1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <deque> 108 #include <iterator> 109 #include <limits> 110 #include <optional> 111 #include <tuple> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 using namespace SwitchCG; 116 117 #define DEBUG_TYPE "isel" 118 119 /// LimitFloatPrecision - Generate low-precision inline sequences for 120 /// some float libcalls (6, 8 or 12 bits). 121 static unsigned LimitFloatPrecision; 122 123 static cl::opt<bool> 124 InsertAssertAlign("insert-assert-align", cl::init(true), 125 cl::desc("Insert the experimental `assertalign` node."), 126 cl::ReallyHidden); 127 128 static cl::opt<unsigned, true> 129 LimitFPPrecision("limit-float-precision", 130 cl::desc("Generate low-precision inline sequences " 131 "for some float libcalls"), 132 cl::location(LimitFloatPrecision), cl::Hidden, 133 cl::init(0)); 134 135 static cl::opt<unsigned> SwitchPeelThreshold( 136 "switch-peel-threshold", cl::Hidden, cl::init(66), 137 cl::desc("Set the case probability threshold for peeling the case from a " 138 "switch statement. A value greater than 100 will void this " 139 "optimization")); 140 141 // Limit the width of DAG chains. This is important in general to prevent 142 // DAG-based analysis from blowing up. For example, alias analysis and 143 // load clustering may not complete in reasonable time. It is difficult to 144 // recognize and avoid this situation within each individual analysis, and 145 // future analyses are likely to have the same behavior. Limiting DAG width is 146 // the safe approach and will be especially important with global DAGs. 147 // 148 // MaxParallelChains default is arbitrarily high to avoid affecting 149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 150 // sequence over this should have been converted to llvm.memcpy by the 151 // frontend. It is easy to induce this behavior with .ll code such as: 152 // %buffer = alloca [4096 x i8] 153 // %data = load [4096 x i8]* %argPtr 154 // store [4096 x i8] %data, [4096 x i8]* %buffer 155 static const unsigned MaxParallelChains = 64; 156 157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 SDValue InChain, 161 std::optional<CallingConv::ID> CC); 162 163 /// getCopyFromParts - Create a value that contains the specified legal parts 164 /// combined into the value they represent. If the parts combine to a type 165 /// larger than ValueVT then AssertOp can be used to specify whether the extra 166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 167 /// (ISD::AssertSext). 168 static SDValue 169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 171 SDValue InChain, 172 std::optional<CallingConv::ID> CC = std::nullopt, 173 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 174 // Let the target assemble the parts if it wants to 175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 177 PartVT, ValueVT, CC)) 178 return Val; 179 180 if (ValueVT.isVector()) 181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 182 InChain, CC); 183 184 assert(NumParts > 0 && "No parts to assemble!"); 185 SDValue Val = Parts[0]; 186 187 if (NumParts > 1) { 188 // Assemble the value from multiple parts. 189 if (ValueVT.isInteger()) { 190 unsigned PartBits = PartVT.getSizeInBits(); 191 unsigned ValueBits = ValueVT.getSizeInBits(); 192 193 // Assemble the power of 2 part. 194 unsigned RoundParts = llvm::bit_floor(NumParts); 195 unsigned RoundBits = PartBits * RoundParts; 196 EVT RoundVT = RoundBits == ValueBits ? 197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 198 SDValue Lo, Hi; 199 200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 201 202 if (RoundParts > 2) { 203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 204 InChain); 205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 206 PartVT, HalfVT, V, InChain); 207 } else { 208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 210 } 211 212 if (DAG.getDataLayout().isBigEndian()) 213 std::swap(Lo, Hi); 214 215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 216 217 if (RoundParts < NumParts) { 218 // Assemble the trailing non-power-of-2 part. 219 unsigned OddParts = NumParts - RoundParts; 220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 222 OddVT, V, InChain, CC); 223 224 // Combine the round and odd parts. 225 Lo = Val; 226 if (DAG.getDataLayout().isBigEndian()) 227 std::swap(Lo, Hi); 228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 231 DAG.getConstant(Lo.getValueSizeInBits(), DL, 232 TLI.getShiftAmountTy( 233 TotalVT, DAG.getDataLayout()))); 234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 236 } 237 } else if (PartVT.isFloatingPoint()) { 238 // FP split into multiple FP parts (for ppcf128) 239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 240 "Unexpected split"); 241 SDValue Lo, Hi; 242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 245 std::swap(Lo, Hi); 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 247 } else { 248 // FP split into integer parts (soft fp) 249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 250 !PartVT.isVector() && "Unexpected split"); 251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 253 InChain, CC); 254 } 255 } 256 257 // There is now one part, held in Val. Correct it to match ValueVT. 258 // PartEVT is the type of the register class that holds the value. 259 // ValueVT is the type of the inline asm operation. 260 EVT PartEVT = Val.getValueType(); 261 262 if (PartEVT == ValueVT) 263 return Val; 264 265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 266 ValueVT.bitsLT(PartEVT)) { 267 // For an FP value in an integer part, we need to truncate to the right 268 // width first. 269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 271 } 272 273 // Handle types that have the same size. 274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 276 277 // Handle types with different sizes. 278 if (PartEVT.isInteger() && ValueVT.isInteger()) { 279 if (ValueVT.bitsLT(PartEVT)) { 280 // For a truncate, see if we have any information to 281 // indicate whether the truncated bits will always be 282 // zero or sign-extension. 283 if (AssertOp) 284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 285 DAG.getValueType(ValueVT)); 286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 287 } 288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 289 } 290 291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 292 // FP_ROUND's are always exact here. 293 if (ValueVT.bitsLT(Val.getValueType())) { 294 295 SDValue NoChange = 296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 297 298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 299 llvm::Attribute::StrictFP)) { 300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 302 NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 306 } 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 312 // then truncating. 313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 314 ValueVT.bitsLT(PartEVT)) { 315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 319 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 320 } 321 322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 323 const Twine &ErrMsg) { 324 const Instruction *I = dyn_cast_or_null<Instruction>(V); 325 if (!V) 326 return Ctx.emitError(ErrMsg); 327 328 const char *AsmError = ", possible invalid constraint for vector type"; 329 if (const CallInst *CI = dyn_cast<CallInst>(I)) 330 if (CI->isInlineAsm()) 331 return Ctx.emitError(I, ErrMsg + AsmError); 332 333 return Ctx.emitError(I, ErrMsg); 334 } 335 336 /// getCopyFromPartsVector - Create a value that contains the specified legal 337 /// parts combined into the value they represent. If the parts combine to a 338 /// type larger than ValueVT then AssertOp can be used to specify whether the 339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 340 /// ValueVT (ISD::AssertSext). 341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 342 const SDValue *Parts, unsigned NumParts, 343 MVT PartVT, EVT ValueVT, const Value *V, 344 SDValue InChain, 345 std::optional<CallingConv::ID> CallConv) { 346 assert(ValueVT.isVector() && "Not a vector value"); 347 assert(NumParts > 0 && "No parts to assemble!"); 348 const bool IsABIRegCopy = CallConv.has_value(); 349 350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 351 SDValue Val = Parts[0]; 352 353 // Handle a multi-element vector. 354 if (NumParts > 1) { 355 EVT IntermediateVT; 356 MVT RegisterVT; 357 unsigned NumIntermediates; 358 unsigned NumRegs; 359 360 if (IsABIRegCopy) { 361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } else { 365 NumRegs = 366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } 369 370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 371 NumParts = NumRegs; // Silence a compiler warning. 372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 373 assert(RegisterVT.getSizeInBits() == 374 Parts[0].getSimpleValueType().getSizeInBits() && 375 "Part type sizes don't match!"); 376 377 // Assemble the parts into intermediate operands. 378 SmallVector<SDValue, 8> Ops(NumIntermediates); 379 if (NumIntermediates == NumParts) { 380 // If the register was not expanded, truncate or copy the value, 381 // as appropriate. 382 for (unsigned i = 0; i != NumParts; ++i) 383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 384 V, InChain, CallConv); 385 } else if (NumParts > 0) { 386 // If the intermediate type was expanded, build the intermediate 387 // operands from the parts. 388 assert(NumParts % NumIntermediates == 0 && 389 "Must expand into a divisible number of parts!"); 390 unsigned Factor = NumParts / NumIntermediates; 391 for (unsigned i = 0; i != NumIntermediates; ++i) 392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 393 IntermediateVT, V, InChain, CallConv); 394 } 395 396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 397 // intermediate operands. 398 EVT BuiltVectorTy = 399 IntermediateVT.isVector() 400 ? EVT::getVectorVT( 401 *DAG.getContext(), IntermediateVT.getScalarType(), 402 IntermediateVT.getVectorElementCount() * NumParts) 403 : EVT::getVectorVT(*DAG.getContext(), 404 IntermediateVT.getScalarType(), 405 NumIntermediates); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // Vector/Vector bitcast. 419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // If the parts vector has more elements than the value vector, then we 423 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 424 // Extract the elements we want. 425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 426 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 427 ValueVT.getVectorElementCount().getKnownMinValue()) && 428 (PartEVT.getVectorElementCount().isScalable() == 429 ValueVT.getVectorElementCount().isScalable()) && 430 "Cannot narrow, it would be a lossy transformation"); 431 PartEVT = 432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 433 ValueVT.getVectorElementCount()); 434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 435 DAG.getVectorIdxConstant(0, DL)); 436 if (PartEVT == ValueVT) 437 return Val; 438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } 445 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 } 449 450 // Trivial bitcast if the types are the same size and the destination 451 // vector type is legal. 452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 453 TLI.isTypeLegal(ValueVT)) 454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 455 456 if (ValueVT.getVectorNumElements() != 1) { 457 // Certain ABIs require that vectors are passed as integers. For vectors 458 // are the same size, this is an obvious bitcast. 459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 } else if (ValueVT.bitsLT(PartEVT)) { 462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 464 // Drop the extra bits. 465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 466 return DAG.getBitcast(ValueVT, Val); 467 } 468 469 diagnosePossiblyInvalidConstraint( 470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 471 return DAG.getUNDEF(ValueVT); 472 } 473 474 // Handle cases such as i8 -> <1 x i1> 475 EVT ValueSVT = ValueVT.getVectorElementType(); 476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 477 unsigned ValueSize = ValueSVT.getSizeInBits(); 478 if (ValueSize == PartEVT.getSizeInBits()) { 479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 481 // It's possible a scalar floating point type gets softened to integer and 482 // then promoted to a larger integer. If PartEVT is the larger integer 483 // we need to truncate it and then bitcast to the FP type. 484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 487 Val = DAG.getBitcast(ValueSVT, Val); 488 } else { 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 } 494 495 return DAG.getBuildVector(ValueVT, DL, Val); 496 } 497 498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V, 501 std::optional<CallingConv::ID> CallConv); 502 503 /// getCopyToParts - Create a series of nodes that contain the specified value 504 /// split into legal parts. If the parts contain more bits than Val, then, for 505 /// integers, ExtendKind can be used to specify how to generate the extra bits. 506 static void 507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 508 unsigned NumParts, MVT PartVT, const Value *V, 509 std::optional<CallingConv::ID> CallConv = std::nullopt, 510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 511 // Let the target split the parts if it wants to 512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 514 CallConv)) 515 return; 516 EVT ValueVT = Val.getValueType(); 517 518 // Handle the vector case separately. 519 if (ValueVT.isVector()) 520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 521 CallConv); 522 523 unsigned OrigNumParts = NumParts; 524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 525 "Copying to an illegal type!"); 526 527 if (NumParts == 0) 528 return; 529 530 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 531 EVT PartEVT = PartVT; 532 if (PartEVT == ValueVT) { 533 assert(NumParts == 1 && "No-op copy with multiple parts!"); 534 Parts[0] = Val; 535 return; 536 } 537 538 unsigned PartBits = PartVT.getSizeInBits(); 539 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 540 // If the parts cover more bits than the value has, promote the value. 541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 542 assert(NumParts == 1 && "Do not know what to promote to!"); 543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 544 } else { 545 if (ValueVT.isFloatingPoint()) { 546 // FP values need to be bitcast, then extended if they are being put 547 // into a larger container. 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 550 } 551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 552 ValueVT.isInteger() && 553 "Unknown mismatch!"); 554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 556 if (PartVT == MVT::x86mmx) 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 } else if (PartBits == ValueVT.getSizeInBits()) { 560 // Different types of the same size. 561 assert(NumParts == 1 && PartEVT != ValueVT); 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 564 // If the parts cover less bits than value has, truncate the value. 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 574 // The value may have changed - recompute ValueVT. 575 ValueVT = Val.getValueType(); 576 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 577 "Failed to tile the value with PartVT!"); 578 579 if (NumParts == 1) { 580 if (PartEVT != ValueVT) { 581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 582 "scalar-to-vector conversion failed"); 583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 584 } 585 586 Parts[0] = Val; 587 return; 588 } 589 590 // Expand the value into multiple parts. 591 if (NumParts & (NumParts - 1)) { 592 // The number of parts is not a power of 2. Split off and copy the tail. 593 assert(PartVT.isInteger() && ValueVT.isInteger() && 594 "Do not know what to expand to!"); 595 unsigned RoundParts = llvm::bit_floor(NumParts); 596 unsigned RoundBits = RoundParts * PartBits; 597 unsigned OddParts = NumParts - RoundParts; 598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 600 601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 602 CallConv); 603 604 if (DAG.getDataLayout().isBigEndian()) 605 // The odd parts were reversed by getCopyToParts - unreverse them. 606 std::reverse(Parts + RoundParts, Parts + NumParts); 607 608 NumParts = RoundParts; 609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 611 } 612 613 // The number of parts is a power of 2. Repeatedly bisect the value using 614 // EXTRACT_ELEMENT. 615 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 616 EVT::getIntegerVT(*DAG.getContext(), 617 ValueVT.getSizeInBits()), 618 Val); 619 620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 621 for (unsigned i = 0; i < NumParts; i += StepSize) { 622 unsigned ThisBits = StepSize * PartBits / 2; 623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 624 SDValue &Part0 = Parts[i]; 625 SDValue &Part1 = Parts[i+StepSize/2]; 626 627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 631 632 if (ThisBits == PartBits && ThisVT != PartVT) { 633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 635 } 636 } 637 } 638 639 if (DAG.getDataLayout().isBigEndian()) 640 std::reverse(Parts, Parts + OrigNumParts); 641 } 642 643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 644 const SDLoc &DL, EVT PartVT) { 645 if (!PartVT.isVector()) 646 return SDValue(); 647 648 EVT ValueVT = Val.getValueType(); 649 EVT PartEVT = PartVT.getVectorElementType(); 650 EVT ValueEVT = ValueVT.getVectorElementType(); 651 ElementCount PartNumElts = PartVT.getVectorElementCount(); 652 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 653 654 // We only support widening vectors with equivalent element types and 655 // fixed/scalable properties. If a target needs to widen a fixed-length type 656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 658 PartNumElts.isScalable() != ValueNumElts.isScalable()) 659 return SDValue(); 660 661 // Have a try for bf16 because some targets share its ABI with fp16. 662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 664 "Cannot widen to illegal type"); 665 Val = DAG.getNode(ISD::BITCAST, DL, 666 ValueVT.changeVectorElementType(MVT::f16), Val); 667 } else if (PartEVT != ValueEVT) { 668 return SDValue(); 669 } 670 671 // Widening a scalable vector to another scalable vector is done by inserting 672 // the vector into a larger undef one. 673 if (PartNumElts.isScalable()) 674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 675 Val, DAG.getVectorIdxConstant(0, DL)); 676 677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 678 // undef elements. 679 SmallVector<SDValue, 16> Ops; 680 DAG.ExtractVectorElements(Val, Ops); 681 SDValue EltUndef = DAG.getUNDEF(PartEVT); 682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 683 684 // FIXME: Use CONCAT for 2x -> 4x. 685 return DAG.getBuildVector(PartVT, DL, Ops); 686 } 687 688 /// getCopyToPartsVector - Create a series of nodes that contain the specified 689 /// value split into legal parts. 690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 691 SDValue Val, SDValue *Parts, unsigned NumParts, 692 MVT PartVT, const Value *V, 693 std::optional<CallingConv::ID> CallConv) { 694 EVT ValueVT = Val.getValueType(); 695 assert(ValueVT.isVector() && "Not a vector"); 696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 697 const bool IsABIRegCopy = CallConv.has_value(); 698 699 if (NumParts == 1) { 700 EVT PartEVT = PartVT; 701 if (PartEVT == ValueVT) { 702 // Nothing to do. 703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 704 // Bitconvert vector->vector case. 705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 707 Val = Widened; 708 } else if (PartVT.isVector() && 709 PartEVT.getVectorElementType().bitsGE( 710 ValueVT.getVectorElementType()) && 711 PartEVT.getVectorElementCount() == 712 ValueVT.getVectorElementCount()) { 713 714 // Promoted vector extract 715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 716 } else if (PartEVT.isVector() && 717 PartEVT.getVectorElementType() != 718 ValueVT.getVectorElementType() && 719 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 720 TargetLowering::TypeWidenVector) { 721 // Combination of widening and promotion. 722 EVT WidenVT = 723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 724 PartVT.getVectorElementCount()); 725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 727 } else { 728 // Don't extract an integer from a float vector. This can happen if the 729 // FP type gets softened to integer and then promoted. The promotion 730 // prevents it from being picked up by the earlier bitcast case. 731 if (ValueVT.getVectorElementCount().isScalar() && 732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 733 // If we reach this condition and PartVT is FP, this means that 734 // ValueVT is also FP and both have a different size, otherwise we 735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 736 // would be invalid since that would mean the smaller FP type has to 737 // be extended to the larger one. 738 if (PartVT.isFloatingPoint()) { 739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 741 } else 742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 743 DAG.getVectorIdxConstant(0, DL)); 744 } else { 745 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 746 assert(PartVT.getFixedSizeInBits() > ValueSize && 747 "lossy conversion of vector to scalar type"); 748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 749 Val = DAG.getBitcast(IntermediateType, Val); 750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 751 } 752 } 753 754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 755 Parts[0] = Val; 756 return; 757 } 758 759 // Handle a multi-element vector. 760 EVT IntermediateVT; 761 MVT RegisterVT; 762 unsigned NumIntermediates; 763 unsigned NumRegs; 764 if (IsABIRegCopy) { 765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 767 RegisterVT); 768 } else { 769 NumRegs = 770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 771 NumIntermediates, RegisterVT); 772 } 773 774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 775 NumParts = NumRegs; // Silence a compiler warning. 776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 777 778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 779 "Mixing scalable and fixed vectors when copying in parts"); 780 781 std::optional<ElementCount> DestEltCnt; 782 783 if (IntermediateVT.isVector()) 784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 785 else 786 DestEltCnt = ElementCount::getFixed(NumIntermediates); 787 788 EVT BuiltVectorTy = EVT::getVectorVT( 789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 790 791 if (ValueVT == BuiltVectorTy) { 792 // Nothing to do. 793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 794 // Bitconvert vector->vector case. 795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 796 } else { 797 if (BuiltVectorTy.getVectorElementType().bitsGT( 798 ValueVT.getVectorElementType())) { 799 // Integer promotion. 800 ValueVT = EVT::getVectorVT(*DAG.getContext(), 801 BuiltVectorTy.getVectorElementType(), 802 ValueVT.getVectorElementCount()); 803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 804 } 805 806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 807 Val = Widened; 808 } 809 } 810 811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 812 813 // Split the vector into intermediate operands. 814 SmallVector<SDValue, 8> Ops(NumIntermediates); 815 for (unsigned i = 0; i != NumIntermediates; ++i) { 816 if (IntermediateVT.isVector()) { 817 // This does something sensible for scalable vectors - see the 818 // definition of EXTRACT_SUBVECTOR for further details. 819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 820 Ops[i] = 821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 823 } else { 824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 825 DAG.getVectorIdxConstant(i, DL)); 826 } 827 } 828 829 // Split the intermediate operands into legal parts. 830 if (NumParts == NumIntermediates) { 831 // If the register was not expanded, promote or copy the value, 832 // as appropriate. 833 for (unsigned i = 0; i != NumParts; ++i) 834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 835 } else if (NumParts > 0) { 836 // If the intermediate type was expanded, split each the value into 837 // legal parts. 838 assert(NumIntermediates != 0 && "division by zero"); 839 assert(NumParts % NumIntermediates == 0 && 840 "Must expand into a divisible number of parts!"); 841 unsigned Factor = NumParts / NumIntermediates; 842 for (unsigned i = 0; i != NumIntermediates; ++i) 843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 844 CallConv); 845 } 846 } 847 848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 849 EVT valuevt, std::optional<CallingConv::ID> CC) 850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 851 RegCount(1, regs.size()), CallConv(CC) {} 852 853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 854 const DataLayout &DL, unsigned Reg, Type *Ty, 855 std::optional<CallingConv::ID> CC) { 856 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 857 858 CallConv = CC; 859 860 for (EVT ValueVT : ValueVTs) { 861 unsigned NumRegs = 862 isABIMangled() 863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 864 : TLI.getNumRegisters(Context, ValueVT); 865 MVT RegisterVT = 866 isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 868 : TLI.getRegisterType(Context, ValueVT); 869 for (unsigned i = 0; i != NumRegs; ++i) 870 Regs.push_back(Reg + i); 871 RegVTs.push_back(RegisterVT); 872 RegCount.push_back(NumRegs); 873 Reg += NumRegs; 874 } 875 } 876 877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 878 FunctionLoweringInfo &FuncInfo, 879 const SDLoc &dl, SDValue &Chain, 880 SDValue *Glue, const Value *V) const { 881 // A Value with type {} or [0 x %t] needs no registers. 882 if (ValueVTs.empty()) 883 return SDValue(); 884 885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 886 887 // Assemble the legal parts into the final values. 888 SmallVector<SDValue, 4> Values(ValueVTs.size()); 889 SmallVector<SDValue, 8> Parts; 890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 891 // Copy the legal parts from the registers. 892 EVT ValueVT = ValueVTs[Value]; 893 unsigned NumRegs = RegCount[Value]; 894 MVT RegisterVT = isABIMangled() 895 ? TLI.getRegisterTypeForCallingConv( 896 *DAG.getContext(), *CallConv, RegVTs[Value]) 897 : RegVTs[Value]; 898 899 Parts.resize(NumRegs); 900 for (unsigned i = 0; i != NumRegs; ++i) { 901 SDValue P; 902 if (!Glue) { 903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 904 } else { 905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 906 *Glue = P.getValue(2); 907 } 908 909 Chain = P.getValue(1); 910 Parts[i] = P; 911 912 // If the source register was virtual and if we know something about it, 913 // add an assert node. 914 if (!Register::isVirtualRegister(Regs[Part + i]) || 915 !RegisterVT.isInteger()) 916 continue; 917 918 const FunctionLoweringInfo::LiveOutInfo *LOI = 919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 920 if (!LOI) 921 continue; 922 923 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 924 unsigned NumSignBits = LOI->NumSignBits; 925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 926 927 if (NumZeroBits == RegSize) { 928 // The current value is a zero. 929 // Explicitly express that as it would be easier for 930 // optimizations to kick in. 931 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 932 continue; 933 } 934 935 // FIXME: We capture more information than the dag can represent. For 936 // now, just use the tightest assertzext/assertsext possible. 937 bool isSExt; 938 EVT FromVT(MVT::Other); 939 if (NumZeroBits) { 940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 941 isSExt = false; 942 } else if (NumSignBits > 1) { 943 FromVT = 944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 945 isSExt = true; 946 } else { 947 continue; 948 } 949 // Add an assertion node. 950 assert(FromVT != MVT::Other); 951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 952 RegisterVT, P, DAG.getValueType(FromVT)); 953 } 954 955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 956 RegisterVT, ValueVT, V, Chain, CallConv); 957 Part += NumRegs; 958 Parts.clear(); 959 } 960 961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 962 } 963 964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 965 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 966 const Value *V, 967 ISD::NodeType PreferredExtendType) const { 968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 969 ISD::NodeType ExtendKind = PreferredExtendType; 970 971 // Get the list of the values's legal parts. 972 unsigned NumRegs = Regs.size(); 973 SmallVector<SDValue, 8> Parts(NumRegs); 974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumParts = RegCount[Value]; 976 977 MVT RegisterVT = isABIMangled() 978 ? TLI.getRegisterTypeForCallingConv( 979 *DAG.getContext(), *CallConv, RegVTs[Value]) 980 : RegVTs[Value]; 981 982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 983 ExtendKind = ISD::ZERO_EXTEND; 984 985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 986 NumParts, RegisterVT, V, CallConv, ExtendKind); 987 Part += NumParts; 988 } 989 990 // Copy the parts into the registers. 991 SmallVector<SDValue, 8> Chains(NumRegs); 992 for (unsigned i = 0; i != NumRegs; ++i) { 993 SDValue Part; 994 if (!Glue) { 995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 996 } else { 997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 998 *Glue = Part.getValue(1); 999 } 1000 1001 Chains[i] = Part.getValue(0); 1002 } 1003 1004 if (NumRegs == 1 || Glue) 1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1006 // flagged to it. That is the CopyToReg nodes and the user are considered 1007 // a single scheduling unit. If we create a TokenFactor and return it as 1008 // chain, then the TokenFactor is both a predecessor (operand) of the 1009 // user as well as a successor (the TF operands are flagged to the user). 1010 // c1, f1 = CopyToReg 1011 // c2, f2 = CopyToReg 1012 // c3 = TokenFactor c1, c2 1013 // ... 1014 // = op c3, ..., f2 1015 Chain = Chains[NumRegs-1]; 1016 else 1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1018 } 1019 1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1021 unsigned MatchingIdx, const SDLoc &dl, 1022 SelectionDAG &DAG, 1023 std::vector<SDValue> &Ops) const { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 InlineAsm::Flag Flag(Code, Regs.size()); 1027 if (HasMatching) 1028 Flag.setMatchingOp(MatchingIdx); 1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1030 // Put the register class of the virtual registers in the flag word. That 1031 // way, later passes can recompute register class constraints for inline 1032 // assembly as well as normal instructions. 1033 // Don't do this for tied operands that can use the regclass information 1034 // from the def. 1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1037 Flag.setRegClass(RC->getID()); 1038 } 1039 1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1041 Ops.push_back(Res); 1042 1043 if (Code == InlineAsm::Kind::Clobber) { 1044 // Clobbers should always have a 1:1 mapping with registers, and may 1045 // reference registers that have illegal (e.g. vector) types. Hence, we 1046 // shouldn't try to apply any sort of splitting logic to them. 1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1048 "No 1:1 mapping from clobbers to regs?"); 1049 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1050 (void)SP; 1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1053 assert( 1054 (Regs[I] != SP || 1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1056 "If we clobbered the stack pointer, MFI should know about it."); 1057 } 1058 return; 1059 } 1060 1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1062 MVT RegisterVT = RegVTs[Value]; 1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1064 RegisterVT); 1065 for (unsigned i = 0; i != NumRegs; ++i) { 1066 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1067 unsigned TheReg = Regs[Reg++]; 1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1069 } 1070 } 1071 } 1072 1073 SmallVector<std::pair<unsigned, TypeSize>, 4> 1074 RegsForValue::getRegsAndSizes() const { 1075 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1076 unsigned I = 0; 1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1078 unsigned RegCount = std::get<0>(CountAndVT); 1079 MVT RegisterVT = std::get<1>(CountAndVT); 1080 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1081 for (unsigned E = I + RegCount; I != E; ++I) 1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1083 } 1084 return OutVec; 1085 } 1086 1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1088 AssumptionCache *ac, 1089 const TargetLibraryInfo *li) { 1090 AA = aa; 1091 AC = ac; 1092 GFI = gfi; 1093 LibInfo = li; 1094 Context = DAG.getContext(); 1095 LPadToCallSiteMap.clear(); 1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1098 *DAG.getMachineFunction().getFunction().getParent()); 1099 } 1100 1101 void SelectionDAGBuilder::clear() { 1102 NodeMap.clear(); 1103 UnusedArgNodeMap.clear(); 1104 PendingLoads.clear(); 1105 PendingExports.clear(); 1106 PendingConstrainedFP.clear(); 1107 PendingConstrainedFPStrict.clear(); 1108 CurInst = nullptr; 1109 HasTailCall = false; 1110 SDNodeOrder = LowestSDNodeOrder; 1111 StatepointLowering.clear(); 1112 } 1113 1114 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1115 DanglingDebugInfoMap.clear(); 1116 } 1117 1118 // Update DAG root to include dependencies on Pending chains. 1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1120 SDValue Root = DAG.getRoot(); 1121 1122 if (Pending.empty()) 1123 return Root; 1124 1125 // Add current root to PendingChains, unless we already indirectly 1126 // depend on it. 1127 if (Root.getOpcode() != ISD::EntryToken) { 1128 unsigned i = 0, e = Pending.size(); 1129 for (; i != e; ++i) { 1130 assert(Pending[i].getNode()->getNumOperands() > 1); 1131 if (Pending[i].getNode()->getOperand(0) == Root) 1132 break; // Don't add the root if we already indirectly depend on it. 1133 } 1134 1135 if (i == e) 1136 Pending.push_back(Root); 1137 } 1138 1139 if (Pending.size() == 1) 1140 Root = Pending[0]; 1141 else 1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1143 1144 DAG.setRoot(Root); 1145 Pending.clear(); 1146 return Root; 1147 } 1148 1149 SDValue SelectionDAGBuilder::getMemoryRoot() { 1150 return updateRoot(PendingLoads); 1151 } 1152 1153 SDValue SelectionDAGBuilder::getRoot() { 1154 // Chain up all pending constrained intrinsics together with all 1155 // pending loads, by simply appending them to PendingLoads and 1156 // then calling getMemoryRoot(). 1157 PendingLoads.reserve(PendingLoads.size() + 1158 PendingConstrainedFP.size() + 1159 PendingConstrainedFPStrict.size()); 1160 PendingLoads.append(PendingConstrainedFP.begin(), 1161 PendingConstrainedFP.end()); 1162 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1163 PendingConstrainedFPStrict.end()); 1164 PendingConstrainedFP.clear(); 1165 PendingConstrainedFPStrict.clear(); 1166 return getMemoryRoot(); 1167 } 1168 1169 SDValue SelectionDAGBuilder::getControlRoot() { 1170 // We need to emit pending fpexcept.strict constrained intrinsics, 1171 // so append them to the PendingExports list. 1172 PendingExports.append(PendingConstrainedFPStrict.begin(), 1173 PendingConstrainedFPStrict.end()); 1174 PendingConstrainedFPStrict.clear(); 1175 return updateRoot(PendingExports); 1176 } 1177 1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1179 DILocalVariable *Variable, 1180 DIExpression *Expression, 1181 DebugLoc DL) { 1182 assert(Variable && "Missing variable"); 1183 1184 // Check if address has undef value. 1185 if (!Address || isa<UndefValue>(Address) || 1186 (Address->use_empty() && !isa<Argument>(Address))) { 1187 LLVM_DEBUG( 1188 dbgs() 1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1190 return; 1191 } 1192 1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1194 1195 SDValue &N = NodeMap[Address]; 1196 if (!N.getNode() && isa<Argument>(Address)) 1197 // Check unused arguments map. 1198 N = UnusedArgNodeMap[Address]; 1199 SDDbgValue *SDV; 1200 if (N.getNode()) { 1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1202 Address = BCI->getOperand(0); 1203 // Parameters are handled specially. 1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1205 if (IsParameter && FINode) { 1206 // Byval parameter. We have a frame index at this point. 1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1208 /*IsIndirect*/ true, DL, SDNodeOrder); 1209 } else if (isa<Argument>(Address)) { 1210 // Address is an argument, so try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N); 1214 return; 1215 } else { 1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1217 true, DL, SDNodeOrder); 1218 } 1219 DAG.AddDbgValue(SDV, IsParameter); 1220 } else { 1221 // If Address is an argument then try to emit its dbg value using 1222 // virtual register info from the FuncInfo.ValueMap. 1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1224 FuncArgumentDbgValueKind::Declare, N)) { 1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1226 << " (could not emit func-arg dbg_value)\n"); 1227 } 1228 } 1229 return; 1230 } 1231 1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1233 // Add SDDbgValue nodes for any var locs here. Do so before updating 1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1236 // Add SDDbgValue nodes for any var locs here. Do so before updating 1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1239 It != End; ++It) { 1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1241 dropDanglingDebugInfo(Var, It->Expr); 1242 if (It->Values.isKillLocation(It->Expr)) { 1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1244 continue; 1245 } 1246 SmallVector<Value *> Values(It->Values.location_ops()); 1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1248 It->Values.hasArgList())) { 1249 SmallVector<Value *, 4> Vals; 1250 for (Value *V : It->Values.location_ops()) 1251 Vals.push_back(V); 1252 addDanglingDebugInfo(Vals, 1253 FnVarLocs->getDILocalVariable(It->VariableID), 1254 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1255 } 1256 } 1257 } 1258 1259 // We must skip DbgVariableRecords if they've already been processed above as 1260 // we have just emitted the debug values resulting from assignment tracking 1261 // analysis, making any existing DbgVariableRecords redundant (and probably 1262 // less correct). We still need to process DbgLabelRecords. This does sink 1263 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1264 // be important as it does so deterministcally and ordering between 1265 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1266 // printing). 1267 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1268 // Is there is any debug-info attached to this instruction, in the form of 1269 // DbgRecord non-instruction debug-info records. 1270 for (DbgRecord &DR : I.getDbgRecordRange()) { 1271 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1272 assert(DLR->getLabel() && "Missing label"); 1273 SDDbgLabel *SDV = 1274 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1275 DAG.AddDbgLabel(SDV); 1276 continue; 1277 } 1278 1279 if (SkipDbgVariableRecords) 1280 continue; 1281 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1282 DILocalVariable *Variable = DVR.getVariable(); 1283 DIExpression *Expression = DVR.getExpression(); 1284 dropDanglingDebugInfo(Variable, Expression); 1285 1286 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1287 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1288 continue; 1289 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1290 << "\n"); 1291 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1292 DVR.getDebugLoc()); 1293 continue; 1294 } 1295 1296 // A DbgVariableRecord with no locations is a kill location. 1297 SmallVector<Value *, 4> Values(DVR.location_ops()); 1298 if (Values.empty()) { 1299 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1300 SDNodeOrder); 1301 continue; 1302 } 1303 1304 // A DbgVariableRecord with an undef or absent location is also a kill 1305 // location. 1306 if (llvm::any_of(Values, 1307 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1308 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1309 SDNodeOrder); 1310 continue; 1311 } 1312 1313 bool IsVariadic = DVR.hasArgList(); 1314 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1315 SDNodeOrder, IsVariadic)) { 1316 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1317 DVR.getDebugLoc(), SDNodeOrder); 1318 } 1319 } 1320 } 1321 1322 void SelectionDAGBuilder::visit(const Instruction &I) { 1323 visitDbgInfo(I); 1324 1325 // Set up outgoing PHI node register values before emitting the terminator. 1326 if (I.isTerminator()) { 1327 HandlePHINodesInSuccessorBlocks(I.getParent()); 1328 } 1329 1330 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1331 if (!isa<DbgInfoIntrinsic>(I)) 1332 ++SDNodeOrder; 1333 1334 CurInst = &I; 1335 1336 // Set inserted listener only if required. 1337 bool NodeInserted = false; 1338 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1339 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1340 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1341 if (PCSectionsMD || MMRA) { 1342 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1343 DAG, [&](SDNode *) { NodeInserted = true; }); 1344 } 1345 1346 visit(I.getOpcode(), I); 1347 1348 if (!I.isTerminator() && !HasTailCall && 1349 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1350 CopyToExportRegsIfNeeded(&I); 1351 1352 // Handle metadata. 1353 if (PCSectionsMD || MMRA) { 1354 auto It = NodeMap.find(&I); 1355 if (It != NodeMap.end()) { 1356 if (PCSectionsMD) 1357 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1358 if (MMRA) 1359 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1360 } else if (NodeInserted) { 1361 // This should not happen; if it does, don't let it go unnoticed so we can 1362 // fix it. Relevant visit*() function is probably missing a setValue(). 1363 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1364 << I.getModule()->getName() << "]\n"; 1365 LLVM_DEBUG(I.dump()); 1366 assert(false); 1367 } 1368 } 1369 1370 CurInst = nullptr; 1371 } 1372 1373 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1374 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1375 } 1376 1377 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1378 // Note: this doesn't use InstVisitor, because it has to work with 1379 // ConstantExpr's in addition to instructions. 1380 switch (Opcode) { 1381 default: llvm_unreachable("Unknown instruction type encountered!"); 1382 // Build the switch statement using the Instruction.def file. 1383 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1384 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1385 #include "llvm/IR/Instruction.def" 1386 } 1387 } 1388 1389 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1390 DILocalVariable *Variable, 1391 DebugLoc DL, unsigned Order, 1392 SmallVectorImpl<Value *> &Values, 1393 DIExpression *Expression) { 1394 // For variadic dbg_values we will now insert an undef. 1395 // FIXME: We can potentially recover these! 1396 SmallVector<SDDbgOperand, 2> Locs; 1397 for (const Value *V : Values) { 1398 auto *Undef = UndefValue::get(V->getType()); 1399 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1400 } 1401 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1402 /*IsIndirect=*/false, DL, Order, 1403 /*IsVariadic=*/true); 1404 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1405 return true; 1406 } 1407 1408 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1409 DILocalVariable *Var, 1410 DIExpression *Expr, 1411 bool IsVariadic, DebugLoc DL, 1412 unsigned Order) { 1413 if (IsVariadic) { 1414 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1415 return; 1416 } 1417 // TODO: Dangling debug info will eventually either be resolved or produce 1418 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1419 // between the original dbg.value location and its resolved DBG_VALUE, 1420 // which we should ideally fill with an extra Undef DBG_VALUE. 1421 assert(Values.size() == 1); 1422 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1423 } 1424 1425 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1426 const DIExpression *Expr) { 1427 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1428 DIVariable *DanglingVariable = DDI.getVariable(); 1429 DIExpression *DanglingExpr = DDI.getExpression(); 1430 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1431 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1432 << printDDI(nullptr, DDI) << "\n"); 1433 return true; 1434 } 1435 return false; 1436 }; 1437 1438 for (auto &DDIMI : DanglingDebugInfoMap) { 1439 DanglingDebugInfoVector &DDIV = DDIMI.second; 1440 1441 // If debug info is to be dropped, run it through final checks to see 1442 // whether it can be salvaged. 1443 for (auto &DDI : DDIV) 1444 if (isMatchingDbgValue(DDI)) 1445 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1446 1447 erase_if(DDIV, isMatchingDbgValue); 1448 } 1449 } 1450 1451 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1452 // generate the debug data structures now that we've seen its definition. 1453 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1454 SDValue Val) { 1455 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1456 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1457 return; 1458 1459 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1460 for (auto &DDI : DDIV) { 1461 DebugLoc DL = DDI.getDebugLoc(); 1462 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1463 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1464 DILocalVariable *Variable = DDI.getVariable(); 1465 DIExpression *Expr = DDI.getExpression(); 1466 assert(Variable->isValidLocationForIntrinsic(DL) && 1467 "Expected inlined-at fields to agree"); 1468 SDDbgValue *SDV; 1469 if (Val.getNode()) { 1470 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1471 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1472 // we couldn't resolve it directly when examining the DbgValue intrinsic 1473 // in the first place we should not be more successful here). Unless we 1474 // have some test case that prove this to be correct we should avoid 1475 // calling EmitFuncArgumentDbgValue here. 1476 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1477 FuncArgumentDbgValueKind::Value, Val)) { 1478 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1479 << printDDI(V, DDI) << "\n"); 1480 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1481 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1482 // inserted after the definition of Val when emitting the instructions 1483 // after ISel. An alternative could be to teach 1484 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1485 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1486 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1487 << ValSDNodeOrder << "\n"); 1488 SDV = getDbgValue(Val, Variable, Expr, DL, 1489 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1490 DAG.AddDbgValue(SDV, false); 1491 } else 1492 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1493 << printDDI(V, DDI) 1494 << " in EmitFuncArgumentDbgValue\n"); 1495 } else { 1496 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1497 << "\n"); 1498 auto Undef = UndefValue::get(V->getType()); 1499 auto SDV = 1500 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1501 DAG.AddDbgValue(SDV, false); 1502 } 1503 } 1504 DDIV.clear(); 1505 } 1506 1507 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1508 DanglingDebugInfo &DDI) { 1509 // TODO: For the variadic implementation, instead of only checking the fail 1510 // state of `handleDebugValue`, we need know specifically which values were 1511 // invalid, so that we attempt to salvage only those values when processing 1512 // a DIArgList. 1513 const Value *OrigV = V; 1514 DILocalVariable *Var = DDI.getVariable(); 1515 DIExpression *Expr = DDI.getExpression(); 1516 DebugLoc DL = DDI.getDebugLoc(); 1517 unsigned SDOrder = DDI.getSDNodeOrder(); 1518 1519 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1520 // that DW_OP_stack_value is desired. 1521 bool StackValue = true; 1522 1523 // Can this Value can be encoded without any further work? 1524 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1525 return; 1526 1527 // Attempt to salvage back through as many instructions as possible. Bail if 1528 // a non-instruction is seen, such as a constant expression or global 1529 // variable. FIXME: Further work could recover those too. 1530 while (isa<Instruction>(V)) { 1531 const Instruction &VAsInst = *cast<const Instruction>(V); 1532 // Temporary "0", awaiting real implementation. 1533 SmallVector<uint64_t, 16> Ops; 1534 SmallVector<Value *, 4> AdditionalValues; 1535 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1536 Expr->getNumLocationOperands(), Ops, 1537 AdditionalValues); 1538 // If we cannot salvage any further, and haven't yet found a suitable debug 1539 // expression, bail out. 1540 if (!V) 1541 break; 1542 1543 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1544 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1545 // here for variadic dbg_values, remove that condition. 1546 if (!AdditionalValues.empty()) 1547 break; 1548 1549 // New value and expr now represent this debuginfo. 1550 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1551 1552 // Some kind of simplification occurred: check whether the operand of the 1553 // salvaged debug expression can be encoded in this DAG. 1554 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1555 LLVM_DEBUG( 1556 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1557 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1558 return; 1559 } 1560 } 1561 1562 // This was the final opportunity to salvage this debug information, and it 1563 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1564 // any earlier variable location. 1565 assert(OrigV && "V shouldn't be null"); 1566 auto *Undef = UndefValue::get(OrigV->getType()); 1567 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1568 DAG.AddDbgValue(SDV, false); 1569 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1570 << printDDI(OrigV, DDI) << "\n"); 1571 } 1572 1573 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1574 DIExpression *Expr, 1575 DebugLoc DbgLoc, 1576 unsigned Order) { 1577 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1578 DIExpression *NewExpr = 1579 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1580 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1581 /*IsVariadic*/ false); 1582 } 1583 1584 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1585 DILocalVariable *Var, 1586 DIExpression *Expr, DebugLoc DbgLoc, 1587 unsigned Order, bool IsVariadic) { 1588 if (Values.empty()) 1589 return true; 1590 1591 // Filter EntryValue locations out early. 1592 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1593 return true; 1594 1595 SmallVector<SDDbgOperand> LocationOps; 1596 SmallVector<SDNode *> Dependencies; 1597 for (const Value *V : Values) { 1598 // Constant value. 1599 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1600 isa<ConstantPointerNull>(V)) { 1601 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1602 continue; 1603 } 1604 1605 // Look through IntToPtr constants. 1606 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1607 if (CE->getOpcode() == Instruction::IntToPtr) { 1608 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1609 continue; 1610 } 1611 1612 // If the Value is a frame index, we can create a FrameIndex debug value 1613 // without relying on the DAG at all. 1614 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1615 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1616 if (SI != FuncInfo.StaticAllocaMap.end()) { 1617 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1618 continue; 1619 } 1620 } 1621 1622 // Do not use getValue() in here; we don't want to generate code at 1623 // this point if it hasn't been done yet. 1624 SDValue N = NodeMap[V]; 1625 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1626 N = UnusedArgNodeMap[V]; 1627 if (N.getNode()) { 1628 // Only emit func arg dbg value for non-variadic dbg.values for now. 1629 if (!IsVariadic && 1630 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1631 FuncArgumentDbgValueKind::Value, N)) 1632 return true; 1633 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1634 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1635 // describe stack slot locations. 1636 // 1637 // Consider "int x = 0; int *px = &x;". There are two kinds of 1638 // interesting debug values here after optimization: 1639 // 1640 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1641 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1642 // 1643 // Both describe the direct values of their associated variables. 1644 Dependencies.push_back(N.getNode()); 1645 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1646 continue; 1647 } 1648 LocationOps.emplace_back( 1649 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1650 continue; 1651 } 1652 1653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1654 // Special rules apply for the first dbg.values of parameter variables in a 1655 // function. Identify them by the fact they reference Argument Values, that 1656 // they're parameters, and they are parameters of the current function. We 1657 // need to let them dangle until they get an SDNode. 1658 bool IsParamOfFunc = 1659 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1660 if (IsParamOfFunc) 1661 return false; 1662 1663 // The value is not used in this block yet (or it would have an SDNode). 1664 // We still want the value to appear for the user if possible -- if it has 1665 // an associated VReg, we can refer to that instead. 1666 auto VMI = FuncInfo.ValueMap.find(V); 1667 if (VMI != FuncInfo.ValueMap.end()) { 1668 unsigned Reg = VMI->second; 1669 // If this is a PHI node, it may be split up into several MI PHI nodes 1670 // (in FunctionLoweringInfo::set). 1671 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1672 V->getType(), std::nullopt); 1673 if (RFV.occupiesMultipleRegs()) { 1674 // FIXME: We could potentially support variadic dbg_values here. 1675 if (IsVariadic) 1676 return false; 1677 unsigned Offset = 0; 1678 unsigned BitsToDescribe = 0; 1679 if (auto VarSize = Var->getSizeInBits()) 1680 BitsToDescribe = *VarSize; 1681 if (auto Fragment = Expr->getFragmentInfo()) 1682 BitsToDescribe = Fragment->SizeInBits; 1683 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1684 // Bail out if all bits are described already. 1685 if (Offset >= BitsToDescribe) 1686 break; 1687 // TODO: handle scalable vectors. 1688 unsigned RegisterSize = RegAndSize.second; 1689 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1690 ? BitsToDescribe - Offset 1691 : RegisterSize; 1692 auto FragmentExpr = DIExpression::createFragmentExpression( 1693 Expr, Offset, FragmentSize); 1694 if (!FragmentExpr) 1695 continue; 1696 SDDbgValue *SDV = DAG.getVRegDbgValue( 1697 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1698 DAG.AddDbgValue(SDV, false); 1699 Offset += RegisterSize; 1700 } 1701 return true; 1702 } 1703 // We can use simple vreg locations for variadic dbg_values as well. 1704 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1705 continue; 1706 } 1707 // We failed to create a SDDbgOperand for V. 1708 return false; 1709 } 1710 1711 // We have created a SDDbgOperand for each Value in Values. 1712 assert(!LocationOps.empty()); 1713 SDDbgValue *SDV = 1714 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1715 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1716 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1717 return true; 1718 } 1719 1720 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1721 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1722 for (auto &Pair : DanglingDebugInfoMap) 1723 for (auto &DDI : Pair.second) 1724 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1725 clearDanglingDebugInfo(); 1726 } 1727 1728 /// getCopyFromRegs - If there was virtual register allocated for the value V 1729 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1730 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1731 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1732 SDValue Result; 1733 1734 if (It != FuncInfo.ValueMap.end()) { 1735 Register InReg = It->second; 1736 1737 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1738 DAG.getDataLayout(), InReg, Ty, 1739 std::nullopt); // This is not an ABI copy. 1740 SDValue Chain = DAG.getEntryNode(); 1741 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1742 V); 1743 resolveDanglingDebugInfo(V, Result); 1744 } 1745 1746 return Result; 1747 } 1748 1749 /// getValue - Return an SDValue for the given Value. 1750 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1751 // If we already have an SDValue for this value, use it. It's important 1752 // to do this first, so that we don't create a CopyFromReg if we already 1753 // have a regular SDValue. 1754 SDValue &N = NodeMap[V]; 1755 if (N.getNode()) return N; 1756 1757 // If there's a virtual register allocated and initialized for this 1758 // value, use it. 1759 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1760 return copyFromReg; 1761 1762 // Otherwise create a new SDValue and remember it. 1763 SDValue Val = getValueImpl(V); 1764 NodeMap[V] = Val; 1765 resolveDanglingDebugInfo(V, Val); 1766 return Val; 1767 } 1768 1769 /// getNonRegisterValue - Return an SDValue for the given Value, but 1770 /// don't look in FuncInfo.ValueMap for a virtual register. 1771 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1772 // If we already have an SDValue for this value, use it. 1773 SDValue &N = NodeMap[V]; 1774 if (N.getNode()) { 1775 if (isIntOrFPConstant(N)) { 1776 // Remove the debug location from the node as the node is about to be used 1777 // in a location which may differ from the original debug location. This 1778 // is relevant to Constant and ConstantFP nodes because they can appear 1779 // as constant expressions inside PHI nodes. 1780 N->setDebugLoc(DebugLoc()); 1781 } 1782 return N; 1783 } 1784 1785 // Otherwise create a new SDValue and remember it. 1786 SDValue Val = getValueImpl(V); 1787 NodeMap[V] = Val; 1788 resolveDanglingDebugInfo(V, Val); 1789 return Val; 1790 } 1791 1792 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1793 /// Create an SDValue for the given value. 1794 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 1797 if (const Constant *C = dyn_cast<Constant>(V)) { 1798 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1799 1800 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1801 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1802 1803 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1804 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1805 1806 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1807 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1808 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1809 getValue(CPA->getAddrDiscriminator()), 1810 getValue(CPA->getDiscriminator())); 1811 } 1812 1813 if (isa<ConstantPointerNull>(C)) { 1814 unsigned AS = V->getType()->getPointerAddressSpace(); 1815 return DAG.getConstant(0, getCurSDLoc(), 1816 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1817 } 1818 1819 if (match(C, m_VScale())) 1820 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1821 1822 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1823 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1824 1825 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1826 return DAG.getUNDEF(VT); 1827 1828 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1829 visit(CE->getOpcode(), *CE); 1830 SDValue N1 = NodeMap[V]; 1831 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1832 return N1; 1833 } 1834 1835 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1836 SmallVector<SDValue, 4> Constants; 1837 for (const Use &U : C->operands()) { 1838 SDNode *Val = getValue(U).getNode(); 1839 // If the operand is an empty aggregate, there are no values. 1840 if (!Val) continue; 1841 // Add each leaf value from the operand to the Constants list 1842 // to form a flattened list of all the values. 1843 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1844 Constants.push_back(SDValue(Val, i)); 1845 } 1846 1847 return DAG.getMergeValues(Constants, getCurSDLoc()); 1848 } 1849 1850 if (const ConstantDataSequential *CDS = 1851 dyn_cast<ConstantDataSequential>(C)) { 1852 SmallVector<SDValue, 4> Ops; 1853 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1854 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1855 // Add each leaf value from the operand to the Constants list 1856 // to form a flattened list of all the values. 1857 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1858 Ops.push_back(SDValue(Val, i)); 1859 } 1860 1861 if (isa<ArrayType>(CDS->getType())) 1862 return DAG.getMergeValues(Ops, getCurSDLoc()); 1863 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1864 } 1865 1866 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1867 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1868 "Unknown struct or array constant!"); 1869 1870 SmallVector<EVT, 4> ValueVTs; 1871 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1872 unsigned NumElts = ValueVTs.size(); 1873 if (NumElts == 0) 1874 return SDValue(); // empty struct 1875 SmallVector<SDValue, 4> Constants(NumElts); 1876 for (unsigned i = 0; i != NumElts; ++i) { 1877 EVT EltVT = ValueVTs[i]; 1878 if (isa<UndefValue>(C)) 1879 Constants[i] = DAG.getUNDEF(EltVT); 1880 else if (EltVT.isFloatingPoint()) 1881 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1882 else 1883 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1884 } 1885 1886 return DAG.getMergeValues(Constants, getCurSDLoc()); 1887 } 1888 1889 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1890 return DAG.getBlockAddress(BA, VT); 1891 1892 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1893 return getValue(Equiv->getGlobalValue()); 1894 1895 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1896 return getValue(NC->getGlobalValue()); 1897 1898 if (VT == MVT::aarch64svcount) { 1899 assert(C->isNullValue() && "Can only zero this target type!"); 1900 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1901 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1902 } 1903 1904 VectorType *VecTy = cast<VectorType>(V->getType()); 1905 1906 // Now that we know the number and type of the elements, get that number of 1907 // elements into the Ops array based on what kind of constant it is. 1908 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1909 SmallVector<SDValue, 16> Ops; 1910 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1911 for (unsigned i = 0; i != NumElements; ++i) 1912 Ops.push_back(getValue(CV->getOperand(i))); 1913 1914 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1915 } 1916 1917 if (isa<ConstantAggregateZero>(C)) { 1918 EVT EltVT = 1919 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1920 1921 SDValue Op; 1922 if (EltVT.isFloatingPoint()) 1923 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1924 else 1925 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1926 1927 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1928 } 1929 1930 llvm_unreachable("Unknown vector constant"); 1931 } 1932 1933 // If this is a static alloca, generate it as the frameindex instead of 1934 // computation. 1935 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1936 DenseMap<const AllocaInst*, int>::iterator SI = 1937 FuncInfo.StaticAllocaMap.find(AI); 1938 if (SI != FuncInfo.StaticAllocaMap.end()) 1939 return DAG.getFrameIndex( 1940 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1941 } 1942 1943 // If this is an instruction which fast-isel has deferred, select it now. 1944 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1945 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1946 1947 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1948 Inst->getType(), std::nullopt); 1949 SDValue Chain = DAG.getEntryNode(); 1950 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1951 } 1952 1953 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1954 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1955 1956 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1957 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1958 1959 llvm_unreachable("Can't get register for value!"); 1960 } 1961 1962 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1963 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1964 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1965 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1966 bool IsSEH = isAsynchronousEHPersonality(Pers); 1967 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1968 if (!IsSEH) 1969 CatchPadMBB->setIsEHScopeEntry(); 1970 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1971 if (IsMSVCCXX || IsCoreCLR) 1972 CatchPadMBB->setIsEHFuncletEntry(); 1973 } 1974 1975 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1976 // Update machine-CFG edge. 1977 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1978 FuncInfo.MBB->addSuccessor(TargetMBB); 1979 TargetMBB->setIsEHCatchretTarget(true); 1980 DAG.getMachineFunction().setHasEHCatchret(true); 1981 1982 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1983 bool IsSEH = isAsynchronousEHPersonality(Pers); 1984 if (IsSEH) { 1985 // If this is not a fall-through branch or optimizations are switched off, 1986 // emit the branch. 1987 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1988 TM.getOptLevel() == CodeGenOptLevel::None) 1989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1990 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1991 return; 1992 } 1993 1994 // Figure out the funclet membership for the catchret's successor. 1995 // This will be used by the FuncletLayout pass to determine how to order the 1996 // BB's. 1997 // A 'catchret' returns to the outer scope's color. 1998 Value *ParentPad = I.getCatchSwitchParentPad(); 1999 const BasicBlock *SuccessorColor; 2000 if (isa<ConstantTokenNone>(ParentPad)) 2001 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2002 else 2003 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2004 assert(SuccessorColor && "No parent funclet for catchret!"); 2005 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 2006 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2007 2008 // Create the terminator node. 2009 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2010 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2011 DAG.getBasicBlock(SuccessorColorMBB)); 2012 DAG.setRoot(Ret); 2013 } 2014 2015 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2016 // Don't emit any special code for the cleanuppad instruction. It just marks 2017 // the start of an EH scope/funclet. 2018 FuncInfo.MBB->setIsEHScopeEntry(); 2019 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2020 if (Pers != EHPersonality::Wasm_CXX) { 2021 FuncInfo.MBB->setIsEHFuncletEntry(); 2022 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2023 } 2024 } 2025 2026 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2027 // not match, it is OK to add only the first unwind destination catchpad to the 2028 // successors, because there will be at least one invoke instruction within the 2029 // catch scope that points to the next unwind destination, if one exists, so 2030 // CFGSort cannot mess up with BB sorting order. 2031 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2032 // call within them, and catchpads only consisting of 'catch (...)' have a 2033 // '__cxa_end_catch' call within them, both of which generate invokes in case 2034 // the next unwind destination exists, i.e., the next unwind destination is not 2035 // the caller.) 2036 // 2037 // Having at most one EH pad successor is also simpler and helps later 2038 // transformations. 2039 // 2040 // For example, 2041 // current: 2042 // invoke void @foo to ... unwind label %catch.dispatch 2043 // catch.dispatch: 2044 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2045 // catch.start: 2046 // ... 2047 // ... in this BB or some other child BB dominated by this BB there will be an 2048 // invoke that points to 'next' BB as an unwind destination 2049 // 2050 // next: ; We don't need to add this to 'current' BB's successor 2051 // ... 2052 static void findWasmUnwindDestinations( 2053 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2054 BranchProbability Prob, 2055 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2056 &UnwindDests) { 2057 while (EHPadBB) { 2058 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2059 if (isa<CleanupPadInst>(Pad)) { 2060 // Stop on cleanup pads. 2061 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2062 UnwindDests.back().first->setIsEHScopeEntry(); 2063 break; 2064 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2065 // Add the catchpad handlers to the possible destinations. We don't 2066 // continue to the unwind destination of the catchswitch for wasm. 2067 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2068 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2069 UnwindDests.back().first->setIsEHScopeEntry(); 2070 } 2071 break; 2072 } else { 2073 continue; 2074 } 2075 } 2076 } 2077 2078 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2079 /// many places it could ultimately go. In the IR, we have a single unwind 2080 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2081 /// This function skips over imaginary basic blocks that hold catchswitch 2082 /// instructions, and finds all the "real" machine 2083 /// basic block destinations. As those destinations may not be successors of 2084 /// EHPadBB, here we also calculate the edge probability to those destinations. 2085 /// The passed-in Prob is the edge probability to EHPadBB. 2086 static void findUnwindDestinations( 2087 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2088 BranchProbability Prob, 2089 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2090 &UnwindDests) { 2091 EHPersonality Personality = 2092 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2093 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2094 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2095 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2096 bool IsSEH = isAsynchronousEHPersonality(Personality); 2097 2098 if (IsWasmCXX) { 2099 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2100 assert(UnwindDests.size() <= 1 && 2101 "There should be at most one unwind destination for wasm"); 2102 return; 2103 } 2104 2105 while (EHPadBB) { 2106 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2107 BasicBlock *NewEHPadBB = nullptr; 2108 if (isa<LandingPadInst>(Pad)) { 2109 // Stop on landingpads. They are not funclets. 2110 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2111 break; 2112 } else if (isa<CleanupPadInst>(Pad)) { 2113 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2114 // personalities. 2115 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2116 UnwindDests.back().first->setIsEHScopeEntry(); 2117 UnwindDests.back().first->setIsEHFuncletEntry(); 2118 break; 2119 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2120 // Add the catchpad handlers to the possible destinations. 2121 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2122 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2123 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2124 if (IsMSVCCXX || IsCoreCLR) 2125 UnwindDests.back().first->setIsEHFuncletEntry(); 2126 if (!IsSEH) 2127 UnwindDests.back().first->setIsEHScopeEntry(); 2128 } 2129 NewEHPadBB = CatchSwitch->getUnwindDest(); 2130 } else { 2131 continue; 2132 } 2133 2134 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2135 if (BPI && NewEHPadBB) 2136 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2137 EHPadBB = NewEHPadBB; 2138 } 2139 } 2140 2141 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2142 // Update successor info. 2143 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2144 auto UnwindDest = I.getUnwindDest(); 2145 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2146 BranchProbability UnwindDestProb = 2147 (BPI && UnwindDest) 2148 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2149 : BranchProbability::getZero(); 2150 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2151 for (auto &UnwindDest : UnwindDests) { 2152 UnwindDest.first->setIsEHPad(); 2153 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2154 } 2155 FuncInfo.MBB->normalizeSuccProbs(); 2156 2157 // Create the terminator node. 2158 MachineBasicBlock *CleanupPadMBB = 2159 FuncInfo.MBBMap[I.getCleanupPad()->getParent()]; 2160 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, 2161 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB)); 2162 DAG.setRoot(Ret); 2163 } 2164 2165 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2166 report_fatal_error("visitCatchSwitch not yet implemented!"); 2167 } 2168 2169 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2171 auto &DL = DAG.getDataLayout(); 2172 SDValue Chain = getControlRoot(); 2173 SmallVector<ISD::OutputArg, 8> Outs; 2174 SmallVector<SDValue, 8> OutVals; 2175 2176 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2177 // lower 2178 // 2179 // %val = call <ty> @llvm.experimental.deoptimize() 2180 // ret <ty> %val 2181 // 2182 // differently. 2183 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2184 LowerDeoptimizingReturn(); 2185 return; 2186 } 2187 2188 if (!FuncInfo.CanLowerReturn) { 2189 unsigned DemoteReg = FuncInfo.DemoteRegister; 2190 const Function *F = I.getParent()->getParent(); 2191 2192 // Emit a store of the return value through the virtual register. 2193 // Leave Outs empty so that LowerReturn won't try to load return 2194 // registers the usual way. 2195 SmallVector<EVT, 1> PtrValueVTs; 2196 ComputeValueVTs(TLI, DL, 2197 PointerType::get(F->getContext(), 2198 DAG.getDataLayout().getAllocaAddrSpace()), 2199 PtrValueVTs); 2200 2201 SDValue RetPtr = 2202 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2203 SDValue RetOp = getValue(I.getOperand(0)); 2204 2205 SmallVector<EVT, 4> ValueVTs, MemVTs; 2206 SmallVector<uint64_t, 4> Offsets; 2207 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2208 &Offsets, 0); 2209 unsigned NumValues = ValueVTs.size(); 2210 2211 SmallVector<SDValue, 4> Chains(NumValues); 2212 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2213 for (unsigned i = 0; i != NumValues; ++i) { 2214 // An aggregate return value cannot wrap around the address space, so 2215 // offsets to its parts don't wrap either. 2216 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2217 TypeSize::getFixed(Offsets[i])); 2218 2219 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2220 if (MemVTs[i] != ValueVTs[i]) 2221 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2222 Chains[i] = DAG.getStore( 2223 Chain, getCurSDLoc(), Val, 2224 // FIXME: better loc info would be nice. 2225 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2226 commonAlignment(BaseAlign, Offsets[i])); 2227 } 2228 2229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2230 MVT::Other, Chains); 2231 } else if (I.getNumOperands() != 0) { 2232 SmallVector<EVT, 4> ValueVTs; 2233 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2234 unsigned NumValues = ValueVTs.size(); 2235 if (NumValues) { 2236 SDValue RetOp = getValue(I.getOperand(0)); 2237 2238 const Function *F = I.getParent()->getParent(); 2239 2240 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2241 I.getOperand(0)->getType(), F->getCallingConv(), 2242 /*IsVarArg*/ false, DL); 2243 2244 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2245 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2246 ExtendKind = ISD::SIGN_EXTEND; 2247 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2248 ExtendKind = ISD::ZERO_EXTEND; 2249 2250 LLVMContext &Context = F->getContext(); 2251 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2252 2253 for (unsigned j = 0; j != NumValues; ++j) { 2254 EVT VT = ValueVTs[j]; 2255 2256 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2257 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2258 2259 CallingConv::ID CC = F->getCallingConv(); 2260 2261 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2262 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2263 SmallVector<SDValue, 4> Parts(NumParts); 2264 getCopyToParts(DAG, getCurSDLoc(), 2265 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2266 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2267 2268 // 'inreg' on function refers to return value 2269 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2270 if (RetInReg) 2271 Flags.setInReg(); 2272 2273 if (I.getOperand(0)->getType()->isPointerTy()) { 2274 Flags.setPointer(); 2275 Flags.setPointerAddrSpace( 2276 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2277 } 2278 2279 if (NeedsRegBlock) { 2280 Flags.setInConsecutiveRegs(); 2281 if (j == NumValues - 1) 2282 Flags.setInConsecutiveRegsLast(); 2283 } 2284 2285 // Propagate extension type if any 2286 if (ExtendKind == ISD::SIGN_EXTEND) 2287 Flags.setSExt(); 2288 else if (ExtendKind == ISD::ZERO_EXTEND) 2289 Flags.setZExt(); 2290 2291 for (unsigned i = 0; i < NumParts; ++i) { 2292 Outs.push_back(ISD::OutputArg(Flags, 2293 Parts[i].getValueType().getSimpleVT(), 2294 VT, /*isfixed=*/true, 0, 0)); 2295 OutVals.push_back(Parts[i]); 2296 } 2297 } 2298 } 2299 } 2300 2301 // Push in swifterror virtual register as the last element of Outs. This makes 2302 // sure swifterror virtual register will be returned in the swifterror 2303 // physical register. 2304 const Function *F = I.getParent()->getParent(); 2305 if (TLI.supportSwiftError() && 2306 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2307 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2308 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2309 Flags.setSwiftError(); 2310 Outs.push_back(ISD::OutputArg( 2311 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2312 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2313 // Create SDNode for the swifterror virtual register. 2314 OutVals.push_back( 2315 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2316 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2317 EVT(TLI.getPointerTy(DL)))); 2318 } 2319 2320 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2321 CallingConv::ID CallConv = 2322 DAG.getMachineFunction().getFunction().getCallingConv(); 2323 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2324 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2325 2326 // Verify that the target's LowerReturn behaved as expected. 2327 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2328 "LowerReturn didn't return a valid chain!"); 2329 2330 // Update the DAG with the new chain value resulting from return lowering. 2331 DAG.setRoot(Chain); 2332 } 2333 2334 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2335 /// created for it, emit nodes to copy the value into the virtual 2336 /// registers. 2337 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2338 // Skip empty types 2339 if (V->getType()->isEmptyTy()) 2340 return; 2341 2342 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2343 if (VMI != FuncInfo.ValueMap.end()) { 2344 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2345 "Unused value assigned virtual registers!"); 2346 CopyValueToVirtualRegister(V, VMI->second); 2347 } 2348 } 2349 2350 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2351 /// the current basic block, add it to ValueMap now so that we'll get a 2352 /// CopyTo/FromReg. 2353 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2354 // No need to export constants. 2355 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2356 2357 // Already exported? 2358 if (FuncInfo.isExportedInst(V)) return; 2359 2360 Register Reg = FuncInfo.InitializeRegForValue(V); 2361 CopyValueToVirtualRegister(V, Reg); 2362 } 2363 2364 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2365 const BasicBlock *FromBB) { 2366 // The operands of the setcc have to be in this block. We don't know 2367 // how to export them from some other block. 2368 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2369 // Can export from current BB. 2370 if (VI->getParent() == FromBB) 2371 return true; 2372 2373 // Is already exported, noop. 2374 return FuncInfo.isExportedInst(V); 2375 } 2376 2377 // If this is an argument, we can export it if the BB is the entry block or 2378 // if it is already exported. 2379 if (isa<Argument>(V)) { 2380 if (FromBB->isEntryBlock()) 2381 return true; 2382 2383 // Otherwise, can only export this if it is already exported. 2384 return FuncInfo.isExportedInst(V); 2385 } 2386 2387 // Otherwise, constants can always be exported. 2388 return true; 2389 } 2390 2391 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2392 BranchProbability 2393 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2394 const MachineBasicBlock *Dst) const { 2395 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2396 const BasicBlock *SrcBB = Src->getBasicBlock(); 2397 const BasicBlock *DstBB = Dst->getBasicBlock(); 2398 if (!BPI) { 2399 // If BPI is not available, set the default probability as 1 / N, where N is 2400 // the number of successors. 2401 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2402 return BranchProbability(1, SuccSize); 2403 } 2404 return BPI->getEdgeProbability(SrcBB, DstBB); 2405 } 2406 2407 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2408 MachineBasicBlock *Dst, 2409 BranchProbability Prob) { 2410 if (!FuncInfo.BPI) 2411 Src->addSuccessorWithoutProb(Dst); 2412 else { 2413 if (Prob.isUnknown()) 2414 Prob = getEdgeProbability(Src, Dst); 2415 Src->addSuccessor(Dst, Prob); 2416 } 2417 } 2418 2419 static bool InBlock(const Value *V, const BasicBlock *BB) { 2420 if (const Instruction *I = dyn_cast<Instruction>(V)) 2421 return I->getParent() == BB; 2422 return true; 2423 } 2424 2425 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2426 /// This function emits a branch and is used at the leaves of an OR or an 2427 /// AND operator tree. 2428 void 2429 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2430 MachineBasicBlock *TBB, 2431 MachineBasicBlock *FBB, 2432 MachineBasicBlock *CurBB, 2433 MachineBasicBlock *SwitchBB, 2434 BranchProbability TProb, 2435 BranchProbability FProb, 2436 bool InvertCond) { 2437 const BasicBlock *BB = CurBB->getBasicBlock(); 2438 2439 // If the leaf of the tree is a comparison, merge the condition into 2440 // the caseblock. 2441 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2442 // The operands of the cmp have to be in this block. We don't know 2443 // how to export them from some other block. If this is the first block 2444 // of the sequence, no exporting is needed. 2445 if (CurBB == SwitchBB || 2446 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2447 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2448 ISD::CondCode Condition; 2449 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2450 ICmpInst::Predicate Pred = 2451 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2452 Condition = getICmpCondCode(Pred); 2453 } else { 2454 const FCmpInst *FC = cast<FCmpInst>(Cond); 2455 FCmpInst::Predicate Pred = 2456 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2457 Condition = getFCmpCondCode(Pred); 2458 if (TM.Options.NoNaNsFPMath) 2459 Condition = getFCmpCodeWithoutNaN(Condition); 2460 } 2461 2462 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2463 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2464 SL->SwitchCases.push_back(CB); 2465 return; 2466 } 2467 } 2468 2469 // Create a CaseBlock record representing this branch. 2470 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2471 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2472 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2473 SL->SwitchCases.push_back(CB); 2474 } 2475 2476 // Collect dependencies on V recursively. This is used for the cost analysis in 2477 // `shouldKeepJumpConditionsTogether`. 2478 static bool collectInstructionDeps( 2479 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2480 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2481 unsigned Depth = 0) { 2482 // Return false if we have an incomplete count. 2483 if (Depth >= SelectionDAG::MaxRecursionDepth) 2484 return false; 2485 2486 auto *I = dyn_cast<Instruction>(V); 2487 if (I == nullptr) 2488 return true; 2489 2490 if (Necessary != nullptr) { 2491 // This instruction is necessary for the other side of the condition so 2492 // don't count it. 2493 if (Necessary->contains(I)) 2494 return true; 2495 } 2496 2497 // Already added this dep. 2498 if (!Deps->try_emplace(I, false).second) 2499 return true; 2500 2501 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2502 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2503 Depth + 1)) 2504 return false; 2505 return true; 2506 } 2507 2508 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2509 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2510 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2511 TargetLoweringBase::CondMergingParams Params) const { 2512 if (I.getNumSuccessors() != 2) 2513 return false; 2514 2515 if (!I.isConditional()) 2516 return false; 2517 2518 if (Params.BaseCost < 0) 2519 return false; 2520 2521 // Baseline cost. 2522 InstructionCost CostThresh = Params.BaseCost; 2523 2524 BranchProbabilityInfo *BPI = nullptr; 2525 if (Params.LikelyBias || Params.UnlikelyBias) 2526 BPI = FuncInfo.BPI; 2527 if (BPI != nullptr) { 2528 // See if we are either likely to get an early out or compute both lhs/rhs 2529 // of the condition. 2530 BasicBlock *IfFalse = I.getSuccessor(0); 2531 BasicBlock *IfTrue = I.getSuccessor(1); 2532 2533 std::optional<bool> Likely; 2534 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2535 Likely = true; 2536 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2537 Likely = false; 2538 2539 if (Likely) { 2540 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2541 // Its likely we will have to compute both lhs and rhs of condition 2542 CostThresh += Params.LikelyBias; 2543 else { 2544 if (Params.UnlikelyBias < 0) 2545 return false; 2546 // Its likely we will get an early out. 2547 CostThresh -= Params.UnlikelyBias; 2548 } 2549 } 2550 } 2551 2552 if (CostThresh <= 0) 2553 return false; 2554 2555 // Collect "all" instructions that lhs condition is dependent on. 2556 // Use map for stable iteration (to avoid non-determanism of iteration of 2557 // SmallPtrSet). The `bool` value is just a dummy. 2558 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2559 collectInstructionDeps(&LhsDeps, Lhs); 2560 // Collect "all" instructions that rhs condition is dependent on AND are 2561 // dependencies of lhs. This gives us an estimate on which instructions we 2562 // stand to save by splitting the condition. 2563 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2564 return false; 2565 // Add the compare instruction itself unless its a dependency on the LHS. 2566 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2567 if (!LhsDeps.contains(RhsI)) 2568 RhsDeps.try_emplace(RhsI, false); 2569 2570 const auto &TLI = DAG.getTargetLoweringInfo(); 2571 const auto &TTI = 2572 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2573 2574 InstructionCost CostOfIncluding = 0; 2575 // See if this instruction will need to computed independently of whether RHS 2576 // is. 2577 Value *BrCond = I.getCondition(); 2578 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2579 for (const auto *U : Ins->users()) { 2580 // If user is independent of RHS calculation we don't need to count it. 2581 if (auto *UIns = dyn_cast<Instruction>(U)) 2582 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2583 return false; 2584 } 2585 return true; 2586 }; 2587 2588 // Prune instructions from RHS Deps that are dependencies of unrelated 2589 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2590 // arbitrary and just meant to cap the how much time we spend in the pruning 2591 // loop. Its highly unlikely to come into affect. 2592 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2593 // Stop after a certain point. No incorrectness from including too many 2594 // instructions. 2595 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2596 const Instruction *ToDrop = nullptr; 2597 for (const auto &InsPair : RhsDeps) { 2598 if (!ShouldCountInsn(InsPair.first)) { 2599 ToDrop = InsPair.first; 2600 break; 2601 } 2602 } 2603 if (ToDrop == nullptr) 2604 break; 2605 RhsDeps.erase(ToDrop); 2606 } 2607 2608 for (const auto &InsPair : RhsDeps) { 2609 // Finally accumulate latency that we can only attribute to computing the 2610 // RHS condition. Use latency because we are essentially trying to calculate 2611 // the cost of the dependency chain. 2612 // Possible TODO: We could try to estimate ILP and make this more precise. 2613 CostOfIncluding += 2614 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2615 2616 if (CostOfIncluding > CostThresh) 2617 return false; 2618 } 2619 return true; 2620 } 2621 2622 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2623 MachineBasicBlock *TBB, 2624 MachineBasicBlock *FBB, 2625 MachineBasicBlock *CurBB, 2626 MachineBasicBlock *SwitchBB, 2627 Instruction::BinaryOps Opc, 2628 BranchProbability TProb, 2629 BranchProbability FProb, 2630 bool InvertCond) { 2631 // Skip over not part of the tree and remember to invert op and operands at 2632 // next level. 2633 Value *NotCond; 2634 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2635 InBlock(NotCond, CurBB->getBasicBlock())) { 2636 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2637 !InvertCond); 2638 return; 2639 } 2640 2641 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2642 const Value *BOpOp0, *BOpOp1; 2643 // Compute the effective opcode for Cond, taking into account whether it needs 2644 // to be inverted, e.g. 2645 // and (not (or A, B)), C 2646 // gets lowered as 2647 // and (and (not A, not B), C) 2648 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2649 if (BOp) { 2650 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2651 ? Instruction::And 2652 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2653 ? Instruction::Or 2654 : (Instruction::BinaryOps)0); 2655 if (InvertCond) { 2656 if (BOpc == Instruction::And) 2657 BOpc = Instruction::Or; 2658 else if (BOpc == Instruction::Or) 2659 BOpc = Instruction::And; 2660 } 2661 } 2662 2663 // If this node is not part of the or/and tree, emit it as a branch. 2664 // Note that all nodes in the tree should have same opcode. 2665 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2666 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2667 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2668 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2669 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2670 TProb, FProb, InvertCond); 2671 return; 2672 } 2673 2674 // Create TmpBB after CurBB. 2675 MachineFunction::iterator BBI(CurBB); 2676 MachineFunction &MF = DAG.getMachineFunction(); 2677 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2678 CurBB->getParent()->insert(++BBI, TmpBB); 2679 2680 if (Opc == Instruction::Or) { 2681 // Codegen X | Y as: 2682 // BB1: 2683 // jmp_if_X TBB 2684 // jmp TmpBB 2685 // TmpBB: 2686 // jmp_if_Y TBB 2687 // jmp FBB 2688 // 2689 2690 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2691 // The requirement is that 2692 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2693 // = TrueProb for original BB. 2694 // Assuming the original probabilities are A and B, one choice is to set 2695 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2696 // A/(1+B) and 2B/(1+B). This choice assumes that 2697 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2698 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2699 // TmpBB, but the math is more complicated. 2700 2701 auto NewTrueProb = TProb / 2; 2702 auto NewFalseProb = TProb / 2 + FProb; 2703 // Emit the LHS condition. 2704 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2705 NewFalseProb, InvertCond); 2706 2707 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2708 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2709 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2710 // Emit the RHS condition into TmpBB. 2711 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2712 Probs[1], InvertCond); 2713 } else { 2714 assert(Opc == Instruction::And && "Unknown merge op!"); 2715 // Codegen X & Y as: 2716 // BB1: 2717 // jmp_if_X TmpBB 2718 // jmp FBB 2719 // TmpBB: 2720 // jmp_if_Y TBB 2721 // jmp FBB 2722 // 2723 // This requires creation of TmpBB after CurBB. 2724 2725 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2726 // The requirement is that 2727 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2728 // = FalseProb for original BB. 2729 // Assuming the original probabilities are A and B, one choice is to set 2730 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2731 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2732 // TrueProb for BB1 * FalseProb for TmpBB. 2733 2734 auto NewTrueProb = TProb + FProb / 2; 2735 auto NewFalseProb = FProb / 2; 2736 // Emit the LHS condition. 2737 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2738 NewFalseProb, InvertCond); 2739 2740 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2741 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2742 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2743 // Emit the RHS condition into TmpBB. 2744 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2745 Probs[1], InvertCond); 2746 } 2747 } 2748 2749 /// If the set of cases should be emitted as a series of branches, return true. 2750 /// If we should emit this as a bunch of and/or'd together conditions, return 2751 /// false. 2752 bool 2753 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2754 if (Cases.size() != 2) return true; 2755 2756 // If this is two comparisons of the same values or'd or and'd together, they 2757 // will get folded into a single comparison, so don't emit two blocks. 2758 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2759 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2760 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2761 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2762 return false; 2763 } 2764 2765 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2766 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2767 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2768 Cases[0].CC == Cases[1].CC && 2769 isa<Constant>(Cases[0].CmpRHS) && 2770 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2771 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2772 return false; 2773 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2774 return false; 2775 } 2776 2777 return true; 2778 } 2779 2780 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2781 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2782 2783 // Update machine-CFG edges. 2784 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2785 2786 if (I.isUnconditional()) { 2787 // Update machine-CFG edges. 2788 BrMBB->addSuccessor(Succ0MBB); 2789 2790 // If this is not a fall-through branch or optimizations are switched off, 2791 // emit the branch. 2792 if (Succ0MBB != NextBlock(BrMBB) || 2793 TM.getOptLevel() == CodeGenOptLevel::None) { 2794 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2795 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2796 setValue(&I, Br); 2797 DAG.setRoot(Br); 2798 } 2799 2800 return; 2801 } 2802 2803 // If this condition is one of the special cases we handle, do special stuff 2804 // now. 2805 const Value *CondVal = I.getCondition(); 2806 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2807 2808 // If this is a series of conditions that are or'd or and'd together, emit 2809 // this as a sequence of branches instead of setcc's with and/or operations. 2810 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2811 // unpredictable branches, and vector extracts because those jumps are likely 2812 // expensive for any target), this should improve performance. 2813 // For example, instead of something like: 2814 // cmp A, B 2815 // C = seteq 2816 // cmp D, E 2817 // F = setle 2818 // or C, F 2819 // jnz foo 2820 // Emit: 2821 // cmp A, B 2822 // je foo 2823 // cmp D, E 2824 // jle foo 2825 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2826 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2827 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2828 Value *Vec; 2829 const Value *BOp0, *BOp1; 2830 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2831 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2832 Opcode = Instruction::And; 2833 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2834 Opcode = Instruction::Or; 2835 2836 if (Opcode && 2837 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2838 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2839 !shouldKeepJumpConditionsTogether( 2840 FuncInfo, I, Opcode, BOp0, BOp1, 2841 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2842 Opcode, BOp0, BOp1))) { 2843 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2844 getEdgeProbability(BrMBB, Succ0MBB), 2845 getEdgeProbability(BrMBB, Succ1MBB), 2846 /*InvertCond=*/false); 2847 // If the compares in later blocks need to use values not currently 2848 // exported from this block, export them now. This block should always 2849 // be the first entry. 2850 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2851 2852 // Allow some cases to be rejected. 2853 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2854 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2855 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2856 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2857 } 2858 2859 // Emit the branch for this block. 2860 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2861 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2862 return; 2863 } 2864 2865 // Okay, we decided not to do this, remove any inserted MBB's and clear 2866 // SwitchCases. 2867 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2868 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2869 2870 SL->SwitchCases.clear(); 2871 } 2872 } 2873 2874 // Create a CaseBlock record representing this branch. 2875 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2876 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2877 2878 // Use visitSwitchCase to actually insert the fast branch sequence for this 2879 // cond branch. 2880 visitSwitchCase(CB, BrMBB); 2881 } 2882 2883 /// visitSwitchCase - Emits the necessary code to represent a single node in 2884 /// the binary search tree resulting from lowering a switch instruction. 2885 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2886 MachineBasicBlock *SwitchBB) { 2887 SDValue Cond; 2888 SDValue CondLHS = getValue(CB.CmpLHS); 2889 SDLoc dl = CB.DL; 2890 2891 if (CB.CC == ISD::SETTRUE) { 2892 // Branch or fall through to TrueBB. 2893 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2894 SwitchBB->normalizeSuccProbs(); 2895 if (CB.TrueBB != NextBlock(SwitchBB)) { 2896 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2897 DAG.getBasicBlock(CB.TrueBB))); 2898 } 2899 return; 2900 } 2901 2902 auto &TLI = DAG.getTargetLoweringInfo(); 2903 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2904 2905 // Build the setcc now. 2906 if (!CB.CmpMHS) { 2907 // Fold "(X == true)" to X and "(X == false)" to !X to 2908 // handle common cases produced by branch lowering. 2909 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2910 CB.CC == ISD::SETEQ) 2911 Cond = CondLHS; 2912 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2913 CB.CC == ISD::SETEQ) { 2914 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2915 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2916 } else { 2917 SDValue CondRHS = getValue(CB.CmpRHS); 2918 2919 // If a pointer's DAG type is larger than its memory type then the DAG 2920 // values are zero-extended. This breaks signed comparisons so truncate 2921 // back to the underlying type before doing the compare. 2922 if (CondLHS.getValueType() != MemVT) { 2923 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2924 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2925 } 2926 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2927 } 2928 } else { 2929 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2930 2931 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2932 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2933 2934 SDValue CmpOp = getValue(CB.CmpMHS); 2935 EVT VT = CmpOp.getValueType(); 2936 2937 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2938 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2939 ISD::SETLE); 2940 } else { 2941 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2942 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2943 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2944 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2945 } 2946 } 2947 2948 // Update successor info 2949 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2950 // TrueBB and FalseBB are always different unless the incoming IR is 2951 // degenerate. This only happens when running llc on weird IR. 2952 if (CB.TrueBB != CB.FalseBB) 2953 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2954 SwitchBB->normalizeSuccProbs(); 2955 2956 // If the lhs block is the next block, invert the condition so that we can 2957 // fall through to the lhs instead of the rhs block. 2958 if (CB.TrueBB == NextBlock(SwitchBB)) { 2959 std::swap(CB.TrueBB, CB.FalseBB); 2960 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2961 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2962 } 2963 2964 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2965 MVT::Other, getControlRoot(), Cond, 2966 DAG.getBasicBlock(CB.TrueBB)); 2967 2968 setValue(CurInst, BrCond); 2969 2970 // Insert the false branch. Do this even if it's a fall through branch, 2971 // this makes it easier to do DAG optimizations which require inverting 2972 // the branch condition. 2973 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2974 DAG.getBasicBlock(CB.FalseBB)); 2975 2976 DAG.setRoot(BrCond); 2977 } 2978 2979 /// visitJumpTable - Emit JumpTable node in the current MBB 2980 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2981 // Emit the code for the jump table 2982 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2983 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2984 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2985 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2986 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2987 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2988 Index.getValue(1), Table, Index); 2989 DAG.setRoot(BrJumpTable); 2990 } 2991 2992 /// visitJumpTableHeader - This function emits necessary code to produce index 2993 /// in the JumpTable from switch case. 2994 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2995 JumpTableHeader &JTH, 2996 MachineBasicBlock *SwitchBB) { 2997 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2998 const SDLoc &dl = *JT.SL; 2999 3000 // Subtract the lowest switch case value from the value being switched on. 3001 SDValue SwitchOp = getValue(JTH.SValue); 3002 EVT VT = SwitchOp.getValueType(); 3003 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3004 DAG.getConstant(JTH.First, dl, VT)); 3005 3006 // The SDNode we just created, which holds the value being switched on minus 3007 // the smallest case value, needs to be copied to a virtual register so it 3008 // can be used as an index into the jump table in a subsequent basic block. 3009 // This value may be smaller or larger than the target's pointer type, and 3010 // therefore require extension or truncating. 3011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3012 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 3013 3014 unsigned JumpTableReg = 3015 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 3016 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 3017 JumpTableReg, SwitchOp); 3018 JT.Reg = JumpTableReg; 3019 3020 if (!JTH.FallthroughUnreachable) { 3021 // Emit the range check for the jump table, and branch to the default block 3022 // for the switch statement if the value being switched on exceeds the 3023 // largest case in the switch. 3024 SDValue CMP = DAG.getSetCC( 3025 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3026 Sub.getValueType()), 3027 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3028 3029 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3030 MVT::Other, CopyTo, CMP, 3031 DAG.getBasicBlock(JT.Default)); 3032 3033 // Avoid emitting unnecessary branches to the next block. 3034 if (JT.MBB != NextBlock(SwitchBB)) 3035 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3036 DAG.getBasicBlock(JT.MBB)); 3037 3038 DAG.setRoot(BrCond); 3039 } else { 3040 // Avoid emitting unnecessary branches to the next block. 3041 if (JT.MBB != NextBlock(SwitchBB)) 3042 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3043 DAG.getBasicBlock(JT.MBB))); 3044 else 3045 DAG.setRoot(CopyTo); 3046 } 3047 } 3048 3049 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3050 /// variable if there exists one. 3051 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3052 SDValue &Chain) { 3053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3054 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3055 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3056 MachineFunction &MF = DAG.getMachineFunction(); 3057 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3058 MachineSDNode *Node = 3059 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3060 if (Global) { 3061 MachinePointerInfo MPInfo(Global); 3062 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3063 MachineMemOperand::MODereferenceable; 3064 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3065 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3066 DAG.getEVTAlign(PtrTy)); 3067 DAG.setNodeMemRefs(Node, {MemRef}); 3068 } 3069 if (PtrTy != PtrMemTy) 3070 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3071 return SDValue(Node, 0); 3072 } 3073 3074 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3075 /// tail spliced into a stack protector check success bb. 3076 /// 3077 /// For a high level explanation of how this fits into the stack protector 3078 /// generation see the comment on the declaration of class 3079 /// StackProtectorDescriptor. 3080 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3081 MachineBasicBlock *ParentBB) { 3082 3083 // First create the loads to the guard/stack slot for the comparison. 3084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3085 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3086 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3087 3088 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3089 int FI = MFI.getStackProtectorIndex(); 3090 3091 SDValue Guard; 3092 SDLoc dl = getCurSDLoc(); 3093 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3094 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3095 Align Align = 3096 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3097 3098 // Generate code to load the content of the guard slot. 3099 SDValue GuardVal = DAG.getLoad( 3100 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3101 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3102 MachineMemOperand::MOVolatile); 3103 3104 if (TLI.useStackGuardXorFP()) 3105 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3106 3107 // Retrieve guard check function, nullptr if instrumentation is inlined. 3108 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3109 // The target provides a guard check function to validate the guard value. 3110 // Generate a call to that function with the content of the guard slot as 3111 // argument. 3112 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3113 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3114 3115 TargetLowering::ArgListTy Args; 3116 TargetLowering::ArgListEntry Entry; 3117 Entry.Node = GuardVal; 3118 Entry.Ty = FnTy->getParamType(0); 3119 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3120 Entry.IsInReg = true; 3121 Args.push_back(Entry); 3122 3123 TargetLowering::CallLoweringInfo CLI(DAG); 3124 CLI.setDebugLoc(getCurSDLoc()) 3125 .setChain(DAG.getEntryNode()) 3126 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3127 getValue(GuardCheckFn), std::move(Args)); 3128 3129 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3130 DAG.setRoot(Result.second); 3131 return; 3132 } 3133 3134 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3135 // Otherwise, emit a volatile load to retrieve the stack guard value. 3136 SDValue Chain = DAG.getEntryNode(); 3137 if (TLI.useLoadStackGuardNode()) { 3138 Guard = getLoadStackGuard(DAG, dl, Chain); 3139 } else { 3140 const Value *IRGuard = TLI.getSDagStackGuard(M); 3141 SDValue GuardPtr = getValue(IRGuard); 3142 3143 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3144 MachinePointerInfo(IRGuard, 0), Align, 3145 MachineMemOperand::MOVolatile); 3146 } 3147 3148 // Perform the comparison via a getsetcc. 3149 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3150 *DAG.getContext(), 3151 Guard.getValueType()), 3152 Guard, GuardVal, ISD::SETNE); 3153 3154 // If the guard/stackslot do not equal, branch to failure MBB. 3155 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3156 MVT::Other, GuardVal.getOperand(0), 3157 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3158 // Otherwise branch to success MBB. 3159 SDValue Br = DAG.getNode(ISD::BR, dl, 3160 MVT::Other, BrCond, 3161 DAG.getBasicBlock(SPD.getSuccessMBB())); 3162 3163 DAG.setRoot(Br); 3164 } 3165 3166 /// Codegen the failure basic block for a stack protector check. 3167 /// 3168 /// A failure stack protector machine basic block consists simply of a call to 3169 /// __stack_chk_fail(). 3170 /// 3171 /// For a high level explanation of how this fits into the stack protector 3172 /// generation see the comment on the declaration of class 3173 /// StackProtectorDescriptor. 3174 void 3175 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3177 TargetLowering::MakeLibCallOptions CallOptions; 3178 CallOptions.setDiscardResult(true); 3179 SDValue Chain = 3180 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3181 std::nullopt, CallOptions, getCurSDLoc()) 3182 .second; 3183 // On PS4/PS5, the "return address" must still be within the calling 3184 // function, even if it's at the very end, so emit an explicit TRAP here. 3185 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3186 if (TM.getTargetTriple().isPS()) 3187 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3188 // WebAssembly needs an unreachable instruction after a non-returning call, 3189 // because the function return type can be different from __stack_chk_fail's 3190 // return type (void). 3191 if (TM.getTargetTriple().isWasm()) 3192 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3193 3194 DAG.setRoot(Chain); 3195 } 3196 3197 /// visitBitTestHeader - This function emits necessary code to produce value 3198 /// suitable for "bit tests" 3199 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3200 MachineBasicBlock *SwitchBB) { 3201 SDLoc dl = getCurSDLoc(); 3202 3203 // Subtract the minimum value. 3204 SDValue SwitchOp = getValue(B.SValue); 3205 EVT VT = SwitchOp.getValueType(); 3206 SDValue RangeSub = 3207 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3208 3209 // Determine the type of the test operands. 3210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3211 bool UsePtrType = false; 3212 if (!TLI.isTypeLegal(VT)) { 3213 UsePtrType = true; 3214 } else { 3215 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3216 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3217 // Switch table case range are encoded into series of masks. 3218 // Just use pointer type, it's guaranteed to fit. 3219 UsePtrType = true; 3220 break; 3221 } 3222 } 3223 SDValue Sub = RangeSub; 3224 if (UsePtrType) { 3225 VT = TLI.getPointerTy(DAG.getDataLayout()); 3226 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3227 } 3228 3229 B.RegVT = VT.getSimpleVT(); 3230 B.Reg = FuncInfo.CreateReg(B.RegVT); 3231 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3232 3233 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3234 3235 if (!B.FallthroughUnreachable) 3236 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3237 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3238 SwitchBB->normalizeSuccProbs(); 3239 3240 SDValue Root = CopyTo; 3241 if (!B.FallthroughUnreachable) { 3242 // Conditional branch to the default block. 3243 SDValue RangeCmp = DAG.getSetCC(dl, 3244 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3245 RangeSub.getValueType()), 3246 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3247 ISD::SETUGT); 3248 3249 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3250 DAG.getBasicBlock(B.Default)); 3251 } 3252 3253 // Avoid emitting unnecessary branches to the next block. 3254 if (MBB != NextBlock(SwitchBB)) 3255 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3256 3257 DAG.setRoot(Root); 3258 } 3259 3260 /// visitBitTestCase - this function produces one "bit test" 3261 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3262 MachineBasicBlock* NextMBB, 3263 BranchProbability BranchProbToNext, 3264 unsigned Reg, 3265 BitTestCase &B, 3266 MachineBasicBlock *SwitchBB) { 3267 SDLoc dl = getCurSDLoc(); 3268 MVT VT = BB.RegVT; 3269 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3270 SDValue Cmp; 3271 unsigned PopCount = llvm::popcount(B.Mask); 3272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3273 if (PopCount == 1) { 3274 // Testing for a single bit; just compare the shift count with what it 3275 // would need to be to shift a 1 bit in that position. 3276 Cmp = DAG.getSetCC( 3277 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3278 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3279 ISD::SETEQ); 3280 } else if (PopCount == BB.Range) { 3281 // There is only one zero bit in the range, test for it directly. 3282 Cmp = DAG.getSetCC( 3283 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3284 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3285 } else { 3286 // Make desired shift 3287 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3288 DAG.getConstant(1, dl, VT), ShiftOp); 3289 3290 // Emit bit tests and jumps 3291 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3292 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3293 Cmp = DAG.getSetCC( 3294 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3295 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3296 } 3297 3298 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3299 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3300 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3301 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3302 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3303 // one as they are relative probabilities (and thus work more like weights), 3304 // and hence we need to normalize them to let the sum of them become one. 3305 SwitchBB->normalizeSuccProbs(); 3306 3307 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3308 MVT::Other, getControlRoot(), 3309 Cmp, DAG.getBasicBlock(B.TargetBB)); 3310 3311 // Avoid emitting unnecessary branches to the next block. 3312 if (NextMBB != NextBlock(SwitchBB)) 3313 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3314 DAG.getBasicBlock(NextMBB)); 3315 3316 DAG.setRoot(BrAnd); 3317 } 3318 3319 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3320 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3321 3322 // Retrieve successors. Look through artificial IR level blocks like 3323 // catchswitch for successors. 3324 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3325 const BasicBlock *EHPadBB = I.getSuccessor(1); 3326 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3327 3328 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3329 // have to do anything here to lower funclet bundles. 3330 assert(!I.hasOperandBundlesOtherThan( 3331 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3332 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3333 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3334 LLVMContext::OB_clang_arc_attachedcall}) && 3335 "Cannot lower invokes with arbitrary operand bundles yet!"); 3336 3337 const Value *Callee(I.getCalledOperand()); 3338 const Function *Fn = dyn_cast<Function>(Callee); 3339 if (isa<InlineAsm>(Callee)) 3340 visitInlineAsm(I, EHPadBB); 3341 else if (Fn && Fn->isIntrinsic()) { 3342 switch (Fn->getIntrinsicID()) { 3343 default: 3344 llvm_unreachable("Cannot invoke this intrinsic"); 3345 case Intrinsic::donothing: 3346 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3347 case Intrinsic::seh_try_begin: 3348 case Intrinsic::seh_scope_begin: 3349 case Intrinsic::seh_try_end: 3350 case Intrinsic::seh_scope_end: 3351 if (EHPadMBB) 3352 // a block referenced by EH table 3353 // so dtor-funclet not removed by opts 3354 EHPadMBB->setMachineBlockAddressTaken(); 3355 break; 3356 case Intrinsic::experimental_patchpoint_void: 3357 case Intrinsic::experimental_patchpoint: 3358 visitPatchpoint(I, EHPadBB); 3359 break; 3360 case Intrinsic::experimental_gc_statepoint: 3361 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3362 break; 3363 case Intrinsic::wasm_rethrow: { 3364 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3365 // special because it can be invoked, so we manually lower it to a DAG 3366 // node here. 3367 SmallVector<SDValue, 8> Ops; 3368 Ops.push_back(getControlRoot()); // inchain for the terminator node 3369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3370 Ops.push_back( 3371 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3372 TLI.getPointerTy(DAG.getDataLayout()))); 3373 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3374 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3375 break; 3376 } 3377 } 3378 } else if (I.hasDeoptState()) { 3379 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3380 // Eventually we will support lowering the @llvm.experimental.deoptimize 3381 // intrinsic, and right now there are no plans to support other intrinsics 3382 // with deopt state. 3383 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3384 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3385 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3386 } else { 3387 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3388 } 3389 3390 // If the value of the invoke is used outside of its defining block, make it 3391 // available as a virtual register. 3392 // We already took care of the exported value for the statepoint instruction 3393 // during call to the LowerStatepoint. 3394 if (!isa<GCStatepointInst>(I)) { 3395 CopyToExportRegsIfNeeded(&I); 3396 } 3397 3398 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3399 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3400 BranchProbability EHPadBBProb = 3401 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3402 : BranchProbability::getZero(); 3403 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3404 3405 // Update successor info. 3406 addSuccessorWithProb(InvokeMBB, Return); 3407 for (auto &UnwindDest : UnwindDests) { 3408 UnwindDest.first->setIsEHPad(); 3409 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3410 } 3411 InvokeMBB->normalizeSuccProbs(); 3412 3413 // Drop into normal successor. 3414 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3415 DAG.getBasicBlock(Return))); 3416 } 3417 3418 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3419 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3420 3421 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3422 // have to do anything here to lower funclet bundles. 3423 assert(!I.hasOperandBundlesOtherThan( 3424 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3425 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3426 3427 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3428 visitInlineAsm(I); 3429 CopyToExportRegsIfNeeded(&I); 3430 3431 // Retrieve successors. 3432 SmallPtrSet<BasicBlock *, 8> Dests; 3433 Dests.insert(I.getDefaultDest()); 3434 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3435 3436 // Update successor info. 3437 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3438 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3439 BasicBlock *Dest = I.getIndirectDest(i); 3440 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3441 Target->setIsInlineAsmBrIndirectTarget(); 3442 Target->setMachineBlockAddressTaken(); 3443 Target->setLabelMustBeEmitted(); 3444 // Don't add duplicate machine successors. 3445 if (Dests.insert(Dest).second) 3446 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3447 } 3448 CallBrMBB->normalizeSuccProbs(); 3449 3450 // Drop into default successor. 3451 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3452 MVT::Other, getControlRoot(), 3453 DAG.getBasicBlock(Return))); 3454 } 3455 3456 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3457 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3458 } 3459 3460 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3461 assert(FuncInfo.MBB->isEHPad() && 3462 "Call to landingpad not in landing pad!"); 3463 3464 // If there aren't registers to copy the values into (e.g., during SjLj 3465 // exceptions), then don't bother to create these DAG nodes. 3466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3467 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3468 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3469 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3470 return; 3471 3472 // If landingpad's return type is token type, we don't create DAG nodes 3473 // for its exception pointer and selector value. The extraction of exception 3474 // pointer or selector value from token type landingpads is not currently 3475 // supported. 3476 if (LP.getType()->isTokenTy()) 3477 return; 3478 3479 SmallVector<EVT, 2> ValueVTs; 3480 SDLoc dl = getCurSDLoc(); 3481 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3482 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3483 3484 // Get the two live-in registers as SDValues. The physregs have already been 3485 // copied into virtual registers. 3486 SDValue Ops[2]; 3487 if (FuncInfo.ExceptionPointerVirtReg) { 3488 Ops[0] = DAG.getZExtOrTrunc( 3489 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3490 FuncInfo.ExceptionPointerVirtReg, 3491 TLI.getPointerTy(DAG.getDataLayout())), 3492 dl, ValueVTs[0]); 3493 } else { 3494 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3495 } 3496 Ops[1] = DAG.getZExtOrTrunc( 3497 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3498 FuncInfo.ExceptionSelectorVirtReg, 3499 TLI.getPointerTy(DAG.getDataLayout())), 3500 dl, ValueVTs[1]); 3501 3502 // Merge into one. 3503 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3504 DAG.getVTList(ValueVTs), Ops); 3505 setValue(&LP, Res); 3506 } 3507 3508 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3509 MachineBasicBlock *Last) { 3510 // Update JTCases. 3511 for (JumpTableBlock &JTB : SL->JTCases) 3512 if (JTB.first.HeaderBB == First) 3513 JTB.first.HeaderBB = Last; 3514 3515 // Update BitTestCases. 3516 for (BitTestBlock &BTB : SL->BitTestCases) 3517 if (BTB.Parent == First) 3518 BTB.Parent = Last; 3519 } 3520 3521 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3522 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3523 3524 // Update machine-CFG edges with unique successors. 3525 SmallSet<BasicBlock*, 32> Done; 3526 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3527 BasicBlock *BB = I.getSuccessor(i); 3528 bool Inserted = Done.insert(BB).second; 3529 if (!Inserted) 3530 continue; 3531 3532 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3533 addSuccessorWithProb(IndirectBrMBB, Succ); 3534 } 3535 IndirectBrMBB->normalizeSuccProbs(); 3536 3537 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3538 MVT::Other, getControlRoot(), 3539 getValue(I.getAddress()))); 3540 } 3541 3542 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3543 if (!DAG.getTarget().Options.TrapUnreachable) 3544 return; 3545 3546 // We may be able to ignore unreachable behind a noreturn call. 3547 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3548 Call && Call->doesNotReturn()) { 3549 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3550 return; 3551 // Do not emit an additional trap instruction. 3552 if (Call->isNonContinuableTrap()) 3553 return; 3554 } 3555 3556 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3557 } 3558 3559 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3560 SDNodeFlags Flags; 3561 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3562 Flags.copyFMF(*FPOp); 3563 3564 SDValue Op = getValue(I.getOperand(0)); 3565 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3566 Op, Flags); 3567 setValue(&I, UnNodeValue); 3568 } 3569 3570 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3571 SDNodeFlags Flags; 3572 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3573 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3574 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3575 } 3576 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3577 Flags.setExact(ExactOp->isExact()); 3578 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3579 Flags.setDisjoint(DisjointOp->isDisjoint()); 3580 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3581 Flags.copyFMF(*FPOp); 3582 3583 SDValue Op1 = getValue(I.getOperand(0)); 3584 SDValue Op2 = getValue(I.getOperand(1)); 3585 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3586 Op1, Op2, Flags); 3587 setValue(&I, BinNodeValue); 3588 } 3589 3590 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3591 SDValue Op1 = getValue(I.getOperand(0)); 3592 SDValue Op2 = getValue(I.getOperand(1)); 3593 3594 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3595 Op1.getValueType(), DAG.getDataLayout()); 3596 3597 // Coerce the shift amount to the right type if we can. This exposes the 3598 // truncate or zext to optimization early. 3599 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3600 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3601 "Unexpected shift type"); 3602 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3603 } 3604 3605 bool nuw = false; 3606 bool nsw = false; 3607 bool exact = false; 3608 3609 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3610 3611 if (const OverflowingBinaryOperator *OFBinOp = 3612 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3613 nuw = OFBinOp->hasNoUnsignedWrap(); 3614 nsw = OFBinOp->hasNoSignedWrap(); 3615 } 3616 if (const PossiblyExactOperator *ExactOp = 3617 dyn_cast<const PossiblyExactOperator>(&I)) 3618 exact = ExactOp->isExact(); 3619 } 3620 SDNodeFlags Flags; 3621 Flags.setExact(exact); 3622 Flags.setNoSignedWrap(nsw); 3623 Flags.setNoUnsignedWrap(nuw); 3624 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3625 Flags); 3626 setValue(&I, Res); 3627 } 3628 3629 void SelectionDAGBuilder::visitSDiv(const User &I) { 3630 SDValue Op1 = getValue(I.getOperand(0)); 3631 SDValue Op2 = getValue(I.getOperand(1)); 3632 3633 SDNodeFlags Flags; 3634 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3635 cast<PossiblyExactOperator>(&I)->isExact()); 3636 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3637 Op2, Flags)); 3638 } 3639 3640 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3641 ICmpInst::Predicate predicate = I.getPredicate(); 3642 SDValue Op1 = getValue(I.getOperand(0)); 3643 SDValue Op2 = getValue(I.getOperand(1)); 3644 ISD::CondCode Opcode = getICmpCondCode(predicate); 3645 3646 auto &TLI = DAG.getTargetLoweringInfo(); 3647 EVT MemVT = 3648 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3649 3650 // If a pointer's DAG type is larger than its memory type then the DAG values 3651 // are zero-extended. This breaks signed comparisons so truncate back to the 3652 // underlying type before doing the compare. 3653 if (Op1.getValueType() != MemVT) { 3654 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3655 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3656 } 3657 3658 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3659 I.getType()); 3660 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3661 } 3662 3663 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3664 FCmpInst::Predicate predicate = I.getPredicate(); 3665 SDValue Op1 = getValue(I.getOperand(0)); 3666 SDValue Op2 = getValue(I.getOperand(1)); 3667 3668 ISD::CondCode Condition = getFCmpCondCode(predicate); 3669 auto *FPMO = cast<FPMathOperator>(&I); 3670 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3671 Condition = getFCmpCodeWithoutNaN(Condition); 3672 3673 SDNodeFlags Flags; 3674 Flags.copyFMF(*FPMO); 3675 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3676 3677 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3678 I.getType()); 3679 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3680 } 3681 3682 // Check if the condition of the select has one use or two users that are both 3683 // selects with the same condition. 3684 static bool hasOnlySelectUsers(const Value *Cond) { 3685 return llvm::all_of(Cond->users(), [](const Value *V) { 3686 return isa<SelectInst>(V); 3687 }); 3688 } 3689 3690 void SelectionDAGBuilder::visitSelect(const User &I) { 3691 SmallVector<EVT, 4> ValueVTs; 3692 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3693 ValueVTs); 3694 unsigned NumValues = ValueVTs.size(); 3695 if (NumValues == 0) return; 3696 3697 SmallVector<SDValue, 4> Values(NumValues); 3698 SDValue Cond = getValue(I.getOperand(0)); 3699 SDValue LHSVal = getValue(I.getOperand(1)); 3700 SDValue RHSVal = getValue(I.getOperand(2)); 3701 SmallVector<SDValue, 1> BaseOps(1, Cond); 3702 ISD::NodeType OpCode = 3703 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3704 3705 bool IsUnaryAbs = false; 3706 bool Negate = false; 3707 3708 SDNodeFlags Flags; 3709 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3710 Flags.copyFMF(*FPOp); 3711 3712 Flags.setUnpredictable( 3713 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3714 3715 // Min/max matching is only viable if all output VTs are the same. 3716 if (all_equal(ValueVTs)) { 3717 EVT VT = ValueVTs[0]; 3718 LLVMContext &Ctx = *DAG.getContext(); 3719 auto &TLI = DAG.getTargetLoweringInfo(); 3720 3721 // We care about the legality of the operation after it has been type 3722 // legalized. 3723 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3724 VT = TLI.getTypeToTransformTo(Ctx, VT); 3725 3726 // If the vselect is legal, assume we want to leave this as a vector setcc + 3727 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3728 // min/max is legal on the scalar type. 3729 bool UseScalarMinMax = VT.isVector() && 3730 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3731 3732 // ValueTracking's select pattern matching does not account for -0.0, 3733 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3734 // -0.0 is less than +0.0. 3735 Value *LHS, *RHS; 3736 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3737 ISD::NodeType Opc = ISD::DELETED_NODE; 3738 switch (SPR.Flavor) { 3739 case SPF_UMAX: Opc = ISD::UMAX; break; 3740 case SPF_UMIN: Opc = ISD::UMIN; break; 3741 case SPF_SMAX: Opc = ISD::SMAX; break; 3742 case SPF_SMIN: Opc = ISD::SMIN; break; 3743 case SPF_FMINNUM: 3744 switch (SPR.NaNBehavior) { 3745 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3746 case SPNB_RETURNS_NAN: break; 3747 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3748 case SPNB_RETURNS_ANY: 3749 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3750 (UseScalarMinMax && 3751 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3752 Opc = ISD::FMINNUM; 3753 break; 3754 } 3755 break; 3756 case SPF_FMAXNUM: 3757 switch (SPR.NaNBehavior) { 3758 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3759 case SPNB_RETURNS_NAN: break; 3760 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3761 case SPNB_RETURNS_ANY: 3762 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3763 (UseScalarMinMax && 3764 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3765 Opc = ISD::FMAXNUM; 3766 break; 3767 } 3768 break; 3769 case SPF_NABS: 3770 Negate = true; 3771 [[fallthrough]]; 3772 case SPF_ABS: 3773 IsUnaryAbs = true; 3774 Opc = ISD::ABS; 3775 break; 3776 default: break; 3777 } 3778 3779 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3780 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3781 (UseScalarMinMax && 3782 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3783 // If the underlying comparison instruction is used by any other 3784 // instruction, the consumed instructions won't be destroyed, so it is 3785 // not profitable to convert to a min/max. 3786 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3787 OpCode = Opc; 3788 LHSVal = getValue(LHS); 3789 RHSVal = getValue(RHS); 3790 BaseOps.clear(); 3791 } 3792 3793 if (IsUnaryAbs) { 3794 OpCode = Opc; 3795 LHSVal = getValue(LHS); 3796 BaseOps.clear(); 3797 } 3798 } 3799 3800 if (IsUnaryAbs) { 3801 for (unsigned i = 0; i != NumValues; ++i) { 3802 SDLoc dl = getCurSDLoc(); 3803 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3804 Values[i] = 3805 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3806 if (Negate) 3807 Values[i] = DAG.getNegative(Values[i], dl, VT); 3808 } 3809 } else { 3810 for (unsigned i = 0; i != NumValues; ++i) { 3811 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3812 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3813 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3814 Values[i] = DAG.getNode( 3815 OpCode, getCurSDLoc(), 3816 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3817 } 3818 } 3819 3820 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3821 DAG.getVTList(ValueVTs), Values)); 3822 } 3823 3824 void SelectionDAGBuilder::visitTrunc(const User &I) { 3825 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3826 SDValue N = getValue(I.getOperand(0)); 3827 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3828 I.getType()); 3829 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3830 } 3831 3832 void SelectionDAGBuilder::visitZExt(const User &I) { 3833 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3834 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3835 SDValue N = getValue(I.getOperand(0)); 3836 auto &TLI = DAG.getTargetLoweringInfo(); 3837 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3838 3839 SDNodeFlags Flags; 3840 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3841 Flags.setNonNeg(PNI->hasNonNeg()); 3842 3843 // Eagerly use nonneg information to canonicalize towards sign_extend if 3844 // that is the target's preference. 3845 // TODO: Let the target do this later. 3846 if (Flags.hasNonNeg() && 3847 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3848 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3849 return; 3850 } 3851 3852 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3853 } 3854 3855 void SelectionDAGBuilder::visitSExt(const User &I) { 3856 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3857 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3858 SDValue N = getValue(I.getOperand(0)); 3859 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3860 I.getType()); 3861 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3862 } 3863 3864 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3865 // FPTrunc is never a no-op cast, no need to check 3866 SDValue N = getValue(I.getOperand(0)); 3867 SDLoc dl = getCurSDLoc(); 3868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3869 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3870 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3871 DAG.getTargetConstant( 3872 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3873 } 3874 3875 void SelectionDAGBuilder::visitFPExt(const User &I) { 3876 // FPExt is never a no-op cast, no need to check 3877 SDValue N = getValue(I.getOperand(0)); 3878 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3879 I.getType()); 3880 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3881 } 3882 3883 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3884 // FPToUI is never a no-op cast, no need to check 3885 SDValue N = getValue(I.getOperand(0)); 3886 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3887 I.getType()); 3888 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3889 } 3890 3891 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3892 // FPToSI is never a no-op cast, no need to check 3893 SDValue N = getValue(I.getOperand(0)); 3894 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3895 I.getType()); 3896 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3897 } 3898 3899 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3900 // UIToFP is never a no-op cast, no need to check 3901 SDValue N = getValue(I.getOperand(0)); 3902 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3903 I.getType()); 3904 SDNodeFlags Flags; 3905 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3906 Flags.setNonNeg(PNI->hasNonNeg()); 3907 3908 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3909 } 3910 3911 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3912 // SIToFP is never a no-op cast, no need to check 3913 SDValue N = getValue(I.getOperand(0)); 3914 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3915 I.getType()); 3916 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3917 } 3918 3919 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3920 // What to do depends on the size of the integer and the size of the pointer. 3921 // We can either truncate, zero extend, or no-op, accordingly. 3922 SDValue N = getValue(I.getOperand(0)); 3923 auto &TLI = DAG.getTargetLoweringInfo(); 3924 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3925 I.getType()); 3926 EVT PtrMemVT = 3927 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3928 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3929 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3930 setValue(&I, N); 3931 } 3932 3933 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3934 // What to do depends on the size of the integer and the size of the pointer. 3935 // We can either truncate, zero extend, or no-op, accordingly. 3936 SDValue N = getValue(I.getOperand(0)); 3937 auto &TLI = DAG.getTargetLoweringInfo(); 3938 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3939 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3940 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3941 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3942 setValue(&I, N); 3943 } 3944 3945 void SelectionDAGBuilder::visitBitCast(const User &I) { 3946 SDValue N = getValue(I.getOperand(0)); 3947 SDLoc dl = getCurSDLoc(); 3948 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3949 I.getType()); 3950 3951 // BitCast assures us that source and destination are the same size so this is 3952 // either a BITCAST or a no-op. 3953 if (DestVT != N.getValueType()) 3954 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3955 DestVT, N)); // convert types. 3956 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3957 // might fold any kind of constant expression to an integer constant and that 3958 // is not what we are looking for. Only recognize a bitcast of a genuine 3959 // constant integer as an opaque constant. 3960 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3961 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3962 /*isOpaque*/true)); 3963 else 3964 setValue(&I, N); // noop cast. 3965 } 3966 3967 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3969 const Value *SV = I.getOperand(0); 3970 SDValue N = getValue(SV); 3971 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3972 3973 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3974 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3975 3976 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3977 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3978 3979 setValue(&I, N); 3980 } 3981 3982 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3984 SDValue InVec = getValue(I.getOperand(0)); 3985 SDValue InVal = getValue(I.getOperand(1)); 3986 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3987 TLI.getVectorIdxTy(DAG.getDataLayout())); 3988 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3989 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3990 InVec, InVal, InIdx)); 3991 } 3992 3993 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3994 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3995 SDValue InVec = getValue(I.getOperand(0)); 3996 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3997 TLI.getVectorIdxTy(DAG.getDataLayout())); 3998 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3999 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4000 InVec, InIdx)); 4001 } 4002 4003 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4004 SDValue Src1 = getValue(I.getOperand(0)); 4005 SDValue Src2 = getValue(I.getOperand(1)); 4006 ArrayRef<int> Mask; 4007 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4008 Mask = SVI->getShuffleMask(); 4009 else 4010 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4011 SDLoc DL = getCurSDLoc(); 4012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4013 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4014 EVT SrcVT = Src1.getValueType(); 4015 4016 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4017 VT.isScalableVector()) { 4018 // Canonical splat form of first element of first input vector. 4019 SDValue FirstElt = 4020 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4021 DAG.getVectorIdxConstant(0, DL)); 4022 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4023 return; 4024 } 4025 4026 // For now, we only handle splats for scalable vectors. 4027 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4028 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4029 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4030 4031 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4032 unsigned MaskNumElts = Mask.size(); 4033 4034 if (SrcNumElts == MaskNumElts) { 4035 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4036 return; 4037 } 4038 4039 // Normalize the shuffle vector since mask and vector length don't match. 4040 if (SrcNumElts < MaskNumElts) { 4041 // Mask is longer than the source vectors. We can use concatenate vector to 4042 // make the mask and vectors lengths match. 4043 4044 if (MaskNumElts % SrcNumElts == 0) { 4045 // Mask length is a multiple of the source vector length. 4046 // Check if the shuffle is some kind of concatenation of the input 4047 // vectors. 4048 unsigned NumConcat = MaskNumElts / SrcNumElts; 4049 bool IsConcat = true; 4050 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4051 for (unsigned i = 0; i != MaskNumElts; ++i) { 4052 int Idx = Mask[i]; 4053 if (Idx < 0) 4054 continue; 4055 // Ensure the indices in each SrcVT sized piece are sequential and that 4056 // the same source is used for the whole piece. 4057 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4058 (ConcatSrcs[i / SrcNumElts] >= 0 && 4059 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4060 IsConcat = false; 4061 break; 4062 } 4063 // Remember which source this index came from. 4064 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4065 } 4066 4067 // The shuffle is concatenating multiple vectors together. Just emit 4068 // a CONCAT_VECTORS operation. 4069 if (IsConcat) { 4070 SmallVector<SDValue, 8> ConcatOps; 4071 for (auto Src : ConcatSrcs) { 4072 if (Src < 0) 4073 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4074 else if (Src == 0) 4075 ConcatOps.push_back(Src1); 4076 else 4077 ConcatOps.push_back(Src2); 4078 } 4079 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4080 return; 4081 } 4082 } 4083 4084 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4085 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4086 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4087 PaddedMaskNumElts); 4088 4089 // Pad both vectors with undefs to make them the same length as the mask. 4090 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4091 4092 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4093 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4094 MOps1[0] = Src1; 4095 MOps2[0] = Src2; 4096 4097 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4098 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4099 4100 // Readjust mask for new input vector length. 4101 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4102 for (unsigned i = 0; i != MaskNumElts; ++i) { 4103 int Idx = Mask[i]; 4104 if (Idx >= (int)SrcNumElts) 4105 Idx -= SrcNumElts - PaddedMaskNumElts; 4106 MappedOps[i] = Idx; 4107 } 4108 4109 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4110 4111 // If the concatenated vector was padded, extract a subvector with the 4112 // correct number of elements. 4113 if (MaskNumElts != PaddedMaskNumElts) 4114 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4115 DAG.getVectorIdxConstant(0, DL)); 4116 4117 setValue(&I, Result); 4118 return; 4119 } 4120 4121 if (SrcNumElts > MaskNumElts) { 4122 // Analyze the access pattern of the vector to see if we can extract 4123 // two subvectors and do the shuffle. 4124 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4125 bool CanExtract = true; 4126 for (int Idx : Mask) { 4127 unsigned Input = 0; 4128 if (Idx < 0) 4129 continue; 4130 4131 if (Idx >= (int)SrcNumElts) { 4132 Input = 1; 4133 Idx -= SrcNumElts; 4134 } 4135 4136 // If all the indices come from the same MaskNumElts sized portion of 4137 // the sources we can use extract. Also make sure the extract wouldn't 4138 // extract past the end of the source. 4139 int NewStartIdx = alignDown(Idx, MaskNumElts); 4140 if (NewStartIdx + MaskNumElts > SrcNumElts || 4141 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4142 CanExtract = false; 4143 // Make sure we always update StartIdx as we use it to track if all 4144 // elements are undef. 4145 StartIdx[Input] = NewStartIdx; 4146 } 4147 4148 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4149 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4150 return; 4151 } 4152 if (CanExtract) { 4153 // Extract appropriate subvector and generate a vector shuffle 4154 for (unsigned Input = 0; Input < 2; ++Input) { 4155 SDValue &Src = Input == 0 ? Src1 : Src2; 4156 if (StartIdx[Input] < 0) 4157 Src = DAG.getUNDEF(VT); 4158 else { 4159 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4160 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4161 } 4162 } 4163 4164 // Calculate new mask. 4165 SmallVector<int, 8> MappedOps(Mask); 4166 for (int &Idx : MappedOps) { 4167 if (Idx >= (int)SrcNumElts) 4168 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4169 else if (Idx >= 0) 4170 Idx -= StartIdx[0]; 4171 } 4172 4173 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4174 return; 4175 } 4176 } 4177 4178 // We can't use either concat vectors or extract subvectors so fall back to 4179 // replacing the shuffle with extract and build vector. 4180 // to insert and build vector. 4181 EVT EltVT = VT.getVectorElementType(); 4182 SmallVector<SDValue,8> Ops; 4183 for (int Idx : Mask) { 4184 SDValue Res; 4185 4186 if (Idx < 0) { 4187 Res = DAG.getUNDEF(EltVT); 4188 } else { 4189 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4190 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4191 4192 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4193 DAG.getVectorIdxConstant(Idx, DL)); 4194 } 4195 4196 Ops.push_back(Res); 4197 } 4198 4199 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4200 } 4201 4202 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4203 ArrayRef<unsigned> Indices = I.getIndices(); 4204 const Value *Op0 = I.getOperand(0); 4205 const Value *Op1 = I.getOperand(1); 4206 Type *AggTy = I.getType(); 4207 Type *ValTy = Op1->getType(); 4208 bool IntoUndef = isa<UndefValue>(Op0); 4209 bool FromUndef = isa<UndefValue>(Op1); 4210 4211 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4212 4213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4214 SmallVector<EVT, 4> AggValueVTs; 4215 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4216 SmallVector<EVT, 4> ValValueVTs; 4217 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4218 4219 unsigned NumAggValues = AggValueVTs.size(); 4220 unsigned NumValValues = ValValueVTs.size(); 4221 SmallVector<SDValue, 4> Values(NumAggValues); 4222 4223 // Ignore an insertvalue that produces an empty object 4224 if (!NumAggValues) { 4225 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4226 return; 4227 } 4228 4229 SDValue Agg = getValue(Op0); 4230 unsigned i = 0; 4231 // Copy the beginning value(s) from the original aggregate. 4232 for (; i != LinearIndex; ++i) 4233 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4234 SDValue(Agg.getNode(), Agg.getResNo() + i); 4235 // Copy values from the inserted value(s). 4236 if (NumValValues) { 4237 SDValue Val = getValue(Op1); 4238 for (; i != LinearIndex + NumValValues; ++i) 4239 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4240 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4241 } 4242 // Copy remaining value(s) from the original aggregate. 4243 for (; i != NumAggValues; ++i) 4244 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4245 SDValue(Agg.getNode(), Agg.getResNo() + i); 4246 4247 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4248 DAG.getVTList(AggValueVTs), Values)); 4249 } 4250 4251 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4252 ArrayRef<unsigned> Indices = I.getIndices(); 4253 const Value *Op0 = I.getOperand(0); 4254 Type *AggTy = Op0->getType(); 4255 Type *ValTy = I.getType(); 4256 bool OutOfUndef = isa<UndefValue>(Op0); 4257 4258 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4259 4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4261 SmallVector<EVT, 4> ValValueVTs; 4262 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4263 4264 unsigned NumValValues = ValValueVTs.size(); 4265 4266 // Ignore a extractvalue that produces an empty object 4267 if (!NumValValues) { 4268 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4269 return; 4270 } 4271 4272 SmallVector<SDValue, 4> Values(NumValValues); 4273 4274 SDValue Agg = getValue(Op0); 4275 // Copy out the selected value(s). 4276 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4277 Values[i - LinearIndex] = 4278 OutOfUndef ? 4279 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4280 SDValue(Agg.getNode(), Agg.getResNo() + i); 4281 4282 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4283 DAG.getVTList(ValValueVTs), Values)); 4284 } 4285 4286 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4287 Value *Op0 = I.getOperand(0); 4288 // Note that the pointer operand may be a vector of pointers. Take the scalar 4289 // element which holds a pointer. 4290 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4291 SDValue N = getValue(Op0); 4292 SDLoc dl = getCurSDLoc(); 4293 auto &TLI = DAG.getTargetLoweringInfo(); 4294 4295 // Normalize Vector GEP - all scalar operands should be converted to the 4296 // splat vector. 4297 bool IsVectorGEP = I.getType()->isVectorTy(); 4298 ElementCount VectorElementCount = 4299 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4300 : ElementCount::getFixed(0); 4301 4302 if (IsVectorGEP && !N.getValueType().isVector()) { 4303 LLVMContext &Context = *DAG.getContext(); 4304 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4305 N = DAG.getSplat(VT, dl, N); 4306 } 4307 4308 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4309 GTI != E; ++GTI) { 4310 const Value *Idx = GTI.getOperand(); 4311 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4312 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4313 if (Field) { 4314 // N = N + Offset 4315 uint64_t Offset = 4316 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4317 4318 // In an inbounds GEP with an offset that is nonnegative even when 4319 // interpreted as signed, assume there is no unsigned overflow. 4320 SDNodeFlags Flags; 4321 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4322 Flags.setNoUnsignedWrap(true); 4323 4324 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4325 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4326 } 4327 } else { 4328 // IdxSize is the width of the arithmetic according to IR semantics. 4329 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4330 // (and fix up the result later). 4331 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4332 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4333 TypeSize ElementSize = 4334 GTI.getSequentialElementStride(DAG.getDataLayout()); 4335 // We intentionally mask away the high bits here; ElementSize may not 4336 // fit in IdxTy. 4337 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4338 bool ElementScalable = ElementSize.isScalable(); 4339 4340 // If this is a scalar constant or a splat vector of constants, 4341 // handle it quickly. 4342 const auto *C = dyn_cast<Constant>(Idx); 4343 if (C && isa<VectorType>(C->getType())) 4344 C = C->getSplatValue(); 4345 4346 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4347 if (CI && CI->isZero()) 4348 continue; 4349 if (CI && !ElementScalable) { 4350 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4351 LLVMContext &Context = *DAG.getContext(); 4352 SDValue OffsVal; 4353 if (IsVectorGEP) 4354 OffsVal = DAG.getConstant( 4355 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4356 else 4357 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4358 4359 // In an inbounds GEP with an offset that is nonnegative even when 4360 // interpreted as signed, assume there is no unsigned overflow. 4361 SDNodeFlags Flags; 4362 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4363 Flags.setNoUnsignedWrap(true); 4364 4365 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4366 4367 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4368 continue; 4369 } 4370 4371 // N = N + Idx * ElementMul; 4372 SDValue IdxN = getValue(Idx); 4373 4374 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4375 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4376 VectorElementCount); 4377 IdxN = DAG.getSplat(VT, dl, IdxN); 4378 } 4379 4380 // If the index is smaller or larger than intptr_t, truncate or extend 4381 // it. 4382 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4383 4384 if (ElementScalable) { 4385 EVT VScaleTy = N.getValueType().getScalarType(); 4386 SDValue VScale = DAG.getNode( 4387 ISD::VSCALE, dl, VScaleTy, 4388 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4389 if (IsVectorGEP) 4390 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4391 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4392 } else { 4393 // If this is a multiply by a power of two, turn it into a shl 4394 // immediately. This is a very common case. 4395 if (ElementMul != 1) { 4396 if (ElementMul.isPowerOf2()) { 4397 unsigned Amt = ElementMul.logBase2(); 4398 IdxN = DAG.getNode(ISD::SHL, dl, 4399 N.getValueType(), IdxN, 4400 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4401 } else { 4402 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4403 IdxN.getValueType()); 4404 IdxN = DAG.getNode(ISD::MUL, dl, 4405 N.getValueType(), IdxN, Scale); 4406 } 4407 } 4408 } 4409 4410 N = DAG.getNode(ISD::ADD, dl, 4411 N.getValueType(), N, IdxN); 4412 } 4413 } 4414 4415 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4416 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4417 if (IsVectorGEP) { 4418 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4419 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4420 } 4421 4422 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4423 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4424 4425 setValue(&I, N); 4426 } 4427 4428 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4429 // If this is a fixed sized alloca in the entry block of the function, 4430 // allocate it statically on the stack. 4431 if (FuncInfo.StaticAllocaMap.count(&I)) 4432 return; // getValue will auto-populate this. 4433 4434 SDLoc dl = getCurSDLoc(); 4435 Type *Ty = I.getAllocatedType(); 4436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4437 auto &DL = DAG.getDataLayout(); 4438 TypeSize TySize = DL.getTypeAllocSize(Ty); 4439 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4440 4441 SDValue AllocSize = getValue(I.getArraySize()); 4442 4443 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4444 if (AllocSize.getValueType() != IntPtr) 4445 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4446 4447 if (TySize.isScalable()) 4448 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4449 DAG.getVScale(dl, IntPtr, 4450 APInt(IntPtr.getScalarSizeInBits(), 4451 TySize.getKnownMinValue()))); 4452 else { 4453 SDValue TySizeValue = 4454 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4455 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4456 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4457 } 4458 4459 // Handle alignment. If the requested alignment is less than or equal to 4460 // the stack alignment, ignore it. If the size is greater than or equal to 4461 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4462 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4463 if (*Alignment <= StackAlign) 4464 Alignment = std::nullopt; 4465 4466 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4467 // Round the size of the allocation up to the stack alignment size 4468 // by add SA-1 to the size. This doesn't overflow because we're computing 4469 // an address inside an alloca. 4470 SDNodeFlags Flags; 4471 Flags.setNoUnsignedWrap(true); 4472 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4473 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4474 4475 // Mask out the low bits for alignment purposes. 4476 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4477 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4478 4479 SDValue Ops[] = { 4480 getRoot(), AllocSize, 4481 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4482 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4483 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4484 setValue(&I, DSA); 4485 DAG.setRoot(DSA.getValue(1)); 4486 4487 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4488 } 4489 4490 static const MDNode *getRangeMetadata(const Instruction &I) { 4491 // If !noundef is not present, then !range violation results in a poison 4492 // value rather than immediate undefined behavior. In theory, transferring 4493 // these annotations to SDAG is fine, but in practice there are key SDAG 4494 // transforms that are known not to be poison-safe, such as folding logical 4495 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4496 // also present. 4497 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4498 return nullptr; 4499 return I.getMetadata(LLVMContext::MD_range); 4500 } 4501 4502 static std::optional<ConstantRange> getRange(const Instruction &I) { 4503 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4504 // see comment in getRangeMetadata about this check 4505 if (CB->hasRetAttr(Attribute::NoUndef)) 4506 return CB->getRange(); 4507 } 4508 if (const MDNode *Range = getRangeMetadata(I)) 4509 return getConstantRangeFromMetadata(*Range); 4510 return std::nullopt; 4511 } 4512 4513 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4514 if (I.isAtomic()) 4515 return visitAtomicLoad(I); 4516 4517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4518 const Value *SV = I.getOperand(0); 4519 if (TLI.supportSwiftError()) { 4520 // Swifterror values can come from either a function parameter with 4521 // swifterror attribute or an alloca with swifterror attribute. 4522 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4523 if (Arg->hasSwiftErrorAttr()) 4524 return visitLoadFromSwiftError(I); 4525 } 4526 4527 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4528 if (Alloca->isSwiftError()) 4529 return visitLoadFromSwiftError(I); 4530 } 4531 } 4532 4533 SDValue Ptr = getValue(SV); 4534 4535 Type *Ty = I.getType(); 4536 SmallVector<EVT, 4> ValueVTs, MemVTs; 4537 SmallVector<TypeSize, 4> Offsets; 4538 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4539 unsigned NumValues = ValueVTs.size(); 4540 if (NumValues == 0) 4541 return; 4542 4543 Align Alignment = I.getAlign(); 4544 AAMDNodes AAInfo = I.getAAMetadata(); 4545 const MDNode *Ranges = getRangeMetadata(I); 4546 bool isVolatile = I.isVolatile(); 4547 MachineMemOperand::Flags MMOFlags = 4548 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4549 4550 SDValue Root; 4551 bool ConstantMemory = false; 4552 if (isVolatile) 4553 // Serialize volatile loads with other side effects. 4554 Root = getRoot(); 4555 else if (NumValues > MaxParallelChains) 4556 Root = getMemoryRoot(); 4557 else if (AA && 4558 AA->pointsToConstantMemory(MemoryLocation( 4559 SV, 4560 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4561 AAInfo))) { 4562 // Do not serialize (non-volatile) loads of constant memory with anything. 4563 Root = DAG.getEntryNode(); 4564 ConstantMemory = true; 4565 MMOFlags |= MachineMemOperand::MOInvariant; 4566 } else { 4567 // Do not serialize non-volatile loads against each other. 4568 Root = DAG.getRoot(); 4569 } 4570 4571 SDLoc dl = getCurSDLoc(); 4572 4573 if (isVolatile) 4574 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4575 4576 SmallVector<SDValue, 4> Values(NumValues); 4577 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4578 4579 unsigned ChainI = 0; 4580 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4581 // Serializing loads here may result in excessive register pressure, and 4582 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4583 // could recover a bit by hoisting nodes upward in the chain by recognizing 4584 // they are side-effect free or do not alias. The optimizer should really 4585 // avoid this case by converting large object/array copies to llvm.memcpy 4586 // (MaxParallelChains should always remain as failsafe). 4587 if (ChainI == MaxParallelChains) { 4588 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4589 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4590 ArrayRef(Chains.data(), ChainI)); 4591 Root = Chain; 4592 ChainI = 0; 4593 } 4594 4595 // TODO: MachinePointerInfo only supports a fixed length offset. 4596 MachinePointerInfo PtrInfo = 4597 !Offsets[i].isScalable() || Offsets[i].isZero() 4598 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4599 : MachinePointerInfo(); 4600 4601 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4602 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4603 MMOFlags, AAInfo, Ranges); 4604 Chains[ChainI] = L.getValue(1); 4605 4606 if (MemVTs[i] != ValueVTs[i]) 4607 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4608 4609 Values[i] = L; 4610 } 4611 4612 if (!ConstantMemory) { 4613 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4614 ArrayRef(Chains.data(), ChainI)); 4615 if (isVolatile) 4616 DAG.setRoot(Chain); 4617 else 4618 PendingLoads.push_back(Chain); 4619 } 4620 4621 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4622 DAG.getVTList(ValueVTs), Values)); 4623 } 4624 4625 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4626 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4627 "call visitStoreToSwiftError when backend supports swifterror"); 4628 4629 SmallVector<EVT, 4> ValueVTs; 4630 SmallVector<uint64_t, 4> Offsets; 4631 const Value *SrcV = I.getOperand(0); 4632 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4633 SrcV->getType(), ValueVTs, &Offsets, 0); 4634 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4635 "expect a single EVT for swifterror"); 4636 4637 SDValue Src = getValue(SrcV); 4638 // Create a virtual register, then update the virtual register. 4639 Register VReg = 4640 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4641 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4642 // Chain can be getRoot or getControlRoot. 4643 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4644 SDValue(Src.getNode(), Src.getResNo())); 4645 DAG.setRoot(CopyNode); 4646 } 4647 4648 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4649 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4650 "call visitLoadFromSwiftError when backend supports swifterror"); 4651 4652 assert(!I.isVolatile() && 4653 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4654 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4655 "Support volatile, non temporal, invariant for load_from_swift_error"); 4656 4657 const Value *SV = I.getOperand(0); 4658 Type *Ty = I.getType(); 4659 assert( 4660 (!AA || 4661 !AA->pointsToConstantMemory(MemoryLocation( 4662 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4663 I.getAAMetadata()))) && 4664 "load_from_swift_error should not be constant memory"); 4665 4666 SmallVector<EVT, 4> ValueVTs; 4667 SmallVector<uint64_t, 4> Offsets; 4668 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4669 ValueVTs, &Offsets, 0); 4670 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4671 "expect a single EVT for swifterror"); 4672 4673 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4674 SDValue L = DAG.getCopyFromReg( 4675 getRoot(), getCurSDLoc(), 4676 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4677 4678 setValue(&I, L); 4679 } 4680 4681 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4682 if (I.isAtomic()) 4683 return visitAtomicStore(I); 4684 4685 const Value *SrcV = I.getOperand(0); 4686 const Value *PtrV = I.getOperand(1); 4687 4688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4689 if (TLI.supportSwiftError()) { 4690 // Swifterror values can come from either a function parameter with 4691 // swifterror attribute or an alloca with swifterror attribute. 4692 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4693 if (Arg->hasSwiftErrorAttr()) 4694 return visitStoreToSwiftError(I); 4695 } 4696 4697 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4698 if (Alloca->isSwiftError()) 4699 return visitStoreToSwiftError(I); 4700 } 4701 } 4702 4703 SmallVector<EVT, 4> ValueVTs, MemVTs; 4704 SmallVector<TypeSize, 4> Offsets; 4705 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4706 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4707 unsigned NumValues = ValueVTs.size(); 4708 if (NumValues == 0) 4709 return; 4710 4711 // Get the lowered operands. Note that we do this after 4712 // checking if NumResults is zero, because with zero results 4713 // the operands won't have values in the map. 4714 SDValue Src = getValue(SrcV); 4715 SDValue Ptr = getValue(PtrV); 4716 4717 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4718 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4719 SDLoc dl = getCurSDLoc(); 4720 Align Alignment = I.getAlign(); 4721 AAMDNodes AAInfo = I.getAAMetadata(); 4722 4723 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4724 4725 unsigned ChainI = 0; 4726 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4727 // See visitLoad comments. 4728 if (ChainI == MaxParallelChains) { 4729 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4730 ArrayRef(Chains.data(), ChainI)); 4731 Root = Chain; 4732 ChainI = 0; 4733 } 4734 4735 // TODO: MachinePointerInfo only supports a fixed length offset. 4736 MachinePointerInfo PtrInfo = 4737 !Offsets[i].isScalable() || Offsets[i].isZero() 4738 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4739 : MachinePointerInfo(); 4740 4741 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4742 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4743 if (MemVTs[i] != ValueVTs[i]) 4744 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4745 SDValue St = 4746 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4747 Chains[ChainI] = St; 4748 } 4749 4750 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4751 ArrayRef(Chains.data(), ChainI)); 4752 setValue(&I, StoreNode); 4753 DAG.setRoot(StoreNode); 4754 } 4755 4756 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4757 bool IsCompressing) { 4758 SDLoc sdl = getCurSDLoc(); 4759 4760 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4761 Align &Alignment) { 4762 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4763 Src0 = I.getArgOperand(0); 4764 Ptr = I.getArgOperand(1); 4765 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4766 Mask = I.getArgOperand(3); 4767 }; 4768 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4769 Align &Alignment) { 4770 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4771 Src0 = I.getArgOperand(0); 4772 Ptr = I.getArgOperand(1); 4773 Mask = I.getArgOperand(2); 4774 Alignment = I.getParamAlign(1).valueOrOne(); 4775 }; 4776 4777 Value *PtrOperand, *MaskOperand, *Src0Operand; 4778 Align Alignment; 4779 if (IsCompressing) 4780 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4781 else 4782 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4783 4784 SDValue Ptr = getValue(PtrOperand); 4785 SDValue Src0 = getValue(Src0Operand); 4786 SDValue Mask = getValue(MaskOperand); 4787 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4788 4789 EVT VT = Src0.getValueType(); 4790 4791 auto MMOFlags = MachineMemOperand::MOStore; 4792 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4793 MMOFlags |= MachineMemOperand::MONonTemporal; 4794 4795 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4796 MachinePointerInfo(PtrOperand), MMOFlags, 4797 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4798 4799 const auto &TLI = DAG.getTargetLoweringInfo(); 4800 const auto &TTI = 4801 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4802 SDValue StoreNode = 4803 !IsCompressing && 4804 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4805 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4806 Mask) 4807 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4808 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4809 IsCompressing); 4810 DAG.setRoot(StoreNode); 4811 setValue(&I, StoreNode); 4812 } 4813 4814 // Get a uniform base for the Gather/Scatter intrinsic. 4815 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4816 // We try to represent it as a base pointer + vector of indices. 4817 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4818 // The first operand of the GEP may be a single pointer or a vector of pointers 4819 // Example: 4820 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4821 // or 4822 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4823 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4824 // 4825 // When the first GEP operand is a single pointer - it is the uniform base we 4826 // are looking for. If first operand of the GEP is a splat vector - we 4827 // extract the splat value and use it as a uniform base. 4828 // In all other cases the function returns 'false'. 4829 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4830 ISD::MemIndexType &IndexType, SDValue &Scale, 4831 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4832 uint64_t ElemSize) { 4833 SelectionDAG& DAG = SDB->DAG; 4834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4835 const DataLayout &DL = DAG.getDataLayout(); 4836 4837 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4838 4839 // Handle splat constant pointer. 4840 if (auto *C = dyn_cast<Constant>(Ptr)) { 4841 C = C->getSplatValue(); 4842 if (!C) 4843 return false; 4844 4845 Base = SDB->getValue(C); 4846 4847 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4848 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4849 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4850 IndexType = ISD::SIGNED_SCALED; 4851 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4852 return true; 4853 } 4854 4855 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4856 if (!GEP || GEP->getParent() != CurBB) 4857 return false; 4858 4859 if (GEP->getNumOperands() != 2) 4860 return false; 4861 4862 const Value *BasePtr = GEP->getPointerOperand(); 4863 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4864 4865 // Make sure the base is scalar and the index is a vector. 4866 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4867 return false; 4868 4869 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4870 if (ScaleVal.isScalable()) 4871 return false; 4872 4873 // Target may not support the required addressing mode. 4874 if (ScaleVal != 1 && 4875 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4876 return false; 4877 4878 Base = SDB->getValue(BasePtr); 4879 Index = SDB->getValue(IndexVal); 4880 IndexType = ISD::SIGNED_SCALED; 4881 4882 Scale = 4883 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4884 return true; 4885 } 4886 4887 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4888 SDLoc sdl = getCurSDLoc(); 4889 4890 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4891 const Value *Ptr = I.getArgOperand(1); 4892 SDValue Src0 = getValue(I.getArgOperand(0)); 4893 SDValue Mask = getValue(I.getArgOperand(3)); 4894 EVT VT = Src0.getValueType(); 4895 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4896 ->getMaybeAlignValue() 4897 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4899 4900 SDValue Base; 4901 SDValue Index; 4902 ISD::MemIndexType IndexType; 4903 SDValue Scale; 4904 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4905 I.getParent(), VT.getScalarStoreSize()); 4906 4907 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4908 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4909 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4910 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4911 if (!UniformBase) { 4912 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4913 Index = getValue(Ptr); 4914 IndexType = ISD::SIGNED_SCALED; 4915 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4916 } 4917 4918 EVT IdxVT = Index.getValueType(); 4919 EVT EltTy = IdxVT.getVectorElementType(); 4920 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4921 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4922 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4923 } 4924 4925 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4926 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4927 Ops, MMO, IndexType, false); 4928 DAG.setRoot(Scatter); 4929 setValue(&I, Scatter); 4930 } 4931 4932 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4933 SDLoc sdl = getCurSDLoc(); 4934 4935 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4936 Align &Alignment) { 4937 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4938 Ptr = I.getArgOperand(0); 4939 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4940 Mask = I.getArgOperand(2); 4941 Src0 = I.getArgOperand(3); 4942 }; 4943 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4944 Align &Alignment) { 4945 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4946 Ptr = I.getArgOperand(0); 4947 Alignment = I.getParamAlign(0).valueOrOne(); 4948 Mask = I.getArgOperand(1); 4949 Src0 = I.getArgOperand(2); 4950 }; 4951 4952 Value *PtrOperand, *MaskOperand, *Src0Operand; 4953 Align Alignment; 4954 if (IsExpanding) 4955 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4956 else 4957 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4958 4959 SDValue Ptr = getValue(PtrOperand); 4960 SDValue Src0 = getValue(Src0Operand); 4961 SDValue Mask = getValue(MaskOperand); 4962 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4963 4964 EVT VT = Src0.getValueType(); 4965 AAMDNodes AAInfo = I.getAAMetadata(); 4966 const MDNode *Ranges = getRangeMetadata(I); 4967 4968 // Do not serialize masked loads of constant memory with anything. 4969 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4970 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4971 4972 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4973 4974 auto MMOFlags = MachineMemOperand::MOLoad; 4975 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4976 MMOFlags |= MachineMemOperand::MONonTemporal; 4977 4978 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4979 MachinePointerInfo(PtrOperand), MMOFlags, 4980 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4981 4982 const auto &TLI = DAG.getTargetLoweringInfo(); 4983 const auto &TTI = 4984 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4985 // The Load/Res may point to different values and both of them are output 4986 // variables. 4987 SDValue Load; 4988 SDValue Res; 4989 if (!IsExpanding && 4990 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 4991 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 4992 else 4993 Res = Load = 4994 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4995 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4996 if (AddToChain) 4997 PendingLoads.push_back(Load.getValue(1)); 4998 setValue(&I, Res); 4999 } 5000 5001 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5002 SDLoc sdl = getCurSDLoc(); 5003 5004 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5005 const Value *Ptr = I.getArgOperand(0); 5006 SDValue Src0 = getValue(I.getArgOperand(3)); 5007 SDValue Mask = getValue(I.getArgOperand(2)); 5008 5009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5010 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5011 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5012 ->getMaybeAlignValue() 5013 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5014 5015 const MDNode *Ranges = getRangeMetadata(I); 5016 5017 SDValue Root = DAG.getRoot(); 5018 SDValue Base; 5019 SDValue Index; 5020 ISD::MemIndexType IndexType; 5021 SDValue Scale; 5022 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5023 I.getParent(), VT.getScalarStoreSize()); 5024 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5025 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5026 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5027 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5028 Ranges); 5029 5030 if (!UniformBase) { 5031 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5032 Index = getValue(Ptr); 5033 IndexType = ISD::SIGNED_SCALED; 5034 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5035 } 5036 5037 EVT IdxVT = Index.getValueType(); 5038 EVT EltTy = IdxVT.getVectorElementType(); 5039 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5040 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5041 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5042 } 5043 5044 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5045 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5046 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5047 5048 PendingLoads.push_back(Gather.getValue(1)); 5049 setValue(&I, Gather); 5050 } 5051 5052 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5053 SDLoc dl = getCurSDLoc(); 5054 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5055 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5056 SyncScope::ID SSID = I.getSyncScopeID(); 5057 5058 SDValue InChain = getRoot(); 5059 5060 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5061 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5062 5063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5064 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5065 5066 MachineFunction &MF = DAG.getMachineFunction(); 5067 MachineMemOperand *MMO = MF.getMachineMemOperand( 5068 MachinePointerInfo(I.getPointerOperand()), Flags, 5069 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5070 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5071 5072 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5073 dl, MemVT, VTs, InChain, 5074 getValue(I.getPointerOperand()), 5075 getValue(I.getCompareOperand()), 5076 getValue(I.getNewValOperand()), MMO); 5077 5078 SDValue OutChain = L.getValue(2); 5079 5080 setValue(&I, L); 5081 DAG.setRoot(OutChain); 5082 } 5083 5084 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5085 SDLoc dl = getCurSDLoc(); 5086 ISD::NodeType NT; 5087 switch (I.getOperation()) { 5088 default: llvm_unreachable("Unknown atomicrmw operation"); 5089 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5090 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5091 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5092 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5093 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5094 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5095 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5096 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5097 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5098 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5099 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5100 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5101 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5102 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5103 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5104 case AtomicRMWInst::UIncWrap: 5105 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5106 break; 5107 case AtomicRMWInst::UDecWrap: 5108 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5109 break; 5110 } 5111 AtomicOrdering Ordering = I.getOrdering(); 5112 SyncScope::ID SSID = I.getSyncScopeID(); 5113 5114 SDValue InChain = getRoot(); 5115 5116 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5118 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5119 5120 MachineFunction &MF = DAG.getMachineFunction(); 5121 MachineMemOperand *MMO = MF.getMachineMemOperand( 5122 MachinePointerInfo(I.getPointerOperand()), Flags, 5123 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5124 AAMDNodes(), nullptr, SSID, Ordering); 5125 5126 SDValue L = 5127 DAG.getAtomic(NT, dl, MemVT, InChain, 5128 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5129 MMO); 5130 5131 SDValue OutChain = L.getValue(1); 5132 5133 setValue(&I, L); 5134 DAG.setRoot(OutChain); 5135 } 5136 5137 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5138 SDLoc dl = getCurSDLoc(); 5139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5140 SDValue Ops[3]; 5141 Ops[0] = getRoot(); 5142 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5143 TLI.getFenceOperandTy(DAG.getDataLayout())); 5144 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5145 TLI.getFenceOperandTy(DAG.getDataLayout())); 5146 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5147 setValue(&I, N); 5148 DAG.setRoot(N); 5149 } 5150 5151 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5152 SDLoc dl = getCurSDLoc(); 5153 AtomicOrdering Order = I.getOrdering(); 5154 SyncScope::ID SSID = I.getSyncScopeID(); 5155 5156 SDValue InChain = getRoot(); 5157 5158 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5159 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5160 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5161 5162 if (!TLI.supportsUnalignedAtomics() && 5163 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5164 report_fatal_error("Cannot generate unaligned atomic load"); 5165 5166 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5167 5168 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5169 MachinePointerInfo(I.getPointerOperand()), Flags, 5170 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5171 nullptr, SSID, Order); 5172 5173 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5174 5175 SDValue Ptr = getValue(I.getPointerOperand()); 5176 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5177 Ptr, MMO); 5178 5179 SDValue OutChain = L.getValue(1); 5180 if (MemVT != VT) 5181 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5182 5183 setValue(&I, L); 5184 DAG.setRoot(OutChain); 5185 } 5186 5187 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5188 SDLoc dl = getCurSDLoc(); 5189 5190 AtomicOrdering Ordering = I.getOrdering(); 5191 SyncScope::ID SSID = I.getSyncScopeID(); 5192 5193 SDValue InChain = getRoot(); 5194 5195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5196 EVT MemVT = 5197 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5198 5199 if (!TLI.supportsUnalignedAtomics() && 5200 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5201 report_fatal_error("Cannot generate unaligned atomic store"); 5202 5203 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5204 5205 MachineFunction &MF = DAG.getMachineFunction(); 5206 MachineMemOperand *MMO = MF.getMachineMemOperand( 5207 MachinePointerInfo(I.getPointerOperand()), Flags, 5208 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5209 nullptr, SSID, Ordering); 5210 5211 SDValue Val = getValue(I.getValueOperand()); 5212 if (Val.getValueType() != MemVT) 5213 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5214 SDValue Ptr = getValue(I.getPointerOperand()); 5215 5216 SDValue OutChain = 5217 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5218 5219 setValue(&I, OutChain); 5220 DAG.setRoot(OutChain); 5221 } 5222 5223 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5224 /// node. 5225 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5226 unsigned Intrinsic) { 5227 // Ignore the callsite's attributes. A specific call site may be marked with 5228 // readnone, but the lowering code will expect the chain based on the 5229 // definition. 5230 const Function *F = I.getCalledFunction(); 5231 bool HasChain = !F->doesNotAccessMemory(); 5232 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5233 5234 // Build the operand list. 5235 SmallVector<SDValue, 8> Ops; 5236 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5237 if (OnlyLoad) { 5238 // We don't need to serialize loads against other loads. 5239 Ops.push_back(DAG.getRoot()); 5240 } else { 5241 Ops.push_back(getRoot()); 5242 } 5243 } 5244 5245 // Info is set by getTgtMemIntrinsic 5246 TargetLowering::IntrinsicInfo Info; 5247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5248 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5249 DAG.getMachineFunction(), 5250 Intrinsic); 5251 5252 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5253 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5254 Info.opc == ISD::INTRINSIC_W_CHAIN) 5255 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5256 TLI.getPointerTy(DAG.getDataLayout()))); 5257 5258 // Add all operands of the call to the operand list. 5259 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5260 const Value *Arg = I.getArgOperand(i); 5261 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5262 Ops.push_back(getValue(Arg)); 5263 continue; 5264 } 5265 5266 // Use TargetConstant instead of a regular constant for immarg. 5267 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5268 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5269 assert(CI->getBitWidth() <= 64 && 5270 "large intrinsic immediates not handled"); 5271 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5272 } else { 5273 Ops.push_back( 5274 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5275 } 5276 } 5277 5278 SmallVector<EVT, 4> ValueVTs; 5279 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5280 5281 if (HasChain) 5282 ValueVTs.push_back(MVT::Other); 5283 5284 SDVTList VTs = DAG.getVTList(ValueVTs); 5285 5286 // Propagate fast-math-flags from IR to node(s). 5287 SDNodeFlags Flags; 5288 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5289 Flags.copyFMF(*FPMO); 5290 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5291 5292 // Create the node. 5293 SDValue Result; 5294 5295 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5296 auto *Token = Bundle->Inputs[0].get(); 5297 SDValue ConvControlToken = getValue(Token); 5298 assert(Ops.back().getValueType() != MVT::Glue && 5299 "Did not expected another glue node here."); 5300 ConvControlToken = 5301 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5302 Ops.push_back(ConvControlToken); 5303 } 5304 5305 // In some cases, custom collection of operands from CallInst I may be needed. 5306 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5307 if (IsTgtIntrinsic) { 5308 // This is target intrinsic that touches memory 5309 // 5310 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5311 // didn't yield anything useful. 5312 MachinePointerInfo MPI; 5313 if (Info.ptrVal) 5314 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5315 else if (Info.fallbackAddressSpace) 5316 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5317 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5318 Info.memVT, MPI, Info.align, Info.flags, 5319 Info.size, I.getAAMetadata()); 5320 } else if (!HasChain) { 5321 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5322 } else if (!I.getType()->isVoidTy()) { 5323 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5324 } else { 5325 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5326 } 5327 5328 if (HasChain) { 5329 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5330 if (OnlyLoad) 5331 PendingLoads.push_back(Chain); 5332 else 5333 DAG.setRoot(Chain); 5334 } 5335 5336 if (!I.getType()->isVoidTy()) { 5337 if (!isa<VectorType>(I.getType())) 5338 Result = lowerRangeToAssertZExt(DAG, I, Result); 5339 5340 MaybeAlign Alignment = I.getRetAlign(); 5341 5342 // Insert `assertalign` node if there's an alignment. 5343 if (InsertAssertAlign && Alignment) { 5344 Result = 5345 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5346 } 5347 } 5348 5349 setValue(&I, Result); 5350 } 5351 5352 /// GetSignificand - Get the significand and build it into a floating-point 5353 /// number with exponent of 1: 5354 /// 5355 /// Op = (Op & 0x007fffff) | 0x3f800000; 5356 /// 5357 /// where Op is the hexadecimal representation of floating point value. 5358 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5359 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5360 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5361 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5362 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5363 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5364 } 5365 5366 /// GetExponent - Get the exponent: 5367 /// 5368 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5369 /// 5370 /// where Op is the hexadecimal representation of floating point value. 5371 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5372 const TargetLowering &TLI, const SDLoc &dl) { 5373 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5374 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5375 SDValue t1 = DAG.getNode( 5376 ISD::SRL, dl, MVT::i32, t0, 5377 DAG.getConstant(23, dl, 5378 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5379 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5380 DAG.getConstant(127, dl, MVT::i32)); 5381 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5382 } 5383 5384 /// getF32Constant - Get 32-bit floating point constant. 5385 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5386 const SDLoc &dl) { 5387 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5388 MVT::f32); 5389 } 5390 5391 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5392 SelectionDAG &DAG) { 5393 // TODO: What fast-math-flags should be set on the floating-point nodes? 5394 5395 // IntegerPartOfX = ((int32_t)(t0); 5396 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5397 5398 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5399 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5400 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5401 5402 // IntegerPartOfX <<= 23; 5403 IntegerPartOfX = 5404 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5405 DAG.getConstant(23, dl, 5406 DAG.getTargetLoweringInfo().getShiftAmountTy( 5407 MVT::i32, DAG.getDataLayout()))); 5408 5409 SDValue TwoToFractionalPartOfX; 5410 if (LimitFloatPrecision <= 6) { 5411 // For floating-point precision of 6: 5412 // 5413 // TwoToFractionalPartOfX = 5414 // 0.997535578f + 5415 // (0.735607626f + 0.252464424f * x) * x; 5416 // 5417 // error 0.0144103317, which is 6 bits 5418 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5419 getF32Constant(DAG, 0x3e814304, dl)); 5420 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5421 getF32Constant(DAG, 0x3f3c50c8, dl)); 5422 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5423 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5424 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5425 } else if (LimitFloatPrecision <= 12) { 5426 // For floating-point precision of 12: 5427 // 5428 // TwoToFractionalPartOfX = 5429 // 0.999892986f + 5430 // (0.696457318f + 5431 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5432 // 5433 // error 0.000107046256, which is 13 to 14 bits 5434 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5435 getF32Constant(DAG, 0x3da235e3, dl)); 5436 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5437 getF32Constant(DAG, 0x3e65b8f3, dl)); 5438 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5439 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5440 getF32Constant(DAG, 0x3f324b07, dl)); 5441 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5442 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5443 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5444 } else { // LimitFloatPrecision <= 18 5445 // For floating-point precision of 18: 5446 // 5447 // TwoToFractionalPartOfX = 5448 // 0.999999982f + 5449 // (0.693148872f + 5450 // (0.240227044f + 5451 // (0.554906021e-1f + 5452 // (0.961591928e-2f + 5453 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5454 // error 2.47208000*10^(-7), which is better than 18 bits 5455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5456 getF32Constant(DAG, 0x3924b03e, dl)); 5457 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5458 getF32Constant(DAG, 0x3ab24b87, dl)); 5459 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5460 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5461 getF32Constant(DAG, 0x3c1d8c17, dl)); 5462 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5463 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5464 getF32Constant(DAG, 0x3d634a1d, dl)); 5465 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5466 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5467 getF32Constant(DAG, 0x3e75fe14, dl)); 5468 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5469 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5470 getF32Constant(DAG, 0x3f317234, dl)); 5471 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5472 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5473 getF32Constant(DAG, 0x3f800000, dl)); 5474 } 5475 5476 // Add the exponent into the result in integer domain. 5477 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5478 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5479 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5480 } 5481 5482 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5483 /// limited-precision mode. 5484 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5485 const TargetLowering &TLI, SDNodeFlags Flags) { 5486 if (Op.getValueType() == MVT::f32 && 5487 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5488 5489 // Put the exponent in the right bit position for later addition to the 5490 // final result: 5491 // 5492 // t0 = Op * log2(e) 5493 5494 // TODO: What fast-math-flags should be set here? 5495 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5496 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5497 return getLimitedPrecisionExp2(t0, dl, DAG); 5498 } 5499 5500 // No special expansion. 5501 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5502 } 5503 5504 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5505 /// limited-precision mode. 5506 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5507 const TargetLowering &TLI, SDNodeFlags Flags) { 5508 // TODO: What fast-math-flags should be set on the floating-point nodes? 5509 5510 if (Op.getValueType() == MVT::f32 && 5511 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5512 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5513 5514 // Scale the exponent by log(2). 5515 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5516 SDValue LogOfExponent = 5517 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5518 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5519 5520 // Get the significand and build it into a floating-point number with 5521 // exponent of 1. 5522 SDValue X = GetSignificand(DAG, Op1, dl); 5523 5524 SDValue LogOfMantissa; 5525 if (LimitFloatPrecision <= 6) { 5526 // For floating-point precision of 6: 5527 // 5528 // LogofMantissa = 5529 // -1.1609546f + 5530 // (1.4034025f - 0.23903021f * x) * x; 5531 // 5532 // error 0.0034276066, which is better than 8 bits 5533 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5534 getF32Constant(DAG, 0xbe74c456, dl)); 5535 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5536 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5537 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5538 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5539 getF32Constant(DAG, 0x3f949a29, dl)); 5540 } else if (LimitFloatPrecision <= 12) { 5541 // For floating-point precision of 12: 5542 // 5543 // LogOfMantissa = 5544 // -1.7417939f + 5545 // (2.8212026f + 5546 // (-1.4699568f + 5547 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5548 // 5549 // error 0.000061011436, which is 14 bits 5550 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5551 getF32Constant(DAG, 0xbd67b6d6, dl)); 5552 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5553 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5554 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5555 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5556 getF32Constant(DAG, 0x3fbc278b, dl)); 5557 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5558 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5559 getF32Constant(DAG, 0x40348e95, dl)); 5560 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5561 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5562 getF32Constant(DAG, 0x3fdef31a, dl)); 5563 } else { // LimitFloatPrecision <= 18 5564 // For floating-point precision of 18: 5565 // 5566 // LogOfMantissa = 5567 // -2.1072184f + 5568 // (4.2372794f + 5569 // (-3.7029485f + 5570 // (2.2781945f + 5571 // (-0.87823314f + 5572 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5573 // 5574 // error 0.0000023660568, which is better than 18 bits 5575 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5576 getF32Constant(DAG, 0xbc91e5ac, dl)); 5577 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5578 getF32Constant(DAG, 0x3e4350aa, dl)); 5579 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5580 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5581 getF32Constant(DAG, 0x3f60d3e3, dl)); 5582 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5583 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5584 getF32Constant(DAG, 0x4011cdf0, dl)); 5585 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5586 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5587 getF32Constant(DAG, 0x406cfd1c, dl)); 5588 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5589 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5590 getF32Constant(DAG, 0x408797cb, dl)); 5591 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5592 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5593 getF32Constant(DAG, 0x4006dcab, dl)); 5594 } 5595 5596 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5597 } 5598 5599 // No special expansion. 5600 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5601 } 5602 5603 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5604 /// limited-precision mode. 5605 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5606 const TargetLowering &TLI, SDNodeFlags Flags) { 5607 // TODO: What fast-math-flags should be set on the floating-point nodes? 5608 5609 if (Op.getValueType() == MVT::f32 && 5610 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5611 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5612 5613 // Get the exponent. 5614 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5615 5616 // Get the significand and build it into a floating-point number with 5617 // exponent of 1. 5618 SDValue X = GetSignificand(DAG, Op1, dl); 5619 5620 // Different possible minimax approximations of significand in 5621 // floating-point for various degrees of accuracy over [1,2]. 5622 SDValue Log2ofMantissa; 5623 if (LimitFloatPrecision <= 6) { 5624 // For floating-point precision of 6: 5625 // 5626 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5627 // 5628 // error 0.0049451742, which is more than 7 bits 5629 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5630 getF32Constant(DAG, 0xbeb08fe0, dl)); 5631 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5632 getF32Constant(DAG, 0x40019463, dl)); 5633 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5634 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5635 getF32Constant(DAG, 0x3fd6633d, dl)); 5636 } else if (LimitFloatPrecision <= 12) { 5637 // For floating-point precision of 12: 5638 // 5639 // Log2ofMantissa = 5640 // -2.51285454f + 5641 // (4.07009056f + 5642 // (-2.12067489f + 5643 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5644 // 5645 // error 0.0000876136000, which is better than 13 bits 5646 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5647 getF32Constant(DAG, 0xbda7262e, dl)); 5648 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5649 getF32Constant(DAG, 0x3f25280b, dl)); 5650 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5651 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5652 getF32Constant(DAG, 0x4007b923, dl)); 5653 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5654 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5655 getF32Constant(DAG, 0x40823e2f, dl)); 5656 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5657 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5658 getF32Constant(DAG, 0x4020d29c, dl)); 5659 } else { // LimitFloatPrecision <= 18 5660 // For floating-point precision of 18: 5661 // 5662 // Log2ofMantissa = 5663 // -3.0400495f + 5664 // (6.1129976f + 5665 // (-5.3420409f + 5666 // (3.2865683f + 5667 // (-1.2669343f + 5668 // (0.27515199f - 5669 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5670 // 5671 // error 0.0000018516, which is better than 18 bits 5672 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5673 getF32Constant(DAG, 0xbcd2769e, dl)); 5674 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5675 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5676 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5677 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5678 getF32Constant(DAG, 0x3fa22ae7, dl)); 5679 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5680 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5681 getF32Constant(DAG, 0x40525723, dl)); 5682 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5683 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5684 getF32Constant(DAG, 0x40aaf200, dl)); 5685 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5686 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5687 getF32Constant(DAG, 0x40c39dad, dl)); 5688 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5689 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5690 getF32Constant(DAG, 0x4042902c, dl)); 5691 } 5692 5693 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5694 } 5695 5696 // No special expansion. 5697 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5698 } 5699 5700 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5701 /// limited-precision mode. 5702 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5703 const TargetLowering &TLI, SDNodeFlags Flags) { 5704 // TODO: What fast-math-flags should be set on the floating-point nodes? 5705 5706 if (Op.getValueType() == MVT::f32 && 5707 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5708 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5709 5710 // Scale the exponent by log10(2) [0.30102999f]. 5711 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5712 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5713 getF32Constant(DAG, 0x3e9a209a, dl)); 5714 5715 // Get the significand and build it into a floating-point number with 5716 // exponent of 1. 5717 SDValue X = GetSignificand(DAG, Op1, dl); 5718 5719 SDValue Log10ofMantissa; 5720 if (LimitFloatPrecision <= 6) { 5721 // For floating-point precision of 6: 5722 // 5723 // Log10ofMantissa = 5724 // -0.50419619f + 5725 // (0.60948995f - 0.10380950f * x) * x; 5726 // 5727 // error 0.0014886165, which is 6 bits 5728 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5729 getF32Constant(DAG, 0xbdd49a13, dl)); 5730 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5731 getF32Constant(DAG, 0x3f1c0789, dl)); 5732 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5733 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5734 getF32Constant(DAG, 0x3f011300, dl)); 5735 } else if (LimitFloatPrecision <= 12) { 5736 // For floating-point precision of 12: 5737 // 5738 // Log10ofMantissa = 5739 // -0.64831180f + 5740 // (0.91751397f + 5741 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5742 // 5743 // error 0.00019228036, which is better than 12 bits 5744 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5745 getF32Constant(DAG, 0x3d431f31, dl)); 5746 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5747 getF32Constant(DAG, 0x3ea21fb2, dl)); 5748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5749 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5750 getF32Constant(DAG, 0x3f6ae232, dl)); 5751 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5752 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5753 getF32Constant(DAG, 0x3f25f7c3, dl)); 5754 } else { // LimitFloatPrecision <= 18 5755 // For floating-point precision of 18: 5756 // 5757 // Log10ofMantissa = 5758 // -0.84299375f + 5759 // (1.5327582f + 5760 // (-1.0688956f + 5761 // (0.49102474f + 5762 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5763 // 5764 // error 0.0000037995730, which is better than 18 bits 5765 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5766 getF32Constant(DAG, 0x3c5d51ce, dl)); 5767 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5768 getF32Constant(DAG, 0x3e00685a, dl)); 5769 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5770 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5771 getF32Constant(DAG, 0x3efb6798, dl)); 5772 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5773 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5774 getF32Constant(DAG, 0x3f88d192, dl)); 5775 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5776 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5777 getF32Constant(DAG, 0x3fc4316c, dl)); 5778 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5779 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5780 getF32Constant(DAG, 0x3f57ce70, dl)); 5781 } 5782 5783 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5784 } 5785 5786 // No special expansion. 5787 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5788 } 5789 5790 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5791 /// limited-precision mode. 5792 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5793 const TargetLowering &TLI, SDNodeFlags Flags) { 5794 if (Op.getValueType() == MVT::f32 && 5795 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5796 return getLimitedPrecisionExp2(Op, dl, DAG); 5797 5798 // No special expansion. 5799 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5800 } 5801 5802 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5803 /// limited-precision mode with x == 10.0f. 5804 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5805 SelectionDAG &DAG, const TargetLowering &TLI, 5806 SDNodeFlags Flags) { 5807 bool IsExp10 = false; 5808 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5809 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5810 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5811 APFloat Ten(10.0f); 5812 IsExp10 = LHSC->isExactlyValue(Ten); 5813 } 5814 } 5815 5816 // TODO: What fast-math-flags should be set on the FMUL node? 5817 if (IsExp10) { 5818 // Put the exponent in the right bit position for later addition to the 5819 // final result: 5820 // 5821 // #define LOG2OF10 3.3219281f 5822 // t0 = Op * LOG2OF10; 5823 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5824 getF32Constant(DAG, 0x40549a78, dl)); 5825 return getLimitedPrecisionExp2(t0, dl, DAG); 5826 } 5827 5828 // No special expansion. 5829 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5830 } 5831 5832 /// ExpandPowI - Expand a llvm.powi intrinsic. 5833 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5834 SelectionDAG &DAG) { 5835 // If RHS is a constant, we can expand this out to a multiplication tree if 5836 // it's beneficial on the target, otherwise we end up lowering to a call to 5837 // __powidf2 (for example). 5838 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5839 unsigned Val = RHSC->getSExtValue(); 5840 5841 // powi(x, 0) -> 1.0 5842 if (Val == 0) 5843 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5844 5845 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5846 Val, DAG.shouldOptForSize())) { 5847 // Get the exponent as a positive value. 5848 if ((int)Val < 0) 5849 Val = -Val; 5850 // We use the simple binary decomposition method to generate the multiply 5851 // sequence. There are more optimal ways to do this (for example, 5852 // powi(x,15) generates one more multiply than it should), but this has 5853 // the benefit of being both really simple and much better than a libcall. 5854 SDValue Res; // Logically starts equal to 1.0 5855 SDValue CurSquare = LHS; 5856 // TODO: Intrinsics should have fast-math-flags that propagate to these 5857 // nodes. 5858 while (Val) { 5859 if (Val & 1) { 5860 if (Res.getNode()) 5861 Res = 5862 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5863 else 5864 Res = CurSquare; // 1.0*CurSquare. 5865 } 5866 5867 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5868 CurSquare, CurSquare); 5869 Val >>= 1; 5870 } 5871 5872 // If the original was negative, invert the result, producing 1/(x*x*x). 5873 if (RHSC->getSExtValue() < 0) 5874 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5875 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5876 return Res; 5877 } 5878 } 5879 5880 // Otherwise, expand to a libcall. 5881 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5882 } 5883 5884 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5885 SDValue LHS, SDValue RHS, SDValue Scale, 5886 SelectionDAG &DAG, const TargetLowering &TLI) { 5887 EVT VT = LHS.getValueType(); 5888 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5889 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5890 LLVMContext &Ctx = *DAG.getContext(); 5891 5892 // If the type is legal but the operation isn't, this node might survive all 5893 // the way to operation legalization. If we end up there and we do not have 5894 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5895 // node. 5896 5897 // Coax the legalizer into expanding the node during type legalization instead 5898 // by bumping the size by one bit. This will force it to Promote, enabling the 5899 // early expansion and avoiding the need to expand later. 5900 5901 // We don't have to do this if Scale is 0; that can always be expanded, unless 5902 // it's a saturating signed operation. Those can experience true integer 5903 // division overflow, a case which we must avoid. 5904 5905 // FIXME: We wouldn't have to do this (or any of the early 5906 // expansion/promotion) if it was possible to expand a libcall of an 5907 // illegal type during operation legalization. But it's not, so things 5908 // get a bit hacky. 5909 unsigned ScaleInt = Scale->getAsZExtVal(); 5910 if ((ScaleInt > 0 || (Saturating && Signed)) && 5911 (TLI.isTypeLegal(VT) || 5912 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5913 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5914 Opcode, VT, ScaleInt); 5915 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5916 EVT PromVT; 5917 if (VT.isScalarInteger()) 5918 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5919 else if (VT.isVector()) { 5920 PromVT = VT.getVectorElementType(); 5921 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5922 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5923 } else 5924 llvm_unreachable("Wrong VT for DIVFIX?"); 5925 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5926 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5927 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5928 // For saturating operations, we need to shift up the LHS to get the 5929 // proper saturation width, and then shift down again afterwards. 5930 if (Saturating) 5931 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5932 DAG.getConstant(1, DL, ShiftTy)); 5933 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5934 if (Saturating) 5935 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5936 DAG.getConstant(1, DL, ShiftTy)); 5937 return DAG.getZExtOrTrunc(Res, DL, VT); 5938 } 5939 } 5940 5941 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5942 } 5943 5944 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5945 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5946 static void 5947 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5948 const SDValue &N) { 5949 switch (N.getOpcode()) { 5950 case ISD::CopyFromReg: { 5951 SDValue Op = N.getOperand(1); 5952 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5953 Op.getValueType().getSizeInBits()); 5954 return; 5955 } 5956 case ISD::BITCAST: 5957 case ISD::AssertZext: 5958 case ISD::AssertSext: 5959 case ISD::TRUNCATE: 5960 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5961 return; 5962 case ISD::BUILD_PAIR: 5963 case ISD::BUILD_VECTOR: 5964 case ISD::CONCAT_VECTORS: 5965 for (SDValue Op : N->op_values()) 5966 getUnderlyingArgRegs(Regs, Op); 5967 return; 5968 default: 5969 return; 5970 } 5971 } 5972 5973 /// If the DbgValueInst is a dbg_value of a function argument, create the 5974 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5975 /// instruction selection, they will be inserted to the entry BB. 5976 /// We don't currently support this for variadic dbg_values, as they shouldn't 5977 /// appear for function arguments or in the prologue. 5978 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5979 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5980 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5981 const Argument *Arg = dyn_cast<Argument>(V); 5982 if (!Arg) 5983 return false; 5984 5985 MachineFunction &MF = DAG.getMachineFunction(); 5986 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5987 5988 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5989 // we've been asked to pursue. 5990 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5991 bool Indirect) { 5992 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5993 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5994 // pointing at the VReg, which will be patched up later. 5995 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5996 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5997 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5998 /* isKill */ false, /* isDead */ false, 5999 /* isUndef */ false, /* isEarlyClobber */ false, 6000 /* SubReg */ 0, /* isDebug */ true)}); 6001 6002 auto *NewDIExpr = FragExpr; 6003 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6004 // the DIExpression. 6005 if (Indirect) 6006 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6007 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6008 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6009 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6010 } else { 6011 // Create a completely standard DBG_VALUE. 6012 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6013 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6014 } 6015 }; 6016 6017 if (Kind == FuncArgumentDbgValueKind::Value) { 6018 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6019 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6020 // the entry block. 6021 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6022 if (!IsInEntryBlock) 6023 return false; 6024 6025 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6026 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6027 // variable that also is a param. 6028 // 6029 // Although, if we are at the top of the entry block already, we can still 6030 // emit using ArgDbgValue. This might catch some situations when the 6031 // dbg.value refers to an argument that isn't used in the entry block, so 6032 // any CopyToReg node would be optimized out and the only way to express 6033 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6034 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6035 // we should only emit as ArgDbgValue if the Variable is an argument to the 6036 // current function, and the dbg.value intrinsic is found in the entry 6037 // block. 6038 bool VariableIsFunctionInputArg = Variable->isParameter() && 6039 !DL->getInlinedAt(); 6040 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6041 if (!IsInPrologue && !VariableIsFunctionInputArg) 6042 return false; 6043 6044 // Here we assume that a function argument on IR level only can be used to 6045 // describe one input parameter on source level. If we for example have 6046 // source code like this 6047 // 6048 // struct A { long x, y; }; 6049 // void foo(struct A a, long b) { 6050 // ... 6051 // b = a.x; 6052 // ... 6053 // } 6054 // 6055 // and IR like this 6056 // 6057 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6058 // entry: 6059 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6060 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6061 // call void @llvm.dbg.value(metadata i32 %b, "b", 6062 // ... 6063 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6064 // ... 6065 // 6066 // then the last dbg.value is describing a parameter "b" using a value that 6067 // is an argument. But since we already has used %a1 to describe a parameter 6068 // we should not handle that last dbg.value here (that would result in an 6069 // incorrect hoisting of the DBG_VALUE to the function entry). 6070 // Notice that we allow one dbg.value per IR level argument, to accommodate 6071 // for the situation with fragments above. 6072 // If there is no node for the value being handled, we return true to skip 6073 // the normal generation of debug info, as it would kill existing debug 6074 // info for the parameter in case of duplicates. 6075 if (VariableIsFunctionInputArg) { 6076 unsigned ArgNo = Arg->getArgNo(); 6077 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6078 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6079 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6080 return !NodeMap[V].getNode(); 6081 FuncInfo.DescribedArgs.set(ArgNo); 6082 } 6083 } 6084 6085 bool IsIndirect = false; 6086 std::optional<MachineOperand> Op; 6087 // Some arguments' frame index is recorded during argument lowering. 6088 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6089 if (FI != std::numeric_limits<int>::max()) 6090 Op = MachineOperand::CreateFI(FI); 6091 6092 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6093 if (!Op && N.getNode()) { 6094 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6095 Register Reg; 6096 if (ArgRegsAndSizes.size() == 1) 6097 Reg = ArgRegsAndSizes.front().first; 6098 6099 if (Reg && Reg.isVirtual()) { 6100 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6101 Register PR = RegInfo.getLiveInPhysReg(Reg); 6102 if (PR) 6103 Reg = PR; 6104 } 6105 if (Reg) { 6106 Op = MachineOperand::CreateReg(Reg, false); 6107 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6108 } 6109 } 6110 6111 if (!Op && N.getNode()) { 6112 // Check if frame index is available. 6113 SDValue LCandidate = peekThroughBitcasts(N); 6114 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6115 if (FrameIndexSDNode *FINode = 6116 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6117 Op = MachineOperand::CreateFI(FINode->getIndex()); 6118 } 6119 6120 if (!Op) { 6121 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6122 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6123 SplitRegs) { 6124 unsigned Offset = 0; 6125 for (const auto &RegAndSize : SplitRegs) { 6126 // If the expression is already a fragment, the current register 6127 // offset+size might extend beyond the fragment. In this case, only 6128 // the register bits that are inside the fragment are relevant. 6129 int RegFragmentSizeInBits = RegAndSize.second; 6130 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6131 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6132 // The register is entirely outside the expression fragment, 6133 // so is irrelevant for debug info. 6134 if (Offset >= ExprFragmentSizeInBits) 6135 break; 6136 // The register is partially outside the expression fragment, only 6137 // the low bits within the fragment are relevant for debug info. 6138 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6139 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6140 } 6141 } 6142 6143 auto FragmentExpr = DIExpression::createFragmentExpression( 6144 Expr, Offset, RegFragmentSizeInBits); 6145 Offset += RegAndSize.second; 6146 // If a valid fragment expression cannot be created, the variable's 6147 // correct value cannot be determined and so it is set as Undef. 6148 if (!FragmentExpr) { 6149 SDDbgValue *SDV = DAG.getConstantDbgValue( 6150 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6151 DAG.AddDbgValue(SDV, false); 6152 continue; 6153 } 6154 MachineInstr *NewMI = 6155 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6156 Kind != FuncArgumentDbgValueKind::Value); 6157 FuncInfo.ArgDbgValues.push_back(NewMI); 6158 } 6159 }; 6160 6161 // Check if ValueMap has reg number. 6162 DenseMap<const Value *, Register>::const_iterator 6163 VMI = FuncInfo.ValueMap.find(V); 6164 if (VMI != FuncInfo.ValueMap.end()) { 6165 const auto &TLI = DAG.getTargetLoweringInfo(); 6166 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6167 V->getType(), std::nullopt); 6168 if (RFV.occupiesMultipleRegs()) { 6169 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6170 return true; 6171 } 6172 6173 Op = MachineOperand::CreateReg(VMI->second, false); 6174 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6175 } else if (ArgRegsAndSizes.size() > 1) { 6176 // This was split due to the calling convention, and no virtual register 6177 // mapping exists for the value. 6178 splitMultiRegDbgValue(ArgRegsAndSizes); 6179 return true; 6180 } 6181 } 6182 6183 if (!Op) 6184 return false; 6185 6186 assert(Variable->isValidLocationForIntrinsic(DL) && 6187 "Expected inlined-at fields to agree"); 6188 MachineInstr *NewMI = nullptr; 6189 6190 if (Op->isReg()) 6191 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6192 else 6193 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6194 Variable, Expr); 6195 6196 // Otherwise, use ArgDbgValues. 6197 FuncInfo.ArgDbgValues.push_back(NewMI); 6198 return true; 6199 } 6200 6201 /// Return the appropriate SDDbgValue based on N. 6202 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6203 DILocalVariable *Variable, 6204 DIExpression *Expr, 6205 const DebugLoc &dl, 6206 unsigned DbgSDNodeOrder) { 6207 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6208 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6209 // stack slot locations. 6210 // 6211 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6212 // debug values here after optimization: 6213 // 6214 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6215 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6216 // 6217 // Both describe the direct values of their associated variables. 6218 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6219 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6220 } 6221 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6222 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6223 } 6224 6225 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6226 switch (Intrinsic) { 6227 case Intrinsic::smul_fix: 6228 return ISD::SMULFIX; 6229 case Intrinsic::umul_fix: 6230 return ISD::UMULFIX; 6231 case Intrinsic::smul_fix_sat: 6232 return ISD::SMULFIXSAT; 6233 case Intrinsic::umul_fix_sat: 6234 return ISD::UMULFIXSAT; 6235 case Intrinsic::sdiv_fix: 6236 return ISD::SDIVFIX; 6237 case Intrinsic::udiv_fix: 6238 return ISD::UDIVFIX; 6239 case Intrinsic::sdiv_fix_sat: 6240 return ISD::SDIVFIXSAT; 6241 case Intrinsic::udiv_fix_sat: 6242 return ISD::UDIVFIXSAT; 6243 default: 6244 llvm_unreachable("Unhandled fixed point intrinsic"); 6245 } 6246 } 6247 6248 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6249 const char *FunctionName) { 6250 assert(FunctionName && "FunctionName must not be nullptr"); 6251 SDValue Callee = DAG.getExternalSymbol( 6252 FunctionName, 6253 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6254 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6255 } 6256 6257 /// Given a @llvm.call.preallocated.setup, return the corresponding 6258 /// preallocated call. 6259 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6260 assert(cast<CallBase>(PreallocatedSetup) 6261 ->getCalledFunction() 6262 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6263 "expected call_preallocated_setup Value"); 6264 for (const auto *U : PreallocatedSetup->users()) { 6265 auto *UseCall = cast<CallBase>(U); 6266 const Function *Fn = UseCall->getCalledFunction(); 6267 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6268 return UseCall; 6269 } 6270 } 6271 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6272 } 6273 6274 /// If DI is a debug value with an EntryValue expression, lower it using the 6275 /// corresponding physical register of the associated Argument value 6276 /// (guaranteed to exist by the verifier). 6277 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6278 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6279 DIExpression *Expr, DebugLoc DbgLoc) { 6280 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6281 return false; 6282 6283 // These properties are guaranteed by the verifier. 6284 const Argument *Arg = cast<Argument>(Values[0]); 6285 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6286 6287 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6288 if (ArgIt == FuncInfo.ValueMap.end()) { 6289 LLVM_DEBUG( 6290 dbgs() << "Dropping dbg.value: expression is entry_value but " 6291 "couldn't find an associated register for the Argument\n"); 6292 return true; 6293 } 6294 Register ArgVReg = ArgIt->getSecond(); 6295 6296 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6297 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6298 SDDbgValue *SDV = DAG.getVRegDbgValue( 6299 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6300 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6301 return true; 6302 } 6303 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6304 "couldn't find a physical register\n"); 6305 return true; 6306 } 6307 6308 /// Lower the call to the specified intrinsic function. 6309 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6310 unsigned Intrinsic) { 6311 SDLoc sdl = getCurSDLoc(); 6312 switch (Intrinsic) { 6313 case Intrinsic::experimental_convergence_anchor: 6314 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6315 break; 6316 case Intrinsic::experimental_convergence_entry: 6317 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6318 break; 6319 case Intrinsic::experimental_convergence_loop: { 6320 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6321 auto *Token = Bundle->Inputs[0].get(); 6322 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6323 getValue(Token))); 6324 break; 6325 } 6326 } 6327 } 6328 6329 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6330 unsigned IntrinsicID) { 6331 // For now, we're only lowering an 'add' histogram. 6332 // We can add others later, e.g. saturating adds, min/max. 6333 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6334 "Tried to lower unsupported histogram type"); 6335 SDLoc sdl = getCurSDLoc(); 6336 Value *Ptr = I.getOperand(0); 6337 SDValue Inc = getValue(I.getOperand(1)); 6338 SDValue Mask = getValue(I.getOperand(2)); 6339 6340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6341 DataLayout TargetDL = DAG.getDataLayout(); 6342 EVT VT = Inc.getValueType(); 6343 Align Alignment = DAG.getEVTAlign(VT); 6344 6345 const MDNode *Ranges = getRangeMetadata(I); 6346 6347 SDValue Root = DAG.getRoot(); 6348 SDValue Base; 6349 SDValue Index; 6350 ISD::MemIndexType IndexType; 6351 SDValue Scale; 6352 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6353 I.getParent(), VT.getScalarStoreSize()); 6354 6355 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6356 6357 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6358 MachinePointerInfo(AS), 6359 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6360 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6361 6362 if (!UniformBase) { 6363 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6364 Index = getValue(Ptr); 6365 IndexType = ISD::SIGNED_SCALED; 6366 Scale = 6367 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6368 } 6369 6370 EVT IdxVT = Index.getValueType(); 6371 EVT EltTy = IdxVT.getVectorElementType(); 6372 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6373 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6374 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6375 } 6376 6377 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6378 6379 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6380 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6381 Ops, MMO, IndexType); 6382 6383 setValue(&I, Histogram); 6384 DAG.setRoot(Histogram); 6385 } 6386 6387 /// Lower the call to the specified intrinsic function. 6388 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6389 unsigned Intrinsic) { 6390 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6391 SDLoc sdl = getCurSDLoc(); 6392 DebugLoc dl = getCurDebugLoc(); 6393 SDValue Res; 6394 6395 SDNodeFlags Flags; 6396 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6397 Flags.copyFMF(*FPOp); 6398 6399 switch (Intrinsic) { 6400 default: 6401 // By default, turn this into a target intrinsic node. 6402 visitTargetIntrinsic(I, Intrinsic); 6403 return; 6404 case Intrinsic::vscale: { 6405 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6406 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6407 return; 6408 } 6409 case Intrinsic::vastart: visitVAStart(I); return; 6410 case Intrinsic::vaend: visitVAEnd(I); return; 6411 case Intrinsic::vacopy: visitVACopy(I); return; 6412 case Intrinsic::returnaddress: 6413 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6414 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6415 getValue(I.getArgOperand(0)))); 6416 return; 6417 case Intrinsic::addressofreturnaddress: 6418 setValue(&I, 6419 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6420 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6421 return; 6422 case Intrinsic::sponentry: 6423 setValue(&I, 6424 DAG.getNode(ISD::SPONENTRY, sdl, 6425 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6426 return; 6427 case Intrinsic::frameaddress: 6428 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6429 TLI.getFrameIndexTy(DAG.getDataLayout()), 6430 getValue(I.getArgOperand(0)))); 6431 return; 6432 case Intrinsic::read_volatile_register: 6433 case Intrinsic::read_register: { 6434 Value *Reg = I.getArgOperand(0); 6435 SDValue Chain = getRoot(); 6436 SDValue RegName = 6437 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6438 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6439 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6440 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6441 setValue(&I, Res); 6442 DAG.setRoot(Res.getValue(1)); 6443 return; 6444 } 6445 case Intrinsic::write_register: { 6446 Value *Reg = I.getArgOperand(0); 6447 Value *RegValue = I.getArgOperand(1); 6448 SDValue Chain = getRoot(); 6449 SDValue RegName = 6450 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6451 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6452 RegName, getValue(RegValue))); 6453 return; 6454 } 6455 case Intrinsic::memcpy: { 6456 const auto &MCI = cast<MemCpyInst>(I); 6457 SDValue Op1 = getValue(I.getArgOperand(0)); 6458 SDValue Op2 = getValue(I.getArgOperand(1)); 6459 SDValue Op3 = getValue(I.getArgOperand(2)); 6460 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6461 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6462 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6463 Align Alignment = std::min(DstAlign, SrcAlign); 6464 bool isVol = MCI.isVolatile(); 6465 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6466 // node. 6467 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6468 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6469 /* AlwaysInline */ false, &I, std::nullopt, 6470 MachinePointerInfo(I.getArgOperand(0)), 6471 MachinePointerInfo(I.getArgOperand(1)), 6472 I.getAAMetadata(), AA); 6473 updateDAGForMaybeTailCall(MC); 6474 return; 6475 } 6476 case Intrinsic::memcpy_inline: { 6477 const auto &MCI = cast<MemCpyInlineInst>(I); 6478 SDValue Dst = getValue(I.getArgOperand(0)); 6479 SDValue Src = getValue(I.getArgOperand(1)); 6480 SDValue Size = getValue(I.getArgOperand(2)); 6481 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6482 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6483 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6484 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6485 Align Alignment = std::min(DstAlign, SrcAlign); 6486 bool isVol = MCI.isVolatile(); 6487 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6488 // node. 6489 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6490 /* AlwaysInline */ true, &I, std::nullopt, 6491 MachinePointerInfo(I.getArgOperand(0)), 6492 MachinePointerInfo(I.getArgOperand(1)), 6493 I.getAAMetadata(), AA); 6494 updateDAGForMaybeTailCall(MC); 6495 return; 6496 } 6497 case Intrinsic::memset: { 6498 const auto &MSI = cast<MemSetInst>(I); 6499 SDValue Op1 = getValue(I.getArgOperand(0)); 6500 SDValue Op2 = getValue(I.getArgOperand(1)); 6501 SDValue Op3 = getValue(I.getArgOperand(2)); 6502 // @llvm.memset defines 0 and 1 to both mean no alignment. 6503 Align Alignment = MSI.getDestAlign().valueOrOne(); 6504 bool isVol = MSI.isVolatile(); 6505 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6506 SDValue MS = DAG.getMemset( 6507 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6508 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6509 updateDAGForMaybeTailCall(MS); 6510 return; 6511 } 6512 case Intrinsic::memset_inline: { 6513 const auto &MSII = cast<MemSetInlineInst>(I); 6514 SDValue Dst = getValue(I.getArgOperand(0)); 6515 SDValue Value = getValue(I.getArgOperand(1)); 6516 SDValue Size = getValue(I.getArgOperand(2)); 6517 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6518 // @llvm.memset defines 0 and 1 to both mean no alignment. 6519 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6520 bool isVol = MSII.isVolatile(); 6521 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6522 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6523 /* AlwaysInline */ true, &I, 6524 MachinePointerInfo(I.getArgOperand(0)), 6525 I.getAAMetadata()); 6526 updateDAGForMaybeTailCall(MC); 6527 return; 6528 } 6529 case Intrinsic::memmove: { 6530 const auto &MMI = cast<MemMoveInst>(I); 6531 SDValue Op1 = getValue(I.getArgOperand(0)); 6532 SDValue Op2 = getValue(I.getArgOperand(1)); 6533 SDValue Op3 = getValue(I.getArgOperand(2)); 6534 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6535 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6536 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6537 Align Alignment = std::min(DstAlign, SrcAlign); 6538 bool isVol = MMI.isVolatile(); 6539 // FIXME: Support passing different dest/src alignments to the memmove DAG 6540 // node. 6541 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6542 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6543 /* OverrideTailCall */ std::nullopt, 6544 MachinePointerInfo(I.getArgOperand(0)), 6545 MachinePointerInfo(I.getArgOperand(1)), 6546 I.getAAMetadata(), AA); 6547 updateDAGForMaybeTailCall(MM); 6548 return; 6549 } 6550 case Intrinsic::memcpy_element_unordered_atomic: { 6551 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6552 SDValue Dst = getValue(MI.getRawDest()); 6553 SDValue Src = getValue(MI.getRawSource()); 6554 SDValue Length = getValue(MI.getLength()); 6555 6556 Type *LengthTy = MI.getLength()->getType(); 6557 unsigned ElemSz = MI.getElementSizeInBytes(); 6558 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6559 SDValue MC = 6560 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6561 isTC, MachinePointerInfo(MI.getRawDest()), 6562 MachinePointerInfo(MI.getRawSource())); 6563 updateDAGForMaybeTailCall(MC); 6564 return; 6565 } 6566 case Intrinsic::memmove_element_unordered_atomic: { 6567 auto &MI = cast<AtomicMemMoveInst>(I); 6568 SDValue Dst = getValue(MI.getRawDest()); 6569 SDValue Src = getValue(MI.getRawSource()); 6570 SDValue Length = getValue(MI.getLength()); 6571 6572 Type *LengthTy = MI.getLength()->getType(); 6573 unsigned ElemSz = MI.getElementSizeInBytes(); 6574 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6575 SDValue MC = 6576 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6577 isTC, MachinePointerInfo(MI.getRawDest()), 6578 MachinePointerInfo(MI.getRawSource())); 6579 updateDAGForMaybeTailCall(MC); 6580 return; 6581 } 6582 case Intrinsic::memset_element_unordered_atomic: { 6583 auto &MI = cast<AtomicMemSetInst>(I); 6584 SDValue Dst = getValue(MI.getRawDest()); 6585 SDValue Val = getValue(MI.getValue()); 6586 SDValue Length = getValue(MI.getLength()); 6587 6588 Type *LengthTy = MI.getLength()->getType(); 6589 unsigned ElemSz = MI.getElementSizeInBytes(); 6590 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6591 SDValue MC = 6592 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6593 isTC, MachinePointerInfo(MI.getRawDest())); 6594 updateDAGForMaybeTailCall(MC); 6595 return; 6596 } 6597 case Intrinsic::call_preallocated_setup: { 6598 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6599 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6600 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6601 getRoot(), SrcValue); 6602 setValue(&I, Res); 6603 DAG.setRoot(Res); 6604 return; 6605 } 6606 case Intrinsic::call_preallocated_arg: { 6607 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6608 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6609 SDValue Ops[3]; 6610 Ops[0] = getRoot(); 6611 Ops[1] = SrcValue; 6612 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6613 MVT::i32); // arg index 6614 SDValue Res = DAG.getNode( 6615 ISD::PREALLOCATED_ARG, sdl, 6616 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6617 setValue(&I, Res); 6618 DAG.setRoot(Res.getValue(1)); 6619 return; 6620 } 6621 case Intrinsic::dbg_declare: { 6622 const auto &DI = cast<DbgDeclareInst>(I); 6623 // Debug intrinsics are handled separately in assignment tracking mode. 6624 // Some intrinsics are handled right after Argument lowering. 6625 if (AssignmentTrackingEnabled || 6626 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6627 return; 6628 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6629 DILocalVariable *Variable = DI.getVariable(); 6630 DIExpression *Expression = DI.getExpression(); 6631 dropDanglingDebugInfo(Variable, Expression); 6632 // Assume dbg.declare can not currently use DIArgList, i.e. 6633 // it is non-variadic. 6634 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6635 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6636 DI.getDebugLoc()); 6637 return; 6638 } 6639 case Intrinsic::dbg_label: { 6640 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6641 DILabel *Label = DI.getLabel(); 6642 assert(Label && "Missing label"); 6643 6644 SDDbgLabel *SDV; 6645 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6646 DAG.AddDbgLabel(SDV); 6647 return; 6648 } 6649 case Intrinsic::dbg_assign: { 6650 // Debug intrinsics are handled separately in assignment tracking mode. 6651 if (AssignmentTrackingEnabled) 6652 return; 6653 // If assignment tracking hasn't been enabled then fall through and treat 6654 // the dbg.assign as a dbg.value. 6655 [[fallthrough]]; 6656 } 6657 case Intrinsic::dbg_value: { 6658 // Debug intrinsics are handled separately in assignment tracking mode. 6659 if (AssignmentTrackingEnabled) 6660 return; 6661 const DbgValueInst &DI = cast<DbgValueInst>(I); 6662 assert(DI.getVariable() && "Missing variable"); 6663 6664 DILocalVariable *Variable = DI.getVariable(); 6665 DIExpression *Expression = DI.getExpression(); 6666 dropDanglingDebugInfo(Variable, Expression); 6667 6668 if (DI.isKillLocation()) { 6669 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6670 return; 6671 } 6672 6673 SmallVector<Value *, 4> Values(DI.getValues()); 6674 if (Values.empty()) 6675 return; 6676 6677 bool IsVariadic = DI.hasArgList(); 6678 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6679 SDNodeOrder, IsVariadic)) 6680 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6681 DI.getDebugLoc(), SDNodeOrder); 6682 return; 6683 } 6684 6685 case Intrinsic::eh_typeid_for: { 6686 // Find the type id for the given typeinfo. 6687 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6688 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6689 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6690 setValue(&I, Res); 6691 return; 6692 } 6693 6694 case Intrinsic::eh_return_i32: 6695 case Intrinsic::eh_return_i64: 6696 DAG.getMachineFunction().setCallsEHReturn(true); 6697 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6698 MVT::Other, 6699 getControlRoot(), 6700 getValue(I.getArgOperand(0)), 6701 getValue(I.getArgOperand(1)))); 6702 return; 6703 case Intrinsic::eh_unwind_init: 6704 DAG.getMachineFunction().setCallsUnwindInit(true); 6705 return; 6706 case Intrinsic::eh_dwarf_cfa: 6707 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6708 TLI.getPointerTy(DAG.getDataLayout()), 6709 getValue(I.getArgOperand(0)))); 6710 return; 6711 case Intrinsic::eh_sjlj_callsite: { 6712 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6713 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6714 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6715 6716 MMI.setCurrentCallSite(CI->getZExtValue()); 6717 return; 6718 } 6719 case Intrinsic::eh_sjlj_functioncontext: { 6720 // Get and store the index of the function context. 6721 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6722 AllocaInst *FnCtx = 6723 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6724 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6725 MFI.setFunctionContextIndex(FI); 6726 return; 6727 } 6728 case Intrinsic::eh_sjlj_setjmp: { 6729 SDValue Ops[2]; 6730 Ops[0] = getRoot(); 6731 Ops[1] = getValue(I.getArgOperand(0)); 6732 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6733 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6734 setValue(&I, Op.getValue(0)); 6735 DAG.setRoot(Op.getValue(1)); 6736 return; 6737 } 6738 case Intrinsic::eh_sjlj_longjmp: 6739 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6740 getRoot(), getValue(I.getArgOperand(0)))); 6741 return; 6742 case Intrinsic::eh_sjlj_setup_dispatch: 6743 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6744 getRoot())); 6745 return; 6746 case Intrinsic::masked_gather: 6747 visitMaskedGather(I); 6748 return; 6749 case Intrinsic::masked_load: 6750 visitMaskedLoad(I); 6751 return; 6752 case Intrinsic::masked_scatter: 6753 visitMaskedScatter(I); 6754 return; 6755 case Intrinsic::masked_store: 6756 visitMaskedStore(I); 6757 return; 6758 case Intrinsic::masked_expandload: 6759 visitMaskedLoad(I, true /* IsExpanding */); 6760 return; 6761 case Intrinsic::masked_compressstore: 6762 visitMaskedStore(I, true /* IsCompressing */); 6763 return; 6764 case Intrinsic::powi: 6765 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6766 getValue(I.getArgOperand(1)), DAG)); 6767 return; 6768 case Intrinsic::log: 6769 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6770 return; 6771 case Intrinsic::log2: 6772 setValue(&I, 6773 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6774 return; 6775 case Intrinsic::log10: 6776 setValue(&I, 6777 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6778 return; 6779 case Intrinsic::exp: 6780 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6781 return; 6782 case Intrinsic::exp2: 6783 setValue(&I, 6784 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6785 return; 6786 case Intrinsic::pow: 6787 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6788 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6789 return; 6790 case Intrinsic::sqrt: 6791 case Intrinsic::fabs: 6792 case Intrinsic::sin: 6793 case Intrinsic::cos: 6794 case Intrinsic::tan: 6795 case Intrinsic::asin: 6796 case Intrinsic::acos: 6797 case Intrinsic::atan: 6798 case Intrinsic::sinh: 6799 case Intrinsic::cosh: 6800 case Intrinsic::tanh: 6801 case Intrinsic::exp10: 6802 case Intrinsic::floor: 6803 case Intrinsic::ceil: 6804 case Intrinsic::trunc: 6805 case Intrinsic::rint: 6806 case Intrinsic::nearbyint: 6807 case Intrinsic::round: 6808 case Intrinsic::roundeven: 6809 case Intrinsic::canonicalize: { 6810 unsigned Opcode; 6811 // clang-format off 6812 switch (Intrinsic) { 6813 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6814 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6815 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6816 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6817 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6818 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6819 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6820 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6821 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6822 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6823 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6824 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6825 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6826 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6827 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6828 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6829 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6830 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6831 case Intrinsic::round: Opcode = ISD::FROUND; break; 6832 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6833 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6834 } 6835 // clang-format on 6836 6837 setValue(&I, DAG.getNode(Opcode, sdl, 6838 getValue(I.getArgOperand(0)).getValueType(), 6839 getValue(I.getArgOperand(0)), Flags)); 6840 return; 6841 } 6842 case Intrinsic::lround: 6843 case Intrinsic::llround: 6844 case Intrinsic::lrint: 6845 case Intrinsic::llrint: { 6846 unsigned Opcode; 6847 // clang-format off 6848 switch (Intrinsic) { 6849 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6850 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6851 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6852 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6853 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6854 } 6855 // clang-format on 6856 6857 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6858 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6859 getValue(I.getArgOperand(0)))); 6860 return; 6861 } 6862 case Intrinsic::minnum: 6863 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6864 getValue(I.getArgOperand(0)).getValueType(), 6865 getValue(I.getArgOperand(0)), 6866 getValue(I.getArgOperand(1)), Flags)); 6867 return; 6868 case Intrinsic::maxnum: 6869 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6870 getValue(I.getArgOperand(0)).getValueType(), 6871 getValue(I.getArgOperand(0)), 6872 getValue(I.getArgOperand(1)), Flags)); 6873 return; 6874 case Intrinsic::minimum: 6875 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6876 getValue(I.getArgOperand(0)).getValueType(), 6877 getValue(I.getArgOperand(0)), 6878 getValue(I.getArgOperand(1)), Flags)); 6879 return; 6880 case Intrinsic::maximum: 6881 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6882 getValue(I.getArgOperand(0)).getValueType(), 6883 getValue(I.getArgOperand(0)), 6884 getValue(I.getArgOperand(1)), Flags)); 6885 return; 6886 case Intrinsic::copysign: 6887 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6888 getValue(I.getArgOperand(0)).getValueType(), 6889 getValue(I.getArgOperand(0)), 6890 getValue(I.getArgOperand(1)), Flags)); 6891 return; 6892 case Intrinsic::ldexp: 6893 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6894 getValue(I.getArgOperand(0)).getValueType(), 6895 getValue(I.getArgOperand(0)), 6896 getValue(I.getArgOperand(1)), Flags)); 6897 return; 6898 case Intrinsic::frexp: { 6899 SmallVector<EVT, 2> ValueVTs; 6900 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6901 SDVTList VTs = DAG.getVTList(ValueVTs); 6902 setValue(&I, 6903 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6904 return; 6905 } 6906 case Intrinsic::arithmetic_fence: { 6907 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6908 getValue(I.getArgOperand(0)).getValueType(), 6909 getValue(I.getArgOperand(0)), Flags)); 6910 return; 6911 } 6912 case Intrinsic::fma: 6913 setValue(&I, DAG.getNode( 6914 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6915 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6916 getValue(I.getArgOperand(2)), Flags)); 6917 return; 6918 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6919 case Intrinsic::INTRINSIC: 6920 #include "llvm/IR/ConstrainedOps.def" 6921 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6922 return; 6923 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6924 #include "llvm/IR/VPIntrinsics.def" 6925 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6926 return; 6927 case Intrinsic::fptrunc_round: { 6928 // Get the last argument, the metadata and convert it to an integer in the 6929 // call 6930 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6931 std::optional<RoundingMode> RoundMode = 6932 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6933 6934 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6935 6936 // Propagate fast-math-flags from IR to node(s). 6937 SDNodeFlags Flags; 6938 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6939 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6940 6941 SDValue Result; 6942 Result = DAG.getNode( 6943 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6944 DAG.getTargetConstant((int)*RoundMode, sdl, 6945 TLI.getPointerTy(DAG.getDataLayout()))); 6946 setValue(&I, Result); 6947 6948 return; 6949 } 6950 case Intrinsic::fmuladd: { 6951 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6952 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6953 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6954 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6955 getValue(I.getArgOperand(0)).getValueType(), 6956 getValue(I.getArgOperand(0)), 6957 getValue(I.getArgOperand(1)), 6958 getValue(I.getArgOperand(2)), Flags)); 6959 } else { 6960 // TODO: Intrinsic calls should have fast-math-flags. 6961 SDValue Mul = DAG.getNode( 6962 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6963 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6964 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6965 getValue(I.getArgOperand(0)).getValueType(), 6966 Mul, getValue(I.getArgOperand(2)), Flags); 6967 setValue(&I, Add); 6968 } 6969 return; 6970 } 6971 case Intrinsic::convert_to_fp16: 6972 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6973 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6974 getValue(I.getArgOperand(0)), 6975 DAG.getTargetConstant(0, sdl, 6976 MVT::i32)))); 6977 return; 6978 case Intrinsic::convert_from_fp16: 6979 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6980 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6981 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6982 getValue(I.getArgOperand(0))))); 6983 return; 6984 case Intrinsic::fptosi_sat: { 6985 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6986 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6987 getValue(I.getArgOperand(0)), 6988 DAG.getValueType(VT.getScalarType()))); 6989 return; 6990 } 6991 case Intrinsic::fptoui_sat: { 6992 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6993 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6994 getValue(I.getArgOperand(0)), 6995 DAG.getValueType(VT.getScalarType()))); 6996 return; 6997 } 6998 case Intrinsic::set_rounding: 6999 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 7000 {getRoot(), getValue(I.getArgOperand(0))}); 7001 setValue(&I, Res); 7002 DAG.setRoot(Res.getValue(0)); 7003 return; 7004 case Intrinsic::is_fpclass: { 7005 const DataLayout DLayout = DAG.getDataLayout(); 7006 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7007 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7008 FPClassTest Test = static_cast<FPClassTest>( 7009 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7010 MachineFunction &MF = DAG.getMachineFunction(); 7011 const Function &F = MF.getFunction(); 7012 SDValue Op = getValue(I.getArgOperand(0)); 7013 SDNodeFlags Flags; 7014 Flags.setNoFPExcept( 7015 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7016 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7017 // expansion can use illegal types. Making expansion early allows 7018 // legalizing these types prior to selection. 7019 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 7020 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7021 setValue(&I, Result); 7022 return; 7023 } 7024 7025 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7026 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7027 setValue(&I, V); 7028 return; 7029 } 7030 case Intrinsic::get_fpenv: { 7031 const DataLayout DLayout = DAG.getDataLayout(); 7032 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7033 Align TempAlign = DAG.getEVTAlign(EnvVT); 7034 SDValue Chain = getRoot(); 7035 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7036 // and temporary storage in stack. 7037 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7038 Res = DAG.getNode( 7039 ISD::GET_FPENV, sdl, 7040 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7041 MVT::Other), 7042 Chain); 7043 } else { 7044 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7045 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7046 auto MPI = 7047 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7048 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7049 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7050 TempAlign); 7051 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7052 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7053 } 7054 setValue(&I, Res); 7055 DAG.setRoot(Res.getValue(1)); 7056 return; 7057 } 7058 case Intrinsic::set_fpenv: { 7059 const DataLayout DLayout = DAG.getDataLayout(); 7060 SDValue Env = getValue(I.getArgOperand(0)); 7061 EVT EnvVT = Env.getValueType(); 7062 Align TempAlign = DAG.getEVTAlign(EnvVT); 7063 SDValue Chain = getRoot(); 7064 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7065 // environment from memory. 7066 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7067 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7068 } else { 7069 // Allocate space in stack, copy environment bits into it and use this 7070 // memory in SET_FPENV_MEM. 7071 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7072 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7073 auto MPI = 7074 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7075 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7076 MachineMemOperand::MOStore); 7077 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7078 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7079 TempAlign); 7080 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7081 } 7082 DAG.setRoot(Chain); 7083 return; 7084 } 7085 case Intrinsic::reset_fpenv: 7086 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7087 return; 7088 case Intrinsic::get_fpmode: 7089 Res = DAG.getNode( 7090 ISD::GET_FPMODE, sdl, 7091 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7092 MVT::Other), 7093 DAG.getRoot()); 7094 setValue(&I, Res); 7095 DAG.setRoot(Res.getValue(1)); 7096 return; 7097 case Intrinsic::set_fpmode: 7098 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7099 getValue(I.getArgOperand(0))); 7100 DAG.setRoot(Res); 7101 return; 7102 case Intrinsic::reset_fpmode: { 7103 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7104 DAG.setRoot(Res); 7105 return; 7106 } 7107 case Intrinsic::pcmarker: { 7108 SDValue Tmp = getValue(I.getArgOperand(0)); 7109 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7110 return; 7111 } 7112 case Intrinsic::readcyclecounter: { 7113 SDValue Op = getRoot(); 7114 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7115 DAG.getVTList(MVT::i64, MVT::Other), Op); 7116 setValue(&I, Res); 7117 DAG.setRoot(Res.getValue(1)); 7118 return; 7119 } 7120 case Intrinsic::readsteadycounter: { 7121 SDValue Op = getRoot(); 7122 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7123 DAG.getVTList(MVT::i64, MVT::Other), Op); 7124 setValue(&I, Res); 7125 DAG.setRoot(Res.getValue(1)); 7126 return; 7127 } 7128 case Intrinsic::bitreverse: 7129 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7130 getValue(I.getArgOperand(0)).getValueType(), 7131 getValue(I.getArgOperand(0)))); 7132 return; 7133 case Intrinsic::bswap: 7134 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7135 getValue(I.getArgOperand(0)).getValueType(), 7136 getValue(I.getArgOperand(0)))); 7137 return; 7138 case Intrinsic::cttz: { 7139 SDValue Arg = getValue(I.getArgOperand(0)); 7140 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7141 EVT Ty = Arg.getValueType(); 7142 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7143 sdl, Ty, Arg)); 7144 return; 7145 } 7146 case Intrinsic::ctlz: { 7147 SDValue Arg = getValue(I.getArgOperand(0)); 7148 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7149 EVT Ty = Arg.getValueType(); 7150 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7151 sdl, Ty, Arg)); 7152 return; 7153 } 7154 case Intrinsic::ctpop: { 7155 SDValue Arg = getValue(I.getArgOperand(0)); 7156 EVT Ty = Arg.getValueType(); 7157 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7158 return; 7159 } 7160 case Intrinsic::fshl: 7161 case Intrinsic::fshr: { 7162 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7163 SDValue X = getValue(I.getArgOperand(0)); 7164 SDValue Y = getValue(I.getArgOperand(1)); 7165 SDValue Z = getValue(I.getArgOperand(2)); 7166 EVT VT = X.getValueType(); 7167 7168 if (X == Y) { 7169 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7170 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7171 } else { 7172 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7173 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7174 } 7175 return; 7176 } 7177 case Intrinsic::sadd_sat: { 7178 SDValue Op1 = getValue(I.getArgOperand(0)); 7179 SDValue Op2 = getValue(I.getArgOperand(1)); 7180 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7181 return; 7182 } 7183 case Intrinsic::uadd_sat: { 7184 SDValue Op1 = getValue(I.getArgOperand(0)); 7185 SDValue Op2 = getValue(I.getArgOperand(1)); 7186 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7187 return; 7188 } 7189 case Intrinsic::ssub_sat: { 7190 SDValue Op1 = getValue(I.getArgOperand(0)); 7191 SDValue Op2 = getValue(I.getArgOperand(1)); 7192 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7193 return; 7194 } 7195 case Intrinsic::usub_sat: { 7196 SDValue Op1 = getValue(I.getArgOperand(0)); 7197 SDValue Op2 = getValue(I.getArgOperand(1)); 7198 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7199 return; 7200 } 7201 case Intrinsic::sshl_sat: { 7202 SDValue Op1 = getValue(I.getArgOperand(0)); 7203 SDValue Op2 = getValue(I.getArgOperand(1)); 7204 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7205 return; 7206 } 7207 case Intrinsic::ushl_sat: { 7208 SDValue Op1 = getValue(I.getArgOperand(0)); 7209 SDValue Op2 = getValue(I.getArgOperand(1)); 7210 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7211 return; 7212 } 7213 case Intrinsic::smul_fix: 7214 case Intrinsic::umul_fix: 7215 case Intrinsic::smul_fix_sat: 7216 case Intrinsic::umul_fix_sat: { 7217 SDValue Op1 = getValue(I.getArgOperand(0)); 7218 SDValue Op2 = getValue(I.getArgOperand(1)); 7219 SDValue Op3 = getValue(I.getArgOperand(2)); 7220 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7221 Op1.getValueType(), Op1, Op2, Op3)); 7222 return; 7223 } 7224 case Intrinsic::sdiv_fix: 7225 case Intrinsic::udiv_fix: 7226 case Intrinsic::sdiv_fix_sat: 7227 case Intrinsic::udiv_fix_sat: { 7228 SDValue Op1 = getValue(I.getArgOperand(0)); 7229 SDValue Op2 = getValue(I.getArgOperand(1)); 7230 SDValue Op3 = getValue(I.getArgOperand(2)); 7231 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7232 Op1, Op2, Op3, DAG, TLI)); 7233 return; 7234 } 7235 case Intrinsic::smax: { 7236 SDValue Op1 = getValue(I.getArgOperand(0)); 7237 SDValue Op2 = getValue(I.getArgOperand(1)); 7238 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7239 return; 7240 } 7241 case Intrinsic::smin: { 7242 SDValue Op1 = getValue(I.getArgOperand(0)); 7243 SDValue Op2 = getValue(I.getArgOperand(1)); 7244 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7245 return; 7246 } 7247 case Intrinsic::umax: { 7248 SDValue Op1 = getValue(I.getArgOperand(0)); 7249 SDValue Op2 = getValue(I.getArgOperand(1)); 7250 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7251 return; 7252 } 7253 case Intrinsic::umin: { 7254 SDValue Op1 = getValue(I.getArgOperand(0)); 7255 SDValue Op2 = getValue(I.getArgOperand(1)); 7256 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7257 return; 7258 } 7259 case Intrinsic::abs: { 7260 // TODO: Preserve "int min is poison" arg in SDAG? 7261 SDValue Op1 = getValue(I.getArgOperand(0)); 7262 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7263 return; 7264 } 7265 case Intrinsic::scmp: { 7266 SDValue Op1 = getValue(I.getArgOperand(0)); 7267 SDValue Op2 = getValue(I.getArgOperand(1)); 7268 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7269 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7270 break; 7271 } 7272 case Intrinsic::ucmp: { 7273 SDValue Op1 = getValue(I.getArgOperand(0)); 7274 SDValue Op2 = getValue(I.getArgOperand(1)); 7275 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7276 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7277 break; 7278 } 7279 case Intrinsic::stacksave: { 7280 SDValue Op = getRoot(); 7281 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7282 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7283 setValue(&I, Res); 7284 DAG.setRoot(Res.getValue(1)); 7285 return; 7286 } 7287 case Intrinsic::stackrestore: 7288 Res = getValue(I.getArgOperand(0)); 7289 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7290 return; 7291 case Intrinsic::get_dynamic_area_offset: { 7292 SDValue Op = getRoot(); 7293 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7294 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7295 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7296 // target. 7297 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7298 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7299 " intrinsic!"); 7300 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7301 Op); 7302 DAG.setRoot(Op); 7303 setValue(&I, Res); 7304 return; 7305 } 7306 case Intrinsic::stackguard: { 7307 MachineFunction &MF = DAG.getMachineFunction(); 7308 const Module &M = *MF.getFunction().getParent(); 7309 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7310 SDValue Chain = getRoot(); 7311 if (TLI.useLoadStackGuardNode()) { 7312 Res = getLoadStackGuard(DAG, sdl, Chain); 7313 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7314 } else { 7315 const Value *Global = TLI.getSDagStackGuard(M); 7316 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7317 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7318 MachinePointerInfo(Global, 0), Align, 7319 MachineMemOperand::MOVolatile); 7320 } 7321 if (TLI.useStackGuardXorFP()) 7322 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7323 DAG.setRoot(Chain); 7324 setValue(&I, Res); 7325 return; 7326 } 7327 case Intrinsic::stackprotector: { 7328 // Emit code into the DAG to store the stack guard onto the stack. 7329 MachineFunction &MF = DAG.getMachineFunction(); 7330 MachineFrameInfo &MFI = MF.getFrameInfo(); 7331 SDValue Src, Chain = getRoot(); 7332 7333 if (TLI.useLoadStackGuardNode()) 7334 Src = getLoadStackGuard(DAG, sdl, Chain); 7335 else 7336 Src = getValue(I.getArgOperand(0)); // The guard's value. 7337 7338 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7339 7340 int FI = FuncInfo.StaticAllocaMap[Slot]; 7341 MFI.setStackProtectorIndex(FI); 7342 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7343 7344 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7345 7346 // Store the stack protector onto the stack. 7347 Res = DAG.getStore( 7348 Chain, sdl, Src, FIN, 7349 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7350 MaybeAlign(), MachineMemOperand::MOVolatile); 7351 setValue(&I, Res); 7352 DAG.setRoot(Res); 7353 return; 7354 } 7355 case Intrinsic::objectsize: 7356 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7357 7358 case Intrinsic::is_constant: 7359 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7360 7361 case Intrinsic::annotation: 7362 case Intrinsic::ptr_annotation: 7363 case Intrinsic::launder_invariant_group: 7364 case Intrinsic::strip_invariant_group: 7365 // Drop the intrinsic, but forward the value 7366 setValue(&I, getValue(I.getOperand(0))); 7367 return; 7368 7369 case Intrinsic::assume: 7370 case Intrinsic::experimental_noalias_scope_decl: 7371 case Intrinsic::var_annotation: 7372 case Intrinsic::sideeffect: 7373 // Discard annotate attributes, noalias scope declarations, assumptions, and 7374 // artificial side-effects. 7375 return; 7376 7377 case Intrinsic::codeview_annotation: { 7378 // Emit a label associated with this metadata. 7379 MachineFunction &MF = DAG.getMachineFunction(); 7380 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7381 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7382 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7383 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7384 DAG.setRoot(Res); 7385 return; 7386 } 7387 7388 case Intrinsic::init_trampoline: { 7389 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7390 7391 SDValue Ops[6]; 7392 Ops[0] = getRoot(); 7393 Ops[1] = getValue(I.getArgOperand(0)); 7394 Ops[2] = getValue(I.getArgOperand(1)); 7395 Ops[3] = getValue(I.getArgOperand(2)); 7396 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7397 Ops[5] = DAG.getSrcValue(F); 7398 7399 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7400 7401 DAG.setRoot(Res); 7402 return; 7403 } 7404 case Intrinsic::adjust_trampoline: 7405 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7406 TLI.getPointerTy(DAG.getDataLayout()), 7407 getValue(I.getArgOperand(0)))); 7408 return; 7409 case Intrinsic::gcroot: { 7410 assert(DAG.getMachineFunction().getFunction().hasGC() && 7411 "only valid in functions with gc specified, enforced by Verifier"); 7412 assert(GFI && "implied by previous"); 7413 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7414 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7415 7416 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7417 GFI->addStackRoot(FI->getIndex(), TypeMap); 7418 return; 7419 } 7420 case Intrinsic::gcread: 7421 case Intrinsic::gcwrite: 7422 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7423 case Intrinsic::get_rounding: 7424 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7425 setValue(&I, Res); 7426 DAG.setRoot(Res.getValue(1)); 7427 return; 7428 7429 case Intrinsic::expect: 7430 // Just replace __builtin_expect(exp, c) with EXP. 7431 setValue(&I, getValue(I.getArgOperand(0))); 7432 return; 7433 7434 case Intrinsic::ubsantrap: 7435 case Intrinsic::debugtrap: 7436 case Intrinsic::trap: { 7437 StringRef TrapFuncName = 7438 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7439 if (TrapFuncName.empty()) { 7440 switch (Intrinsic) { 7441 case Intrinsic::trap: 7442 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7443 break; 7444 case Intrinsic::debugtrap: 7445 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7446 break; 7447 case Intrinsic::ubsantrap: 7448 DAG.setRoot(DAG.getNode( 7449 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7450 DAG.getTargetConstant( 7451 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7452 MVT::i32))); 7453 break; 7454 default: llvm_unreachable("unknown trap intrinsic"); 7455 } 7456 return; 7457 } 7458 TargetLowering::ArgListTy Args; 7459 if (Intrinsic == Intrinsic::ubsantrap) { 7460 Args.push_back(TargetLoweringBase::ArgListEntry()); 7461 Args[0].Val = I.getArgOperand(0); 7462 Args[0].Node = getValue(Args[0].Val); 7463 Args[0].Ty = Args[0].Val->getType(); 7464 } 7465 7466 TargetLowering::CallLoweringInfo CLI(DAG); 7467 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7468 CallingConv::C, I.getType(), 7469 DAG.getExternalSymbol(TrapFuncName.data(), 7470 TLI.getPointerTy(DAG.getDataLayout())), 7471 std::move(Args)); 7472 7473 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7474 DAG.setRoot(Result.second); 7475 return; 7476 } 7477 7478 case Intrinsic::allow_runtime_check: 7479 case Intrinsic::allow_ubsan_check: 7480 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7481 return; 7482 7483 case Intrinsic::uadd_with_overflow: 7484 case Intrinsic::sadd_with_overflow: 7485 case Intrinsic::usub_with_overflow: 7486 case Intrinsic::ssub_with_overflow: 7487 case Intrinsic::umul_with_overflow: 7488 case Intrinsic::smul_with_overflow: { 7489 ISD::NodeType Op; 7490 switch (Intrinsic) { 7491 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7492 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7493 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7494 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7495 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7496 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7497 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7498 } 7499 SDValue Op1 = getValue(I.getArgOperand(0)); 7500 SDValue Op2 = getValue(I.getArgOperand(1)); 7501 7502 EVT ResultVT = Op1.getValueType(); 7503 EVT OverflowVT = MVT::i1; 7504 if (ResultVT.isVector()) 7505 OverflowVT = EVT::getVectorVT( 7506 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7507 7508 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7509 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7510 return; 7511 } 7512 case Intrinsic::prefetch: { 7513 SDValue Ops[5]; 7514 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7515 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7516 Ops[0] = DAG.getRoot(); 7517 Ops[1] = getValue(I.getArgOperand(0)); 7518 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7519 MVT::i32); 7520 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7521 MVT::i32); 7522 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7523 MVT::i32); 7524 SDValue Result = DAG.getMemIntrinsicNode( 7525 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7526 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7527 /* align */ std::nullopt, Flags); 7528 7529 // Chain the prefetch in parallel with any pending loads, to stay out of 7530 // the way of later optimizations. 7531 PendingLoads.push_back(Result); 7532 Result = getRoot(); 7533 DAG.setRoot(Result); 7534 return; 7535 } 7536 case Intrinsic::lifetime_start: 7537 case Intrinsic::lifetime_end: { 7538 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7539 // Stack coloring is not enabled in O0, discard region information. 7540 if (TM.getOptLevel() == CodeGenOptLevel::None) 7541 return; 7542 7543 const int64_t ObjectSize = 7544 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7545 Value *const ObjectPtr = I.getArgOperand(1); 7546 SmallVector<const Value *, 4> Allocas; 7547 getUnderlyingObjects(ObjectPtr, Allocas); 7548 7549 for (const Value *Alloca : Allocas) { 7550 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7551 7552 // Could not find an Alloca. 7553 if (!LifetimeObject) 7554 continue; 7555 7556 // First check that the Alloca is static, otherwise it won't have a 7557 // valid frame index. 7558 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7559 if (SI == FuncInfo.StaticAllocaMap.end()) 7560 return; 7561 7562 const int FrameIndex = SI->second; 7563 int64_t Offset; 7564 if (GetPointerBaseWithConstantOffset( 7565 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7566 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7567 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7568 Offset); 7569 DAG.setRoot(Res); 7570 } 7571 return; 7572 } 7573 case Intrinsic::pseudoprobe: { 7574 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7575 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7576 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7577 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7578 DAG.setRoot(Res); 7579 return; 7580 } 7581 case Intrinsic::invariant_start: 7582 // Discard region information. 7583 setValue(&I, 7584 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7585 return; 7586 case Intrinsic::invariant_end: 7587 // Discard region information. 7588 return; 7589 case Intrinsic::clear_cache: { 7590 SDValue InputChain = DAG.getRoot(); 7591 SDValue StartVal = getValue(I.getArgOperand(0)); 7592 SDValue EndVal = getValue(I.getArgOperand(1)); 7593 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7594 {InputChain, StartVal, EndVal}); 7595 setValue(&I, Res); 7596 DAG.setRoot(Res); 7597 return; 7598 } 7599 case Intrinsic::donothing: 7600 case Intrinsic::seh_try_begin: 7601 case Intrinsic::seh_scope_begin: 7602 case Intrinsic::seh_try_end: 7603 case Intrinsic::seh_scope_end: 7604 // ignore 7605 return; 7606 case Intrinsic::experimental_stackmap: 7607 visitStackmap(I); 7608 return; 7609 case Intrinsic::experimental_patchpoint_void: 7610 case Intrinsic::experimental_patchpoint: 7611 visitPatchpoint(I); 7612 return; 7613 case Intrinsic::experimental_gc_statepoint: 7614 LowerStatepoint(cast<GCStatepointInst>(I)); 7615 return; 7616 case Intrinsic::experimental_gc_result: 7617 visitGCResult(cast<GCResultInst>(I)); 7618 return; 7619 case Intrinsic::experimental_gc_relocate: 7620 visitGCRelocate(cast<GCRelocateInst>(I)); 7621 return; 7622 case Intrinsic::instrprof_cover: 7623 llvm_unreachable("instrprof failed to lower a cover"); 7624 case Intrinsic::instrprof_increment: 7625 llvm_unreachable("instrprof failed to lower an increment"); 7626 case Intrinsic::instrprof_timestamp: 7627 llvm_unreachable("instrprof failed to lower a timestamp"); 7628 case Intrinsic::instrprof_value_profile: 7629 llvm_unreachable("instrprof failed to lower a value profiling call"); 7630 case Intrinsic::instrprof_mcdc_parameters: 7631 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7632 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7633 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7634 case Intrinsic::localescape: { 7635 MachineFunction &MF = DAG.getMachineFunction(); 7636 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7637 7638 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7639 // is the same on all targets. 7640 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7641 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7642 if (isa<ConstantPointerNull>(Arg)) 7643 continue; // Skip null pointers. They represent a hole in index space. 7644 AllocaInst *Slot = cast<AllocaInst>(Arg); 7645 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7646 "can only escape static allocas"); 7647 int FI = FuncInfo.StaticAllocaMap[Slot]; 7648 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7649 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7650 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7651 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7652 .addSym(FrameAllocSym) 7653 .addFrameIndex(FI); 7654 } 7655 7656 return; 7657 } 7658 7659 case Intrinsic::localrecover: { 7660 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7661 MachineFunction &MF = DAG.getMachineFunction(); 7662 7663 // Get the symbol that defines the frame offset. 7664 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7665 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7666 unsigned IdxVal = 7667 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7668 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7669 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7670 7671 Value *FP = I.getArgOperand(1); 7672 SDValue FPVal = getValue(FP); 7673 EVT PtrVT = FPVal.getValueType(); 7674 7675 // Create a MCSymbol for the label to avoid any target lowering 7676 // that would make this PC relative. 7677 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7678 SDValue OffsetVal = 7679 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7680 7681 // Add the offset to the FP. 7682 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7683 setValue(&I, Add); 7684 7685 return; 7686 } 7687 7688 case Intrinsic::eh_exceptionpointer: 7689 case Intrinsic::eh_exceptioncode: { 7690 // Get the exception pointer vreg, copy from it, and resize it to fit. 7691 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7692 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7693 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7694 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7695 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7696 if (Intrinsic == Intrinsic::eh_exceptioncode) 7697 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7698 setValue(&I, N); 7699 return; 7700 } 7701 case Intrinsic::xray_customevent: { 7702 // Here we want to make sure that the intrinsic behaves as if it has a 7703 // specific calling convention. 7704 const auto &Triple = DAG.getTarget().getTargetTriple(); 7705 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7706 return; 7707 7708 SmallVector<SDValue, 8> Ops; 7709 7710 // We want to say that we always want the arguments in registers. 7711 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7712 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7713 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7714 SDValue Chain = getRoot(); 7715 Ops.push_back(LogEntryVal); 7716 Ops.push_back(StrSizeVal); 7717 Ops.push_back(Chain); 7718 7719 // We need to enforce the calling convention for the callsite, so that 7720 // argument ordering is enforced correctly, and that register allocation can 7721 // see that some registers may be assumed clobbered and have to preserve 7722 // them across calls to the intrinsic. 7723 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7724 sdl, NodeTys, Ops); 7725 SDValue patchableNode = SDValue(MN, 0); 7726 DAG.setRoot(patchableNode); 7727 setValue(&I, patchableNode); 7728 return; 7729 } 7730 case Intrinsic::xray_typedevent: { 7731 // Here we want to make sure that the intrinsic behaves as if it has a 7732 // specific calling convention. 7733 const auto &Triple = DAG.getTarget().getTargetTriple(); 7734 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7735 return; 7736 7737 SmallVector<SDValue, 8> Ops; 7738 7739 // We want to say that we always want the arguments in registers. 7740 // It's unclear to me how manipulating the selection DAG here forces callers 7741 // to provide arguments in registers instead of on the stack. 7742 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7743 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7744 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7745 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7746 SDValue Chain = getRoot(); 7747 Ops.push_back(LogTypeId); 7748 Ops.push_back(LogEntryVal); 7749 Ops.push_back(StrSizeVal); 7750 Ops.push_back(Chain); 7751 7752 // We need to enforce the calling convention for the callsite, so that 7753 // argument ordering is enforced correctly, and that register allocation can 7754 // see that some registers may be assumed clobbered and have to preserve 7755 // them across calls to the intrinsic. 7756 MachineSDNode *MN = DAG.getMachineNode( 7757 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7758 SDValue patchableNode = SDValue(MN, 0); 7759 DAG.setRoot(patchableNode); 7760 setValue(&I, patchableNode); 7761 return; 7762 } 7763 case Intrinsic::experimental_deoptimize: 7764 LowerDeoptimizeCall(&I); 7765 return; 7766 case Intrinsic::experimental_stepvector: 7767 visitStepVector(I); 7768 return; 7769 case Intrinsic::vector_reduce_fadd: 7770 case Intrinsic::vector_reduce_fmul: 7771 case Intrinsic::vector_reduce_add: 7772 case Intrinsic::vector_reduce_mul: 7773 case Intrinsic::vector_reduce_and: 7774 case Intrinsic::vector_reduce_or: 7775 case Intrinsic::vector_reduce_xor: 7776 case Intrinsic::vector_reduce_smax: 7777 case Intrinsic::vector_reduce_smin: 7778 case Intrinsic::vector_reduce_umax: 7779 case Intrinsic::vector_reduce_umin: 7780 case Intrinsic::vector_reduce_fmax: 7781 case Intrinsic::vector_reduce_fmin: 7782 case Intrinsic::vector_reduce_fmaximum: 7783 case Intrinsic::vector_reduce_fminimum: 7784 visitVectorReduce(I, Intrinsic); 7785 return; 7786 7787 case Intrinsic::icall_branch_funnel: { 7788 SmallVector<SDValue, 16> Ops; 7789 Ops.push_back(getValue(I.getArgOperand(0))); 7790 7791 int64_t Offset; 7792 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7793 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7794 if (!Base) 7795 report_fatal_error( 7796 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7797 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7798 7799 struct BranchFunnelTarget { 7800 int64_t Offset; 7801 SDValue Target; 7802 }; 7803 SmallVector<BranchFunnelTarget, 8> Targets; 7804 7805 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7806 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7807 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7808 if (ElemBase != Base) 7809 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7810 "to the same GlobalValue"); 7811 7812 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7813 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7814 if (!GA) 7815 report_fatal_error( 7816 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7817 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7818 GA->getGlobal(), sdl, Val.getValueType(), 7819 GA->getOffset())}); 7820 } 7821 llvm::sort(Targets, 7822 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7823 return T1.Offset < T2.Offset; 7824 }); 7825 7826 for (auto &T : Targets) { 7827 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7828 Ops.push_back(T.Target); 7829 } 7830 7831 Ops.push_back(DAG.getRoot()); // Chain 7832 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7833 MVT::Other, Ops), 7834 0); 7835 DAG.setRoot(N); 7836 setValue(&I, N); 7837 HasTailCall = true; 7838 return; 7839 } 7840 7841 case Intrinsic::wasm_landingpad_index: 7842 // Information this intrinsic contained has been transferred to 7843 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7844 // delete it now. 7845 return; 7846 7847 case Intrinsic::aarch64_settag: 7848 case Intrinsic::aarch64_settag_zero: { 7849 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7850 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7851 SDValue Val = TSI.EmitTargetCodeForSetTag( 7852 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7853 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7854 ZeroMemory); 7855 DAG.setRoot(Val); 7856 setValue(&I, Val); 7857 return; 7858 } 7859 case Intrinsic::amdgcn_cs_chain: { 7860 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7861 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7862 "Non-zero flags not supported yet"); 7863 7864 // At this point we don't care if it's amdgpu_cs_chain or 7865 // amdgpu_cs_chain_preserve. 7866 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7867 7868 Type *RetTy = I.getType(); 7869 assert(RetTy->isVoidTy() && "Should not return"); 7870 7871 SDValue Callee = getValue(I.getOperand(0)); 7872 7873 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7874 // We'll also tack the value of the EXEC mask at the end. 7875 TargetLowering::ArgListTy Args; 7876 Args.reserve(3); 7877 7878 for (unsigned Idx : {2, 3, 1}) { 7879 TargetLowering::ArgListEntry Arg; 7880 Arg.Node = getValue(I.getOperand(Idx)); 7881 Arg.Ty = I.getOperand(Idx)->getType(); 7882 Arg.setAttributes(&I, Idx); 7883 Args.push_back(Arg); 7884 } 7885 7886 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7887 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7888 Args[2].IsInReg = true; // EXEC should be inreg 7889 7890 TargetLowering::CallLoweringInfo CLI(DAG); 7891 CLI.setDebugLoc(getCurSDLoc()) 7892 .setChain(getRoot()) 7893 .setCallee(CC, RetTy, Callee, std::move(Args)) 7894 .setNoReturn(true) 7895 .setTailCall(true) 7896 .setConvergent(I.isConvergent()); 7897 CLI.CB = &I; 7898 std::pair<SDValue, SDValue> Result = 7899 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7900 (void)Result; 7901 assert(!Result.first.getNode() && !Result.second.getNode() && 7902 "Should've lowered as tail call"); 7903 7904 HasTailCall = true; 7905 return; 7906 } 7907 case Intrinsic::ptrmask: { 7908 SDValue Ptr = getValue(I.getOperand(0)); 7909 SDValue Mask = getValue(I.getOperand(1)); 7910 7911 // On arm64_32, pointers are 32 bits when stored in memory, but 7912 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7913 // match the index type, but the pointer is 64 bits, so the the mask must be 7914 // zero-extended up to 64 bits to match the pointer. 7915 EVT PtrVT = 7916 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7917 EVT MemVT = 7918 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7919 assert(PtrVT == Ptr.getValueType()); 7920 assert(MemVT == Mask.getValueType()); 7921 if (MemVT != PtrVT) 7922 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7923 7924 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7925 return; 7926 } 7927 case Intrinsic::threadlocal_address: { 7928 setValue(&I, getValue(I.getOperand(0))); 7929 return; 7930 } 7931 case Intrinsic::get_active_lane_mask: { 7932 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7933 SDValue Index = getValue(I.getOperand(0)); 7934 EVT ElementVT = Index.getValueType(); 7935 7936 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7937 visitTargetIntrinsic(I, Intrinsic); 7938 return; 7939 } 7940 7941 SDValue TripCount = getValue(I.getOperand(1)); 7942 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7943 CCVT.getVectorElementCount()); 7944 7945 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7946 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7947 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7948 SDValue VectorInduction = DAG.getNode( 7949 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7950 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7951 VectorTripCount, ISD::CondCode::SETULT); 7952 setValue(&I, SetCC); 7953 return; 7954 } 7955 case Intrinsic::experimental_get_vector_length: { 7956 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7957 "Expected positive VF"); 7958 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7959 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7960 7961 SDValue Count = getValue(I.getOperand(0)); 7962 EVT CountVT = Count.getValueType(); 7963 7964 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7965 visitTargetIntrinsic(I, Intrinsic); 7966 return; 7967 } 7968 7969 // Expand to a umin between the trip count and the maximum elements the type 7970 // can hold. 7971 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7972 7973 // Extend the trip count to at least the result VT. 7974 if (CountVT.bitsLT(VT)) { 7975 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7976 CountVT = VT; 7977 } 7978 7979 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7980 ElementCount::get(VF, IsScalable)); 7981 7982 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7983 // Clip to the result type if needed. 7984 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7985 7986 setValue(&I, Trunc); 7987 return; 7988 } 7989 case Intrinsic::experimental_vector_partial_reduce_add: { 7990 SDValue OpNode = getValue(I.getOperand(1)); 7991 EVT ReducedTy = EVT::getEVT(I.getType()); 7992 EVT FullTy = OpNode.getValueType(); 7993 7994 unsigned Stride = ReducedTy.getVectorMinNumElements(); 7995 unsigned ScaleFactor = FullTy.getVectorMinNumElements() / Stride; 7996 7997 // Collect all of the subvectors 7998 std::deque<SDValue> Subvectors; 7999 Subvectors.push_back(getValue(I.getOperand(0))); 8000 for (unsigned i = 0; i < ScaleFactor; i++) { 8001 auto SourceIndex = DAG.getVectorIdxConstant(i * Stride, sdl); 8002 Subvectors.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ReducedTy, 8003 {OpNode, SourceIndex})); 8004 } 8005 8006 // Flatten the subvector tree 8007 while (Subvectors.size() > 1) { 8008 Subvectors.push_back(DAG.getNode(ISD::ADD, sdl, ReducedTy, 8009 {Subvectors[0], Subvectors[1]})); 8010 Subvectors.pop_front(); 8011 Subvectors.pop_front(); 8012 } 8013 8014 assert(Subvectors.size() == 1 && 8015 "There should only be one subvector after tree flattening"); 8016 8017 setValue(&I, Subvectors[0]); 8018 return; 8019 } 8020 case Intrinsic::experimental_cttz_elts: { 8021 auto DL = getCurSDLoc(); 8022 SDValue Op = getValue(I.getOperand(0)); 8023 EVT OpVT = Op.getValueType(); 8024 8025 if (!TLI.shouldExpandCttzElements(OpVT)) { 8026 visitTargetIntrinsic(I, Intrinsic); 8027 return; 8028 } 8029 8030 if (OpVT.getScalarType() != MVT::i1) { 8031 // Compare the input vector elements to zero & use to count trailing zeros 8032 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8033 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8034 OpVT.getVectorElementCount()); 8035 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8036 } 8037 8038 // If the zero-is-poison flag is set, we can assume the upper limit 8039 // of the result is VF-1. 8040 bool ZeroIsPoison = 8041 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8042 ConstantRange VScaleRange(1, true); // Dummy value. 8043 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8044 VScaleRange = getVScaleRange(I.getCaller(), 64); 8045 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8046 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8047 8048 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8049 8050 // Create the new vector type & get the vector length 8051 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8052 OpVT.getVectorElementCount()); 8053 8054 SDValue VL = 8055 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8056 8057 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8058 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8059 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8060 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8061 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8062 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8063 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8064 8065 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8066 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8067 8068 setValue(&I, Ret); 8069 return; 8070 } 8071 case Intrinsic::vector_insert: { 8072 SDValue Vec = getValue(I.getOperand(0)); 8073 SDValue SubVec = getValue(I.getOperand(1)); 8074 SDValue Index = getValue(I.getOperand(2)); 8075 8076 // The intrinsic's index type is i64, but the SDNode requires an index type 8077 // suitable for the target. Convert the index as required. 8078 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8079 if (Index.getValueType() != VectorIdxTy) 8080 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8081 8082 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8083 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8084 Index)); 8085 return; 8086 } 8087 case Intrinsic::vector_extract: { 8088 SDValue Vec = getValue(I.getOperand(0)); 8089 SDValue Index = getValue(I.getOperand(1)); 8090 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8091 8092 // The intrinsic's index type is i64, but the SDNode requires an index type 8093 // suitable for the target. Convert the index as required. 8094 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8095 if (Index.getValueType() != VectorIdxTy) 8096 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8097 8098 setValue(&I, 8099 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8100 return; 8101 } 8102 case Intrinsic::vector_reverse: 8103 visitVectorReverse(I); 8104 return; 8105 case Intrinsic::vector_splice: 8106 visitVectorSplice(I); 8107 return; 8108 case Intrinsic::callbr_landingpad: 8109 visitCallBrLandingPad(I); 8110 return; 8111 case Intrinsic::vector_interleave2: 8112 visitVectorInterleave(I); 8113 return; 8114 case Intrinsic::vector_deinterleave2: 8115 visitVectorDeinterleave(I); 8116 return; 8117 case Intrinsic::experimental_vector_compress: 8118 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8119 getValue(I.getArgOperand(0)).getValueType(), 8120 getValue(I.getArgOperand(0)), 8121 getValue(I.getArgOperand(1)), 8122 getValue(I.getArgOperand(2)), Flags)); 8123 return; 8124 case Intrinsic::experimental_convergence_anchor: 8125 case Intrinsic::experimental_convergence_entry: 8126 case Intrinsic::experimental_convergence_loop: 8127 visitConvergenceControl(I, Intrinsic); 8128 return; 8129 case Intrinsic::experimental_vector_histogram_add: { 8130 visitVectorHistogram(I, Intrinsic); 8131 return; 8132 } 8133 } 8134 } 8135 8136 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8137 const ConstrainedFPIntrinsic &FPI) { 8138 SDLoc sdl = getCurSDLoc(); 8139 8140 // We do not need to serialize constrained FP intrinsics against 8141 // each other or against (nonvolatile) loads, so they can be 8142 // chained like loads. 8143 SDValue Chain = DAG.getRoot(); 8144 SmallVector<SDValue, 4> Opers; 8145 Opers.push_back(Chain); 8146 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8147 Opers.push_back(getValue(FPI.getArgOperand(I))); 8148 8149 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8150 assert(Result.getNode()->getNumValues() == 2); 8151 8152 // Push node to the appropriate list so that future instructions can be 8153 // chained up correctly. 8154 SDValue OutChain = Result.getValue(1); 8155 switch (EB) { 8156 case fp::ExceptionBehavior::ebIgnore: 8157 // The only reason why ebIgnore nodes still need to be chained is that 8158 // they might depend on the current rounding mode, and therefore must 8159 // not be moved across instruction that may change that mode. 8160 [[fallthrough]]; 8161 case fp::ExceptionBehavior::ebMayTrap: 8162 // These must not be moved across calls or instructions that may change 8163 // floating-point exception masks. 8164 PendingConstrainedFP.push_back(OutChain); 8165 break; 8166 case fp::ExceptionBehavior::ebStrict: 8167 // These must not be moved across calls or instructions that may change 8168 // floating-point exception masks or read floating-point exception flags. 8169 // In addition, they cannot be optimized out even if unused. 8170 PendingConstrainedFPStrict.push_back(OutChain); 8171 break; 8172 } 8173 }; 8174 8175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8176 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8177 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8178 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8179 8180 SDNodeFlags Flags; 8181 if (EB == fp::ExceptionBehavior::ebIgnore) 8182 Flags.setNoFPExcept(true); 8183 8184 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8185 Flags.copyFMF(*FPOp); 8186 8187 unsigned Opcode; 8188 switch (FPI.getIntrinsicID()) { 8189 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8190 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8191 case Intrinsic::INTRINSIC: \ 8192 Opcode = ISD::STRICT_##DAGN; \ 8193 break; 8194 #include "llvm/IR/ConstrainedOps.def" 8195 case Intrinsic::experimental_constrained_fmuladd: { 8196 Opcode = ISD::STRICT_FMA; 8197 // Break fmuladd into fmul and fadd. 8198 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8199 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8200 Opers.pop_back(); 8201 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8202 pushOutChain(Mul, EB); 8203 Opcode = ISD::STRICT_FADD; 8204 Opers.clear(); 8205 Opers.push_back(Mul.getValue(1)); 8206 Opers.push_back(Mul.getValue(0)); 8207 Opers.push_back(getValue(FPI.getArgOperand(2))); 8208 } 8209 break; 8210 } 8211 } 8212 8213 // A few strict DAG nodes carry additional operands that are not 8214 // set up by the default code above. 8215 switch (Opcode) { 8216 default: break; 8217 case ISD::STRICT_FP_ROUND: 8218 Opers.push_back( 8219 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8220 break; 8221 case ISD::STRICT_FSETCC: 8222 case ISD::STRICT_FSETCCS: { 8223 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8224 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8225 if (TM.Options.NoNaNsFPMath) 8226 Condition = getFCmpCodeWithoutNaN(Condition); 8227 Opers.push_back(DAG.getCondCode(Condition)); 8228 break; 8229 } 8230 } 8231 8232 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8233 pushOutChain(Result, EB); 8234 8235 SDValue FPResult = Result.getValue(0); 8236 setValue(&FPI, FPResult); 8237 } 8238 8239 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8240 std::optional<unsigned> ResOPC; 8241 switch (VPIntrin.getIntrinsicID()) { 8242 case Intrinsic::vp_ctlz: { 8243 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8244 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8245 break; 8246 } 8247 case Intrinsic::vp_cttz: { 8248 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8249 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8250 break; 8251 } 8252 case Intrinsic::vp_cttz_elts: { 8253 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8254 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8255 break; 8256 } 8257 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8258 case Intrinsic::VPID: \ 8259 ResOPC = ISD::VPSD; \ 8260 break; 8261 #include "llvm/IR/VPIntrinsics.def" 8262 } 8263 8264 if (!ResOPC) 8265 llvm_unreachable( 8266 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8267 8268 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8269 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8270 if (VPIntrin.getFastMathFlags().allowReassoc()) 8271 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8272 : ISD::VP_REDUCE_FMUL; 8273 } 8274 8275 return *ResOPC; 8276 } 8277 8278 void SelectionDAGBuilder::visitVPLoad( 8279 const VPIntrinsic &VPIntrin, EVT VT, 8280 const SmallVectorImpl<SDValue> &OpValues) { 8281 SDLoc DL = getCurSDLoc(); 8282 Value *PtrOperand = VPIntrin.getArgOperand(0); 8283 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8284 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8285 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8286 SDValue LD; 8287 // Do not serialize variable-length loads of constant memory with 8288 // anything. 8289 if (!Alignment) 8290 Alignment = DAG.getEVTAlign(VT); 8291 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8292 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8293 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8294 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8295 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8296 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8297 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8298 MMO, false /*IsExpanding */); 8299 if (AddToChain) 8300 PendingLoads.push_back(LD.getValue(1)); 8301 setValue(&VPIntrin, LD); 8302 } 8303 8304 void SelectionDAGBuilder::visitVPGather( 8305 const VPIntrinsic &VPIntrin, EVT VT, 8306 const SmallVectorImpl<SDValue> &OpValues) { 8307 SDLoc DL = getCurSDLoc(); 8308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8309 Value *PtrOperand = VPIntrin.getArgOperand(0); 8310 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8311 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8312 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8313 SDValue LD; 8314 if (!Alignment) 8315 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8316 unsigned AS = 8317 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8318 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8319 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8320 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8321 SDValue Base, Index, Scale; 8322 ISD::MemIndexType IndexType; 8323 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8324 this, VPIntrin.getParent(), 8325 VT.getScalarStoreSize()); 8326 if (!UniformBase) { 8327 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8328 Index = getValue(PtrOperand); 8329 IndexType = ISD::SIGNED_SCALED; 8330 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8331 } 8332 EVT IdxVT = Index.getValueType(); 8333 EVT EltTy = IdxVT.getVectorElementType(); 8334 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8335 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8336 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8337 } 8338 LD = DAG.getGatherVP( 8339 DAG.getVTList(VT, MVT::Other), VT, DL, 8340 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8341 IndexType); 8342 PendingLoads.push_back(LD.getValue(1)); 8343 setValue(&VPIntrin, LD); 8344 } 8345 8346 void SelectionDAGBuilder::visitVPStore( 8347 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8348 SDLoc DL = getCurSDLoc(); 8349 Value *PtrOperand = VPIntrin.getArgOperand(1); 8350 EVT VT = OpValues[0].getValueType(); 8351 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8352 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8353 SDValue ST; 8354 if (!Alignment) 8355 Alignment = DAG.getEVTAlign(VT); 8356 SDValue Ptr = OpValues[1]; 8357 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8358 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8359 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8360 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8361 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8362 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8363 /* IsTruncating */ false, /*IsCompressing*/ false); 8364 DAG.setRoot(ST); 8365 setValue(&VPIntrin, ST); 8366 } 8367 8368 void SelectionDAGBuilder::visitVPScatter( 8369 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8370 SDLoc DL = getCurSDLoc(); 8371 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8372 Value *PtrOperand = VPIntrin.getArgOperand(1); 8373 EVT VT = OpValues[0].getValueType(); 8374 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8375 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8376 SDValue ST; 8377 if (!Alignment) 8378 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8379 unsigned AS = 8380 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8381 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8382 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8383 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8384 SDValue Base, Index, Scale; 8385 ISD::MemIndexType IndexType; 8386 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8387 this, VPIntrin.getParent(), 8388 VT.getScalarStoreSize()); 8389 if (!UniformBase) { 8390 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8391 Index = getValue(PtrOperand); 8392 IndexType = ISD::SIGNED_SCALED; 8393 Scale = 8394 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8395 } 8396 EVT IdxVT = Index.getValueType(); 8397 EVT EltTy = IdxVT.getVectorElementType(); 8398 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8399 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8400 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8401 } 8402 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8403 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8404 OpValues[2], OpValues[3]}, 8405 MMO, IndexType); 8406 DAG.setRoot(ST); 8407 setValue(&VPIntrin, ST); 8408 } 8409 8410 void SelectionDAGBuilder::visitVPStridedLoad( 8411 const VPIntrinsic &VPIntrin, EVT VT, 8412 const SmallVectorImpl<SDValue> &OpValues) { 8413 SDLoc DL = getCurSDLoc(); 8414 Value *PtrOperand = VPIntrin.getArgOperand(0); 8415 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8416 if (!Alignment) 8417 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8418 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8419 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8420 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8421 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8422 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8423 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8424 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8425 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8426 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8427 8428 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8429 OpValues[2], OpValues[3], MMO, 8430 false /*IsExpanding*/); 8431 8432 if (AddToChain) 8433 PendingLoads.push_back(LD.getValue(1)); 8434 setValue(&VPIntrin, LD); 8435 } 8436 8437 void SelectionDAGBuilder::visitVPStridedStore( 8438 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8439 SDLoc DL = getCurSDLoc(); 8440 Value *PtrOperand = VPIntrin.getArgOperand(1); 8441 EVT VT = OpValues[0].getValueType(); 8442 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8443 if (!Alignment) 8444 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8445 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8446 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8447 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8448 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8449 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8450 8451 SDValue ST = DAG.getStridedStoreVP( 8452 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8453 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8454 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8455 /*IsCompressing*/ false); 8456 8457 DAG.setRoot(ST); 8458 setValue(&VPIntrin, ST); 8459 } 8460 8461 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8463 SDLoc DL = getCurSDLoc(); 8464 8465 ISD::CondCode Condition; 8466 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8467 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8468 if (IsFP) { 8469 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8470 // flags, but calls that don't return floating-point types can't be 8471 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8472 Condition = getFCmpCondCode(CondCode); 8473 if (TM.Options.NoNaNsFPMath) 8474 Condition = getFCmpCodeWithoutNaN(Condition); 8475 } else { 8476 Condition = getICmpCondCode(CondCode); 8477 } 8478 8479 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8480 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8481 // #2 is the condition code 8482 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8483 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8484 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8485 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8486 "Unexpected target EVL type"); 8487 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8488 8489 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8490 VPIntrin.getType()); 8491 setValue(&VPIntrin, 8492 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8493 } 8494 8495 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8496 const VPIntrinsic &VPIntrin) { 8497 SDLoc DL = getCurSDLoc(); 8498 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8499 8500 auto IID = VPIntrin.getIntrinsicID(); 8501 8502 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8503 return visitVPCmp(*CmpI); 8504 8505 SmallVector<EVT, 4> ValueVTs; 8506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8507 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8508 SDVTList VTs = DAG.getVTList(ValueVTs); 8509 8510 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8511 8512 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8513 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8514 "Unexpected target EVL type"); 8515 8516 // Request operands. 8517 SmallVector<SDValue, 7> OpValues; 8518 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8519 auto Op = getValue(VPIntrin.getArgOperand(I)); 8520 if (I == EVLParamPos) 8521 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8522 OpValues.push_back(Op); 8523 } 8524 8525 switch (Opcode) { 8526 default: { 8527 SDNodeFlags SDFlags; 8528 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8529 SDFlags.copyFMF(*FPMO); 8530 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8531 setValue(&VPIntrin, Result); 8532 break; 8533 } 8534 case ISD::VP_LOAD: 8535 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8536 break; 8537 case ISD::VP_GATHER: 8538 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8539 break; 8540 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8541 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8542 break; 8543 case ISD::VP_STORE: 8544 visitVPStore(VPIntrin, OpValues); 8545 break; 8546 case ISD::VP_SCATTER: 8547 visitVPScatter(VPIntrin, OpValues); 8548 break; 8549 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8550 visitVPStridedStore(VPIntrin, OpValues); 8551 break; 8552 case ISD::VP_FMULADD: { 8553 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8554 SDNodeFlags SDFlags; 8555 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8556 SDFlags.copyFMF(*FPMO); 8557 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8558 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8559 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8560 } else { 8561 SDValue Mul = DAG.getNode( 8562 ISD::VP_FMUL, DL, VTs, 8563 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8564 SDValue Add = 8565 DAG.getNode(ISD::VP_FADD, DL, VTs, 8566 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8567 setValue(&VPIntrin, Add); 8568 } 8569 break; 8570 } 8571 case ISD::VP_IS_FPCLASS: { 8572 const DataLayout DLayout = DAG.getDataLayout(); 8573 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8574 auto Constant = OpValues[1]->getAsZExtVal(); 8575 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8576 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8577 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8578 setValue(&VPIntrin, V); 8579 return; 8580 } 8581 case ISD::VP_INTTOPTR: { 8582 SDValue N = OpValues[0]; 8583 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8584 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8585 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8586 OpValues[2]); 8587 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8588 OpValues[2]); 8589 setValue(&VPIntrin, N); 8590 break; 8591 } 8592 case ISD::VP_PTRTOINT: { 8593 SDValue N = OpValues[0]; 8594 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8595 VPIntrin.getType()); 8596 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8597 VPIntrin.getOperand(0)->getType()); 8598 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8599 OpValues[2]); 8600 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8601 OpValues[2]); 8602 setValue(&VPIntrin, N); 8603 break; 8604 } 8605 case ISD::VP_ABS: 8606 case ISD::VP_CTLZ: 8607 case ISD::VP_CTLZ_ZERO_UNDEF: 8608 case ISD::VP_CTTZ: 8609 case ISD::VP_CTTZ_ZERO_UNDEF: 8610 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8611 case ISD::VP_CTTZ_ELTS: { 8612 SDValue Result = 8613 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8614 setValue(&VPIntrin, Result); 8615 break; 8616 } 8617 } 8618 } 8619 8620 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8621 const BasicBlock *EHPadBB, 8622 MCSymbol *&BeginLabel) { 8623 MachineFunction &MF = DAG.getMachineFunction(); 8624 MachineModuleInfo &MMI = MF.getMMI(); 8625 8626 // Insert a label before the invoke call to mark the try range. This can be 8627 // used to detect deletion of the invoke via the MachineModuleInfo. 8628 BeginLabel = MF.getContext().createTempSymbol(); 8629 8630 // For SjLj, keep track of which landing pads go with which invokes 8631 // so as to maintain the ordering of pads in the LSDA. 8632 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8633 if (CallSiteIndex) { 8634 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8635 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8636 8637 // Now that the call site is handled, stop tracking it. 8638 MMI.setCurrentCallSite(0); 8639 } 8640 8641 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8642 } 8643 8644 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8645 const BasicBlock *EHPadBB, 8646 MCSymbol *BeginLabel) { 8647 assert(BeginLabel && "BeginLabel should've been set"); 8648 8649 MachineFunction &MF = DAG.getMachineFunction(); 8650 8651 // Insert a label at the end of the invoke call to mark the try range. This 8652 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8653 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8654 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8655 8656 // Inform MachineModuleInfo of range. 8657 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8658 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8659 // actually use outlined funclets and their LSDA info style. 8660 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8661 assert(II && "II should've been set"); 8662 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8663 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8664 } else if (!isScopedEHPersonality(Pers)) { 8665 assert(EHPadBB); 8666 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8667 } 8668 8669 return Chain; 8670 } 8671 8672 std::pair<SDValue, SDValue> 8673 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8674 const BasicBlock *EHPadBB) { 8675 MCSymbol *BeginLabel = nullptr; 8676 8677 if (EHPadBB) { 8678 // Both PendingLoads and PendingExports must be flushed here; 8679 // this call might not return. 8680 (void)getRoot(); 8681 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8682 CLI.setChain(getRoot()); 8683 } 8684 8685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8686 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8687 8688 assert((CLI.IsTailCall || Result.second.getNode()) && 8689 "Non-null chain expected with non-tail call!"); 8690 assert((Result.second.getNode() || !Result.first.getNode()) && 8691 "Null value expected with tail call!"); 8692 8693 if (!Result.second.getNode()) { 8694 // As a special case, a null chain means that a tail call has been emitted 8695 // and the DAG root is already updated. 8696 HasTailCall = true; 8697 8698 // Since there's no actual continuation from this block, nothing can be 8699 // relying on us setting vregs for them. 8700 PendingExports.clear(); 8701 } else { 8702 DAG.setRoot(Result.second); 8703 } 8704 8705 if (EHPadBB) { 8706 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8707 BeginLabel)); 8708 Result.second = getRoot(); 8709 } 8710 8711 return Result; 8712 } 8713 8714 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8715 bool isTailCall, bool isMustTailCall, 8716 const BasicBlock *EHPadBB, 8717 const TargetLowering::PtrAuthInfo *PAI) { 8718 auto &DL = DAG.getDataLayout(); 8719 FunctionType *FTy = CB.getFunctionType(); 8720 Type *RetTy = CB.getType(); 8721 8722 TargetLowering::ArgListTy Args; 8723 Args.reserve(CB.arg_size()); 8724 8725 const Value *SwiftErrorVal = nullptr; 8726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8727 8728 if (isTailCall) { 8729 // Avoid emitting tail calls in functions with the disable-tail-calls 8730 // attribute. 8731 auto *Caller = CB.getParent()->getParent(); 8732 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8733 "true" && !isMustTailCall) 8734 isTailCall = false; 8735 8736 // We can't tail call inside a function with a swifterror argument. Lowering 8737 // does not support this yet. It would have to move into the swifterror 8738 // register before the call. 8739 if (TLI.supportSwiftError() && 8740 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8741 isTailCall = false; 8742 } 8743 8744 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8745 TargetLowering::ArgListEntry Entry; 8746 const Value *V = *I; 8747 8748 // Skip empty types 8749 if (V->getType()->isEmptyTy()) 8750 continue; 8751 8752 SDValue ArgNode = getValue(V); 8753 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8754 8755 Entry.setAttributes(&CB, I - CB.arg_begin()); 8756 8757 // Use swifterror virtual register as input to the call. 8758 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8759 SwiftErrorVal = V; 8760 // We find the virtual register for the actual swifterror argument. 8761 // Instead of using the Value, we use the virtual register instead. 8762 Entry.Node = 8763 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8764 EVT(TLI.getPointerTy(DL))); 8765 } 8766 8767 Args.push_back(Entry); 8768 8769 // If we have an explicit sret argument that is an Instruction, (i.e., it 8770 // might point to function-local memory), we can't meaningfully tail-call. 8771 if (Entry.IsSRet && isa<Instruction>(V)) 8772 isTailCall = false; 8773 } 8774 8775 // If call site has a cfguardtarget operand bundle, create and add an 8776 // additional ArgListEntry. 8777 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8778 TargetLowering::ArgListEntry Entry; 8779 Value *V = Bundle->Inputs[0]; 8780 SDValue ArgNode = getValue(V); 8781 Entry.Node = ArgNode; 8782 Entry.Ty = V->getType(); 8783 Entry.IsCFGuardTarget = true; 8784 Args.push_back(Entry); 8785 } 8786 8787 // Check if target-independent constraints permit a tail call here. 8788 // Target-dependent constraints are checked within TLI->LowerCallTo. 8789 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8790 isTailCall = false; 8791 8792 // Disable tail calls if there is an swifterror argument. Targets have not 8793 // been updated to support tail calls. 8794 if (TLI.supportSwiftError() && SwiftErrorVal) 8795 isTailCall = false; 8796 8797 ConstantInt *CFIType = nullptr; 8798 if (CB.isIndirectCall()) { 8799 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8800 if (!TLI.supportKCFIBundles()) 8801 report_fatal_error( 8802 "Target doesn't support calls with kcfi operand bundles."); 8803 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8804 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8805 } 8806 } 8807 8808 SDValue ConvControlToken; 8809 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8810 auto *Token = Bundle->Inputs[0].get(); 8811 ConvControlToken = getValue(Token); 8812 } 8813 8814 TargetLowering::CallLoweringInfo CLI(DAG); 8815 CLI.setDebugLoc(getCurSDLoc()) 8816 .setChain(getRoot()) 8817 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8818 .setTailCall(isTailCall) 8819 .setConvergent(CB.isConvergent()) 8820 .setIsPreallocated( 8821 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8822 .setCFIType(CFIType) 8823 .setConvergenceControlToken(ConvControlToken); 8824 8825 // Set the pointer authentication info if we have it. 8826 if (PAI) { 8827 if (!TLI.supportPtrAuthBundles()) 8828 report_fatal_error( 8829 "This target doesn't support calls with ptrauth operand bundles."); 8830 CLI.setPtrAuth(*PAI); 8831 } 8832 8833 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8834 8835 if (Result.first.getNode()) { 8836 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8837 setValue(&CB, Result.first); 8838 } 8839 8840 // The last element of CLI.InVals has the SDValue for swifterror return. 8841 // Here we copy it to a virtual register and update SwiftErrorMap for 8842 // book-keeping. 8843 if (SwiftErrorVal && TLI.supportSwiftError()) { 8844 // Get the last element of InVals. 8845 SDValue Src = CLI.InVals.back(); 8846 Register VReg = 8847 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8848 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8849 DAG.setRoot(CopyNode); 8850 } 8851 } 8852 8853 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8854 SelectionDAGBuilder &Builder) { 8855 // Check to see if this load can be trivially constant folded, e.g. if the 8856 // input is from a string literal. 8857 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8858 // Cast pointer to the type we really want to load. 8859 Type *LoadTy = 8860 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8861 if (LoadVT.isVector()) 8862 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8863 8864 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8865 PointerType::getUnqual(LoadTy)); 8866 8867 if (const Constant *LoadCst = 8868 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8869 LoadTy, Builder.DAG.getDataLayout())) 8870 return Builder.getValue(LoadCst); 8871 } 8872 8873 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8874 // still constant memory, the input chain can be the entry node. 8875 SDValue Root; 8876 bool ConstantMemory = false; 8877 8878 // Do not serialize (non-volatile) loads of constant memory with anything. 8879 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8880 Root = Builder.DAG.getEntryNode(); 8881 ConstantMemory = true; 8882 } else { 8883 // Do not serialize non-volatile loads against each other. 8884 Root = Builder.DAG.getRoot(); 8885 } 8886 8887 SDValue Ptr = Builder.getValue(PtrVal); 8888 SDValue LoadVal = 8889 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8890 MachinePointerInfo(PtrVal), Align(1)); 8891 8892 if (!ConstantMemory) 8893 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8894 return LoadVal; 8895 } 8896 8897 /// Record the value for an instruction that produces an integer result, 8898 /// converting the type where necessary. 8899 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8900 SDValue Value, 8901 bool IsSigned) { 8902 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8903 I.getType(), true); 8904 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8905 setValue(&I, Value); 8906 } 8907 8908 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8909 /// true and lower it. Otherwise return false, and it will be lowered like a 8910 /// normal call. 8911 /// The caller already checked that \p I calls the appropriate LibFunc with a 8912 /// correct prototype. 8913 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8914 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8915 const Value *Size = I.getArgOperand(2); 8916 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8917 if (CSize && CSize->getZExtValue() == 0) { 8918 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8919 I.getType(), true); 8920 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8921 return true; 8922 } 8923 8924 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8925 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8926 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8927 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8928 if (Res.first.getNode()) { 8929 processIntegerCallValue(I, Res.first, true); 8930 PendingLoads.push_back(Res.second); 8931 return true; 8932 } 8933 8934 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8935 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8936 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8937 return false; 8938 8939 // If the target has a fast compare for the given size, it will return a 8940 // preferred load type for that size. Require that the load VT is legal and 8941 // that the target supports unaligned loads of that type. Otherwise, return 8942 // INVALID. 8943 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8945 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8946 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8947 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8948 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8949 // TODO: Check alignment of src and dest ptrs. 8950 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8951 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8952 if (!TLI.isTypeLegal(LVT) || 8953 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8954 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8955 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8956 } 8957 8958 return LVT; 8959 }; 8960 8961 // This turns into unaligned loads. We only do this if the target natively 8962 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8963 // we'll only produce a small number of byte loads. 8964 MVT LoadVT; 8965 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8966 switch (NumBitsToCompare) { 8967 default: 8968 return false; 8969 case 16: 8970 LoadVT = MVT::i16; 8971 break; 8972 case 32: 8973 LoadVT = MVT::i32; 8974 break; 8975 case 64: 8976 case 128: 8977 case 256: 8978 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8979 break; 8980 } 8981 8982 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8983 return false; 8984 8985 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8986 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8987 8988 // Bitcast to a wide integer type if the loads are vectors. 8989 if (LoadVT.isVector()) { 8990 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8991 LoadL = DAG.getBitcast(CmpVT, LoadL); 8992 LoadR = DAG.getBitcast(CmpVT, LoadR); 8993 } 8994 8995 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8996 processIntegerCallValue(I, Cmp, false); 8997 return true; 8998 } 8999 9000 /// See if we can lower a memchr call into an optimized form. If so, return 9001 /// true and lower it. Otherwise return false, and it will be lowered like a 9002 /// normal call. 9003 /// The caller already checked that \p I calls the appropriate LibFunc with a 9004 /// correct prototype. 9005 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9006 const Value *Src = I.getArgOperand(0); 9007 const Value *Char = I.getArgOperand(1); 9008 const Value *Length = I.getArgOperand(2); 9009 9010 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9011 std::pair<SDValue, SDValue> Res = 9012 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9013 getValue(Src), getValue(Char), getValue(Length), 9014 MachinePointerInfo(Src)); 9015 if (Res.first.getNode()) { 9016 setValue(&I, Res.first); 9017 PendingLoads.push_back(Res.second); 9018 return true; 9019 } 9020 9021 return false; 9022 } 9023 9024 /// See if we can lower a mempcpy call into an optimized form. If so, return 9025 /// true and lower it. Otherwise return false, and it will be lowered like a 9026 /// normal call. 9027 /// The caller already checked that \p I calls the appropriate LibFunc with a 9028 /// correct prototype. 9029 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9030 SDValue Dst = getValue(I.getArgOperand(0)); 9031 SDValue Src = getValue(I.getArgOperand(1)); 9032 SDValue Size = getValue(I.getArgOperand(2)); 9033 9034 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9035 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9036 // DAG::getMemcpy needs Alignment to be defined. 9037 Align Alignment = std::min(DstAlign, SrcAlign); 9038 9039 SDLoc sdl = getCurSDLoc(); 9040 9041 // In the mempcpy context we need to pass in a false value for isTailCall 9042 // because the return pointer needs to be adjusted by the size of 9043 // the copied memory. 9044 SDValue Root = getMemoryRoot(); 9045 SDValue MC = DAG.getMemcpy( 9046 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9047 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9048 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9049 assert(MC.getNode() != nullptr && 9050 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9051 DAG.setRoot(MC); 9052 9053 // Check if Size needs to be truncated or extended. 9054 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9055 9056 // Adjust return pointer to point just past the last dst byte. 9057 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9058 Dst, Size); 9059 setValue(&I, DstPlusSize); 9060 return true; 9061 } 9062 9063 /// See if we can lower a strcpy call into an optimized form. If so, return 9064 /// true and lower it, otherwise return false and it will be lowered like a 9065 /// normal call. 9066 /// The caller already checked that \p I calls the appropriate LibFunc with a 9067 /// correct prototype. 9068 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9069 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9070 9071 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9072 std::pair<SDValue, SDValue> Res = 9073 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9074 getValue(Arg0), getValue(Arg1), 9075 MachinePointerInfo(Arg0), 9076 MachinePointerInfo(Arg1), isStpcpy); 9077 if (Res.first.getNode()) { 9078 setValue(&I, Res.first); 9079 DAG.setRoot(Res.second); 9080 return true; 9081 } 9082 9083 return false; 9084 } 9085 9086 /// See if we can lower a strcmp call into an optimized form. If so, return 9087 /// true and lower it, otherwise return false and it will be lowered like a 9088 /// normal call. 9089 /// The caller already checked that \p I calls the appropriate LibFunc with a 9090 /// correct prototype. 9091 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9092 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9093 9094 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9095 std::pair<SDValue, SDValue> Res = 9096 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9097 getValue(Arg0), getValue(Arg1), 9098 MachinePointerInfo(Arg0), 9099 MachinePointerInfo(Arg1)); 9100 if (Res.first.getNode()) { 9101 processIntegerCallValue(I, Res.first, true); 9102 PendingLoads.push_back(Res.second); 9103 return true; 9104 } 9105 9106 return false; 9107 } 9108 9109 /// See if we can lower a strlen call into an optimized form. If so, return 9110 /// true and lower it, otherwise return false and it will be lowered like a 9111 /// normal call. 9112 /// The caller already checked that \p I calls the appropriate LibFunc with a 9113 /// correct prototype. 9114 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9115 const Value *Arg0 = I.getArgOperand(0); 9116 9117 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9118 std::pair<SDValue, SDValue> Res = 9119 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9120 getValue(Arg0), MachinePointerInfo(Arg0)); 9121 if (Res.first.getNode()) { 9122 processIntegerCallValue(I, Res.first, false); 9123 PendingLoads.push_back(Res.second); 9124 return true; 9125 } 9126 9127 return false; 9128 } 9129 9130 /// See if we can lower a strnlen call into an optimized form. If so, return 9131 /// true and lower it, otherwise return false and it will be lowered like a 9132 /// normal call. 9133 /// The caller already checked that \p I calls the appropriate LibFunc with a 9134 /// correct prototype. 9135 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9136 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9137 9138 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9139 std::pair<SDValue, SDValue> Res = 9140 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9141 getValue(Arg0), getValue(Arg1), 9142 MachinePointerInfo(Arg0)); 9143 if (Res.first.getNode()) { 9144 processIntegerCallValue(I, Res.first, false); 9145 PendingLoads.push_back(Res.second); 9146 return true; 9147 } 9148 9149 return false; 9150 } 9151 9152 /// See if we can lower a unary floating-point operation into an SDNode with 9153 /// the specified Opcode. If so, return true and lower it, otherwise return 9154 /// false and it will be lowered like a normal call. 9155 /// The caller already checked that \p I calls the appropriate LibFunc with a 9156 /// correct prototype. 9157 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9158 unsigned Opcode) { 9159 // We already checked this call's prototype; verify it doesn't modify errno. 9160 if (!I.onlyReadsMemory()) 9161 return false; 9162 9163 SDNodeFlags Flags; 9164 Flags.copyFMF(cast<FPMathOperator>(I)); 9165 9166 SDValue Tmp = getValue(I.getArgOperand(0)); 9167 setValue(&I, 9168 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9169 return true; 9170 } 9171 9172 /// See if we can lower a binary floating-point operation into an SDNode with 9173 /// the specified Opcode. If so, return true and lower it. Otherwise return 9174 /// false, and it will be lowered like a normal call. 9175 /// The caller already checked that \p I calls the appropriate LibFunc with a 9176 /// correct prototype. 9177 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9178 unsigned Opcode) { 9179 // We already checked this call's prototype; verify it doesn't modify errno. 9180 if (!I.onlyReadsMemory()) 9181 return false; 9182 9183 SDNodeFlags Flags; 9184 Flags.copyFMF(cast<FPMathOperator>(I)); 9185 9186 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9187 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9188 EVT VT = Tmp0.getValueType(); 9189 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9190 return true; 9191 } 9192 9193 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9194 // Handle inline assembly differently. 9195 if (I.isInlineAsm()) { 9196 visitInlineAsm(I); 9197 return; 9198 } 9199 9200 diagnoseDontCall(I); 9201 9202 if (Function *F = I.getCalledFunction()) { 9203 if (F->isDeclaration()) { 9204 // Is this an LLVM intrinsic or a target-specific intrinsic? 9205 unsigned IID = F->getIntrinsicID(); 9206 if (!IID) 9207 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9208 IID = II->getIntrinsicID(F); 9209 9210 if (IID) { 9211 visitIntrinsicCall(I, IID); 9212 return; 9213 } 9214 } 9215 9216 // Check for well-known libc/libm calls. If the function is internal, it 9217 // can't be a library call. Don't do the check if marked as nobuiltin for 9218 // some reason or the call site requires strict floating point semantics. 9219 LibFunc Func; 9220 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9221 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9222 LibInfo->hasOptimizedCodeGen(Func)) { 9223 switch (Func) { 9224 default: break; 9225 case LibFunc_bcmp: 9226 if (visitMemCmpBCmpCall(I)) 9227 return; 9228 break; 9229 case LibFunc_copysign: 9230 case LibFunc_copysignf: 9231 case LibFunc_copysignl: 9232 // We already checked this call's prototype; verify it doesn't modify 9233 // errno. 9234 if (I.onlyReadsMemory()) { 9235 SDValue LHS = getValue(I.getArgOperand(0)); 9236 SDValue RHS = getValue(I.getArgOperand(1)); 9237 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9238 LHS.getValueType(), LHS, RHS)); 9239 return; 9240 } 9241 break; 9242 case LibFunc_fabs: 9243 case LibFunc_fabsf: 9244 case LibFunc_fabsl: 9245 if (visitUnaryFloatCall(I, ISD::FABS)) 9246 return; 9247 break; 9248 case LibFunc_fmin: 9249 case LibFunc_fminf: 9250 case LibFunc_fminl: 9251 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9252 return; 9253 break; 9254 case LibFunc_fmax: 9255 case LibFunc_fmaxf: 9256 case LibFunc_fmaxl: 9257 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9258 return; 9259 break; 9260 case LibFunc_sin: 9261 case LibFunc_sinf: 9262 case LibFunc_sinl: 9263 if (visitUnaryFloatCall(I, ISD::FSIN)) 9264 return; 9265 break; 9266 case LibFunc_cos: 9267 case LibFunc_cosf: 9268 case LibFunc_cosl: 9269 if (visitUnaryFloatCall(I, ISD::FCOS)) 9270 return; 9271 break; 9272 case LibFunc_tan: 9273 case LibFunc_tanf: 9274 case LibFunc_tanl: 9275 if (visitUnaryFloatCall(I, ISD::FTAN)) 9276 return; 9277 break; 9278 case LibFunc_asin: 9279 case LibFunc_asinf: 9280 case LibFunc_asinl: 9281 if (visitUnaryFloatCall(I, ISD::FASIN)) 9282 return; 9283 break; 9284 case LibFunc_acos: 9285 case LibFunc_acosf: 9286 case LibFunc_acosl: 9287 if (visitUnaryFloatCall(I, ISD::FACOS)) 9288 return; 9289 break; 9290 case LibFunc_atan: 9291 case LibFunc_atanf: 9292 case LibFunc_atanl: 9293 if (visitUnaryFloatCall(I, ISD::FATAN)) 9294 return; 9295 break; 9296 case LibFunc_sinh: 9297 case LibFunc_sinhf: 9298 case LibFunc_sinhl: 9299 if (visitUnaryFloatCall(I, ISD::FSINH)) 9300 return; 9301 break; 9302 case LibFunc_cosh: 9303 case LibFunc_coshf: 9304 case LibFunc_coshl: 9305 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9306 return; 9307 break; 9308 case LibFunc_tanh: 9309 case LibFunc_tanhf: 9310 case LibFunc_tanhl: 9311 if (visitUnaryFloatCall(I, ISD::FTANH)) 9312 return; 9313 break; 9314 case LibFunc_sqrt: 9315 case LibFunc_sqrtf: 9316 case LibFunc_sqrtl: 9317 case LibFunc_sqrt_finite: 9318 case LibFunc_sqrtf_finite: 9319 case LibFunc_sqrtl_finite: 9320 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9321 return; 9322 break; 9323 case LibFunc_floor: 9324 case LibFunc_floorf: 9325 case LibFunc_floorl: 9326 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9327 return; 9328 break; 9329 case LibFunc_nearbyint: 9330 case LibFunc_nearbyintf: 9331 case LibFunc_nearbyintl: 9332 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9333 return; 9334 break; 9335 case LibFunc_ceil: 9336 case LibFunc_ceilf: 9337 case LibFunc_ceill: 9338 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9339 return; 9340 break; 9341 case LibFunc_rint: 9342 case LibFunc_rintf: 9343 case LibFunc_rintl: 9344 if (visitUnaryFloatCall(I, ISD::FRINT)) 9345 return; 9346 break; 9347 case LibFunc_round: 9348 case LibFunc_roundf: 9349 case LibFunc_roundl: 9350 if (visitUnaryFloatCall(I, ISD::FROUND)) 9351 return; 9352 break; 9353 case LibFunc_trunc: 9354 case LibFunc_truncf: 9355 case LibFunc_truncl: 9356 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9357 return; 9358 break; 9359 case LibFunc_log2: 9360 case LibFunc_log2f: 9361 case LibFunc_log2l: 9362 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9363 return; 9364 break; 9365 case LibFunc_exp2: 9366 case LibFunc_exp2f: 9367 case LibFunc_exp2l: 9368 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9369 return; 9370 break; 9371 case LibFunc_exp10: 9372 case LibFunc_exp10f: 9373 case LibFunc_exp10l: 9374 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9375 return; 9376 break; 9377 case LibFunc_ldexp: 9378 case LibFunc_ldexpf: 9379 case LibFunc_ldexpl: 9380 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9381 return; 9382 break; 9383 case LibFunc_memcmp: 9384 if (visitMemCmpBCmpCall(I)) 9385 return; 9386 break; 9387 case LibFunc_mempcpy: 9388 if (visitMemPCpyCall(I)) 9389 return; 9390 break; 9391 case LibFunc_memchr: 9392 if (visitMemChrCall(I)) 9393 return; 9394 break; 9395 case LibFunc_strcpy: 9396 if (visitStrCpyCall(I, false)) 9397 return; 9398 break; 9399 case LibFunc_stpcpy: 9400 if (visitStrCpyCall(I, true)) 9401 return; 9402 break; 9403 case LibFunc_strcmp: 9404 if (visitStrCmpCall(I)) 9405 return; 9406 break; 9407 case LibFunc_strlen: 9408 if (visitStrLenCall(I)) 9409 return; 9410 break; 9411 case LibFunc_strnlen: 9412 if (visitStrNLenCall(I)) 9413 return; 9414 break; 9415 } 9416 } 9417 } 9418 9419 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9420 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9421 return; 9422 } 9423 9424 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9425 // have to do anything here to lower funclet bundles. 9426 // CFGuardTarget bundles are lowered in LowerCallTo. 9427 assert(!I.hasOperandBundlesOtherThan( 9428 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9429 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9430 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9431 LLVMContext::OB_convergencectrl}) && 9432 "Cannot lower calls with arbitrary operand bundles!"); 9433 9434 SDValue Callee = getValue(I.getCalledOperand()); 9435 9436 if (I.hasDeoptState()) 9437 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9438 else 9439 // Check if we can potentially perform a tail call. More detailed checking 9440 // is be done within LowerCallTo, after more information about the call is 9441 // known. 9442 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9443 } 9444 9445 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9446 const CallBase &CB, const BasicBlock *EHPadBB) { 9447 auto PAB = CB.getOperandBundle("ptrauth"); 9448 const Value *CalleeV = CB.getCalledOperand(); 9449 9450 // Gather the call ptrauth data from the operand bundle: 9451 // [ i32 <key>, i64 <discriminator> ] 9452 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9453 const Value *Discriminator = PAB->Inputs[1]; 9454 9455 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9456 assert(Discriminator->getType()->isIntegerTy(64) && 9457 "Invalid ptrauth discriminator"); 9458 9459 // Look through ptrauth constants to find the raw callee. 9460 // Do a direct unauthenticated call if we found it and everything matches. 9461 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9462 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9463 DAG.getDataLayout())) 9464 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9465 CB.isMustTailCall(), EHPadBB); 9466 9467 // Functions should never be ptrauth-called directly. 9468 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9469 9470 // Otherwise, do an authenticated indirect call. 9471 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9472 getValue(Discriminator)}; 9473 9474 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9475 EHPadBB, &PAI); 9476 } 9477 9478 namespace { 9479 9480 /// AsmOperandInfo - This contains information for each constraint that we are 9481 /// lowering. 9482 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9483 public: 9484 /// CallOperand - If this is the result output operand or a clobber 9485 /// this is null, otherwise it is the incoming operand to the CallInst. 9486 /// This gets modified as the asm is processed. 9487 SDValue CallOperand; 9488 9489 /// AssignedRegs - If this is a register or register class operand, this 9490 /// contains the set of register corresponding to the operand. 9491 RegsForValue AssignedRegs; 9492 9493 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9494 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9495 } 9496 9497 /// Whether or not this operand accesses memory 9498 bool hasMemory(const TargetLowering &TLI) const { 9499 // Indirect operand accesses access memory. 9500 if (isIndirect) 9501 return true; 9502 9503 for (const auto &Code : Codes) 9504 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9505 return true; 9506 9507 return false; 9508 } 9509 }; 9510 9511 9512 } // end anonymous namespace 9513 9514 /// Make sure that the output operand \p OpInfo and its corresponding input 9515 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9516 /// out). 9517 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9518 SDISelAsmOperandInfo &MatchingOpInfo, 9519 SelectionDAG &DAG) { 9520 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9521 return; 9522 9523 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9524 const auto &TLI = DAG.getTargetLoweringInfo(); 9525 9526 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9527 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9528 OpInfo.ConstraintVT); 9529 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9530 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9531 MatchingOpInfo.ConstraintVT); 9532 if ((OpInfo.ConstraintVT.isInteger() != 9533 MatchingOpInfo.ConstraintVT.isInteger()) || 9534 (MatchRC.second != InputRC.second)) { 9535 // FIXME: error out in a more elegant fashion 9536 report_fatal_error("Unsupported asm: input constraint" 9537 " with a matching output constraint of" 9538 " incompatible type!"); 9539 } 9540 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9541 } 9542 9543 /// Get a direct memory input to behave well as an indirect operand. 9544 /// This may introduce stores, hence the need for a \p Chain. 9545 /// \return The (possibly updated) chain. 9546 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9547 SDISelAsmOperandInfo &OpInfo, 9548 SelectionDAG &DAG) { 9549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9550 9551 // If we don't have an indirect input, put it in the constpool if we can, 9552 // otherwise spill it to a stack slot. 9553 // TODO: This isn't quite right. We need to handle these according to 9554 // the addressing mode that the constraint wants. Also, this may take 9555 // an additional register for the computation and we don't want that 9556 // either. 9557 9558 // If the operand is a float, integer, or vector constant, spill to a 9559 // constant pool entry to get its address. 9560 const Value *OpVal = OpInfo.CallOperandVal; 9561 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9562 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9563 OpInfo.CallOperand = DAG.getConstantPool( 9564 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9565 return Chain; 9566 } 9567 9568 // Otherwise, create a stack slot and emit a store to it before the asm. 9569 Type *Ty = OpVal->getType(); 9570 auto &DL = DAG.getDataLayout(); 9571 TypeSize TySize = DL.getTypeAllocSize(Ty); 9572 MachineFunction &MF = DAG.getMachineFunction(); 9573 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9574 int StackID = 0; 9575 if (TySize.isScalable()) 9576 StackID = TFI->getStackIDForScalableVectors(); 9577 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9578 DL.getPrefTypeAlign(Ty), false, 9579 nullptr, StackID); 9580 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9581 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9582 MachinePointerInfo::getFixedStack(MF, SSFI), 9583 TLI.getMemValueType(DL, Ty)); 9584 OpInfo.CallOperand = StackSlot; 9585 9586 return Chain; 9587 } 9588 9589 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9590 /// specified operand. We prefer to assign virtual registers, to allow the 9591 /// register allocator to handle the assignment process. However, if the asm 9592 /// uses features that we can't model on machineinstrs, we have SDISel do the 9593 /// allocation. This produces generally horrible, but correct, code. 9594 /// 9595 /// OpInfo describes the operand 9596 /// RefOpInfo describes the matching operand if any, the operand otherwise 9597 static std::optional<unsigned> 9598 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9599 SDISelAsmOperandInfo &OpInfo, 9600 SDISelAsmOperandInfo &RefOpInfo) { 9601 LLVMContext &Context = *DAG.getContext(); 9602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9603 9604 MachineFunction &MF = DAG.getMachineFunction(); 9605 SmallVector<unsigned, 4> Regs; 9606 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9607 9608 // No work to do for memory/address operands. 9609 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9610 OpInfo.ConstraintType == TargetLowering::C_Address) 9611 return std::nullopt; 9612 9613 // If this is a constraint for a single physreg, or a constraint for a 9614 // register class, find it. 9615 unsigned AssignedReg; 9616 const TargetRegisterClass *RC; 9617 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9618 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9619 // RC is unset only on failure. Return immediately. 9620 if (!RC) 9621 return std::nullopt; 9622 9623 // Get the actual register value type. This is important, because the user 9624 // may have asked for (e.g.) the AX register in i32 type. We need to 9625 // remember that AX is actually i16 to get the right extension. 9626 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9627 9628 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9629 // If this is an FP operand in an integer register (or visa versa), or more 9630 // generally if the operand value disagrees with the register class we plan 9631 // to stick it in, fix the operand type. 9632 // 9633 // If this is an input value, the bitcast to the new type is done now. 9634 // Bitcast for output value is done at the end of visitInlineAsm(). 9635 if ((OpInfo.Type == InlineAsm::isOutput || 9636 OpInfo.Type == InlineAsm::isInput) && 9637 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9638 // Try to convert to the first EVT that the reg class contains. If the 9639 // types are identical size, use a bitcast to convert (e.g. two differing 9640 // vector types). Note: output bitcast is done at the end of 9641 // visitInlineAsm(). 9642 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9643 // Exclude indirect inputs while they are unsupported because the code 9644 // to perform the load is missing and thus OpInfo.CallOperand still 9645 // refers to the input address rather than the pointed-to value. 9646 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9647 OpInfo.CallOperand = 9648 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9649 OpInfo.ConstraintVT = RegVT; 9650 // If the operand is an FP value and we want it in integer registers, 9651 // use the corresponding integer type. This turns an f64 value into 9652 // i64, which can be passed with two i32 values on a 32-bit machine. 9653 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9654 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9655 if (OpInfo.Type == InlineAsm::isInput) 9656 OpInfo.CallOperand = 9657 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9658 OpInfo.ConstraintVT = VT; 9659 } 9660 } 9661 } 9662 9663 // No need to allocate a matching input constraint since the constraint it's 9664 // matching to has already been allocated. 9665 if (OpInfo.isMatchingInputConstraint()) 9666 return std::nullopt; 9667 9668 EVT ValueVT = OpInfo.ConstraintVT; 9669 if (OpInfo.ConstraintVT == MVT::Other) 9670 ValueVT = RegVT; 9671 9672 // Initialize NumRegs. 9673 unsigned NumRegs = 1; 9674 if (OpInfo.ConstraintVT != MVT::Other) 9675 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9676 9677 // If this is a constraint for a specific physical register, like {r17}, 9678 // assign it now. 9679 9680 // If this associated to a specific register, initialize iterator to correct 9681 // place. If virtual, make sure we have enough registers 9682 9683 // Initialize iterator if necessary 9684 TargetRegisterClass::iterator I = RC->begin(); 9685 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9686 9687 // Do not check for single registers. 9688 if (AssignedReg) { 9689 I = std::find(I, RC->end(), AssignedReg); 9690 if (I == RC->end()) { 9691 // RC does not contain the selected register, which indicates a 9692 // mismatch between the register and the required type/bitwidth. 9693 return {AssignedReg}; 9694 } 9695 } 9696 9697 for (; NumRegs; --NumRegs, ++I) { 9698 assert(I != RC->end() && "Ran out of registers to allocate!"); 9699 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9700 Regs.push_back(R); 9701 } 9702 9703 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9704 return std::nullopt; 9705 } 9706 9707 static unsigned 9708 findMatchingInlineAsmOperand(unsigned OperandNo, 9709 const std::vector<SDValue> &AsmNodeOperands) { 9710 // Scan until we find the definition we already emitted of this operand. 9711 unsigned CurOp = InlineAsm::Op_FirstOperand; 9712 for (; OperandNo; --OperandNo) { 9713 // Advance to the next operand. 9714 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9715 const InlineAsm::Flag F(OpFlag); 9716 assert( 9717 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9718 "Skipped past definitions?"); 9719 CurOp += F.getNumOperandRegisters() + 1; 9720 } 9721 return CurOp; 9722 } 9723 9724 namespace { 9725 9726 class ExtraFlags { 9727 unsigned Flags = 0; 9728 9729 public: 9730 explicit ExtraFlags(const CallBase &Call) { 9731 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9732 if (IA->hasSideEffects()) 9733 Flags |= InlineAsm::Extra_HasSideEffects; 9734 if (IA->isAlignStack()) 9735 Flags |= InlineAsm::Extra_IsAlignStack; 9736 if (Call.isConvergent()) 9737 Flags |= InlineAsm::Extra_IsConvergent; 9738 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9739 } 9740 9741 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9742 // Ideally, we would only check against memory constraints. However, the 9743 // meaning of an Other constraint can be target-specific and we can't easily 9744 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9745 // for Other constraints as well. 9746 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9747 OpInfo.ConstraintType == TargetLowering::C_Other) { 9748 if (OpInfo.Type == InlineAsm::isInput) 9749 Flags |= InlineAsm::Extra_MayLoad; 9750 else if (OpInfo.Type == InlineAsm::isOutput) 9751 Flags |= InlineAsm::Extra_MayStore; 9752 else if (OpInfo.Type == InlineAsm::isClobber) 9753 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9754 } 9755 } 9756 9757 unsigned get() const { return Flags; } 9758 }; 9759 9760 } // end anonymous namespace 9761 9762 static bool isFunction(SDValue Op) { 9763 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9764 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9765 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9766 9767 // In normal "call dllimport func" instruction (non-inlineasm) it force 9768 // indirect access by specifing call opcode. And usually specially print 9769 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9770 // not do in this way now. (In fact, this is similar with "Data Access" 9771 // action). So here we ignore dllimport function. 9772 if (Fn && !Fn->hasDLLImportStorageClass()) 9773 return true; 9774 } 9775 } 9776 return false; 9777 } 9778 9779 /// visitInlineAsm - Handle a call to an InlineAsm object. 9780 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9781 const BasicBlock *EHPadBB) { 9782 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9783 9784 /// ConstraintOperands - Information about all of the constraints. 9785 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9786 9787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9788 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9789 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9790 9791 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9792 // AsmDialect, MayLoad, MayStore). 9793 bool HasSideEffect = IA->hasSideEffects(); 9794 ExtraFlags ExtraInfo(Call); 9795 9796 for (auto &T : TargetConstraints) { 9797 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9798 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9799 9800 if (OpInfo.CallOperandVal) 9801 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9802 9803 if (!HasSideEffect) 9804 HasSideEffect = OpInfo.hasMemory(TLI); 9805 9806 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9807 // FIXME: Could we compute this on OpInfo rather than T? 9808 9809 // Compute the constraint code and ConstraintType to use. 9810 TLI.ComputeConstraintToUse(T, SDValue()); 9811 9812 if (T.ConstraintType == TargetLowering::C_Immediate && 9813 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9814 // We've delayed emitting a diagnostic like the "n" constraint because 9815 // inlining could cause an integer showing up. 9816 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9817 "' expects an integer constant " 9818 "expression"); 9819 9820 ExtraInfo.update(T); 9821 } 9822 9823 // We won't need to flush pending loads if this asm doesn't touch 9824 // memory and is nonvolatile. 9825 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9826 9827 bool EmitEHLabels = isa<InvokeInst>(Call); 9828 if (EmitEHLabels) { 9829 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9830 } 9831 bool IsCallBr = isa<CallBrInst>(Call); 9832 9833 if (IsCallBr || EmitEHLabels) { 9834 // If this is a callbr or invoke we need to flush pending exports since 9835 // inlineasm_br and invoke are terminators. 9836 // We need to do this before nodes are glued to the inlineasm_br node. 9837 Chain = getControlRoot(); 9838 } 9839 9840 MCSymbol *BeginLabel = nullptr; 9841 if (EmitEHLabels) { 9842 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9843 } 9844 9845 int OpNo = -1; 9846 SmallVector<StringRef> AsmStrs; 9847 IA->collectAsmStrs(AsmStrs); 9848 9849 // Second pass over the constraints: compute which constraint option to use. 9850 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9851 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9852 OpNo++; 9853 9854 // If this is an output operand with a matching input operand, look up the 9855 // matching input. If their types mismatch, e.g. one is an integer, the 9856 // other is floating point, or their sizes are different, flag it as an 9857 // error. 9858 if (OpInfo.hasMatchingInput()) { 9859 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9860 patchMatchingInput(OpInfo, Input, DAG); 9861 } 9862 9863 // Compute the constraint code and ConstraintType to use. 9864 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9865 9866 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9867 OpInfo.Type == InlineAsm::isClobber) || 9868 OpInfo.ConstraintType == TargetLowering::C_Address) 9869 continue; 9870 9871 // In Linux PIC model, there are 4 cases about value/label addressing: 9872 // 9873 // 1: Function call or Label jmp inside the module. 9874 // 2: Data access (such as global variable, static variable) inside module. 9875 // 3: Function call or Label jmp outside the module. 9876 // 4: Data access (such as global variable) outside the module. 9877 // 9878 // Due to current llvm inline asm architecture designed to not "recognize" 9879 // the asm code, there are quite troubles for us to treat mem addressing 9880 // differently for same value/adress used in different instuctions. 9881 // For example, in pic model, call a func may in plt way or direclty 9882 // pc-related, but lea/mov a function adress may use got. 9883 // 9884 // Here we try to "recognize" function call for the case 1 and case 3 in 9885 // inline asm. And try to adjust the constraint for them. 9886 // 9887 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9888 // label, so here we don't handle jmp function label now, but we need to 9889 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9890 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9891 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9892 TM.getCodeModel() != CodeModel::Large) { 9893 OpInfo.isIndirect = false; 9894 OpInfo.ConstraintType = TargetLowering::C_Address; 9895 } 9896 9897 // If this is a memory input, and if the operand is not indirect, do what we 9898 // need to provide an address for the memory input. 9899 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9900 !OpInfo.isIndirect) { 9901 assert((OpInfo.isMultipleAlternative || 9902 (OpInfo.Type == InlineAsm::isInput)) && 9903 "Can only indirectify direct input operands!"); 9904 9905 // Memory operands really want the address of the value. 9906 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9907 9908 // There is no longer a Value* corresponding to this operand. 9909 OpInfo.CallOperandVal = nullptr; 9910 9911 // It is now an indirect operand. 9912 OpInfo.isIndirect = true; 9913 } 9914 9915 } 9916 9917 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9918 std::vector<SDValue> AsmNodeOperands; 9919 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9920 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9921 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9922 9923 // If we have a !srcloc metadata node associated with it, we want to attach 9924 // this to the ultimately generated inline asm machineinstr. To do this, we 9925 // pass in the third operand as this (potentially null) inline asm MDNode. 9926 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9927 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9928 9929 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9930 // bits as operand 3. 9931 AsmNodeOperands.push_back(DAG.getTargetConstant( 9932 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9933 9934 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9935 // this, assign virtual and physical registers for inputs and otput. 9936 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9937 // Assign Registers. 9938 SDISelAsmOperandInfo &RefOpInfo = 9939 OpInfo.isMatchingInputConstraint() 9940 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9941 : OpInfo; 9942 const auto RegError = 9943 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9944 if (RegError) { 9945 const MachineFunction &MF = DAG.getMachineFunction(); 9946 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9947 const char *RegName = TRI.getName(*RegError); 9948 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9949 "' allocated for constraint '" + 9950 Twine(OpInfo.ConstraintCode) + 9951 "' does not match required type"); 9952 return; 9953 } 9954 9955 auto DetectWriteToReservedRegister = [&]() { 9956 const MachineFunction &MF = DAG.getMachineFunction(); 9957 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9958 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9959 if (Register::isPhysicalRegister(Reg) && 9960 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9961 const char *RegName = TRI.getName(Reg); 9962 emitInlineAsmError(Call, "write to reserved register '" + 9963 Twine(RegName) + "'"); 9964 return true; 9965 } 9966 } 9967 return false; 9968 }; 9969 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9970 (OpInfo.Type == InlineAsm::isInput && 9971 !OpInfo.isMatchingInputConstraint())) && 9972 "Only address as input operand is allowed."); 9973 9974 switch (OpInfo.Type) { 9975 case InlineAsm::isOutput: 9976 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9977 const InlineAsm::ConstraintCode ConstraintID = 9978 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9979 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9980 "Failed to convert memory constraint code to constraint id."); 9981 9982 // Add information to the INLINEASM node to know about this output. 9983 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9984 OpFlags.setMemConstraint(ConstraintID); 9985 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9986 MVT::i32)); 9987 AsmNodeOperands.push_back(OpInfo.CallOperand); 9988 } else { 9989 // Otherwise, this outputs to a register (directly for C_Register / 9990 // C_RegisterClass, and a target-defined fashion for 9991 // C_Immediate/C_Other). Find a register that we can use. 9992 if (OpInfo.AssignedRegs.Regs.empty()) { 9993 emitInlineAsmError( 9994 Call, "couldn't allocate output register for constraint '" + 9995 Twine(OpInfo.ConstraintCode) + "'"); 9996 return; 9997 } 9998 9999 if (DetectWriteToReservedRegister()) 10000 return; 10001 10002 // Add information to the INLINEASM node to know that this register is 10003 // set. 10004 OpInfo.AssignedRegs.AddInlineAsmOperands( 10005 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10006 : InlineAsm::Kind::RegDef, 10007 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10008 } 10009 break; 10010 10011 case InlineAsm::isInput: 10012 case InlineAsm::isLabel: { 10013 SDValue InOperandVal = OpInfo.CallOperand; 10014 10015 if (OpInfo.isMatchingInputConstraint()) { 10016 // If this is required to match an output register we have already set, 10017 // just use its register. 10018 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10019 AsmNodeOperands); 10020 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10021 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10022 if (OpInfo.isIndirect) { 10023 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10024 emitInlineAsmError(Call, "inline asm not supported yet: " 10025 "don't know how to handle tied " 10026 "indirect register inputs"); 10027 return; 10028 } 10029 10030 SmallVector<unsigned, 4> Regs; 10031 MachineFunction &MF = DAG.getMachineFunction(); 10032 MachineRegisterInfo &MRI = MF.getRegInfo(); 10033 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10034 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10035 Register TiedReg = R->getReg(); 10036 MVT RegVT = R->getSimpleValueType(0); 10037 const TargetRegisterClass *RC = 10038 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10039 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10040 : TRI.getMinimalPhysRegClass(TiedReg); 10041 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10042 Regs.push_back(MRI.createVirtualRegister(RC)); 10043 10044 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10045 10046 SDLoc dl = getCurSDLoc(); 10047 // Use the produced MatchedRegs object to 10048 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10049 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10050 OpInfo.getMatchedOperand(), dl, DAG, 10051 AsmNodeOperands); 10052 break; 10053 } 10054 10055 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10056 assert(Flag.getNumOperandRegisters() == 1 && 10057 "Unexpected number of operands"); 10058 // Add information to the INLINEASM node to know about this input. 10059 // See InlineAsm.h isUseOperandTiedToDef. 10060 Flag.clearMemConstraint(); 10061 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10062 AsmNodeOperands.push_back(DAG.getTargetConstant( 10063 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10064 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10065 break; 10066 } 10067 10068 // Treat indirect 'X' constraint as memory. 10069 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10070 OpInfo.isIndirect) 10071 OpInfo.ConstraintType = TargetLowering::C_Memory; 10072 10073 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10074 OpInfo.ConstraintType == TargetLowering::C_Other) { 10075 std::vector<SDValue> Ops; 10076 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10077 Ops, DAG); 10078 if (Ops.empty()) { 10079 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10080 if (isa<ConstantSDNode>(InOperandVal)) { 10081 emitInlineAsmError(Call, "value out of range for constraint '" + 10082 Twine(OpInfo.ConstraintCode) + "'"); 10083 return; 10084 } 10085 10086 emitInlineAsmError(Call, 10087 "invalid operand for inline asm constraint '" + 10088 Twine(OpInfo.ConstraintCode) + "'"); 10089 return; 10090 } 10091 10092 // Add information to the INLINEASM node to know about this input. 10093 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10094 AsmNodeOperands.push_back(DAG.getTargetConstant( 10095 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10096 llvm::append_range(AsmNodeOperands, Ops); 10097 break; 10098 } 10099 10100 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10101 assert((OpInfo.isIndirect || 10102 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10103 "Operand must be indirect to be a mem!"); 10104 assert(InOperandVal.getValueType() == 10105 TLI.getPointerTy(DAG.getDataLayout()) && 10106 "Memory operands expect pointer values"); 10107 10108 const InlineAsm::ConstraintCode ConstraintID = 10109 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10110 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10111 "Failed to convert memory constraint code to constraint id."); 10112 10113 // Add information to the INLINEASM node to know about this input. 10114 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10115 ResOpType.setMemConstraint(ConstraintID); 10116 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10117 getCurSDLoc(), 10118 MVT::i32)); 10119 AsmNodeOperands.push_back(InOperandVal); 10120 break; 10121 } 10122 10123 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10124 const InlineAsm::ConstraintCode ConstraintID = 10125 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10126 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10127 "Failed to convert memory constraint code to constraint id."); 10128 10129 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10130 10131 SDValue AsmOp = InOperandVal; 10132 if (isFunction(InOperandVal)) { 10133 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10134 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10135 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10136 InOperandVal.getValueType(), 10137 GA->getOffset()); 10138 } 10139 10140 // Add information to the INLINEASM node to know about this input. 10141 ResOpType.setMemConstraint(ConstraintID); 10142 10143 AsmNodeOperands.push_back( 10144 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10145 10146 AsmNodeOperands.push_back(AsmOp); 10147 break; 10148 } 10149 10150 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10151 OpInfo.ConstraintType != TargetLowering::C_Register) { 10152 emitInlineAsmError(Call, "unknown asm constraint '" + 10153 Twine(OpInfo.ConstraintCode) + "'"); 10154 return; 10155 } 10156 10157 // TODO: Support this. 10158 if (OpInfo.isIndirect) { 10159 emitInlineAsmError( 10160 Call, "Don't know how to handle indirect register inputs yet " 10161 "for constraint '" + 10162 Twine(OpInfo.ConstraintCode) + "'"); 10163 return; 10164 } 10165 10166 // Copy the input into the appropriate registers. 10167 if (OpInfo.AssignedRegs.Regs.empty()) { 10168 emitInlineAsmError(Call, 10169 "couldn't allocate input reg for constraint '" + 10170 Twine(OpInfo.ConstraintCode) + "'"); 10171 return; 10172 } 10173 10174 if (DetectWriteToReservedRegister()) 10175 return; 10176 10177 SDLoc dl = getCurSDLoc(); 10178 10179 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10180 &Call); 10181 10182 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10183 0, dl, DAG, AsmNodeOperands); 10184 break; 10185 } 10186 case InlineAsm::isClobber: 10187 // Add the clobbered value to the operand list, so that the register 10188 // allocator is aware that the physreg got clobbered. 10189 if (!OpInfo.AssignedRegs.Regs.empty()) 10190 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10191 false, 0, getCurSDLoc(), DAG, 10192 AsmNodeOperands); 10193 break; 10194 } 10195 } 10196 10197 // Finish up input operands. Set the input chain and add the flag last. 10198 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10199 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10200 10201 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10202 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10203 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10204 Glue = Chain.getValue(1); 10205 10206 // Do additional work to generate outputs. 10207 10208 SmallVector<EVT, 1> ResultVTs; 10209 SmallVector<SDValue, 1> ResultValues; 10210 SmallVector<SDValue, 8> OutChains; 10211 10212 llvm::Type *CallResultType = Call.getType(); 10213 ArrayRef<Type *> ResultTypes; 10214 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10215 ResultTypes = StructResult->elements(); 10216 else if (!CallResultType->isVoidTy()) 10217 ResultTypes = ArrayRef(CallResultType); 10218 10219 auto CurResultType = ResultTypes.begin(); 10220 auto handleRegAssign = [&](SDValue V) { 10221 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10222 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10223 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10224 ++CurResultType; 10225 // If the type of the inline asm call site return value is different but has 10226 // same size as the type of the asm output bitcast it. One example of this 10227 // is for vectors with different width / number of elements. This can 10228 // happen for register classes that can contain multiple different value 10229 // types. The preg or vreg allocated may not have the same VT as was 10230 // expected. 10231 // 10232 // This can also happen for a return value that disagrees with the register 10233 // class it is put in, eg. a double in a general-purpose register on a 10234 // 32-bit machine. 10235 if (ResultVT != V.getValueType() && 10236 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10237 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10238 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10239 V.getValueType().isInteger()) { 10240 // If a result value was tied to an input value, the computed result 10241 // may have a wider width than the expected result. Extract the 10242 // relevant portion. 10243 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10244 } 10245 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10246 ResultVTs.push_back(ResultVT); 10247 ResultValues.push_back(V); 10248 }; 10249 10250 // Deal with output operands. 10251 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10252 if (OpInfo.Type == InlineAsm::isOutput) { 10253 SDValue Val; 10254 // Skip trivial output operands. 10255 if (OpInfo.AssignedRegs.Regs.empty()) 10256 continue; 10257 10258 switch (OpInfo.ConstraintType) { 10259 case TargetLowering::C_Register: 10260 case TargetLowering::C_RegisterClass: 10261 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10262 Chain, &Glue, &Call); 10263 break; 10264 case TargetLowering::C_Immediate: 10265 case TargetLowering::C_Other: 10266 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10267 OpInfo, DAG); 10268 break; 10269 case TargetLowering::C_Memory: 10270 break; // Already handled. 10271 case TargetLowering::C_Address: 10272 break; // Silence warning. 10273 case TargetLowering::C_Unknown: 10274 assert(false && "Unexpected unknown constraint"); 10275 } 10276 10277 // Indirect output manifest as stores. Record output chains. 10278 if (OpInfo.isIndirect) { 10279 const Value *Ptr = OpInfo.CallOperandVal; 10280 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10281 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10282 MachinePointerInfo(Ptr)); 10283 OutChains.push_back(Store); 10284 } else { 10285 // generate CopyFromRegs to associated registers. 10286 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10287 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10288 for (const SDValue &V : Val->op_values()) 10289 handleRegAssign(V); 10290 } else 10291 handleRegAssign(Val); 10292 } 10293 } 10294 } 10295 10296 // Set results. 10297 if (!ResultValues.empty()) { 10298 assert(CurResultType == ResultTypes.end() && 10299 "Mismatch in number of ResultTypes"); 10300 assert(ResultValues.size() == ResultTypes.size() && 10301 "Mismatch in number of output operands in asm result"); 10302 10303 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10304 DAG.getVTList(ResultVTs), ResultValues); 10305 setValue(&Call, V); 10306 } 10307 10308 // Collect store chains. 10309 if (!OutChains.empty()) 10310 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10311 10312 if (EmitEHLabels) { 10313 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10314 } 10315 10316 // Only Update Root if inline assembly has a memory effect. 10317 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10318 EmitEHLabels) 10319 DAG.setRoot(Chain); 10320 } 10321 10322 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10323 const Twine &Message) { 10324 LLVMContext &Ctx = *DAG.getContext(); 10325 Ctx.emitError(&Call, Message); 10326 10327 // Make sure we leave the DAG in a valid state 10328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10329 SmallVector<EVT, 1> ValueVTs; 10330 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10331 10332 if (ValueVTs.empty()) 10333 return; 10334 10335 SmallVector<SDValue, 1> Ops; 10336 for (const EVT &VT : ValueVTs) 10337 Ops.push_back(DAG.getUNDEF(VT)); 10338 10339 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10340 } 10341 10342 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10343 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10344 MVT::Other, getRoot(), 10345 getValue(I.getArgOperand(0)), 10346 DAG.getSrcValue(I.getArgOperand(0)))); 10347 } 10348 10349 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10351 const DataLayout &DL = DAG.getDataLayout(); 10352 SDValue V = DAG.getVAArg( 10353 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10354 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10355 DL.getABITypeAlign(I.getType()).value()); 10356 DAG.setRoot(V.getValue(1)); 10357 10358 if (I.getType()->isPointerTy()) 10359 V = DAG.getPtrExtOrTrunc( 10360 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10361 setValue(&I, V); 10362 } 10363 10364 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10365 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10366 MVT::Other, getRoot(), 10367 getValue(I.getArgOperand(0)), 10368 DAG.getSrcValue(I.getArgOperand(0)))); 10369 } 10370 10371 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10372 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10373 MVT::Other, getRoot(), 10374 getValue(I.getArgOperand(0)), 10375 getValue(I.getArgOperand(1)), 10376 DAG.getSrcValue(I.getArgOperand(0)), 10377 DAG.getSrcValue(I.getArgOperand(1)))); 10378 } 10379 10380 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10381 const Instruction &I, 10382 SDValue Op) { 10383 std::optional<ConstantRange> CR = getRange(I); 10384 10385 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10386 return Op; 10387 10388 APInt Lo = CR->getUnsignedMin(); 10389 if (!Lo.isMinValue()) 10390 return Op; 10391 10392 APInt Hi = CR->getUnsignedMax(); 10393 unsigned Bits = std::max(Hi.getActiveBits(), 10394 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10395 10396 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10397 10398 SDLoc SL = getCurSDLoc(); 10399 10400 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10401 DAG.getValueType(SmallVT)); 10402 unsigned NumVals = Op.getNode()->getNumValues(); 10403 if (NumVals == 1) 10404 return ZExt; 10405 10406 SmallVector<SDValue, 4> Ops; 10407 10408 Ops.push_back(ZExt); 10409 for (unsigned I = 1; I != NumVals; ++I) 10410 Ops.push_back(Op.getValue(I)); 10411 10412 return DAG.getMergeValues(Ops, SL); 10413 } 10414 10415 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10416 /// the call being lowered. 10417 /// 10418 /// This is a helper for lowering intrinsics that follow a target calling 10419 /// convention or require stack pointer adjustment. Only a subset of the 10420 /// intrinsic's operands need to participate in the calling convention. 10421 void SelectionDAGBuilder::populateCallLoweringInfo( 10422 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10423 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10424 AttributeSet RetAttrs, bool IsPatchPoint) { 10425 TargetLowering::ArgListTy Args; 10426 Args.reserve(NumArgs); 10427 10428 // Populate the argument list. 10429 // Attributes for args start at offset 1, after the return attribute. 10430 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10431 ArgI != ArgE; ++ArgI) { 10432 const Value *V = Call->getOperand(ArgI); 10433 10434 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10435 10436 TargetLowering::ArgListEntry Entry; 10437 Entry.Node = getValue(V); 10438 Entry.Ty = V->getType(); 10439 Entry.setAttributes(Call, ArgI); 10440 Args.push_back(Entry); 10441 } 10442 10443 CLI.setDebugLoc(getCurSDLoc()) 10444 .setChain(getRoot()) 10445 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10446 RetAttrs) 10447 .setDiscardResult(Call->use_empty()) 10448 .setIsPatchPoint(IsPatchPoint) 10449 .setIsPreallocated( 10450 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10451 } 10452 10453 /// Add a stack map intrinsic call's live variable operands to a stackmap 10454 /// or patchpoint target node's operand list. 10455 /// 10456 /// Constants are converted to TargetConstants purely as an optimization to 10457 /// avoid constant materialization and register allocation. 10458 /// 10459 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10460 /// generate addess computation nodes, and so FinalizeISel can convert the 10461 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10462 /// address materialization and register allocation, but may also be required 10463 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10464 /// alloca in the entry block, then the runtime may assume that the alloca's 10465 /// StackMap location can be read immediately after compilation and that the 10466 /// location is valid at any point during execution (this is similar to the 10467 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10468 /// only available in a register, then the runtime would need to trap when 10469 /// execution reaches the StackMap in order to read the alloca's location. 10470 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10471 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10472 SelectionDAGBuilder &Builder) { 10473 SelectionDAG &DAG = Builder.DAG; 10474 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10475 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10476 10477 // Things on the stack are pointer-typed, meaning that they are already 10478 // legal and can be emitted directly to target nodes. 10479 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10480 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10481 } else { 10482 // Otherwise emit a target independent node to be legalised. 10483 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10484 } 10485 } 10486 } 10487 10488 /// Lower llvm.experimental.stackmap. 10489 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10490 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10491 // [live variables...]) 10492 10493 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10494 10495 SDValue Chain, InGlue, Callee; 10496 SmallVector<SDValue, 32> Ops; 10497 10498 SDLoc DL = getCurSDLoc(); 10499 Callee = getValue(CI.getCalledOperand()); 10500 10501 // The stackmap intrinsic only records the live variables (the arguments 10502 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10503 // intrinsic, this won't be lowered to a function call. This means we don't 10504 // have to worry about calling conventions and target specific lowering code. 10505 // Instead we perform the call lowering right here. 10506 // 10507 // chain, flag = CALLSEQ_START(chain, 0, 0) 10508 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10509 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10510 // 10511 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10512 InGlue = Chain.getValue(1); 10513 10514 // Add the STACKMAP operands, starting with DAG house-keeping. 10515 Ops.push_back(Chain); 10516 Ops.push_back(InGlue); 10517 10518 // Add the <id>, <numShadowBytes> operands. 10519 // 10520 // These do not require legalisation, and can be emitted directly to target 10521 // constant nodes. 10522 SDValue ID = getValue(CI.getArgOperand(0)); 10523 assert(ID.getValueType() == MVT::i64); 10524 SDValue IDConst = 10525 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10526 Ops.push_back(IDConst); 10527 10528 SDValue Shad = getValue(CI.getArgOperand(1)); 10529 assert(Shad.getValueType() == MVT::i32); 10530 SDValue ShadConst = 10531 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10532 Ops.push_back(ShadConst); 10533 10534 // Add the live variables. 10535 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10536 10537 // Create the STACKMAP node. 10538 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10539 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10540 InGlue = Chain.getValue(1); 10541 10542 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10543 10544 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10545 10546 // Set the root to the target-lowered call chain. 10547 DAG.setRoot(Chain); 10548 10549 // Inform the Frame Information that we have a stackmap in this function. 10550 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10551 } 10552 10553 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10554 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10555 const BasicBlock *EHPadBB) { 10556 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10557 // i32 <numBytes>, 10558 // i8* <target>, 10559 // i32 <numArgs>, 10560 // [Args...], 10561 // [live variables...]) 10562 10563 CallingConv::ID CC = CB.getCallingConv(); 10564 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10565 bool HasDef = !CB.getType()->isVoidTy(); 10566 SDLoc dl = getCurSDLoc(); 10567 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10568 10569 // Handle immediate and symbolic callees. 10570 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10571 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10572 /*isTarget=*/true); 10573 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10574 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10575 SDLoc(SymbolicCallee), 10576 SymbolicCallee->getValueType(0)); 10577 10578 // Get the real number of arguments participating in the call <numArgs> 10579 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10580 unsigned NumArgs = NArgVal->getAsZExtVal(); 10581 10582 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10583 // Intrinsics include all meta-operands up to but not including CC. 10584 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10585 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10586 "Not enough arguments provided to the patchpoint intrinsic"); 10587 10588 // For AnyRegCC the arguments are lowered later on manually. 10589 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10590 Type *ReturnTy = 10591 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10592 10593 TargetLowering::CallLoweringInfo CLI(DAG); 10594 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10595 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10596 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10597 10598 SDNode *CallEnd = Result.second.getNode(); 10599 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10600 CallEnd = CallEnd->getOperand(0).getNode(); 10601 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10602 CallEnd = CallEnd->getOperand(0).getNode(); 10603 10604 /// Get a call instruction from the call sequence chain. 10605 /// Tail calls are not allowed. 10606 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10607 "Expected a callseq node."); 10608 SDNode *Call = CallEnd->getOperand(0).getNode(); 10609 bool HasGlue = Call->getGluedNode(); 10610 10611 // Replace the target specific call node with the patchable intrinsic. 10612 SmallVector<SDValue, 8> Ops; 10613 10614 // Push the chain. 10615 Ops.push_back(*(Call->op_begin())); 10616 10617 // Optionally, push the glue (if any). 10618 if (HasGlue) 10619 Ops.push_back(*(Call->op_end() - 1)); 10620 10621 // Push the register mask info. 10622 if (HasGlue) 10623 Ops.push_back(*(Call->op_end() - 2)); 10624 else 10625 Ops.push_back(*(Call->op_end() - 1)); 10626 10627 // Add the <id> and <numBytes> constants. 10628 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10629 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10630 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10631 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10632 10633 // Add the callee. 10634 Ops.push_back(Callee); 10635 10636 // Adjust <numArgs> to account for any arguments that have been passed on the 10637 // stack instead. 10638 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10639 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10640 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10641 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10642 10643 // Add the calling convention 10644 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10645 10646 // Add the arguments we omitted previously. The register allocator should 10647 // place these in any free register. 10648 if (IsAnyRegCC) 10649 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10650 Ops.push_back(getValue(CB.getArgOperand(i))); 10651 10652 // Push the arguments from the call instruction. 10653 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10654 Ops.append(Call->op_begin() + 2, e); 10655 10656 // Push live variables for the stack map. 10657 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10658 10659 SDVTList NodeTys; 10660 if (IsAnyRegCC && HasDef) { 10661 // Create the return types based on the intrinsic definition 10662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10663 SmallVector<EVT, 3> ValueVTs; 10664 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10665 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10666 10667 // There is always a chain and a glue type at the end 10668 ValueVTs.push_back(MVT::Other); 10669 ValueVTs.push_back(MVT::Glue); 10670 NodeTys = DAG.getVTList(ValueVTs); 10671 } else 10672 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10673 10674 // Replace the target specific call node with a PATCHPOINT node. 10675 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10676 10677 // Update the NodeMap. 10678 if (HasDef) { 10679 if (IsAnyRegCC) 10680 setValue(&CB, SDValue(PPV.getNode(), 0)); 10681 else 10682 setValue(&CB, Result.first); 10683 } 10684 10685 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10686 // call sequence. Furthermore the location of the chain and glue can change 10687 // when the AnyReg calling convention is used and the intrinsic returns a 10688 // value. 10689 if (IsAnyRegCC && HasDef) { 10690 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10691 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10692 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10693 } else 10694 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10695 DAG.DeleteNode(Call); 10696 10697 // Inform the Frame Information that we have a patchpoint in this function. 10698 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10699 } 10700 10701 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10702 unsigned Intrinsic) { 10703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10704 SDValue Op1 = getValue(I.getArgOperand(0)); 10705 SDValue Op2; 10706 if (I.arg_size() > 1) 10707 Op2 = getValue(I.getArgOperand(1)); 10708 SDLoc dl = getCurSDLoc(); 10709 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10710 SDValue Res; 10711 SDNodeFlags SDFlags; 10712 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10713 SDFlags.copyFMF(*FPMO); 10714 10715 switch (Intrinsic) { 10716 case Intrinsic::vector_reduce_fadd: 10717 if (SDFlags.hasAllowReassociation()) 10718 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10719 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10720 SDFlags); 10721 else 10722 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10723 break; 10724 case Intrinsic::vector_reduce_fmul: 10725 if (SDFlags.hasAllowReassociation()) 10726 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10727 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10728 SDFlags); 10729 else 10730 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10731 break; 10732 case Intrinsic::vector_reduce_add: 10733 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10734 break; 10735 case Intrinsic::vector_reduce_mul: 10736 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10737 break; 10738 case Intrinsic::vector_reduce_and: 10739 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10740 break; 10741 case Intrinsic::vector_reduce_or: 10742 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10743 break; 10744 case Intrinsic::vector_reduce_xor: 10745 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10746 break; 10747 case Intrinsic::vector_reduce_smax: 10748 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10749 break; 10750 case Intrinsic::vector_reduce_smin: 10751 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10752 break; 10753 case Intrinsic::vector_reduce_umax: 10754 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10755 break; 10756 case Intrinsic::vector_reduce_umin: 10757 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10758 break; 10759 case Intrinsic::vector_reduce_fmax: 10760 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10761 break; 10762 case Intrinsic::vector_reduce_fmin: 10763 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10764 break; 10765 case Intrinsic::vector_reduce_fmaximum: 10766 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10767 break; 10768 case Intrinsic::vector_reduce_fminimum: 10769 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10770 break; 10771 default: 10772 llvm_unreachable("Unhandled vector reduce intrinsic"); 10773 } 10774 setValue(&I, Res); 10775 } 10776 10777 /// Returns an AttributeList representing the attributes applied to the return 10778 /// value of the given call. 10779 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10780 SmallVector<Attribute::AttrKind, 2> Attrs; 10781 if (CLI.RetSExt) 10782 Attrs.push_back(Attribute::SExt); 10783 if (CLI.RetZExt) 10784 Attrs.push_back(Attribute::ZExt); 10785 if (CLI.IsInReg) 10786 Attrs.push_back(Attribute::InReg); 10787 10788 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10789 Attrs); 10790 } 10791 10792 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10793 /// implementation, which just calls LowerCall. 10794 /// FIXME: When all targets are 10795 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10796 std::pair<SDValue, SDValue> 10797 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10798 // Handle the incoming return values from the call. 10799 CLI.Ins.clear(); 10800 Type *OrigRetTy = CLI.RetTy; 10801 SmallVector<EVT, 4> RetTys; 10802 SmallVector<TypeSize, 4> Offsets; 10803 auto &DL = CLI.DAG.getDataLayout(); 10804 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10805 10806 if (CLI.IsPostTypeLegalization) { 10807 // If we are lowering a libcall after legalization, split the return type. 10808 SmallVector<EVT, 4> OldRetTys; 10809 SmallVector<TypeSize, 4> OldOffsets; 10810 RetTys.swap(OldRetTys); 10811 Offsets.swap(OldOffsets); 10812 10813 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10814 EVT RetVT = OldRetTys[i]; 10815 uint64_t Offset = OldOffsets[i]; 10816 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10817 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10818 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10819 RetTys.append(NumRegs, RegisterVT); 10820 for (unsigned j = 0; j != NumRegs; ++j) 10821 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10822 } 10823 } 10824 10825 SmallVector<ISD::OutputArg, 4> Outs; 10826 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10827 10828 bool CanLowerReturn = 10829 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10830 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10831 10832 SDValue DemoteStackSlot; 10833 int DemoteStackIdx = -100; 10834 if (!CanLowerReturn) { 10835 // FIXME: equivalent assert? 10836 // assert(!CS.hasInAllocaArgument() && 10837 // "sret demotion is incompatible with inalloca"); 10838 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10839 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10840 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10841 DemoteStackIdx = 10842 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10843 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10844 DL.getAllocaAddrSpace()); 10845 10846 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10847 ArgListEntry Entry; 10848 Entry.Node = DemoteStackSlot; 10849 Entry.Ty = StackSlotPtrType; 10850 Entry.IsSExt = false; 10851 Entry.IsZExt = false; 10852 Entry.IsInReg = false; 10853 Entry.IsSRet = true; 10854 Entry.IsNest = false; 10855 Entry.IsByVal = false; 10856 Entry.IsByRef = false; 10857 Entry.IsReturned = false; 10858 Entry.IsSwiftSelf = false; 10859 Entry.IsSwiftAsync = false; 10860 Entry.IsSwiftError = false; 10861 Entry.IsCFGuardTarget = false; 10862 Entry.Alignment = Alignment; 10863 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10864 CLI.NumFixedArgs += 1; 10865 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10866 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10867 10868 // sret demotion isn't compatible with tail-calls, since the sret argument 10869 // points into the callers stack frame. 10870 CLI.IsTailCall = false; 10871 } else { 10872 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10873 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10874 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10875 ISD::ArgFlagsTy Flags; 10876 if (NeedsRegBlock) { 10877 Flags.setInConsecutiveRegs(); 10878 if (I == RetTys.size() - 1) 10879 Flags.setInConsecutiveRegsLast(); 10880 } 10881 EVT VT = RetTys[I]; 10882 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10883 CLI.CallConv, VT); 10884 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10885 CLI.CallConv, VT); 10886 for (unsigned i = 0; i != NumRegs; ++i) { 10887 ISD::InputArg MyFlags; 10888 MyFlags.Flags = Flags; 10889 MyFlags.VT = RegisterVT; 10890 MyFlags.ArgVT = VT; 10891 MyFlags.Used = CLI.IsReturnValueUsed; 10892 if (CLI.RetTy->isPointerTy()) { 10893 MyFlags.Flags.setPointer(); 10894 MyFlags.Flags.setPointerAddrSpace( 10895 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10896 } 10897 if (CLI.RetSExt) 10898 MyFlags.Flags.setSExt(); 10899 if (CLI.RetZExt) 10900 MyFlags.Flags.setZExt(); 10901 if (CLI.IsInReg) 10902 MyFlags.Flags.setInReg(); 10903 CLI.Ins.push_back(MyFlags); 10904 } 10905 } 10906 } 10907 10908 // We push in swifterror return as the last element of CLI.Ins. 10909 ArgListTy &Args = CLI.getArgs(); 10910 if (supportSwiftError()) { 10911 for (const ArgListEntry &Arg : Args) { 10912 if (Arg.IsSwiftError) { 10913 ISD::InputArg MyFlags; 10914 MyFlags.VT = getPointerTy(DL); 10915 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10916 MyFlags.Flags.setSwiftError(); 10917 CLI.Ins.push_back(MyFlags); 10918 } 10919 } 10920 } 10921 10922 // Handle all of the outgoing arguments. 10923 CLI.Outs.clear(); 10924 CLI.OutVals.clear(); 10925 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10926 SmallVector<EVT, 4> ValueVTs; 10927 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10928 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10929 Type *FinalType = Args[i].Ty; 10930 if (Args[i].IsByVal) 10931 FinalType = Args[i].IndirectType; 10932 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10933 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10934 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10935 ++Value) { 10936 EVT VT = ValueVTs[Value]; 10937 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10938 SDValue Op = SDValue(Args[i].Node.getNode(), 10939 Args[i].Node.getResNo() + Value); 10940 ISD::ArgFlagsTy Flags; 10941 10942 // Certain targets (such as MIPS), may have a different ABI alignment 10943 // for a type depending on the context. Give the target a chance to 10944 // specify the alignment it wants. 10945 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10946 Flags.setOrigAlign(OriginalAlignment); 10947 10948 if (Args[i].Ty->isPointerTy()) { 10949 Flags.setPointer(); 10950 Flags.setPointerAddrSpace( 10951 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10952 } 10953 if (Args[i].IsZExt) 10954 Flags.setZExt(); 10955 if (Args[i].IsSExt) 10956 Flags.setSExt(); 10957 if (Args[i].IsInReg) { 10958 // If we are using vectorcall calling convention, a structure that is 10959 // passed InReg - is surely an HVA 10960 if (CLI.CallConv == CallingConv::X86_VectorCall && 10961 isa<StructType>(FinalType)) { 10962 // The first value of a structure is marked 10963 if (0 == Value) 10964 Flags.setHvaStart(); 10965 Flags.setHva(); 10966 } 10967 // Set InReg Flag 10968 Flags.setInReg(); 10969 } 10970 if (Args[i].IsSRet) 10971 Flags.setSRet(); 10972 if (Args[i].IsSwiftSelf) 10973 Flags.setSwiftSelf(); 10974 if (Args[i].IsSwiftAsync) 10975 Flags.setSwiftAsync(); 10976 if (Args[i].IsSwiftError) 10977 Flags.setSwiftError(); 10978 if (Args[i].IsCFGuardTarget) 10979 Flags.setCFGuardTarget(); 10980 if (Args[i].IsByVal) 10981 Flags.setByVal(); 10982 if (Args[i].IsByRef) 10983 Flags.setByRef(); 10984 if (Args[i].IsPreallocated) { 10985 Flags.setPreallocated(); 10986 // Set the byval flag for CCAssignFn callbacks that don't know about 10987 // preallocated. This way we can know how many bytes we should've 10988 // allocated and how many bytes a callee cleanup function will pop. If 10989 // we port preallocated to more targets, we'll have to add custom 10990 // preallocated handling in the various CC lowering callbacks. 10991 Flags.setByVal(); 10992 } 10993 if (Args[i].IsInAlloca) { 10994 Flags.setInAlloca(); 10995 // Set the byval flag for CCAssignFn callbacks that don't know about 10996 // inalloca. This way we can know how many bytes we should've allocated 10997 // and how many bytes a callee cleanup function will pop. If we port 10998 // inalloca to more targets, we'll have to add custom inalloca handling 10999 // in the various CC lowering callbacks. 11000 Flags.setByVal(); 11001 } 11002 Align MemAlign; 11003 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11004 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11005 Flags.setByValSize(FrameSize); 11006 11007 // info is not there but there are cases it cannot get right. 11008 if (auto MA = Args[i].Alignment) 11009 MemAlign = *MA; 11010 else 11011 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 11012 } else if (auto MA = Args[i].Alignment) { 11013 MemAlign = *MA; 11014 } else { 11015 MemAlign = OriginalAlignment; 11016 } 11017 Flags.setMemAlign(MemAlign); 11018 if (Args[i].IsNest) 11019 Flags.setNest(); 11020 if (NeedsRegBlock) 11021 Flags.setInConsecutiveRegs(); 11022 11023 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11024 CLI.CallConv, VT); 11025 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11026 CLI.CallConv, VT); 11027 SmallVector<SDValue, 4> Parts(NumParts); 11028 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11029 11030 if (Args[i].IsSExt) 11031 ExtendKind = ISD::SIGN_EXTEND; 11032 else if (Args[i].IsZExt) 11033 ExtendKind = ISD::ZERO_EXTEND; 11034 11035 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11036 // for now. 11037 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11038 CanLowerReturn) { 11039 assert((CLI.RetTy == Args[i].Ty || 11040 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11041 CLI.RetTy->getPointerAddressSpace() == 11042 Args[i].Ty->getPointerAddressSpace())) && 11043 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11044 // Before passing 'returned' to the target lowering code, ensure that 11045 // either the register MVT and the actual EVT are the same size or that 11046 // the return value and argument are extended in the same way; in these 11047 // cases it's safe to pass the argument register value unchanged as the 11048 // return register value (although it's at the target's option whether 11049 // to do so) 11050 // TODO: allow code generation to take advantage of partially preserved 11051 // registers rather than clobbering the entire register when the 11052 // parameter extension method is not compatible with the return 11053 // extension method 11054 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11055 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11056 CLI.RetZExt == Args[i].IsZExt)) 11057 Flags.setReturned(); 11058 } 11059 11060 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11061 CLI.CallConv, ExtendKind); 11062 11063 for (unsigned j = 0; j != NumParts; ++j) { 11064 // if it isn't first piece, alignment must be 1 11065 // For scalable vectors the scalable part is currently handled 11066 // by individual targets, so we just use the known minimum size here. 11067 ISD::OutputArg MyFlags( 11068 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11069 i < CLI.NumFixedArgs, i, 11070 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11071 if (NumParts > 1 && j == 0) 11072 MyFlags.Flags.setSplit(); 11073 else if (j != 0) { 11074 MyFlags.Flags.setOrigAlign(Align(1)); 11075 if (j == NumParts - 1) 11076 MyFlags.Flags.setSplitEnd(); 11077 } 11078 11079 CLI.Outs.push_back(MyFlags); 11080 CLI.OutVals.push_back(Parts[j]); 11081 } 11082 11083 if (NeedsRegBlock && Value == NumValues - 1) 11084 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11085 } 11086 } 11087 11088 SmallVector<SDValue, 4> InVals; 11089 CLI.Chain = LowerCall(CLI, InVals); 11090 11091 // Update CLI.InVals to use outside of this function. 11092 CLI.InVals = InVals; 11093 11094 // Verify that the target's LowerCall behaved as expected. 11095 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11096 "LowerCall didn't return a valid chain!"); 11097 assert((!CLI.IsTailCall || InVals.empty()) && 11098 "LowerCall emitted a return value for a tail call!"); 11099 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11100 "LowerCall didn't emit the correct number of values!"); 11101 11102 // For a tail call, the return value is merely live-out and there aren't 11103 // any nodes in the DAG representing it. Return a special value to 11104 // indicate that a tail call has been emitted and no more Instructions 11105 // should be processed in the current block. 11106 if (CLI.IsTailCall) { 11107 CLI.DAG.setRoot(CLI.Chain); 11108 return std::make_pair(SDValue(), SDValue()); 11109 } 11110 11111 #ifndef NDEBUG 11112 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11113 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11114 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11115 "LowerCall emitted a value with the wrong type!"); 11116 } 11117 #endif 11118 11119 SmallVector<SDValue, 4> ReturnValues; 11120 if (!CanLowerReturn) { 11121 // The instruction result is the result of loading from the 11122 // hidden sret parameter. 11123 SmallVector<EVT, 1> PVTs; 11124 Type *PtrRetTy = 11125 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11126 11127 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11128 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11129 EVT PtrVT = PVTs[0]; 11130 11131 unsigned NumValues = RetTys.size(); 11132 ReturnValues.resize(NumValues); 11133 SmallVector<SDValue, 4> Chains(NumValues); 11134 11135 // An aggregate return value cannot wrap around the address space, so 11136 // offsets to its parts don't wrap either. 11137 SDNodeFlags Flags; 11138 Flags.setNoUnsignedWrap(true); 11139 11140 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11141 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11142 for (unsigned i = 0; i < NumValues; ++i) { 11143 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11144 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11145 PtrVT), Flags); 11146 SDValue L = CLI.DAG.getLoad( 11147 RetTys[i], CLI.DL, CLI.Chain, Add, 11148 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11149 DemoteStackIdx, Offsets[i]), 11150 HiddenSRetAlign); 11151 ReturnValues[i] = L; 11152 Chains[i] = L.getValue(1); 11153 } 11154 11155 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11156 } else { 11157 // Collect the legal value parts into potentially illegal values 11158 // that correspond to the original function's return values. 11159 std::optional<ISD::NodeType> AssertOp; 11160 if (CLI.RetSExt) 11161 AssertOp = ISD::AssertSext; 11162 else if (CLI.RetZExt) 11163 AssertOp = ISD::AssertZext; 11164 unsigned CurReg = 0; 11165 for (EVT VT : RetTys) { 11166 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11167 CLI.CallConv, VT); 11168 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11169 CLI.CallConv, VT); 11170 11171 ReturnValues.push_back(getCopyFromParts( 11172 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11173 CLI.Chain, CLI.CallConv, AssertOp)); 11174 CurReg += NumRegs; 11175 } 11176 11177 // For a function returning void, there is no return value. We can't create 11178 // such a node, so we just return a null return value in that case. In 11179 // that case, nothing will actually look at the value. 11180 if (ReturnValues.empty()) 11181 return std::make_pair(SDValue(), CLI.Chain); 11182 } 11183 11184 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11185 CLI.DAG.getVTList(RetTys), ReturnValues); 11186 return std::make_pair(Res, CLI.Chain); 11187 } 11188 11189 /// Places new result values for the node in Results (their number 11190 /// and types must exactly match those of the original return values of 11191 /// the node), or leaves Results empty, which indicates that the node is not 11192 /// to be custom lowered after all. 11193 void TargetLowering::LowerOperationWrapper(SDNode *N, 11194 SmallVectorImpl<SDValue> &Results, 11195 SelectionDAG &DAG) const { 11196 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11197 11198 if (!Res.getNode()) 11199 return; 11200 11201 // If the original node has one result, take the return value from 11202 // LowerOperation as is. It might not be result number 0. 11203 if (N->getNumValues() == 1) { 11204 Results.push_back(Res); 11205 return; 11206 } 11207 11208 // If the original node has multiple results, then the return node should 11209 // have the same number of results. 11210 assert((N->getNumValues() == Res->getNumValues()) && 11211 "Lowering returned the wrong number of results!"); 11212 11213 // Places new result values base on N result number. 11214 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11215 Results.push_back(Res.getValue(I)); 11216 } 11217 11218 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11219 llvm_unreachable("LowerOperation not implemented for this target!"); 11220 } 11221 11222 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11223 unsigned Reg, 11224 ISD::NodeType ExtendType) { 11225 SDValue Op = getNonRegisterValue(V); 11226 assert((Op.getOpcode() != ISD::CopyFromReg || 11227 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11228 "Copy from a reg to the same reg!"); 11229 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11230 11231 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11232 // If this is an InlineAsm we have to match the registers required, not the 11233 // notional registers required by the type. 11234 11235 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11236 std::nullopt); // This is not an ABI copy. 11237 SDValue Chain = DAG.getEntryNode(); 11238 11239 if (ExtendType == ISD::ANY_EXTEND) { 11240 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11241 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11242 ExtendType = PreferredExtendIt->second; 11243 } 11244 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11245 PendingExports.push_back(Chain); 11246 } 11247 11248 #include "llvm/CodeGen/SelectionDAGISel.h" 11249 11250 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11251 /// entry block, return true. This includes arguments used by switches, since 11252 /// the switch may expand into multiple basic blocks. 11253 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11254 // With FastISel active, we may be splitting blocks, so force creation 11255 // of virtual registers for all non-dead arguments. 11256 if (FastISel) 11257 return A->use_empty(); 11258 11259 const BasicBlock &Entry = A->getParent()->front(); 11260 for (const User *U : A->users()) 11261 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11262 return false; // Use not in entry block. 11263 11264 return true; 11265 } 11266 11267 using ArgCopyElisionMapTy = 11268 DenseMap<const Argument *, 11269 std::pair<const AllocaInst *, const StoreInst *>>; 11270 11271 /// Scan the entry block of the function in FuncInfo for arguments that look 11272 /// like copies into a local alloca. Record any copied arguments in 11273 /// ArgCopyElisionCandidates. 11274 static void 11275 findArgumentCopyElisionCandidates(const DataLayout &DL, 11276 FunctionLoweringInfo *FuncInfo, 11277 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11278 // Record the state of every static alloca used in the entry block. Argument 11279 // allocas are all used in the entry block, so we need approximately as many 11280 // entries as we have arguments. 11281 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11282 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11283 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11284 StaticAllocas.reserve(NumArgs * 2); 11285 11286 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11287 if (!V) 11288 return nullptr; 11289 V = V->stripPointerCasts(); 11290 const auto *AI = dyn_cast<AllocaInst>(V); 11291 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11292 return nullptr; 11293 auto Iter = StaticAllocas.insert({AI, Unknown}); 11294 return &Iter.first->second; 11295 }; 11296 11297 // Look for stores of arguments to static allocas. Look through bitcasts and 11298 // GEPs to handle type coercions, as long as the alloca is fully initialized 11299 // by the store. Any non-store use of an alloca escapes it and any subsequent 11300 // unanalyzed store might write it. 11301 // FIXME: Handle structs initialized with multiple stores. 11302 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11303 // Look for stores, and handle non-store uses conservatively. 11304 const auto *SI = dyn_cast<StoreInst>(&I); 11305 if (!SI) { 11306 // We will look through cast uses, so ignore them completely. 11307 if (I.isCast()) 11308 continue; 11309 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11310 // to allocas. 11311 if (I.isDebugOrPseudoInst()) 11312 continue; 11313 // This is an unknown instruction. Assume it escapes or writes to all 11314 // static alloca operands. 11315 for (const Use &U : I.operands()) { 11316 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11317 *Info = StaticAllocaInfo::Clobbered; 11318 } 11319 continue; 11320 } 11321 11322 // If the stored value is a static alloca, mark it as escaped. 11323 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11324 *Info = StaticAllocaInfo::Clobbered; 11325 11326 // Check if the destination is a static alloca. 11327 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11328 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11329 if (!Info) 11330 continue; 11331 const AllocaInst *AI = cast<AllocaInst>(Dst); 11332 11333 // Skip allocas that have been initialized or clobbered. 11334 if (*Info != StaticAllocaInfo::Unknown) 11335 continue; 11336 11337 // Check if the stored value is an argument, and that this store fully 11338 // initializes the alloca. 11339 // If the argument type has padding bits we can't directly forward a pointer 11340 // as the upper bits may contain garbage. 11341 // Don't elide copies from the same argument twice. 11342 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11343 const auto *Arg = dyn_cast<Argument>(Val); 11344 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11345 Arg->getType()->isEmptyTy() || 11346 DL.getTypeStoreSize(Arg->getType()) != 11347 DL.getTypeAllocSize(AI->getAllocatedType()) || 11348 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11349 ArgCopyElisionCandidates.count(Arg)) { 11350 *Info = StaticAllocaInfo::Clobbered; 11351 continue; 11352 } 11353 11354 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11355 << '\n'); 11356 11357 // Mark this alloca and store for argument copy elision. 11358 *Info = StaticAllocaInfo::Elidable; 11359 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11360 11361 // Stop scanning if we've seen all arguments. This will happen early in -O0 11362 // builds, which is useful, because -O0 builds have large entry blocks and 11363 // many allocas. 11364 if (ArgCopyElisionCandidates.size() == NumArgs) 11365 break; 11366 } 11367 } 11368 11369 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11370 /// ArgVal is a load from a suitable fixed stack object. 11371 static void tryToElideArgumentCopy( 11372 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11373 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11374 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11375 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11376 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11377 // Check if this is a load from a fixed stack object. 11378 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11379 if (!LNode) 11380 return; 11381 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11382 if (!FINode) 11383 return; 11384 11385 // Check that the fixed stack object is the right size and alignment. 11386 // Look at the alignment that the user wrote on the alloca instead of looking 11387 // at the stack object. 11388 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11389 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11390 const AllocaInst *AI = ArgCopyIter->second.first; 11391 int FixedIndex = FINode->getIndex(); 11392 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11393 int OldIndex = AllocaIndex; 11394 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11395 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11396 LLVM_DEBUG( 11397 dbgs() << " argument copy elision failed due to bad fixed stack " 11398 "object size\n"); 11399 return; 11400 } 11401 Align RequiredAlignment = AI->getAlign(); 11402 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11403 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11404 "greater than stack argument alignment (" 11405 << DebugStr(RequiredAlignment) << " vs " 11406 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11407 return; 11408 } 11409 11410 // Perform the elision. Delete the old stack object and replace its only use 11411 // in the variable info map. Mark the stack object as mutable and aliased. 11412 LLVM_DEBUG({ 11413 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11414 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11415 << '\n'; 11416 }); 11417 MFI.RemoveStackObject(OldIndex); 11418 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11419 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11420 AllocaIndex = FixedIndex; 11421 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11422 for (SDValue ArgVal : ArgVals) 11423 Chains.push_back(ArgVal.getValue(1)); 11424 11425 // Avoid emitting code for the store implementing the copy. 11426 const StoreInst *SI = ArgCopyIter->second.second; 11427 ElidedArgCopyInstrs.insert(SI); 11428 11429 // Check for uses of the argument again so that we can avoid exporting ArgVal 11430 // if it is't used by anything other than the store. 11431 for (const Value *U : Arg.users()) { 11432 if (U != SI) { 11433 ArgHasUses = true; 11434 break; 11435 } 11436 } 11437 } 11438 11439 void SelectionDAGISel::LowerArguments(const Function &F) { 11440 SelectionDAG &DAG = SDB->DAG; 11441 SDLoc dl = SDB->getCurSDLoc(); 11442 const DataLayout &DL = DAG.getDataLayout(); 11443 SmallVector<ISD::InputArg, 16> Ins; 11444 11445 // In Naked functions we aren't going to save any registers. 11446 if (F.hasFnAttribute(Attribute::Naked)) 11447 return; 11448 11449 if (!FuncInfo->CanLowerReturn) { 11450 // Put in an sret pointer parameter before all the other parameters. 11451 SmallVector<EVT, 1> ValueVTs; 11452 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11453 PointerType::get(F.getContext(), 11454 DAG.getDataLayout().getAllocaAddrSpace()), 11455 ValueVTs); 11456 11457 // NOTE: Assuming that a pointer will never break down to more than one VT 11458 // or one register. 11459 ISD::ArgFlagsTy Flags; 11460 Flags.setSRet(); 11461 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11462 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11463 ISD::InputArg::NoArgIndex, 0); 11464 Ins.push_back(RetArg); 11465 } 11466 11467 // Look for stores of arguments to static allocas. Mark such arguments with a 11468 // flag to ask the target to give us the memory location of that argument if 11469 // available. 11470 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11471 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11472 ArgCopyElisionCandidates); 11473 11474 // Set up the incoming argument description vector. 11475 for (const Argument &Arg : F.args()) { 11476 unsigned ArgNo = Arg.getArgNo(); 11477 SmallVector<EVT, 4> ValueVTs; 11478 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11479 bool isArgValueUsed = !Arg.use_empty(); 11480 unsigned PartBase = 0; 11481 Type *FinalType = Arg.getType(); 11482 if (Arg.hasAttribute(Attribute::ByVal)) 11483 FinalType = Arg.getParamByValType(); 11484 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11485 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11486 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11487 Value != NumValues; ++Value) { 11488 EVT VT = ValueVTs[Value]; 11489 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11490 ISD::ArgFlagsTy Flags; 11491 11492 11493 if (Arg.getType()->isPointerTy()) { 11494 Flags.setPointer(); 11495 Flags.setPointerAddrSpace( 11496 cast<PointerType>(Arg.getType())->getAddressSpace()); 11497 } 11498 if (Arg.hasAttribute(Attribute::ZExt)) 11499 Flags.setZExt(); 11500 if (Arg.hasAttribute(Attribute::SExt)) 11501 Flags.setSExt(); 11502 if (Arg.hasAttribute(Attribute::InReg)) { 11503 // If we are using vectorcall calling convention, a structure that is 11504 // passed InReg - is surely an HVA 11505 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11506 isa<StructType>(Arg.getType())) { 11507 // The first value of a structure is marked 11508 if (0 == Value) 11509 Flags.setHvaStart(); 11510 Flags.setHva(); 11511 } 11512 // Set InReg Flag 11513 Flags.setInReg(); 11514 } 11515 if (Arg.hasAttribute(Attribute::StructRet)) 11516 Flags.setSRet(); 11517 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11518 Flags.setSwiftSelf(); 11519 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11520 Flags.setSwiftAsync(); 11521 if (Arg.hasAttribute(Attribute::SwiftError)) 11522 Flags.setSwiftError(); 11523 if (Arg.hasAttribute(Attribute::ByVal)) 11524 Flags.setByVal(); 11525 if (Arg.hasAttribute(Attribute::ByRef)) 11526 Flags.setByRef(); 11527 if (Arg.hasAttribute(Attribute::InAlloca)) { 11528 Flags.setInAlloca(); 11529 // Set the byval flag for CCAssignFn callbacks that don't know about 11530 // inalloca. This way we can know how many bytes we should've allocated 11531 // and how many bytes a callee cleanup function will pop. If we port 11532 // inalloca to more targets, we'll have to add custom inalloca handling 11533 // in the various CC lowering callbacks. 11534 Flags.setByVal(); 11535 } 11536 if (Arg.hasAttribute(Attribute::Preallocated)) { 11537 Flags.setPreallocated(); 11538 // Set the byval flag for CCAssignFn callbacks that don't know about 11539 // preallocated. This way we can know how many bytes we should've 11540 // allocated and how many bytes a callee cleanup function will pop. If 11541 // we port preallocated to more targets, we'll have to add custom 11542 // preallocated handling in the various CC lowering callbacks. 11543 Flags.setByVal(); 11544 } 11545 11546 // Certain targets (such as MIPS), may have a different ABI alignment 11547 // for a type depending on the context. Give the target a chance to 11548 // specify the alignment it wants. 11549 const Align OriginalAlignment( 11550 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11551 Flags.setOrigAlign(OriginalAlignment); 11552 11553 Align MemAlign; 11554 Type *ArgMemTy = nullptr; 11555 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11556 Flags.isByRef()) { 11557 if (!ArgMemTy) 11558 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11559 11560 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11561 11562 // For in-memory arguments, size and alignment should be passed from FE. 11563 // BE will guess if this info is not there but there are cases it cannot 11564 // get right. 11565 if (auto ParamAlign = Arg.getParamStackAlign()) 11566 MemAlign = *ParamAlign; 11567 else if ((ParamAlign = Arg.getParamAlign())) 11568 MemAlign = *ParamAlign; 11569 else 11570 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11571 if (Flags.isByRef()) 11572 Flags.setByRefSize(MemSize); 11573 else 11574 Flags.setByValSize(MemSize); 11575 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11576 MemAlign = *ParamAlign; 11577 } else { 11578 MemAlign = OriginalAlignment; 11579 } 11580 Flags.setMemAlign(MemAlign); 11581 11582 if (Arg.hasAttribute(Attribute::Nest)) 11583 Flags.setNest(); 11584 if (NeedsRegBlock) 11585 Flags.setInConsecutiveRegs(); 11586 if (ArgCopyElisionCandidates.count(&Arg)) 11587 Flags.setCopyElisionCandidate(); 11588 if (Arg.hasAttribute(Attribute::Returned)) 11589 Flags.setReturned(); 11590 11591 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11592 *CurDAG->getContext(), F.getCallingConv(), VT); 11593 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11594 *CurDAG->getContext(), F.getCallingConv(), VT); 11595 for (unsigned i = 0; i != NumRegs; ++i) { 11596 // For scalable vectors, use the minimum size; individual targets 11597 // are responsible for handling scalable vector arguments and 11598 // return values. 11599 ISD::InputArg MyFlags( 11600 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11601 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11602 if (NumRegs > 1 && i == 0) 11603 MyFlags.Flags.setSplit(); 11604 // if it isn't first piece, alignment must be 1 11605 else if (i > 0) { 11606 MyFlags.Flags.setOrigAlign(Align(1)); 11607 if (i == NumRegs - 1) 11608 MyFlags.Flags.setSplitEnd(); 11609 } 11610 Ins.push_back(MyFlags); 11611 } 11612 if (NeedsRegBlock && Value == NumValues - 1) 11613 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11614 PartBase += VT.getStoreSize().getKnownMinValue(); 11615 } 11616 } 11617 11618 // Call the target to set up the argument values. 11619 SmallVector<SDValue, 8> InVals; 11620 SDValue NewRoot = TLI->LowerFormalArguments( 11621 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11622 11623 // Verify that the target's LowerFormalArguments behaved as expected. 11624 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11625 "LowerFormalArguments didn't return a valid chain!"); 11626 assert(InVals.size() == Ins.size() && 11627 "LowerFormalArguments didn't emit the correct number of values!"); 11628 LLVM_DEBUG({ 11629 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11630 assert(InVals[i].getNode() && 11631 "LowerFormalArguments emitted a null value!"); 11632 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11633 "LowerFormalArguments emitted a value with the wrong type!"); 11634 } 11635 }); 11636 11637 // Update the DAG with the new chain value resulting from argument lowering. 11638 DAG.setRoot(NewRoot); 11639 11640 // Set up the argument values. 11641 unsigned i = 0; 11642 if (!FuncInfo->CanLowerReturn) { 11643 // Create a virtual register for the sret pointer, and put in a copy 11644 // from the sret argument into it. 11645 SmallVector<EVT, 1> ValueVTs; 11646 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11647 PointerType::get(F.getContext(), 11648 DAG.getDataLayout().getAllocaAddrSpace()), 11649 ValueVTs); 11650 MVT VT = ValueVTs[0].getSimpleVT(); 11651 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11652 std::optional<ISD::NodeType> AssertOp; 11653 SDValue ArgValue = 11654 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11655 F.getCallingConv(), AssertOp); 11656 11657 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11658 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11659 Register SRetReg = 11660 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11661 FuncInfo->DemoteRegister = SRetReg; 11662 NewRoot = 11663 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11664 DAG.setRoot(NewRoot); 11665 11666 // i indexes lowered arguments. Bump it past the hidden sret argument. 11667 ++i; 11668 } 11669 11670 SmallVector<SDValue, 4> Chains; 11671 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11672 for (const Argument &Arg : F.args()) { 11673 SmallVector<SDValue, 4> ArgValues; 11674 SmallVector<EVT, 4> ValueVTs; 11675 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11676 unsigned NumValues = ValueVTs.size(); 11677 if (NumValues == 0) 11678 continue; 11679 11680 bool ArgHasUses = !Arg.use_empty(); 11681 11682 // Elide the copying store if the target loaded this argument from a 11683 // suitable fixed stack object. 11684 if (Ins[i].Flags.isCopyElisionCandidate()) { 11685 unsigned NumParts = 0; 11686 for (EVT VT : ValueVTs) 11687 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11688 F.getCallingConv(), VT); 11689 11690 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11691 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11692 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11693 } 11694 11695 // If this argument is unused then remember its value. It is used to generate 11696 // debugging information. 11697 bool isSwiftErrorArg = 11698 TLI->supportSwiftError() && 11699 Arg.hasAttribute(Attribute::SwiftError); 11700 if (!ArgHasUses && !isSwiftErrorArg) { 11701 SDB->setUnusedArgValue(&Arg, InVals[i]); 11702 11703 // Also remember any frame index for use in FastISel. 11704 if (FrameIndexSDNode *FI = 11705 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11706 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11707 } 11708 11709 for (unsigned Val = 0; Val != NumValues; ++Val) { 11710 EVT VT = ValueVTs[Val]; 11711 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11712 F.getCallingConv(), VT); 11713 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11714 *CurDAG->getContext(), F.getCallingConv(), VT); 11715 11716 // Even an apparent 'unused' swifterror argument needs to be returned. So 11717 // we do generate a copy for it that can be used on return from the 11718 // function. 11719 if (ArgHasUses || isSwiftErrorArg) { 11720 std::optional<ISD::NodeType> AssertOp; 11721 if (Arg.hasAttribute(Attribute::SExt)) 11722 AssertOp = ISD::AssertSext; 11723 else if (Arg.hasAttribute(Attribute::ZExt)) 11724 AssertOp = ISD::AssertZext; 11725 11726 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11727 PartVT, VT, nullptr, NewRoot, 11728 F.getCallingConv(), AssertOp)); 11729 } 11730 11731 i += NumParts; 11732 } 11733 11734 // We don't need to do anything else for unused arguments. 11735 if (ArgValues.empty()) 11736 continue; 11737 11738 // Note down frame index. 11739 if (FrameIndexSDNode *FI = 11740 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11741 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11742 11743 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11744 SDB->getCurSDLoc()); 11745 11746 SDB->setValue(&Arg, Res); 11747 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11748 // We want to associate the argument with the frame index, among 11749 // involved operands, that correspond to the lowest address. The 11750 // getCopyFromParts function, called earlier, is swapping the order of 11751 // the operands to BUILD_PAIR depending on endianness. The result of 11752 // that swapping is that the least significant bits of the argument will 11753 // be in the first operand of the BUILD_PAIR node, and the most 11754 // significant bits will be in the second operand. 11755 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11756 if (LoadSDNode *LNode = 11757 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11758 if (FrameIndexSDNode *FI = 11759 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11760 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11761 } 11762 11763 // Analyses past this point are naive and don't expect an assertion. 11764 if (Res.getOpcode() == ISD::AssertZext) 11765 Res = Res.getOperand(0); 11766 11767 // Update the SwiftErrorVRegDefMap. 11768 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11769 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11770 if (Register::isVirtualRegister(Reg)) 11771 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11772 Reg); 11773 } 11774 11775 // If this argument is live outside of the entry block, insert a copy from 11776 // wherever we got it to the vreg that other BB's will reference it as. 11777 if (Res.getOpcode() == ISD::CopyFromReg) { 11778 // If we can, though, try to skip creating an unnecessary vreg. 11779 // FIXME: This isn't very clean... it would be nice to make this more 11780 // general. 11781 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11782 if (Register::isVirtualRegister(Reg)) { 11783 FuncInfo->ValueMap[&Arg] = Reg; 11784 continue; 11785 } 11786 } 11787 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11788 FuncInfo->InitializeRegForValue(&Arg); 11789 SDB->CopyToExportRegsIfNeeded(&Arg); 11790 } 11791 } 11792 11793 if (!Chains.empty()) { 11794 Chains.push_back(NewRoot); 11795 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11796 } 11797 11798 DAG.setRoot(NewRoot); 11799 11800 assert(i == InVals.size() && "Argument register count mismatch!"); 11801 11802 // If any argument copy elisions occurred and we have debug info, update the 11803 // stale frame indices used in the dbg.declare variable info table. 11804 if (!ArgCopyElisionFrameIndexMap.empty()) { 11805 for (MachineFunction::VariableDbgInfo &VI : 11806 MF->getInStackSlotVariableDbgInfo()) { 11807 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11808 if (I != ArgCopyElisionFrameIndexMap.end()) 11809 VI.updateStackSlot(I->second); 11810 } 11811 } 11812 11813 // Finally, if the target has anything special to do, allow it to do so. 11814 emitFunctionEntryCode(); 11815 } 11816 11817 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11818 /// ensure constants are generated when needed. Remember the virtual registers 11819 /// that need to be added to the Machine PHI nodes as input. We cannot just 11820 /// directly add them, because expansion might result in multiple MBB's for one 11821 /// BB. As such, the start of the BB might correspond to a different MBB than 11822 /// the end. 11823 void 11824 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11826 11827 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11828 11829 // Check PHI nodes in successors that expect a value to be available from this 11830 // block. 11831 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11832 if (!isa<PHINode>(SuccBB->begin())) continue; 11833 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11834 11835 // If this terminator has multiple identical successors (common for 11836 // switches), only handle each succ once. 11837 if (!SuccsHandled.insert(SuccMBB).second) 11838 continue; 11839 11840 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11841 11842 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11843 // nodes and Machine PHI nodes, but the incoming operands have not been 11844 // emitted yet. 11845 for (const PHINode &PN : SuccBB->phis()) { 11846 // Ignore dead phi's. 11847 if (PN.use_empty()) 11848 continue; 11849 11850 // Skip empty types 11851 if (PN.getType()->isEmptyTy()) 11852 continue; 11853 11854 unsigned Reg; 11855 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11856 11857 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11858 unsigned &RegOut = ConstantsOut[C]; 11859 if (RegOut == 0) { 11860 RegOut = FuncInfo.CreateRegs(C); 11861 // We need to zero/sign extend ConstantInt phi operands to match 11862 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11863 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11864 if (auto *CI = dyn_cast<ConstantInt>(C)) 11865 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11866 : ISD::ZERO_EXTEND; 11867 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11868 } 11869 Reg = RegOut; 11870 } else { 11871 DenseMap<const Value *, Register>::iterator I = 11872 FuncInfo.ValueMap.find(PHIOp); 11873 if (I != FuncInfo.ValueMap.end()) 11874 Reg = I->second; 11875 else { 11876 assert(isa<AllocaInst>(PHIOp) && 11877 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11878 "Didn't codegen value into a register!??"); 11879 Reg = FuncInfo.CreateRegs(PHIOp); 11880 CopyValueToVirtualRegister(PHIOp, Reg); 11881 } 11882 } 11883 11884 // Remember that this register needs to added to the machine PHI node as 11885 // the input for this MBB. 11886 SmallVector<EVT, 4> ValueVTs; 11887 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11888 for (EVT VT : ValueVTs) { 11889 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11890 for (unsigned i = 0; i != NumRegisters; ++i) 11891 FuncInfo.PHINodesToUpdate.push_back( 11892 std::make_pair(&*MBBI++, Reg + i)); 11893 Reg += NumRegisters; 11894 } 11895 } 11896 } 11897 11898 ConstantsOut.clear(); 11899 } 11900 11901 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11902 MachineFunction::iterator I(MBB); 11903 if (++I == FuncInfo.MF->end()) 11904 return nullptr; 11905 return &*I; 11906 } 11907 11908 /// During lowering new call nodes can be created (such as memset, etc.). 11909 /// Those will become new roots of the current DAG, but complications arise 11910 /// when they are tail calls. In such cases, the call lowering will update 11911 /// the root, but the builder still needs to know that a tail call has been 11912 /// lowered in order to avoid generating an additional return. 11913 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11914 // If the node is null, we do have a tail call. 11915 if (MaybeTC.getNode() != nullptr) 11916 DAG.setRoot(MaybeTC); 11917 else 11918 HasTailCall = true; 11919 } 11920 11921 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11922 MachineBasicBlock *SwitchMBB, 11923 MachineBasicBlock *DefaultMBB) { 11924 MachineFunction *CurMF = FuncInfo.MF; 11925 MachineBasicBlock *NextMBB = nullptr; 11926 MachineFunction::iterator BBI(W.MBB); 11927 if (++BBI != FuncInfo.MF->end()) 11928 NextMBB = &*BBI; 11929 11930 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11931 11932 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11933 11934 if (Size == 2 && W.MBB == SwitchMBB) { 11935 // If any two of the cases has the same destination, and if one value 11936 // is the same as the other, but has one bit unset that the other has set, 11937 // use bit manipulation to do two compares at once. For example: 11938 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11939 // TODO: This could be extended to merge any 2 cases in switches with 3 11940 // cases. 11941 // TODO: Handle cases where W.CaseBB != SwitchBB. 11942 CaseCluster &Small = *W.FirstCluster; 11943 CaseCluster &Big = *W.LastCluster; 11944 11945 if (Small.Low == Small.High && Big.Low == Big.High && 11946 Small.MBB == Big.MBB) { 11947 const APInt &SmallValue = Small.Low->getValue(); 11948 const APInt &BigValue = Big.Low->getValue(); 11949 11950 // Check that there is only one bit different. 11951 APInt CommonBit = BigValue ^ SmallValue; 11952 if (CommonBit.isPowerOf2()) { 11953 SDValue CondLHS = getValue(Cond); 11954 EVT VT = CondLHS.getValueType(); 11955 SDLoc DL = getCurSDLoc(); 11956 11957 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11958 DAG.getConstant(CommonBit, DL, VT)); 11959 SDValue Cond = DAG.getSetCC( 11960 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11961 ISD::SETEQ); 11962 11963 // Update successor info. 11964 // Both Small and Big will jump to Small.BB, so we sum up the 11965 // probabilities. 11966 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11967 if (BPI) 11968 addSuccessorWithProb( 11969 SwitchMBB, DefaultMBB, 11970 // The default destination is the first successor in IR. 11971 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11972 else 11973 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11974 11975 // Insert the true branch. 11976 SDValue BrCond = 11977 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11978 DAG.getBasicBlock(Small.MBB)); 11979 // Insert the false branch. 11980 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11981 DAG.getBasicBlock(DefaultMBB)); 11982 11983 DAG.setRoot(BrCond); 11984 return; 11985 } 11986 } 11987 } 11988 11989 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11990 // Here, we order cases by probability so the most likely case will be 11991 // checked first. However, two clusters can have the same probability in 11992 // which case their relative ordering is non-deterministic. So we use Low 11993 // as a tie-breaker as clusters are guaranteed to never overlap. 11994 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11995 [](const CaseCluster &a, const CaseCluster &b) { 11996 return a.Prob != b.Prob ? 11997 a.Prob > b.Prob : 11998 a.Low->getValue().slt(b.Low->getValue()); 11999 }); 12000 12001 // Rearrange the case blocks so that the last one falls through if possible 12002 // without changing the order of probabilities. 12003 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12004 --I; 12005 if (I->Prob > W.LastCluster->Prob) 12006 break; 12007 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12008 std::swap(*I, *W.LastCluster); 12009 break; 12010 } 12011 } 12012 } 12013 12014 // Compute total probability. 12015 BranchProbability DefaultProb = W.DefaultProb; 12016 BranchProbability UnhandledProbs = DefaultProb; 12017 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12018 UnhandledProbs += I->Prob; 12019 12020 MachineBasicBlock *CurMBB = W.MBB; 12021 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12022 bool FallthroughUnreachable = false; 12023 MachineBasicBlock *Fallthrough; 12024 if (I == W.LastCluster) { 12025 // For the last cluster, fall through to the default destination. 12026 Fallthrough = DefaultMBB; 12027 FallthroughUnreachable = isa<UnreachableInst>( 12028 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12029 } else { 12030 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12031 CurMF->insert(BBI, Fallthrough); 12032 // Put Cond in a virtual register to make it available from the new blocks. 12033 ExportFromCurrentBlock(Cond); 12034 } 12035 UnhandledProbs -= I->Prob; 12036 12037 switch (I->Kind) { 12038 case CC_JumpTable: { 12039 // FIXME: Optimize away range check based on pivot comparisons. 12040 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12041 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12042 12043 // The jump block hasn't been inserted yet; insert it here. 12044 MachineBasicBlock *JumpMBB = JT->MBB; 12045 CurMF->insert(BBI, JumpMBB); 12046 12047 auto JumpProb = I->Prob; 12048 auto FallthroughProb = UnhandledProbs; 12049 12050 // If the default statement is a target of the jump table, we evenly 12051 // distribute the default probability to successors of CurMBB. Also 12052 // update the probability on the edge from JumpMBB to Fallthrough. 12053 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12054 SE = JumpMBB->succ_end(); 12055 SI != SE; ++SI) { 12056 if (*SI == DefaultMBB) { 12057 JumpProb += DefaultProb / 2; 12058 FallthroughProb -= DefaultProb / 2; 12059 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12060 JumpMBB->normalizeSuccProbs(); 12061 break; 12062 } 12063 } 12064 12065 // If the default clause is unreachable, propagate that knowledge into 12066 // JTH->FallthroughUnreachable which will use it to suppress the range 12067 // check. 12068 // 12069 // However, don't do this if we're doing branch target enforcement, 12070 // because a table branch _without_ a range check can be a tempting JOP 12071 // gadget - out-of-bounds inputs that are impossible in correct 12072 // execution become possible again if an attacker can influence the 12073 // control flow. So if an attacker doesn't already have a BTI bypass 12074 // available, we don't want them to be able to get one out of this 12075 // table branch. 12076 if (FallthroughUnreachable) { 12077 Function &CurFunc = CurMF->getFunction(); 12078 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12079 JTH->FallthroughUnreachable = true; 12080 } 12081 12082 if (!JTH->FallthroughUnreachable) 12083 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12084 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12085 CurMBB->normalizeSuccProbs(); 12086 12087 // The jump table header will be inserted in our current block, do the 12088 // range check, and fall through to our fallthrough block. 12089 JTH->HeaderBB = CurMBB; 12090 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12091 12092 // If we're in the right place, emit the jump table header right now. 12093 if (CurMBB == SwitchMBB) { 12094 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12095 JTH->Emitted = true; 12096 } 12097 break; 12098 } 12099 case CC_BitTests: { 12100 // FIXME: Optimize away range check based on pivot comparisons. 12101 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12102 12103 // The bit test blocks haven't been inserted yet; insert them here. 12104 for (BitTestCase &BTC : BTB->Cases) 12105 CurMF->insert(BBI, BTC.ThisBB); 12106 12107 // Fill in fields of the BitTestBlock. 12108 BTB->Parent = CurMBB; 12109 BTB->Default = Fallthrough; 12110 12111 BTB->DefaultProb = UnhandledProbs; 12112 // If the cases in bit test don't form a contiguous range, we evenly 12113 // distribute the probability on the edge to Fallthrough to two 12114 // successors of CurMBB. 12115 if (!BTB->ContiguousRange) { 12116 BTB->Prob += DefaultProb / 2; 12117 BTB->DefaultProb -= DefaultProb / 2; 12118 } 12119 12120 if (FallthroughUnreachable) 12121 BTB->FallthroughUnreachable = true; 12122 12123 // If we're in the right place, emit the bit test header right now. 12124 if (CurMBB == SwitchMBB) { 12125 visitBitTestHeader(*BTB, SwitchMBB); 12126 BTB->Emitted = true; 12127 } 12128 break; 12129 } 12130 case CC_Range: { 12131 const Value *RHS, *LHS, *MHS; 12132 ISD::CondCode CC; 12133 if (I->Low == I->High) { 12134 // Check Cond == I->Low. 12135 CC = ISD::SETEQ; 12136 LHS = Cond; 12137 RHS=I->Low; 12138 MHS = nullptr; 12139 } else { 12140 // Check I->Low <= Cond <= I->High. 12141 CC = ISD::SETLE; 12142 LHS = I->Low; 12143 MHS = Cond; 12144 RHS = I->High; 12145 } 12146 12147 // If Fallthrough is unreachable, fold away the comparison. 12148 if (FallthroughUnreachable) 12149 CC = ISD::SETTRUE; 12150 12151 // The false probability is the sum of all unhandled cases. 12152 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12153 getCurSDLoc(), I->Prob, UnhandledProbs); 12154 12155 if (CurMBB == SwitchMBB) 12156 visitSwitchCase(CB, SwitchMBB); 12157 else 12158 SL->SwitchCases.push_back(CB); 12159 12160 break; 12161 } 12162 } 12163 CurMBB = Fallthrough; 12164 } 12165 } 12166 12167 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12168 const SwitchWorkListItem &W, 12169 Value *Cond, 12170 MachineBasicBlock *SwitchMBB) { 12171 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12172 "Clusters not sorted?"); 12173 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12174 12175 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12176 SL->computeSplitWorkItemInfo(W); 12177 12178 // Use the first element on the right as pivot since we will make less-than 12179 // comparisons against it. 12180 CaseClusterIt PivotCluster = FirstRight; 12181 assert(PivotCluster > W.FirstCluster); 12182 assert(PivotCluster <= W.LastCluster); 12183 12184 CaseClusterIt FirstLeft = W.FirstCluster; 12185 CaseClusterIt LastRight = W.LastCluster; 12186 12187 const ConstantInt *Pivot = PivotCluster->Low; 12188 12189 // New blocks will be inserted immediately after the current one. 12190 MachineFunction::iterator BBI(W.MBB); 12191 ++BBI; 12192 12193 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12194 // we can branch to its destination directly if it's squeezed exactly in 12195 // between the known lower bound and Pivot - 1. 12196 MachineBasicBlock *LeftMBB; 12197 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12198 FirstLeft->Low == W.GE && 12199 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12200 LeftMBB = FirstLeft->MBB; 12201 } else { 12202 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12203 FuncInfo.MF->insert(BBI, LeftMBB); 12204 WorkList.push_back( 12205 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12206 // Put Cond in a virtual register to make it available from the new blocks. 12207 ExportFromCurrentBlock(Cond); 12208 } 12209 12210 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12211 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12212 // directly if RHS.High equals the current upper bound. 12213 MachineBasicBlock *RightMBB; 12214 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12215 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12216 RightMBB = FirstRight->MBB; 12217 } else { 12218 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12219 FuncInfo.MF->insert(BBI, RightMBB); 12220 WorkList.push_back( 12221 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12222 // Put Cond in a virtual register to make it available from the new blocks. 12223 ExportFromCurrentBlock(Cond); 12224 } 12225 12226 // Create the CaseBlock record that will be used to lower the branch. 12227 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12228 getCurSDLoc(), LeftProb, RightProb); 12229 12230 if (W.MBB == SwitchMBB) 12231 visitSwitchCase(CB, SwitchMBB); 12232 else 12233 SL->SwitchCases.push_back(CB); 12234 } 12235 12236 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12237 // from the swith statement. 12238 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12239 BranchProbability PeeledCaseProb) { 12240 if (PeeledCaseProb == BranchProbability::getOne()) 12241 return BranchProbability::getZero(); 12242 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12243 12244 uint32_t Numerator = CaseProb.getNumerator(); 12245 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12246 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12247 } 12248 12249 // Try to peel the top probability case if it exceeds the threshold. 12250 // Return current MachineBasicBlock for the switch statement if the peeling 12251 // does not occur. 12252 // If the peeling is performed, return the newly created MachineBasicBlock 12253 // for the peeled switch statement. Also update Clusters to remove the peeled 12254 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12255 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12256 const SwitchInst &SI, CaseClusterVector &Clusters, 12257 BranchProbability &PeeledCaseProb) { 12258 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12259 // Don't perform if there is only one cluster or optimizing for size. 12260 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12261 TM.getOptLevel() == CodeGenOptLevel::None || 12262 SwitchMBB->getParent()->getFunction().hasMinSize()) 12263 return SwitchMBB; 12264 12265 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12266 unsigned PeeledCaseIndex = 0; 12267 bool SwitchPeeled = false; 12268 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12269 CaseCluster &CC = Clusters[Index]; 12270 if (CC.Prob < TopCaseProb) 12271 continue; 12272 TopCaseProb = CC.Prob; 12273 PeeledCaseIndex = Index; 12274 SwitchPeeled = true; 12275 } 12276 if (!SwitchPeeled) 12277 return SwitchMBB; 12278 12279 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12280 << TopCaseProb << "\n"); 12281 12282 // Record the MBB for the peeled switch statement. 12283 MachineFunction::iterator BBI(SwitchMBB); 12284 ++BBI; 12285 MachineBasicBlock *PeeledSwitchMBB = 12286 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12287 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12288 12289 ExportFromCurrentBlock(SI.getCondition()); 12290 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12291 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12292 nullptr, nullptr, TopCaseProb.getCompl()}; 12293 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12294 12295 Clusters.erase(PeeledCaseIt); 12296 for (CaseCluster &CC : Clusters) { 12297 LLVM_DEBUG( 12298 dbgs() << "Scale the probablity for one cluster, before scaling: " 12299 << CC.Prob << "\n"); 12300 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12301 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12302 } 12303 PeeledCaseProb = TopCaseProb; 12304 return PeeledSwitchMBB; 12305 } 12306 12307 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12308 // Extract cases from the switch. 12309 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12310 CaseClusterVector Clusters; 12311 Clusters.reserve(SI.getNumCases()); 12312 for (auto I : SI.cases()) { 12313 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12314 const ConstantInt *CaseVal = I.getCaseValue(); 12315 BranchProbability Prob = 12316 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12317 : BranchProbability(1, SI.getNumCases() + 1); 12318 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12319 } 12320 12321 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12322 12323 // Cluster adjacent cases with the same destination. We do this at all 12324 // optimization levels because it's cheap to do and will make codegen faster 12325 // if there are many clusters. 12326 sortAndRangeify(Clusters); 12327 12328 // The branch probablity of the peeled case. 12329 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12330 MachineBasicBlock *PeeledSwitchMBB = 12331 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12332 12333 // If there is only the default destination, jump there directly. 12334 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12335 if (Clusters.empty()) { 12336 assert(PeeledSwitchMBB == SwitchMBB); 12337 SwitchMBB->addSuccessor(DefaultMBB); 12338 if (DefaultMBB != NextBlock(SwitchMBB)) { 12339 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12340 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12341 } 12342 return; 12343 } 12344 12345 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12346 DAG.getBFI()); 12347 SL->findBitTestClusters(Clusters, &SI); 12348 12349 LLVM_DEBUG({ 12350 dbgs() << "Case clusters: "; 12351 for (const CaseCluster &C : Clusters) { 12352 if (C.Kind == CC_JumpTable) 12353 dbgs() << "JT:"; 12354 if (C.Kind == CC_BitTests) 12355 dbgs() << "BT:"; 12356 12357 C.Low->getValue().print(dbgs(), true); 12358 if (C.Low != C.High) { 12359 dbgs() << '-'; 12360 C.High->getValue().print(dbgs(), true); 12361 } 12362 dbgs() << ' '; 12363 } 12364 dbgs() << '\n'; 12365 }); 12366 12367 assert(!Clusters.empty()); 12368 SwitchWorkList WorkList; 12369 CaseClusterIt First = Clusters.begin(); 12370 CaseClusterIt Last = Clusters.end() - 1; 12371 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12372 // Scale the branchprobability for DefaultMBB if the peel occurs and 12373 // DefaultMBB is not replaced. 12374 if (PeeledCaseProb != BranchProbability::getZero() && 12375 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12376 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12377 WorkList.push_back( 12378 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12379 12380 while (!WorkList.empty()) { 12381 SwitchWorkListItem W = WorkList.pop_back_val(); 12382 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12383 12384 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12385 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12386 // For optimized builds, lower large range as a balanced binary tree. 12387 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12388 continue; 12389 } 12390 12391 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12392 } 12393 } 12394 12395 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12397 auto DL = getCurSDLoc(); 12398 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12399 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12400 } 12401 12402 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12404 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12405 12406 SDLoc DL = getCurSDLoc(); 12407 SDValue V = getValue(I.getOperand(0)); 12408 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12409 12410 if (VT.isScalableVector()) { 12411 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12412 return; 12413 } 12414 12415 // Use VECTOR_SHUFFLE for the fixed-length vector 12416 // to maintain existing behavior. 12417 SmallVector<int, 8> Mask; 12418 unsigned NumElts = VT.getVectorMinNumElements(); 12419 for (unsigned i = 0; i != NumElts; ++i) 12420 Mask.push_back(NumElts - 1 - i); 12421 12422 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12423 } 12424 12425 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12426 auto DL = getCurSDLoc(); 12427 SDValue InVec = getValue(I.getOperand(0)); 12428 EVT OutVT = 12429 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12430 12431 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12432 12433 // ISD Node needs the input vectors split into two equal parts 12434 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12435 DAG.getVectorIdxConstant(0, DL)); 12436 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12437 DAG.getVectorIdxConstant(OutNumElts, DL)); 12438 12439 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12440 // legalisation and combines. 12441 if (OutVT.isFixedLengthVector()) { 12442 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12443 createStrideMask(0, 2, OutNumElts)); 12444 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12445 createStrideMask(1, 2, OutNumElts)); 12446 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12447 setValue(&I, Res); 12448 return; 12449 } 12450 12451 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12452 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12453 setValue(&I, Res); 12454 } 12455 12456 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12457 auto DL = getCurSDLoc(); 12458 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12459 SDValue InVec0 = getValue(I.getOperand(0)); 12460 SDValue InVec1 = getValue(I.getOperand(1)); 12461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12462 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12463 12464 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12465 // legalisation and combines. 12466 if (OutVT.isFixedLengthVector()) { 12467 unsigned NumElts = InVT.getVectorMinNumElements(); 12468 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12469 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12470 createInterleaveMask(NumElts, 2))); 12471 return; 12472 } 12473 12474 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12475 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12476 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12477 Res.getValue(1)); 12478 setValue(&I, Res); 12479 } 12480 12481 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12482 SmallVector<EVT, 4> ValueVTs; 12483 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12484 ValueVTs); 12485 unsigned NumValues = ValueVTs.size(); 12486 if (NumValues == 0) return; 12487 12488 SmallVector<SDValue, 4> Values(NumValues); 12489 SDValue Op = getValue(I.getOperand(0)); 12490 12491 for (unsigned i = 0; i != NumValues; ++i) 12492 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12493 SDValue(Op.getNode(), Op.getResNo() + i)); 12494 12495 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12496 DAG.getVTList(ValueVTs), Values)); 12497 } 12498 12499 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12501 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12502 12503 SDLoc DL = getCurSDLoc(); 12504 SDValue V1 = getValue(I.getOperand(0)); 12505 SDValue V2 = getValue(I.getOperand(1)); 12506 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12507 12508 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12509 if (VT.isScalableVector()) { 12510 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12511 DAG.getVectorIdxConstant(Imm, DL))); 12512 return; 12513 } 12514 12515 unsigned NumElts = VT.getVectorNumElements(); 12516 12517 uint64_t Idx = (NumElts + Imm) % NumElts; 12518 12519 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12520 SmallVector<int, 8> Mask; 12521 for (unsigned i = 0; i < NumElts; ++i) 12522 Mask.push_back(Idx + i); 12523 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12524 } 12525 12526 // Consider the following MIR after SelectionDAG, which produces output in 12527 // phyregs in the first case or virtregs in the second case. 12528 // 12529 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12530 // %5:gr32 = COPY $ebx 12531 // %6:gr32 = COPY $edx 12532 // %1:gr32 = COPY %6:gr32 12533 // %0:gr32 = COPY %5:gr32 12534 // 12535 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12536 // %1:gr32 = COPY %6:gr32 12537 // %0:gr32 = COPY %5:gr32 12538 // 12539 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12540 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12541 // 12542 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12543 // to a single virtreg (such as %0). The remaining outputs monotonically 12544 // increase in virtreg number from there. If a callbr has no outputs, then it 12545 // should not have a corresponding callbr landingpad; in fact, the callbr 12546 // landingpad would not even be able to refer to such a callbr. 12547 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12548 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12549 // There is definitely at least one copy. 12550 assert(MI->getOpcode() == TargetOpcode::COPY && 12551 "start of copy chain MUST be COPY"); 12552 Reg = MI->getOperand(1).getReg(); 12553 MI = MRI.def_begin(Reg)->getParent(); 12554 // There may be an optional second copy. 12555 if (MI->getOpcode() == TargetOpcode::COPY) { 12556 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12557 Reg = MI->getOperand(1).getReg(); 12558 assert(Reg.isPhysical() && "expected COPY of physical register"); 12559 MI = MRI.def_begin(Reg)->getParent(); 12560 } 12561 // The start of the chain must be an INLINEASM_BR. 12562 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12563 "end of copy chain MUST be INLINEASM_BR"); 12564 return Reg; 12565 } 12566 12567 // We must do this walk rather than the simpler 12568 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12569 // otherwise we will end up with copies of virtregs only valid along direct 12570 // edges. 12571 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12572 SmallVector<EVT, 8> ResultVTs; 12573 SmallVector<SDValue, 8> ResultValues; 12574 const auto *CBR = 12575 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12576 12577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12578 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12579 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12580 12581 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12582 SDValue Chain = DAG.getRoot(); 12583 12584 // Re-parse the asm constraints string. 12585 TargetLowering::AsmOperandInfoVector TargetConstraints = 12586 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12587 for (auto &T : TargetConstraints) { 12588 SDISelAsmOperandInfo OpInfo(T); 12589 if (OpInfo.Type != InlineAsm::isOutput) 12590 continue; 12591 12592 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12593 // individual constraint. 12594 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12595 12596 switch (OpInfo.ConstraintType) { 12597 case TargetLowering::C_Register: 12598 case TargetLowering::C_RegisterClass: { 12599 // Fill in OpInfo.AssignedRegs.Regs. 12600 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12601 12602 // getRegistersForValue may produce 1 to many registers based on whether 12603 // the OpInfo.ConstraintVT is legal on the target or not. 12604 for (unsigned &Reg : OpInfo.AssignedRegs.Regs) { 12605 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12606 if (Register::isPhysicalRegister(OriginalDef)) 12607 FuncInfo.MBB->addLiveIn(OriginalDef); 12608 // Update the assigned registers to use the original defs. 12609 Reg = OriginalDef; 12610 } 12611 12612 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12613 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12614 ResultValues.push_back(V); 12615 ResultVTs.push_back(OpInfo.ConstraintVT); 12616 break; 12617 } 12618 case TargetLowering::C_Other: { 12619 SDValue Flag; 12620 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12621 OpInfo, DAG); 12622 ++InitialDef; 12623 ResultValues.push_back(V); 12624 ResultVTs.push_back(OpInfo.ConstraintVT); 12625 break; 12626 } 12627 default: 12628 break; 12629 } 12630 } 12631 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12632 DAG.getVTList(ResultVTs), ResultValues); 12633 setValue(&I, V); 12634 } 12635