467 SDLoc sdl = getCurSDLoc(); 4468 4469 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4470 const Value *Ptr = I.getArgOperand(1); 4471 SDValue Src0 = getValue(I.getArgOperand(0)); 4472 SDValue Mask = getValue(I.getArgOperand(3)); 4473 EVT VT = Src0.getValueType(); 4474 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4475 ->getMaybeAlignValue() 4476 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4478 4479 SDValue Base; 4480 SDValue Index; 4481 ISD::MemIndexType IndexType; 4482 SDValue Scale; 4483 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4484 I.getParent(), VT.getScalarStoreSize()); 4485 4486 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4487 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4488 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4489 // TODO: Make MachineMemOperands aware of scalable 4490 // vectors. 4491 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4492 if (!UniformBase) { 4493 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4494 Index = getValue(Ptr); 4495 IndexType = ISD::SIGNED_SCALED; 4496 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4497 } 4498 4499 EVT IdxVT = Index.getValueType(); 4500 EVT EltTy = IdxVT.getVectorElementType(); 4501 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4502 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4503 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4504 } 4505 4506 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4507 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4508 Ops, MMO, IndexType, false); 4509 DAG.setRoot(Scatter); 4510 setValue(&I, Scatter); 4511 } 4512 4513 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4514 SDLoc sdl = getCurSDLoc(); 4515 4516 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4517 MaybeAlign &Alignment) { 4518 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4519 Ptr = I.getArgOperand(0); 4520 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4521 Mask = I.getArgOperand(2); 4522 Src0 = I.getArgOperand(3); 4523 }; 4524 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4525 MaybeAlign &Alignment) { 4526 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4527 Ptr = I.getArgOperand(0); 4528 Alignment = std::nullopt; 4529 Mask = I.getArgOperand(1); 4530 Src0 = I.getArgOperand(2); 4531 }; 4532 4533 Value *PtrOperand, *MaskOperand, *Src0Operand; 4534 MaybeAlign Alignment; 4535 if (IsExpanding) 4536 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4537 else 4538 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4539 4540 SDValue Ptr = getValue(PtrOperand); 4541 SDValue Src0 = getValue(Src0Operand); 4542 SDValue Mask = getValue(MaskOperand); 4543 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4544 4545 EVT VT = Src0.getValueType(); 4546 if (!Alignment) 4547 Alignment = DAG.getEVTAlign(VT); 4548 4549 AAMDNodes AAInfo = I.getAAMetadata(); 4550 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4551 4552 // Do not serialize masked loads of constant memory with anything. 4553 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4554 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4555 4556 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4557 4558 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4559 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4560 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4561 4562 SDValue Load = 4563 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4564 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4565 if (AddToChain) 4566 PendingLoads.push_back(Load.getValue(1)); 4567 setValue(&I, Load); 4568 } 4569 4570 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4571 SDLoc sdl = getCurSDLoc(); 4572 4573 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4574 const Value *Ptr = I.getArgOperand(0); 4575 SDValue Src0 = getValue(I.getArgOperand(3)); 4576 SDValue Mask = getValue(I.getArgOperand(2)); 4577 4578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4579 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4580 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4581 ->getMaybeAlignValue() 4582 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4583 4584 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4585 4586 SDValue Root = DAG.getRoot(); 4587 SDValue Base; 4588 SDValue Index; 4589 ISD::MemIndexType IndexType; 4590 SDValue Scale; 4591 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4592 I.getParent(), VT.getScalarStoreSize()); 4593 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4594 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4595 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4596 // TODO: Make MachineMemOperands aware of scalable 4597 // vectors. 4598 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4599 4600 if (!UniformBase) { 4601 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4602 Index = getValue(Ptr); 4603 IndexType = ISD::SIGNED_SCALED; 4604 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4605 } 4606 4607 EVT IdxVT = Index.getValueType(); 4608 EVT EltTy = IdxVT.getVectorElementType(); 4609 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4610 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4611 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4612 } 4613 4614 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4615 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4616 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4617 4618 PendingLoads.push_back(Gather.getValue(1)); 4619 setValue(&I, Gather); 4620 } 4621 4622 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4623 SDLoc dl = getCurSDLoc(); 4624 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4625 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4626 SyncScope::ID SSID = I.getSyncScopeID(); 4627 4628 SDValue InChain = getRoot(); 4629 4630 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4631 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4632 4633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4634 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4635 4636 MachineFunction &MF = DAG.getMachineFunction(); 4637 MachineMemOperand *MMO = MF.getMachineMemOperand( 4638 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4639 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4640 FailureOrdering); 4641 4642 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4643 dl, MemVT, VTs, InChain, 4644 getValue(I.getPointerOperand()), 4645 getValue(I.getCompareOperand()), 4646 getValue(I.getNewValOperand()), MMO); 4647 4648 SDValue OutChain = L.getValue(2); 4649 4650 setValue(&I, L); 4651 DAG.setRoot(OutChain); 4652 } 4653 4654 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4655 SDLoc dl = getCurSDLoc(); 4656 ISD::NodeType NT; 4657 switch (I.getOperation()) { 4658 default: llvm_unreachable("Unknown atomicrmw operation"); 4659 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4660 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4661 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4662 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4663 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4664 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4665 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4666 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4667 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4668 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4669 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4670 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4671 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4672 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4673 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4674 case AtomicRMWInst::UIncWrap: 4675 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4676 break; 4677 case AtomicRMWInst::UDecWrap: 4678 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4679 break; 4680 } 4681 AtomicOrdering Ordering = I.getOrdering(); 4682 SyncScope::ID SSID = I.getSyncScopeID(); 4683 4684 SDValue InChain = getRoot(); 4685 4686 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4688 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4689 4690 MachineFunction &MF = DAG.getMachineFunction(); 4691 MachineMemOperand *MMO = MF.getMachineMemOperand( 4692 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4693 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4694 4695 SDValue L = 4696 DAG.getAtomic(NT, dl, MemVT, InChain, 4697 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4698 MMO); 4699 4700 SDValue OutChain = L.getValue(1); 4701 4702 setValue(&I, L); 4703 DAG.setRoot(OutChain); 4704 } 4705 4706 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4707 SDLoc dl = getCurSDLoc(); 4708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4709 SDValue Ops[3]; 4710 Ops[0] = getRoot(); 4711 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4712 TLI.getFenceOperandTy(DAG.getDataLayout())); 4713 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4714 TLI.getFenceOperandTy(DAG.getDataLayout())); 4715 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4716 setValue(&I, N); 4717 DAG.setRoot(N); 4718 } 4719 4720 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4721 SDLoc dl = getCurSDLoc(); 4722 AtomicOrdering Order = I.getOrdering(); 4723 SyncScope::ID SSID = I.getSyncScopeID(); 4724 4725 SDValue InChain = getRoot(); 4726 4727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4728 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4729 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4730 4731 if (!TLI.supportsUnalignedAtomics() && 4732 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4733 report_fatal_error("Cannot generate unaligned atomic load"); 4734 4735 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4736 4737 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4738 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4739 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4740 4741 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4742 4743 SDValue Ptr = getValue(I.getPointerOperand()); 4744 4745 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4746 // TODO: Once this is better exercised by tests, it should be merged with 4747 // the normal path for loads to prevent future divergence. 4748 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4749 if (MemVT != VT) 4750 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4751 4752 setValue(&I, L); 4753 SDValue OutChain = L.getValue(1); 4754 if (!I.isUnordered()) 4755 DAG.setRoot(OutChain); 4756 else 4757 PendingLoads.push_back(OutChain); 4758 return; 4759 } 4760 4761 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4762 Ptr, MMO); 4763 4764 SDValue OutChain = L.getValue(1); 4765 if (MemVT != VT) 4766 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4767 4768 setValue(&I, L); 4769 DAG.setRoot(OutChain); 4770 } 4771 4772 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4773 SDLoc dl = getCurSDLoc(); 4774 4775 AtomicOrdering Ordering = I.getOrdering(); 4776 SyncScope::ID SSID = I.getSyncScopeID(); 4777 4778 SDValue InChain = getRoot(); 4779 4780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4781 EVT MemVT = 4782 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4783 4784 if (!TLI.supportsUnalignedAtomics() && 4785 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4786 report_fatal_error("Cannot generate unaligned atomic store"); 4787 4788 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4789 4790 MachineFunction &MF = DAG.getMachineFunction(); 4791 MachineMemOperand *MMO = MF.getMachineMemOperand( 4792 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4793 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4794 4795 SDValue Val = getValue(I.getValueOperand()); 4796 if (Val.getValueType() != MemVT) 4797 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4798 SDValue Ptr = getValue(I.getPointerOperand()); 4799 4800 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4801 // TODO: Once this is better exercised by tests, it should be merged with 4802 // the normal path for stores to prevent future divergence. 4803 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4804 setValue(&I, S); 4805 DAG.setRoot(S); 4806 return; 4807 } 4808 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4809 Ptr, Val, MMO); 4810 4811 setValue(&I, OutChain); 4812 DAG.setRoot(OutChain); 4813 } 4814 4815 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4816 /// node. 4817 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4818 unsigned Intrinsic) { 4819 // Ignore the callsite's attributes. A specific call site may be marked with 4820 // readnone, but the lowering code will expect the chain based on the 4821 // definition. 4822 const Function *F = I.getCalledFunction(); 4823 bool HasChain = !F->doesNotAccessMemory(); 4824 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4825 4826 // Build the operand list. 4827 SmallVector<SDValue, 8> Ops; 4828 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4829 if (OnlyLoad) { 4830 // We don't need to serialize loads against other loads. 4831 Ops.push_back(DAG.getRoot()); 4832 } else { 4833 Ops.push_back(getRoot()); 4834 } 4835 } 4836 4837 // Info is set by getTgtMemIntrinsic 4838 TargetLowering::IntrinsicInfo Info; 4839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4840 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4841 DAG.getMachineFunction(), 4842 Intrinsic); 4843 4844 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4845 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4846 Info.opc == ISD::INTRINSIC_W_CHAIN) 4847 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4848 TLI.getPointerTy(DAG.getDataLayout()))); 4849 4850 // Add all operands of the call to the operand list. 4851 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4852 const Value *Arg = I.getArgOperand(i); 4853 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4854 Ops.push_back(getValue(Arg)); 4855 continue; 4856 } 4857 4858 // Use TargetConstant instead of a regular constant for immarg. 4859 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4860 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4861 assert(CI->getBitWidth() <= 64 && 4862 "large intrinsic immediates not handled"); 4863 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4864 } else { 4865 Ops.push_back( 4866 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4867 } 4868 } 4869 4870 SmallVector<EVT, 4> ValueVTs; 4871 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4872 4873 if (HasChain) 4874 ValueVTs.push_back(MVT::Other); 4875 4876 SDVTList VTs = DAG.getVTList(ValueVTs); 4877 4878 // Propagate fast-math-flags from IR to node(s). 4879 SDNodeFlags Flags; 4880 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4881 Flags.copyFMF(*FPMO); 4882 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4883 4884 // Create the node. 4885 SDValue Result; 4886 // In some cases, custom collection of operands from CallInst I may be needed. 4887 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4888 if (IsTgtIntrinsic) { 4889 // This is target intrinsic that touches memory 4890 // 4891 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4892 // didn't yield anything useful. 4893 MachinePointerInfo MPI; 4894 if (Info.ptrVal) 4895 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4896 else if (Info.fallbackAddressSpace) 4897 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4898 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4899 Info.memVT, MPI, Info.align, Info.flags, 4900 Info.size, I.getAAMetadata()); 4901 } else if (!HasChain) { 4902 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4903 } else if (!I.getType()->isVoidTy()) { 4904 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4905 } else { 4906 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4907 } 4908 4909 if (HasChain) { 4910 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4911 if (OnlyLoad) 4912 PendingLoads.push_back(Chain); 4913 else 4914 DAG.setRoot(Chain); 4915 } 4916 4917 if (!I.getType()->isVoidTy()) { 4918 if (!isa<VectorType>(I.getType())) 4919 Result = lowerRangeToAssertZExt(DAG, I, Result); 4920 4921 MaybeAlign Alignment = I.getRetAlign(); 4922 if (!Alignment) 4923 Alignment = F->getAttributes().getRetAlignment(); 4924 // Insert `assertalign` node if there's an alignment. 4925 if (InsertAssertAlign && Alignment) { 4926 Result = 4927 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4928 } 4929 4930 setValue(&I, Result); 4931 } 4932 } 4933 4934 /// GetSignificand - Get the significand and build it into a floating-point 4935 /// number with exponent of 1: 4936 /// 4937 /// Op = (Op & 0x007fffff) | 0x3f800000; 4938 /// 4939 /// where Op is the hexadecimal representation of floating point value. 4940 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4941 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4942 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4943 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4944 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4945 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4946 } 4947 4948 /// GetExponent - Get the exponent: 4949 /// 4950 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4951 /// 4952 /// where Op is the hexadecimal representation of floating point value. 4953 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4954 const TargetLowering &TLI, const SDLoc &dl) { 4955 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4956 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4957 SDValue t1 = DAG.getNode( 4958 ISD::SRL, dl, MVT::i32, t0, 4959 DAG.getConstant(23, dl, 4960 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4961 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4962 DAG.getConstant(127, dl, MVT::i32)); 4963 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4964 } 4965 4966 /// getF32Constant - Get 32-bit floating point constant. 4967 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4968 const SDLoc &dl) { 4969 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4970 MVT::f32); 4971 } 4972 4973 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4974 SelectionDAG &DAG) { 4975 // TODO: What fast-math-flags should be set on the floating-point nodes? 4976 4977 // IntegerPartOfX = ((int32_t)(t0); 4978 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4979 4980 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4981 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4982 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4983 4984 // IntegerPartOfX <<= 23; 4985 IntegerPartOfX = 4986 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4987 DAG.getConstant(23, dl, 4988 DAG.getTargetLoweringInfo().getShiftAmountTy( 4989 MVT::i32, DAG.getDataLayout()))); 4990 4991 SDValue TwoToFractionalPartOfX; 4992 if (LimitFloatPrecision <= 6) { 4993 // For floating-point precision of 6: 4994 // 4995 // TwoToFractionalPartOfX = 4996 // 0.997535578f + 4997 // (0.735607626f + 0.252464424f * x) * x; 4998 // 4999 // error 0.0144103317, which is 6 bits 5000 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5001 getF32Constant(DAG, 0x3e814304, dl)); 5002 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5003 getF32Constant(DAG, 0x3f3c50c8, dl)); 5004 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5005 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5006 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5007 } else if (LimitFloatPrecision <= 12) { 5008 // For floating-point precision of 12: 5009 // 5010 // TwoToFractionalPartOfX = 5011 // 0.999892986f + 5012 // (0.696457318f + 5013 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5014 // 5015 // error 0.000107046256, which is 13 to 14 bits 5016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5017 getF32Constant(DAG, 0x3da235e3, dl)); 5018 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5019 getF32Constant(DAG, 0x3e65b8f3, dl)); 5020 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5021 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5022 getF32Constant(DAG, 0x3f324b07, dl)); 5023 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5024 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5025 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5026 } else { // LimitFloatPrecision <= 18 5027 // For floating-point precision of 18: 5028 // 5029 // TwoToFractionalPartOfX = 5030 // 0.999999982f + 5031 // (0.693148872f + 5032 // (0.240227044f + 5033 // (0.554906021e-1f + 5034 // (0.961591928e-2f + 5035 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5036 // error 2.47208000*10^(-7), which is better than 18 bits 5037 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5038 getF32Constant(DAG, 0x3924b03e, dl)); 5039 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5040 getF32Constant(DAG, 0x3ab24b87, dl)); 5041 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5042 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5043 getF32Constant(DAG, 0x3c1d8c17, dl)); 5044 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5045 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5046 getF32Constant(DAG, 0x3d634a1d, dl)); 5047 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5048 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5049 getF32Constant(DAG, 0x3e75fe14, dl)); 5050 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5051 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5052 getF32Constant(DAG, 0x3f317234, dl)); 5053 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5054 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5055 getF32Constant(DAG, 0x3f800000, dl)); 5056 } 5057 5058 // Add the exponent into the result in integer domain. 5059 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5060 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5061 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5062 } 5063 5064 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5065 /// limited-precision mode. 5066 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5067 const TargetLowering &TLI, SDNodeFlags Flags) { 5068 if (Op.getValueType() == MVT::f32 && 5069 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5070 5071 // Put the exponent in the right bit position for later addition to the 5072 // final result: 5073 // 5074 // t0 = Op * log2(e) 5075 5076 // TODO: What fast-math-flags should be set here? 5077 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5078 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5079 return getLimitedPrecisionExp2(t0, dl, DAG); 5080 } 5081 5082 // No special expansion. 5083 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5084 } 5085 5086 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5087 /// limited-precision mode. 5088 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5089 const TargetLowering &TLI, SDNodeFlags Flags) { 5090 // TODO: What fast-math-flags should be set on the floating-point nodes? 5091 5092 if (Op.getValueType() == MVT::f32 && 5093 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5094 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5095 5096 // Scale the exponent by log(2). 5097 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5098 SDValue LogOfExponent = 5099 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5100 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5101 5102 // Get the significand and build it into a floating-point number with 5103 // exponent of 1. 5104 SDValue X = GetSignificand(DAG, Op1, dl); 5105 5106 SDValue LogOfMantissa; 5107 if (LimitFloatPrecision <= 6) { 5108 // For floating-point precision of 6: 5109 // 5110 // LogofMantissa = 5111 // -1.1609546f + 5112 // (1.4034025f - 0.23903021f * x) * x; 5113 // 5114 // error 0.0034276066, which is better than 8 bits 5115 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5116 getF32Constant(DAG, 0xbe74c456, dl)); 5117 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5118 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5120 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5121 getF32Constant(DAG, 0x3f949a29, dl)); 5122 } else if (LimitFloatPrecision <= 12) { 5123 // For floating-point precision of 12: 5124 // 5125 // LogOfMantissa = 5126 // -1.7417939f + 5127 // (2.8212026f + 5128 // (-1.4699568f + 5129 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5130 // 5131 // error 0.000061011436, which is 14 bits 5132 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5133 getF32Constant(DAG, 0xbd67b6d6, dl)); 5134 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5135 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5137 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5138 getF32Constant(DAG, 0x3fbc278b, dl)); 5139 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5140 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5141 getF32Constant(DAG, 0x40348e95, dl)); 5142 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5143 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5144 getF32Constant(DAG, 0x3fdef31a, dl)); 5145 } else { // LimitFloatPrecision <= 18 5146 // For floating-point precision of 18: 5147 // 5148 // LogOfMantissa = 5149 // -2.1072184f + 5150 // (4.2372794f + 5151 // (-3.7029485f + 5152 // (2.2781945f + 5153 // (-0.87823314f + 5154 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5155 // 5156 // error 0.0000023660568, which is better than 18 bits 5157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5158 getF32Constant(DAG, 0xbc91e5ac, dl)); 5159 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5160 getF32Constant(DAG, 0x3e4350aa, dl)); 5161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5162 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5163 getF32Constant(DAG, 0x3f60d3e3, dl)); 5164 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5165 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5166 getF32Constant(DAG, 0x4011cdf0, dl)); 5167 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5168 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5169 getF32Constant(DAG, 0x406cfd1c, dl)); 5170 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5171 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5172 getF32Constant(DAG, 0x408797cb, dl)); 5173 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5174 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5175 getF32Constant(DAG, 0x4006dcab, dl)); 5176 } 5177 5178 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5179 } 5180 5181 // No special expansion. 5182 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5183 } 5184 5185 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5186 /// limited-precision mode. 5187 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5188 const TargetLowering &TLI, SDNodeFlags Flags) { 5189 // TODO: What fast-math-flags should be set on the floating-point nodes? 5190 5191 if (Op.getValueType() == MVT::f32 && 5192 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5193 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5194 5195 // Get the exponent. 5196 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5197 5198 // Get the significand and build it into a floating-point number with 5199 // exponent of 1. 5200 SDValue X = GetSignificand(DAG, Op1, dl); 5201 5202 // Different possible minimax approximations of significand in 5203 // floating-point for various degrees of accuracy over [1,2]. 5204 SDValue Log2ofMantissa; 5205 if (LimitFloatPrecision <= 6) { 5206 // For floating-point precision of 6: 5207 // 5208 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5209 // 5210 // error 0.0049451742, which is more than 7 bits 5211 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5212 getF32Constant(DAG, 0xbeb08fe0, dl)); 5213 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5214 getF32Constant(DAG, 0x40019463, dl)); 5215 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5216 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5217 getF32Constant(DAG, 0x3fd6633d, dl)); 5218 } else if (LimitFloatPrecision <= 12) { 5219 // For floating-point precision of 12: 5220 // 5221 // Log2ofMantissa = 5222 // -2.51285454f + 5223 // (4.07009056f + 5224 // (-2.12067489f + 5225 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5226 // 5227 // error 0.0000876136000, which is better than 13 bits 5228 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5229 getF32Constant(DAG, 0xbda7262e, dl)); 5230 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5231 getF32Constant(DAG, 0x3f25280b, dl)); 5232 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5233 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5234 getF32Constant(DAG, 0x4007b923, dl)); 5235 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5236 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5237 getF32Constant(DAG, 0x40823e2f, dl)); 5238 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5239 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5240 getF32Constant(DAG, 0x4020d29c, dl)); 5241 } else { // LimitFloatPrecision <= 18 5242 // For floating-point precision of 18: 5243 // 5244 // Log2ofMantissa = 5245 // -3.0400495f + 5246 // (6.1129976f + 5247 // (-5.3420409f + 5248 // (3.2865683f + 5249 // (-1.2669343f + 5250 // (0.27515199f - 5251 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5252 // 5253 // error 0.0000018516, which is better than 18 bits 5254 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5255 getF32Constant(DAG, 0xbcd2769e, dl)); 5256 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5257 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5259 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5260 getF32Constant(DAG, 0x3fa22ae7, dl)); 5261 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5262 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5263 getF32Constant(DAG, 0x40525723, dl)); 5264 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5265 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5266 getF32Constant(DAG, 0x40aaf200, dl)); 5267 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5268 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5269 getF32Constant(DAG, 0x40c39dad, dl)); 5270 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5271 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5272 getF32Constant(DAG, 0x4042902c, dl)); 5273 } 5274 5275 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5276 } 5277 5278 // No special expansion. 5279 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5280 } 5281 5282 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5283 /// limited-precision mode. 5284 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5285 const TargetLowering &TLI, SDNodeFlags Flags) { 5286 // TODO: What fast-math-flags should be set on the floating-point nodes? 5287 5288 if (Op.getValueType() == MVT::f32 && 5289 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5290 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5291 5292 // Scale the exponent by log10(2) [0.30102999f]. 5293 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5294 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5295 getF32Constant(DAG, 0x3e9a209a, dl)); 5296 5297 // Get the significand and build it into a floating-point number with 5298 // exponent of 1. 5299 SDValue X = GetSignificand(DAG, Op1, dl); 5300 5301 SDValue Log10ofMantissa; 5302 if (LimitFloatPrecision <= 6) { 5303 // For floating-point precision of 6: 5304 // 5305 // Log10ofMantissa = 5306 // -0.50419619f + 5307 // (0.60948995f - 0.10380950f * x) * x; 5308 // 5309 // error 0.0014886165, which is 6 bits 5310 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5311 getF32Constant(DAG, 0xbdd49a13, dl)); 5312 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5313 getF32Constant(DAG, 0x3f1c0789, dl)); 5314 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5315 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5316 getF32Constant(DAG, 0x3f011300, dl)); 5317 } else if (LimitFloatPrecision <= 12) { 5318 // For floating-point precision of 12: 5319 // 5320 // Log10ofMantissa = 5321 // -0.64831180f + 5322 // (0.91751397f + 5323 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5324 // 5325 // error 0.00019228036, which is better than 12 bits 5326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5327 getF32Constant(DAG, 0x3d431f31, dl)); 5328 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5329 getF32Constant(DAG, 0x3ea21fb2, dl)); 5330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5331 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5332 getF32Constant(DAG, 0x3f6ae232, dl)); 5333 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5334 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5335 getF32Constant(DAG, 0x3f25f7c3, dl)); 5336 } else { // LimitFloatPrecision <= 18 5337 // For floating-point precision of 18: 5338 // 5339 // Log10ofMantissa = 5340 // -0.84299375f + 5341 // (1.5327582f + 5342 // (-1.0688956f + 5343 // (0.49102474f + 5344 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5345 // 5346 // error 0.0000037995730, which is better than 18 bits 5347 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5348 getF32Constant(DAG, 0x3c5d51ce, dl)); 5349 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5350 getF32Constant(DAG, 0x3e00685a, dl)); 5351 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5352 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5353 getF32Constant(DAG, 0x3efb6798, dl)); 5354 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5355 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5356 getF32Constant(DAG, 0x3f88d192, dl)); 5357 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5358 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5359 getF32Constant(DAG, 0x3fc4316c, dl)); 5360 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5361 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5362 getF32Constant(DAG, 0x3f57ce70, dl)); 5363 } 5364 5365 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5366 } 5367 5368 // No special expansion. 5369 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5370 } 5371 5372 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5373 /// limited-precision mode. 5374 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5375 const TargetLowering &TLI, SDNodeFlags Flags) { 5376 if (Op.getValueType() == MVT::f32 && 5377 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5378 return getLimitedPrecisionExp2(Op, dl, DAG); 5379 5380 // No special expansion. 5381 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5382 } 5383 5384 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5385 /// limited-precision mode with x == 10.0f. 5386 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5387 SelectionDAG &DAG, const TargetLowering &TLI, 5388 SDNodeFlags Flags) { 5389 bool IsExp10 = false; 5390 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5391 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5392 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5393 APFloat Ten(10.0f); 5394 IsExp10 = LHSC->isExactlyValue(Ten); 5395 } 5396 } 5397 5398 // TODO: What fast-math-flags should be set on the FMUL node? 5399 if (IsExp10) { 5400 // Put the exponent in the right bit position for later addition to the 5401 // final result: 5402 // 5403 // #define LOG2OF10 3.3219281f 5404 // t0 = Op * LOG2OF10; 5405 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5406 getF32Constant(DAG, 0x40549a78, dl)); 5407 return getLimitedPrecisionExp2(t0, dl, DAG); 5408 } 5409 5410 // No special expansion. 5411 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5412 } 5413 5414 /// ExpandPowI - Expand a llvm.powi intrinsic. 5415 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5416 SelectionDAG &DAG) { 5417 // If RHS is a constant, we can expand this out to a multiplication tree if 5418 // it's beneficial on the target, otherwise we end up lowering to a call to 5419 // __powidf2 (for example). 5420 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5421 unsigned Val = RHSC->getSExtValue(); 5422 5423 // powi(x, 0) -> 1.0 5424 if (Val == 0) 5425 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5426 5427 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5428 Val, DAG.shouldOptForSize())) { 5429 // Get the exponent as a positive value. 5430 if ((int)Val < 0) 5431 Val = -Val; 5432 // We use the simple binary decomposition method to generate the multiply 5433 // sequence. There are more optimal ways to do this (for example, 5434 // powi(x,15) generates one more multiply than it should), but this has 5435 // the benefit of being both really simple and much better than a libcall. 5436 SDValue Res; // Logically starts equal to 1.0 5437 SDValue CurSquare = LHS; 5438 // TODO: Intrinsics should have fast-math-flags that propagate to these 5439 // nodes. 5440 while (Val) { 5441 if (Val & 1) { 5442 if (Res.getNode()) 5443 Res = 5444 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5445 else 5446 Res = CurSquare; // 1.0*CurSquare. 5447 } 5448 5449 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5450 CurSquare, CurSquare); 5451 Val >>= 1; 5452 } 5453 5454 // If the original was negative, invert the result, producing 1/(x*x*x). 5455 if (RHSC->getSExtValue() < 0) 5456 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5457 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5458 return Res; 5459 } 5460 } 5461 5462 // Otherwise, expand to a libcall. 5463 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5464 } 5465 5466 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5467 SDValue LHS, SDValue RHS, SDValue Scale, 5468 SelectionDAG &DAG, const TargetLowering &TLI) { 5469 EVT VT = LHS.getValueType(); 5470 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5471 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5472 LLVMContext &Ctx = *DAG.getContext(); 5473 5474 // If the type is legal but the operation isn't, this node might survive all 5475 // the way to operation legalization. If we end up there and we do not have 5476 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5477 // node. 5478 5479 // Coax the legalizer into expanding the node during type legalization instead 5480 // by bumping the size by one bit. This will force it to Promote, enabling the 5481 // early expansion and avoiding the need to expand later. 5482 5483 // We don't have to do this if Scale is 0; that can always be expanded, unless 5484 // it's a saturating signed operation. Those can experience true integer 5485 // division overflow, a case which we must avoid. 5486 5487 // FIXME: We wouldn't have to do this (or any of the early 5488 // expansion/promotion) if it was possible to expand a libcall of an 5489 // illegal type during operation legalization. But it's not, so things 5490 // get a bit hacky. 5491 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5492 if ((ScaleInt > 0 || (Saturating && Signed)) && 5493 (TLI.isTypeLegal(VT) || 5494 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5495 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5496 Opcode, VT, ScaleInt); 5497 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5498 EVT PromVT; 5499 if (VT.isScalarInteger()) 5500 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5501 else if (VT.isVector()) { 5502 PromVT = VT.getVectorElementType(); 5503 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5504 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5505 } else 5506 llvm_unreachable("Wrong VT for DIVFIX?"); 5507 if (Signed) { 5508 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5509 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5510 } else { 5511 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5512 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5513 } 5514 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5515 // For saturating operations, we need to shift up the LHS to get the 5516 // proper saturation width, and then shift down again afterwards. 5517 if (Saturating) 5518 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5519 DAG.getConstant(1, DL, ShiftTy)); 5520 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5521 if (Saturating) 5522 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5523 DAG.getConstant(1, DL, ShiftTy)); 5524 return DAG.getZExtOrTrunc(Res, DL, VT); 5525 } 5526 } 5527 5528 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5529 } 5530 5531 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5532 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5533 static void 5534 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5535 const SDValue &N) { 5536 switch (N.getOpcode()) { 5537 case ISD::CopyFromReg: { 5538 SDValue Op = N.getOperand(1); 5539 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5540 Op.getValueType().getSizeInBits()); 5541 return; 5542 } 5543 case ISD::BITCAST: 5544 case ISD::AssertZext: 5545 case ISD::AssertSext: 5546 case ISD::TRUNCATE: 5547 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5548 return; 5549 case ISD::BUILD_PAIR: 5550 case ISD::BUILD_VECTOR: 5551 case ISD::CONCAT_VECTORS: 5552 for (SDValue Op : N->op_values()) 5553 getUnderlyingArgRegs(Regs, Op); 5554 return; 5555 default: 5556 return; 5557 } 5558 } 5559 5560 /// If the DbgValueInst is a dbg_value of a function argument, create the 5561 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5562 /// instruction selection, they will be inserted to the entry BB. 5563 /// We don't currently support this for variadic dbg_values, as they shouldn't 5564 /// appear for function arguments or in the prologue. 5565 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5566 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5567 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5568 const Argument *Arg = dyn_cast<Argument>(V); 5569 if (!Arg) 5570 return false; 5571 5572 MachineFunction &MF = DAG.getMachineFunction(); 5573 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5574 5575 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5576 // we've been asked to pursue. 5577 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5578 bool Indirect) { 5579 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5580 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5581 // pointing at the VReg, which will be patched up later. 5582 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5583 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5584 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5585 /* isKill */ false, /* isDead */ false, 5586 /* isUndef */ false, /* isEarlyClobber */ false, 5587 /* SubReg */ 0, /* isDebug */ true)}); 5588 5589 auto *NewDIExpr = FragExpr; 5590 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5591 // the DIExpression. 5592 if (Indirect) 5593 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5594 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5595 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5596 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5597 } else { 5598 // Create a completely standard DBG_VALUE. 5599 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5600 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5601 } 5602 }; 5603 5604 if (Kind == FuncArgumentDbgValueKind::Value) { 5605 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5606 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5607 // the entry block. 5608 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5609 if (!IsInEntryBlock) 5610 return false; 5611 5612 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5613 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5614 // variable that also is a param. 5615 // 5616 // Although, if we are at the top of the entry block already, we can still 5617 // emit using ArgDbgValue. This might catch some situations when the 5618 // dbg.value refers to an argument that isn't used in the entry block, so 5619 // any CopyToReg node would be optimized out and the only way to express 5620 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5621 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5622 // we should only emit as ArgDbgValue if the Variable is an argument to the 5623 // current function, and the dbg.value intrinsic is found in the entry 5624 // block. 5625 bool VariableIsFunctionInputArg = Variable->isParameter() && 5626 !DL->getInlinedAt(); 5627 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5628 if (!IsInPrologue && !VariableIsFunctionInputArg) 5629 return false; 5630 5631 // Here we assume that a function argument on IR level only can be used to 5632 // describe one input parameter on source level. If we for example have 5633 // source code like this 5634 // 5635 // struct A { long x, y; }; 5636 // void foo(struct A a, long b) { 5637 // ... 5638 // b = a.x; 5639 // ... 5640 // } 5641 // 5642 // and IR like this 5643 // 5644 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5645 // entry: 5646 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5647 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5648 // call void @llvm.dbg.value(metadata i32 %b, "b", 5649 // ... 5650 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5651 // ... 5652 // 5653 // then the last dbg.value is describing a parameter "b" using a value that 5654 // is an argument. But since we already has used %a1 to describe a parameter 5655 // we should not handle that last dbg.value here (that would result in an 5656 // incorrect hoisting of the DBG_VALUE to the function entry). 5657 // Notice that we allow one dbg.value per IR level argument, to accommodate 5658 // for the situation with fragments above. 5659 if (VariableIsFunctionInputArg) { 5660 unsigned ArgNo = Arg->getArgNo(); 5661 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5662 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5663 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5664 return false; 5665 FuncInfo.DescribedArgs.set(ArgNo); 5666 } 5667 } 5668 5669 bool IsIndirect = false; 5670 std::optional<MachineOperand> Op; 5671 // Some arguments' frame index is recorded during argument lowering. 5672 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5673 if (FI != std::numeric_limits<int>::max()) 5674 Op = MachineOperand::CreateFI(FI); 5675 5676 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5677 if (!Op && N.getNode()) { 5678 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5679 Register Reg; 5680 if (ArgRegsAndSizes.size() == 1) 5681 Reg = ArgRegsAndSizes.front().first; 5682 5683 if (Reg && Reg.isVirtual()) { 5684 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5685 Register PR = RegInfo.getLiveInPhysReg(Reg); 5686 if (PR) 5687 Reg = PR; 5688 } 5689 if (Reg) { 5690 Op = MachineOperand::CreateReg(Reg, false); 5691 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5692 } 5693 } 5694 5695 if (!Op && N.getNode()) { 5696 // Check if frame index is available. 5697 SDValue LCandidate = peekThroughBitcasts(N); 5698 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5699 if (FrameIndexSDNode *FINode = 5700 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5701 Op = MachineOperand::CreateFI(FINode->getIndex()); 5702 } 5703 5704 if (!Op) { 5705 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5706 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5707 SplitRegs) { 5708 unsigned Offset = 0; 5709 for (const auto &RegAndSize : SplitRegs) { 5710 // If the expression is already a fragment, the current register 5711 // offset+size might extend beyond the fragment. In this case, only 5712 // the register bits that are inside the fragment are relevant. 5713 int RegFragmentSizeInBits = RegAndSize.second; 5714 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5715 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5716 // The register is entirely outside the expression fragment, 5717 // so is irrelevant for debug info. 5718 if (Offset >= ExprFragmentSizeInBits) 5719 break; 5720 // The register is partially outside the expression fragment, only 5721 // the low bits within the fragment are relevant for debug info. 5722 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5723 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5724 } 5725 } 5726 5727 auto FragmentExpr = DIExpression::createFragmentExpression( 5728 Expr, Offset, RegFragmentSizeInBits); 5729 Offset += RegAndSize.second; 5730 // If a valid fragment expression cannot be created, the variable's 5731 // correct value cannot be determined and so it is set as Undef. 5732 if (!FragmentExpr) { 5733 SDDbgValue *SDV = DAG.getConstantDbgValue( 5734 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5735 DAG.AddDbgValue(SDV, false); 5736 continue; 5737 } 5738 MachineInstr *NewMI = 5739 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5740 Kind != FuncArgumentDbgValueKind::Value); 5741 FuncInfo.ArgDbgValues.push_back(NewMI); 5742 } 5743 }; 5744 5745 // Check if ValueMap has reg number. 5746 DenseMap<const Value *, Register>::const_iterator 5747 VMI = FuncInfo.ValueMap.find(V); 5748 if (VMI != FuncInfo.ValueMap.end()) { 5749 const auto &TLI = DAG.getTargetLoweringInfo(); 5750 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5751 V->getType(), std::nullopt); 5752 if (RFV.occupiesMultipleRegs()) { 5753 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5754 return true; 5755 } 5756 5757 Op = MachineOperand::CreateReg(VMI->second, false); 5758 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5759 } else if (ArgRegsAndSizes.size() > 1) { 5760 // This was split due to the calling convention, and no virtual register 5761 // mapping exists for the value. 5762 splitMultiRegDbgValue(ArgRegsAndSizes); 5763 return true; 5764 } 5765 } 5766 5767 if (!Op) 5768 return false; 5769 5770 assert(Variable->isValidLocationForIntrinsic(DL) && 5771 "Expected inlined-at fields to agree"); 5772 MachineInstr *NewMI = nullptr; 5773 5774 if (Op->isReg()) 5775 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5776 else 5777 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5778 Variable, Expr); 5779 5780 // Otherwise, use ArgDbgValues. 5781 FuncInfo.ArgDbgValues.push_back(NewMI); 5782 return true; 5783 } 5784 5785 /// Return the appropriate SDDbgValue based on N. 5786 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5787 DILocalVariable *Variable, 5788 DIExpression *Expr, 5789 const DebugLoc &dl, 5790 unsigned DbgSDNodeOrder) { 5791 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5792 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5793 // stack slot locations. 5794 // 5795 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5796 // debug values here after optimization: 5797 // 5798 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5799 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5800 // 5801 // Both describe the direct values of their associated variables. 5802 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5803 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5804 } 5805 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5806 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5807 } 5808 5809 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5810 switch (Intrinsic) { 5811 case Intrinsic::smul_fix: 5812 return ISD::SMULFIX; 5813 case Intrinsic::umul_fix: 5814 return ISD::UMULFIX; 5815 case Intrinsic::smul_fix_sat: 5816 return ISD::SMULFIXSAT; 5817 case Intrinsic::umul_fix_sat: 5818 return ISD::UMULFIXSAT; 5819 case Intrinsic::sdiv_fix: 5820 return ISD::SDIVFIX; 5821 case Intrinsic::udiv_fix: 5822 return ISD::UDIVFIX; 5823 case Intrinsic::sdiv_fix_sat: 5824 return ISD::SDIVFIXSAT; 5825 case Intrinsic::udiv_fix_sat: 5826 return ISD::UDIVFIXSAT; 5827 default: 5828 llvm_unreachable("Unhandled fixed point intrinsic"); 5829 } 5830 } 5831 5832 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5833 const char *FunctionName) { 5834 assert(FunctionName && "FunctionName must not be nullptr"); 5835 SDValue Callee = DAG.getExternalSymbol( 5836 FunctionName, 5837 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5838 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5839 } 5840 5841 /// Given a @llvm.call.preallocated.setup, return the corresponding 5842 /// preallocated call. 5843 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5844 assert(cast<CallBase>(PreallocatedSetup) 5845 ->getCalledFunction() 5846 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5847 "expected call_preallocated_setup Value"); 5848 for (const auto *U : PreallocatedSetup->users()) { 5849 auto *UseCall = cast<CallBase>(U); 5850 const Function *Fn = UseCall->getCalledFunction(); 5851 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5852 return UseCall; 5853 } 5854 } 5855 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5856 } 5857 5858 /// Lower the call to the specified intrinsic function. 5859 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5860 unsigned Intrinsic) { 5861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5862 SDLoc sdl = getCurSDLoc(); 5863 DebugLoc dl = getCurDebugLoc(); 5864 SDValue Res; 5865 5866 SDNodeFlags Flags; 5867 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5868 Flags.copyFMF(*FPOp); 5869 5870 switch (Intrinsic) { 5871 default: 5872 // By default, turn this into a target intrinsic node. 5873 visitTargetIntrinsic(I, Intrinsic); 5874 return; 5875 case Intrinsic::vscale: { 5876 match(&I, m_VScale(DAG.getDataLayout())); 5877 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5878 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5879 return; 5880 } 5881 case Intrinsic::vastart: visitVAStart(I); return; 5882 case Intrinsic::vaend: visitVAEnd(I); return; 5883 case Intrinsic::vacopy: visitVACopy(I); return; 5884 case Intrinsic::returnaddress: 5885 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5886 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5887 getValue(I.getArgOperand(0)))); 5888 return; 5889 case Intrinsic::addressofreturnaddress: 5890 setValue(&I, 5891 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5892 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5893 return; 5894 case Intrinsic::sponentry: 5895 setValue(&I, 5896 DAG.getNode(ISD::SPONENTRY, sdl, 5897 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5898 return; 5899 case Intrinsic::frameaddress: 5900 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5901 TLI.getFrameIndexTy(DAG.getDataLayout()), 5902 getValue(I.getArgOperand(0)))); 5903 return; 5904 case Intrinsic::read_volatile_register: 5905 case Intrinsic::read_register: { 5906 Value *Reg = I.getArgOperand(0); 5907 SDValue Chain = getRoot(); 5908 SDValue RegName = 5909 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5910 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5911 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5912 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5913 setValue(&I, Res); 5914 DAG.setRoot(Res.getValue(1)); 5915 return; 5916 } 5917 case Intrinsic::write_register: { 5918 Value *Reg = I.getArgOperand(0); 5919 Value *RegValue = I.getArgOperand(1); 5920 SDValue Chain = getRoot(); 5921 SDValue RegName = 5922 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5923 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5924 RegName, getValue(RegValue))); 5925 return; 5926 } 5927 case Intrinsic::memcpy: { 5928 const auto &MCI = cast<MemCpyInst>(I); 5929 SDValue Op1 = getValue(I.getArgOperand(0)); 5930 SDValue Op2 = getValue(I.getArgOperand(1)); 5931 SDValue Op3 = getValue(I.getArgOperand(2)); 5932 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5933 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5934 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5935 Align Alignment = std::min(DstAlign, SrcAlign); 5936 bool isVol = MCI.isVolatile(); 5937 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5938 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5939 // node. 5940 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5941 SDValue MC = DAG.getMemcpy( 5942 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5943 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5944 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5945 updateDAGForMaybeTailCall(MC); 5946 return; 5947 } 5948 case Intrinsic::memcpy_inline: { 5949 const auto &MCI = cast<MemCpyInlineInst>(I); 5950 SDValue Dst = getValue(I.getArgOperand(0)); 5951 SDValue Src = getValue(I.getArgOperand(1)); 5952 SDValue Size = getValue(I.getArgOperand(2)); 5953 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5954 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5955 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5956 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5957 Align Alignment = std::min(DstAlign, SrcAlign); 5958 bool isVol = MCI.isVolatile(); 5959 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5960 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5961 // node. 5962 SDValue MC = DAG.getMemcpy( 5963 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5964 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5965 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5966 updateDAGForMaybeTailCall(MC); 5967 return; 5968 } 5969 case Intrinsic::memset: { 5970 const auto &MSI = cast<MemSetInst>(I); 5971 SDValue Op1 = getValue(I.getArgOperand(0)); 5972 SDValue Op2 = getValue(I.getArgOperand(1)); 5973 SDValue Op3 = getValue(I.getArgOperand(2)); 5974 // @llvm.memset defines 0 and 1 to both mean no alignment. 5975 Align Alignment = MSI.getDestAlign().valueOrOne(); 5976 bool isVol = MSI.isVolatile(); 5977 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5978 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5979 SDValue MS = DAG.getMemset( 5980 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5981 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5982 updateDAGForMaybeTailCall(MS); 5983 return; 5984 } 5985 case Intrinsic::memset_inline: { 5986 const auto &MSII = cast<MemSetInlineInst>(I); 5987 SDValue Dst = getValue(I.getArgOperand(0)); 5988 SDValue Value = getValue(I.getArgOperand(1)); 5989 SDValue Size = getValue(I.getArgOperand(2)); 5990 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5991 // @llvm.memset defines 0 and 1 to both mean no alignment. 5992 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5993 bool isVol = MSII.isVolatile(); 5994 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5995 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5996 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5997 /* AlwaysInline */ true, isTC, 5998 MachinePointerInfo(I.getArgOperand(0)), 5999 I.getAAMetadata()); 6000 updateDAGForMaybeTailCall(MC); 6001 return; 6002 } 6003 case Intrinsic::memmove: { 6004 const auto &MMI = cast<MemMoveInst>(I); 6005 SDValue Op1 = getValue(I.getArgOperand(0)); 6006 SDValue Op2 = getValue(I.getArgOperand(1)); 6007 SDValue Op3 = getValue(I.getArgOperand(2)); 6008 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6009 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6010 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6011 Align Alignment = std::min(DstAlign, SrcAlign); 6012 bool isVol = MMI.isVolatile(); 6013 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6014 // FIXME: Support passing different dest/src alignments to the memmove DAG 6015 // node. 6016 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6017 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6018 isTC, MachinePointerInfo(I.getArgOperand(0)), 6019 MachinePointerInfo(I.getArgOperand(1)), 6020 I.getAAMetadata(), AA); 6021 updateDAGForMaybeTailCall(MM); 6022 return; 6023 } 6024 case Intrinsic::memcpy_element_unordered_atomic: { 6025 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6026 SDValue Dst = getValue(MI.getRawDest()); 6027 SDValue Src = getValue(MI.getRawSource()); 6028 SDValue Length = getValue(MI.getLength()); 6029 6030 Type *LengthTy = MI.getLength()->getType(); 6031 unsigned ElemSz = MI.getElementSizeInBytes(); 6032 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6033 SDValue MC = 6034 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6035 isTC, MachinePointerInfo(MI.getRawDest()), 6036 MachinePointerInfo(MI.getRawSource())); 6037 updateDAGForMaybeTailCall(MC); 6038 return; 6039 } 6040 case Intrinsic::memmove_element_unordered_atomic: { 6041 auto &MI = cast<AtomicMemMoveInst>(I); 6042 SDValue Dst = getValue(MI.getRawDest()); 6043 SDValue Src = getValue(MI.getRawSource()); 6044 SDValue Length = getValue(MI.getLength()); 6045 6046 Type *LengthTy = MI.getLength()->getType(); 6047 unsigned ElemSz = MI.getElementSizeInBytes(); 6048 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6049 SDValue MC = 6050 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6051 isTC, MachinePointerInfo(MI.getRawDest()), 6052 MachinePointerInfo(MI.getRawSource())); 6053 updateDAGForMaybeTailCall(MC); 6054 return; 6055 } 6056 case Intrinsic::memset_element_unordered_atomic: { 6057 auto &MI = cast<AtomicMemSetInst>(I); 6058 SDValue Dst = getValue(MI.getRawDest()); 6059 SDValue Val = getValue(MI.getValue()); 6060 SDValue Length = getValue(MI.getLength()); 6061 6062 Type *LengthTy = MI.getLength()->getType(); 6063 unsigned ElemSz = MI.getElementSizeInBytes(); 6064 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6065 SDValue MC = 6066 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6067 isTC, MachinePointerInfo(MI.getRawDest())); 6068 updateDAGForMaybeTailCall(MC); 6069 return; 6070 } 6071 case Intrinsic::call_preallocated_setup: { 6072 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6073 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6074 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6075 getRoot(), SrcValue); 6076 setValue(&I, Res); 6077 DAG.setRoot(Res); 6078 return; 6079 } 6080 case Intrinsic::call_preallocated_arg: { 6081 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6082 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6083 SDValue Ops[3]; 6084 Ops[0] = getRoot(); 6085 Ops[1] = SrcValue; 6086 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6087 MVT::i32); // arg index 6088 SDValue Res = DAG.getNode( 6089 ISD::PREALLOCATED_ARG, sdl, 6090 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6091 setValue(&I, Res); 6092 DAG.setRoot(Res.getValue(1)); 6093 return; 6094 } 6095 case Intrinsic::dbg_addr: 6096 case Intrinsic::dbg_declare: { 6097 // Debug intrinsics are handled seperately in assignment tracking mode. 6098 if (isAssignmentTrackingEnabled(*I.getFunction()->getParent())) 6099 return; 6100 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6101 // they are non-variadic. 6102 const auto &DI = cast<DbgVariableIntrinsic>(I); 6103 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6104 DILocalVariable *Variable = DI.getVariable(); 6105 DIExpression *Expression = DI.getExpression(); 6106 dropDanglingDebugInfo(Variable, Expression); 6107 assert(Variable && "Missing variable"); 6108 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6109 << "\n"); 6110 // Check if address has undef value. 6111 const Value *Address = DI.getVariableLocationOp(0); 6112 if (!Address || isa<UndefValue>(Address) || 6113 (Address->use_empty() && !isa<Argument>(Address))) { 6114 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6115 << " (bad/undef/unused-arg address)\n"); 6116 return; 6117 } 6118 6119 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6120 6121 // Check if this variable can be described by a frame index, typically 6122 // either as a static alloca or a byval parameter. 6123 int FI = std::numeric_limits<int>::max(); 6124 if (const auto *AI = 6125 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6126 if (AI->isStaticAlloca()) { 6127 auto I = FuncInfo.StaticAllocaMap.find(AI); 6128 if (I != FuncInfo.StaticAllocaMap.end()) 6129 FI = I->second; 6130 } 6131 } else if (const auto *Arg = dyn_cast<Argument>( 6132 Address->stripInBoundsConstantOffsets())) { 6133 FI = FuncInfo.getArgumentFrameIndex(Arg); 6134 } 6135 6136 // llvm.dbg.addr is control dependent and always generates indirect 6137 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6138 // the MachineFunction variable table. 6139 if (FI != std::numeric_limits<int>::max()) { 6140 if (Intrinsic == Intrinsic::dbg_addr) { 6141 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6142 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6143 dl, SDNodeOrder); 6144 DAG.AddDbgValue(SDV, isParameter); 6145 } else { 6146 LLVM_DEBUG(dbgs() << "Skipping " << DI 6147 << " (variable info stashed in MF side table)\n"); 6148 } 6149 return; 6150 } 6151 6152 SDValue &N = NodeMap[Address]; 6153 if (!N.getNode() && isa<Argument>(Address)) 6154 // Check unused arguments map. 6155 N = UnusedArgNodeMap[Address]; 6156 SDDbgValue *SDV; 6157 if (N.getNode()) { 6158 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6159 Address = BCI->getOperand(0); 6160 // Parameters are handled specially. 6161 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6162 if (isParameter && FINode) { 6163 // Byval parameter. We have a frame index at this point. 6164 SDV = 6165 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6166 /*IsIndirect*/ true, dl, SDNodeOrder); 6167 } else if (isa<Argument>(Address)) { 6168 // Address is an argument, so try to emit its dbg value using 6169 // virtual register info from the FuncInfo.ValueMap. 6170 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6171 FuncArgumentDbgValueKind::Declare, N); 6172 return; 6173 } else { 6174 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6175 true, dl, SDNodeOrder); 6176 } 6177 DAG.AddDbgValue(SDV, isParameter); 6178 } else { 6179 // If Address is an argument then try to emit its dbg value using 6180 // virtual register info from the FuncInfo.ValueMap. 6181 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6182 FuncArgumentDbgValueKind::Declare, N)) { 6183 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6184 << " (could not emit func-arg dbg_value)\n"); 6185 } 6186 } 6187 return; 6188 } 6189 case Intrinsic::dbg_label: { 6190 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6191 DILabel *Label = DI.getLabel(); 6192 assert(Label && "Missing label"); 6193 6194 SDDbgLabel *SDV; 6195 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6196 DAG.AddDbgLabel(SDV); 6197 return; 6198 } 6199 case Intrinsic::dbg_assign: { 6200 // Debug intrinsics are handled seperately in assignment tracking mode. 6201 assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) && 6202 "expected assignment tracking to be enabled"); 6203 return; 6204 } 6205 case Intrinsic::dbg_value: { 6206 // Debug intrinsics are handled seperately in assignment tracking mode. 6207 if (isAssignmentTrackingEnabled(*I.getFunction()->getParent())) 6208 return; 6209 const DbgValueInst &DI = cast<DbgValueInst>(I); 6210 assert(DI.getVariable() && "Missing variable"); 6211 6212 DILocalVariable *Variable = DI.getVariable(); 6213 DIExpression *Expression = DI.getExpression(); 6214 dropDanglingDebugInfo(Variable, Expression); 6215 SmallVector<Value *, 4> Values(DI.getValues()); 6216 if (Values.empty()) 6217 return; 6218 6219 if (llvm::is_contained(Values, nullptr)) 6220 return; 6221 6222 bool IsVariadic = DI.hasArgList(); 6223 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6224 SDNodeOrder, IsVariadic)) 6225 addDanglingDebugInfo(&DI, SDNodeOrder); 6226 return; 6227 } 6228 6229 case Intrinsic::eh_typeid_for: { 6230 // Find the type id for the given typeinfo. 6231 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6232 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6233 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6234 setValue(&I, Res); 6235 return; 6236 } 6237 6238 case Intrinsic::eh_return_i32: 6239 case Intrinsic::eh_return_i64: 6240 DAG.getMachineFunction().setCallsEHReturn(true); 6241 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6242 MVT::Other, 6243 getControlRoot(), 6244 getValue(I.getArgOperand(0)), 6245 getValue(I.getArgOperand(1)))); 6246 return; 6247 case Intrinsic::eh_unwind_init: 6248 DAG.getMachineFunction().setCallsUnwindInit(true); 6249 return; 6250 case Intrinsic::eh_dwarf_cfa: 6251 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6252 TLI.getPointerTy(DAG.getDataLayout()), 6253 getValue(I.getArgOperand(0)))); 6254 return; 6255 case Intrinsic::eh_sjlj_callsite: { 6256 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6257 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6258 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6259 6260 MMI.setCurrentCallSite(CI->getZExtValue()); 6261 return; 6262 } 6263 case Intrinsic::eh_sjlj_functioncontext: { 6264 // Get and store the index of the function context. 6265 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6266 AllocaInst *FnCtx = 6267 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6268 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6269 MFI.setFunctionContextIndex(FI); 6270 return; 6271 } 6272 case Intrinsic::eh_sjlj_setjmp: { 6273 SDValue Ops[2]; 6274 Ops[0] = getRoot(); 6275 Ops[1] = getValue(I.getArgOperand(0)); 6276 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6277 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6278 setValue(&I, Op.getValue(0)); 6279 DAG.setRoot(Op.getValue(1)); 6280 return; 6281 } 6282 case Intrinsic::eh_sjlj_longjmp: 6283 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6284 getRoot(), getValue(I.getArgOperand(0)))); 6285 return; 6286 case Intrinsic::eh_sjlj_setup_dispatch: 6287 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6288 getRoot())); 6289 return; 6290 case Intrinsic::masked_gather: 6291 visitMaskedGather(I); 6292 return; 6293 case Intrinsic::masked_load: 6294 visitMaskedLoad(I); 6295 return; 6296 case Intrinsic::masked_scatter: 6297 visitMaskedScatter(I); 6298 return; 6299 case Intrinsic::masked_store: 6300 visitMaskedStore(I); 6301 return; 6302 case Intrinsic::masked_expandload: 6303 visitMaskedLoad(I, true /* IsExpanding */); 6304 return; 6305 case Intrinsic::masked_compressstore: 6306 visitMaskedStore(I, true /* IsCompressing */); 6307 return; 6308 case Intrinsic::powi: 6309 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6310 getValue(I.getArgOperand(1)), DAG)); 6311 return; 6312 case Intrinsic::log: 6313 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6314 return; 6315 case Intrinsic::log2: 6316 setValue(&I, 6317 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6318 return; 6319 case Intrinsic::log10: 6320 setValue(&I, 6321 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6322 return; 6323 case Intrinsic::exp: 6324 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6325 return; 6326 case Intrinsic::exp2: 6327 setValue(&I, 6328 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6329 return; 6330 case Intrinsic::pow: 6331 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6332 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6333 return; 6334 case Intrinsic::sqrt: 6335 case Intrinsic::fabs: 6336 case Intrinsic::sin: 6337 case Intrinsic::cos: 6338 case Intrinsic::floor: 6339 case Intrinsic::ceil: 6340 case Intrinsic::trunc: 6341 case Intrinsic::rint: 6342 case Intrinsic::nearbyint: 6343 case Intrinsic::round: 6344 case Intrinsic::roundeven: 6345 case Intrinsic::canonicalize: { 6346 unsigned Opcode; 6347 switch (Intrinsic) { 6348 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6349 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6350 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6351 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6352 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6353 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6354 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6355 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6356 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6357 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6358 case Intrinsic::round: Opcode = ISD::FROUND; break; 6359 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6360 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6361 } 6362 6363 setValue(&I, DAG.getNode(Opcode, sdl, 6364 getValue(I.getArgOperand(0)).getValueType(), 6365 getValue(I.getArgOperand(0)), Flags)); 6366 return; 6367 } 6368 case Intrinsic::lround: 6369 case Intrinsic::llround: 6370 case Intrinsic::lrint: 6371 case Intrinsic::llrint: { 6372 unsigned Opcode; 6373 switch (Intrinsic) { 6374 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6375 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6376 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6377 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6378 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6379 } 6380 6381 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6382 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6383 getValue(I.getArgOperand(0)))); 6384 return; 6385 } 6386 case Intrinsic::minnum: 6387 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6388 getValue(I.getArgOperand(0)).getValueType(), 6389 getValue(I.getArgOperand(0)), 6390 getValue(I.getArgOperand(1)), Flags)); 6391 return; 6392 case Intrinsic::maxnum: 6393 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6394 getValue(I.getArgOperand(0)).getValueType(), 6395 getValue(I.getArgOperand(0)), 6396 getValue(I.getArgOperand(1)), Flags)); 6397 return; 6398 case Intrinsic::minimum: 6399 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6400 getValue(I.getArgOperand(0)).getValueType(), 6401 getValue(I.getArgOperand(0)), 6402 getValue(I.getArgOperand(1)), Flags)); 6403 return; 6404 case Intrinsic::maximum: 6405 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6406 getValue(I.getArgOperand(0)).getValueType(), 6407 getValue(I.getArgOperand(0)), 6408 getValue(I.getArgOperand(1)), Flags)); 6409 return; 6410 case Intrinsic::copysign: 6411 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6412 getValue(I.getArgOperand(0)).getValueType(), 6413 getValue(I.getArgOperand(0)), 6414 getValue(I.getArgOperand(1)), Flags)); 6415 return; 6416 case Intrinsic::arithmetic_fence: { 6417 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6418 getValue(I.getArgOperand(0)).getValueType(), 6419 getValue(I.getArgOperand(0)), Flags)); 6420 return; 6421 } 6422 case Intrinsic::fma: 6423 setValue(&I, DAG.getNode( 6424 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6425 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6426 getValue(I.getArgOperand(2)), Flags)); 6427 return; 6428 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6429 case Intrinsic::INTRINSIC: 6430 #include "llvm/IR/ConstrainedOps.def" 6431 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6432 return; 6433 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6434 #include "llvm/IR/VPIntrinsics.def" 6435 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6436 return; 6437 case Intrinsic::fptrunc_round: { 6438 // Get the last argument, the metadata and convert it to an integer in the 6439 // call 6440 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6441 std::optional<RoundingMode> RoundMode = 6442 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6443 6444 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6445 6446 // Propagate fast-math-flags from IR to node(s). 6447 SDNodeFlags Flags; 6448 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6449 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6450 6451 SDValue Result; 6452 Result = DAG.getNode( 6453 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6454 DAG.getTargetConstant((int)*RoundMode, sdl, 6455 TLI.getPointerTy(DAG.getDataLayout()))); 6456 setValue(&I, Result); 6457 6458 return; 6459 } 6460 case Intrinsic::fmuladd: { 6461 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6462 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6463 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6464 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6465 getValue(I.getArgOperand(0)).getValueType(), 6466 getValue(I.getArgOperand(0)), 6467 getValue(I.getArgOperand(1)), 6468 getValue(I.getArgOperand(2)), Flags)); 6469 } else { 6470 // TODO: Intrinsic calls should have fast-math-flags. 6471 SDValue Mul = DAG.getNode( 6472 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6473 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6474 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6475 getValue(I.getArgOperand(0)).getValueType(), 6476 Mul, getValue(I.getArgOperand(2)), Flags); 6477 setValue(&I, Add); 6478 } 6479 return; 6480 } 6481 case Intrinsic::convert_to_fp16: 6482 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6483 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6484 getValue(I.getArgOperand(0)), 6485 DAG.getTargetConstant(0, sdl, 6486 MVT::i32)))); 6487 return; 6488 case Intrinsic::convert_from_fp16: 6489 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6490 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6491 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6492 getValue(I.getArgOperand(0))))); 6493 return; 6494 case Intrinsic::fptosi_sat: { 6495 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6496 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6497 getValue(I.getArgOperand(0)), 6498 DAG.getValueType(VT.getScalarType()))); 6499 return; 6500 } 6501 case Intrinsic::fptoui_sat: { 6502 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6503 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6504 getValue(I.getArgOperand(0)), 6505 DAG.getValueType(VT.getScalarType()))); 6506 return; 6507 } 6508 case Intrinsic::set_rounding: 6509 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6510 {getRoot(), getValue(I.getArgOperand(0))}); 6511 setValue(&I, Res); 6512 DAG.setRoot(Res.getValue(0)); 6513 return; 6514 case Intrinsic::is_fpclass: { 6515 const DataLayout DLayout = DAG.getDataLayout(); 6516 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6517 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6518 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6519 MachineFunction &MF = DAG.getMachineFunction(); 6520 const Function &F = MF.getFunction(); 6521 SDValue Op = getValue(I.getArgOperand(0)); 6522 SDNodeFlags Flags; 6523 Flags.setNoFPExcept( 6524 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6525 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6526 // expansion can use illegal types. Making expansion early allows 6527 // legalizing these types prior to selection. 6528 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6529 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6530 setValue(&I, Result); 6531 return; 6532 } 6533 6534 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6535 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6536 setValue(&I, V); 6537 return; 6538 } 6539 case Intrinsic::pcmarker: { 6540 SDValue Tmp = getValue(I.getArgOperand(0)); 6541 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6542 return; 6543 } 6544 case Intrinsic::readcyclecounter: { 6545 SDValue Op = getRoot(); 6546 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6547 DAG.getVTList(MVT::i64, MVT::Other), Op); 6548 setValue(&I, Res); 6549 DAG.setRoot(Res.getValue(1)); 6550 return; 6551 } 6552 case Intrinsic::bitreverse: 6553 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6554 getValue(I.getArgOperand(0)).getValueType(), 6555 getValue(I.getArgOperand(0)))); 6556 return; 6557 case Intrinsic::bswap: 6558 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6559 getValue(I.getArgOperand(0)).getValueType(), 6560 getValue(I.getArgOperand(0)))); 6561 return; 6562 case Intrinsic::cttz: { 6563 SDValue Arg = getValue(I.getArgOperand(0)); 6564 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6565 EVT Ty = Arg.getValueType(); 6566 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6567 sdl, Ty, Arg)); 6568 return; 6569 } 6570 case Intrinsic::ctlz: { 6571 SDValue Arg = getValue(I.getArgOperand(0)); 6572 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6573 EVT Ty = Arg.getValueType(); 6574 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6575 sdl, Ty, Arg)); 6576 return; 6577 } 6578 case Intrinsic::ctpop: { 6579 SDValue Arg = getValue(I.getArgOperand(0)); 6580 EVT Ty = Arg.getValueType(); 6581 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6582 return; 6583 } 6584 case Intrinsic::fshl: 6585 case Intrinsic::fshr: { 6586 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6587 SDValue X = getValue(I.getArgOperand(0)); 6588 SDValue Y = getValue(I.getArgOperand(1)); 6589 SDValue Z = getValue(I.getArgOperand(2)); 6590 EVT VT = X.getValueType(); 6591 6592 if (X == Y) { 6593 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6594 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6595 } else { 6596 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6597 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6598 } 6599 return; 6600 } 6601 case Intrinsic::sadd_sat: { 6602 SDValue Op1 = getValue(I.getArgOperand(0)); 6603 SDValue Op2 = getValue(I.getArgOperand(1)); 6604 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6605 return; 6606 } 6607 case Intrinsic::uadd_sat: { 6608 SDValue Op1 = getValue(I.getArgOperand(0)); 6609 SDValue Op2 = getValue(I.getArgOperand(1)); 6610 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6611 return; 6612 } 6613 case Intrinsic::ssub_sat: { 6614 SDValue Op1 = getValue(I.getArgOperand(0)); 6615 SDValue Op2 = getValue(I.getArgOperand(1)); 6616 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6617 return; 6618 } 6619 case Intrinsic::usub_sat: { 6620 SDValue Op1 = getValue(I.getArgOperand(0)); 6621 SDValue Op2 = getValue(I.getArgOperand(1)); 6622 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6623 return; 6624 } 6625 case Intrinsic::sshl_sat: { 6626 SDValue Op1 = getValue(I.getArgOperand(0)); 6627 SDValue Op2 = getValue(I.getArgOperand(1)); 6628 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6629 return; 6630 } 6631 case Intrinsic::ushl_sat: { 6632 SDValue Op1 = getValue(I.getArgOperand(0)); 6633 SDValue Op2 = getValue(I.getArgOperand(1)); 6634 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6635 return; 6636 } 6637 case Intrinsic::smul_fix: 6638 case Intrinsic::umul_fix: 6639 case Intrinsic::smul_fix_sat: 6640 case Intrinsic::umul_fix_sat: { 6641 SDValue Op1 = getValue(I.getArgOperand(0)); 6642 SDValue Op2 = getValue(I.getArgOperand(1)); 6643 SDValue Op3 = getValue(I.getArgOperand(2)); 6644 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6645 Op1.getValueType(), Op1, Op2, Op3)); 6646 return; 6647 } 6648 case Intrinsic::sdiv_fix: 6649 case Intrinsic::udiv_fix: 6650 case Intrinsic::sdiv_fix_sat: 6651 case Intrinsic::udiv_fix_sat: { 6652 SDValue Op1 = getValue(I.getArgOperand(0)); 6653 SDValue Op2 = getValue(I.getArgOperand(1)); 6654 SDValue Op3 = getValue(I.getArgOperand(2)); 6655 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6656 Op1, Op2, Op3, DAG, TLI)); 6657 return; 6658 } 6659 case Intrinsic::smax: { 6660 SDValue Op1 = getValue(I.getArgOperand(0)); 6661 SDValue Op2 = getValue(I.getArgOperand(1)); 6662 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6663 return; 6664 } 6665 case Intrinsic::smin: { 6666 SDValue Op1 = getValue(I.getArgOperand(0)); 6667 SDValue Op2 = getValue(I.getArgOperand(1)); 6668 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6669 return; 6670 } 6671 case Intrinsic::umax: { 6672 SDValue Op1 = getValue(I.getArgOperand(0)); 6673 SDValue Op2 = getValue(I.getArgOperand(1)); 6674 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6675 return; 6676 } 6677 case Intrinsic::umin: { 6678 SDValue Op1 = getValue(I.getArgOperand(0)); 6679 SDValue Op2 = getValue(I.getArgOperand(1)); 6680 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6681 return; 6682 } 6683 case Intrinsic::abs: { 6684 // TODO: Preserve "int min is poison" arg in SDAG? 6685 SDValue Op1 = getValue(I.getArgOperand(0)); 6686 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6687 return; 6688 } 6689 case Intrinsic::stacksave: { 6690 SDValue Op = getRoot(); 6691 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6692 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6693 setValue(&I, Res); 6694 DAG.setRoot(Res.getValue(1)); 6695 return; 6696 } 6697 case Intrinsic::stackrestore: 6698 Res = getValue(I.getArgOperand(0)); 6699 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6700 return; 6701 case Intrinsic::get_dynamic_area_offset: { 6702 SDValue Op = getRoot(); 6703 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6704 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6705 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6706 // target. 6707 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6708 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6709 " intrinsic!"); 6710 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6711 Op); 6712 DAG.setRoot(Op); 6713 setValue(&I, Res); 6714 return; 6715 } 6716 case Intrinsic::stackguard: { 6717 MachineFunction &MF = DAG.getMachineFunction(); 6718 const Module &M = *MF.getFunction().getParent(); 6719 SDValue Chain = getRoot(); 6720 if (TLI.useLoadStackGuardNode()) { 6721 Res = getLoadStackGuard(DAG, sdl, Chain); 6722 } else { 6723 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6724 const Value *Global = TLI.getSDagStackGuard(M); 6725 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6726 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6727 MachinePointerInfo(Global, 0), Align, 6728 MachineMemOperand::MOVolatile); 6729 } 6730 if (TLI.useStackGuardXorFP()) 6731 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6732 DAG.setRoot(Chain); 6733 setValue(&I, Res); 6734 return; 6735 } 6736 case Intrinsic::stackprotector: { 6737 // Emit code into the DAG to store the stack guard onto the stack. 6738 MachineFunction &MF = DAG.getMachineFunction(); 6739 MachineFrameInfo &MFI = MF.getFrameInfo(); 6740 SDValue Src, Chain = getRoot(); 6741 6742 if (TLI.useLoadStackGuardNode()) 6743 Src = getLoadStackGuard(DAG, sdl, Chain); 6744 else 6745 Src = getValue(I.getArgOperand(0)); // The guard's value. 6746 6747 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6748 6749 int FI = FuncInfo.StaticAllocaMap[Slot]; 6750 MFI.setStackProtectorIndex(FI); 6751 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6752 6753 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6754 6755 // Store the stack protector onto the stack. 6756 Res = DAG.getStore( 6757 Chain, sdl, Src, FIN, 6758 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6759 MaybeAlign(), MachineMemOperand::MOVolatile); 6760 setValue(&I, Res); 6761 DAG.setRoot(Res); 6762 return; 6763 } 6764 case Intrinsic::objectsize: 6765 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6766 6767 case Intrinsic::is_constant: 6768 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6769 6770 case Intrinsic::annotation: 6771 case Intrinsic::ptr_annotation: 6772 case Intrinsic::launder_invariant_group: 6773 case Intrinsic::strip_invariant_group: 6774 // Drop the intrinsic, but forward the value 6775 setValue(&I, getValue(I.getOperand(0))); 6776 return; 6777 6778 case Intrinsic::assume: 6779 case Intrinsic::experimental_noalias_scope_decl: 6780 case Intrinsic::var_annotation: 6781 case Intrinsic::sideeffect: 6782 // Discard annotate attributes, noalias scope declarations, assumptions, and 6783 // artificial side-effects. 6784 return; 6785 6786 case Intrinsic::codeview_annotation: { 6787 // Emit a label associated with this metadata. 6788 MachineFunction &MF = DAG.getMachineFunction(); 6789 MCSymbol *Label = 6790 MF.getMMI().getContext().createTempSymbol("annotation", true); 6791 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6792 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6793 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6794 DAG.setRoot(Res); 6795 return; 6796 } 6797 6798 case Intrinsic::init_trampoline: { 6799 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6800 6801 SDValue Ops[6]; 6802 Ops[0] = getRoot(); 6803 Ops[1] = getValue(I.getArgOperand(0)); 6804 Ops[2] = getValue(I.getArgOperand(1)); 6805 Ops[3] = getValue(I.getArgOperand(2)); 6806 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6807 Ops[5] = DAG.getSrcValue(F); 6808 6809 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6810 6811 DAG.setRoot(Res); 6812 return; 6813 } 6814 case Intrinsic::adjust_trampoline: 6815 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6816 TLI.getPointerTy(DAG.getDataLayout()), 6817 getValue(I.getArgOperand(0)))); 6818 return; 6819 case Intrinsic::gcroot: { 6820 assert(DAG.getMachineFunction().getFunction().hasGC() && 6821 "only valid in functions with gc specified, enforced by Verifier"); 6822 assert(GFI && "implied by previous"); 6823 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6824 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6825 6826 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6827 GFI->addStackRoot(FI->getIndex(), TypeMap); 6828 return; 6829 } 6830 case Intrinsic::gcread: 6831 case Intrinsic::gcwrite: 6832 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6833 case Intrinsic::get_rounding: 6834 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 6835 setValue(&I, Res); 6836 DAG.setRoot(Res.getValue(1)); 6837 return; 6838 6839 case Intrinsic::expect: 6840 // Just replace __builtin_expect(exp, c) with EXP. 6841 setValue(&I, getValue(I.getArgOperand(0))); 6842 return; 6843 6844 case Intrinsic::ubsantrap: 6845 case Intrinsic::debugtrap: 6846 case Intrinsic::trap: { 6847 StringRef TrapFuncName = 6848 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6849 if (TrapFuncName.empty()) { 6850 switch (Intrinsic) { 6851 case Intrinsic::trap: 6852 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6853 break; 6854 case Intrinsic::debugtrap: 6855 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6856 break; 6857 case Intrinsic::ubsantrap: 6858 DAG.setRoot(DAG.getNode( 6859 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6860 DAG.getTargetConstant( 6861 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6862 MVT::i32))); 6863 break; 6864 default: llvm_unreachable("unknown trap intrinsic"); 6865 } 6866 return; 6867 } 6868 TargetLowering::ArgListTy Args; 6869 if (Intrinsic == Intrinsic::ubsantrap) { 6870 Args.push_back(TargetLoweringBase::ArgListEntry()); 6871 Args[0].Val = I.getArgOperand(0); 6872 Args[0].Node = getValue(Args[0].Val); 6873 Args[0].Ty = Args[0].Val->getType(); 6874 } 6875 6876 TargetLowering::CallLoweringInfo CLI(DAG); 6877 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6878 CallingConv::C, I.getType(), 6879 DAG.getExternalSymbol(TrapFuncName.data(), 6880 TLI.getPointerTy(DAG.getDataLayout())), 6881 std::move(Args)); 6882 6883 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6884 DAG.setRoot(Result.second); 6885 return; 6886 } 6887 6888 case Intrinsic::uadd_with_overflow: 6889 case Intrinsic::sadd_with_overflow: 6890 case Intrinsic::usub_with_overflow: 6891 case Intrinsic::ssub_with_overflow: 6892 case Intrinsic::umul_with_overflow: 6893 case Intrinsic::smul_with_overflow: { 6894 ISD::NodeType Op; 6895 switch (Intrinsic) { 6896 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6897 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6898 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6899 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6900 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6901 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6902 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6903 } 6904 SDValue Op1 = getValue(I.getArgOperand(0)); 6905 SDValue Op2 = getValue(I.getArgOperand(1)); 6906 6907 EVT ResultVT = Op1.getValueType(); 6908 EVT OverflowVT = MVT::i1; 6909 if (ResultVT.isVector()) 6910 OverflowVT = EVT::getVectorVT( 6911 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6912 6913 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6914 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6915 return; 6916 } 6917 case Intrinsic::prefetch: { 6918 SDValue Ops[5]; 6919 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6920 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6921 Ops[0] = DAG.getRoot(); 6922 Ops[1] = getValue(I.getArgOperand(0)); 6923 Ops[2] = getValue(I.getArgOperand(1)); 6924 Ops[3] = getValue(I.getArgOperand(2)); 6925 Ops[4] = getValue(I.getArgOperand(3)); 6926 SDValue Result = DAG.getMemIntrinsicNode( 6927 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6928 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6929 /* align */ std::nullopt, Flags); 6930 6931 // Chain the prefetch in parallell with any pending loads, to stay out of 6932 // the way of later optimizations. 6933 PendingLoads.push_back(Result); 6934 Result = getRoot(); 6935 DAG.setRoot(Result); 6936 return; 6937 } 6938 case Intrinsic::lifetime_start: 6939 case Intrinsic::lifetime_end: { 6940 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6941 // Stack coloring is not enabled in O0, discard region information. 6942 if (TM.getOptLevel() == CodeGenOpt::None) 6943 return; 6944 6945 const int64_t ObjectSize = 6946 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6947 Value *const ObjectPtr = I.getArgOperand(1); 6948 SmallVector<const Value *, 4> Allocas; 6949 getUnderlyingObjects(ObjectPtr, Allocas); 6950 6951 for (const Value *Alloca : Allocas) { 6952 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6953 6954 // Could not find an Alloca. 6955 if (!LifetimeObject) 6956 continue; 6957 6958 // First check that the Alloca is static, otherwise it won't have a 6959 // valid frame index. 6960 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6961 if (SI == FuncInfo.StaticAllocaMap.end()) 6962 return; 6963 6964 const int FrameIndex = SI->second; 6965 int64_t Offset; 6966 if (GetPointerBaseWithConstantOffset( 6967 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6968 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6969 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6970 Offset); 6971 DAG.setRoot(Res); 6972 } 6973 return; 6974 } 6975 case Intrinsic::pseudoprobe: { 6976 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6977 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6978 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6979 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6980 DAG.setRoot(Res); 6981 return; 6982 } 6983 case Intrinsic::invariant_start: 6984 // Discard region information. 6985 setValue(&I, 6986 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6987 return; 6988 case Intrinsic::invariant_end: 6989 // Discard region information. 6990 return; 6991 case Intrinsic::clear_cache: 6992 /// FunctionName may be null. 6993 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6994 lowerCallToExternalSymbol(I, FunctionName); 6995 return; 6996 case Intrinsic::donothing: 6997 case Intrinsic::seh_try_begin: 6998 case Intrinsic::seh_scope_begin: 6999 case Intrinsic::seh_try_end: 7000 case Intrinsic::seh_scope_end: 7001 // ignore 7002 return; 7003 case Intrinsic::experimental_stackmap: 7004 visitStackmap(I); 7005 return; 7006 case Intrinsic::experimental_patchpoint_void: 7007 case Intrinsic::experimental_patchpoint_i64: 7008 visitPatchpoint(I); 7009 return; 7010 case Intrinsic::experimental_gc_statepoint: 7011 LowerStatepoint(cast<GCStatepointInst>(I)); 7012 return; 7013 case Intrinsic::experimental_gc_result: 7014 visitGCResult(cast<GCResultInst>(I)); 7015 return; 7016 case Intrinsic::experimental_gc_relocate: 7017 visitGCRelocate(cast<GCRelocateInst>(I)); 7018 return; 7019 case Intrinsic::instrprof_cover: 7020 llvm_unreachable("instrprof failed to lower a cover"); 7021 case Intrinsic::instrprof_increment: 7022 llvm_unreachable("instrprof failed to lower an increment"); 7023 case Intrinsic::instrprof_value_profile: 7024 llvm_unreachable("instrprof failed to lower a value profiling call"); 7025 case Intrinsic::localescape: { 7026 MachineFunction &MF = DAG.getMachineFunction(); 7027 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7028 7029 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7030 // is the same on all targets. 7031 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7032 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7033 if (isa<ConstantPointerNull>(Arg)) 7034 continue; // Skip null pointers. They represent a hole in index space. 7035 AllocaInst *Slot = cast<AllocaInst>(Arg); 7036 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7037 "can only escape static allocas"); 7038 int FI = FuncInfo.StaticAllocaMap[Slot]; 7039 MCSymbol *FrameAllocSym = 7040 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7041 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7043 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7044 .addSym(FrameAllocSym) 7045 .addFrameIndex(FI); 7046 } 7047 7048 return; 7049 } 7050 7051 case Intrinsic::localrecover: { 7052 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7053 MachineFunction &MF = DAG.getMachineFunction(); 7054 7055 // Get the symbol that defines the frame offset. 7056 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7057 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7058 unsigned IdxVal = 7059 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7060 MCSymbol *FrameAllocSym = 7061 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7062 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7063 7064 Value *FP = I.getArgOperand(1); 7065 SDValue FPVal = getValue(FP); 7066 EVT PtrVT = FPVal.getValueType(); 7067 7068 // Create a MCSymbol for the label to avoid any target lowering 7069 // that would make this PC relative. 7070 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7071 SDValue OffsetVal = 7072 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7073 7074 // Add the offset to the FP. 7075 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7076 setValue(&I, Add); 7077 7078 return; 7079 } 7080 7081 case Intrinsic::eh_exceptionpointer: 7082 case Intrinsic::eh_exceptioncode: { 7083 // Get the exception pointer vreg, copy from it, and resize it to fit. 7084 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7085 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7086 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7087 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7088 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7089 if (Intrinsic == Intrinsic::eh_exceptioncode) 7090 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7091 setValue(&I, N); 7092 return; 7093 } 7094 case Intrinsic::xray_customevent: { 7095 // Here we want to make sure that the intrinsic behaves as if it has a 7096 // specific calling convention, and only for x86_64. 7097 // FIXME: Support other platforms later. 7098 const auto &Triple = DAG.getTarget().getTargetTriple(); 7099 if (Triple.getArch() != Triple::x86_64) 7100 return; 7101 7102 SmallVector<SDValue, 8> Ops; 7103 7104 // We want to say that we always want the arguments in registers. 7105 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7106 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7107 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7108 SDValue Chain = getRoot(); 7109 Ops.push_back(LogEntryVal); 7110 Ops.push_back(StrSizeVal); 7111 Ops.push_back(Chain); 7112 7113 // We need to enforce the calling convention for the callsite, so that 7114 // argument ordering is enforced correctly, and that register allocation can 7115 // see that some registers may be assumed clobbered and have to preserve 7116 // them across calls to the intrinsic. 7117 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7118 sdl, NodeTys, Ops); 7119 SDValue patchableNode = SDValue(MN, 0); 7120 DAG.setRoot(patchableNode); 7121 setValue(&I, patchableNode); 7122 return; 7123 } 7124 case Intrinsic::xray_typedevent: { 7125 // Here we want to make sure that the intrinsic behaves as if it has a 7126 // specific calling convention, and only for x86_64. 7127 // FIXME: Support other platforms later. 7128 const auto &Triple = DAG.getTarget().getTargetTriple(); 7129 if (Triple.getArch() != Triple::x86_64) 7130 return; 7131 7132 SmallVector<SDValue, 8> Ops; 7133 7134 // We want to say that we always want the arguments in registers. 7135 // It's unclear to me how manipulating the selection DAG here forces callers 7136 // to provide arguments in registers instead of on the stack. 7137 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7138 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7139 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7140 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7141 SDValue Chain = getRoot(); 7142 Ops.push_back(LogTypeId); 7143 Ops.push_back(LogEntryVal); 7144 Ops.push_back(StrSizeVal); 7145 Ops.push_back(Chain); 7146 7147 // We need to enforce the calling convention for the callsite, so that 7148 // argument ordering is enforced correctly, and that register allocation can 7149 // see that some registers may be assumed clobbered and have to preserve 7150 // them across calls to the intrinsic. 7151 MachineSDNode *MN = DAG.getMachineNode( 7152 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7153 SDValue patchableNode = SDValue(MN, 0); 7154 DAG.setRoot(patchableNode); 7155 setValue(&I, patchableNode); 7156 return; 7157 } 7158 case Intrinsic::experimental_deoptimize: 7159 LowerDeoptimizeCall(&I); 7160 return; 7161 case Intrinsic::experimental_stepvector: 7162 visitStepVector(I); 7163 return; 7164 case Intrinsic::vector_reduce_fadd: 7165 case Intrinsic::vector_reduce_fmul: 7166 case Intrinsic::vector_reduce_add: 7167 case Intrinsic::vector_reduce_mul: 7168 case Intrinsic::vector_reduce_and: 7169 case Intrinsic::vector_reduce_or: 7170 case Intrinsic::vector_reduce_xor: 7171 case Intrinsic::vector_reduce_smax: 7172 case Intrinsic::vector_reduce_smin: 7173 case Intrinsic::vector_reduce_umax: 7174 case Intrinsic::vector_reduce_umin: 7175 case Intrinsic::vector_reduce_fmax: 7176 case Intrinsic::vector_reduce_fmin: 7177 visitVectorReduce(I, Intrinsic); 7178 return; 7179 7180 case Intrinsic::icall_branch_funnel: { 7181 SmallVector<SDValue, 16> Ops; 7182 Ops.push_back(getValue(I.getArgOperand(0))); 7183 7184 int64_t Offset; 7185 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7186 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7187 if (!Base) 7188 report_fatal_error( 7189 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7190 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7191 7192 struct BranchFunnelTarget { 7193 int64_t Offset; 7194 SDValue Target; 7195 }; 7196 SmallVector<BranchFunnelTarget, 8> Targets; 7197 7198 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7199 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7200 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7201 if (ElemBase != Base) 7202 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7203 "to the same GlobalValue"); 7204 7205 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7206 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7207 if (!GA) 7208 report_fatal_error( 7209 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7210 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7211 GA->getGlobal(), sdl, Val.getValueType(), 7212 GA->getOffset())}); 7213 } 7214 llvm::sort(Targets, 7215 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7216 return T1.Offset < T2.Offset; 7217 }); 7218 7219 for (auto &T : Targets) { 7220 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7221 Ops.push_back(T.Target); 7222 } 7223 7224 Ops.push_back(DAG.getRoot()); // Chain 7225 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7226 MVT::Other, Ops), 7227 0); 7228 DAG.setRoot(N); 7229 setValue(&I, N); 7230 HasTailCall = true; 7231 return; 7232 } 7233 7234 case Intrinsic::wasm_landingpad_index: 7235 // Information this intrinsic contained has been transferred to 7236 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7237 // delete it now. 7238 return; 7239 7240 case Intrinsic::aarch64_settag: 7241 case Intrinsic::aarch64_settag_zero: { 7242 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7243 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7244 SDValue Val = TSI.EmitTargetCodeForSetTag( 7245 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7246 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7247 ZeroMemory); 7248 DAG.setRoot(Val); 7249 setValue(&I, Val); 7250 return; 7251 } 7252 case Intrinsic::ptrmask: { 7253 SDValue Ptr = getValue(I.getOperand(0)); 7254 SDValue Const = getValue(I.getOperand(1)); 7255 7256 EVT PtrVT = Ptr.getValueType(); 7257 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7258 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7259 return; 7260 } 7261 case Intrinsic::threadlocal_address: { 7262 setValue(&I, getValue(I.getOperand(0))); 7263 return; 7264 } 7265 case Intrinsic::get_active_lane_mask: { 7266 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7267 SDValue Index = getValue(I.getOperand(0)); 7268 EVT ElementVT = Index.getValueType(); 7269 7270 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7271 visitTargetIntrinsic(I, Intrinsic); 7272 return; 7273 } 7274 7275 SDValue TripCount = getValue(I.getOperand(1)); 7276 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7277 7278 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7279 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7280 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7281 SDValue VectorInduction = DAG.getNode( 7282 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7283 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7284 VectorTripCount, ISD::CondCode::SETULT); 7285 setValue(&I, SetCC); 7286 return; 7287 } 7288 case Intrinsic::vector_insert: { 7289 SDValue Vec = getValue(I.getOperand(0)); 7290 SDValue SubVec = getValue(I.getOperand(1)); 7291 SDValue Index = getValue(I.getOperand(2)); 7292 7293 // The intrinsic's index type is i64, but the SDNode requires an index type 7294 // suitable for the target. Convert the index as required. 7295 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7296 if (Index.getValueType() != VectorIdxTy) 7297 Index = DAG.getVectorIdxConstant( 7298 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7299 7300 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7301 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7302 Index)); 7303 return; 7304 } 7305 case Intrinsic::vector_extract: { 7306 SDValue Vec = getValue(I.getOperand(0)); 7307 SDValue Index = getValue(I.getOperand(1)); 7308 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7309 7310 // The intrinsic's index type is i64, but the SDNode requires an index type 7311 // suitable for the target. Convert the index as required. 7312 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7313 if (Index.getValueType() != VectorIdxTy) 7314 Index = DAG.getVectorIdxConstant( 7315 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7316 7317 setValue(&I, 7318 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7319 return; 7320 } 7321 case Intrinsic::experimental_vector_reverse: 7322 visitVectorReverse(I); 7323 return; 7324 case Intrinsic::experimental_vector_splice: 7325 visitVectorSplice(I); 7326 return; 7327 } 7328 } 7329 7330 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7331 const ConstrainedFPIntrinsic &FPI) { 7332 SDLoc sdl = getCurSDLoc(); 7333 7334 // We do not need to serialize constrained FP intrinsics against 7335 // each other or against (nonvolatile) loads, so they can be 7336 // chained like loads. 7337 SDValue Chain = DAG.getRoot(); 7338 SmallVector<SDValue, 4> Opers; 7339 Opers.push_back(Chain); 7340 if (FPI.isUnaryOp()) { 7341 Opers.push_back(getValue(FPI.getArgOperand(0))); 7342 } else if (FPI.isTernaryOp()) { 7343 Opers.push_back(getValue(FPI.getArgOperand(0))); 7344 Opers.push_back(getValue(FPI.getArgOperand(1))); 7345 Opers.push_back(getValue(FPI.getArgOperand(2))); 7346 } else { 7347 Opers.push_back(getValue(FPI.getArgOperand(0))); 7348 Opers.push_back(getValue(FPI.getArgOperand(1))); 7349 } 7350 7351 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7352 assert(Result.getNode()->getNumValues() == 2); 7353 7354 // Push node to the appropriate list so that future instructions can be 7355 // chained up correctly. 7356 SDValue OutChain = Result.getValue(1); 7357 switch (EB) { 7358 case fp::ExceptionBehavior::ebIgnore: 7359 // The only reason why ebIgnore nodes still need to be chained is that 7360 // they might depend on the current rounding mode, and therefore must 7361 // not be moved across instruction that may change that mode. 7362 [[fallthrough]]; 7363 case fp::ExceptionBehavior::ebMayTrap: 7364 // These must not be moved across calls or instructions that may change 7365 // floating-point exception masks. 7366 PendingConstrainedFP.push_back(OutChain); 7367 break; 7368 case fp::ExceptionBehavior::ebStrict: 7369 // These must not be moved across calls or instructions that may change 7370 // floating-point exception masks or read floating-point exception flags. 7371 // In addition, they cannot be optimized out even if unused. 7372 PendingConstrainedFPStrict.push_back(OutChain); 7373 break; 7374 } 7375 }; 7376 7377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7378 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7379 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7380 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7381 7382 SDNodeFlags Flags; 7383 if (EB == fp::ExceptionBehavior::ebIgnore) 7384 Flags.setNoFPExcept(true); 7385 7386 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7387 Flags.copyFMF(*FPOp); 7388 7389 unsigned Opcode; 7390 switch (FPI.getIntrinsicID()) { 7391 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7392 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7393 case Intrinsic::INTRINSIC: \ 7394 Opcode = ISD::STRICT_##DAGN; \ 7395 break; 7396 #include "llvm/IR/ConstrainedOps.def" 7397 case Intrinsic::experimental_constrained_fmuladd: { 7398 Opcode = ISD::STRICT_FMA; 7399 // Break fmuladd into fmul and fadd. 7400 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7401 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7402 Opers.pop_back(); 7403 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7404 pushOutChain(Mul, EB); 7405 Opcode = ISD::STRICT_FADD; 7406 Opers.clear(); 7407 Opers.push_back(Mul.getValue(1)); 7408 Opers.push_back(Mul.getValue(0)); 7409 Opers.push_back(getValue(FPI.getArgOperand(2))); 7410 } 7411 break; 7412 } 7413 } 7414 7415 // A few strict DAG nodes carry additional operands that are not 7416 // set up by the default code above. 7417 switch (Opcode) { 7418 default: break; 7419 case ISD::STRICT_FP_ROUND: 7420 Opers.push_back( 7421 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7422 break; 7423 case ISD::STRICT_FSETCC: 7424 case ISD::STRICT_FSETCCS: { 7425 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7426 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7427 if (TM.Options.NoNaNsFPMath) 7428 Condition = getFCmpCodeWithoutNaN(Condition); 7429 Opers.push_back(DAG.getCondCode(Condition)); 7430 break; 7431 } 7432 } 7433 7434 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7435 pushOutChain(Result, EB); 7436 7437 SDValue FPResult = Result.getValue(0); 7438 setValue(&FPI, FPResult); 7439 } 7440 7441 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7442 std::optional<unsigned> ResOPC; 7443 switch (VPIntrin.getIntrinsicID()) { 7444 case Intrinsic::vp_ctlz: { 7445 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne(); 7446 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7447 break; 7448 } 7449 case Intrinsic::vp_cttz: { 7450 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne(); 7451 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7452 break; 7453 } 7454 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7455 case Intrinsic::VPID: \ 7456 ResOPC = ISD::VPSD; \ 7457 break; 7458 #include "llvm/IR/VPIntrinsics.def" 7459 } 7460 7461 if (!ResOPC) 7462 llvm_unreachable( 7463 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7464 7465 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7466 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7467 if (VPIntrin.getFastMathFlags().allowReassoc()) 7468 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7469 : ISD::VP_REDUCE_FMUL; 7470 } 7471 7472 return *ResOPC; 7473 } 7474 7475 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7476 SmallVector<SDValue, 7> &OpValues) { 7477 SDLoc DL = getCurSDLoc(); 7478 Value *PtrOperand = VPIntrin.getArgOperand(0); 7479 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7480 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7481 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7482 SDValue LD; 7483 bool AddToChain = true; 7484 // Do not serialize variable-length loads of constant memory with 7485 // anything. 7486 if (!Alignment) 7487 Alignment = DAG.getEVTAlign(VT); 7488 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7489 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7490 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7491 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7492 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7493 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7494 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7495 MMO, false /*IsExpanding */); 7496 if (AddToChain) 7497 PendingLoads.push_back(LD.getValue(1)); 7498 setValue(&VPIntrin, LD); 7499 } 7500 7501 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7502 SmallVector<SDValue, 7> &OpValues) { 7503 SDLoc DL = getCurSDLoc(); 7504 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7505 Value *PtrOperand = VPIntrin.getArgOperand(0); 7506 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7507 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7508 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7509 SDValue LD; 7510 if (!Alignment) 7511 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7512 unsigned AS = 7513 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7514 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7515 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7516 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7517 SDValue Base, Index, Scale; 7518 ISD::MemIndexType IndexType; 7519 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7520 this, VPIntrin.getParent(), 7521 VT.getScalarStoreSize()); 7522 if (!UniformBase) { 7523 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7524 Index = getValue(PtrOperand); 7525 IndexType = ISD::SIGNED_SCALED; 7526 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7527 } 7528 EVT IdxVT = Index.getValueType(); 7529 EVT EltTy = IdxVT.getVectorElementType(); 7530 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7531 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7532 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7533 } 7534 LD = DAG.getGatherVP( 7535 DAG.getVTList(VT, MVT::Other), VT, DL, 7536 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7537 IndexType); 7538 PendingLoads.push_back(LD.getValue(1)); 7539 setValue(&VPIntrin, LD); 7540 } 7541 7542 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7543 SmallVector<SDValue, 7> &OpValues) { 7544 SDLoc DL = getCurSDLoc(); 7545 Value *PtrOperand = VPIntrin.getArgOperand(1); 7546 EVT VT = OpValues[0].getValueType(); 7547 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7548 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7549 SDValue ST; 7550 if (!Alignment) 7551 Alignment = DAG.getEVTAlign(VT); 7552 SDValue Ptr = OpValues[1]; 7553 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7554 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7555 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7556 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7557 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7558 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7559 /* IsTruncating */ false, /*IsCompressing*/ false); 7560 DAG.setRoot(ST); 7561 setValue(&VPIntrin, ST); 7562 } 7563 7564 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7565 SmallVector<SDValue, 7> &OpValues) { 7566 SDLoc DL = getCurSDLoc(); 7567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7568 Value *PtrOperand = VPIntrin.getArgOperand(1); 7569 EVT VT = OpValues[0].getValueType(); 7570 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7571 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7572 SDValue ST; 7573 if (!Alignment) 7574 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7575 unsigned AS = 7576 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7577 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7578 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7579 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7580 SDValue Base, Index, Scale; 7581 ISD::MemIndexType IndexType; 7582 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7583 this, VPIntrin.getParent(), 7584 VT.getScalarStoreSize()); 7585 if (!UniformBase) { 7586 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7587 Index = getValue(PtrOperand); 7588 IndexType = ISD::SIGNED_SCALED; 7589 Scale = 7590 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7591 } 7592 EVT IdxVT = Index.getValueType(); 7593 EVT EltTy = IdxVT.getVectorElementType(); 7594 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7595 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7596 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7597 } 7598 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7599 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7600 OpValues[2], OpValues[3]}, 7601 MMO, IndexType); 7602 DAG.setRoot(ST); 7603 setValue(&VPIntrin, ST); 7604 } 7605 7606 void SelectionDAGBuilder::visitVPStridedLoad( 7607 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7608 SDLoc DL = getCurSDLoc(); 7609 Value *PtrOperand = VPIntrin.getArgOperand(0); 7610 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7611 if (!Alignment) 7612 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7613 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7614 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7615 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7616 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7617 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7618 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7619 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7620 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7621 7622 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7623 OpValues[2], OpValues[3], MMO, 7624 false /*IsExpanding*/); 7625 7626 if (AddToChain) 7627 PendingLoads.push_back(LD.getValue(1)); 7628 setValue(&VPIntrin, LD); 7629 } 7630 7631 void SelectionDAGBuilder::visitVPStridedStore( 7632 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7633 SDLoc DL = getCurSDLoc(); 7634 Value *PtrOperand = VPIntrin.getArgOperand(1); 7635 EVT VT = OpValues[0].getValueType(); 7636 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7637 if (!Alignment) 7638 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7639 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7640 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7641 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7642 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7643 7644 SDValue ST = DAG.getStridedStoreVP( 7645 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7646 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7647 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7648 /*IsCompressing*/ false); 7649 7650 DAG.setRoot(ST); 7651 setValue(&VPIntrin, ST); 7652 } 7653 7654 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7656 SDLoc DL = getCurSDLoc(); 7657 7658 ISD::CondCode Condition; 7659 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7660 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7661 if (IsFP) { 7662 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7663 // flags, but calls that don't return floating-point types can't be 7664 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7665 Condition = getFCmpCondCode(CondCode); 7666 if (TM.Options.NoNaNsFPMath) 7667 Condition = getFCmpCodeWithoutNaN(Condition); 7668 } else { 7669 Condition = getICmpCondCode(CondCode); 7670 } 7671 7672 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7673 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7674 // #2 is the condition code 7675 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7676 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7677 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7678 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7679 "Unexpected target EVL type"); 7680 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7681 7682 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7683 VPIntrin.getType()); 7684 setValue(&VPIntrin, 7685 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7686 } 7687 7688 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7689 const VPIntrinsic &VPIntrin) { 7690 SDLoc DL = getCurSDLoc(); 7691 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7692 7693 auto IID = VPIntrin.getIntrinsicID(); 7694 7695 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7696 return visitVPCmp(*CmpI); 7697 7698 SmallVector<EVT, 4> ValueVTs; 7699 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7700 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7701 SDVTList VTs = DAG.getVTList(ValueVTs); 7702 7703 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7704 7705 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7706 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7707 "Unexpected target EVL type"); 7708 7709 // Request operands. 7710 SmallVector<SDValue, 7> OpValues; 7711 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7712 auto Op = getValue(VPIntrin.getArgOperand(I)); 7713 if (I == EVLParamPos) 7714 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7715 OpValues.push_back(Op); 7716 } 7717 7718 switch (Opcode) { 7719 default: { 7720 SDNodeFlags SDFlags; 7721 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7722 SDFlags.copyFMF(*FPMO); 7723 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7724 setValue(&VPIntrin, Result); 7725 break; 7726 } 7727 case ISD::VP_LOAD: 7728 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7729 break; 7730 case ISD::VP_GATHER: 7731 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7732 break; 7733 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7734 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7735 break; 7736 case ISD::VP_STORE: 7737 visitVPStore(VPIntrin, OpValues); 7738 break; 7739 case ISD::VP_SCATTER: 7740 visitVPScatter(VPIntrin, OpValues); 7741 break; 7742 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7743 visitVPStridedStore(VPIntrin, OpValues); 7744 break; 7745 case ISD::VP_FMULADD: { 7746 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7747 SDNodeFlags SDFlags; 7748 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7749 SDFlags.copyFMF(*FPMO); 7750 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7751 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7752 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7753 } else { 7754 SDValue Mul = DAG.getNode( 7755 ISD::VP_FMUL, DL, VTs, 7756 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7757 SDValue Add = 7758 DAG.getNode(ISD::VP_FADD, DL, VTs, 7759 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7760 setValue(&VPIntrin, Add); 7761 } 7762 break; 7763 } 7764 case ISD::VP_INTTOPTR: { 7765 SDValue N = OpValues[0]; 7766 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7767 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7768 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7769 OpValues[2]); 7770 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7771 OpValues[2]); 7772 setValue(&VPIntrin, N); 7773 break; 7774 } 7775 case ISD::VP_PTRTOINT: { 7776 SDValue N = OpValues[0]; 7777 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7778 VPIntrin.getType()); 7779 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7780 VPIntrin.getOperand(0)->getType()); 7781 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7782 OpValues[2]); 7783 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7784 OpValues[2]); 7785 setValue(&VPIntrin, N); 7786 break; 7787 } 7788 case ISD::VP_ABS: 7789 case ISD::VP_CTLZ: 7790 case ISD::VP_CTLZ_ZERO_UNDEF: 7791 case ISD::VP_CTTZ: 7792 case ISD::VP_CTTZ_ZERO_UNDEF: { 7793 // Pop is_zero_poison operand for cp.ctlz/cttz or 7794 // is_int_min_poison operand for vp.abs. 7795 OpValues.pop_back(); 7796 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7797 setValue(&VPIntrin, Result); 7798 break; 7799 } 7800 } 7801 } 7802 7803 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7804 const BasicBlock *EHPadBB, 7805 MCSymbol *&BeginLabel) { 7806 MachineFunction &MF = DAG.getMachineFunction(); 7807 MachineModuleInfo &MMI = MF.getMMI(); 7808 7809 // Insert a label before the invoke call to mark the try range. This can be 7810 // used to detect deletion of the invoke via the MachineModuleInfo. 7811 BeginLabel = MMI.getContext().createTempSymbol(); 7812 7813 // For SjLj, keep track of which landing pads go with which invokes 7814 // so as to maintain the ordering of pads in the LSDA. 7815 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7816 if (CallSiteIndex) { 7817 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7818 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7819 7820 // Now that the call site is handled, stop tracking it. 7821 MMI.setCurrentCallSite(0); 7822 } 7823 7824 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7825 } 7826 7827 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7828 const BasicBlock *EHPadBB, 7829 MCSymbol *BeginLabel) { 7830 assert(BeginLabel && "BeginLabel should've been set"); 7831 7832 MachineFunction &MF = DAG.getMachineFunction(); 7833 MachineModuleInfo &MMI = MF.getMMI(); 7834 7835 // Insert a label at the end of the invoke call to mark the try range. This 7836 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7837 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7838 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7839 7840 // Inform MachineModuleInfo of range. 7841 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7842 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7843 // actually use outlined funclets and their LSDA info style. 7844 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7845 assert(II && "II should've been set"); 7846 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7847 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7848 } else if (!isScopedEHPersonality(Pers)) { 7849 assert(EHPadBB); 7850 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7851 } 7852 7853 return Chain; 7854 } 7855 7856 std::pair<SDValue, SDValue> 7857 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7858 const BasicBlock *EHPadBB) { 7859 MCSymbol *BeginLabel = nullptr; 7860 7861 if (EHPadBB) { 7862 // Both PendingLoads and PendingExports must be flushed here; 7863 // this call might not return. 7864 (void)getRoot(); 7865 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7866 CLI.setChain(getRoot()); 7867 } 7868 7869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7870 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7871 7872 assert((CLI.IsTailCall || Result.second.getNode()) && 7873 "Non-null chain expected with non-tail call!"); 7874 assert((Result.second.getNode() || !Result.first.getNode()) && 7875 "Null value expected with tail call!"); 7876 7877 if (!Result.second.getNode()) { 7878 // As a special case, a null chain means that a tail call has been emitted 7879 // and the DAG root is already updated. 7880 HasTailCall = true; 7881 7882 // Since there's no actual continuation from this block, nothing can be 7883 // relying on us setting vregs for them. 7884 PendingExports.clear(); 7885 } else { 7886 DAG.setRoot(Result.second); 7887 } 7888 7889 if (EHPadBB) { 7890 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7891 BeginLabel)); 7892 } 7893 7894 return Result; 7895 } 7896 7897 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7898 bool isTailCall, 7899 bool isMustTailCall, 7900 const BasicBlock *EHPadBB) { 7901 auto &DL = DAG.getDataLayout(); 7902 FunctionType *FTy = CB.getFunctionType(); 7903 Type *RetTy = CB.getType(); 7904 7905 TargetLowering::ArgListTy Args; 7906 Args.reserve(CB.arg_size()); 7907 7908 const Value *SwiftErrorVal = nullptr; 7909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7910 7911 if (isTailCall) { 7912 // Avoid emitting tail calls in functions with the disable-tail-calls 7913 // attribute. 7914 auto *Caller = CB.getParent()->getParent(); 7915 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7916 "true" && !isMustTailCall) 7917 isTailCall = false; 7918 7919 // We can't tail call inside a function with a swifterror argument. Lowering 7920 // does not support this yet. It would have to move into the swifterror 7921 // register before the call. 7922 if (TLI.supportSwiftError() && 7923 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7924 isTailCall = false; 7925 } 7926 7927 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7928 TargetLowering::ArgListEntry Entry; 7929 const Value *V = *I; 7930 7931 // Skip empty types 7932 if (V->getType()->isEmptyTy()) 7933 continue; 7934 7935 SDValue ArgNode = getValue(V); 7936 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7937 7938 Entry.setAttributes(&CB, I - CB.arg_begin()); 7939 7940 // Use swifterror virtual register as input to the call. 7941 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7942 SwiftErrorVal = V; 7943 // We find the virtual register for the actual swifterror argument. 7944 // Instead of using the Value, we use the virtual register instead. 7945 Entry.Node = 7946 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7947 EVT(TLI.getPointerTy(DL))); 7948 } 7949 7950 Args.push_back(Entry); 7951 7952 // If we have an explicit sret argument that is an Instruction, (i.e., it 7953 // might point to function-local memory), we can't meaningfully tail-call. 7954 if (Entry.IsSRet && isa<Instruction>(V)) 7955 isTailCall = false; 7956 } 7957 7958 // If call site has a cfguardtarget operand bundle, create and add an 7959 // additional ArgListEntry. 7960 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7961 TargetLowering::ArgListEntry Entry; 7962 Value *V = Bundle->Inputs[0]; 7963 SDValue ArgNode = getValue(V); 7964 Entry.Node = ArgNode; 7965 Entry.Ty = V->getType(); 7966 Entry.IsCFGuardTarget = true; 7967 Args.push_back(Entry); 7968 } 7969 7970 // Check if target-independent constraints permit a tail call here. 7971 // Target-dependent constraints are checked within TLI->LowerCallTo. 7972 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7973 isTailCall = false; 7974 7975 // Disable tail calls if there is an swifterror argument. Targets have not 7976 // been updated to support tail calls. 7977 if (TLI.supportSwiftError() && SwiftErrorVal) 7978 isTailCall = false; 7979 7980 ConstantInt *CFIType = nullptr; 7981 if (CB.isIndirectCall()) { 7982 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7983 if (!TLI.supportKCFIBundles()) 7984 report_fatal_error( 7985 "Target doesn't support calls with kcfi operand bundles."); 7986 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7987 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7988 } 7989 } 7990 7991 TargetLowering::CallLoweringInfo CLI(DAG); 7992 CLI.setDebugLoc(getCurSDLoc()) 7993 .setChain(getRoot()) 7994 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7995 .setTailCall(isTailCall) 7996 .setConvergent(CB.isConvergent()) 7997 .setIsPreallocated( 7998 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7999 .setCFIType(CFIType); 8000 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8001 8002 if (Result.first.getNode()) { 8003 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8004 setValue(&CB, Result.first); 8005 } 8006 8007 // The last element of CLI.InVals has the SDValue for swifterror return. 8008 // Here we copy it to a virtual register and update SwiftErrorMap for 8009 // book-keeping. 8010 if (SwiftErrorVal && TLI.supportSwiftError()) { 8011 // Get the last element of InVals. 8012 SDValue Src = CLI.InVals.back(); 8013 Register VReg = 8014 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8015 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8016 DAG.setRoot(CopyNode); 8017 } 8018 } 8019 8020 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8021 SelectionDAGBuilder &Builder) { 8022 // Check to see if this load can be trivially constant folded, e.g. if the 8023 // input is from a string literal. 8024 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8025 // Cast pointer to the type we really want to load. 8026 Type *LoadTy = 8027 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8028 if (LoadVT.isVector()) 8029 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8030 8031 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8032 PointerType::getUnqual(LoadTy)); 8033 8034 if (const Constant *LoadCst = 8035 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8036 LoadTy, Builder.DAG.getDataLayout())) 8037 return Builder.getValue(LoadCst); 8038 } 8039 8040 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8041 // still constant memory, the input chain can be the entry node. 8042 SDValue Root; 8043 bool ConstantMemory = false; 8044 8045 // Do not serialize (non-volatile) loads of constant memory with anything. 8046 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8047 Root = Builder.DAG.getEntryNode(); 8048 ConstantMemory = true; 8049 } else { 8050 // Do not serialize non-volatile loads against each other. 8051 Root = Builder.DAG.getRoot(); 8052 } 8053 8054 SDValue Ptr = Builder.getValue(PtrVal); 8055 SDValue LoadVal = 8056 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8057 MachinePointerInfo(PtrVal), Align(1)); 8058 8059 if (!ConstantMemory) 8060 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8061 return LoadVal; 8062 } 8063 8064 /// Record the value for an instruction that produces an integer result, 8065 /// converting the type where necessary. 8066 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8067 SDValue Value, 8068 bool IsSigned) { 8069 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8070 I.getType(), true); 8071 if (IsSigned) 8072 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 8073 else 8074 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 8075 setValue(&I, Value); 8076 } 8077 8078 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8079 /// true and lower it. Otherwise return false, and it will be lowered like a 8080 /// normal call. 8081 /// The caller already checked that \p I calls the appropriate LibFunc with a 8082 /// correct prototype. 8083 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8084 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8085 const Value *Size = I.getArgOperand(2); 8086 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8087 if (CSize && CSize->getZExtValue() == 0) { 8088 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8089 I.getType(), true); 8090 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8091 return true; 8092 } 8093 8094 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8095 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8096 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8097 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8098 if (Res.first.getNode()) { 8099 processIntegerCallValue(I, Res.first, true); 8100 PendingLoads.push_back(Res.second); 8101 return true; 8102 } 8103 8104 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8105 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8106 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8107 return false; 8108 8109 // If the target has a fast compare for the given size, it will return a 8110 // preferred load type for that size. Require that the load VT is legal and 8111 // that the target supports unaligned loads of that type. Otherwise, return 8112 // INVALID. 8113 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8115 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8116 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8117 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8118 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8119 // TODO: Check alignment of src and dest ptrs. 8120 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8121 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8122 if (!TLI.isTypeLegal(LVT) || 8123 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8124 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8125 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8126 } 8127 8128 return LVT; 8129 }; 8130 8131 // This turns into unaligned loads. We only do this if the target natively 8132 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8133 // we'll only produce a small number of byte loads. 8134 MVT LoadVT; 8135 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8136 switch (NumBitsToCompare) { 8137 default: 8138 return false; 8139 case 16: 8140 LoadVT = MVT::i16; 8141 break; 8142 case 32: 8143 LoadVT = MVT::i32; 8144 break; 8145 case 64: 8146 case 128: 8147 case 256: 8148 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8149 break; 8150 } 8151 8152 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8153 return false; 8154 8155 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8156 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8157 8158 // Bitcast to a wide integer type if the loads are vectors. 8159 if (LoadVT.isVector()) { 8160 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8161 LoadL = DAG.getBitcast(CmpVT, LoadL); 8162 LoadR = DAG.getBitcast(CmpVT, LoadR); 8163 } 8164 8165 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8166 processIntegerCallValue(I, Cmp, false); 8167 return true; 8168 } 8169 8170 /// See if we can lower a memchr call into an optimized form. If so, return 8171 /// true and lower it. Otherwise return false, and it will be lowered like a 8172 /// normal call. 8173 /// The caller already checked that \p I calls the appropriate LibFunc with a 8174 /// correct prototype. 8175 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8176 const Value *Src = I.getArgOperand(0); 8177 const Value *Char = I.getArgOperand(1); 8178 const Value *Length = I.getArgOperand(2); 8179 8180 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8181 std::pair<SDValue, SDValue> Res = 8182 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8183 getValue(Src), getValue(Char), getValue(Length), 8184 MachinePointerInfo(Src)); 8185 if (Res.first.getNode()) { 8186 setValue(&I, Res.first); 8187 PendingLoads.push_back(Res.second); 8188 return true; 8189 } 8190 8191 return false; 8192 } 8193 8194 /// See if we can lower a mempcpy call into an optimized form. If so, return 8195 /// true and lower it. Otherwise return false, and it will be lowered like a 8196 /// normal call. 8197 /// The caller already checked that \p I calls the appropriate LibFunc with a 8198 /// correct prototype. 8199 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8200 SDValue Dst = getValue(I.getArgOperand(0)); 8201 SDValue Src = getValue(I.getArgOperand(1)); 8202 SDValue Size = getValue(I.getArgOperand(2)); 8203 8204 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8205 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8206 // DAG::getMemcpy needs Alignment to be defined. 8207 Align Alignment = std::min(DstAlign, SrcAlign); 8208 8209 bool isVol = false; 8210 SDLoc sdl = getCurSDLoc(); 8211 8212 // In the mempcpy context we need to pass in a false value for isTailCall 8213 // because the return pointer needs to be adjusted by the size of 8214 // the copied memory. 8215 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8216 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8217 /*isTailCall=*/false, 8218 MachinePointerInfo(I.getArgOperand(0)), 8219 MachinePointerInfo(I.getArgOperand(1)), 8220 I.getAAMetadata()); 8221 assert(MC.getNode() != nullptr && 8222 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8223 DAG.setRoot(MC); 8224 8225 // Check if Size needs to be truncated or extended. 8226 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8227 8228 // Adjust return pointer to point just past the last dst byte. 8229 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8230 Dst, Size); 8231 setValue(&I, DstPlusSize); 8232 return true; 8233 } 8234 8235 /// See if we can lower a strcpy call into an optimized form. If so, return 8236 /// true and lower it, otherwise return false and it will be lowered like a 8237 /// normal call. 8238 /// The caller already checked that \p I calls the appropriate LibFunc with a 8239 /// correct prototype. 8240 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8241 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8242 8243 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8244 std::pair<SDValue, SDValue> Res = 8245 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8246 getValue(Arg0), getValue(Arg1), 8247 MachinePointerInfo(Arg0), 8248 MachinePointerInfo(Arg1), isStpcpy); 8249 if (Res.first.getNode()) { 8250 setValue(&I, Res.first); 8251 DAG.setRoot(Res.second); 8252 return true; 8253 } 8254 8255 return false; 8256 } 8257 8258 /// See if we can lower a strcmp call into an optimized form. If so, return 8259 /// true and lower it, otherwise return false and it will be lowered like a 8260 /// normal call. 8261 /// The caller already checked that \p I calls the appropriate LibFunc with a 8262 /// correct prototype. 8263 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8264 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8265 8266 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8267 std::pair<SDValue, SDValue> Res = 8268 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8269 getValue(Arg0), getValue(Arg1), 8270 MachinePointerInfo(Arg0), 8271 MachinePointerInfo(Arg1)); 8272 if (Res.first.getNode()) { 8273 processIntegerCallValue(I, Res.first, true); 8274 PendingLoads.push_back(Res.second); 8275 return true; 8276 } 8277 8278 return false; 8279 } 8280 8281 /// See if we can lower a strlen call into an optimized form. If so, return 8282 /// true and lower it, otherwise return false and it will be lowered like a 8283 /// normal call. 8284 /// The caller already checked that \p I calls the appropriate LibFunc with a 8285 /// correct prototype. 8286 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8287 const Value *Arg0 = I.getArgOperand(0); 8288 8289 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8290 std::pair<SDValue, SDValue> Res = 8291 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8292 getValue(Arg0), MachinePointerInfo(Arg0)); 8293 if (Res.first.getNode()) { 8294 processIntegerCallValue(I, Res.first, false); 8295 PendingLoads.push_back(Res.second); 8296 return true; 8297 } 8298 8299 return false; 8300 } 8301 8302 /// See if we can lower a strnlen call into an optimized form. If so, return 8303 /// true and lower it, otherwise return false and it will be lowered like a 8304 /// normal call. 8305 /// The caller already checked that \p I calls the appropriate LibFunc with a 8306 /// correct prototype. 8307 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8308 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8309 8310 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8311 std::pair<SDValue, SDValue> Res = 8312 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8313 getValue(Arg0), getValue(Arg1), 8314 MachinePointerInfo(Arg0)); 8315 if (Res.first.getNode()) { 8316 processIntegerCallValue(I, Res.first, false); 8317 PendingLoads.push_back(Res.second); 8318 return true; 8319 } 8320 8321 return false; 8322 } 8323 8324 /// See if we can lower a unary floating-point operation into an SDNode with 8325 /// the specified Opcode. If so, return true and lower it, otherwise return 8326 /// false and it will be lowered like a normal call. 8327 /// The caller already checked that \p I calls the appropriate LibFunc with a 8328 /// correct prototype. 8329 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8330 unsigned Opcode) { 8331 // We already checked this call's prototype; verify it doesn't modify errno. 8332 if (!I.onlyReadsMemory()) 8333 return false; 8334 8335 SDNodeFlags Flags; 8336 Flags.copyFMF(cast<FPMathOperator>(I)); 8337 8338 SDValue Tmp = getValue(I.getArgOperand(0)); 8339 setValue(&I, 8340 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8341 return true; 8342 } 8343 8344 /// See if we can lower a binary floating-point operation into an SDNode with 8345 /// the specified Opcode. If so, return true and lower it. Otherwise return 8346 /// false, and it will be lowered like a normal call. 8347 /// The caller already checked that \p I calls the appropriate LibFunc with a 8348 /// correct prototype. 8349 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8350 unsigned Opcode) { 8351 // We already checked this call's prototype; verify it doesn't modify errno. 8352 if (!I.onlyReadsMemory()) 8353 return false; 8354 8355 SDNodeFlags Flags; 8356 Flags.copyFMF(cast<FPMathOperator>(I)); 8357 8358 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8359 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8360 EVT VT = Tmp0.getValueType(); 8361 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8362 return true; 8363 } 8364 8365 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8366 // Handle inline assembly differently. 8367 if (I.isInlineAsm()) { 8368 visitInlineAsm(I); 8369 return; 8370 } 8371 8372 diagnoseDontCall(I); 8373 8374 if (Function *F = I.getCalledFunction()) { 8375 if (F->isDeclaration()) { 8376 // Is this an LLVM intrinsic or a target-specific intrinsic? 8377 unsigned IID = F->getIntrinsicID(); 8378 if (!IID) 8379 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8380 IID = II->getIntrinsicID(F); 8381 8382 if (IID) { 8383 visitIntrinsicCall(I, IID); 8384 return; 8385 } 8386 } 8387 8388 // Check for well-known libc/libm calls. If the function is internal, it 8389 // can't be a library call. Don't do the check if marked as nobuiltin for 8390 // some reason or the call site requires strict floating point semantics. 8391 LibFunc Func; 8392 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8393 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8394 LibInfo->hasOptimizedCodeGen(Func)) { 8395 switch (Func) { 8396 default: break; 8397 case LibFunc_bcmp: 8398 if (visitMemCmpBCmpCall(I)) 8399 return; 8400 break; 8401 case LibFunc_copysign: 8402 case LibFunc_copysignf: 8403 case LibFunc_copysignl: 8404 // We already checked this call's prototype; verify it doesn't modify 8405 // errno. 8406 if (I.onlyReadsMemory()) { 8407 SDValue LHS = getValue(I.getArgOperand(0)); 8408 SDValue RHS = getValue(I.getArgOperand(1)); 8409 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8410 LHS.getValueType(), LHS, RHS)); 8411 return; 8412 } 8413 break; 8414 case LibFunc_fabs: 8415 case LibFunc_fabsf: 8416 case LibFunc_fabsl: 8417 if (visitUnaryFloatCall(I, ISD::FABS)) 8418 return; 8419 break; 8420 case LibFunc_fmin: 8421 case LibFunc_fminf: 8422 case LibFunc_fminl: 8423 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8424 return; 8425 break; 8426 case LibFunc_fmax: 8427 case LibFunc_fmaxf: 8428 case LibFunc_fmaxl: 8429 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8430 return; 8431 break; 8432 case LibFunc_sin: 8433 case LibFunc_sinf: 8434 case LibFunc_sinl: 8435 if (visitUnaryFloatCall(I, ISD::FSIN)) 8436 return; 8437 break; 8438 case LibFunc_cos: 8439 case LibFunc_cosf: 8440 case LibFunc_cosl: 8441 if (visitUnaryFloatCall(I, ISD::FCOS)) 8442 return; 8443 break; 8444 case LibFunc_sqrt: 8445 case LibFunc_sqrtf: 8446 case LibFunc_sqrtl: 8447 case LibFunc_sqrt_finite: 8448 case LibFunc_sqrtf_finite: 8449 case LibFunc_sqrtl_finite: 8450 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8451 return; 8452 break; 8453 case LibFunc_floor: 8454 case LibFunc_floorf: 8455 case LibFunc_floorl: 8456 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8457 return; 8458 break; 8459 case LibFunc_nearbyint: 8460 case LibFunc_nearbyintf: 8461 case LibFunc_nearbyintl: 8462 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8463 return; 8464 break; 8465 case LibFunc_ceil: 8466 case LibFunc_ceilf: 8467 case LibFunc_ceill: 8468 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8469 return; 8470 break; 8471 case LibFunc_rint: 8472 case LibFunc_rintf: 8473 case LibFunc_rintl: 8474 if (visitUnaryFloatCall(I, ISD::FRINT)) 8475 return; 8476 break; 8477 case LibFunc_round: 8478 case LibFunc_roundf: 8479 case LibFunc_roundl: 8480 if (visitUnaryFloatCall(I, ISD::FROUND)) 8481 return; 8482 break; 8483 case LibFunc_trunc: 8484 case LibFunc_truncf: 8485 case LibFunc_truncl: 8486 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8487 return; 8488 break; 8489 case LibFunc_log2: 8490 case LibFunc_log2f: 8491 case LibFunc_log2l: 8492 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8493 return; 8494 break; 8495 case LibFunc_exp2: 8496 case LibFunc_exp2f: 8497 case LibFunc_exp2l: 8498 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8499 return; 8500 break; 8501 case LibFunc_memcmp: 8502 if (visitMemCmpBCmpCall(I)) 8503 return; 8504 break; 8505 case LibFunc_mempcpy: 8506 if (visitMemPCpyCall(I)) 8507 return; 8508 break; 8509 case LibFunc_memchr: 8510 if (visitMemChrCall(I)) 8511 return; 8512 break; 8513 case LibFunc_strcpy: 8514 if (visitStrCpyCall(I, false)) 8515 return; 8516 break; 8517 case LibFunc_stpcpy: 8518 if (visitStrCpyCall(I, true)) 8519 return; 8520 break; 8521 case LibFunc_strcmp: 8522 if (visitStrCmpCall(I)) 8523 return; 8524 break; 8525 case LibFunc_strlen: 8526 if (visitStrLenCall(I)) 8527 return; 8528 break; 8529 case LibFunc_strnlen: 8530 if (visitStrNLenCall(I)) 8531 return; 8532 break; 8533 } 8534 } 8535 } 8536 8537 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8538 // have to do anything here to lower funclet bundles. 8539 // CFGuardTarget bundles are lowered in LowerCallTo. 8540 assert(!I.hasOperandBundlesOtherThan( 8541 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8542 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8543 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8544 "Cannot lower calls with arbitrary operand bundles!"); 8545 8546 SDValue Callee = getValue(I.getCalledOperand()); 8547 8548 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8549 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8550 else 8551 // Check if we can potentially perform a tail call. More detailed checking 8552 // is be done within LowerCallTo, after more information about the call is 8553 // known. 8554 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8555 } 8556 8557 namespace { 8558 8559 /// AsmOperandInfo - This contains information for each constraint that we are 8560 /// lowering. 8561 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8562 public: 8563 /// CallOperand - If this is the result output operand or a clobber 8564 /// this is null, otherwise it is the incoming operand to the CallInst. 8565 /// This gets modified as the asm is processed. 8566 SDValue CallOperand; 8567 8568 /// AssignedRegs - If this is a register or register class operand, this 8569 /// contains the set of register corresponding to the operand. 8570 RegsForValue AssignedRegs; 8571 8572 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8573 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8574 } 8575 8576 /// Whether or not this operand accesses memory 8577 bool hasMemory(const TargetLowering &TLI) const { 8578 // Indirect operand accesses access memory. 8579 if (isIndirect) 8580 return true; 8581 8582 for (const auto &Code : Codes) 8583 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8584 return true; 8585 8586 return false; 8587 } 8588 }; 8589 8590 8591 } // end anonymous namespace 8592 8593 /// Make sure that the output operand \p OpInfo and its corresponding input 8594 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8595 /// out). 8596 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8597 SDISelAsmOperandInfo &MatchingOpInfo, 8598 SelectionDAG &DAG) { 8599 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8600 return; 8601 8602 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8603 const auto &TLI = DAG.getTargetLoweringInfo(); 8604 8605 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8606 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8607 OpInfo.ConstraintVT); 8608 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8609 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8610 MatchingOpInfo.ConstraintVT); 8611 if ((OpInfo.ConstraintVT.isInteger() != 8612 MatchingOpInfo.ConstraintVT.isInteger()) || 8613 (MatchRC.second != InputRC.second)) { 8614 // FIXME: error out in a more elegant fashion 8615 report_fatal_error("Unsupported asm: input constraint" 8616 " with a matching output constraint of" 8617 " incompatible type!"); 8618 } 8619 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8620 } 8621 8622 /// Get a direct memory input to behave well as an indirect operand. 8623 /// This may introduce stores, hence the need for a \p Chain. 8624 /// \return The (possibly updated) chain. 8625 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8626 SDISelAsmOperandInfo &OpInfo, 8627 SelectionDAG &DAG) { 8628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8629 8630 // If we don't have an indirect input, put it in the constpool if we can, 8631 // otherwise spill it to a stack slot. 8632 // TODO: This isn't quite right. We need to handle these according to 8633 // the addressing mode that the constraint wants. Also, this may take 8634 // an additional register for the computation and we don't want that 8635 // either. 8636 8637 // If the operand is a float, integer, or vector constant, spill to a 8638 // constant pool entry to get its address. 8639 const Value *OpVal = OpInfo.CallOperandVal; 8640 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8641 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8642 OpInfo.CallOperand = DAG.getConstantPool( 8643 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8644 return Chain; 8645 } 8646 8647 // Otherwise, create a stack slot and emit a store to it before the asm. 8648 Type *Ty = OpVal->getType(); 8649 auto &DL = DAG.getDataLayout(); 8650 uint64_t TySize = DL.getTypeAllocSize(Ty); 8651 MachineFunction &MF = DAG.getMachineFunction(); 8652 int SSFI = MF.getFrameInfo().CreateStackObject( 8653 TySize, DL.getPrefTypeAlign(Ty), false); 8654 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8655 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8656 MachinePointerInfo::getFixedStack(MF, SSFI), 8657 TLI.getMemValueType(DL, Ty)); 8658 OpInfo.CallOperand = StackSlot; 8659 8660 return Chain; 8661 } 8662 8663 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8664 /// specified operand. We prefer to assign virtual registers, to allow the 8665 /// register allocator to handle the assignment process. However, if the asm 8666 /// uses features that we can't model on machineinstrs, we have SDISel do the 8667 /// allocation. This produces generally horrible, but correct, code. 8668 /// 8669 /// OpInfo describes the operand 8670 /// RefOpInfo describes the matching operand if any, the operand otherwise 8671 static std::optional<unsigned> 8672 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8673 SDISelAsmOperandInfo &OpInfo, 8674 SDISelAsmOperandInfo &RefOpInfo) { 8675 LLVMContext &Context = *DAG.getContext(); 8676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8677 8678 MachineFunction &MF = DAG.getMachineFunction(); 8679 SmallVector<unsigned, 4> Regs; 8680 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8681 8682 // No work to do for memory/address operands. 8683 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8684 OpInfo.ConstraintType == TargetLowering::C_Address) 8685 return std::nullopt; 8686 8687 // If this is a constraint for a single physreg, or a constraint for a 8688 // register class, find it. 8689 unsigned AssignedReg; 8690 const TargetRegisterClass *RC; 8691 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8692 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8693 // RC is unset only on failure. Return immediately. 8694 if (!RC) 8695 return std::nullopt; 8696 8697 // Get the actual register value type. This is important, because the user 8698 // may have asked for (e.g.) the AX register in i32 type. We need to 8699 // remember that AX is actually i16 to get the right extension. 8700 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8701 8702 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8703 // If this is an FP operand in an integer register (or visa versa), or more 8704 // generally if the operand value disagrees with the register class we plan 8705 // to stick it in, fix the operand type. 8706 // 8707 // If this is an input value, the bitcast to the new type is done now. 8708 // Bitcast for output value is done at the end of visitInlineAsm(). 8709 if ((OpInfo.Type == InlineAsm::isOutput || 8710 OpInfo.Type == InlineAsm::isInput) && 8711 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8712 // Try to convert to the first EVT that the reg class contains. If the 8713 // types are identical size, use a bitcast to convert (e.g. two differing 8714 // vector types). Note: output bitcast is done at the end of 8715 // visitInlineAsm(). 8716 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8717 // Exclude indirect inputs while they are unsupported because the code 8718 // to perform the load is missing and thus OpInfo.CallOperand still 8719 // refers to the input address rather than the pointed-to value. 8720 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8721 OpInfo.CallOperand = 8722 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8723 OpInfo.ConstraintVT = RegVT; 8724 // If the operand is an FP value and we want it in integer registers, 8725 // use the corresponding integer type. This turns an f64 value into 8726 // i64, which can be passed with two i32 values on a 32-bit machine. 8727 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8728 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8729 if (OpInfo.Type == InlineAsm::isInput) 8730 OpInfo.CallOperand = 8731 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8732 OpInfo.ConstraintVT = VT; 8733 } 8734 } 8735 } 8736 8737 // No need to allocate a matching input constraint since the constraint it's 8738 // matching to has already been allocated. 8739 if (OpInfo.isMatchingInputConstraint()) 8740 return std::nullopt; 8741 8742 EVT ValueVT = OpInfo.ConstraintVT; 8743 if (OpInfo.ConstraintVT == MVT::Other) 8744 ValueVT = RegVT; 8745 8746 // Initialize NumRegs. 8747 unsigned NumRegs = 1; 8748 if (OpInfo.ConstraintVT != MVT::Other) 8749 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8750 8751 // If this is a constraint for a specific physical register, like {r17}, 8752 // assign it now. 8753 8754 // If this associated to a specific register, initialize iterator to correct 8755 // place. If virtual, make sure we have enough registers 8756 8757 // Initialize iterator if necessary 8758 TargetRegisterClass::iterator I = RC->begin(); 8759 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8760 8761 // Do not check for single registers. 8762 if (AssignedReg) { 8763 I = std::find(I, RC->end(), AssignedReg); 8764 if (I == RC->end()) { 8765 // RC does not contain the selected register, which indicates a 8766 // mismatch between the register and the required type/bitwidth. 8767 return {AssignedReg}; 8768 } 8769 } 8770 8771 for (; NumRegs; --NumRegs, ++I) { 8772 assert(I != RC->end() && "Ran out of registers to allocate!"); 8773 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8774 Regs.push_back(R); 8775 } 8776 8777 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8778 return std::nullopt; 8779 } 8780 8781 static unsigned 8782 findMatchingInlineAsmOperand(unsigned OperandNo, 8783 const std::vector<SDValue> &AsmNodeOperands) { 8784 // Scan until we find the definition we already emitted of this operand. 8785 unsigned CurOp = InlineAsm::Op_FirstOperand; 8786 for (; OperandNo; --OperandNo) { 8787 // Advance to the next operand. 8788 unsigned OpFlag = 8789 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8790 assert((InlineAsm::isRegDefKind(OpFlag) || 8791 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8792 InlineAsm::isMemKind(OpFlag)) && 8793 "Skipped past definitions?"); 8794 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8795 } 8796 return CurOp; 8797 } 8798 8799 namespace { 8800 8801 class ExtraFlags { 8802 unsigned Flags = 0; 8803 8804 public: 8805 explicit ExtraFlags(const CallBase &Call) { 8806 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8807 if (IA->hasSideEffects()) 8808 Flags |= InlineAsm::Extra_HasSideEffects; 8809 if (IA->isAlignStack()) 8810 Flags |= InlineAsm::Extra_IsAlignStack; 8811 if (Call.isConvergent()) 8812 Flags |= InlineAsm::Extra_IsConvergent; 8813 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8814 } 8815 8816 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8817 // Ideally, we would only check against memory constraints. However, the 8818 // meaning of an Other constraint can be target-specific and we can't easily 8819 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8820 // for Other constraints as well. 8821 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8822 OpInfo.ConstraintType == TargetLowering::C_Other) { 8823 if (OpInfo.Type == InlineAsm::isInput) 8824 Flags |= InlineAsm::Extra_MayLoad; 8825 else if (OpInfo.Type == InlineAsm::isOutput) 8826 Flags |= InlineAsm::Extra_MayStore; 8827 else if (OpInfo.Type == InlineAsm::isClobber) 8828 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8829 } 8830 } 8831 8832 unsigned get() const { return Flags; } 8833 }; 8834 8835 } // end anonymous namespace 8836 8837 static bool isFunction(SDValue Op) { 8838 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8839 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8840 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8841 8842 // In normal "call dllimport func" instruction (non-inlineasm) it force 8843 // indirect access by specifing call opcode. And usually specially print 8844 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8845 // not do in this way now. (In fact, this is similar with "Data Access" 8846 // action). So here we ignore dllimport function. 8847 if (Fn && !Fn->hasDLLImportStorageClass()) 8848 return true; 8849 } 8850 } 8851 return false; 8852 } 8853 8854 /// visitInlineAsm - Handle a call to an InlineAsm object. 8855 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8856 const BasicBlock *EHPadBB) { 8857 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8858 8859 /// ConstraintOperands - Information about all of the constraints. 8860 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8861 8862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8863 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8864 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8865 8866 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8867 // AsmDialect, MayLoad, MayStore). 8868 bool HasSideEffect = IA->hasSideEffects(); 8869 ExtraFlags ExtraInfo(Call); 8870 8871 for (auto &T : TargetConstraints) { 8872 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8873 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8874 8875 if (OpInfo.CallOperandVal) 8876 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8877 8878 if (!HasSideEffect) 8879 HasSideEffect = OpInfo.hasMemory(TLI); 8880 8881 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8882 // FIXME: Could we compute this on OpInfo rather than T? 8883 8884 // Compute the constraint code and ConstraintType to use. 8885 TLI.ComputeConstraintToUse(T, SDValue()); 8886 8887 if (T.ConstraintType == TargetLowering::C_Immediate && 8888 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8889 // We've delayed emitting a diagnostic like the "n" constraint because 8890 // inlining could cause an integer showing up. 8891 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8892 "' expects an integer constant " 8893 "expression"); 8894 8895 ExtraInfo.update(T); 8896 } 8897 8898 // We won't need to flush pending loads if this asm doesn't touch 8899 // memory and is nonvolatile. 8900 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8901 8902 bool EmitEHLabels = isa<InvokeInst>(Call); 8903 if (EmitEHLabels) { 8904 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8905 } 8906 bool IsCallBr = isa<CallBrInst>(Call); 8907 8908 if (IsCallBr || EmitEHLabels) { 8909 // If this is a callbr or invoke we need to flush pending exports since 8910 // inlineasm_br and invoke are terminators. 8911 // We need to do this before nodes are glued to the inlineasm_br node. 8912 Chain = getControlRoot(); 8913 } 8914 8915 MCSymbol *BeginLabel = nullptr; 8916 if (EmitEHLabels) { 8917 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8918 } 8919 8920 int OpNo = -1; 8921 SmallVector<StringRef> AsmStrs; 8922 IA->collectAsmStrs(AsmStrs); 8923 8924 // Second pass over the constraints: compute which constraint option to use. 8925 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8926 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8927 OpNo++; 8928 8929 // If this is an output operand with a matching input operand, look up the 8930 // matching input. If their types mismatch, e.g. one is an integer, the 8931 // other is floating point, or their sizes are different, flag it as an 8932 // error. 8933 if (OpInfo.hasMatchingInput()) { 8934 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8935 patchMatchingInput(OpInfo, Input, DAG); 8936 } 8937 8938 // Compute the constraint code and ConstraintType to use. 8939 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8940 8941 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8942 OpInfo.Type == InlineAsm::isClobber) || 8943 OpInfo.ConstraintType == TargetLowering::C_Address) 8944 continue; 8945 8946 // In Linux PIC model, there are 4 cases about value/label addressing: 8947 // 8948 // 1: Function call or Label jmp inside the module. 8949 // 2: Data access (such as global variable, static variable) inside module. 8950 // 3: Function call or Label jmp outside the module. 8951 // 4: Data access (such as global variable) outside the module. 8952 // 8953 // Due to current llvm inline asm architecture designed to not "recognize" 8954 // the asm code, there are quite troubles for us to treat mem addressing 8955 // differently for same value/adress used in different instuctions. 8956 // For example, in pic model, call a func may in plt way or direclty 8957 // pc-related, but lea/mov a function adress may use got. 8958 // 8959 // Here we try to "recognize" function call for the case 1 and case 3 in 8960 // inline asm. And try to adjust the constraint for them. 8961 // 8962 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8963 // label, so here we don't handle jmp function label now, but we need to 8964 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8965 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8966 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8967 TM.getCodeModel() != CodeModel::Large) { 8968 OpInfo.isIndirect = false; 8969 OpInfo.ConstraintType = TargetLowering::C_Address; 8970 } 8971 8972 // If this is a memory input, and if the operand is not indirect, do what we 8973 // need to provide an address for the memory input. 8974 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8975 !OpInfo.isIndirect) { 8976 assert((OpInfo.isMultipleAlternative || 8977 (OpInfo.Type == InlineAsm::isInput)) && 8978 "Can only indirectify direct input operands!"); 8979 8980 // Memory operands really want the address of the value. 8981 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8982 8983 // There is no longer a Value* corresponding to this operand. 8984 OpInfo.CallOperandVal = nullptr; 8985 8986 // It is now an indirect operand. 8987 OpInfo.isIndirect = true; 8988 } 8989 8990 } 8991 8992 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8993 std::vector<SDValue> AsmNodeOperands; 8994 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8995 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8996 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8997 8998 // If we have a !srcloc metadata node associated with it, we want to attach 8999 // this to the ultimately generated inline asm machineinstr. To do this, we 9000 // pass in the third operand as this (potentially null) inline asm MDNode. 9001 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9002 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9003 9004 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9005 // bits as operand 3. 9006 AsmNodeOperands.push_back(DAG.getTargetConstant( 9007 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9008 9009 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9010 // this, assign virtual and physical registers for inputs and otput. 9011 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9012 // Assign Registers. 9013 SDISelAsmOperandInfo &RefOpInfo = 9014 OpInfo.isMatchingInputConstraint() 9015 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9016 : OpInfo; 9017 const auto RegError = 9018 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9019 if (RegError) { 9020 const MachineFunction &MF = DAG.getMachineFunction(); 9021 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9022 const char *RegName = TRI.getName(*RegError); 9023 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9024 "' allocated for constraint '" + 9025 Twine(OpInfo.ConstraintCode) + 9026 "' does not match required type"); 9027 return; 9028 } 9029 9030 auto DetectWriteToReservedRegister = [&]() { 9031 const MachineFunction &MF = DAG.getMachineFunction(); 9032 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9033 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9034 if (Register::isPhysicalRegister(Reg) && 9035 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9036 const char *RegName = TRI.getName(Reg); 9037 emitInlineAsmError(Call, "write to reserved register '" + 9038 Twine(RegName) + "'"); 9039 return true; 9040 } 9041 } 9042 return false; 9043 }; 9044 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9045 (OpInfo.Type == InlineAsm::isInput && 9046 !OpInfo.isMatchingInputConstraint())) && 9047 "Only address as input operand is allowed."); 9048 9049 switch (OpInfo.Type) { 9050 case InlineAsm::isOutput: 9051 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9052 unsigned ConstraintID = 9053 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9054 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9055 "Failed to convert memory constraint code to constraint id."); 9056 9057 // Add information to the INLINEASM node to know about this output. 9058 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9059 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 9060 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9061 MVT::i32)); 9062 AsmNodeOperands.push_back(OpInfo.CallOperand); 9063 } else { 9064 // Otherwise, this outputs to a register (directly for C_Register / 9065 // C_RegisterClass, and a target-defined fashion for 9066 // C_Immediate/C_Other). Find a register that we can use. 9067 if (OpInfo.AssignedRegs.Regs.empty()) { 9068 emitInlineAsmError( 9069 Call, "couldn't allocate output register for constraint '" + 9070 Twine(OpInfo.ConstraintCode) + "'"); 9071 return; 9072 } 9073 9074 if (DetectWriteToReservedRegister()) 9075 return; 9076 9077 // Add information to the INLINEASM node to know that this register is 9078 // set. 9079 OpInfo.AssignedRegs.AddInlineAsmOperands( 9080 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9081 : InlineAsm::Kind_RegDef, 9082 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9083 } 9084 break; 9085 9086 case InlineAsm::isInput: 9087 case InlineAsm::isLabel: { 9088 SDValue InOperandVal = OpInfo.CallOperand; 9089 9090 if (OpInfo.isMatchingInputConstraint()) { 9091 // If this is required to match an output register we have already set, 9092 // just use its register. 9093 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9094 AsmNodeOperands); 9095 unsigned OpFlag = 9096 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9097 if (InlineAsm::isRegDefKind(OpFlag) || 9098 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9099 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9100 if (OpInfo.isIndirect) { 9101 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9102 emitInlineAsmError(Call, "inline asm not supported yet: " 9103 "don't know how to handle tied " 9104 "indirect register inputs"); 9105 return; 9106 } 9107 9108 SmallVector<unsigned, 4> Regs; 9109 MachineFunction &MF = DAG.getMachineFunction(); 9110 MachineRegisterInfo &MRI = MF.getRegInfo(); 9111 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9112 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9113 Register TiedReg = R->getReg(); 9114 MVT RegVT = R->getSimpleValueType(0); 9115 const TargetRegisterClass *RC = 9116 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9117 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9118 : TRI.getMinimalPhysRegClass(TiedReg); 9119 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9120 for (unsigned i = 0; i != NumRegs; ++i) 9121 Regs.push_back(MRI.createVirtualRegister(RC)); 9122 9123 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9124 9125 SDLoc dl = getCurSDLoc(); 9126 // Use the produced MatchedRegs object to 9127 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9128 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9129 true, OpInfo.getMatchedOperand(), dl, 9130 DAG, AsmNodeOperands); 9131 break; 9132 } 9133 9134 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9135 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9136 "Unexpected number of operands"); 9137 // Add information to the INLINEASM node to know about this input. 9138 // See InlineAsm.h isUseOperandTiedToDef. 9139 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9140 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9141 OpInfo.getMatchedOperand()); 9142 AsmNodeOperands.push_back(DAG.getTargetConstant( 9143 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9144 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9145 break; 9146 } 9147 9148 // Treat indirect 'X' constraint as memory. 9149 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9150 OpInfo.isIndirect) 9151 OpInfo.ConstraintType = TargetLowering::C_Memory; 9152 9153 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9154 OpInfo.ConstraintType == TargetLowering::C_Other) { 9155 std::vector<SDValue> Ops; 9156 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9157 Ops, DAG); 9158 if (Ops.empty()) { 9159 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9160 if (isa<ConstantSDNode>(InOperandVal)) { 9161 emitInlineAsmError(Call, "value out of range for constraint '" + 9162 Twine(OpInfo.ConstraintCode) + "'"); 9163 return; 9164 } 9165 9166 emitInlineAsmError(Call, 9167 "invalid operand for inline asm constraint '" + 9168 Twine(OpInfo.ConstraintCode) + "'"); 9169 return; 9170 } 9171 9172 // Add information to the INLINEASM node to know about this input. 9173 unsigned ResOpType = 9174 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9175 AsmNodeOperands.push_back(DAG.getTargetConstant( 9176 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9177 llvm::append_range(AsmNodeOperands, Ops); 9178 break; 9179 } 9180 9181 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9182 assert((OpInfo.isIndirect || 9183 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9184 "Operand must be indirect to be a mem!"); 9185 assert(InOperandVal.getValueType() == 9186 TLI.getPointerTy(DAG.getDataLayout()) && 9187 "Memory operands expect pointer values"); 9188 9189 unsigned ConstraintID = 9190 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9191 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9192 "Failed to convert memory constraint code to constraint id."); 9193 9194 // Add information to the INLINEASM node to know about this input. 9195 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9196 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9197 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9198 getCurSDLoc(), 9199 MVT::i32)); 9200 AsmNodeOperands.push_back(InOperandVal); 9201 break; 9202 } 9203 9204 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9205 assert(InOperandVal.getValueType() == 9206 TLI.getPointerTy(DAG.getDataLayout()) && 9207 "Address operands expect pointer values"); 9208 9209 unsigned ConstraintID = 9210 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9211 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9212 "Failed to convert memory constraint code to constraint id."); 9213 9214 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9215 9216 SDValue AsmOp = InOperandVal; 9217 if (isFunction(InOperandVal)) { 9218 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9219 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9220 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9221 InOperandVal.getValueType(), 9222 GA->getOffset()); 9223 } 9224 9225 // Add information to the INLINEASM node to know about this input. 9226 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9227 9228 AsmNodeOperands.push_back( 9229 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9230 9231 AsmNodeOperands.push_back(AsmOp); 9232 break; 9233 } 9234 9235 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9236 OpInfo.ConstraintType == TargetLowering::C_Register) && 9237 "Unknown constraint type!"); 9238 9239 // TODO: Support this. 9240 if (OpInfo.isIndirect) { 9241 emitInlineAsmError( 9242 Call, "Don't know how to handle indirect register inputs yet " 9243 "for constraint '" + 9244 Twine(OpInfo.ConstraintCode) + "'"); 9245 return; 9246 } 9247 9248 // Copy the input into the appropriate registers. 9249 if (OpInfo.AssignedRegs.Regs.empty()) { 9250 emitInlineAsmError(Call, 9251 "couldn't allocate input reg for constraint '" + 9252 Twine(OpInfo.ConstraintCode) + "'"); 9253 return; 9254 } 9255 9256 if (DetectWriteToReservedRegister()) 9257 return; 9258 9259 SDLoc dl = getCurSDLoc(); 9260 9261 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9262 &Call); 9263 9264 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9265 dl, DAG, AsmNodeOperands); 9266 break; 9267 } 9268 case InlineAsm::isClobber: 9269 // Add the clobbered value to the operand list, so that the register 9270 // allocator is aware that the physreg got clobbered. 9271 if (!OpInfo.AssignedRegs.Regs.empty()) 9272 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9273 false, 0, getCurSDLoc(), DAG, 9274 AsmNodeOperands); 9275 break; 9276 } 9277 } 9278 9279 // Finish up input operands. Set the input chain and add the flag last. 9280 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9281 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9282 9283 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9284 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9285 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9286 Flag = Chain.getValue(1); 9287 9288 // Do additional work to generate outputs. 9289 9290 SmallVector<EVT, 1> ResultVTs; 9291 SmallVector<SDValue, 1> ResultValues; 9292 SmallVector<SDValue, 8> OutChains; 9293 9294 llvm::Type *CallResultType = Call.getType(); 9295 ArrayRef<Type *> ResultTypes; 9296 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9297 ResultTypes = StructResult->elements(); 9298 else if (!CallResultType->isVoidTy()) 9299 ResultTypes = ArrayRef(CallResultType); 9300 9301 auto CurResultType = ResultTypes.begin(); 9302 auto handleRegAssign = [&](SDValue V) { 9303 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9304 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9305 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9306 ++CurResultType; 9307 // If the type of the inline asm call site return value is different but has 9308 // same size as the type of the asm output bitcast it. One example of this 9309 // is for vectors with different width / number of elements. This can 9310 // happen for register classes that can contain multiple different value 9311 // types. The preg or vreg allocated may not have the same VT as was 9312 // expected. 9313 // 9314 // This can also happen for a return value that disagrees with the register 9315 // class it is put in, eg. a double in a general-purpose register on a 9316 // 32-bit machine. 9317 if (ResultVT != V.getValueType() && 9318 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9319 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9320 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9321 V.getValueType().isInteger()) { 9322 // If a result value was tied to an input value, the computed result 9323 // may have a wider width than the expected result. Extract the 9324 // relevant portion. 9325 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9326 } 9327 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9328 ResultVTs.push_back(ResultVT); 9329 ResultValues.push_back(V); 9330 }; 9331 9332 // Deal with output operands. 9333 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9334 if (OpInfo.Type == InlineAsm::isOutput) { 9335 SDValue Val; 9336 // Skip trivial output operands. 9337 if (OpInfo.AssignedRegs.Regs.empty()) 9338 continue; 9339 9340 switch (OpInfo.ConstraintType) { 9341 case TargetLowering::C_Register: 9342 case TargetLowering::C_RegisterClass: 9343 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9344 Chain, &Flag, &Call); 9345 break; 9346 case TargetLowering::C_Immediate: 9347 case TargetLowering::C_Other: 9348 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9349 OpInfo, DAG); 9350 break; 9351 case TargetLowering::C_Memory: 9352 break; // Already handled. 9353 case TargetLowering::C_Address: 9354 break; // Silence warning. 9355 case TargetLowering::C_Unknown: 9356 assert(false && "Unexpected unknown constraint"); 9357 } 9358 9359 // Indirect output manifest as stores. Record output chains. 9360 if (OpInfo.isIndirect) { 9361 const Value *Ptr = OpInfo.CallOperandVal; 9362 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9363 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9364 MachinePointerInfo(Ptr)); 9365 OutChains.push_back(Store); 9366 } else { 9367 // generate CopyFromRegs to associated registers. 9368 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9369 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9370 for (const SDValue &V : Val->op_values()) 9371 handleRegAssign(V); 9372 } else 9373 handleRegAssign(Val); 9374 } 9375 } 9376 } 9377 9378 // Set results. 9379 if (!ResultValues.empty()) { 9380 assert(CurResultType == ResultTypes.end() && 9381 "Mismatch in number of ResultTypes"); 9382 assert(ResultValues.size() == ResultTypes.size() && 9383 "Mismatch in number of output operands in asm result"); 9384 9385 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9386 DAG.getVTList(ResultVTs), ResultValues); 9387 setValue(&Call, V); 9388 } 9389 9390 // Collect store chains. 9391 if (!OutChains.empty()) 9392 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9393 9394 if (EmitEHLabels) { 9395 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9396 } 9397 9398 // Only Update Root if inline assembly has a memory effect. 9399 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9400 EmitEHLabels) 9401 DAG.setRoot(Chain); 9402 } 9403 9404 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9405 const Twine &Message) { 9406 LLVMContext &Ctx = *DAG.getContext(); 9407 Ctx.emitError(&Call, Message); 9408 9409 // Make sure we leave the DAG in a valid state 9410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9411 SmallVector<EVT, 1> ValueVTs; 9412 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9413 9414 if (ValueVTs.empty()) 9415 return; 9416 9417 SmallVector<SDValue, 1> Ops; 9418 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9419 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9420 9421 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9422 } 9423 9424 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9425 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9426 MVT::Other, getRoot(), 9427 getValue(I.getArgOperand(0)), 9428 DAG.getSrcValue(I.getArgOperand(0)))); 9429 } 9430 9431 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9433 const DataLayout &DL = DAG.getDataLayout(); 9434 SDValue V = DAG.getVAArg( 9435 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9436 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9437 DL.getABITypeAlign(I.getType()).value()); 9438 DAG.setRoot(V.getValue(1)); 9439 9440 if (I.getType()->isPointerTy()) 9441 V = DAG.getPtrExtOrTrunc( 9442 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9443 setValue(&I, V); 9444 } 9445 9446 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9447 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9448 MVT::Other, getRoot(), 9449 getValue(I.getArgOperand(0)), 9450 DAG.getSrcValue(I.getArgOperand(0)))); 9451 } 9452 9453 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9454 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9455 MVT::Other, getRoot(), 9456 getValue(I.getArgOperand(0)), 9457 getValue(I.getArgOperand(1)), 9458 DAG.getSrcValue(I.getArgOperand(0)), 9459 DAG.getSrcValue(I.getArgOperand(1)))); 9460 } 9461 9462 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9463 const Instruction &I, 9464 SDValue Op) { 9465 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9466 if (!Range) 9467 return Op; 9468 9469 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9470 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9471 return Op; 9472 9473 APInt Lo = CR.getUnsignedMin(); 9474 if (!Lo.isMinValue()) 9475 return Op; 9476 9477 APInt Hi = CR.getUnsignedMax(); 9478 unsigned Bits = std::max(Hi.getActiveBits(), 9479 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9480 9481 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9482 9483 SDLoc SL = getCurSDLoc(); 9484 9485 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9486 DAG.getValueType(SmallVT)); 9487 unsigned NumVals = Op.getNode()->getNumValues(); 9488 if (NumVals == 1) 9489 return ZExt; 9490 9491 SmallVector<SDValue, 4> Ops; 9492 9493 Ops.push_back(ZExt); 9494 for (unsigned I = 1; I != NumVals; ++I) 9495 Ops.push_back(Op.getValue(I)); 9496 9497 return DAG.getMergeValues(Ops, SL); 9498 } 9499 9500 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9501 /// the call being lowered. 9502 /// 9503 /// This is a helper for lowering intrinsics that follow a target calling 9504 /// convention or require stack pointer adjustment. Only a subset of the 9505 /// intrinsic's operands need to participate in the calling convention. 9506 void SelectionDAGBuilder::populateCallLoweringInfo( 9507 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9508 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9509 bool IsPatchPoint) { 9510 TargetLowering::ArgListTy Args; 9511 Args.reserve(NumArgs); 9512 9513 // Populate the argument list. 9514 // Attributes for args start at offset 1, after the return attribute. 9515 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9516 ArgI != ArgE; ++ArgI) { 9517 const Value *V = Call->getOperand(ArgI); 9518 9519 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9520 9521 TargetLowering::ArgListEntry Entry; 9522 Entry.Node = getValue(V); 9523 Entry.Ty = V->getType(); 9524 Entry.setAttributes(Call, ArgI); 9525 Args.push_back(Entry); 9526 } 9527 9528 CLI.setDebugLoc(getCurSDLoc()) 9529 .setChain(getRoot()) 9530 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9531 .setDiscardResult(Call->use_empty()) 9532 .setIsPatchPoint(IsPatchPoint) 9533 .setIsPreallocated( 9534 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9535 } 9536 9537 /// Add a stack map intrinsic call's live variable operands to a stackmap 9538 /// or patchpoint target node's operand list. 9539 /// 9540 /// Constants are converted to TargetConstants purely as an optimization to 9541 /// avoid constant materialization and register allocation. 9542 /// 9543 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9544 /// generate addess computation nodes, and so FinalizeISel can convert the 9545 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9546 /// address materialization and register allocation, but may also be required 9547 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9548 /// alloca in the entry block, then the runtime may assume that the alloca's 9549 /// StackMap location can be read immediately after compilation and that the 9550 /// location is valid at any point during execution (this is similar to the 9551 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9552 /// only available in a register, then the runtime would need to trap when 9553 /// execution reaches the StackMap in order to read the alloca's location. 9554 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9555 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9556 SelectionDAGBuilder &Builder) { 9557 SelectionDAG &DAG = Builder.DAG; 9558 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9559 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9560 9561 // Things on the stack are pointer-typed, meaning that they are already 9562 // legal and can be emitted directly to target nodes. 9563 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9564 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9565 } else { 9566 // Otherwise emit a target independent node to be legalised. 9567 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9568 } 9569 } 9570 } 9571 9572 /// Lower llvm.experimental.stackmap. 9573 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9574 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9575 // [live variables...]) 9576 9577 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9578 9579 SDValue Chain, InFlag, Callee; 9580 SmallVector<SDValue, 32> Ops; 9581 9582 SDLoc DL = getCurSDLoc(); 9583 Callee = getValue(CI.getCalledOperand()); 9584 9585 // The stackmap intrinsic only records the live variables (the arguments 9586 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9587 // intrinsic, this won't be lowered to a function call. This means we don't 9588 // have to worry about calling conventions and target specific lowering code. 9589 // Instead we perform the call lowering right here. 9590 // 9591 // chain, flag = CALLSEQ_START(chain, 0, 0) 9592 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9593 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9594 // 9595 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9596 InFlag = Chain.getValue(1); 9597 9598 // Add the STACKMAP operands, starting with DAG house-keeping. 9599 Ops.push_back(Chain); 9600 Ops.push_back(InFlag); 9601 9602 // Add the <id>, <numShadowBytes> operands. 9603 // 9604 // These do not require legalisation, and can be emitted directly to target 9605 // constant nodes. 9606 SDValue ID = getValue(CI.getArgOperand(0)); 9607 assert(ID.getValueType() == MVT::i64); 9608 SDValue IDConst = DAG.getTargetConstant( 9609 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9610 Ops.push_back(IDConst); 9611 9612 SDValue Shad = getValue(CI.getArgOperand(1)); 9613 assert(Shad.getValueType() == MVT::i32); 9614 SDValue ShadConst = DAG.getTargetConstant( 9615 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9616 Ops.push_back(ShadConst); 9617 9618 // Add the live variables. 9619 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9620 9621 // Create the STACKMAP node. 9622 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9623 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9624 InFlag = Chain.getValue(1); 9625 9626 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9627 9628 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9629 9630 // Set the root to the target-lowered call chain. 9631 DAG.setRoot(Chain); 9632 9633 // Inform the Frame Information that we have a stackmap in this function. 9634 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9635 } 9636 9637 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9638 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9639 const BasicBlock *EHPadBB) { 9640 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9641 // i32 <numBytes>, 9642 // i8* <target>, 9643 // i32 <numArgs>, 9644 // [Args...], 9645 // [live variables...]) 9646 9647 CallingConv::ID CC = CB.getCallingConv(); 9648 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9649 bool HasDef = !CB.getType()->isVoidTy(); 9650 SDLoc dl = getCurSDLoc(); 9651 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9652 9653 // Handle immediate and symbolic callees. 9654 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9655 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9656 /*isTarget=*/true); 9657 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9658 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9659 SDLoc(SymbolicCallee), 9660 SymbolicCallee->getValueType(0)); 9661 9662 // Get the real number of arguments participating in the call <numArgs> 9663 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9664 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9665 9666 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9667 // Intrinsics include all meta-operands up to but not including CC. 9668 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9669 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9670 "Not enough arguments provided to the patchpoint intrinsic"); 9671 9672 // For AnyRegCC the arguments are lowered later on manually. 9673 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9674 Type *ReturnTy = 9675 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9676 9677 TargetLowering::CallLoweringInfo CLI(DAG); 9678 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9679 ReturnTy, true); 9680 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9681 9682 SDNode *CallEnd = Result.second.getNode(); 9683 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9684 CallEnd = CallEnd->getOperand(0).getNode(); 9685 9686 /// Get a call instruction from the call sequence chain. 9687 /// Tail calls are not allowed. 9688 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9689 "Expected a callseq node."); 9690 SDNode *Call = CallEnd->getOperand(0).getNode(); 9691 bool HasGlue = Call->getGluedNode(); 9692 9693 // Replace the target specific call node with the patchable intrinsic. 9694 SmallVector<SDValue, 8> Ops; 9695 9696 // Push the chain. 9697 Ops.push_back(*(Call->op_begin())); 9698 9699 // Optionally, push the glue (if any). 9700 if (HasGlue) 9701 Ops.push_back(*(Call->op_end() - 1)); 9702 9703 // Push the register mask info. 9704 if (HasGlue) 9705 Ops.push_back(*(Call->op_end() - 2)); 9706 else 9707 Ops.push_back(*(Call->op_end() - 1)); 9708 9709 // Add the <id> and <numBytes> constants. 9710 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9711 Ops.push_back(DAG.getTargetConstant( 9712 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9713 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9714 Ops.push_back(DAG.getTargetConstant( 9715 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9716 MVT::i32)); 9717 9718 // Add the callee. 9719 Ops.push_back(Callee); 9720 9721 // Adjust <numArgs> to account for any arguments that have been passed on the 9722 // stack instead. 9723 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9724 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9725 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9726 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9727 9728 // Add the calling convention 9729 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9730 9731 // Add the arguments we omitted previously. The register allocator should 9732 // place these in any free register. 9733 if (IsAnyRegCC) 9734 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9735 Ops.push_back(getValue(CB.getArgOperand(i))); 9736 9737 // Push the arguments from the call instruction. 9738 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9739 Ops.append(Call->op_begin() + 2, e); 9740 9741 // Push live variables for the stack map. 9742 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9743 9744 SDVTList NodeTys; 9745 if (IsAnyRegCC && HasDef) { 9746 // Create the return types based on the intrinsic definition 9747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9748 SmallVector<EVT, 3> ValueVTs; 9749 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9750 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9751 9752 // There is always a chain and a glue type at the end 9753 ValueVTs.push_back(MVT::Other); 9754 ValueVTs.push_back(MVT::Glue); 9755 NodeTys = DAG.getVTList(ValueVTs); 9756 } else 9757 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9758 9759 // Replace the target specific call node with a PATCHPOINT node. 9760 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9761 9762 // Update the NodeMap. 9763 if (HasDef) { 9764 if (IsAnyRegCC) 9765 setValue(&CB, SDValue(PPV.getNode(), 0)); 9766 else 9767 setValue(&CB, Result.first); 9768 } 9769 9770 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9771 // call sequence. Furthermore the location of the chain and glue can change 9772 // when the AnyReg calling convention is used and the intrinsic returns a 9773 // value. 9774 if (IsAnyRegCC && HasDef) { 9775 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9776 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9777 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9778 } else 9779 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9780 DAG.DeleteNode(Call); 9781 9782 // Inform the Frame Information that we have a patchpoint in this function. 9783 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9784 } 9785 9786 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9787 unsigned Intrinsic) { 9788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9789 SDValue Op1 = getValue(I.getArgOperand(0)); 9790 SDValue Op2; 9791 if (I.arg_size() > 1) 9792 Op2 = getValue(I.getArgOperand(1)); 9793 SDLoc dl = getCurSDLoc(); 9794 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9795 SDValue Res; 9796 SDNodeFlags SDFlags; 9797 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9798 SDFlags.copyFMF(*FPMO); 9799 9800 switch (Intrinsic) { 9801 case Intrinsic::vector_reduce_fadd: 9802 if (SDFlags.hasAllowReassociation()) 9803 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9804 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9805 SDFlags); 9806 else 9807 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9808 break; 9809 case Intrinsic::vector_reduce_fmul: 9810 if (SDFlags.hasAllowReassociation()) 9811 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9812 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9813 SDFlags); 9814 else 9815 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9816 break; 9817 case Intrinsic::vector_reduce_add: 9818 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9819 break; 9820 case Intrinsic::vector_reduce_mul: 9821 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9822 break; 9823 case Intrinsic::vector_reduce_and: 9824 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9825 break; 9826 case Intrinsic::vector_reduce_or: 9827 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9828 break; 9829 case Intrinsic::vector_reduce_xor: 9830 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9831 break; 9832 case Intrinsic::vector_reduce_smax: 9833 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9834 break; 9835 case Intrinsic::vector_reduce_smin: 9836 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9837 break; 9838 case Intrinsic::vector_reduce_umax: 9839 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9840 break; 9841 case Intrinsic::vector_reduce_umin: 9842 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9843 break; 9844 case Intrinsic::vector_reduce_fmax: 9845 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9846 break; 9847 case Intrinsic::vector_reduce_fmin: 9848 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9849 break; 9850 default: 9851 llvm_unreachable("Unhandled vector reduce intrinsic"); 9852 } 9853 setValue(&I, Res); 9854 } 9855 9856 /// Returns an AttributeList representing the attributes applied to the return 9857 /// value of the given call. 9858 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9859 SmallVector<Attribute::AttrKind, 2> Attrs; 9860 if (CLI.RetSExt) 9861 Attrs.push_back(Attribute::SExt); 9862 if (CLI.RetZExt) 9863 Attrs.push_back(Attribute::ZExt); 9864 if (CLI.IsInReg) 9865 Attrs.push_back(Attribute::InReg); 9866 9867 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9868 Attrs); 9869 } 9870 9871 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9872 /// implementation, which just calls LowerCall. 9873 /// FIXME: When all targets are 9874 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9875 std::pair<SDValue, SDValue> 9876 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9877 // Handle the incoming return values from the call. 9878 CLI.Ins.clear(); 9879 Type *OrigRetTy = CLI.RetTy; 9880 SmallVector<EVT, 4> RetTys; 9881 SmallVector<uint64_t, 4> Offsets; 9882 auto &DL = CLI.DAG.getDataLayout(); 9883 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9884 9885 if (CLI.IsPostTypeLegalization) { 9886 // If we are lowering a libcall after legalization, split the return type. 9887 SmallVector<EVT, 4> OldRetTys; 9888 SmallVector<uint64_t, 4> OldOffsets; 9889 RetTys.swap(OldRetTys); 9890 Offsets.swap(OldOffsets); 9891 9892 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9893 EVT RetVT = OldRetTys[i]; 9894 uint64_t Offset = OldOffsets[i]; 9895 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9896 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9897 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9898 RetTys.append(NumRegs, RegisterVT); 9899 for (unsigned j = 0; j != NumRegs; ++j) 9900 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9901 } 9902 } 9903 9904 SmallVector<ISD::OutputArg, 4> Outs; 9905 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9906 9907 bool CanLowerReturn = 9908 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9909 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9910 9911 SDValue DemoteStackSlot; 9912 int DemoteStackIdx = -100; 9913 if (!CanLowerReturn) { 9914 // FIXME: equivalent assert? 9915 // assert(!CS.hasInAllocaArgument() && 9916 // "sret demotion is incompatible with inalloca"); 9917 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9918 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9919 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9920 DemoteStackIdx = 9921 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9922 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9923 DL.getAllocaAddrSpace()); 9924 9925 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9926 ArgListEntry Entry; 9927 Entry.Node = DemoteStackSlot; 9928 Entry.Ty = StackSlotPtrType; 9929 Entry.IsSExt = false; 9930 Entry.IsZExt = false; 9931 Entry.IsInReg = false; 9932 Entry.IsSRet = true; 9933 Entry.IsNest = false; 9934 Entry.IsByVal = false; 9935 Entry.IsByRef = false; 9936 Entry.IsReturned = false; 9937 Entry.IsSwiftSelf = false; 9938 Entry.IsSwiftAsync = false; 9939 Entry.IsSwiftError = false; 9940 Entry.IsCFGuardTarget = false; 9941 Entry.Alignment = Alignment; 9942 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9943 CLI.NumFixedArgs += 1; 9944 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9945 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9946 9947 // sret demotion isn't compatible with tail-calls, since the sret argument 9948 // points into the callers stack frame. 9949 CLI.IsTailCall = false; 9950 } else { 9951 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9952 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9953 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9954 ISD::ArgFlagsTy Flags; 9955 if (NeedsRegBlock) { 9956 Flags.setInConsecutiveRegs(); 9957 if (I == RetTys.size() - 1) 9958 Flags.setInConsecutiveRegsLast(); 9959 } 9960 EVT VT = RetTys[I]; 9961 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9962 CLI.CallConv, VT); 9963 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9964 CLI.CallConv, VT); 9965 for (unsigned i = 0; i != NumRegs; ++i) { 9966 ISD::InputArg MyFlags; 9967 MyFlags.Flags = Flags; 9968 MyFlags.VT = RegisterVT; 9969 MyFlags.ArgVT = VT; 9970 MyFlags.Used = CLI.IsReturnValueUsed; 9971 if (CLI.RetTy->isPointerTy()) { 9972 MyFlags.Flags.setPointer(); 9973 MyFlags.Flags.setPointerAddrSpace( 9974 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9975 } 9976 if (CLI.RetSExt) 9977 MyFlags.Flags.setSExt(); 9978 if (CLI.RetZExt) 9979 MyFlags.Flags.setZExt(); 9980 if (CLI.IsInReg) 9981 MyFlags.Flags.setInReg(); 9982 CLI.Ins.push_back(MyFlags); 9983 } 9984 } 9985 } 9986 9987 // We push in swifterror return as the last element of CLI.Ins. 9988 ArgListTy &Args = CLI.getArgs(); 9989 if (supportSwiftError()) { 9990 for (const ArgListEntry &Arg : Args) { 9991 if (Arg.IsSwiftError) { 9992 ISD::InputArg MyFlags; 9993 MyFlags.VT = getPointerTy(DL); 9994 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9995 MyFlags.Flags.setSwiftError(); 9996 CLI.Ins.push_back(MyFlags); 9997 } 9998 } 9999 } 10000 10001 // Handle all of the outgoing arguments. 10002 CLI.Outs.clear(); 10003 CLI.OutVals.clear(); 10004 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10005 SmallVector<EVT, 4> ValueVTs; 10006 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10007 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10008 Type *FinalType = Args[i].Ty; 10009 if (Args[i].IsByVal) 10010 FinalType = Args[i].IndirectType; 10011 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10012 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10013 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10014 ++Value) { 10015 EVT VT = ValueVTs[Value]; 10016 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10017 SDValue Op = SDValue(Args[i].Node.getNode(), 10018 Args[i].Node.getResNo() + Value); 10019 ISD::ArgFlagsTy Flags; 10020 10021 // Certain targets (such as MIPS), may have a different ABI alignment 10022 // for a type depending on the context. Give the target a chance to 10023 // specify the alignment it wants. 10024 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10025 Flags.setOrigAlign(OriginalAlignment); 10026 10027 if (Args[i].Ty->isPointerTy()) { 10028 Flags.setPointer(); 10029 Flags.setPointerAddrSpace( 10030 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10031 } 10032 if (Args[i].IsZExt) 10033 Flags.setZExt(); 10034 if (Args[i].IsSExt) 10035 Flags.setSExt(); 10036 if (Args[i].IsInReg) { 10037 // If we are using vectorcall calling convention, a structure that is 10038 // passed InReg - is surely an HVA 10039 if (CLI.CallConv == CallingConv::X86_VectorCall && 10040 isa<StructType>(FinalType)) { 10041 // The first value of a structure is marked 10042 if (0 == Value) 10043 Flags.setHvaStart(); 10044 Flags.setHva(); 10045 } 10046 // Set InReg Flag 10047 Flags.setInReg(); 10048 } 10049 if (Args[i].IsSRet) 10050 Flags.setSRet(); 10051 if (Args[i].IsSwiftSelf) 10052 Flags.setSwiftSelf(); 10053 if (Args[i].IsSwiftAsync) 10054 Flags.setSwiftAsync(); 10055 if (Args[i].IsSwiftError) 10056 Flags.setSwiftError(); 10057 if (Args[i].IsCFGuardTarget) 10058 Flags.setCFGuardTarget(); 10059 if (Args[i].IsByVal) 10060 Flags.setByVal(); 10061 if (Args[i].IsByRef) 10062 Flags.setByRef(); 10063 if (Args[i].IsPreallocated) { 10064 Flags.setPreallocated(); 10065 // Set the byval flag for CCAssignFn callbacks that don't know about 10066 // preallocated. This way we can know how many bytes we should've 10067 // allocated and how many bytes a callee cleanup function will pop. If 10068 // we port preallocated to more targets, we'll have to add custom 10069 // preallocated handling in the various CC lowering callbacks. 10070 Flags.setByVal(); 10071 } 10072 if (Args[i].IsInAlloca) { 10073 Flags.setInAlloca(); 10074 // Set the byval flag for CCAssignFn callbacks that don't know about 10075 // inalloca. This way we can know how many bytes we should've allocated 10076 // and how many bytes a callee cleanup function will pop. If we port 10077 // inalloca to more targets, we'll have to add custom inalloca handling 10078 // in the various CC lowering callbacks. 10079 Flags.setByVal(); 10080 } 10081 Align MemAlign; 10082 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10083 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10084 Flags.setByValSize(FrameSize); 10085 10086 // info is not there but there are cases it cannot get right. 10087 if (auto MA = Args[i].Alignment) 10088 MemAlign = *MA; 10089 else 10090 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10091 } else if (auto MA = Args[i].Alignment) { 10092 MemAlign = *MA; 10093 } else { 10094 MemAlign = OriginalAlignment; 10095 } 10096 Flags.setMemAlign(MemAlign); 10097 if (Args[i].IsNest) 10098 Flags.setNest(); 10099 if (NeedsRegBlock) 10100 Flags.setInConsecutiveRegs(); 10101 10102 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10103 CLI.CallConv, VT); 10104 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10105 CLI.CallConv, VT); 10106 SmallVector<SDValue, 4> Parts(NumParts); 10107 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10108 10109 if (Args[i].IsSExt) 10110 ExtendKind = ISD::SIGN_EXTEND; 10111 else if (Args[i].IsZExt) 10112 ExtendKind = ISD::ZERO_EXTEND; 10113 10114 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10115 // for now. 10116 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10117 CanLowerReturn) { 10118 assert((CLI.RetTy == Args[i].Ty || 10119 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10120 CLI.RetTy->getPointerAddressSpace() == 10121 Args[i].Ty->getPointerAddressSpace())) && 10122 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10123 // Before passing 'returned' to the target lowering code, ensure that 10124 // either the register MVT and the actual EVT are the same size or that 10125 // the return value and argument are extended in the same way; in these 10126 // cases it's safe to pass the argument register value unchanged as the 10127 // return register value (although it's at the target's option whether 10128 // to do so) 10129 // TODO: allow code generation to take advantage of partially preserved 10130 // registers rather than clobbering the entire register when the 10131 // parameter extension method is not compatible with the return 10132 // extension method 10133 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10134 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10135 CLI.RetZExt == Args[i].IsZExt)) 10136 Flags.setReturned(); 10137 } 10138 10139 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10140 CLI.CallConv, ExtendKind); 10141 10142 for (unsigned j = 0; j != NumParts; ++j) { 10143 // if it isn't first piece, alignment must be 1 10144 // For scalable vectors the scalable part is currently handled 10145 // by individual targets, so we just use the known minimum size here. 10146 ISD::OutputArg MyFlags( 10147 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10148 i < CLI.NumFixedArgs, i, 10149 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10150 if (NumParts > 1 && j == 0) 10151 MyFlags.Flags.setSplit(); 10152 else if (j != 0) { 10153 MyFlags.Flags.setOrigAlign(Align(1)); 10154 if (j == NumParts - 1) 10155 MyFlags.Flags.setSplitEnd(); 10156 } 10157 10158 CLI.Outs.push_back(MyFlags); 10159 CLI.OutVals.push_back(Parts[j]); 10160 } 10161 10162 if (NeedsRegBlock && Value == NumValues - 1) 10163 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10164 } 10165 } 10166 10167 SmallVector<SDValue, 4> InVals; 10168 CLI.Chain = LowerCall(CLI, InVals); 10169 10170 // Update CLI.InVals to use outside of this function. 10171 CLI.InVals = InVals; 10172 10173 // Verify that the target's LowerCall behaved as expected. 10174 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10175 "LowerCall didn't return a valid chain!"); 10176 assert((!CLI.IsTailCall || InVals.empty()) && 10177 "LowerCall emitted a return value for a tail call!"); 10178 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10179 "LowerCall didn't emit the correct number of values!"); 10180 10181 // For a tail call, the return value is merely live-out and there aren't 10182 // any nodes in the DAG representing it. Return a special value to 10183 // indicate that a tail call has been emitted and no more Instructions 10184 // should be processed in the current block. 10185 if (CLI.IsTailCall) { 10186 CLI.DAG.setRoot(CLI.Chain); 10187 return std::make_pair(SDValue(), SDValue()); 10188 } 10189 10190 #ifndef NDEBUG 10191 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10192 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10193 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10194 "LowerCall emitted a value with the wrong type!"); 10195 } 10196 #endif 10197 10198 SmallVector<SDValue, 4> ReturnValues; 10199 if (!CanLowerReturn) { 10200 // The instruction result is the result of loading from the 10201 // hidden sret parameter. 10202 SmallVector<EVT, 1> PVTs; 10203 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10204 10205 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10206 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10207 EVT PtrVT = PVTs[0]; 10208 10209 unsigned NumValues = RetTys.size(); 10210 ReturnValues.resize(NumValues); 10211 SmallVector<SDValue, 4> Chains(NumValues); 10212 10213 // An aggregate return value cannot wrap around the address space, so 10214 // offsets to its parts don't wrap either. 10215 SDNodeFlags Flags; 10216 Flags.setNoUnsignedWrap(true); 10217 10218 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10219 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10220 for (unsigned i = 0; i < NumValues; ++i) { 10221 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10222 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10223 PtrVT), Flags); 10224 SDValue L = CLI.DAG.getLoad( 10225 RetTys[i], CLI.DL, CLI.Chain, Add, 10226 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10227 DemoteStackIdx, Offsets[i]), 10228 HiddenSRetAlign); 10229 ReturnValues[i] = L; 10230 Chains[i] = L.getValue(1); 10231 } 10232 10233 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10234 } else { 10235 // Collect the legal value parts into potentially illegal values 10236 // that correspond to the original function's return values. 10237 std::optional<ISD::NodeType> AssertOp; 10238 if (CLI.RetSExt) 10239 AssertOp = ISD::AssertSext; 10240 else if (CLI.RetZExt) 10241 AssertOp = ISD::AssertZext; 10242 unsigned CurReg = 0; 10243 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10244 EVT VT = RetTys[I]; 10245 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10246 CLI.CallConv, VT); 10247 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10248 CLI.CallConv, VT); 10249 10250 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10251 NumRegs, RegisterVT, VT, nullptr, 10252 CLI.CallConv, AssertOp)); 10253 CurReg += NumRegs; 10254 } 10255 10256 // For a function returning void, there is no return value. We can't create 10257 // such a node, so we just return a null return value in that case. In 10258 // that case, nothing will actually look at the value. 10259 if (ReturnValues.empty()) 10260 return std::make_pair(SDValue(), CLI.Chain); 10261 } 10262 10263 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10264 CLI.DAG.getVTList(RetTys), ReturnValues); 10265 return std::make_pair(Res, CLI.Chain); 10266 } 10267 10268 /// Places new result values for the node in Results (their number 10269 /// and types must exactly match those of the original return values of 10270 /// the node), or leaves Results empty, which indicates that the node is not 10271 /// to be custom lowered after all. 10272 void TargetLowering::LowerOperationWrapper(SDNode *N, 10273 SmallVectorImpl<SDValue> &Results, 10274 SelectionDAG &DAG) const { 10275 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10276 10277 if (!Res.getNode()) 10278 return; 10279 10280 // If the original node has one result, take the return value from 10281 // LowerOperation as is. It might not be result number 0. 10282 if (N->getNumValues() == 1) { 10283 Results.push_back(Res); 10284 return; 10285 } 10286 10287 // If the original node has multiple results, then the return node should 10288 // have the same number of results. 10289 assert((N->getNumValues() == Res->getNumValues()) && 10290 "Lowering returned the wrong number of results!"); 10291 10292 // Places new result values base on N result number. 10293 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10294 Results.push_back(Res.getValue(I)); 10295 } 10296 10297 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10298 llvm_unreachable("LowerOperation not implemented for this target!"); 10299 } 10300 10301 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10302 unsigned Reg, 10303 ISD::NodeType ExtendType) { 10304 SDValue Op = getNonRegisterValue(V); 10305 assert((Op.getOpcode() != ISD::CopyFromReg || 10306 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10307 "Copy from a reg to the same reg!"); 10308 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10309 10310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10311 // If this is an InlineAsm we have to match the registers required, not the 10312 // notional registers required by the type. 10313 10314 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10315 std::nullopt); // This is not an ABI copy. 10316 SDValue Chain = DAG.getEntryNode(); 10317 10318 if (ExtendType == ISD::ANY_EXTEND) { 10319 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10320 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10321 ExtendType = PreferredExtendIt->second; 10322 } 10323 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10324 PendingExports.push_back(Chain); 10325 } 10326 10327 #include "llvm/CodeGen/SelectionDAGISel.h" 10328 10329 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10330 /// entry block, return true. This includes arguments used by switches, since 10331 /// the switch may expand into multiple basic blocks. 10332 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10333 // With FastISel active, we may be splitting blocks, so force creation 10334 // of virtual registers for all non-dead arguments. 10335 if (FastISel) 10336 return A->use_empty(); 10337 10338 const BasicBlock &Entry = A->getParent()->front(); 10339 for (const User *U : A->users()) 10340 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10341 return false; // Use not in entry block. 10342 10343 return true; 10344 } 10345 10346 using ArgCopyElisionMapTy = 10347 DenseMap<const Argument *, 10348 std::pair<const AllocaInst *, const StoreInst *>>; 10349 10350 /// Scan the entry block of the function in FuncInfo for arguments that look 10351 /// like copies into a local alloca. Record any copied arguments in 10352 /// ArgCopyElisionCandidates. 10353 static void 10354 findArgumentCopyElisionCandidates(const DataLayout &DL, 10355 FunctionLoweringInfo *FuncInfo, 10356 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10357 // Record the state of every static alloca used in the entry block. Argument 10358 // allocas are all used in the entry block, so we need approximately as many 10359 // entries as we have arguments. 10360 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10361 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10362 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10363 StaticAllocas.reserve(NumArgs * 2); 10364 10365 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10366 if (!V) 10367 return nullptr; 10368 V = V->stripPointerCasts(); 10369 const auto *AI = dyn_cast<AllocaInst>(V); 10370 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10371 return nullptr; 10372 auto Iter = StaticAllocas.insert({AI, Unknown}); 10373 return &Iter.first->second; 10374 }; 10375 10376 // Look for stores of arguments to static allocas. Look through bitcasts and 10377 // GEPs to handle type coercions, as long as the alloca is fully initialized 10378 // by the store. Any non-store use of an alloca escapes it and any subsequent 10379 // unanalyzed store might write it. 10380 // FIXME: Handle structs initialized with multiple stores. 10381 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10382 // Look for stores, and handle non-store uses conservatively. 10383 const auto *SI = dyn_cast<StoreInst>(&I); 10384 if (!SI) { 10385 // We will look through cast uses, so ignore them completely. 10386 if (I.isCast()) 10387 continue; 10388 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10389 // to allocas. 10390 if (I.isDebugOrPseudoInst()) 10391 continue; 10392 // This is an unknown instruction. Assume it escapes or writes to all 10393 // static alloca operands. 10394 for (const Use &U : I.operands()) { 10395 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10396 *Info = StaticAllocaInfo::Clobbered; 10397 } 10398 continue; 10399 } 10400 10401 // If the stored value is a static alloca, mark it as escaped. 10402 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10403 *Info = StaticAllocaInfo::Clobbered; 10404 10405 // Check if the destination is a static alloca. 10406 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10407 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10408 if (!Info) 10409 continue; 10410 const AllocaInst *AI = cast<AllocaInst>(Dst); 10411 10412 // Skip allocas that have been initialized or clobbered. 10413 if (*Info != StaticAllocaInfo::Unknown) 10414 continue; 10415 10416 // Check if the stored value is an argument, and that this store fully 10417 // initializes the alloca. 10418 // If the argument type has padding bits we can't directly forward a pointer 10419 // as the upper bits may contain garbage. 10420 // Don't elide copies from the same argument twice. 10421 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10422 const auto *Arg = dyn_cast<Argument>(Val); 10423 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10424 Arg->getType()->isEmptyTy() || 10425 DL.getTypeStoreSize(Arg->getType()) != 10426 DL.getTypeAllocSize(AI->getAllocatedType()) || 10427 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10428 ArgCopyElisionCandidates.count(Arg)) { 10429 *Info = StaticAllocaInfo::Clobbered; 10430 continue; 10431 } 10432 10433 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10434 << '\n'); 10435 10436 // Mark this alloca and store for argument copy elision. 10437 *Info = StaticAllocaInfo::Elidable; 10438 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10439 10440 // Stop scanning if we've seen all arguments. This will happen early in -O0 10441 // builds, which is useful, because -O0 builds have large entry blocks and 10442 // many allocas. 10443 if (ArgCopyElisionCandidates.size() == NumArgs) 10444 break; 10445 } 10446 } 10447 10448 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10449 /// ArgVal is a load from a suitable fixed stack object. 10450 static void tryToElideArgumentCopy( 10451 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10452 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10453 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10454 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10455 SDValue ArgVal, bool &ArgHasUses) { 10456 // Check if this is a load from a fixed stack object. 10457 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10458 if (!LNode) 10459 return; 10460 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10461 if (!FINode) 10462 return; 10463 10464 // Check that the fixed stack object is the right size and alignment. 10465 // Look at the alignment that the user wrote on the alloca instead of looking 10466 // at the stack object. 10467 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10468 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10469 const AllocaInst *AI = ArgCopyIter->second.first; 10470 int FixedIndex = FINode->getIndex(); 10471 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10472 int OldIndex = AllocaIndex; 10473 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10474 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10475 LLVM_DEBUG( 10476 dbgs() << " argument copy elision failed due to bad fixed stack " 10477 "object size\n"); 10478 return; 10479 } 10480 Align RequiredAlignment = AI->getAlign(); 10481 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10482 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10483 "greater than stack argument alignment (" 10484 << DebugStr(RequiredAlignment) << " vs " 10485 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10486 return; 10487 } 10488 10489 // Perform the elision. Delete the old stack object and replace its only use 10490 // in the variable info map. Mark the stack object as mutable. 10491 LLVM_DEBUG({ 10492 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10493 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10494 << '\n'; 10495 }); 10496 MFI.RemoveStackObject(OldIndex); 10497 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10498 AllocaIndex = FixedIndex; 10499 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10500 Chains.push_back(ArgVal.getValue(1)); 10501 10502 // Avoid emitting code for the store implementing the copy. 10503 const StoreInst *SI = ArgCopyIter->second.second; 10504 ElidedArgCopyInstrs.insert(SI); 10505 10506 // Check for uses of the argument again so that we can avoid exporting ArgVal 10507 // if it is't used by anything other than the store. 10508 for (const Value *U : Arg.users()) { 10509 if (U != SI) { 10510 ArgHasUses = true; 10511 break; 10512 } 10513 } 10514 } 10515 10516 void SelectionDAGISel::LowerArguments(const Function &F) { 10517 SelectionDAG &DAG = SDB->DAG; 10518 SDLoc dl = SDB->getCurSDLoc(); 10519 const DataLayout &DL = DAG.getDataLayout(); 10520 SmallVector<ISD::InputArg, 16> Ins; 10521 10522 // In Naked functions we aren't going to save any registers. 10523 if (F.hasFnAttribute(Attribute::Naked)) 10524 return; 10525 10526 if (!FuncInfo->CanLowerReturn) { 10527 // Put in an sret pointer parameter before all the other parameters. 10528 SmallVector<EVT, 1> ValueVTs; 10529 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10530 F.getReturnType()->getPointerTo( 10531 DAG.getDataLayout().getAllocaAddrSpace()), 10532 ValueVTs); 10533 10534 // NOTE: Assuming that a pointer will never break down to more than one VT 10535 // or one register. 10536 ISD::ArgFlagsTy Flags; 10537 Flags.setSRet(); 10538 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10539 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10540 ISD::InputArg::NoArgIndex, 0); 10541 Ins.push_back(RetArg); 10542 } 10543 10544 // Look for stores of arguments to static allocas. Mark such arguments with a 10545 // flag to ask the target to give us the memory location of that argument if 10546 // available. 10547 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10548 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10549 ArgCopyElisionCandidates); 10550 10551 // Set up the incoming argument description vector. 10552 for (const Argument &Arg : F.args()) { 10553 unsigned ArgNo = Arg.getArgNo(); 10554 SmallVector<EVT, 4> ValueVTs; 10555 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10556 bool isArgValueUsed = !Arg.use_empty(); 10557 unsigned PartBase = 0; 10558 Type *FinalType = Arg.getType(); 10559 if (Arg.hasAttribute(Attribute::ByVal)) 10560 FinalType = Arg.getParamByValType(); 10561 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10562 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10563 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10564 Value != NumValues; ++Value) { 10565 EVT VT = ValueVTs[Value]; 10566 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10567 ISD::ArgFlagsTy Flags; 10568 10569 10570 if (Arg.getType()->isPointerTy()) { 10571 Flags.setPointer(); 10572 Flags.setPointerAddrSpace( 10573 cast<PointerType>(Arg.getType())->getAddressSpace()); 10574 } 10575 if (Arg.hasAttribute(Attribute::ZExt)) 10576 Flags.setZExt(); 10577 if (Arg.hasAttribute(Attribute::SExt)) 10578 Flags.setSExt(); 10579 if (Arg.hasAttribute(Attribute::InReg)) { 10580 // If we are using vectorcall calling convention, a structure that is 10581 // passed InReg - is surely an HVA 10582 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10583 isa<StructType>(Arg.getType())) { 10584 // The first value of a structure is marked 10585 if (0 == Value) 10586 Flags.setHvaStart(); 10587 Flags.setHva(); 10588 } 10589 // Set InReg Flag 10590 Flags.setInReg(); 10591 } 10592 if (Arg.hasAttribute(Attribute::StructRet)) 10593 Flags.setSRet(); 10594 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10595 Flags.setSwiftSelf(); 10596 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10597 Flags.setSwiftAsync(); 10598 if (Arg.hasAttribute(Attribute::SwiftError)) 10599 Flags.setSwiftError(); 10600 if (Arg.hasAttribute(Attribute::ByVal)) 10601 Flags.setByVal(); 10602 if (Arg.hasAttribute(Attribute::ByRef)) 10603 Flags.setByRef(); 10604 if (Arg.hasAttribute(Attribute::InAlloca)) { 10605 Flags.setInAlloca(); 10606 // Set the byval flag for CCAssignFn callbacks that don't know about 10607 // inalloca. This way we can know how many bytes we should've allocated 10608 // and how many bytes a callee cleanup function will pop. If we port 10609 // inalloca to more targets, we'll have to add custom inalloca handling 10610 // in the various CC lowering callbacks. 10611 Flags.setByVal(); 10612 } 10613 if (Arg.hasAttribute(Attribute::Preallocated)) { 10614 Flags.setPreallocated(); 10615 // Set the byval flag for CCAssignFn callbacks that don't know about 10616 // preallocated. This way we can know how many bytes we should've 10617 // allocated and how many bytes a callee cleanup function will pop. If 10618 // we port preallocated to more targets, we'll have to add custom 10619 // preallocated handling in the various CC lowering callbacks. 10620 Flags.setByVal(); 10621 } 10622 10623 // Certain targets (such as MIPS), may have a different ABI alignment 10624 // for a type depending on the context. Give the target a chance to 10625 // specify the alignment it wants. 10626 const Align OriginalAlignment( 10627 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10628 Flags.setOrigAlign(OriginalAlignment); 10629 10630 Align MemAlign; 10631 Type *ArgMemTy = nullptr; 10632 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10633 Flags.isByRef()) { 10634 if (!ArgMemTy) 10635 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10636 10637 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10638 10639 // For in-memory arguments, size and alignment should be passed from FE. 10640 // BE will guess if this info is not there but there are cases it cannot 10641 // get right. 10642 if (auto ParamAlign = Arg.getParamStackAlign()) 10643 MemAlign = *ParamAlign; 10644 else if ((ParamAlign = Arg.getParamAlign())) 10645 MemAlign = *ParamAlign; 10646 else 10647 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10648 if (Flags.isByRef()) 10649 Flags.setByRefSize(MemSize); 10650 else 10651 Flags.setByValSize(MemSize); 10652 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10653 MemAlign = *ParamAlign; 10654 } else { 10655 MemAlign = OriginalAlignment; 10656 } 10657 Flags.setMemAlign(MemAlign); 10658 10659 if (Arg.hasAttribute(Attribute::Nest)) 10660 Flags.setNest(); 10661 if (NeedsRegBlock) 10662 Flags.setInConsecutiveRegs(); 10663 if (ArgCopyElisionCandidates.count(&Arg)) 10664 Flags.setCopyElisionCandidate(); 10665 if (Arg.hasAttribute(Attribute::Returned)) 10666 Flags.setReturned(); 10667 10668 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10669 *CurDAG->getContext(), F.getCallingConv(), VT); 10670 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10671 *CurDAG->getContext(), F.getCallingConv(), VT); 10672 for (unsigned i = 0; i != NumRegs; ++i) { 10673 // For scalable vectors, use the minimum size; individual targets 10674 // are responsible for handling scalable vector arguments and 10675 // return values. 10676 ISD::InputArg MyFlags( 10677 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10678 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10679 if (NumRegs > 1 && i == 0) 10680 MyFlags.Flags.setSplit(); 10681 // if it isn't first piece, alignment must be 1 10682 else if (i > 0) { 10683 MyFlags.Flags.setOrigAlign(Align(1)); 10684 if (i == NumRegs - 1) 10685 MyFlags.Flags.setSplitEnd(); 10686 } 10687 Ins.push_back(MyFlags); 10688 } 10689 if (NeedsRegBlock && Value == NumValues - 1) 10690 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10691 PartBase += VT.getStoreSize().getKnownMinValue(); 10692 } 10693 } 10694 10695 // Call the target to set up the argument values. 10696 SmallVector<SDValue, 8> InVals; 10697 SDValue NewRoot = TLI->LowerFormalArguments( 10698 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10699 10700 // Verify that the target's LowerFormalArguments behaved as expected. 10701 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10702 "LowerFormalArguments didn't return a valid chain!"); 10703 assert(InVals.size() == Ins.size() && 10704 "LowerFormalArguments didn't emit the correct number of values!"); 10705 LLVM_DEBUG({ 10706 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10707 assert(InVals[i].getNode() && 10708 "LowerFormalArguments emitted a null value!"); 10709 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10710 "LowerFormalArguments emitted a value with the wrong type!"); 10711 } 10712 }); 10713 10714 // Update the DAG with the new chain value resulting from argument lowering. 10715 DAG.setRoot(NewRoot); 10716 10717 // Set up the argument values. 10718 unsigned i = 0; 10719 if (!FuncInfo->CanLowerReturn) { 10720 // Create a virtual register for the sret pointer, and put in a copy 10721 // from the sret argument into it. 10722 SmallVector<EVT, 1> ValueVTs; 10723 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10724 F.getReturnType()->getPointerTo( 10725 DAG.getDataLayout().getAllocaAddrSpace()), 10726 ValueVTs); 10727 MVT VT = ValueVTs[0].getSimpleVT(); 10728 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10729 std::optional<ISD::NodeType> AssertOp; 10730 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10731 nullptr, F.getCallingConv(), AssertOp); 10732 10733 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10734 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10735 Register SRetReg = 10736 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10737 FuncInfo->DemoteRegister = SRetReg; 10738 NewRoot = 10739 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10740 DAG.setRoot(NewRoot); 10741 10742 // i indexes lowered arguments. Bump it past the hidden sret argument. 10743 ++i; 10744 } 10745 10746 SmallVector<SDValue, 4> Chains; 10747 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10748 for (const Argument &Arg : F.args()) { 10749 SmallVector<SDValue, 4> ArgValues; 10750 SmallVector<EVT, 4> ValueVTs; 10751 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10752 unsigned NumValues = ValueVTs.size(); 10753 if (NumValues == 0) 10754 continue; 10755 10756 bool ArgHasUses = !Arg.use_empty(); 10757 10758 // Elide the copying store if the target loaded this argument from a 10759 // suitable fixed stack object. 10760 if (Ins[i].Flags.isCopyElisionCandidate()) { 10761 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10762 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10763 InVals[i], ArgHasUses); 10764 } 10765 10766 // If this argument is unused then remember its value. It is used to generate 10767 // debugging information. 10768 bool isSwiftErrorArg = 10769 TLI->supportSwiftError() && 10770 Arg.hasAttribute(Attribute::SwiftError); 10771 if (!ArgHasUses && !isSwiftErrorArg) { 10772 SDB->setUnusedArgValue(&Arg, InVals[i]); 10773 10774 // Also remember any frame index for use in FastISel. 10775 if (FrameIndexSDNode *FI = 10776 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10777 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10778 } 10779 10780 for (unsigned Val = 0; Val != NumValues; ++Val) { 10781 EVT VT = ValueVTs[Val]; 10782 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10783 F.getCallingConv(), VT); 10784 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10785 *CurDAG->getContext(), F.getCallingConv(), VT); 10786 10787 // Even an apparent 'unused' swifterror argument needs to be returned. So 10788 // we do generate a copy for it that can be used on return from the 10789 // function. 10790 if (ArgHasUses || isSwiftErrorArg) { 10791 std::optional<ISD::NodeType> AssertOp; 10792 if (Arg.hasAttribute(Attribute::SExt)) 10793 AssertOp = ISD::AssertSext; 10794 else if (Arg.hasAttribute(Attribute::ZExt)) 10795 AssertOp = ISD::AssertZext; 10796 10797 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10798 PartVT, VT, nullptr, 10799 F.getCallingConv(), AssertOp)); 10800 } 10801 10802 i += NumParts; 10803 } 10804 10805 // We don't need to do anything else for unused arguments. 10806 if (ArgValues.empty()) 10807 continue; 10808 10809 // Note down frame index. 10810 if (FrameIndexSDNode *FI = 10811 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10812 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10813 10814 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 10815 SDB->getCurSDLoc()); 10816 10817 SDB->setValue(&Arg, Res); 10818 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10819 // We want to associate the argument with the frame index, among 10820 // involved operands, that correspond to the lowest address. The 10821 // getCopyFromParts function, called earlier, is swapping the order of 10822 // the operands to BUILD_PAIR depending on endianness. The result of 10823 // that swapping is that the least significant bits of the argument will 10824 // be in the first operand of the BUILD_PAIR node, and the most 10825 // significant bits will be in the second operand. 10826 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10827 if (LoadSDNode *LNode = 10828 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10829 if (FrameIndexSDNode *FI = 10830 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10831 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10832 } 10833 10834 // Analyses past this point are naive and don't expect an assertion. 10835 if (Res.getOpcode() == ISD::AssertZext) 10836 Res = Res.getOperand(0); 10837 10838 // Update the SwiftErrorVRegDefMap. 10839 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10840 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10841 if (Register::isVirtualRegister(Reg)) 10842 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10843 Reg); 10844 } 10845 10846 // If this argument is live outside of the entry block, insert a copy from 10847 // wherever we got it to the vreg that other BB's will reference it as. 10848 if (Res.getOpcode() == ISD::CopyFromReg) { 10849 // If we can, though, try to skip creating an unnecessary vreg. 10850 // FIXME: This isn't very clean... it would be nice to make this more 10851 // general. 10852 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10853 if (Register::isVirtualRegister(Reg)) { 10854 FuncInfo->ValueMap[&Arg] = Reg; 10855 continue; 10856 } 10857 } 10858 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10859 FuncInfo->InitializeRegForValue(&Arg); 10860 SDB->CopyToExportRegsIfNeeded(&Arg); 10861 } 10862 } 10863 10864 if (!Chains.empty()) { 10865 Chains.push_back(NewRoot); 10866 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10867 } 10868 10869 DAG.setRoot(NewRoot); 10870 10871 assert(i == InVals.size() && "Argument register count mismatch!"); 10872 10873 // If any argument copy elisions occurred and we have debug info, update the 10874 // stale frame indices used in the dbg.declare variable info table. 10875 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10876 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10877 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10878 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10879 if (I != ArgCopyElisionFrameIndexMap.end()) 10880 VI.Slot = I->second; 10881 } 10882 } 10883 10884 // Finally, if the target has anything special to do, allow it to do so. 10885 emitFunctionEntryCode(); 10886 } 10887 10888 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10889 /// ensure constants are generated when needed. Remember the virtual registers 10890 /// that need to be added to the Machine PHI nodes as input. We cannot just 10891 /// directly add them, because expansion might result in multiple MBB's for one 10892 /// BB. As such, the start of the BB might correspond to a different MBB than 10893 /// the end. 10894 void 10895 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10897 10898 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10899 10900 // Check PHI nodes in successors that expect a value to be available from this 10901 // block. 10902 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10903 if (!isa<PHINode>(SuccBB->begin())) continue; 10904 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10905 10906 // If this terminator has multiple identical successors (common for 10907 // switches), only handle each succ once. 10908 if (!SuccsHandled.insert(SuccMBB).second) 10909 continue; 10910 10911 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10912 10913 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10914 // nodes and Machine PHI nodes, but the incoming operands have not been 10915 // emitted yet. 10916 for (const PHINode &PN : SuccBB->phis()) { 10917 // Ignore dead phi's. 10918 if (PN.use_empty()) 10919 continue; 10920 10921 // Skip empty types 10922 if (PN.getType()->isEmptyTy()) 10923 continue; 10924 10925 unsigned Reg; 10926 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10927 10928 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10929 unsigned &RegOut = ConstantsOut[C]; 10930 if (RegOut == 0) { 10931 RegOut = FuncInfo.CreateRegs(C); 10932 // We need to zero/sign extend ConstantInt phi operands to match 10933 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10934 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10935 if (auto *CI = dyn_cast<ConstantInt>(C)) 10936 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10937 : ISD::ZERO_EXTEND; 10938 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10939 } 10940 Reg = RegOut; 10941 } else { 10942 DenseMap<const Value *, Register>::iterator I = 10943 FuncInfo.ValueMap.find(PHIOp); 10944 if (I != FuncInfo.ValueMap.end()) 10945 Reg = I->second; 10946 else { 10947 assert(isa<AllocaInst>(PHIOp) && 10948 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10949 "Didn't codegen value into a register!??"); 10950 Reg = FuncInfo.CreateRegs(PHIOp); 10951 CopyValueToVirtualRegister(PHIOp, Reg); 10952 } 10953 } 10954 10955 // Remember that this register needs to added to the machine PHI node as 10956 // the input for this MBB. 10957 SmallVector<EVT, 4> ValueVTs; 10958 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10959 for (EVT VT : ValueVTs) { 10960 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10961 for (unsigned i = 0; i != NumRegisters; ++i) 10962 FuncInfo.PHINodesToUpdate.push_back( 10963 std::make_pair(&*MBBI++, Reg + i)); 10964 Reg += NumRegisters; 10965 } 10966 } 10967 } 10968 10969 ConstantsOut.clear(); 10970 } 10971 10972 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10973 MachineFunction::iterator I(MBB); 10974 if (++I == FuncInfo.MF->end()) 10975 return nullptr; 10976 return &*I; 10977 } 10978 10979 /// During lowering new call nodes can be created (such as memset, etc.). 10980 /// Those will become new roots of the current DAG, but complications arise 10981 /// when they are tail calls. In such cases, the call lowering will update 10982 /// the root, but the builder still needs to know that a tail call has been 10983 /// lowered in order to avoid generating an additional return. 10984 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10985 // If the node is null, we do have a tail call. 10986 if (MaybeTC.getNode() != nullptr) 10987 DAG.setRoot(MaybeTC); 10988 else 10989 HasTailCall = true; 10990 } 10991 10992 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10993 MachineBasicBlock *SwitchMBB, 10994 MachineBasicBlock *DefaultMBB) { 10995 MachineFunction *CurMF = FuncInfo.MF; 10996 MachineBasicBlock *NextMBB = nullptr; 10997 MachineFunction::iterator BBI(W.MBB); 10998 if (++BBI != FuncInfo.MF->end()) 10999 NextMBB = &*BBI; 11000 11001 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11002 11003 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11004 11005 if (Size == 2 && W.MBB == SwitchMBB) { 11006 // If any two of the cases has the same destination, and if one value 11007 // is the same as the other, but has one bit unset that the other has set, 11008 // use bit manipulation to do two compares at once. For example: 11009 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11010 // TODO: This could be extended to merge any 2 cases in switches with 3 11011 // cases. 11012 // TODO: Handle cases where W.CaseBB != SwitchBB. 11013 CaseCluster &Small = *W.FirstCluster; 11014 CaseCluster &Big = *W.LastCluster; 11015 11016 if (Small.Low == Small.High && Big.Low == Big.High && 11017 Small.MBB == Big.MBB) { 11018 const APInt &SmallValue = Small.Low->getValue(); 11019 const APInt &BigValue = Big.Low->getValue(); 11020 11021 // Check that there is only one bit different. 11022 APInt CommonBit = BigValue ^ SmallValue; 11023 if (CommonBit.isPowerOf2()) { 11024 SDValue CondLHS = getValue(Cond); 11025 EVT VT = CondLHS.getValueType(); 11026 SDLoc DL = getCurSDLoc(); 11027 11028 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11029 DAG.getConstant(CommonBit, DL, VT)); 11030 SDValue Cond = DAG.getSetCC( 11031 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11032 ISD::SETEQ); 11033 11034 // Update successor info. 11035 // Both Small and Big will jump to Small.BB, so we sum up the 11036 // probabilities. 11037 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11038 if (BPI) 11039 addSuccessorWithProb( 11040 SwitchMBB, DefaultMBB, 11041 // The default destination is the first successor in IR. 11042 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11043 else 11044 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11045 11046 // Insert the true branch. 11047 SDValue BrCond = 11048 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11049 DAG.getBasicBlock(Small.MBB)); 11050 // Insert the false branch. 11051 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11052 DAG.getBasicBlock(DefaultMBB)); 11053 11054 DAG.setRoot(BrCond); 11055 return; 11056 } 11057 } 11058 } 11059 11060 if (TM.getOptLevel() != CodeGenOpt::None) { 11061 // Here, we order cases by probability so the most likely case will be 11062 // checked first. However, two clusters can have the same probability in 11063 // which case their relative ordering is non-deterministic. So we use Low 11064 // as a tie-breaker as clusters are guaranteed to never overlap. 11065 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11066 [](const CaseCluster &a, const CaseCluster &b) { 11067 return a.Prob != b.Prob ? 11068 a.Prob > b.Prob : 11069 a.Low->getValue().slt(b.Low->getValue()); 11070 }); 11071 11072 // Rearrange the case blocks so that the last one falls through if possible 11073 // without changing the order of probabilities. 11074 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11075 --I; 11076 if (I->Prob > W.LastCluster->Prob) 11077 break; 11078 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11079 std::swap(*I, *W.LastCluster); 11080 break; 11081 } 11082 } 11083 } 11084 11085 // Compute total probability. 11086 BranchProbability DefaultProb = W.DefaultProb; 11087 BranchProbability UnhandledProbs = DefaultProb; 11088 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11089 UnhandledProbs += I->Prob; 11090 11091 MachineBasicBlock *CurMBB = W.MBB; 11092 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11093 bool FallthroughUnreachable = false; 11094 MachineBasicBlock *Fallthrough; 11095 if (I == W.LastCluster) { 11096 // For the last cluster, fall through to the default destination. 11097 Fallthrough = DefaultMBB; 11098 FallthroughUnreachable = isa<UnreachableInst>( 11099 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11100 } else { 11101 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11102 CurMF->insert(BBI, Fallthrough); 11103 // Put Cond in a virtual register to make it available from the new blocks. 11104 ExportFromCurrentBlock(Cond); 11105 } 11106 UnhandledProbs -= I->Prob; 11107 11108 switch (I->Kind) { 11109 case CC_JumpTable: { 11110 // FIXME: Optimize away range check based on pivot comparisons. 11111 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11112 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11113 11114 // The jump block hasn't been inserted yet; insert it here. 11115 MachineBasicBlock *JumpMBB = JT->MBB; 11116 CurMF->insert(BBI, JumpMBB); 11117 11118 auto JumpProb = I->Prob; 11119 auto FallthroughProb = UnhandledProbs; 11120 11121 // If the default statement is a target of the jump table, we evenly 11122 // distribute the default probability to successors of CurMBB. Also 11123 // update the probability on the edge from JumpMBB to Fallthrough. 11124 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11125 SE = JumpMBB->succ_end(); 11126 SI != SE; ++SI) { 11127 if (*SI == DefaultMBB) { 11128 JumpProb += DefaultProb / 2; 11129 FallthroughProb -= DefaultProb / 2; 11130 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11131 JumpMBB->normalizeSuccProbs(); 11132 break; 11133 } 11134 } 11135 11136 if (FallthroughUnreachable) 11137 JTH->FallthroughUnreachable = true; 11138 11139 if (!JTH->FallthroughUnreachable) 11140 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11141 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11142 CurMBB->normalizeSuccProbs(); 11143 11144 // The jump table header will be inserted in our current block, do the 11145 // range check, and fall through to our fallthrough block. 11146 JTH->HeaderBB = CurMBB; 11147 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11148 11149 // If we're in the right place, emit the jump table header right now. 11150 if (CurMBB == SwitchMBB) { 11151 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11152 JTH->Emitted = true; 11153 } 11154 break; 11155 } 11156 case CC_BitTests: { 11157 // FIXME: Optimize away range check based on pivot comparisons. 11158 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11159 11160 // The bit test blocks haven't been inserted yet; insert them here. 11161 for (BitTestCase &BTC : BTB->Cases) 11162 CurMF->insert(BBI, BTC.ThisBB); 11163 11164 // Fill in fields of the BitTestBlock. 11165 BTB->Parent = CurMBB; 11166 BTB->Default = Fallthrough; 11167 11168 BTB->DefaultProb = UnhandledProbs; 11169 // If the cases in bit test don't form a contiguous range, we evenly 11170 // distribute the probability on the edge to Fallthrough to two 11171 // successors of CurMBB. 11172 if (!BTB->ContiguousRange) { 11173 BTB->Prob += DefaultProb / 2; 11174 BTB->DefaultProb -= DefaultProb / 2; 11175 } 11176 11177 if (FallthroughUnreachable) 11178 BTB->FallthroughUnreachable = true; 11179 11180 // If we're in the right place, emit the bit test header right now. 11181 if (CurMBB == SwitchMBB) { 11182 visitBitTestHeader(*BTB, SwitchMBB); 11183 BTB->Emitted = true; 11184 } 11185 break; 11186 } 11187 case CC_Range: { 11188 const Value *RHS, *LHS, *MHS; 11189 ISD::CondCode CC; 11190 if (I->Low == I->High) { 11191 // Check Cond == I->Low. 11192 CC = ISD::SETEQ; 11193 LHS = Cond; 11194 RHS=I->Low; 11195 MHS = nullptr; 11196 } else { 11197 // Check I->Low <= Cond <= I->High. 11198 CC = ISD::SETLE; 11199 LHS = I->Low; 11200 MHS = Cond; 11201 RHS = I->High; 11202 } 11203 11204 // If Fallthrough is unreachable, fold away the comparison. 11205 if (FallthroughUnreachable) 11206 CC = ISD::SETTRUE; 11207 11208 // The false probability is the sum of all unhandled cases. 11209 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11210 getCurSDLoc(), I->Prob, UnhandledProbs); 11211 11212 if (CurMBB == SwitchMBB) 11213 visitSwitchCase(CB, SwitchMBB); 11214 else 11215 SL->SwitchCases.push_back(CB); 11216 11217 break; 11218 } 11219 } 11220 CurMBB = Fallthrough; 11221 } 11222 } 11223 11224 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11225 CaseClusterIt First, 11226 CaseClusterIt Last) { 11227 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11228 if (X.Prob != CC.Prob) 11229 return X.Prob > CC.Prob; 11230 11231 // Ties are broken by comparing the case value. 11232 return X.Low->getValue().slt(CC.Low->getValue()); 11233 }); 11234 } 11235 11236 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11237 const SwitchWorkListItem &W, 11238 Value *Cond, 11239 MachineBasicBlock *SwitchMBB) { 11240 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11241 "Clusters not sorted?"); 11242 11243 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11244 11245 // Balance the tree based on branch probabilities to create a near-optimal (in 11246 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11247 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11248 CaseClusterIt LastLeft = W.FirstCluster; 11249 CaseClusterIt FirstRight = W.LastCluster; 11250 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11251 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11252 11253 // Move LastLeft and FirstRight towards each other from opposite directions to 11254 // find a partitioning of the clusters which balances the probability on both 11255 // sides. If LeftProb and RightProb are equal, alternate which side is 11256 // taken to ensure 0-probability nodes are distributed evenly. 11257 unsigned I = 0; 11258 while (LastLeft + 1 < FirstRight) { 11259 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11260 LeftProb += (++LastLeft)->Prob; 11261 else 11262 RightProb += (--FirstRight)->Prob; 11263 I++; 11264 } 11265 11266 while (true) { 11267 // Our binary search tree differs from a typical BST in that ours can have up 11268 // to three values in each leaf. The pivot selection above doesn't take that 11269 // into account, which means the tree might require more nodes and be less 11270 // efficient. We compensate for this here. 11271 11272 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11273 unsigned NumRight = W.LastCluster - FirstRight + 1; 11274 11275 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11276 // If one side has less than 3 clusters, and the other has more than 3, 11277 // consider taking a cluster from the other side. 11278 11279 if (NumLeft < NumRight) { 11280 // Consider moving the first cluster on the right to the left side. 11281 CaseCluster &CC = *FirstRight; 11282 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11283 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11284 if (LeftSideRank <= RightSideRank) { 11285 // Moving the cluster to the left does not demote it. 11286 ++LastLeft; 11287 ++FirstRight; 11288 continue; 11289 } 11290 } else { 11291 assert(NumRight < NumLeft); 11292 // Consider moving the last element on the left to the right side. 11293 CaseCluster &CC = *LastLeft; 11294 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11295 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11296 if (RightSideRank <= LeftSideRank) { 11297 // Moving the cluster to the right does not demot it. 11298 --LastLeft; 11299 --FirstRight; 11300 continue; 11301 } 11302 } 11303 } 11304 break; 11305 } 11306 11307 assert(LastLeft + 1 == FirstRight); 11308 assert(LastLeft >= W.FirstCluster); 11309 assert(FirstRight <= W.LastCluster); 11310 11311 // Use the first element on the right as pivot since we will make less-than 11312 // comparisons against it. 11313 CaseClusterIt PivotCluster = FirstRight; 11314 assert(PivotCluster > W.FirstCluster); 11315 assert(PivotCluster <= W.LastCluster); 11316 11317 CaseClusterIt FirstLeft = W.FirstCluster; 11318 CaseClusterIt LastRight = W.LastCluster; 11319 11320 const ConstantInt *Pivot = PivotCluster->Low; 11321 11322 // New blocks will be inserted immediately after the current one. 11323 MachineFunction::iterator BBI(W.MBB); 11324 ++BBI; 11325 11326 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11327 // we can branch to its destination directly if it's squeezed exactly in 11328 // between the known lower bound and Pivot - 1. 11329 MachineBasicBlock *LeftMBB; 11330 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11331 FirstLeft->Low == W.GE && 11332 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11333 LeftMBB = FirstLeft->MBB; 11334 } else { 11335 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11336 FuncInfo.MF->insert(BBI, LeftMBB); 11337 WorkList.push_back( 11338 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11339 // Put Cond in a virtual register to make it available from the new blocks. 11340 ExportFromCurrentBlock(Cond); 11341 } 11342 11343 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11344 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11345 // directly if RHS.High equals the current upper bound. 11346 MachineBasicBlock *RightMBB; 11347 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11348 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11349 RightMBB = FirstRight->MBB; 11350 } else { 11351 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11352 FuncInfo.MF->insert(BBI, RightMBB); 11353 WorkList.push_back( 11354 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11355 // Put Cond in a virtual register to make it available from the new blocks. 11356 ExportFromCurrentBlock(Cond); 11357 } 11358 11359 // Create the CaseBlock record that will be used to lower the branch. 11360 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11361 getCurSDLoc(), LeftProb, RightProb); 11362 11363 if (W.MBB == SwitchMBB) 11364 visitSwitchCase(CB, SwitchMBB); 11365 else 11366 SL->SwitchCases.push_back(CB); 11367 } 11368 11369 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11370 // from the swith statement. 11371 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11372 BranchProbability PeeledCaseProb) { 11373 if (PeeledCaseProb == BranchProbability::getOne()) 11374 return BranchProbability::getZero(); 11375 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11376 11377 uint32_t Numerator = CaseProb.getNumerator(); 11378 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11379 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11380 } 11381 11382 // Try to peel the top probability case if it exceeds the threshold. 11383 // Return current MachineBasicBlock for the switch statement if the peeling 11384 // does not occur. 11385 // If the peeling is performed, return the newly created MachineBasicBlock 11386 // for the peeled switch statement. Also update Clusters to remove the peeled 11387 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11388 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11389 const SwitchInst &SI, CaseClusterVector &Clusters, 11390 BranchProbability &PeeledCaseProb) { 11391 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11392 // Don't perform if there is only one cluster or optimizing for size. 11393 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11394 TM.getOptLevel() == CodeGenOpt::None || 11395 SwitchMBB->getParent()->getFunction().hasMinSize()) 11396 return SwitchMBB; 11397 11398 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11399 unsigned PeeledCaseIndex = 0; 11400 bool SwitchPeeled = false; 11401 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11402 CaseCluster &CC = Clusters[Index]; 11403 if (CC.Prob < TopCaseProb) 11404 continue; 11405 TopCaseProb = CC.Prob; 11406 PeeledCaseIndex = Index; 11407 SwitchPeeled = true; 11408 } 11409 if (!SwitchPeeled) 11410 return SwitchMBB; 11411 11412 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11413 << TopCaseProb << "\n"); 11414 11415 // Record the MBB for the peeled switch statement. 11416 MachineFunction::iterator BBI(SwitchMBB); 11417 ++BBI; 11418 MachineBasicBlock *PeeledSwitchMBB = 11419 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11420 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11421 11422 ExportFromCurrentBlock(SI.getCondition()); 11423 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11424 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11425 nullptr, nullptr, TopCaseProb.getCompl()}; 11426 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11427 11428 Clusters.erase(PeeledCaseIt); 11429 for (CaseCluster &CC : Clusters) { 11430 LLVM_DEBUG( 11431 dbgs() << "Scale the probablity for one cluster, before scaling: " 11432 << CC.Prob << "\n"); 11433 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11434 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11435 } 11436 PeeledCaseProb = TopCaseProb; 11437 return PeeledSwitchMBB; 11438 } 11439 11440 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11441 // Extract cases from the switch. 11442 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11443 CaseClusterVector Clusters; 11444 Clusters.reserve(SI.getNumCases()); 11445 for (auto I : SI.cases()) { 11446 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11447 const ConstantInt *CaseVal = I.getCaseValue(); 11448 BranchProbability Prob = 11449 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11450 : BranchProbability(1, SI.getNumCases() + 1); 11451 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11452 } 11453 11454 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11455 11456 // Cluster adjacent cases with the same destination. We do this at all 11457 // optimization levels because it's cheap to do and will make codegen faster 11458 // if there are many clusters. 11459 sortAndRangeify(Clusters); 11460 11461 // The branch probablity of the peeled case. 11462 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11463 MachineBasicBlock *PeeledSwitchMBB = 11464 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11465 11466 // If there is only the default destination, jump there directly. 11467 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11468 if (Clusters.empty()) { 11469 assert(PeeledSwitchMBB == SwitchMBB); 11470 SwitchMBB->addSuccessor(DefaultMBB); 11471 if (DefaultMBB != NextBlock(SwitchMBB)) { 11472 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11473 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11474 } 11475 return; 11476 } 11477 11478 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11479 SL->findBitTestClusters(Clusters, &SI); 11480 11481 LLVM_DEBUG({ 11482 dbgs() << "Case clusters: "; 11483 for (const CaseCluster &C : Clusters) { 11484 if (C.Kind == CC_JumpTable) 11485 dbgs() << "JT:"; 11486 if (C.Kind == CC_BitTests) 11487 dbgs() << "BT:"; 11488 11489 C.Low->getValue().print(dbgs(), true); 11490 if (C.Low != C.High) { 11491 dbgs() << '-'; 11492 C.High->getValue().print(dbgs(), true); 11493 } 11494 dbgs() << ' '; 11495 } 11496 dbgs() << '\n'; 11497 }); 11498 11499 assert(!Clusters.empty()); 11500 SwitchWorkList WorkList; 11501 CaseClusterIt First = Clusters.begin(); 11502 CaseClusterIt Last = Clusters.end() - 1; 11503 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11504 // Scale the branchprobability for DefaultMBB if the peel occurs and 11505 // DefaultMBB is not replaced. 11506 if (PeeledCaseProb != BranchProbability::getZero() && 11507 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11508 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11509 WorkList.push_back( 11510 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11511 11512 while (!WorkList.empty()) { 11513 SwitchWorkListItem W = WorkList.pop_back_val(); 11514 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11515 11516 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11517 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11518 // For optimized builds, lower large range as a balanced binary tree. 11519 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11520 continue; 11521 } 11522 11523 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11524 } 11525 } 11526 11527 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11529 auto DL = getCurSDLoc(); 11530 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11531 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11532 } 11533 11534 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11536 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11537 11538 SDLoc DL = getCurSDLoc(); 11539 SDValue V = getValue(I.getOperand(0)); 11540 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11541 11542 if (VT.isScalableVector()) { 11543 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11544 return; 11545 } 11546 11547 // Use VECTOR_SHUFFLE for the fixed-length vector 11548 // to maintain existing behavior. 11549 SmallVector<int, 8> Mask; 11550 unsigned NumElts = VT.getVectorMinNumElements(); 11551 for (unsigned i = 0; i != NumElts; ++i) 11552 Mask.push_back(NumElts - 1 - i); 11553 11554 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11555 } 11556 11557 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11558 SmallVector<EVT, 4> ValueVTs; 11559 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11560 ValueVTs); 11561 unsigned NumValues = ValueVTs.size(); 11562 if (NumValues == 0) return; 11563 11564 SmallVector<SDValue, 4> Values(NumValues); 11565 SDValue Op = getValue(I.getOperand(0)); 11566 11567 for (unsigned i = 0; i != NumValues; ++i) 11568 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11569 SDValue(Op.getNode(), Op.getResNo() + i)); 11570 11571 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11572 DAG.getVTList(ValueVTs), Values)); 11573 } 11574 11575 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11577 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11578 11579 SDLoc DL = getCurSDLoc(); 11580 SDValue V1 = getValue(I.getOperand(0)); 11581 SDValue V2 = getValue(I.getOperand(1)); 11582 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11583 11584 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11585 if (VT.isScalableVector()) { 11586 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11587 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11588 DAG.getConstant(Imm, DL, IdxVT))); 11589 return; 11590 } 11591 11592 unsigned NumElts = VT.getVectorNumElements(); 11593 11594 uint64_t Idx = (NumElts + Imm) % NumElts; 11595 11596 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11597 SmallVector<int, 8> Mask; 11598 for (unsigned i = 0; i < NumElts; ++i) 11599 Mask.push_back(Idx + i); 11600 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11601 } 11602