xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7ef62cebc2f965b0f640263e179276928885e33d)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/Loads.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <optional>
104 #include <tuple>
105 
106 using namespace llvm;
107 using namespace PatternMatch;
108 using namespace SwitchCG;
109 
110 #define DEBUG_TYPE "isel"
111 
112 /// LimitFloatPrecision - Generate low-precision inline sequences for
113 /// some float libcalls (6, 8 or 12 bits).
114 static unsigned LimitFloatPrecision;
115 
116 static cl::opt<bool>
117     InsertAssertAlign("insert-assert-align", cl::init(true),
118                       cl::desc("Insert the experimental `assertalign` node."),
119                       cl::ReallyHidden);
120 
121 static cl::opt<unsigned, true>
122     LimitFPPrecision("limit-float-precision",
123                      cl::desc("Generate low-precision inline sequences "
124                               "for some float libcalls"),
125                      cl::location(LimitFloatPrecision), cl::Hidden,
126                      cl::init(0));
127 
128 static cl::opt<unsigned> SwitchPeelThreshold(
129     "switch-peel-threshold", cl::Hidden, cl::init(66),
130     cl::desc("Set the case probability threshold for peeling the case from a "
131              "switch statement. A value greater than 100 will void this "
132              "optimization"));
133 
134 // Limit the width of DAG chains. This is important in general to prevent
135 // DAG-based analysis from blowing up. For example, alias analysis and
136 // load clustering may not complete in reasonable time. It is difficult to
137 // recognize and avoid this situation within each individual analysis, and
138 // future analyses are likely to have the same behavior. Limiting DAG width is
139 // the safe approach and will be especially important with global DAGs.
140 //
141 // MaxParallelChains default is arbitrarily high to avoid affecting
142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
143 // sequence over this should have been converted to llvm.memcpy by the
144 // frontend. It is easy to induce this behavior with .ll code such as:
145 // %buffer = alloca [4096 x i8]
146 // %data = load [4096 x i8]* %argPtr
147 // store [4096 x i8] %data, [4096 x i8]* %buffer
148 static const unsigned MaxParallelChains = 64;
149 
150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
151                                       const SDValue *Parts, unsigned NumParts,
152                                       MVT PartVT, EVT ValueVT, const Value *V,
153                                       std::optional<CallingConv::ID> CC);
154 
155 /// getCopyFromParts - Create a value that contains the specified legal parts
156 /// combined into the value they represent.  If the parts combine to a type
157 /// larger than ValueVT then AssertOp can be used to specify whether the extra
158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
159 /// (ISD::AssertSext).
160 static SDValue
161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
162                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
163                  std::optional<CallingConv::ID> CC = std::nullopt,
164                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
165   // Let the target assemble the parts if it wants to
166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
167   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
168                                                    PartVT, ValueVT, CC))
169     return Val;
170 
171   if (ValueVT.isVector())
172     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
173                                   CC);
174 
175   assert(NumParts > 0 && "No parts to assemble!");
176   SDValue Val = Parts[0];
177 
178   if (NumParts > 1) {
179     // Assemble the value from multiple parts.
180     if (ValueVT.isInteger()) {
181       unsigned PartBits = PartVT.getSizeInBits();
182       unsigned ValueBits = ValueVT.getSizeInBits();
183 
184       // Assemble the power of 2 part.
185       unsigned RoundParts = llvm::bit_floor(NumParts);
186       unsigned RoundBits = PartBits * RoundParts;
187       EVT RoundVT = RoundBits == ValueBits ?
188         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
189       SDValue Lo, Hi;
190 
191       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
192 
193       if (RoundParts > 2) {
194         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
195                               PartVT, HalfVT, V);
196         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
197                               RoundParts / 2, PartVT, HalfVT, V);
198       } else {
199         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
200         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
201       }
202 
203       if (DAG.getDataLayout().isBigEndian())
204         std::swap(Lo, Hi);
205 
206       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
207 
208       if (RoundParts < NumParts) {
209         // Assemble the trailing non-power-of-2 part.
210         unsigned OddParts = NumParts - RoundParts;
211         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
212         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
213                               OddVT, V, CC);
214 
215         // Combine the round and odd parts.
216         Lo = Val;
217         if (DAG.getDataLayout().isBigEndian())
218           std::swap(Lo, Hi);
219         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
220         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
221         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
222                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
223                                          TLI.getShiftAmountTy(
224                                              TotalVT, DAG.getDataLayout())));
225         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
226         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
227       }
228     } else if (PartVT.isFloatingPoint()) {
229       // FP split into multiple FP parts (for ppcf128)
230       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
231              "Unexpected split");
232       SDValue Lo, Hi;
233       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
234       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
235       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
236         std::swap(Lo, Hi);
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
238     } else {
239       // FP split into integer parts (soft fp)
240       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
241              !PartVT.isVector() && "Unexpected split");
242       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
243       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
244     }
245   }
246 
247   // There is now one part, held in Val.  Correct it to match ValueVT.
248   // PartEVT is the type of the register class that holds the value.
249   // ValueVT is the type of the inline asm operation.
250   EVT PartEVT = Val.getValueType();
251 
252   if (PartEVT == ValueVT)
253     return Val;
254 
255   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
256       ValueVT.bitsLT(PartEVT)) {
257     // For an FP value in an integer part, we need to truncate to the right
258     // width first.
259     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
260     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
261   }
262 
263   // Handle types that have the same size.
264   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
265     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
266 
267   // Handle types with different sizes.
268   if (PartEVT.isInteger() && ValueVT.isInteger()) {
269     if (ValueVT.bitsLT(PartEVT)) {
270       // For a truncate, see if we have any information to
271       // indicate whether the truncated bits will always be
272       // zero or sign-extension.
273       if (AssertOp)
274         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
275                           DAG.getValueType(ValueVT));
276       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
277     }
278     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
279   }
280 
281   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
282     // FP_ROUND's are always exact here.
283     if (ValueVT.bitsLT(Val.getValueType()))
284       return DAG.getNode(
285           ISD::FP_ROUND, DL, ValueVT, Val,
286           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
287 
288     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
289   }
290 
291   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
292   // then truncating.
293   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
294       ValueVT.bitsLT(PartEVT)) {
295     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
296     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297   }
298 
299   report_fatal_error("Unknown mismatch in getCopyFromParts!");
300 }
301 
302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
303                                               const Twine &ErrMsg) {
304   const Instruction *I = dyn_cast_or_null<Instruction>(V);
305   if (!V)
306     return Ctx.emitError(ErrMsg);
307 
308   const char *AsmError = ", possible invalid constraint for vector type";
309   if (const CallInst *CI = dyn_cast<CallInst>(I))
310     if (CI->isInlineAsm())
311       return Ctx.emitError(I, ErrMsg + AsmError);
312 
313   return Ctx.emitError(I, ErrMsg);
314 }
315 
316 /// getCopyFromPartsVector - Create a value that contains the specified legal
317 /// parts combined into the value they represent.  If the parts combine to a
318 /// type larger than ValueVT then AssertOp can be used to specify whether the
319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
320 /// ValueVT (ISD::AssertSext).
321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
322                                       const SDValue *Parts, unsigned NumParts,
323                                       MVT PartVT, EVT ValueVT, const Value *V,
324                                       std::optional<CallingConv::ID> CallConv) {
325   assert(ValueVT.isVector() && "Not a vector value");
326   assert(NumParts > 0 && "No parts to assemble!");
327   const bool IsABIRegCopy = CallConv.has_value();
328 
329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
330   SDValue Val = Parts[0];
331 
332   // Handle a multi-element vector.
333   if (NumParts > 1) {
334     EVT IntermediateVT;
335     MVT RegisterVT;
336     unsigned NumIntermediates;
337     unsigned NumRegs;
338 
339     if (IsABIRegCopy) {
340       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
341           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
342           NumIntermediates, RegisterVT);
343     } else {
344       NumRegs =
345           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
346                                      NumIntermediates, RegisterVT);
347     }
348 
349     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
350     NumParts = NumRegs; // Silence a compiler warning.
351     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
352     assert(RegisterVT.getSizeInBits() ==
353            Parts[0].getSimpleValueType().getSizeInBits() &&
354            "Part type sizes don't match!");
355 
356     // Assemble the parts into intermediate operands.
357     SmallVector<SDValue, 8> Ops(NumIntermediates);
358     if (NumIntermediates == NumParts) {
359       // If the register was not expanded, truncate or copy the value,
360       // as appropriate.
361       for (unsigned i = 0; i != NumParts; ++i)
362         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
363                                   PartVT, IntermediateVT, V, CallConv);
364     } else if (NumParts > 0) {
365       // If the intermediate type was expanded, build the intermediate
366       // operands from the parts.
367       assert(NumParts % NumIntermediates == 0 &&
368              "Must expand into a divisible number of parts!");
369       unsigned Factor = NumParts / NumIntermediates;
370       for (unsigned i = 0; i != NumIntermediates; ++i)
371         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
372                                   PartVT, IntermediateVT, V, CallConv);
373     }
374 
375     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
376     // intermediate operands.
377     EVT BuiltVectorTy =
378         IntermediateVT.isVector()
379             ? EVT::getVectorVT(
380                   *DAG.getContext(), IntermediateVT.getScalarType(),
381                   IntermediateVT.getVectorElementCount() * NumParts)
382             : EVT::getVectorVT(*DAG.getContext(),
383                                IntermediateVT.getScalarType(),
384                                NumIntermediates);
385     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
386                                                 : ISD::BUILD_VECTOR,
387                       DL, BuiltVectorTy, Ops);
388   }
389 
390   // There is now one part, held in Val.  Correct it to match ValueVT.
391   EVT PartEVT = Val.getValueType();
392 
393   if (PartEVT == ValueVT)
394     return Val;
395 
396   if (PartEVT.isVector()) {
397     // Vector/Vector bitcast.
398     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
399       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400 
401     // If the parts vector has more elements than the value vector, then we
402     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
403     // Extract the elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
418         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419     }
420 
421     // Promoted vector extract
422     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
423   }
424 
425   // Trivial bitcast if the types are the same size and the destination
426   // vector type is legal.
427   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
428       TLI.isTypeLegal(ValueVT))
429     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
430 
431   if (ValueVT.getVectorNumElements() != 1) {
432      // Certain ABIs require that vectors are passed as integers. For vectors
433      // are the same size, this is an obvious bitcast.
434      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
435        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436      } else if (ValueVT.bitsLT(PartEVT)) {
437        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
438        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
439        // Drop the extra bits.
440        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
441        return DAG.getBitcast(ValueVT, Val);
442      }
443 
444      diagnosePossiblyInvalidConstraint(
445          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
446      return DAG.getUNDEF(ValueVT);
447   }
448 
449   // Handle cases such as i8 -> <1 x i1>
450   EVT ValueSVT = ValueVT.getVectorElementType();
451   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
452     unsigned ValueSize = ValueSVT.getSizeInBits();
453     if (ValueSize == PartEVT.getSizeInBits()) {
454       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
455     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
456       // It's possible a scalar floating point type gets softened to integer and
457       // then promoted to a larger integer. If PartEVT is the larger integer
458       // we need to truncate it and then bitcast to the FP type.
459       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
460       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462       Val = DAG.getBitcast(ValueSVT, Val);
463     } else {
464       Val = ValueVT.isFloatingPoint()
465                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467     }
468   }
469 
470   return DAG.getBuildVector(ValueVT, DL, Val);
471 }
472 
473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
474                                  SDValue Val, SDValue *Parts, unsigned NumParts,
475                                  MVT PartVT, const Value *V,
476                                  std::optional<CallingConv::ID> CallConv);
477 
478 /// getCopyToParts - Create a series of nodes that contain the specified value
479 /// split into legal parts.  If the parts contain more bits than Val, then, for
480 /// integers, ExtendKind can be used to specify how to generate the extra bits.
481 static void
482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
483                unsigned NumParts, MVT PartVT, const Value *V,
484                std::optional<CallingConv::ID> CallConv = std::nullopt,
485                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
486   // Let the target split the parts if it wants to
487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
488   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
489                                       CallConv))
490     return;
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = llvm::bit_floor(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
575 
576     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
577                    CallConv);
578 
579     if (DAG.getDataLayout().isBigEndian())
580       // The odd parts were reversed by getCopyToParts - unreverse them.
581       std::reverse(Parts + RoundParts, Parts + NumParts);
582 
583     NumParts = RoundParts;
584     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
585     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
586   }
587 
588   // The number of parts is a power of 2.  Repeatedly bisect the value using
589   // EXTRACT_ELEMENT.
590   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
591                          EVT::getIntegerVT(*DAG.getContext(),
592                                            ValueVT.getSizeInBits()),
593                          Val);
594 
595   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
596     for (unsigned i = 0; i < NumParts; i += StepSize) {
597       unsigned ThisBits = StepSize * PartBits / 2;
598       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
599       SDValue &Part0 = Parts[i];
600       SDValue &Part1 = Parts[i+StepSize/2];
601 
602       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
603                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
604       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 
607       if (ThisBits == PartBits && ThisVT != PartVT) {
608         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
609         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
610       }
611     }
612   }
613 
614   if (DAG.getDataLayout().isBigEndian())
615     std::reverse(Parts, Parts + OrigNumParts);
616 }
617 
618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
619                                      const SDLoc &DL, EVT PartVT) {
620   if (!PartVT.isVector())
621     return SDValue();
622 
623   EVT ValueVT = Val.getValueType();
624   ElementCount PartNumElts = PartVT.getVectorElementCount();
625   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
626 
627   // We only support widening vectors with equivalent element types and
628   // fixed/scalable properties. If a target needs to widen a fixed-length type
629   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
630   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
631       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
632       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
633     return SDValue();
634 
635   // Widening a scalable vector to another scalable vector is done by inserting
636   // the vector into a larger undef one.
637   if (PartNumElts.isScalable())
638     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
639                        Val, DAG.getVectorIdxConstant(0, DL));
640 
641   EVT ElementVT = PartVT.getVectorElementType();
642   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
643   // undef elements.
644   SmallVector<SDValue, 16> Ops;
645   DAG.ExtractVectorElements(Val, Ops);
646   SDValue EltUndef = DAG.getUNDEF(ElementVT);
647   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
648 
649   // FIXME: Use CONCAT for 2x -> 4x.
650   return DAG.getBuildVector(PartVT, DL, Ops);
651 }
652 
653 /// getCopyToPartsVector - Create a series of nodes that contain the specified
654 /// value split into legal parts.
655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
656                                  SDValue Val, SDValue *Parts, unsigned NumParts,
657                                  MVT PartVT, const Value *V,
658                                  std::optional<CallingConv::ID> CallConv) {
659   EVT ValueVT = Val.getValueType();
660   assert(ValueVT.isVector() && "Not a vector");
661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
662   const bool IsABIRegCopy = CallConv.has_value();
663 
664   if (NumParts == 1) {
665     EVT PartEVT = PartVT;
666     if (PartEVT == ValueVT) {
667       // Nothing to do.
668     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
669       // Bitconvert vector->vector case.
670       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
671     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
672       Val = Widened;
673     } else if (PartVT.isVector() &&
674                PartEVT.getVectorElementType().bitsGE(
675                    ValueVT.getVectorElementType()) &&
676                PartEVT.getVectorElementCount() ==
677                    ValueVT.getVectorElementCount()) {
678 
679       // Promoted vector extract
680       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681     } else if (PartEVT.isVector() &&
682                PartEVT.getVectorElementType() !=
683                    ValueVT.getVectorElementType() &&
684                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
685                    TargetLowering::TypeWidenVector) {
686       // Combination of widening and promotion.
687       EVT WidenVT =
688           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
689                            PartVT.getVectorElementCount());
690       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
691       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
692     } else {
693       // Don't extract an integer from a float vector. This can happen if the
694       // FP type gets softened to integer and then promoted. The promotion
695       // prevents it from being picked up by the earlier bitcast case.
696       if (ValueVT.getVectorElementCount().isScalar() &&
697           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
698         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
699                           DAG.getVectorIdxConstant(0, DL));
700       } else {
701         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
702         assert(PartVT.getFixedSizeInBits() > ValueSize &&
703                "lossy conversion of vector to scalar type");
704         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
705         Val = DAG.getBitcast(IntermediateType, Val);
706         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
707       }
708     }
709 
710     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
711     Parts[0] = Val;
712     return;
713   }
714 
715   // Handle a multi-element vector.
716   EVT IntermediateVT;
717   MVT RegisterVT;
718   unsigned NumIntermediates;
719   unsigned NumRegs;
720   if (IsABIRegCopy) {
721     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
722         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
723         RegisterVT);
724   } else {
725     NumRegs =
726         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
727                                    NumIntermediates, RegisterVT);
728   }
729 
730   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
731   NumParts = NumRegs; // Silence a compiler warning.
732   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
733 
734   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
735          "Mixing scalable and fixed vectors when copying in parts");
736 
737   std::optional<ElementCount> DestEltCnt;
738 
739   if (IntermediateVT.isVector())
740     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
741   else
742     DestEltCnt = ElementCount::getFixed(NumIntermediates);
743 
744   EVT BuiltVectorTy = EVT::getVectorVT(
745       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
746 
747   if (ValueVT == BuiltVectorTy) {
748     // Nothing to do.
749   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
750     // Bitconvert vector->vector case.
751     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
752   } else {
753     if (BuiltVectorTy.getVectorElementType().bitsGT(
754             ValueVT.getVectorElementType())) {
755       // Integer promotion.
756       ValueVT = EVT::getVectorVT(*DAG.getContext(),
757                                  BuiltVectorTy.getVectorElementType(),
758                                  ValueVT.getVectorElementCount());
759       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
760     }
761 
762     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
763       Val = Widened;
764     }
765   }
766 
767   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
768 
769   // Split the vector into intermediate operands.
770   SmallVector<SDValue, 8> Ops(NumIntermediates);
771   for (unsigned i = 0; i != NumIntermediates; ++i) {
772     if (IntermediateVT.isVector()) {
773       // This does something sensible for scalable vectors - see the
774       // definition of EXTRACT_SUBVECTOR for further details.
775       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
776       Ops[i] =
777           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
778                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
779     } else {
780       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
781                            DAG.getVectorIdxConstant(i, DL));
782     }
783   }
784 
785   // Split the intermediate operands into legal parts.
786   if (NumParts == NumIntermediates) {
787     // If the register was not expanded, promote or copy the value,
788     // as appropriate.
789     for (unsigned i = 0; i != NumParts; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
791   } else if (NumParts > 0) {
792     // If the intermediate type was expanded, split each the value into
793     // legal parts.
794     assert(NumIntermediates != 0 && "division by zero");
795     assert(NumParts % NumIntermediates == 0 &&
796            "Must expand into a divisible number of parts!");
797     unsigned Factor = NumParts / NumIntermediates;
798     for (unsigned i = 0; i != NumIntermediates; ++i)
799       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
800                      CallConv);
801   }
802 }
803 
804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
805                            EVT valuevt, std::optional<CallingConv::ID> CC)
806     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
807       RegCount(1, regs.size()), CallConv(CC) {}
808 
809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
810                            const DataLayout &DL, unsigned Reg, Type *Ty,
811                            std::optional<CallingConv::ID> CC) {
812   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
813 
814   CallConv = CC;
815 
816   for (EVT ValueVT : ValueVTs) {
817     unsigned NumRegs =
818         isABIMangled()
819             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
820             : TLI.getNumRegisters(Context, ValueVT);
821     MVT RegisterVT =
822         isABIMangled()
823             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
824             : TLI.getRegisterType(Context, ValueVT);
825     for (unsigned i = 0; i != NumRegs; ++i)
826       Regs.push_back(Reg + i);
827     RegVTs.push_back(RegisterVT);
828     RegCount.push_back(NumRegs);
829     Reg += NumRegs;
830   }
831 }
832 
833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
834                                       FunctionLoweringInfo &FuncInfo,
835                                       const SDLoc &dl, SDValue &Chain,
836                                       SDValue *Flag, const Value *V) const {
837   // A Value with type {} or [0 x %t] needs no registers.
838   if (ValueVTs.empty())
839     return SDValue();
840 
841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
842 
843   // Assemble the legal parts into the final values.
844   SmallVector<SDValue, 4> Values(ValueVTs.size());
845   SmallVector<SDValue, 8> Parts;
846   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
847     // Copy the legal parts from the registers.
848     EVT ValueVT = ValueVTs[Value];
849     unsigned NumRegs = RegCount[Value];
850     MVT RegisterVT = isABIMangled()
851                          ? TLI.getRegisterTypeForCallingConv(
852                                *DAG.getContext(), *CallConv, RegVTs[Value])
853                          : RegVTs[Value];
854 
855     Parts.resize(NumRegs);
856     for (unsigned i = 0; i != NumRegs; ++i) {
857       SDValue P;
858       if (!Flag) {
859         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
860       } else {
861         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
862         *Flag = P.getValue(2);
863       }
864 
865       Chain = P.getValue(1);
866       Parts[i] = P;
867 
868       // If the source register was virtual and if we know something about it,
869       // add an assert node.
870       if (!Register::isVirtualRegister(Regs[Part + i]) ||
871           !RegisterVT.isInteger())
872         continue;
873 
874       const FunctionLoweringInfo::LiveOutInfo *LOI =
875         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
876       if (!LOI)
877         continue;
878 
879       unsigned RegSize = RegisterVT.getScalarSizeInBits();
880       unsigned NumSignBits = LOI->NumSignBits;
881       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
882 
883       if (NumZeroBits == RegSize) {
884         // The current value is a zero.
885         // Explicitly express that as it would be easier for
886         // optimizations to kick in.
887         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
888         continue;
889       }
890 
891       // FIXME: We capture more information than the dag can represent.  For
892       // now, just use the tightest assertzext/assertsext possible.
893       bool isSExt;
894       EVT FromVT(MVT::Other);
895       if (NumZeroBits) {
896         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
897         isSExt = false;
898       } else if (NumSignBits > 1) {
899         FromVT =
900             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
901         isSExt = true;
902       } else {
903         continue;
904       }
905       // Add an assertion node.
906       assert(FromVT != MVT::Other);
907       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
908                              RegisterVT, P, DAG.getValueType(FromVT));
909     }
910 
911     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
912                                      RegisterVT, ValueVT, V, CallConv);
913     Part += NumRegs;
914     Parts.clear();
915   }
916 
917   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
918 }
919 
920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
921                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
922                                  const Value *V,
923                                  ISD::NodeType PreferredExtendType) const {
924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
925   ISD::NodeType ExtendKind = PreferredExtendType;
926 
927   // Get the list of the values's legal parts.
928   unsigned NumRegs = Regs.size();
929   SmallVector<SDValue, 8> Parts(NumRegs);
930   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
931     unsigned NumParts = RegCount[Value];
932 
933     MVT RegisterVT = isABIMangled()
934                          ? TLI.getRegisterTypeForCallingConv(
935                                *DAG.getContext(), *CallConv, RegVTs[Value])
936                          : RegVTs[Value];
937 
938     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
939       ExtendKind = ISD::ZERO_EXTEND;
940 
941     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
942                    NumParts, RegisterVT, V, CallConv, ExtendKind);
943     Part += NumParts;
944   }
945 
946   // Copy the parts into the registers.
947   SmallVector<SDValue, 8> Chains(NumRegs);
948   for (unsigned i = 0; i != NumRegs; ++i) {
949     SDValue Part;
950     if (!Flag) {
951       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
952     } else {
953       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
954       *Flag = Part.getValue(1);
955     }
956 
957     Chains[i] = Part.getValue(0);
958   }
959 
960   if (NumRegs == 1 || Flag)
961     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
962     // flagged to it. That is the CopyToReg nodes and the user are considered
963     // a single scheduling unit. If we create a TokenFactor and return it as
964     // chain, then the TokenFactor is both a predecessor (operand) of the
965     // user as well as a successor (the TF operands are flagged to the user).
966     // c1, f1 = CopyToReg
967     // c2, f2 = CopyToReg
968     // c3     = TokenFactor c1, c2
969     // ...
970     //        = op c3, ..., f2
971     Chain = Chains[NumRegs-1];
972   else
973     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
974 }
975 
976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
977                                         unsigned MatchingIdx, const SDLoc &dl,
978                                         SelectionDAG &DAG,
979                                         std::vector<SDValue> &Ops) const {
980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
981 
982   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
983   if (HasMatching)
984     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
985   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
986     // Put the register class of the virtual registers in the flag word.  That
987     // way, later passes can recompute register class constraints for inline
988     // assembly as well as normal instructions.
989     // Don't do this for tied operands that can use the regclass information
990     // from the def.
991     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
992     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
993     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
994   }
995 
996   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
997   Ops.push_back(Res);
998 
999   if (Code == InlineAsm::Kind_Clobber) {
1000     // Clobbers should always have a 1:1 mapping with registers, and may
1001     // reference registers that have illegal (e.g. vector) types. Hence, we
1002     // shouldn't try to apply any sort of splitting logic to them.
1003     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1004            "No 1:1 mapping from clobbers to regs?");
1005     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1006     (void)SP;
1007     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1008       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1009       assert(
1010           (Regs[I] != SP ||
1011            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1012           "If we clobbered the stack pointer, MFI should know about it.");
1013     }
1014     return;
1015   }
1016 
1017   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1018     MVT RegisterVT = RegVTs[Value];
1019     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1020                                            RegisterVT);
1021     for (unsigned i = 0; i != NumRegs; ++i) {
1022       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1023       unsigned TheReg = Regs[Reg++];
1024       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1025     }
1026   }
1027 }
1028 
1029 SmallVector<std::pair<unsigned, TypeSize>, 4>
1030 RegsForValue::getRegsAndSizes() const {
1031   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1032   unsigned I = 0;
1033   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1034     unsigned RegCount = std::get<0>(CountAndVT);
1035     MVT RegisterVT = std::get<1>(CountAndVT);
1036     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1037     for (unsigned E = I + RegCount; I != E; ++I)
1038       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1039   }
1040   return OutVec;
1041 }
1042 
1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1044                                AssumptionCache *ac,
1045                                const TargetLibraryInfo *li) {
1046   AA = aa;
1047   AC = ac;
1048   GFI = gfi;
1049   LibInfo = li;
1050   Context = DAG.getContext();
1051   LPadToCallSiteMap.clear();
1052   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1053 }
1054 
1055 void SelectionDAGBuilder::clear() {
1056   NodeMap.clear();
1057   UnusedArgNodeMap.clear();
1058   PendingLoads.clear();
1059   PendingExports.clear();
1060   PendingConstrainedFP.clear();
1061   PendingConstrainedFPStrict.clear();
1062   CurInst = nullptr;
1063   HasTailCall = false;
1064   SDNodeOrder = LowestSDNodeOrder;
1065   StatepointLowering.clear();
1066 }
1067 
1068 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1069   DanglingDebugInfoMap.clear();
1070 }
1071 
1072 // Update DAG root to include dependencies on Pending chains.
1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1074   SDValue Root = DAG.getRoot();
1075 
1076   if (Pending.empty())
1077     return Root;
1078 
1079   // Add current root to PendingChains, unless we already indirectly
1080   // depend on it.
1081   if (Root.getOpcode() != ISD::EntryToken) {
1082     unsigned i = 0, e = Pending.size();
1083     for (; i != e; ++i) {
1084       assert(Pending[i].getNode()->getNumOperands() > 1);
1085       if (Pending[i].getNode()->getOperand(0) == Root)
1086         break;  // Don't add the root if we already indirectly depend on it.
1087     }
1088 
1089     if (i == e)
1090       Pending.push_back(Root);
1091   }
1092 
1093   if (Pending.size() == 1)
1094     Root = Pending[0];
1095   else
1096     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1097 
1098   DAG.setRoot(Root);
1099   Pending.clear();
1100   return Root;
1101 }
1102 
1103 SDValue SelectionDAGBuilder::getMemoryRoot() {
1104   return updateRoot(PendingLoads);
1105 }
1106 
1107 SDValue SelectionDAGBuilder::getRoot() {
1108   // Chain up all pending constrained intrinsics together with all
1109   // pending loads, by simply appending them to PendingLoads and
1110   // then calling getMemoryRoot().
1111   PendingLoads.reserve(PendingLoads.size() +
1112                        PendingConstrainedFP.size() +
1113                        PendingConstrainedFPStrict.size());
1114   PendingLoads.append(PendingConstrainedFP.begin(),
1115                       PendingConstrainedFP.end());
1116   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1117                       PendingConstrainedFPStrict.end());
1118   PendingConstrainedFP.clear();
1119   PendingConstrainedFPStrict.clear();
1120   return getMemoryRoot();
1121 }
1122 
1123 SDValue SelectionDAGBuilder::getControlRoot() {
1124   // We need to emit pending fpexcept.strict constrained intrinsics,
1125   // so append them to the PendingExports list.
1126   PendingExports.append(PendingConstrainedFPStrict.begin(),
1127                         PendingConstrainedFPStrict.end());
1128   PendingConstrainedFPStrict.clear();
1129   return updateRoot(PendingExports);
1130 }
1131 
1132 void SelectionDAGBuilder::visit(const Instruction &I) {
1133   // Set up outgoing PHI node register values before emitting the terminator.
1134   if (I.isTerminator()) {
1135     HandlePHINodesInSuccessorBlocks(I.getParent());
1136   }
1137 
1138   // Add SDDbgValue nodes for any var locs here. Do so before updating
1139   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1140   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1141     // Add SDDbgValue nodes for any var locs here. Do so before updating
1142     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1143     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1144          It != End; ++It) {
1145       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1146       dropDanglingDebugInfo(Var, It->Expr);
1147       if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder,
1148                             /*IsVariadic=*/false))
1149         addDanglingDebugInfo(It, SDNodeOrder);
1150     }
1151   }
1152 
1153   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1154   if (!isa<DbgInfoIntrinsic>(I))
1155     ++SDNodeOrder;
1156 
1157   CurInst = &I;
1158 
1159   // Set inserted listener only if required.
1160   bool NodeInserted = false;
1161   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1162   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1163   if (PCSectionsMD) {
1164     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1165         DAG, [&](SDNode *) { NodeInserted = true; });
1166   }
1167 
1168   visit(I.getOpcode(), I);
1169 
1170   if (!I.isTerminator() && !HasTailCall &&
1171       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1172     CopyToExportRegsIfNeeded(&I);
1173 
1174   // Handle metadata.
1175   if (PCSectionsMD) {
1176     auto It = NodeMap.find(&I);
1177     if (It != NodeMap.end()) {
1178       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1179     } else if (NodeInserted) {
1180       // This should not happen; if it does, don't let it go unnoticed so we can
1181       // fix it. Relevant visit*() function is probably missing a setValue().
1182       errs() << "warning: loosing !pcsections metadata ["
1183              << I.getModule()->getName() << "]\n";
1184       LLVM_DEBUG(I.dump());
1185       assert(false);
1186     }
1187   }
1188 
1189   CurInst = nullptr;
1190 }
1191 
1192 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1193   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1194 }
1195 
1196 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1197   // Note: this doesn't use InstVisitor, because it has to work with
1198   // ConstantExpr's in addition to instructions.
1199   switch (Opcode) {
1200   default: llvm_unreachable("Unknown instruction type encountered!");
1201     // Build the switch statement using the Instruction.def file.
1202 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1203     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1204 #include "llvm/IR/Instruction.def"
1205   }
1206 }
1207 
1208 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1209                                                unsigned Order) {
1210   DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order);
1211 }
1212 
1213 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1214                                                unsigned Order) {
1215   // We treat variadic dbg_values differently at this stage.
1216   if (DI->hasArgList()) {
1217     // For variadic dbg_values we will now insert an undef.
1218     // FIXME: We can potentially recover these!
1219     SmallVector<SDDbgOperand, 2> Locs;
1220     for (const Value *V : DI->getValues()) {
1221       auto Undef = UndefValue::get(V->getType());
1222       Locs.push_back(SDDbgOperand::fromConst(Undef));
1223     }
1224     SDDbgValue *SDV = DAG.getDbgValueList(
1225         DI->getVariable(), DI->getExpression(), Locs, {},
1226         /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true);
1227     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1228   } else {
1229     // TODO: Dangling debug info will eventually either be resolved or produce
1230     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1231     // between the original dbg.value location and its resolved DBG_VALUE,
1232     // which we should ideally fill with an extra Undef DBG_VALUE.
1233     assert(DI->getNumVariableLocationOps() == 1 &&
1234            "DbgValueInst without an ArgList should have a single location "
1235            "operand.");
1236     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1237   }
1238 }
1239 
1240 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1241                                                 const DIExpression *Expr) {
1242   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1243     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1244     DIExpression *DanglingExpr = DDI.getExpression();
1245     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1246       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1247                         << "\n");
1248       return true;
1249     }
1250     return false;
1251   };
1252 
1253   for (auto &DDIMI : DanglingDebugInfoMap) {
1254     DanglingDebugInfoVector &DDIV = DDIMI.second;
1255 
1256     // If debug info is to be dropped, run it through final checks to see
1257     // whether it can be salvaged.
1258     for (auto &DDI : DDIV)
1259       if (isMatchingDbgValue(DDI))
1260         salvageUnresolvedDbgValue(DDI);
1261 
1262     erase_if(DDIV, isMatchingDbgValue);
1263   }
1264 }
1265 
1266 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1267 // generate the debug data structures now that we've seen its definition.
1268 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1269                                                    SDValue Val) {
1270   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1271   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1272     return;
1273 
1274   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1275   for (auto &DDI : DDIV) {
1276     DebugLoc DL = DDI.getDebugLoc();
1277     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1278     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1279     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1280     DIExpression *Expr = DDI.getExpression();
1281     assert(Variable->isValidLocationForIntrinsic(DL) &&
1282            "Expected inlined-at fields to agree");
1283     SDDbgValue *SDV;
1284     if (Val.getNode()) {
1285       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1286       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1287       // we couldn't resolve it directly when examining the DbgValue intrinsic
1288       // in the first place we should not be more successful here). Unless we
1289       // have some test case that prove this to be correct we should avoid
1290       // calling EmitFuncArgumentDbgValue here.
1291       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1292                                     FuncArgumentDbgValueKind::Value, Val)) {
1293         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1294                           << "\n");
1295         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1296         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1297         // inserted after the definition of Val when emitting the instructions
1298         // after ISel. An alternative could be to teach
1299         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1300         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1301                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1302                    << ValSDNodeOrder << "\n");
1303         SDV = getDbgValue(Val, Variable, Expr, DL,
1304                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1305         DAG.AddDbgValue(SDV, false);
1306       } else
1307         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1308                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1309     } else {
1310       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1311       auto Undef = UndefValue::get(V->getType());
1312       auto SDV =
1313           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1314       DAG.AddDbgValue(SDV, false);
1315     }
1316   }
1317   DDIV.clear();
1318 }
1319 
1320 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1321   // TODO: For the variadic implementation, instead of only checking the fail
1322   // state of `handleDebugValue`, we need know specifically which values were
1323   // invalid, so that we attempt to salvage only those values when processing
1324   // a DIArgList.
1325   Value *V = DDI.getVariableLocationOp(0);
1326   Value *OrigV = V;
1327   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1328   DIExpression *Expr = DDI.getExpression();
1329   DebugLoc DL = DDI.getDebugLoc();
1330   unsigned SDOrder = DDI.getSDNodeOrder();
1331 
1332   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1333   // that DW_OP_stack_value is desired.
1334   bool StackValue = true;
1335 
1336   // Can this Value can be encoded without any further work?
1337   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1338     return;
1339 
1340   // Attempt to salvage back through as many instructions as possible. Bail if
1341   // a non-instruction is seen, such as a constant expression or global
1342   // variable. FIXME: Further work could recover those too.
1343   while (isa<Instruction>(V)) {
1344     Instruction &VAsInst = *cast<Instruction>(V);
1345     // Temporary "0", awaiting real implementation.
1346     SmallVector<uint64_t, 16> Ops;
1347     SmallVector<Value *, 4> AdditionalValues;
1348     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1349                              AdditionalValues);
1350     // If we cannot salvage any further, and haven't yet found a suitable debug
1351     // expression, bail out.
1352     if (!V)
1353       break;
1354 
1355     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1356     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1357     // here for variadic dbg_values, remove that condition.
1358     if (!AdditionalValues.empty())
1359       break;
1360 
1361     // New value and expr now represent this debuginfo.
1362     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1363 
1364     // Some kind of simplification occurred: check whether the operand of the
1365     // salvaged debug expression can be encoded in this DAG.
1366     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1367       LLVM_DEBUG(
1368           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1369                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1370       return;
1371     }
1372   }
1373 
1374   // This was the final opportunity to salvage this debug information, and it
1375   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1376   // any earlier variable location.
1377   assert(OrigV && "V shouldn't be null");
1378   auto *Undef = UndefValue::get(OrigV->getType());
1379   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1380   DAG.AddDbgValue(SDV, false);
1381   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1382                     << "\n");
1383 }
1384 
1385 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1386                                            DILocalVariable *Var,
1387                                            DIExpression *Expr, DebugLoc DbgLoc,
1388                                            unsigned Order, bool IsVariadic) {
1389   if (Values.empty())
1390     return true;
1391   SmallVector<SDDbgOperand> LocationOps;
1392   SmallVector<SDNode *> Dependencies;
1393   for (const Value *V : Values) {
1394     // Constant value.
1395     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1396         isa<ConstantPointerNull>(V)) {
1397       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1398       continue;
1399     }
1400 
1401     // Look through IntToPtr constants.
1402     if (auto *CE = dyn_cast<ConstantExpr>(V))
1403       if (CE->getOpcode() == Instruction::IntToPtr) {
1404         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1405         continue;
1406       }
1407 
1408     // If the Value is a frame index, we can create a FrameIndex debug value
1409     // without relying on the DAG at all.
1410     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1411       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1412       if (SI != FuncInfo.StaticAllocaMap.end()) {
1413         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1414         continue;
1415       }
1416     }
1417 
1418     // Do not use getValue() in here; we don't want to generate code at
1419     // this point if it hasn't been done yet.
1420     SDValue N = NodeMap[V];
1421     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1422       N = UnusedArgNodeMap[V];
1423     if (N.getNode()) {
1424       // Only emit func arg dbg value for non-variadic dbg.values for now.
1425       if (!IsVariadic &&
1426           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1427                                    FuncArgumentDbgValueKind::Value, N))
1428         return true;
1429       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1430         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1431         // describe stack slot locations.
1432         //
1433         // Consider "int x = 0; int *px = &x;". There are two kinds of
1434         // interesting debug values here after optimization:
1435         //
1436         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1437         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1438         //
1439         // Both describe the direct values of their associated variables.
1440         Dependencies.push_back(N.getNode());
1441         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1442         continue;
1443       }
1444       LocationOps.emplace_back(
1445           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1446       continue;
1447     }
1448 
1449     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1450     // Special rules apply for the first dbg.values of parameter variables in a
1451     // function. Identify them by the fact they reference Argument Values, that
1452     // they're parameters, and they are parameters of the current function. We
1453     // need to let them dangle until they get an SDNode.
1454     bool IsParamOfFunc =
1455         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1456     if (IsParamOfFunc)
1457       return false;
1458 
1459     // The value is not used in this block yet (or it would have an SDNode).
1460     // We still want the value to appear for the user if possible -- if it has
1461     // an associated VReg, we can refer to that instead.
1462     auto VMI = FuncInfo.ValueMap.find(V);
1463     if (VMI != FuncInfo.ValueMap.end()) {
1464       unsigned Reg = VMI->second;
1465       // If this is a PHI node, it may be split up into several MI PHI nodes
1466       // (in FunctionLoweringInfo::set).
1467       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1468                        V->getType(), std::nullopt);
1469       if (RFV.occupiesMultipleRegs()) {
1470         // FIXME: We could potentially support variadic dbg_values here.
1471         if (IsVariadic)
1472           return false;
1473         unsigned Offset = 0;
1474         unsigned BitsToDescribe = 0;
1475         if (auto VarSize = Var->getSizeInBits())
1476           BitsToDescribe = *VarSize;
1477         if (auto Fragment = Expr->getFragmentInfo())
1478           BitsToDescribe = Fragment->SizeInBits;
1479         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1480           // Bail out if all bits are described already.
1481           if (Offset >= BitsToDescribe)
1482             break;
1483           // TODO: handle scalable vectors.
1484           unsigned RegisterSize = RegAndSize.second;
1485           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1486                                       ? BitsToDescribe - Offset
1487                                       : RegisterSize;
1488           auto FragmentExpr = DIExpression::createFragmentExpression(
1489               Expr, Offset, FragmentSize);
1490           if (!FragmentExpr)
1491             continue;
1492           SDDbgValue *SDV = DAG.getVRegDbgValue(
1493               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1494           DAG.AddDbgValue(SDV, false);
1495           Offset += RegisterSize;
1496         }
1497         return true;
1498       }
1499       // We can use simple vreg locations for variadic dbg_values as well.
1500       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1501       continue;
1502     }
1503     // We failed to create a SDDbgOperand for V.
1504     return false;
1505   }
1506 
1507   // We have created a SDDbgOperand for each Value in Values.
1508   // Should use Order instead of SDNodeOrder?
1509   assert(!LocationOps.empty());
1510   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1511                                         /*IsIndirect=*/false, DbgLoc,
1512                                         SDNodeOrder, IsVariadic);
1513   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1514   return true;
1515 }
1516 
1517 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1518   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1519   for (auto &Pair : DanglingDebugInfoMap)
1520     for (auto &DDI : Pair.second)
1521       salvageUnresolvedDbgValue(DDI);
1522   clearDanglingDebugInfo();
1523 }
1524 
1525 /// getCopyFromRegs - If there was virtual register allocated for the value V
1526 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1527 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1528   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1529   SDValue Result;
1530 
1531   if (It != FuncInfo.ValueMap.end()) {
1532     Register InReg = It->second;
1533 
1534     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1535                      DAG.getDataLayout(), InReg, Ty,
1536                      std::nullopt); // This is not an ABI copy.
1537     SDValue Chain = DAG.getEntryNode();
1538     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1539                                  V);
1540     resolveDanglingDebugInfo(V, Result);
1541   }
1542 
1543   return Result;
1544 }
1545 
1546 /// getValue - Return an SDValue for the given Value.
1547 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1548   // If we already have an SDValue for this value, use it. It's important
1549   // to do this first, so that we don't create a CopyFromReg if we already
1550   // have a regular SDValue.
1551   SDValue &N = NodeMap[V];
1552   if (N.getNode()) return N;
1553 
1554   // If there's a virtual register allocated and initialized for this
1555   // value, use it.
1556   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1557     return copyFromReg;
1558 
1559   // Otherwise create a new SDValue and remember it.
1560   SDValue Val = getValueImpl(V);
1561   NodeMap[V] = Val;
1562   resolveDanglingDebugInfo(V, Val);
1563   return Val;
1564 }
1565 
1566 /// getNonRegisterValue - Return an SDValue for the given Value, but
1567 /// don't look in FuncInfo.ValueMap for a virtual register.
1568 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1569   // If we already have an SDValue for this value, use it.
1570   SDValue &N = NodeMap[V];
1571   if (N.getNode()) {
1572     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1573       // Remove the debug location from the node as the node is about to be used
1574       // in a location which may differ from the original debug location.  This
1575       // is relevant to Constant and ConstantFP nodes because they can appear
1576       // as constant expressions inside PHI nodes.
1577       N->setDebugLoc(DebugLoc());
1578     }
1579     return N;
1580   }
1581 
1582   // Otherwise create a new SDValue and remember it.
1583   SDValue Val = getValueImpl(V);
1584   NodeMap[V] = Val;
1585   resolveDanglingDebugInfo(V, Val);
1586   return Val;
1587 }
1588 
1589 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1590 /// Create an SDValue for the given value.
1591 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1593 
1594   if (const Constant *C = dyn_cast<Constant>(V)) {
1595     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1596 
1597     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1598       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1599 
1600     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1601       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1602 
1603     if (isa<ConstantPointerNull>(C)) {
1604       unsigned AS = V->getType()->getPointerAddressSpace();
1605       return DAG.getConstant(0, getCurSDLoc(),
1606                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1607     }
1608 
1609     if (match(C, m_VScale(DAG.getDataLayout())))
1610       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1611 
1612     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1613       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1614 
1615     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1616       return DAG.getUNDEF(VT);
1617 
1618     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1619       visit(CE->getOpcode(), *CE);
1620       SDValue N1 = NodeMap[V];
1621       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1622       return N1;
1623     }
1624 
1625     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1626       SmallVector<SDValue, 4> Constants;
1627       for (const Use &U : C->operands()) {
1628         SDNode *Val = getValue(U).getNode();
1629         // If the operand is an empty aggregate, there are no values.
1630         if (!Val) continue;
1631         // Add each leaf value from the operand to the Constants list
1632         // to form a flattened list of all the values.
1633         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1634           Constants.push_back(SDValue(Val, i));
1635       }
1636 
1637       return DAG.getMergeValues(Constants, getCurSDLoc());
1638     }
1639 
1640     if (const ConstantDataSequential *CDS =
1641           dyn_cast<ConstantDataSequential>(C)) {
1642       SmallVector<SDValue, 4> Ops;
1643       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1644         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1645         // Add each leaf value from the operand to the Constants list
1646         // to form a flattened list of all the values.
1647         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1648           Ops.push_back(SDValue(Val, i));
1649       }
1650 
1651       if (isa<ArrayType>(CDS->getType()))
1652         return DAG.getMergeValues(Ops, getCurSDLoc());
1653       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1654     }
1655 
1656     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1657       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1658              "Unknown struct or array constant!");
1659 
1660       SmallVector<EVT, 4> ValueVTs;
1661       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1662       unsigned NumElts = ValueVTs.size();
1663       if (NumElts == 0)
1664         return SDValue(); // empty struct
1665       SmallVector<SDValue, 4> Constants(NumElts);
1666       for (unsigned i = 0; i != NumElts; ++i) {
1667         EVT EltVT = ValueVTs[i];
1668         if (isa<UndefValue>(C))
1669           Constants[i] = DAG.getUNDEF(EltVT);
1670         else if (EltVT.isFloatingPoint())
1671           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1672         else
1673           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1674       }
1675 
1676       return DAG.getMergeValues(Constants, getCurSDLoc());
1677     }
1678 
1679     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1680       return DAG.getBlockAddress(BA, VT);
1681 
1682     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1683       return getValue(Equiv->getGlobalValue());
1684 
1685     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1686       return getValue(NC->getGlobalValue());
1687 
1688     VectorType *VecTy = cast<VectorType>(V->getType());
1689 
1690     // Now that we know the number and type of the elements, get that number of
1691     // elements into the Ops array based on what kind of constant it is.
1692     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1693       SmallVector<SDValue, 16> Ops;
1694       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1695       for (unsigned i = 0; i != NumElements; ++i)
1696         Ops.push_back(getValue(CV->getOperand(i)));
1697 
1698       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1699     }
1700 
1701     if (isa<ConstantAggregateZero>(C)) {
1702       EVT EltVT =
1703           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1704 
1705       SDValue Op;
1706       if (EltVT.isFloatingPoint())
1707         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1708       else
1709         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1710 
1711       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1712     }
1713 
1714     llvm_unreachable("Unknown vector constant");
1715   }
1716 
1717   // If this is a static alloca, generate it as the frameindex instead of
1718   // computation.
1719   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1720     DenseMap<const AllocaInst*, int>::iterator SI =
1721       FuncInfo.StaticAllocaMap.find(AI);
1722     if (SI != FuncInfo.StaticAllocaMap.end())
1723       return DAG.getFrameIndex(
1724           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1725   }
1726 
1727   // If this is an instruction which fast-isel has deferred, select it now.
1728   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1729     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1730 
1731     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1732                      Inst->getType(), std::nullopt);
1733     SDValue Chain = DAG.getEntryNode();
1734     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1735   }
1736 
1737   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1738     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1739 
1740   if (const auto *BB = dyn_cast<BasicBlock>(V))
1741     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1742 
1743   llvm_unreachable("Can't get register for value!");
1744 }
1745 
1746 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1747   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1748   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1749   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1750   bool IsSEH = isAsynchronousEHPersonality(Pers);
1751   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1752   if (!IsSEH)
1753     CatchPadMBB->setIsEHScopeEntry();
1754   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1755   if (IsMSVCCXX || IsCoreCLR)
1756     CatchPadMBB->setIsEHFuncletEntry();
1757 }
1758 
1759 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1760   // Update machine-CFG edge.
1761   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1762   FuncInfo.MBB->addSuccessor(TargetMBB);
1763   TargetMBB->setIsEHCatchretTarget(true);
1764   DAG.getMachineFunction().setHasEHCatchret(true);
1765 
1766   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1767   bool IsSEH = isAsynchronousEHPersonality(Pers);
1768   if (IsSEH) {
1769     // If this is not a fall-through branch or optimizations are switched off,
1770     // emit the branch.
1771     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1772         TM.getOptLevel() == CodeGenOpt::None)
1773       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1774                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1775     return;
1776   }
1777 
1778   // Figure out the funclet membership for the catchret's successor.
1779   // This will be used by the FuncletLayout pass to determine how to order the
1780   // BB's.
1781   // A 'catchret' returns to the outer scope's color.
1782   Value *ParentPad = I.getCatchSwitchParentPad();
1783   const BasicBlock *SuccessorColor;
1784   if (isa<ConstantTokenNone>(ParentPad))
1785     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1786   else
1787     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1788   assert(SuccessorColor && "No parent funclet for catchret!");
1789   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1790   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1791 
1792   // Create the terminator node.
1793   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1794                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1795                             DAG.getBasicBlock(SuccessorColorMBB));
1796   DAG.setRoot(Ret);
1797 }
1798 
1799 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1800   // Don't emit any special code for the cleanuppad instruction. It just marks
1801   // the start of an EH scope/funclet.
1802   FuncInfo.MBB->setIsEHScopeEntry();
1803   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1804   if (Pers != EHPersonality::Wasm_CXX) {
1805     FuncInfo.MBB->setIsEHFuncletEntry();
1806     FuncInfo.MBB->setIsCleanupFuncletEntry();
1807   }
1808 }
1809 
1810 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1811 // not match, it is OK to add only the first unwind destination catchpad to the
1812 // successors, because there will be at least one invoke instruction within the
1813 // catch scope that points to the next unwind destination, if one exists, so
1814 // CFGSort cannot mess up with BB sorting order.
1815 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1816 // call within them, and catchpads only consisting of 'catch (...)' have a
1817 // '__cxa_end_catch' call within them, both of which generate invokes in case
1818 // the next unwind destination exists, i.e., the next unwind destination is not
1819 // the caller.)
1820 //
1821 // Having at most one EH pad successor is also simpler and helps later
1822 // transformations.
1823 //
1824 // For example,
1825 // current:
1826 //   invoke void @foo to ... unwind label %catch.dispatch
1827 // catch.dispatch:
1828 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1829 // catch.start:
1830 //   ...
1831 //   ... in this BB or some other child BB dominated by this BB there will be an
1832 //   invoke that points to 'next' BB as an unwind destination
1833 //
1834 // next: ; We don't need to add this to 'current' BB's successor
1835 //   ...
1836 static void findWasmUnwindDestinations(
1837     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1838     BranchProbability Prob,
1839     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1840         &UnwindDests) {
1841   while (EHPadBB) {
1842     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1843     if (isa<CleanupPadInst>(Pad)) {
1844       // Stop on cleanup pads.
1845       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1846       UnwindDests.back().first->setIsEHScopeEntry();
1847       break;
1848     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1849       // Add the catchpad handlers to the possible destinations. We don't
1850       // continue to the unwind destination of the catchswitch for wasm.
1851       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1852         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1853         UnwindDests.back().first->setIsEHScopeEntry();
1854       }
1855       break;
1856     } else {
1857       continue;
1858     }
1859   }
1860 }
1861 
1862 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1863 /// many places it could ultimately go. In the IR, we have a single unwind
1864 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1865 /// This function skips over imaginary basic blocks that hold catchswitch
1866 /// instructions, and finds all the "real" machine
1867 /// basic block destinations. As those destinations may not be successors of
1868 /// EHPadBB, here we also calculate the edge probability to those destinations.
1869 /// The passed-in Prob is the edge probability to EHPadBB.
1870 static void findUnwindDestinations(
1871     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1872     BranchProbability Prob,
1873     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1874         &UnwindDests) {
1875   EHPersonality Personality =
1876     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1877   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1878   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1879   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1880   bool IsSEH = isAsynchronousEHPersonality(Personality);
1881 
1882   if (IsWasmCXX) {
1883     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1884     assert(UnwindDests.size() <= 1 &&
1885            "There should be at most one unwind destination for wasm");
1886     return;
1887   }
1888 
1889   while (EHPadBB) {
1890     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1891     BasicBlock *NewEHPadBB = nullptr;
1892     if (isa<LandingPadInst>(Pad)) {
1893       // Stop on landingpads. They are not funclets.
1894       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1895       break;
1896     } else if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1898       // personalities.
1899       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1900       UnwindDests.back().first->setIsEHScopeEntry();
1901       UnwindDests.back().first->setIsEHFuncletEntry();
1902       break;
1903     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1904       // Add the catchpad handlers to the possible destinations.
1905       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1906         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1907         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1908         if (IsMSVCCXX || IsCoreCLR)
1909           UnwindDests.back().first->setIsEHFuncletEntry();
1910         if (!IsSEH)
1911           UnwindDests.back().first->setIsEHScopeEntry();
1912       }
1913       NewEHPadBB = CatchSwitch->getUnwindDest();
1914     } else {
1915       continue;
1916     }
1917 
1918     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1919     if (BPI && NewEHPadBB)
1920       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1921     EHPadBB = NewEHPadBB;
1922   }
1923 }
1924 
1925 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1926   // Update successor info.
1927   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1928   auto UnwindDest = I.getUnwindDest();
1929   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1930   BranchProbability UnwindDestProb =
1931       (BPI && UnwindDest)
1932           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1933           : BranchProbability::getZero();
1934   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1935   for (auto &UnwindDest : UnwindDests) {
1936     UnwindDest.first->setIsEHPad();
1937     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1938   }
1939   FuncInfo.MBB->normalizeSuccProbs();
1940 
1941   // Create the terminator node.
1942   SDValue Ret =
1943       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1944   DAG.setRoot(Ret);
1945 }
1946 
1947 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1948   report_fatal_error("visitCatchSwitch not yet implemented!");
1949 }
1950 
1951 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1953   auto &DL = DAG.getDataLayout();
1954   SDValue Chain = getControlRoot();
1955   SmallVector<ISD::OutputArg, 8> Outs;
1956   SmallVector<SDValue, 8> OutVals;
1957 
1958   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1959   // lower
1960   //
1961   //   %val = call <ty> @llvm.experimental.deoptimize()
1962   //   ret <ty> %val
1963   //
1964   // differently.
1965   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1966     LowerDeoptimizingReturn();
1967     return;
1968   }
1969 
1970   if (!FuncInfo.CanLowerReturn) {
1971     unsigned DemoteReg = FuncInfo.DemoteRegister;
1972     const Function *F = I.getParent()->getParent();
1973 
1974     // Emit a store of the return value through the virtual register.
1975     // Leave Outs empty so that LowerReturn won't try to load return
1976     // registers the usual way.
1977     SmallVector<EVT, 1> PtrValueVTs;
1978     ComputeValueVTs(TLI, DL,
1979                     F->getReturnType()->getPointerTo(
1980                         DAG.getDataLayout().getAllocaAddrSpace()),
1981                     PtrValueVTs);
1982 
1983     SDValue RetPtr =
1984         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1985     SDValue RetOp = getValue(I.getOperand(0));
1986 
1987     SmallVector<EVT, 4> ValueVTs, MemVTs;
1988     SmallVector<uint64_t, 4> Offsets;
1989     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1990                     &Offsets);
1991     unsigned NumValues = ValueVTs.size();
1992 
1993     SmallVector<SDValue, 4> Chains(NumValues);
1994     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1995     for (unsigned i = 0; i != NumValues; ++i) {
1996       // An aggregate return value cannot wrap around the address space, so
1997       // offsets to its parts don't wrap either.
1998       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1999                                            TypeSize::Fixed(Offsets[i]));
2000 
2001       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2002       if (MemVTs[i] != ValueVTs[i])
2003         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2004       Chains[i] = DAG.getStore(
2005           Chain, getCurSDLoc(), Val,
2006           // FIXME: better loc info would be nice.
2007           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2008           commonAlignment(BaseAlign, Offsets[i]));
2009     }
2010 
2011     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2012                         MVT::Other, Chains);
2013   } else if (I.getNumOperands() != 0) {
2014     SmallVector<EVT, 4> ValueVTs;
2015     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2016     unsigned NumValues = ValueVTs.size();
2017     if (NumValues) {
2018       SDValue RetOp = getValue(I.getOperand(0));
2019 
2020       const Function *F = I.getParent()->getParent();
2021 
2022       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2023           I.getOperand(0)->getType(), F->getCallingConv(),
2024           /*IsVarArg*/ false, DL);
2025 
2026       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2027       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2028         ExtendKind = ISD::SIGN_EXTEND;
2029       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2030         ExtendKind = ISD::ZERO_EXTEND;
2031 
2032       LLVMContext &Context = F->getContext();
2033       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2034 
2035       for (unsigned j = 0; j != NumValues; ++j) {
2036         EVT VT = ValueVTs[j];
2037 
2038         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2039           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2040 
2041         CallingConv::ID CC = F->getCallingConv();
2042 
2043         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2044         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2045         SmallVector<SDValue, 4> Parts(NumParts);
2046         getCopyToParts(DAG, getCurSDLoc(),
2047                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2048                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2049 
2050         // 'inreg' on function refers to return value
2051         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2052         if (RetInReg)
2053           Flags.setInReg();
2054 
2055         if (I.getOperand(0)->getType()->isPointerTy()) {
2056           Flags.setPointer();
2057           Flags.setPointerAddrSpace(
2058               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2059         }
2060 
2061         if (NeedsRegBlock) {
2062           Flags.setInConsecutiveRegs();
2063           if (j == NumValues - 1)
2064             Flags.setInConsecutiveRegsLast();
2065         }
2066 
2067         // Propagate extension type if any
2068         if (ExtendKind == ISD::SIGN_EXTEND)
2069           Flags.setSExt();
2070         else if (ExtendKind == ISD::ZERO_EXTEND)
2071           Flags.setZExt();
2072 
2073         for (unsigned i = 0; i < NumParts; ++i) {
2074           Outs.push_back(ISD::OutputArg(Flags,
2075                                         Parts[i].getValueType().getSimpleVT(),
2076                                         VT, /*isfixed=*/true, 0, 0));
2077           OutVals.push_back(Parts[i]);
2078         }
2079       }
2080     }
2081   }
2082 
2083   // Push in swifterror virtual register as the last element of Outs. This makes
2084   // sure swifterror virtual register will be returned in the swifterror
2085   // physical register.
2086   const Function *F = I.getParent()->getParent();
2087   if (TLI.supportSwiftError() &&
2088       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2089     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2090     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2091     Flags.setSwiftError();
2092     Outs.push_back(ISD::OutputArg(
2093         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2094         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2095     // Create SDNode for the swifterror virtual register.
2096     OutVals.push_back(
2097         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2098                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2099                         EVT(TLI.getPointerTy(DL))));
2100   }
2101 
2102   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2103   CallingConv::ID CallConv =
2104     DAG.getMachineFunction().getFunction().getCallingConv();
2105   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2106       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2107 
2108   // Verify that the target's LowerReturn behaved as expected.
2109   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2110          "LowerReturn didn't return a valid chain!");
2111 
2112   // Update the DAG with the new chain value resulting from return lowering.
2113   DAG.setRoot(Chain);
2114 }
2115 
2116 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2117 /// created for it, emit nodes to copy the value into the virtual
2118 /// registers.
2119 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2120   // Skip empty types
2121   if (V->getType()->isEmptyTy())
2122     return;
2123 
2124   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2125   if (VMI != FuncInfo.ValueMap.end()) {
2126     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2127     CopyValueToVirtualRegister(V, VMI->second);
2128   }
2129 }
2130 
2131 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2132 /// the current basic block, add it to ValueMap now so that we'll get a
2133 /// CopyTo/FromReg.
2134 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2135   // No need to export constants.
2136   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2137 
2138   // Already exported?
2139   if (FuncInfo.isExportedInst(V)) return;
2140 
2141   Register Reg = FuncInfo.InitializeRegForValue(V);
2142   CopyValueToVirtualRegister(V, Reg);
2143 }
2144 
2145 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2146                                                      const BasicBlock *FromBB) {
2147   // The operands of the setcc have to be in this block.  We don't know
2148   // how to export them from some other block.
2149   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2150     // Can export from current BB.
2151     if (VI->getParent() == FromBB)
2152       return true;
2153 
2154     // Is already exported, noop.
2155     return FuncInfo.isExportedInst(V);
2156   }
2157 
2158   // If this is an argument, we can export it if the BB is the entry block or
2159   // if it is already exported.
2160   if (isa<Argument>(V)) {
2161     if (FromBB->isEntryBlock())
2162       return true;
2163 
2164     // Otherwise, can only export this if it is already exported.
2165     return FuncInfo.isExportedInst(V);
2166   }
2167 
2168   // Otherwise, constants can always be exported.
2169   return true;
2170 }
2171 
2172 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2173 BranchProbability
2174 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2175                                         const MachineBasicBlock *Dst) const {
2176   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2177   const BasicBlock *SrcBB = Src->getBasicBlock();
2178   const BasicBlock *DstBB = Dst->getBasicBlock();
2179   if (!BPI) {
2180     // If BPI is not available, set the default probability as 1 / N, where N is
2181     // the number of successors.
2182     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2183     return BranchProbability(1, SuccSize);
2184   }
2185   return BPI->getEdgeProbability(SrcBB, DstBB);
2186 }
2187 
2188 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2189                                                MachineBasicBlock *Dst,
2190                                                BranchProbability Prob) {
2191   if (!FuncInfo.BPI)
2192     Src->addSuccessorWithoutProb(Dst);
2193   else {
2194     if (Prob.isUnknown())
2195       Prob = getEdgeProbability(Src, Dst);
2196     Src->addSuccessor(Dst, Prob);
2197   }
2198 }
2199 
2200 static bool InBlock(const Value *V, const BasicBlock *BB) {
2201   if (const Instruction *I = dyn_cast<Instruction>(V))
2202     return I->getParent() == BB;
2203   return true;
2204 }
2205 
2206 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2207 /// This function emits a branch and is used at the leaves of an OR or an
2208 /// AND operator tree.
2209 void
2210 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2211                                                   MachineBasicBlock *TBB,
2212                                                   MachineBasicBlock *FBB,
2213                                                   MachineBasicBlock *CurBB,
2214                                                   MachineBasicBlock *SwitchBB,
2215                                                   BranchProbability TProb,
2216                                                   BranchProbability FProb,
2217                                                   bool InvertCond) {
2218   const BasicBlock *BB = CurBB->getBasicBlock();
2219 
2220   // If the leaf of the tree is a comparison, merge the condition into
2221   // the caseblock.
2222   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2223     // The operands of the cmp have to be in this block.  We don't know
2224     // how to export them from some other block.  If this is the first block
2225     // of the sequence, no exporting is needed.
2226     if (CurBB == SwitchBB ||
2227         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2228          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2229       ISD::CondCode Condition;
2230       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2231         ICmpInst::Predicate Pred =
2232             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2233         Condition = getICmpCondCode(Pred);
2234       } else {
2235         const FCmpInst *FC = cast<FCmpInst>(Cond);
2236         FCmpInst::Predicate Pred =
2237             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2238         Condition = getFCmpCondCode(Pred);
2239         if (TM.Options.NoNaNsFPMath)
2240           Condition = getFCmpCodeWithoutNaN(Condition);
2241       }
2242 
2243       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2244                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2245       SL->SwitchCases.push_back(CB);
2246       return;
2247     }
2248   }
2249 
2250   // Create a CaseBlock record representing this branch.
2251   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2252   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2253                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2254   SL->SwitchCases.push_back(CB);
2255 }
2256 
2257 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2258                                                MachineBasicBlock *TBB,
2259                                                MachineBasicBlock *FBB,
2260                                                MachineBasicBlock *CurBB,
2261                                                MachineBasicBlock *SwitchBB,
2262                                                Instruction::BinaryOps Opc,
2263                                                BranchProbability TProb,
2264                                                BranchProbability FProb,
2265                                                bool InvertCond) {
2266   // Skip over not part of the tree and remember to invert op and operands at
2267   // next level.
2268   Value *NotCond;
2269   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2270       InBlock(NotCond, CurBB->getBasicBlock())) {
2271     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2272                          !InvertCond);
2273     return;
2274   }
2275 
2276   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2277   const Value *BOpOp0, *BOpOp1;
2278   // Compute the effective opcode for Cond, taking into account whether it needs
2279   // to be inverted, e.g.
2280   //   and (not (or A, B)), C
2281   // gets lowered as
2282   //   and (and (not A, not B), C)
2283   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2284   if (BOp) {
2285     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2286                ? Instruction::And
2287                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2288                       ? Instruction::Or
2289                       : (Instruction::BinaryOps)0);
2290     if (InvertCond) {
2291       if (BOpc == Instruction::And)
2292         BOpc = Instruction::Or;
2293       else if (BOpc == Instruction::Or)
2294         BOpc = Instruction::And;
2295     }
2296   }
2297 
2298   // If this node is not part of the or/and tree, emit it as a branch.
2299   // Note that all nodes in the tree should have same opcode.
2300   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2301   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2302       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2303       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2304     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2305                                  TProb, FProb, InvertCond);
2306     return;
2307   }
2308 
2309   //  Create TmpBB after CurBB.
2310   MachineFunction::iterator BBI(CurBB);
2311   MachineFunction &MF = DAG.getMachineFunction();
2312   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2313   CurBB->getParent()->insert(++BBI, TmpBB);
2314 
2315   if (Opc == Instruction::Or) {
2316     // Codegen X | Y as:
2317     // BB1:
2318     //   jmp_if_X TBB
2319     //   jmp TmpBB
2320     // TmpBB:
2321     //   jmp_if_Y TBB
2322     //   jmp FBB
2323     //
2324 
2325     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2326     // The requirement is that
2327     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2328     //     = TrueProb for original BB.
2329     // Assuming the original probabilities are A and B, one choice is to set
2330     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2331     // A/(1+B) and 2B/(1+B). This choice assumes that
2332     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2333     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2334     // TmpBB, but the math is more complicated.
2335 
2336     auto NewTrueProb = TProb / 2;
2337     auto NewFalseProb = TProb / 2 + FProb;
2338     // Emit the LHS condition.
2339     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2340                          NewFalseProb, InvertCond);
2341 
2342     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2343     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2344     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2345     // Emit the RHS condition into TmpBB.
2346     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2347                          Probs[1], InvertCond);
2348   } else {
2349     assert(Opc == Instruction::And && "Unknown merge op!");
2350     // Codegen X & Y as:
2351     // BB1:
2352     //   jmp_if_X TmpBB
2353     //   jmp FBB
2354     // TmpBB:
2355     //   jmp_if_Y TBB
2356     //   jmp FBB
2357     //
2358     //  This requires creation of TmpBB after CurBB.
2359 
2360     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2361     // The requirement is that
2362     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2363     //     = FalseProb for original BB.
2364     // Assuming the original probabilities are A and B, one choice is to set
2365     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2366     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2367     // TrueProb for BB1 * FalseProb for TmpBB.
2368 
2369     auto NewTrueProb = TProb + FProb / 2;
2370     auto NewFalseProb = FProb / 2;
2371     // Emit the LHS condition.
2372     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2373                          NewFalseProb, InvertCond);
2374 
2375     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2376     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2377     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2378     // Emit the RHS condition into TmpBB.
2379     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2380                          Probs[1], InvertCond);
2381   }
2382 }
2383 
2384 /// If the set of cases should be emitted as a series of branches, return true.
2385 /// If we should emit this as a bunch of and/or'd together conditions, return
2386 /// false.
2387 bool
2388 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2389   if (Cases.size() != 2) return true;
2390 
2391   // If this is two comparisons of the same values or'd or and'd together, they
2392   // will get folded into a single comparison, so don't emit two blocks.
2393   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2394        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2395       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2396        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2397     return false;
2398   }
2399 
2400   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2401   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2402   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2403       Cases[0].CC == Cases[1].CC &&
2404       isa<Constant>(Cases[0].CmpRHS) &&
2405       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2406     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2407       return false;
2408     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2409       return false;
2410   }
2411 
2412   return true;
2413 }
2414 
2415 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2416   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2417 
2418   // Update machine-CFG edges.
2419   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2420 
2421   if (I.isUnconditional()) {
2422     // Update machine-CFG edges.
2423     BrMBB->addSuccessor(Succ0MBB);
2424 
2425     // If this is not a fall-through branch or optimizations are switched off,
2426     // emit the branch.
2427     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2428       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2429                               MVT::Other, getControlRoot(),
2430                               DAG.getBasicBlock(Succ0MBB)));
2431 
2432     return;
2433   }
2434 
2435   // If this condition is one of the special cases we handle, do special stuff
2436   // now.
2437   const Value *CondVal = I.getCondition();
2438   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2439 
2440   // If this is a series of conditions that are or'd or and'd together, emit
2441   // this as a sequence of branches instead of setcc's with and/or operations.
2442   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2443   // unpredictable branches, and vector extracts because those jumps are likely
2444   // expensive for any target), this should improve performance.
2445   // For example, instead of something like:
2446   //     cmp A, B
2447   //     C = seteq
2448   //     cmp D, E
2449   //     F = setle
2450   //     or C, F
2451   //     jnz foo
2452   // Emit:
2453   //     cmp A, B
2454   //     je foo
2455   //     cmp D, E
2456   //     jle foo
2457   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2458   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2459       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2460     Value *Vec;
2461     const Value *BOp0, *BOp1;
2462     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2463     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2464       Opcode = Instruction::And;
2465     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2466       Opcode = Instruction::Or;
2467 
2468     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2469                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2470       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2471                            getEdgeProbability(BrMBB, Succ0MBB),
2472                            getEdgeProbability(BrMBB, Succ1MBB),
2473                            /*InvertCond=*/false);
2474       // If the compares in later blocks need to use values not currently
2475       // exported from this block, export them now.  This block should always
2476       // be the first entry.
2477       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2478 
2479       // Allow some cases to be rejected.
2480       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2481         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2482           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2483           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2484         }
2485 
2486         // Emit the branch for this block.
2487         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2488         SL->SwitchCases.erase(SL->SwitchCases.begin());
2489         return;
2490       }
2491 
2492       // Okay, we decided not to do this, remove any inserted MBB's and clear
2493       // SwitchCases.
2494       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2495         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2496 
2497       SL->SwitchCases.clear();
2498     }
2499   }
2500 
2501   // Create a CaseBlock record representing this branch.
2502   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2503                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2504 
2505   // Use visitSwitchCase to actually insert the fast branch sequence for this
2506   // cond branch.
2507   visitSwitchCase(CB, BrMBB);
2508 }
2509 
2510 /// visitSwitchCase - Emits the necessary code to represent a single node in
2511 /// the binary search tree resulting from lowering a switch instruction.
2512 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2513                                           MachineBasicBlock *SwitchBB) {
2514   SDValue Cond;
2515   SDValue CondLHS = getValue(CB.CmpLHS);
2516   SDLoc dl = CB.DL;
2517 
2518   if (CB.CC == ISD::SETTRUE) {
2519     // Branch or fall through to TrueBB.
2520     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2521     SwitchBB->normalizeSuccProbs();
2522     if (CB.TrueBB != NextBlock(SwitchBB)) {
2523       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2524                               DAG.getBasicBlock(CB.TrueBB)));
2525     }
2526     return;
2527   }
2528 
2529   auto &TLI = DAG.getTargetLoweringInfo();
2530   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2531 
2532   // Build the setcc now.
2533   if (!CB.CmpMHS) {
2534     // Fold "(X == true)" to X and "(X == false)" to !X to
2535     // handle common cases produced by branch lowering.
2536     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2537         CB.CC == ISD::SETEQ)
2538       Cond = CondLHS;
2539     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2540              CB.CC == ISD::SETEQ) {
2541       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2542       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2543     } else {
2544       SDValue CondRHS = getValue(CB.CmpRHS);
2545 
2546       // If a pointer's DAG type is larger than its memory type then the DAG
2547       // values are zero-extended. This breaks signed comparisons so truncate
2548       // back to the underlying type before doing the compare.
2549       if (CondLHS.getValueType() != MemVT) {
2550         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2551         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2552       }
2553       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2554     }
2555   } else {
2556     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2557 
2558     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2559     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2560 
2561     SDValue CmpOp = getValue(CB.CmpMHS);
2562     EVT VT = CmpOp.getValueType();
2563 
2564     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2565       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2566                           ISD::SETLE);
2567     } else {
2568       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2569                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2570       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2571                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2572     }
2573   }
2574 
2575   // Update successor info
2576   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577   // TrueBB and FalseBB are always different unless the incoming IR is
2578   // degenerate. This only happens when running llc on weird IR.
2579   if (CB.TrueBB != CB.FalseBB)
2580     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2581   SwitchBB->normalizeSuccProbs();
2582 
2583   // If the lhs block is the next block, invert the condition so that we can
2584   // fall through to the lhs instead of the rhs block.
2585   if (CB.TrueBB == NextBlock(SwitchBB)) {
2586     std::swap(CB.TrueBB, CB.FalseBB);
2587     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2588     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2589   }
2590 
2591   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2592                                MVT::Other, getControlRoot(), Cond,
2593                                DAG.getBasicBlock(CB.TrueBB));
2594 
2595   setValue(CurInst, BrCond);
2596 
2597   // Insert the false branch. Do this even if it's a fall through branch,
2598   // this makes it easier to do DAG optimizations which require inverting
2599   // the branch condition.
2600   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2601                        DAG.getBasicBlock(CB.FalseBB));
2602 
2603   DAG.setRoot(BrCond);
2604 }
2605 
2606 /// visitJumpTable - Emit JumpTable node in the current MBB
2607 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2608   // Emit the code for the jump table
2609   assert(JT.Reg != -1U && "Should lower JT Header first!");
2610   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2611   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2612                                      JT.Reg, PTy);
2613   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2614   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2615                                     MVT::Other, Index.getValue(1),
2616                                     Table, Index);
2617   DAG.setRoot(BrJumpTable);
2618 }
2619 
2620 /// visitJumpTableHeader - This function emits necessary code to produce index
2621 /// in the JumpTable from switch case.
2622 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2623                                                JumpTableHeader &JTH,
2624                                                MachineBasicBlock *SwitchBB) {
2625   SDLoc dl = getCurSDLoc();
2626 
2627   // Subtract the lowest switch case value from the value being switched on.
2628   SDValue SwitchOp = getValue(JTH.SValue);
2629   EVT VT = SwitchOp.getValueType();
2630   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2631                             DAG.getConstant(JTH.First, dl, VT));
2632 
2633   // The SDNode we just created, which holds the value being switched on minus
2634   // the smallest case value, needs to be copied to a virtual register so it
2635   // can be used as an index into the jump table in a subsequent basic block.
2636   // This value may be smaller or larger than the target's pointer type, and
2637   // therefore require extension or truncating.
2638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2639   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2640 
2641   unsigned JumpTableReg =
2642       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2643   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2644                                     JumpTableReg, SwitchOp);
2645   JT.Reg = JumpTableReg;
2646 
2647   if (!JTH.FallthroughUnreachable) {
2648     // Emit the range check for the jump table, and branch to the default block
2649     // for the switch statement if the value being switched on exceeds the
2650     // largest case in the switch.
2651     SDValue CMP = DAG.getSetCC(
2652         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2653                                    Sub.getValueType()),
2654         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2655 
2656     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2657                                  MVT::Other, CopyTo, CMP,
2658                                  DAG.getBasicBlock(JT.Default));
2659 
2660     // Avoid emitting unnecessary branches to the next block.
2661     if (JT.MBB != NextBlock(SwitchBB))
2662       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2663                            DAG.getBasicBlock(JT.MBB));
2664 
2665     DAG.setRoot(BrCond);
2666   } else {
2667     // Avoid emitting unnecessary branches to the next block.
2668     if (JT.MBB != NextBlock(SwitchBB))
2669       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2670                               DAG.getBasicBlock(JT.MBB)));
2671     else
2672       DAG.setRoot(CopyTo);
2673   }
2674 }
2675 
2676 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2677 /// variable if there exists one.
2678 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2679                                  SDValue &Chain) {
2680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2681   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2682   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2683   MachineFunction &MF = DAG.getMachineFunction();
2684   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2685   MachineSDNode *Node =
2686       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2687   if (Global) {
2688     MachinePointerInfo MPInfo(Global);
2689     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2690                  MachineMemOperand::MODereferenceable;
2691     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2692         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2693     DAG.setNodeMemRefs(Node, {MemRef});
2694   }
2695   if (PtrTy != PtrMemTy)
2696     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2697   return SDValue(Node, 0);
2698 }
2699 
2700 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2701 /// tail spliced into a stack protector check success bb.
2702 ///
2703 /// For a high level explanation of how this fits into the stack protector
2704 /// generation see the comment on the declaration of class
2705 /// StackProtectorDescriptor.
2706 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2707                                                   MachineBasicBlock *ParentBB) {
2708 
2709   // First create the loads to the guard/stack slot for the comparison.
2710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2711   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2712   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2713 
2714   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2715   int FI = MFI.getStackProtectorIndex();
2716 
2717   SDValue Guard;
2718   SDLoc dl = getCurSDLoc();
2719   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2720   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2721   Align Align =
2722       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2723 
2724   // Generate code to load the content of the guard slot.
2725   SDValue GuardVal = DAG.getLoad(
2726       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2727       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2728       MachineMemOperand::MOVolatile);
2729 
2730   if (TLI.useStackGuardXorFP())
2731     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2732 
2733   // Retrieve guard check function, nullptr if instrumentation is inlined.
2734   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2735     // The target provides a guard check function to validate the guard value.
2736     // Generate a call to that function with the content of the guard slot as
2737     // argument.
2738     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2739     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2740 
2741     TargetLowering::ArgListTy Args;
2742     TargetLowering::ArgListEntry Entry;
2743     Entry.Node = GuardVal;
2744     Entry.Ty = FnTy->getParamType(0);
2745     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2746       Entry.IsInReg = true;
2747     Args.push_back(Entry);
2748 
2749     TargetLowering::CallLoweringInfo CLI(DAG);
2750     CLI.setDebugLoc(getCurSDLoc())
2751         .setChain(DAG.getEntryNode())
2752         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2753                    getValue(GuardCheckFn), std::move(Args));
2754 
2755     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2756     DAG.setRoot(Result.second);
2757     return;
2758   }
2759 
2760   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2761   // Otherwise, emit a volatile load to retrieve the stack guard value.
2762   SDValue Chain = DAG.getEntryNode();
2763   if (TLI.useLoadStackGuardNode()) {
2764     Guard = getLoadStackGuard(DAG, dl, Chain);
2765   } else {
2766     const Value *IRGuard = TLI.getSDagStackGuard(M);
2767     SDValue GuardPtr = getValue(IRGuard);
2768 
2769     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2770                         MachinePointerInfo(IRGuard, 0), Align,
2771                         MachineMemOperand::MOVolatile);
2772   }
2773 
2774   // Perform the comparison via a getsetcc.
2775   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2776                                                         *DAG.getContext(),
2777                                                         Guard.getValueType()),
2778                              Guard, GuardVal, ISD::SETNE);
2779 
2780   // If the guard/stackslot do not equal, branch to failure MBB.
2781   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2782                                MVT::Other, GuardVal.getOperand(0),
2783                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2784   // Otherwise branch to success MBB.
2785   SDValue Br = DAG.getNode(ISD::BR, dl,
2786                            MVT::Other, BrCond,
2787                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2788 
2789   DAG.setRoot(Br);
2790 }
2791 
2792 /// Codegen the failure basic block for a stack protector check.
2793 ///
2794 /// A failure stack protector machine basic block consists simply of a call to
2795 /// __stack_chk_fail().
2796 ///
2797 /// For a high level explanation of how this fits into the stack protector
2798 /// generation see the comment on the declaration of class
2799 /// StackProtectorDescriptor.
2800 void
2801 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2803   TargetLowering::MakeLibCallOptions CallOptions;
2804   CallOptions.setDiscardResult(true);
2805   SDValue Chain =
2806       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2807                       std::nullopt, CallOptions, getCurSDLoc())
2808           .second;
2809   // On PS4/PS5, the "return address" must still be within the calling
2810   // function, even if it's at the very end, so emit an explicit TRAP here.
2811   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2812   if (TM.getTargetTriple().isPS())
2813     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2814   // WebAssembly needs an unreachable instruction after a non-returning call,
2815   // because the function return type can be different from __stack_chk_fail's
2816   // return type (void).
2817   if (TM.getTargetTriple().isWasm())
2818     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2819 
2820   DAG.setRoot(Chain);
2821 }
2822 
2823 /// visitBitTestHeader - This function emits necessary code to produce value
2824 /// suitable for "bit tests"
2825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2826                                              MachineBasicBlock *SwitchBB) {
2827   SDLoc dl = getCurSDLoc();
2828 
2829   // Subtract the minimum value.
2830   SDValue SwitchOp = getValue(B.SValue);
2831   EVT VT = SwitchOp.getValueType();
2832   SDValue RangeSub =
2833       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2834 
2835   // Determine the type of the test operands.
2836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2837   bool UsePtrType = false;
2838   if (!TLI.isTypeLegal(VT)) {
2839     UsePtrType = true;
2840   } else {
2841     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2842       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2843         // Switch table case range are encoded into series of masks.
2844         // Just use pointer type, it's guaranteed to fit.
2845         UsePtrType = true;
2846         break;
2847       }
2848   }
2849   SDValue Sub = RangeSub;
2850   if (UsePtrType) {
2851     VT = TLI.getPointerTy(DAG.getDataLayout());
2852     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2853   }
2854 
2855   B.RegVT = VT.getSimpleVT();
2856   B.Reg = FuncInfo.CreateReg(B.RegVT);
2857   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2858 
2859   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2860 
2861   if (!B.FallthroughUnreachable)
2862     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2863   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2864   SwitchBB->normalizeSuccProbs();
2865 
2866   SDValue Root = CopyTo;
2867   if (!B.FallthroughUnreachable) {
2868     // Conditional branch to the default block.
2869     SDValue RangeCmp = DAG.getSetCC(dl,
2870         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2871                                RangeSub.getValueType()),
2872         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2873         ISD::SETUGT);
2874 
2875     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2876                        DAG.getBasicBlock(B.Default));
2877   }
2878 
2879   // Avoid emitting unnecessary branches to the next block.
2880   if (MBB != NextBlock(SwitchBB))
2881     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2882 
2883   DAG.setRoot(Root);
2884 }
2885 
2886 /// visitBitTestCase - this function produces one "bit test"
2887 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2888                                            MachineBasicBlock* NextMBB,
2889                                            BranchProbability BranchProbToNext,
2890                                            unsigned Reg,
2891                                            BitTestCase &B,
2892                                            MachineBasicBlock *SwitchBB) {
2893   SDLoc dl = getCurSDLoc();
2894   MVT VT = BB.RegVT;
2895   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2896   SDValue Cmp;
2897   unsigned PopCount = llvm::popcount(B.Mask);
2898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2899   if (PopCount == 1) {
2900     // Testing for a single bit; just compare the shift count with what it
2901     // would need to be to shift a 1 bit in that position.
2902     Cmp = DAG.getSetCC(
2903         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2904         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2905         ISD::SETEQ);
2906   } else if (PopCount == BB.Range) {
2907     // There is only one zero bit in the range, test for it directly.
2908     Cmp = DAG.getSetCC(
2909         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2910         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2911         ISD::SETNE);
2912   } else {
2913     // Make desired shift
2914     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2915                                     DAG.getConstant(1, dl, VT), ShiftOp);
2916 
2917     // Emit bit tests and jumps
2918     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2919                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2920     Cmp = DAG.getSetCC(
2921         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2922         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2923   }
2924 
2925   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2926   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2927   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2928   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2929   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2930   // one as they are relative probabilities (and thus work more like weights),
2931   // and hence we need to normalize them to let the sum of them become one.
2932   SwitchBB->normalizeSuccProbs();
2933 
2934   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2935                               MVT::Other, getControlRoot(),
2936                               Cmp, DAG.getBasicBlock(B.TargetBB));
2937 
2938   // Avoid emitting unnecessary branches to the next block.
2939   if (NextMBB != NextBlock(SwitchBB))
2940     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2941                         DAG.getBasicBlock(NextMBB));
2942 
2943   DAG.setRoot(BrAnd);
2944 }
2945 
2946 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2947   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2948 
2949   // Retrieve successors. Look through artificial IR level blocks like
2950   // catchswitch for successors.
2951   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2952   const BasicBlock *EHPadBB = I.getSuccessor(1);
2953 
2954   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2955   // have to do anything here to lower funclet bundles.
2956   assert(!I.hasOperandBundlesOtherThan(
2957              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2958               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2959               LLVMContext::OB_cfguardtarget,
2960               LLVMContext::OB_clang_arc_attachedcall}) &&
2961          "Cannot lower invokes with arbitrary operand bundles yet!");
2962 
2963   const Value *Callee(I.getCalledOperand());
2964   const Function *Fn = dyn_cast<Function>(Callee);
2965   if (isa<InlineAsm>(Callee))
2966     visitInlineAsm(I, EHPadBB);
2967   else if (Fn && Fn->isIntrinsic()) {
2968     switch (Fn->getIntrinsicID()) {
2969     default:
2970       llvm_unreachable("Cannot invoke this intrinsic");
2971     case Intrinsic::donothing:
2972       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2973     case Intrinsic::seh_try_begin:
2974     case Intrinsic::seh_scope_begin:
2975     case Intrinsic::seh_try_end:
2976     case Intrinsic::seh_scope_end:
2977       break;
2978     case Intrinsic::experimental_patchpoint_void:
2979     case Intrinsic::experimental_patchpoint_i64:
2980       visitPatchpoint(I, EHPadBB);
2981       break;
2982     case Intrinsic::experimental_gc_statepoint:
2983       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2984       break;
2985     case Intrinsic::wasm_rethrow: {
2986       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2987       // special because it can be invoked, so we manually lower it to a DAG
2988       // node here.
2989       SmallVector<SDValue, 8> Ops;
2990       Ops.push_back(getRoot()); // inchain
2991       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2992       Ops.push_back(
2993           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2994                                 TLI.getPointerTy(DAG.getDataLayout())));
2995       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2996       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2997       break;
2998     }
2999     }
3000   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3001     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3002     // Eventually we will support lowering the @llvm.experimental.deoptimize
3003     // intrinsic, and right now there are no plans to support other intrinsics
3004     // with deopt state.
3005     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3006   } else {
3007     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3008   }
3009 
3010   // If the value of the invoke is used outside of its defining block, make it
3011   // available as a virtual register.
3012   // We already took care of the exported value for the statepoint instruction
3013   // during call to the LowerStatepoint.
3014   if (!isa<GCStatepointInst>(I)) {
3015     CopyToExportRegsIfNeeded(&I);
3016   }
3017 
3018   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3019   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3020   BranchProbability EHPadBBProb =
3021       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3022           : BranchProbability::getZero();
3023   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3024 
3025   // Update successor info.
3026   addSuccessorWithProb(InvokeMBB, Return);
3027   for (auto &UnwindDest : UnwindDests) {
3028     UnwindDest.first->setIsEHPad();
3029     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3030   }
3031   InvokeMBB->normalizeSuccProbs();
3032 
3033   // Drop into normal successor.
3034   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3035                           DAG.getBasicBlock(Return)));
3036 }
3037 
3038 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3039   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3040 
3041   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3042   // have to do anything here to lower funclet bundles.
3043   assert(!I.hasOperandBundlesOtherThan(
3044              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3045          "Cannot lower callbrs with arbitrary operand bundles yet!");
3046 
3047   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3048   visitInlineAsm(I);
3049   CopyToExportRegsIfNeeded(&I);
3050 
3051   // Retrieve successors.
3052   SmallPtrSet<BasicBlock *, 8> Dests;
3053   Dests.insert(I.getDefaultDest());
3054   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3055 
3056   // Update successor info.
3057   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3058   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3059     BasicBlock *Dest = I.getIndirectDest(i);
3060     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3061     Target->setIsInlineAsmBrIndirectTarget();
3062     Target->setMachineBlockAddressTaken();
3063     Target->setLabelMustBeEmitted();
3064     // Don't add duplicate machine successors.
3065     if (Dests.insert(Dest).second)
3066       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3067   }
3068   CallBrMBB->normalizeSuccProbs();
3069 
3070   // Drop into default successor.
3071   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3072                           MVT::Other, getControlRoot(),
3073                           DAG.getBasicBlock(Return)));
3074 }
3075 
3076 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3077   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3078 }
3079 
3080 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3081   assert(FuncInfo.MBB->isEHPad() &&
3082          "Call to landingpad not in landing pad!");
3083 
3084   // If there aren't registers to copy the values into (e.g., during SjLj
3085   // exceptions), then don't bother to create these DAG nodes.
3086   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3087   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3088   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3089       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3090     return;
3091 
3092   // If landingpad's return type is token type, we don't create DAG nodes
3093   // for its exception pointer and selector value. The extraction of exception
3094   // pointer or selector value from token type landingpads is not currently
3095   // supported.
3096   if (LP.getType()->isTokenTy())
3097     return;
3098 
3099   SmallVector<EVT, 2> ValueVTs;
3100   SDLoc dl = getCurSDLoc();
3101   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3102   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3103 
3104   // Get the two live-in registers as SDValues. The physregs have already been
3105   // copied into virtual registers.
3106   SDValue Ops[2];
3107   if (FuncInfo.ExceptionPointerVirtReg) {
3108     Ops[0] = DAG.getZExtOrTrunc(
3109         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3110                            FuncInfo.ExceptionPointerVirtReg,
3111                            TLI.getPointerTy(DAG.getDataLayout())),
3112         dl, ValueVTs[0]);
3113   } else {
3114     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3115   }
3116   Ops[1] = DAG.getZExtOrTrunc(
3117       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3118                          FuncInfo.ExceptionSelectorVirtReg,
3119                          TLI.getPointerTy(DAG.getDataLayout())),
3120       dl, ValueVTs[1]);
3121 
3122   // Merge into one.
3123   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3124                             DAG.getVTList(ValueVTs), Ops);
3125   setValue(&LP, Res);
3126 }
3127 
3128 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3129                                            MachineBasicBlock *Last) {
3130   // Update JTCases.
3131   for (JumpTableBlock &JTB : SL->JTCases)
3132     if (JTB.first.HeaderBB == First)
3133       JTB.first.HeaderBB = Last;
3134 
3135   // Update BitTestCases.
3136   for (BitTestBlock &BTB : SL->BitTestCases)
3137     if (BTB.Parent == First)
3138       BTB.Parent = Last;
3139 }
3140 
3141 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3142   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3143 
3144   // Update machine-CFG edges with unique successors.
3145   SmallSet<BasicBlock*, 32> Done;
3146   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3147     BasicBlock *BB = I.getSuccessor(i);
3148     bool Inserted = Done.insert(BB).second;
3149     if (!Inserted)
3150         continue;
3151 
3152     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3153     addSuccessorWithProb(IndirectBrMBB, Succ);
3154   }
3155   IndirectBrMBB->normalizeSuccProbs();
3156 
3157   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3158                           MVT::Other, getControlRoot(),
3159                           getValue(I.getAddress())));
3160 }
3161 
3162 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3163   if (!DAG.getTarget().Options.TrapUnreachable)
3164     return;
3165 
3166   // We may be able to ignore unreachable behind a noreturn call.
3167   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3168     const BasicBlock &BB = *I.getParent();
3169     if (&I != &BB.front()) {
3170       BasicBlock::const_iterator PredI =
3171         std::prev(BasicBlock::const_iterator(&I));
3172       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3173         if (Call->doesNotReturn())
3174           return;
3175       }
3176     }
3177   }
3178 
3179   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3180 }
3181 
3182 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3183   SDNodeFlags Flags;
3184   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3185     Flags.copyFMF(*FPOp);
3186 
3187   SDValue Op = getValue(I.getOperand(0));
3188   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3189                                     Op, Flags);
3190   setValue(&I, UnNodeValue);
3191 }
3192 
3193 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3194   SDNodeFlags Flags;
3195   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3196     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3197     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3198   }
3199   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3200     Flags.setExact(ExactOp->isExact());
3201   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3202     Flags.copyFMF(*FPOp);
3203 
3204   SDValue Op1 = getValue(I.getOperand(0));
3205   SDValue Op2 = getValue(I.getOperand(1));
3206   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3207                                      Op1, Op2, Flags);
3208   setValue(&I, BinNodeValue);
3209 }
3210 
3211 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3212   SDValue Op1 = getValue(I.getOperand(0));
3213   SDValue Op2 = getValue(I.getOperand(1));
3214 
3215   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3216       Op1.getValueType(), DAG.getDataLayout());
3217 
3218   // Coerce the shift amount to the right type if we can. This exposes the
3219   // truncate or zext to optimization early.
3220   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3221     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3222            "Unexpected shift type");
3223     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3224   }
3225 
3226   bool nuw = false;
3227   bool nsw = false;
3228   bool exact = false;
3229 
3230   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3231 
3232     if (const OverflowingBinaryOperator *OFBinOp =
3233             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3234       nuw = OFBinOp->hasNoUnsignedWrap();
3235       nsw = OFBinOp->hasNoSignedWrap();
3236     }
3237     if (const PossiblyExactOperator *ExactOp =
3238             dyn_cast<const PossiblyExactOperator>(&I))
3239       exact = ExactOp->isExact();
3240   }
3241   SDNodeFlags Flags;
3242   Flags.setExact(exact);
3243   Flags.setNoSignedWrap(nsw);
3244   Flags.setNoUnsignedWrap(nuw);
3245   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3246                             Flags);
3247   setValue(&I, Res);
3248 }
3249 
3250 void SelectionDAGBuilder::visitSDiv(const User &I) {
3251   SDValue Op1 = getValue(I.getOperand(0));
3252   SDValue Op2 = getValue(I.getOperand(1));
3253 
3254   SDNodeFlags Flags;
3255   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3256                  cast<PossiblyExactOperator>(&I)->isExact());
3257   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3258                            Op2, Flags));
3259 }
3260 
3261 void SelectionDAGBuilder::visitICmp(const User &I) {
3262   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3263   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3264     predicate = IC->getPredicate();
3265   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3266     predicate = ICmpInst::Predicate(IC->getPredicate());
3267   SDValue Op1 = getValue(I.getOperand(0));
3268   SDValue Op2 = getValue(I.getOperand(1));
3269   ISD::CondCode Opcode = getICmpCondCode(predicate);
3270 
3271   auto &TLI = DAG.getTargetLoweringInfo();
3272   EVT MemVT =
3273       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3274 
3275   // If a pointer's DAG type is larger than its memory type then the DAG values
3276   // are zero-extended. This breaks signed comparisons so truncate back to the
3277   // underlying type before doing the compare.
3278   if (Op1.getValueType() != MemVT) {
3279     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3280     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3281   }
3282 
3283   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3284                                                         I.getType());
3285   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3286 }
3287 
3288 void SelectionDAGBuilder::visitFCmp(const User &I) {
3289   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3290   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3291     predicate = FC->getPredicate();
3292   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3293     predicate = FCmpInst::Predicate(FC->getPredicate());
3294   SDValue Op1 = getValue(I.getOperand(0));
3295   SDValue Op2 = getValue(I.getOperand(1));
3296 
3297   ISD::CondCode Condition = getFCmpCondCode(predicate);
3298   auto *FPMO = cast<FPMathOperator>(&I);
3299   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3300     Condition = getFCmpCodeWithoutNaN(Condition);
3301 
3302   SDNodeFlags Flags;
3303   Flags.copyFMF(*FPMO);
3304   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3305 
3306   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3307                                                         I.getType());
3308   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3309 }
3310 
3311 // Check if the condition of the select has one use or two users that are both
3312 // selects with the same condition.
3313 static bool hasOnlySelectUsers(const Value *Cond) {
3314   return llvm::all_of(Cond->users(), [](const Value *V) {
3315     return isa<SelectInst>(V);
3316   });
3317 }
3318 
3319 void SelectionDAGBuilder::visitSelect(const User &I) {
3320   SmallVector<EVT, 4> ValueVTs;
3321   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3322                   ValueVTs);
3323   unsigned NumValues = ValueVTs.size();
3324   if (NumValues == 0) return;
3325 
3326   SmallVector<SDValue, 4> Values(NumValues);
3327   SDValue Cond     = getValue(I.getOperand(0));
3328   SDValue LHSVal   = getValue(I.getOperand(1));
3329   SDValue RHSVal   = getValue(I.getOperand(2));
3330   SmallVector<SDValue, 1> BaseOps(1, Cond);
3331   ISD::NodeType OpCode =
3332       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3333 
3334   bool IsUnaryAbs = false;
3335   bool Negate = false;
3336 
3337   SDNodeFlags Flags;
3338   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3339     Flags.copyFMF(*FPOp);
3340 
3341   // Min/max matching is only viable if all output VTs are the same.
3342   if (all_equal(ValueVTs)) {
3343     EVT VT = ValueVTs[0];
3344     LLVMContext &Ctx = *DAG.getContext();
3345     auto &TLI = DAG.getTargetLoweringInfo();
3346 
3347     // We care about the legality of the operation after it has been type
3348     // legalized.
3349     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3350       VT = TLI.getTypeToTransformTo(Ctx, VT);
3351 
3352     // If the vselect is legal, assume we want to leave this as a vector setcc +
3353     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3354     // min/max is legal on the scalar type.
3355     bool UseScalarMinMax = VT.isVector() &&
3356       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3357 
3358     Value *LHS, *RHS;
3359     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3360     ISD::NodeType Opc = ISD::DELETED_NODE;
3361     switch (SPR.Flavor) {
3362     case SPF_UMAX:    Opc = ISD::UMAX; break;
3363     case SPF_UMIN:    Opc = ISD::UMIN; break;
3364     case SPF_SMAX:    Opc = ISD::SMAX; break;
3365     case SPF_SMIN:    Opc = ISD::SMIN; break;
3366     case SPF_FMINNUM:
3367       switch (SPR.NaNBehavior) {
3368       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3369       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3370       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3371       case SPNB_RETURNS_ANY: {
3372         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3373           Opc = ISD::FMINNUM;
3374         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3375           Opc = ISD::FMINIMUM;
3376         else if (UseScalarMinMax)
3377           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3378             ISD::FMINNUM : ISD::FMINIMUM;
3379         break;
3380       }
3381       }
3382       break;
3383     case SPF_FMAXNUM:
3384       switch (SPR.NaNBehavior) {
3385       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3386       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3387       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3388       case SPNB_RETURNS_ANY:
3389 
3390         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3391           Opc = ISD::FMAXNUM;
3392         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3393           Opc = ISD::FMAXIMUM;
3394         else if (UseScalarMinMax)
3395           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3396             ISD::FMAXNUM : ISD::FMAXIMUM;
3397         break;
3398       }
3399       break;
3400     case SPF_NABS:
3401       Negate = true;
3402       [[fallthrough]];
3403     case SPF_ABS:
3404       IsUnaryAbs = true;
3405       Opc = ISD::ABS;
3406       break;
3407     default: break;
3408     }
3409 
3410     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3411         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3412          (UseScalarMinMax &&
3413           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3414         // If the underlying comparison instruction is used by any other
3415         // instruction, the consumed instructions won't be destroyed, so it is
3416         // not profitable to convert to a min/max.
3417         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3418       OpCode = Opc;
3419       LHSVal = getValue(LHS);
3420       RHSVal = getValue(RHS);
3421       BaseOps.clear();
3422     }
3423 
3424     if (IsUnaryAbs) {
3425       OpCode = Opc;
3426       LHSVal = getValue(LHS);
3427       BaseOps.clear();
3428     }
3429   }
3430 
3431   if (IsUnaryAbs) {
3432     for (unsigned i = 0; i != NumValues; ++i) {
3433       SDLoc dl = getCurSDLoc();
3434       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3435       Values[i] =
3436           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3437       if (Negate)
3438         Values[i] = DAG.getNegative(Values[i], dl, VT);
3439     }
3440   } else {
3441     for (unsigned i = 0; i != NumValues; ++i) {
3442       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3443       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3444       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3445       Values[i] = DAG.getNode(
3446           OpCode, getCurSDLoc(),
3447           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3448     }
3449   }
3450 
3451   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3452                            DAG.getVTList(ValueVTs), Values));
3453 }
3454 
3455 void SelectionDAGBuilder::visitTrunc(const User &I) {
3456   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3457   SDValue N = getValue(I.getOperand(0));
3458   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3459                                                         I.getType());
3460   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3461 }
3462 
3463 void SelectionDAGBuilder::visitZExt(const User &I) {
3464   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3465   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3466   SDValue N = getValue(I.getOperand(0));
3467   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3468                                                         I.getType());
3469   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3470 }
3471 
3472 void SelectionDAGBuilder::visitSExt(const User &I) {
3473   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3474   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3475   SDValue N = getValue(I.getOperand(0));
3476   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3477                                                         I.getType());
3478   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3479 }
3480 
3481 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3482   // FPTrunc is never a no-op cast, no need to check
3483   SDValue N = getValue(I.getOperand(0));
3484   SDLoc dl = getCurSDLoc();
3485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3486   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3487   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3488                            DAG.getTargetConstant(
3489                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3490 }
3491 
3492 void SelectionDAGBuilder::visitFPExt(const User &I) {
3493   // FPExt is never a no-op cast, no need to check
3494   SDValue N = getValue(I.getOperand(0));
3495   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3496                                                         I.getType());
3497   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3498 }
3499 
3500 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3501   // FPToUI is never a no-op cast, no need to check
3502   SDValue N = getValue(I.getOperand(0));
3503   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3504                                                         I.getType());
3505   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3506 }
3507 
3508 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3509   // FPToSI is never a no-op cast, no need to check
3510   SDValue N = getValue(I.getOperand(0));
3511   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3512                                                         I.getType());
3513   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3514 }
3515 
3516 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3517   // UIToFP is never a no-op cast, no need to check
3518   SDValue N = getValue(I.getOperand(0));
3519   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3520                                                         I.getType());
3521   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3522 }
3523 
3524 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3525   // SIToFP is never a no-op cast, no need to check
3526   SDValue N = getValue(I.getOperand(0));
3527   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3528                                                         I.getType());
3529   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3530 }
3531 
3532 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3533   // What to do depends on the size of the integer and the size of the pointer.
3534   // We can either truncate, zero extend, or no-op, accordingly.
3535   SDValue N = getValue(I.getOperand(0));
3536   auto &TLI = DAG.getTargetLoweringInfo();
3537   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3538                                                         I.getType());
3539   EVT PtrMemVT =
3540       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3541   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3542   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3543   setValue(&I, N);
3544 }
3545 
3546 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3547   // What to do depends on the size of the integer and the size of the pointer.
3548   // We can either truncate, zero extend, or no-op, accordingly.
3549   SDValue N = getValue(I.getOperand(0));
3550   auto &TLI = DAG.getTargetLoweringInfo();
3551   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3552   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3553   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3554   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3555   setValue(&I, N);
3556 }
3557 
3558 void SelectionDAGBuilder::visitBitCast(const User &I) {
3559   SDValue N = getValue(I.getOperand(0));
3560   SDLoc dl = getCurSDLoc();
3561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                         I.getType());
3563 
3564   // BitCast assures us that source and destination are the same size so this is
3565   // either a BITCAST or a no-op.
3566   if (DestVT != N.getValueType())
3567     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3568                              DestVT, N)); // convert types.
3569   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3570   // might fold any kind of constant expression to an integer constant and that
3571   // is not what we are looking for. Only recognize a bitcast of a genuine
3572   // constant integer as an opaque constant.
3573   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3574     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3575                                  /*isOpaque*/true));
3576   else
3577     setValue(&I, N);            // noop cast.
3578 }
3579 
3580 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3582   const Value *SV = I.getOperand(0);
3583   SDValue N = getValue(SV);
3584   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3585 
3586   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3587   unsigned DestAS = I.getType()->getPointerAddressSpace();
3588 
3589   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3590     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3591 
3592   setValue(&I, N);
3593 }
3594 
3595 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3596   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3597   SDValue InVec = getValue(I.getOperand(0));
3598   SDValue InVal = getValue(I.getOperand(1));
3599   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3600                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3601   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3602                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3603                            InVec, InVal, InIdx));
3604 }
3605 
3606 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3608   SDValue InVec = getValue(I.getOperand(0));
3609   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3610                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3611   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3612                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3613                            InVec, InIdx));
3614 }
3615 
3616 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3617   SDValue Src1 = getValue(I.getOperand(0));
3618   SDValue Src2 = getValue(I.getOperand(1));
3619   ArrayRef<int> Mask;
3620   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3621     Mask = SVI->getShuffleMask();
3622   else
3623     Mask = cast<ConstantExpr>(I).getShuffleMask();
3624   SDLoc DL = getCurSDLoc();
3625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3626   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3627   EVT SrcVT = Src1.getValueType();
3628 
3629   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3630       VT.isScalableVector()) {
3631     // Canonical splat form of first element of first input vector.
3632     SDValue FirstElt =
3633         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3634                     DAG.getVectorIdxConstant(0, DL));
3635     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3636     return;
3637   }
3638 
3639   // For now, we only handle splats for scalable vectors.
3640   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3641   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3642   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3643 
3644   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3645   unsigned MaskNumElts = Mask.size();
3646 
3647   if (SrcNumElts == MaskNumElts) {
3648     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3649     return;
3650   }
3651 
3652   // Normalize the shuffle vector since mask and vector length don't match.
3653   if (SrcNumElts < MaskNumElts) {
3654     // Mask is longer than the source vectors. We can use concatenate vector to
3655     // make the mask and vectors lengths match.
3656 
3657     if (MaskNumElts % SrcNumElts == 0) {
3658       // Mask length is a multiple of the source vector length.
3659       // Check if the shuffle is some kind of concatenation of the input
3660       // vectors.
3661       unsigned NumConcat = MaskNumElts / SrcNumElts;
3662       bool IsConcat = true;
3663       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3664       for (unsigned i = 0; i != MaskNumElts; ++i) {
3665         int Idx = Mask[i];
3666         if (Idx < 0)
3667           continue;
3668         // Ensure the indices in each SrcVT sized piece are sequential and that
3669         // the same source is used for the whole piece.
3670         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3671             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3672              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3673           IsConcat = false;
3674           break;
3675         }
3676         // Remember which source this index came from.
3677         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3678       }
3679 
3680       // The shuffle is concatenating multiple vectors together. Just emit
3681       // a CONCAT_VECTORS operation.
3682       if (IsConcat) {
3683         SmallVector<SDValue, 8> ConcatOps;
3684         for (auto Src : ConcatSrcs) {
3685           if (Src < 0)
3686             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3687           else if (Src == 0)
3688             ConcatOps.push_back(Src1);
3689           else
3690             ConcatOps.push_back(Src2);
3691         }
3692         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3693         return;
3694       }
3695     }
3696 
3697     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3698     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3699     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3700                                     PaddedMaskNumElts);
3701 
3702     // Pad both vectors with undefs to make them the same length as the mask.
3703     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3704 
3705     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3706     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3707     MOps1[0] = Src1;
3708     MOps2[0] = Src2;
3709 
3710     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3711     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3712 
3713     // Readjust mask for new input vector length.
3714     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3715     for (unsigned i = 0; i != MaskNumElts; ++i) {
3716       int Idx = Mask[i];
3717       if (Idx >= (int)SrcNumElts)
3718         Idx -= SrcNumElts - PaddedMaskNumElts;
3719       MappedOps[i] = Idx;
3720     }
3721 
3722     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3723 
3724     // If the concatenated vector was padded, extract a subvector with the
3725     // correct number of elements.
3726     if (MaskNumElts != PaddedMaskNumElts)
3727       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3728                            DAG.getVectorIdxConstant(0, DL));
3729 
3730     setValue(&I, Result);
3731     return;
3732   }
3733 
3734   if (SrcNumElts > MaskNumElts) {
3735     // Analyze the access pattern of the vector to see if we can extract
3736     // two subvectors and do the shuffle.
3737     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3738     bool CanExtract = true;
3739     for (int Idx : Mask) {
3740       unsigned Input = 0;
3741       if (Idx < 0)
3742         continue;
3743 
3744       if (Idx >= (int)SrcNumElts) {
3745         Input = 1;
3746         Idx -= SrcNumElts;
3747       }
3748 
3749       // If all the indices come from the same MaskNumElts sized portion of
3750       // the sources we can use extract. Also make sure the extract wouldn't
3751       // extract past the end of the source.
3752       int NewStartIdx = alignDown(Idx, MaskNumElts);
3753       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3754           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3755         CanExtract = false;
3756       // Make sure we always update StartIdx as we use it to track if all
3757       // elements are undef.
3758       StartIdx[Input] = NewStartIdx;
3759     }
3760 
3761     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3762       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3763       return;
3764     }
3765     if (CanExtract) {
3766       // Extract appropriate subvector and generate a vector shuffle
3767       for (unsigned Input = 0; Input < 2; ++Input) {
3768         SDValue &Src = Input == 0 ? Src1 : Src2;
3769         if (StartIdx[Input] < 0)
3770           Src = DAG.getUNDEF(VT);
3771         else {
3772           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3773                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3774         }
3775       }
3776 
3777       // Calculate new mask.
3778       SmallVector<int, 8> MappedOps(Mask);
3779       for (int &Idx : MappedOps) {
3780         if (Idx >= (int)SrcNumElts)
3781           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3782         else if (Idx >= 0)
3783           Idx -= StartIdx[0];
3784       }
3785 
3786       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3787       return;
3788     }
3789   }
3790 
3791   // We can't use either concat vectors or extract subvectors so fall back to
3792   // replacing the shuffle with extract and build vector.
3793   // to insert and build vector.
3794   EVT EltVT = VT.getVectorElementType();
3795   SmallVector<SDValue,8> Ops;
3796   for (int Idx : Mask) {
3797     SDValue Res;
3798 
3799     if (Idx < 0) {
3800       Res = DAG.getUNDEF(EltVT);
3801     } else {
3802       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3803       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3804 
3805       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3806                         DAG.getVectorIdxConstant(Idx, DL));
3807     }
3808 
3809     Ops.push_back(Res);
3810   }
3811 
3812   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3813 }
3814 
3815 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3816   ArrayRef<unsigned> Indices = I.getIndices();
3817   const Value *Op0 = I.getOperand(0);
3818   const Value *Op1 = I.getOperand(1);
3819   Type *AggTy = I.getType();
3820   Type *ValTy = Op1->getType();
3821   bool IntoUndef = isa<UndefValue>(Op0);
3822   bool FromUndef = isa<UndefValue>(Op1);
3823 
3824   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3825 
3826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3827   SmallVector<EVT, 4> AggValueVTs;
3828   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3829   SmallVector<EVT, 4> ValValueVTs;
3830   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3831 
3832   unsigned NumAggValues = AggValueVTs.size();
3833   unsigned NumValValues = ValValueVTs.size();
3834   SmallVector<SDValue, 4> Values(NumAggValues);
3835 
3836   // Ignore an insertvalue that produces an empty object
3837   if (!NumAggValues) {
3838     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3839     return;
3840   }
3841 
3842   SDValue Agg = getValue(Op0);
3843   unsigned i = 0;
3844   // Copy the beginning value(s) from the original aggregate.
3845   for (; i != LinearIndex; ++i)
3846     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3847                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3848   // Copy values from the inserted value(s).
3849   if (NumValValues) {
3850     SDValue Val = getValue(Op1);
3851     for (; i != LinearIndex + NumValValues; ++i)
3852       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3853                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3854   }
3855   // Copy remaining value(s) from the original aggregate.
3856   for (; i != NumAggValues; ++i)
3857     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3858                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3859 
3860   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3861                            DAG.getVTList(AggValueVTs), Values));
3862 }
3863 
3864 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3865   ArrayRef<unsigned> Indices = I.getIndices();
3866   const Value *Op0 = I.getOperand(0);
3867   Type *AggTy = Op0->getType();
3868   Type *ValTy = I.getType();
3869   bool OutOfUndef = isa<UndefValue>(Op0);
3870 
3871   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3872 
3873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3874   SmallVector<EVT, 4> ValValueVTs;
3875   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3876 
3877   unsigned NumValValues = ValValueVTs.size();
3878 
3879   // Ignore a extractvalue that produces an empty object
3880   if (!NumValValues) {
3881     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3882     return;
3883   }
3884 
3885   SmallVector<SDValue, 4> Values(NumValValues);
3886 
3887   SDValue Agg = getValue(Op0);
3888   // Copy out the selected value(s).
3889   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3890     Values[i - LinearIndex] =
3891       OutOfUndef ?
3892         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3893         SDValue(Agg.getNode(), Agg.getResNo() + i);
3894 
3895   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3896                            DAG.getVTList(ValValueVTs), Values));
3897 }
3898 
3899 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3900   Value *Op0 = I.getOperand(0);
3901   // Note that the pointer operand may be a vector of pointers. Take the scalar
3902   // element which holds a pointer.
3903   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3904   SDValue N = getValue(Op0);
3905   SDLoc dl = getCurSDLoc();
3906   auto &TLI = DAG.getTargetLoweringInfo();
3907 
3908   // Normalize Vector GEP - all scalar operands should be converted to the
3909   // splat vector.
3910   bool IsVectorGEP = I.getType()->isVectorTy();
3911   ElementCount VectorElementCount =
3912       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3913                   : ElementCount::getFixed(0);
3914 
3915   if (IsVectorGEP && !N.getValueType().isVector()) {
3916     LLVMContext &Context = *DAG.getContext();
3917     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3918     N = DAG.getSplat(VT, dl, N);
3919   }
3920 
3921   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3922        GTI != E; ++GTI) {
3923     const Value *Idx = GTI.getOperand();
3924     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3925       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3926       if (Field) {
3927         // N = N + Offset
3928         uint64_t Offset =
3929             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3930 
3931         // In an inbounds GEP with an offset that is nonnegative even when
3932         // interpreted as signed, assume there is no unsigned overflow.
3933         SDNodeFlags Flags;
3934         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3935           Flags.setNoUnsignedWrap(true);
3936 
3937         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3938                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3939       }
3940     } else {
3941       // IdxSize is the width of the arithmetic according to IR semantics.
3942       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3943       // (and fix up the result later).
3944       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3945       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3946       TypeSize ElementSize =
3947           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3948       // We intentionally mask away the high bits here; ElementSize may not
3949       // fit in IdxTy.
3950       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
3951       bool ElementScalable = ElementSize.isScalable();
3952 
3953       // If this is a scalar constant or a splat vector of constants,
3954       // handle it quickly.
3955       const auto *C = dyn_cast<Constant>(Idx);
3956       if (C && isa<VectorType>(C->getType()))
3957         C = C->getSplatValue();
3958 
3959       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3960       if (CI && CI->isZero())
3961         continue;
3962       if (CI && !ElementScalable) {
3963         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3964         LLVMContext &Context = *DAG.getContext();
3965         SDValue OffsVal;
3966         if (IsVectorGEP)
3967           OffsVal = DAG.getConstant(
3968               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3969         else
3970           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3971 
3972         // In an inbounds GEP with an offset that is nonnegative even when
3973         // interpreted as signed, assume there is no unsigned overflow.
3974         SDNodeFlags Flags;
3975         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3976           Flags.setNoUnsignedWrap(true);
3977 
3978         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3979 
3980         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3981         continue;
3982       }
3983 
3984       // N = N + Idx * ElementMul;
3985       SDValue IdxN = getValue(Idx);
3986 
3987       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3988         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3989                                   VectorElementCount);
3990         IdxN = DAG.getSplat(VT, dl, IdxN);
3991       }
3992 
3993       // If the index is smaller or larger than intptr_t, truncate or extend
3994       // it.
3995       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3996 
3997       if (ElementScalable) {
3998         EVT VScaleTy = N.getValueType().getScalarType();
3999         SDValue VScale = DAG.getNode(
4000             ISD::VSCALE, dl, VScaleTy,
4001             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4002         if (IsVectorGEP)
4003           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4004         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4005       } else {
4006         // If this is a multiply by a power of two, turn it into a shl
4007         // immediately.  This is a very common case.
4008         if (ElementMul != 1) {
4009           if (ElementMul.isPowerOf2()) {
4010             unsigned Amt = ElementMul.logBase2();
4011             IdxN = DAG.getNode(ISD::SHL, dl,
4012                                N.getValueType(), IdxN,
4013                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4014           } else {
4015             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4016                                             IdxN.getValueType());
4017             IdxN = DAG.getNode(ISD::MUL, dl,
4018                                N.getValueType(), IdxN, Scale);
4019           }
4020         }
4021       }
4022 
4023       N = DAG.getNode(ISD::ADD, dl,
4024                       N.getValueType(), N, IdxN);
4025     }
4026   }
4027 
4028   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4029   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4030   if (IsVectorGEP) {
4031     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4032     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4033   }
4034 
4035   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4036     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4037 
4038   setValue(&I, N);
4039 }
4040 
4041 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4042   // If this is a fixed sized alloca in the entry block of the function,
4043   // allocate it statically on the stack.
4044   if (FuncInfo.StaticAllocaMap.count(&I))
4045     return;   // getValue will auto-populate this.
4046 
4047   SDLoc dl = getCurSDLoc();
4048   Type *Ty = I.getAllocatedType();
4049   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4050   auto &DL = DAG.getDataLayout();
4051   TypeSize TySize = DL.getTypeAllocSize(Ty);
4052   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4053 
4054   SDValue AllocSize = getValue(I.getArraySize());
4055 
4056   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4057   if (AllocSize.getValueType() != IntPtr)
4058     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4059 
4060   if (TySize.isScalable())
4061     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4062                             DAG.getVScale(dl, IntPtr,
4063                                           APInt(IntPtr.getScalarSizeInBits(),
4064                                                 TySize.getKnownMinValue())));
4065   else
4066     AllocSize =
4067         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4068                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4069 
4070   // Handle alignment.  If the requested alignment is less than or equal to
4071   // the stack alignment, ignore it.  If the size is greater than or equal to
4072   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4073   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4074   if (*Alignment <= StackAlign)
4075     Alignment = std::nullopt;
4076 
4077   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4078   // Round the size of the allocation up to the stack alignment size
4079   // by add SA-1 to the size. This doesn't overflow because we're computing
4080   // an address inside an alloca.
4081   SDNodeFlags Flags;
4082   Flags.setNoUnsignedWrap(true);
4083   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4084                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4085 
4086   // Mask out the low bits for alignment purposes.
4087   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4088                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4089 
4090   SDValue Ops[] = {
4091       getRoot(), AllocSize,
4092       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4093   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4094   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4095   setValue(&I, DSA);
4096   DAG.setRoot(DSA.getValue(1));
4097 
4098   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4099 }
4100 
4101 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4102   if (I.isAtomic())
4103     return visitAtomicLoad(I);
4104 
4105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4106   const Value *SV = I.getOperand(0);
4107   if (TLI.supportSwiftError()) {
4108     // Swifterror values can come from either a function parameter with
4109     // swifterror attribute or an alloca with swifterror attribute.
4110     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4111       if (Arg->hasSwiftErrorAttr())
4112         return visitLoadFromSwiftError(I);
4113     }
4114 
4115     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4116       if (Alloca->isSwiftError())
4117         return visitLoadFromSwiftError(I);
4118     }
4119   }
4120 
4121   SDValue Ptr = getValue(SV);
4122 
4123   Type *Ty = I.getType();
4124   SmallVector<EVT, 4> ValueVTs, MemVTs;
4125   SmallVector<uint64_t, 4> Offsets;
4126   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4127   unsigned NumValues = ValueVTs.size();
4128   if (NumValues == 0)
4129     return;
4130 
4131   Align Alignment = I.getAlign();
4132   AAMDNodes AAInfo = I.getAAMetadata();
4133   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4134   bool isVolatile = I.isVolatile();
4135   MachineMemOperand::Flags MMOFlags =
4136       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4137 
4138   SDValue Root;
4139   bool ConstantMemory = false;
4140   if (isVolatile)
4141     // Serialize volatile loads with other side effects.
4142     Root = getRoot();
4143   else if (NumValues > MaxParallelChains)
4144     Root = getMemoryRoot();
4145   else if (AA &&
4146            AA->pointsToConstantMemory(MemoryLocation(
4147                SV,
4148                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4149                AAInfo))) {
4150     // Do not serialize (non-volatile) loads of constant memory with anything.
4151     Root = DAG.getEntryNode();
4152     ConstantMemory = true;
4153     MMOFlags |= MachineMemOperand::MOInvariant;
4154   } else {
4155     // Do not serialize non-volatile loads against each other.
4156     Root = DAG.getRoot();
4157   }
4158 
4159   SDLoc dl = getCurSDLoc();
4160 
4161   if (isVolatile)
4162     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4163 
4164   // An aggregate load cannot wrap around the address space, so offsets to its
4165   // parts don't wrap either.
4166   SDNodeFlags Flags;
4167   Flags.setNoUnsignedWrap(true);
4168 
4169   SmallVector<SDValue, 4> Values(NumValues);
4170   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4171   EVT PtrVT = Ptr.getValueType();
4172 
4173   unsigned ChainI = 0;
4174   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4175     // Serializing loads here may result in excessive register pressure, and
4176     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4177     // could recover a bit by hoisting nodes upward in the chain by recognizing
4178     // they are side-effect free or do not alias. The optimizer should really
4179     // avoid this case by converting large object/array copies to llvm.memcpy
4180     // (MaxParallelChains should always remain as failsafe).
4181     if (ChainI == MaxParallelChains) {
4182       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4183       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4184                                   ArrayRef(Chains.data(), ChainI));
4185       Root = Chain;
4186       ChainI = 0;
4187     }
4188     SDValue A = DAG.getNode(ISD::ADD, dl,
4189                             PtrVT, Ptr,
4190                             DAG.getConstant(Offsets[i], dl, PtrVT),
4191                             Flags);
4192 
4193     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4194                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4195                             MMOFlags, AAInfo, Ranges);
4196     Chains[ChainI] = L.getValue(1);
4197 
4198     if (MemVTs[i] != ValueVTs[i])
4199       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4200 
4201     Values[i] = L;
4202   }
4203 
4204   if (!ConstantMemory) {
4205     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4206                                 ArrayRef(Chains.data(), ChainI));
4207     if (isVolatile)
4208       DAG.setRoot(Chain);
4209     else
4210       PendingLoads.push_back(Chain);
4211   }
4212 
4213   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4214                            DAG.getVTList(ValueVTs), Values));
4215 }
4216 
4217 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4218   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4219          "call visitStoreToSwiftError when backend supports swifterror");
4220 
4221   SmallVector<EVT, 4> ValueVTs;
4222   SmallVector<uint64_t, 4> Offsets;
4223   const Value *SrcV = I.getOperand(0);
4224   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4225                   SrcV->getType(), ValueVTs, &Offsets);
4226   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4227          "expect a single EVT for swifterror");
4228 
4229   SDValue Src = getValue(SrcV);
4230   // Create a virtual register, then update the virtual register.
4231   Register VReg =
4232       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4233   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4234   // Chain can be getRoot or getControlRoot.
4235   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4236                                       SDValue(Src.getNode(), Src.getResNo()));
4237   DAG.setRoot(CopyNode);
4238 }
4239 
4240 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4241   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4242          "call visitLoadFromSwiftError when backend supports swifterror");
4243 
4244   assert(!I.isVolatile() &&
4245          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4246          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4247          "Support volatile, non temporal, invariant for load_from_swift_error");
4248 
4249   const Value *SV = I.getOperand(0);
4250   Type *Ty = I.getType();
4251   assert(
4252       (!AA ||
4253        !AA->pointsToConstantMemory(MemoryLocation(
4254            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4255            I.getAAMetadata()))) &&
4256       "load_from_swift_error should not be constant memory");
4257 
4258   SmallVector<EVT, 4> ValueVTs;
4259   SmallVector<uint64_t, 4> Offsets;
4260   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4261                   ValueVTs, &Offsets);
4262   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4263          "expect a single EVT for swifterror");
4264 
4265   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4266   SDValue L = DAG.getCopyFromReg(
4267       getRoot(), getCurSDLoc(),
4268       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4269 
4270   setValue(&I, L);
4271 }
4272 
4273 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4274   if (I.isAtomic())
4275     return visitAtomicStore(I);
4276 
4277   const Value *SrcV = I.getOperand(0);
4278   const Value *PtrV = I.getOperand(1);
4279 
4280   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4281   if (TLI.supportSwiftError()) {
4282     // Swifterror values can come from either a function parameter with
4283     // swifterror attribute or an alloca with swifterror attribute.
4284     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4285       if (Arg->hasSwiftErrorAttr())
4286         return visitStoreToSwiftError(I);
4287     }
4288 
4289     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4290       if (Alloca->isSwiftError())
4291         return visitStoreToSwiftError(I);
4292     }
4293   }
4294 
4295   SmallVector<EVT, 4> ValueVTs, MemVTs;
4296   SmallVector<uint64_t, 4> Offsets;
4297   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4298                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4299   unsigned NumValues = ValueVTs.size();
4300   if (NumValues == 0)
4301     return;
4302 
4303   // Get the lowered operands. Note that we do this after
4304   // checking if NumResults is zero, because with zero results
4305   // the operands won't have values in the map.
4306   SDValue Src = getValue(SrcV);
4307   SDValue Ptr = getValue(PtrV);
4308 
4309   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4310   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4311   SDLoc dl = getCurSDLoc();
4312   Align Alignment = I.getAlign();
4313   AAMDNodes AAInfo = I.getAAMetadata();
4314 
4315   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4316 
4317   // An aggregate load cannot wrap around the address space, so offsets to its
4318   // parts don't wrap either.
4319   SDNodeFlags Flags;
4320   Flags.setNoUnsignedWrap(true);
4321 
4322   unsigned ChainI = 0;
4323   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4324     // See visitLoad comments.
4325     if (ChainI == MaxParallelChains) {
4326       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4327                                   ArrayRef(Chains.data(), ChainI));
4328       Root = Chain;
4329       ChainI = 0;
4330     }
4331     SDValue Add =
4332         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4333     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4334     if (MemVTs[i] != ValueVTs[i])
4335       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4336     SDValue St =
4337         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4338                      Alignment, MMOFlags, AAInfo);
4339     Chains[ChainI] = St;
4340   }
4341 
4342   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4343                                   ArrayRef(Chains.data(), ChainI));
4344   setValue(&I, StoreNode);
4345   DAG.setRoot(StoreNode);
4346 }
4347 
4348 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4349                                            bool IsCompressing) {
4350   SDLoc sdl = getCurSDLoc();
4351 
4352   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4353                                MaybeAlign &Alignment) {
4354     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4355     Src0 = I.getArgOperand(0);
4356     Ptr = I.getArgOperand(1);
4357     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4358     Mask = I.getArgOperand(3);
4359   };
4360   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4361                                     MaybeAlign &Alignment) {
4362     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4363     Src0 = I.getArgOperand(0);
4364     Ptr = I.getArgOperand(1);
4365     Mask = I.getArgOperand(2);
4366     Alignment = std::nullopt;
4367   };
4368 
4369   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4370   MaybeAlign Alignment;
4371   if (IsCompressing)
4372     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4373   else
4374     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4375 
4376   SDValue Ptr = getValue(PtrOperand);
4377   SDValue Src0 = getValue(Src0Operand);
4378   SDValue Mask = getValue(MaskOperand);
4379   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4380 
4381   EVT VT = Src0.getValueType();
4382   if (!Alignment)
4383     Alignment = DAG.getEVTAlign(VT);
4384 
4385   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4386       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4387       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4388   SDValue StoreNode =
4389       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4390                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4391   DAG.setRoot(StoreNode);
4392   setValue(&I, StoreNode);
4393 }
4394 
4395 // Get a uniform base for the Gather/Scatter intrinsic.
4396 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4397 // We try to represent it as a base pointer + vector of indices.
4398 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4399 // The first operand of the GEP may be a single pointer or a vector of pointers
4400 // Example:
4401 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4402 //  or
4403 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4404 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4405 //
4406 // When the first GEP operand is a single pointer - it is the uniform base we
4407 // are looking for. If first operand of the GEP is a splat vector - we
4408 // extract the splat value and use it as a uniform base.
4409 // In all other cases the function returns 'false'.
4410 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4411                            ISD::MemIndexType &IndexType, SDValue &Scale,
4412                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4413                            uint64_t ElemSize) {
4414   SelectionDAG& DAG = SDB->DAG;
4415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4416   const DataLayout &DL = DAG.getDataLayout();
4417 
4418   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4419 
4420   // Handle splat constant pointer.
4421   if (auto *C = dyn_cast<Constant>(Ptr)) {
4422     C = C->getSplatValue();
4423     if (!C)
4424       return false;
4425 
4426     Base = SDB->getValue(C);
4427 
4428     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4429     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4430     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4431     IndexType = ISD::SIGNED_SCALED;
4432     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4433     return true;
4434   }
4435 
4436   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4437   if (!GEP || GEP->getParent() != CurBB)
4438     return false;
4439 
4440   if (GEP->getNumOperands() != 2)
4441     return false;
4442 
4443   const Value *BasePtr = GEP->getPointerOperand();
4444   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4445 
4446   // Make sure the base is scalar and the index is a vector.
4447   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4448     return false;
4449 
4450   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4451 
4452   // Target may not support the required addressing mode.
4453   if (ScaleVal != 1 &&
4454       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4455     return false;
4456 
4457   Base = SDB->getValue(BasePtr);
4458   Index = SDB->getValue(IndexVal);
4459   IndexType = ISD::SIGNED_SCALED;
4460 
4461   Scale =
4462       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4463   return true;
4464 }
4465 
4466 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4467   SDLoc sdl = getCurSDLoc();
4468 
4469   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4470   const Value *Ptr = I.getArgOperand(1);
4471   SDValue Src0 = getValue(I.getArgOperand(0));
4472   SDValue Mask = getValue(I.getArgOperand(3));
4473   EVT VT = Src0.getValueType();
4474   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4475                         ->getMaybeAlignValue()
4476                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4478 
4479   SDValue Base;
4480   SDValue Index;
4481   ISD::MemIndexType IndexType;
4482   SDValue Scale;
4483   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4484                                     I.getParent(), VT.getScalarStoreSize());
4485 
4486   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4487   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4488       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4489       // TODO: Make MachineMemOperands aware of scalable
4490       // vectors.
4491       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4492   if (!UniformBase) {
4493     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4494     Index = getValue(Ptr);
4495     IndexType = ISD::SIGNED_SCALED;
4496     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4497   }
4498 
4499   EVT IdxVT = Index.getValueType();
4500   EVT EltTy = IdxVT.getVectorElementType();
4501   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4502     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4503     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4504   }
4505 
4506   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4507   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4508                                          Ops, MMO, IndexType, false);
4509   DAG.setRoot(Scatter);
4510   setValue(&I, Scatter);
4511 }
4512 
4513 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4514   SDLoc sdl = getCurSDLoc();
4515 
4516   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4517                               MaybeAlign &Alignment) {
4518     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4519     Ptr = I.getArgOperand(0);
4520     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4521     Mask = I.getArgOperand(2);
4522     Src0 = I.getArgOperand(3);
4523   };
4524   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4525                                  MaybeAlign &Alignment) {
4526     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4527     Ptr = I.getArgOperand(0);
4528     Alignment = std::nullopt;
4529     Mask = I.getArgOperand(1);
4530     Src0 = I.getArgOperand(2);
4531   };
4532 
4533   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4534   MaybeAlign Alignment;
4535   if (IsExpanding)
4536     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4537   else
4538     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4539 
4540   SDValue Ptr = getValue(PtrOperand);
4541   SDValue Src0 = getValue(Src0Operand);
4542   SDValue Mask = getValue(MaskOperand);
4543   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4544 
4545   EVT VT = Src0.getValueType();
4546   if (!Alignment)
4547     Alignment = DAG.getEVTAlign(VT);
4548 
4549   AAMDNodes AAInfo = I.getAAMetadata();
4550   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4551 
4552   // Do not serialize masked loads of constant memory with anything.
4553   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4554   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4555 
4556   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4557 
4558   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4559       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4560       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4561 
4562   SDValue Load =
4563       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4564                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4565   if (AddToChain)
4566     PendingLoads.push_back(Load.getValue(1));
4567   setValue(&I, Load);
4568 }
4569 
4570 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4571   SDLoc sdl = getCurSDLoc();
4572 
4573   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4574   const Value *Ptr = I.getArgOperand(0);
4575   SDValue Src0 = getValue(I.getArgOperand(3));
4576   SDValue Mask = getValue(I.getArgOperand(2));
4577 
4578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4579   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4580   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4581                         ->getMaybeAlignValue()
4582                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4583 
4584   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4585 
4586   SDValue Root = DAG.getRoot();
4587   SDValue Base;
4588   SDValue Index;
4589   ISD::MemIndexType IndexType;
4590   SDValue Scale;
4591   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4592                                     I.getParent(), VT.getScalarStoreSize());
4593   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4594   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4595       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4596       // TODO: Make MachineMemOperands aware of scalable
4597       // vectors.
4598       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4599 
4600   if (!UniformBase) {
4601     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4602     Index = getValue(Ptr);
4603     IndexType = ISD::SIGNED_SCALED;
4604     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4605   }
4606 
4607   EVT IdxVT = Index.getValueType();
4608   EVT EltTy = IdxVT.getVectorElementType();
4609   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4610     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4611     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4612   }
4613 
4614   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4615   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4616                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4617 
4618   PendingLoads.push_back(Gather.getValue(1));
4619   setValue(&I, Gather);
4620 }
4621 
4622 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4623   SDLoc dl = getCurSDLoc();
4624   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4625   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4626   SyncScope::ID SSID = I.getSyncScopeID();
4627 
4628   SDValue InChain = getRoot();
4629 
4630   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4631   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4632 
4633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4634   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4635 
4636   MachineFunction &MF = DAG.getMachineFunction();
4637   MachineMemOperand *MMO = MF.getMachineMemOperand(
4638       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4639       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4640       FailureOrdering);
4641 
4642   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4643                                    dl, MemVT, VTs, InChain,
4644                                    getValue(I.getPointerOperand()),
4645                                    getValue(I.getCompareOperand()),
4646                                    getValue(I.getNewValOperand()), MMO);
4647 
4648   SDValue OutChain = L.getValue(2);
4649 
4650   setValue(&I, L);
4651   DAG.setRoot(OutChain);
4652 }
4653 
4654 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4655   SDLoc dl = getCurSDLoc();
4656   ISD::NodeType NT;
4657   switch (I.getOperation()) {
4658   default: llvm_unreachable("Unknown atomicrmw operation");
4659   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4660   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4661   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4662   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4663   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4664   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4665   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4666   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4667   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4668   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4669   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4670   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4671   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4672   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4673   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4674   case AtomicRMWInst::UIncWrap:
4675     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4676     break;
4677   case AtomicRMWInst::UDecWrap:
4678     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4679     break;
4680   }
4681   AtomicOrdering Ordering = I.getOrdering();
4682   SyncScope::ID SSID = I.getSyncScopeID();
4683 
4684   SDValue InChain = getRoot();
4685 
4686   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4687   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4688   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4689 
4690   MachineFunction &MF = DAG.getMachineFunction();
4691   MachineMemOperand *MMO = MF.getMachineMemOperand(
4692       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4693       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4694 
4695   SDValue L =
4696     DAG.getAtomic(NT, dl, MemVT, InChain,
4697                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4698                   MMO);
4699 
4700   SDValue OutChain = L.getValue(1);
4701 
4702   setValue(&I, L);
4703   DAG.setRoot(OutChain);
4704 }
4705 
4706 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4707   SDLoc dl = getCurSDLoc();
4708   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4709   SDValue Ops[3];
4710   Ops[0] = getRoot();
4711   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4712                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4713   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4714                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4715   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4716   setValue(&I, N);
4717   DAG.setRoot(N);
4718 }
4719 
4720 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4721   SDLoc dl = getCurSDLoc();
4722   AtomicOrdering Order = I.getOrdering();
4723   SyncScope::ID SSID = I.getSyncScopeID();
4724 
4725   SDValue InChain = getRoot();
4726 
4727   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4728   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4729   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4730 
4731   if (!TLI.supportsUnalignedAtomics() &&
4732       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4733     report_fatal_error("Cannot generate unaligned atomic load");
4734 
4735   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4736 
4737   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4738       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4739       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4740 
4741   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4742 
4743   SDValue Ptr = getValue(I.getPointerOperand());
4744 
4745   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4746     // TODO: Once this is better exercised by tests, it should be merged with
4747     // the normal path for loads to prevent future divergence.
4748     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4749     if (MemVT != VT)
4750       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4751 
4752     setValue(&I, L);
4753     SDValue OutChain = L.getValue(1);
4754     if (!I.isUnordered())
4755       DAG.setRoot(OutChain);
4756     else
4757       PendingLoads.push_back(OutChain);
4758     return;
4759   }
4760 
4761   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4762                             Ptr, MMO);
4763 
4764   SDValue OutChain = L.getValue(1);
4765   if (MemVT != VT)
4766     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4767 
4768   setValue(&I, L);
4769   DAG.setRoot(OutChain);
4770 }
4771 
4772 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4773   SDLoc dl = getCurSDLoc();
4774 
4775   AtomicOrdering Ordering = I.getOrdering();
4776   SyncScope::ID SSID = I.getSyncScopeID();
4777 
4778   SDValue InChain = getRoot();
4779 
4780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4781   EVT MemVT =
4782       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4783 
4784   if (!TLI.supportsUnalignedAtomics() &&
4785       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4786     report_fatal_error("Cannot generate unaligned atomic store");
4787 
4788   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4789 
4790   MachineFunction &MF = DAG.getMachineFunction();
4791   MachineMemOperand *MMO = MF.getMachineMemOperand(
4792       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4793       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4794 
4795   SDValue Val = getValue(I.getValueOperand());
4796   if (Val.getValueType() != MemVT)
4797     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4798   SDValue Ptr = getValue(I.getPointerOperand());
4799 
4800   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4801     // TODO: Once this is better exercised by tests, it should be merged with
4802     // the normal path for stores to prevent future divergence.
4803     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4804     setValue(&I, S);
4805     DAG.setRoot(S);
4806     return;
4807   }
4808   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4809                                    Ptr, Val, MMO);
4810 
4811   setValue(&I, OutChain);
4812   DAG.setRoot(OutChain);
4813 }
4814 
4815 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4816 /// node.
4817 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4818                                                unsigned Intrinsic) {
4819   // Ignore the callsite's attributes. A specific call site may be marked with
4820   // readnone, but the lowering code will expect the chain based on the
4821   // definition.
4822   const Function *F = I.getCalledFunction();
4823   bool HasChain = !F->doesNotAccessMemory();
4824   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4825 
4826   // Build the operand list.
4827   SmallVector<SDValue, 8> Ops;
4828   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4829     if (OnlyLoad) {
4830       // We don't need to serialize loads against other loads.
4831       Ops.push_back(DAG.getRoot());
4832     } else {
4833       Ops.push_back(getRoot());
4834     }
4835   }
4836 
4837   // Info is set by getTgtMemIntrinsic
4838   TargetLowering::IntrinsicInfo Info;
4839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4840   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4841                                                DAG.getMachineFunction(),
4842                                                Intrinsic);
4843 
4844   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4845   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4846       Info.opc == ISD::INTRINSIC_W_CHAIN)
4847     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4848                                         TLI.getPointerTy(DAG.getDataLayout())));
4849 
4850   // Add all operands of the call to the operand list.
4851   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4852     const Value *Arg = I.getArgOperand(i);
4853     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4854       Ops.push_back(getValue(Arg));
4855       continue;
4856     }
4857 
4858     // Use TargetConstant instead of a regular constant for immarg.
4859     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4860     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4861       assert(CI->getBitWidth() <= 64 &&
4862              "large intrinsic immediates not handled");
4863       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4864     } else {
4865       Ops.push_back(
4866           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4867     }
4868   }
4869 
4870   SmallVector<EVT, 4> ValueVTs;
4871   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4872 
4873   if (HasChain)
4874     ValueVTs.push_back(MVT::Other);
4875 
4876   SDVTList VTs = DAG.getVTList(ValueVTs);
4877 
4878   // Propagate fast-math-flags from IR to node(s).
4879   SDNodeFlags Flags;
4880   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4881     Flags.copyFMF(*FPMO);
4882   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4883 
4884   // Create the node.
4885   SDValue Result;
4886   // In some cases, custom collection of operands from CallInst I may be needed.
4887   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4888   if (IsTgtIntrinsic) {
4889     // This is target intrinsic that touches memory
4890     //
4891     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4892     //       didn't yield anything useful.
4893     MachinePointerInfo MPI;
4894     if (Info.ptrVal)
4895       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4896     else if (Info.fallbackAddressSpace)
4897       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4898     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4899                                      Info.memVT, MPI, Info.align, Info.flags,
4900                                      Info.size, I.getAAMetadata());
4901   } else if (!HasChain) {
4902     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4903   } else if (!I.getType()->isVoidTy()) {
4904     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4905   } else {
4906     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4907   }
4908 
4909   if (HasChain) {
4910     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4911     if (OnlyLoad)
4912       PendingLoads.push_back(Chain);
4913     else
4914       DAG.setRoot(Chain);
4915   }
4916 
4917   if (!I.getType()->isVoidTy()) {
4918     if (!isa<VectorType>(I.getType()))
4919       Result = lowerRangeToAssertZExt(DAG, I, Result);
4920 
4921     MaybeAlign Alignment = I.getRetAlign();
4922     if (!Alignment)
4923       Alignment = F->getAttributes().getRetAlignment();
4924     // Insert `assertalign` node if there's an alignment.
4925     if (InsertAssertAlign && Alignment) {
4926       Result =
4927           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4928     }
4929 
4930     setValue(&I, Result);
4931   }
4932 }
4933 
4934 /// GetSignificand - Get the significand and build it into a floating-point
4935 /// number with exponent of 1:
4936 ///
4937 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4938 ///
4939 /// where Op is the hexadecimal representation of floating point value.
4940 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4941   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4942                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4943   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4944                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4945   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4946 }
4947 
4948 /// GetExponent - Get the exponent:
4949 ///
4950 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4951 ///
4952 /// where Op is the hexadecimal representation of floating point value.
4953 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4954                            const TargetLowering &TLI, const SDLoc &dl) {
4955   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4956                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4957   SDValue t1 = DAG.getNode(
4958       ISD::SRL, dl, MVT::i32, t0,
4959       DAG.getConstant(23, dl,
4960                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4961   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4962                            DAG.getConstant(127, dl, MVT::i32));
4963   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4964 }
4965 
4966 /// getF32Constant - Get 32-bit floating point constant.
4967 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4968                               const SDLoc &dl) {
4969   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4970                            MVT::f32);
4971 }
4972 
4973 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4974                                        SelectionDAG &DAG) {
4975   // TODO: What fast-math-flags should be set on the floating-point nodes?
4976 
4977   //   IntegerPartOfX = ((int32_t)(t0);
4978   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4979 
4980   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4981   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4982   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4983 
4984   //   IntegerPartOfX <<= 23;
4985   IntegerPartOfX =
4986       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4987                   DAG.getConstant(23, dl,
4988                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4989                                       MVT::i32, DAG.getDataLayout())));
4990 
4991   SDValue TwoToFractionalPartOfX;
4992   if (LimitFloatPrecision <= 6) {
4993     // For floating-point precision of 6:
4994     //
4995     //   TwoToFractionalPartOfX =
4996     //     0.997535578f +
4997     //       (0.735607626f + 0.252464424f * x) * x;
4998     //
4999     // error 0.0144103317, which is 6 bits
5000     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5001                              getF32Constant(DAG, 0x3e814304, dl));
5002     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5003                              getF32Constant(DAG, 0x3f3c50c8, dl));
5004     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5005     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5006                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5007   } else if (LimitFloatPrecision <= 12) {
5008     // For floating-point precision of 12:
5009     //
5010     //   TwoToFractionalPartOfX =
5011     //     0.999892986f +
5012     //       (0.696457318f +
5013     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5014     //
5015     // error 0.000107046256, which is 13 to 14 bits
5016     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5017                              getF32Constant(DAG, 0x3da235e3, dl));
5018     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5019                              getF32Constant(DAG, 0x3e65b8f3, dl));
5020     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5021     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5022                              getF32Constant(DAG, 0x3f324b07, dl));
5023     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5024     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5025                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5026   } else { // LimitFloatPrecision <= 18
5027     // For floating-point precision of 18:
5028     //
5029     //   TwoToFractionalPartOfX =
5030     //     0.999999982f +
5031     //       (0.693148872f +
5032     //         (0.240227044f +
5033     //           (0.554906021e-1f +
5034     //             (0.961591928e-2f +
5035     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5036     // error 2.47208000*10^(-7), which is better than 18 bits
5037     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5038                              getF32Constant(DAG, 0x3924b03e, dl));
5039     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5040                              getF32Constant(DAG, 0x3ab24b87, dl));
5041     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5042     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5043                              getF32Constant(DAG, 0x3c1d8c17, dl));
5044     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5045     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5046                              getF32Constant(DAG, 0x3d634a1d, dl));
5047     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5048     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5049                              getF32Constant(DAG, 0x3e75fe14, dl));
5050     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5051     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5052                               getF32Constant(DAG, 0x3f317234, dl));
5053     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5054     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5055                                          getF32Constant(DAG, 0x3f800000, dl));
5056   }
5057 
5058   // Add the exponent into the result in integer domain.
5059   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5060   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5061                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5062 }
5063 
5064 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5065 /// limited-precision mode.
5066 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5067                          const TargetLowering &TLI, SDNodeFlags Flags) {
5068   if (Op.getValueType() == MVT::f32 &&
5069       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5070 
5071     // Put the exponent in the right bit position for later addition to the
5072     // final result:
5073     //
5074     // t0 = Op * log2(e)
5075 
5076     // TODO: What fast-math-flags should be set here?
5077     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5078                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5079     return getLimitedPrecisionExp2(t0, dl, DAG);
5080   }
5081 
5082   // No special expansion.
5083   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5084 }
5085 
5086 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5087 /// limited-precision mode.
5088 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5089                          const TargetLowering &TLI, SDNodeFlags Flags) {
5090   // TODO: What fast-math-flags should be set on the floating-point nodes?
5091 
5092   if (Op.getValueType() == MVT::f32 &&
5093       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5094     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5095 
5096     // Scale the exponent by log(2).
5097     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5098     SDValue LogOfExponent =
5099         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5100                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5101 
5102     // Get the significand and build it into a floating-point number with
5103     // exponent of 1.
5104     SDValue X = GetSignificand(DAG, Op1, dl);
5105 
5106     SDValue LogOfMantissa;
5107     if (LimitFloatPrecision <= 6) {
5108       // For floating-point precision of 6:
5109       //
5110       //   LogofMantissa =
5111       //     -1.1609546f +
5112       //       (1.4034025f - 0.23903021f * x) * x;
5113       //
5114       // error 0.0034276066, which is better than 8 bits
5115       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5116                                getF32Constant(DAG, 0xbe74c456, dl));
5117       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5118                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5119       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5120       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5121                                   getF32Constant(DAG, 0x3f949a29, dl));
5122     } else if (LimitFloatPrecision <= 12) {
5123       // For floating-point precision of 12:
5124       //
5125       //   LogOfMantissa =
5126       //     -1.7417939f +
5127       //       (2.8212026f +
5128       //         (-1.4699568f +
5129       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5130       //
5131       // error 0.000061011436, which is 14 bits
5132       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5133                                getF32Constant(DAG, 0xbd67b6d6, dl));
5134       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5135                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5136       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5137       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5138                                getF32Constant(DAG, 0x3fbc278b, dl));
5139       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5140       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5141                                getF32Constant(DAG, 0x40348e95, dl));
5142       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5143       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5144                                   getF32Constant(DAG, 0x3fdef31a, dl));
5145     } else { // LimitFloatPrecision <= 18
5146       // For floating-point precision of 18:
5147       //
5148       //   LogOfMantissa =
5149       //     -2.1072184f +
5150       //       (4.2372794f +
5151       //         (-3.7029485f +
5152       //           (2.2781945f +
5153       //             (-0.87823314f +
5154       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5155       //
5156       // error 0.0000023660568, which is better than 18 bits
5157       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5158                                getF32Constant(DAG, 0xbc91e5ac, dl));
5159       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5160                                getF32Constant(DAG, 0x3e4350aa, dl));
5161       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5162       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5163                                getF32Constant(DAG, 0x3f60d3e3, dl));
5164       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5165       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5166                                getF32Constant(DAG, 0x4011cdf0, dl));
5167       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5168       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5169                                getF32Constant(DAG, 0x406cfd1c, dl));
5170       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5171       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5172                                getF32Constant(DAG, 0x408797cb, dl));
5173       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5174       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5175                                   getF32Constant(DAG, 0x4006dcab, dl));
5176     }
5177 
5178     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5179   }
5180 
5181   // No special expansion.
5182   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5183 }
5184 
5185 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5186 /// limited-precision mode.
5187 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5188                           const TargetLowering &TLI, SDNodeFlags Flags) {
5189   // TODO: What fast-math-flags should be set on the floating-point nodes?
5190 
5191   if (Op.getValueType() == MVT::f32 &&
5192       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5193     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5194 
5195     // Get the exponent.
5196     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5197 
5198     // Get the significand and build it into a floating-point number with
5199     // exponent of 1.
5200     SDValue X = GetSignificand(DAG, Op1, dl);
5201 
5202     // Different possible minimax approximations of significand in
5203     // floating-point for various degrees of accuracy over [1,2].
5204     SDValue Log2ofMantissa;
5205     if (LimitFloatPrecision <= 6) {
5206       // For floating-point precision of 6:
5207       //
5208       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5209       //
5210       // error 0.0049451742, which is more than 7 bits
5211       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5212                                getF32Constant(DAG, 0xbeb08fe0, dl));
5213       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5214                                getF32Constant(DAG, 0x40019463, dl));
5215       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5216       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5217                                    getF32Constant(DAG, 0x3fd6633d, dl));
5218     } else if (LimitFloatPrecision <= 12) {
5219       // For floating-point precision of 12:
5220       //
5221       //   Log2ofMantissa =
5222       //     -2.51285454f +
5223       //       (4.07009056f +
5224       //         (-2.12067489f +
5225       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5226       //
5227       // error 0.0000876136000, which is better than 13 bits
5228       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5229                                getF32Constant(DAG, 0xbda7262e, dl));
5230       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5231                                getF32Constant(DAG, 0x3f25280b, dl));
5232       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5233       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5234                                getF32Constant(DAG, 0x4007b923, dl));
5235       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5236       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5237                                getF32Constant(DAG, 0x40823e2f, dl));
5238       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5239       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5240                                    getF32Constant(DAG, 0x4020d29c, dl));
5241     } else { // LimitFloatPrecision <= 18
5242       // For floating-point precision of 18:
5243       //
5244       //   Log2ofMantissa =
5245       //     -3.0400495f +
5246       //       (6.1129976f +
5247       //         (-5.3420409f +
5248       //           (3.2865683f +
5249       //             (-1.2669343f +
5250       //               (0.27515199f -
5251       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5252       //
5253       // error 0.0000018516, which is better than 18 bits
5254       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5255                                getF32Constant(DAG, 0xbcd2769e, dl));
5256       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5257                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5258       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5259       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5260                                getF32Constant(DAG, 0x3fa22ae7, dl));
5261       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5262       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5263                                getF32Constant(DAG, 0x40525723, dl));
5264       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5265       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5266                                getF32Constant(DAG, 0x40aaf200, dl));
5267       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5268       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5269                                getF32Constant(DAG, 0x40c39dad, dl));
5270       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5271       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5272                                    getF32Constant(DAG, 0x4042902c, dl));
5273     }
5274 
5275     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5276   }
5277 
5278   // No special expansion.
5279   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5280 }
5281 
5282 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5283 /// limited-precision mode.
5284 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5285                            const TargetLowering &TLI, SDNodeFlags Flags) {
5286   // TODO: What fast-math-flags should be set on the floating-point nodes?
5287 
5288   if (Op.getValueType() == MVT::f32 &&
5289       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5290     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5291 
5292     // Scale the exponent by log10(2) [0.30102999f].
5293     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5294     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5295                                         getF32Constant(DAG, 0x3e9a209a, dl));
5296 
5297     // Get the significand and build it into a floating-point number with
5298     // exponent of 1.
5299     SDValue X = GetSignificand(DAG, Op1, dl);
5300 
5301     SDValue Log10ofMantissa;
5302     if (LimitFloatPrecision <= 6) {
5303       // For floating-point precision of 6:
5304       //
5305       //   Log10ofMantissa =
5306       //     -0.50419619f +
5307       //       (0.60948995f - 0.10380950f * x) * x;
5308       //
5309       // error 0.0014886165, which is 6 bits
5310       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5311                                getF32Constant(DAG, 0xbdd49a13, dl));
5312       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5313                                getF32Constant(DAG, 0x3f1c0789, dl));
5314       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5315       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5316                                     getF32Constant(DAG, 0x3f011300, dl));
5317     } else if (LimitFloatPrecision <= 12) {
5318       // For floating-point precision of 12:
5319       //
5320       //   Log10ofMantissa =
5321       //     -0.64831180f +
5322       //       (0.91751397f +
5323       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5324       //
5325       // error 0.00019228036, which is better than 12 bits
5326       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5327                                getF32Constant(DAG, 0x3d431f31, dl));
5328       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5329                                getF32Constant(DAG, 0x3ea21fb2, dl));
5330       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5331       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5332                                getF32Constant(DAG, 0x3f6ae232, dl));
5333       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5334       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5335                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5336     } else { // LimitFloatPrecision <= 18
5337       // For floating-point precision of 18:
5338       //
5339       //   Log10ofMantissa =
5340       //     -0.84299375f +
5341       //       (1.5327582f +
5342       //         (-1.0688956f +
5343       //           (0.49102474f +
5344       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5345       //
5346       // error 0.0000037995730, which is better than 18 bits
5347       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5348                                getF32Constant(DAG, 0x3c5d51ce, dl));
5349       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5350                                getF32Constant(DAG, 0x3e00685a, dl));
5351       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5352       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5353                                getF32Constant(DAG, 0x3efb6798, dl));
5354       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5355       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5356                                getF32Constant(DAG, 0x3f88d192, dl));
5357       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5358       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5359                                getF32Constant(DAG, 0x3fc4316c, dl));
5360       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5361       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5362                                     getF32Constant(DAG, 0x3f57ce70, dl));
5363     }
5364 
5365     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5366   }
5367 
5368   // No special expansion.
5369   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5370 }
5371 
5372 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5373 /// limited-precision mode.
5374 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5375                           const TargetLowering &TLI, SDNodeFlags Flags) {
5376   if (Op.getValueType() == MVT::f32 &&
5377       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5378     return getLimitedPrecisionExp2(Op, dl, DAG);
5379 
5380   // No special expansion.
5381   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5382 }
5383 
5384 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5385 /// limited-precision mode with x == 10.0f.
5386 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5387                          SelectionDAG &DAG, const TargetLowering &TLI,
5388                          SDNodeFlags Flags) {
5389   bool IsExp10 = false;
5390   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5391       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5392     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5393       APFloat Ten(10.0f);
5394       IsExp10 = LHSC->isExactlyValue(Ten);
5395     }
5396   }
5397 
5398   // TODO: What fast-math-flags should be set on the FMUL node?
5399   if (IsExp10) {
5400     // Put the exponent in the right bit position for later addition to the
5401     // final result:
5402     //
5403     //   #define LOG2OF10 3.3219281f
5404     //   t0 = Op * LOG2OF10;
5405     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5406                              getF32Constant(DAG, 0x40549a78, dl));
5407     return getLimitedPrecisionExp2(t0, dl, DAG);
5408   }
5409 
5410   // No special expansion.
5411   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5412 }
5413 
5414 /// ExpandPowI - Expand a llvm.powi intrinsic.
5415 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5416                           SelectionDAG &DAG) {
5417   // If RHS is a constant, we can expand this out to a multiplication tree if
5418   // it's beneficial on the target, otherwise we end up lowering to a call to
5419   // __powidf2 (for example).
5420   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5421     unsigned Val = RHSC->getSExtValue();
5422 
5423     // powi(x, 0) -> 1.0
5424     if (Val == 0)
5425       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5426 
5427     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5428             Val, DAG.shouldOptForSize())) {
5429       // Get the exponent as a positive value.
5430       if ((int)Val < 0)
5431         Val = -Val;
5432       // We use the simple binary decomposition method to generate the multiply
5433       // sequence.  There are more optimal ways to do this (for example,
5434       // powi(x,15) generates one more multiply than it should), but this has
5435       // the benefit of being both really simple and much better than a libcall.
5436       SDValue Res; // Logically starts equal to 1.0
5437       SDValue CurSquare = LHS;
5438       // TODO: Intrinsics should have fast-math-flags that propagate to these
5439       // nodes.
5440       while (Val) {
5441         if (Val & 1) {
5442           if (Res.getNode())
5443             Res =
5444                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5445           else
5446             Res = CurSquare; // 1.0*CurSquare.
5447         }
5448 
5449         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5450                                 CurSquare, CurSquare);
5451         Val >>= 1;
5452       }
5453 
5454       // If the original was negative, invert the result, producing 1/(x*x*x).
5455       if (RHSC->getSExtValue() < 0)
5456         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5457                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5458       return Res;
5459     }
5460   }
5461 
5462   // Otherwise, expand to a libcall.
5463   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5464 }
5465 
5466 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5467                             SDValue LHS, SDValue RHS, SDValue Scale,
5468                             SelectionDAG &DAG, const TargetLowering &TLI) {
5469   EVT VT = LHS.getValueType();
5470   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5471   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5472   LLVMContext &Ctx = *DAG.getContext();
5473 
5474   // If the type is legal but the operation isn't, this node might survive all
5475   // the way to operation legalization. If we end up there and we do not have
5476   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5477   // node.
5478 
5479   // Coax the legalizer into expanding the node during type legalization instead
5480   // by bumping the size by one bit. This will force it to Promote, enabling the
5481   // early expansion and avoiding the need to expand later.
5482 
5483   // We don't have to do this if Scale is 0; that can always be expanded, unless
5484   // it's a saturating signed operation. Those can experience true integer
5485   // division overflow, a case which we must avoid.
5486 
5487   // FIXME: We wouldn't have to do this (or any of the early
5488   // expansion/promotion) if it was possible to expand a libcall of an
5489   // illegal type during operation legalization. But it's not, so things
5490   // get a bit hacky.
5491   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5492   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5493       (TLI.isTypeLegal(VT) ||
5494        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5495     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5496         Opcode, VT, ScaleInt);
5497     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5498       EVT PromVT;
5499       if (VT.isScalarInteger())
5500         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5501       else if (VT.isVector()) {
5502         PromVT = VT.getVectorElementType();
5503         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5504         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5505       } else
5506         llvm_unreachable("Wrong VT for DIVFIX?");
5507       if (Signed) {
5508         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5509         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5510       } else {
5511         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5512         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5513       }
5514       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5515       // For saturating operations, we need to shift up the LHS to get the
5516       // proper saturation width, and then shift down again afterwards.
5517       if (Saturating)
5518         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5519                           DAG.getConstant(1, DL, ShiftTy));
5520       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5521       if (Saturating)
5522         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5523                           DAG.getConstant(1, DL, ShiftTy));
5524       return DAG.getZExtOrTrunc(Res, DL, VT);
5525     }
5526   }
5527 
5528   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5529 }
5530 
5531 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5532 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5533 static void
5534 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5535                      const SDValue &N) {
5536   switch (N.getOpcode()) {
5537   case ISD::CopyFromReg: {
5538     SDValue Op = N.getOperand(1);
5539     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5540                       Op.getValueType().getSizeInBits());
5541     return;
5542   }
5543   case ISD::BITCAST:
5544   case ISD::AssertZext:
5545   case ISD::AssertSext:
5546   case ISD::TRUNCATE:
5547     getUnderlyingArgRegs(Regs, N.getOperand(0));
5548     return;
5549   case ISD::BUILD_PAIR:
5550   case ISD::BUILD_VECTOR:
5551   case ISD::CONCAT_VECTORS:
5552     for (SDValue Op : N->op_values())
5553       getUnderlyingArgRegs(Regs, Op);
5554     return;
5555   default:
5556     return;
5557   }
5558 }
5559 
5560 /// If the DbgValueInst is a dbg_value of a function argument, create the
5561 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5562 /// instruction selection, they will be inserted to the entry BB.
5563 /// We don't currently support this for variadic dbg_values, as they shouldn't
5564 /// appear for function arguments or in the prologue.
5565 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5566     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5567     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5568   const Argument *Arg = dyn_cast<Argument>(V);
5569   if (!Arg)
5570     return false;
5571 
5572   MachineFunction &MF = DAG.getMachineFunction();
5573   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5574 
5575   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5576   // we've been asked to pursue.
5577   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5578                               bool Indirect) {
5579     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5580       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5581       // pointing at the VReg, which will be patched up later.
5582       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5583       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5584           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5585           /* isKill */ false, /* isDead */ false,
5586           /* isUndef */ false, /* isEarlyClobber */ false,
5587           /* SubReg */ 0, /* isDebug */ true)});
5588 
5589       auto *NewDIExpr = FragExpr;
5590       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5591       // the DIExpression.
5592       if (Indirect)
5593         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5594       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5595       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5596       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5597     } else {
5598       // Create a completely standard DBG_VALUE.
5599       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5600       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5601     }
5602   };
5603 
5604   if (Kind == FuncArgumentDbgValueKind::Value) {
5605     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5606     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5607     // the entry block.
5608     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5609     if (!IsInEntryBlock)
5610       return false;
5611 
5612     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5613     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5614     // variable that also is a param.
5615     //
5616     // Although, if we are at the top of the entry block already, we can still
5617     // emit using ArgDbgValue. This might catch some situations when the
5618     // dbg.value refers to an argument that isn't used in the entry block, so
5619     // any CopyToReg node would be optimized out and the only way to express
5620     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5621     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5622     // we should only emit as ArgDbgValue if the Variable is an argument to the
5623     // current function, and the dbg.value intrinsic is found in the entry
5624     // block.
5625     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5626         !DL->getInlinedAt();
5627     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5628     if (!IsInPrologue && !VariableIsFunctionInputArg)
5629       return false;
5630 
5631     // Here we assume that a function argument on IR level only can be used to
5632     // describe one input parameter on source level. If we for example have
5633     // source code like this
5634     //
5635     //    struct A { long x, y; };
5636     //    void foo(struct A a, long b) {
5637     //      ...
5638     //      b = a.x;
5639     //      ...
5640     //    }
5641     //
5642     // and IR like this
5643     //
5644     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5645     //  entry:
5646     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5647     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5648     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5649     //    ...
5650     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5651     //    ...
5652     //
5653     // then the last dbg.value is describing a parameter "b" using a value that
5654     // is an argument. But since we already has used %a1 to describe a parameter
5655     // we should not handle that last dbg.value here (that would result in an
5656     // incorrect hoisting of the DBG_VALUE to the function entry).
5657     // Notice that we allow one dbg.value per IR level argument, to accommodate
5658     // for the situation with fragments above.
5659     if (VariableIsFunctionInputArg) {
5660       unsigned ArgNo = Arg->getArgNo();
5661       if (ArgNo >= FuncInfo.DescribedArgs.size())
5662         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5663       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5664         return false;
5665       FuncInfo.DescribedArgs.set(ArgNo);
5666     }
5667   }
5668 
5669   bool IsIndirect = false;
5670   std::optional<MachineOperand> Op;
5671   // Some arguments' frame index is recorded during argument lowering.
5672   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5673   if (FI != std::numeric_limits<int>::max())
5674     Op = MachineOperand::CreateFI(FI);
5675 
5676   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5677   if (!Op && N.getNode()) {
5678     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5679     Register Reg;
5680     if (ArgRegsAndSizes.size() == 1)
5681       Reg = ArgRegsAndSizes.front().first;
5682 
5683     if (Reg && Reg.isVirtual()) {
5684       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5685       Register PR = RegInfo.getLiveInPhysReg(Reg);
5686       if (PR)
5687         Reg = PR;
5688     }
5689     if (Reg) {
5690       Op = MachineOperand::CreateReg(Reg, false);
5691       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5692     }
5693   }
5694 
5695   if (!Op && N.getNode()) {
5696     // Check if frame index is available.
5697     SDValue LCandidate = peekThroughBitcasts(N);
5698     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5699       if (FrameIndexSDNode *FINode =
5700           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5701         Op = MachineOperand::CreateFI(FINode->getIndex());
5702   }
5703 
5704   if (!Op) {
5705     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5706     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5707                                          SplitRegs) {
5708       unsigned Offset = 0;
5709       for (const auto &RegAndSize : SplitRegs) {
5710         // If the expression is already a fragment, the current register
5711         // offset+size might extend beyond the fragment. In this case, only
5712         // the register bits that are inside the fragment are relevant.
5713         int RegFragmentSizeInBits = RegAndSize.second;
5714         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5715           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5716           // The register is entirely outside the expression fragment,
5717           // so is irrelevant for debug info.
5718           if (Offset >= ExprFragmentSizeInBits)
5719             break;
5720           // The register is partially outside the expression fragment, only
5721           // the low bits within the fragment are relevant for debug info.
5722           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5723             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5724           }
5725         }
5726 
5727         auto FragmentExpr = DIExpression::createFragmentExpression(
5728             Expr, Offset, RegFragmentSizeInBits);
5729         Offset += RegAndSize.second;
5730         // If a valid fragment expression cannot be created, the variable's
5731         // correct value cannot be determined and so it is set as Undef.
5732         if (!FragmentExpr) {
5733           SDDbgValue *SDV = DAG.getConstantDbgValue(
5734               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5735           DAG.AddDbgValue(SDV, false);
5736           continue;
5737         }
5738         MachineInstr *NewMI =
5739             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5740                              Kind != FuncArgumentDbgValueKind::Value);
5741         FuncInfo.ArgDbgValues.push_back(NewMI);
5742       }
5743     };
5744 
5745     // Check if ValueMap has reg number.
5746     DenseMap<const Value *, Register>::const_iterator
5747       VMI = FuncInfo.ValueMap.find(V);
5748     if (VMI != FuncInfo.ValueMap.end()) {
5749       const auto &TLI = DAG.getTargetLoweringInfo();
5750       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5751                        V->getType(), std::nullopt);
5752       if (RFV.occupiesMultipleRegs()) {
5753         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5754         return true;
5755       }
5756 
5757       Op = MachineOperand::CreateReg(VMI->second, false);
5758       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5759     } else if (ArgRegsAndSizes.size() > 1) {
5760       // This was split due to the calling convention, and no virtual register
5761       // mapping exists for the value.
5762       splitMultiRegDbgValue(ArgRegsAndSizes);
5763       return true;
5764     }
5765   }
5766 
5767   if (!Op)
5768     return false;
5769 
5770   assert(Variable->isValidLocationForIntrinsic(DL) &&
5771          "Expected inlined-at fields to agree");
5772   MachineInstr *NewMI = nullptr;
5773 
5774   if (Op->isReg())
5775     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5776   else
5777     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5778                     Variable, Expr);
5779 
5780   // Otherwise, use ArgDbgValues.
5781   FuncInfo.ArgDbgValues.push_back(NewMI);
5782   return true;
5783 }
5784 
5785 /// Return the appropriate SDDbgValue based on N.
5786 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5787                                              DILocalVariable *Variable,
5788                                              DIExpression *Expr,
5789                                              const DebugLoc &dl,
5790                                              unsigned DbgSDNodeOrder) {
5791   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5792     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5793     // stack slot locations.
5794     //
5795     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5796     // debug values here after optimization:
5797     //
5798     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5799     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5800     //
5801     // Both describe the direct values of their associated variables.
5802     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5803                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5804   }
5805   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5806                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5807 }
5808 
5809 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5810   switch (Intrinsic) {
5811   case Intrinsic::smul_fix:
5812     return ISD::SMULFIX;
5813   case Intrinsic::umul_fix:
5814     return ISD::UMULFIX;
5815   case Intrinsic::smul_fix_sat:
5816     return ISD::SMULFIXSAT;
5817   case Intrinsic::umul_fix_sat:
5818     return ISD::UMULFIXSAT;
5819   case Intrinsic::sdiv_fix:
5820     return ISD::SDIVFIX;
5821   case Intrinsic::udiv_fix:
5822     return ISD::UDIVFIX;
5823   case Intrinsic::sdiv_fix_sat:
5824     return ISD::SDIVFIXSAT;
5825   case Intrinsic::udiv_fix_sat:
5826     return ISD::UDIVFIXSAT;
5827   default:
5828     llvm_unreachable("Unhandled fixed point intrinsic");
5829   }
5830 }
5831 
5832 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5833                                            const char *FunctionName) {
5834   assert(FunctionName && "FunctionName must not be nullptr");
5835   SDValue Callee = DAG.getExternalSymbol(
5836       FunctionName,
5837       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5838   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5839 }
5840 
5841 /// Given a @llvm.call.preallocated.setup, return the corresponding
5842 /// preallocated call.
5843 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5844   assert(cast<CallBase>(PreallocatedSetup)
5845                  ->getCalledFunction()
5846                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5847          "expected call_preallocated_setup Value");
5848   for (const auto *U : PreallocatedSetup->users()) {
5849     auto *UseCall = cast<CallBase>(U);
5850     const Function *Fn = UseCall->getCalledFunction();
5851     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5852       return UseCall;
5853     }
5854   }
5855   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5856 }
5857 
5858 /// Lower the call to the specified intrinsic function.
5859 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5860                                              unsigned Intrinsic) {
5861   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5862   SDLoc sdl = getCurSDLoc();
5863   DebugLoc dl = getCurDebugLoc();
5864   SDValue Res;
5865 
5866   SDNodeFlags Flags;
5867   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5868     Flags.copyFMF(*FPOp);
5869 
5870   switch (Intrinsic) {
5871   default:
5872     // By default, turn this into a target intrinsic node.
5873     visitTargetIntrinsic(I, Intrinsic);
5874     return;
5875   case Intrinsic::vscale: {
5876     match(&I, m_VScale(DAG.getDataLayout()));
5877     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5878     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5879     return;
5880   }
5881   case Intrinsic::vastart:  visitVAStart(I); return;
5882   case Intrinsic::vaend:    visitVAEnd(I); return;
5883   case Intrinsic::vacopy:   visitVACopy(I); return;
5884   case Intrinsic::returnaddress:
5885     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5886                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5887                              getValue(I.getArgOperand(0))));
5888     return;
5889   case Intrinsic::addressofreturnaddress:
5890     setValue(&I,
5891              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5892                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5893     return;
5894   case Intrinsic::sponentry:
5895     setValue(&I,
5896              DAG.getNode(ISD::SPONENTRY, sdl,
5897                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5898     return;
5899   case Intrinsic::frameaddress:
5900     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5901                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5902                              getValue(I.getArgOperand(0))));
5903     return;
5904   case Intrinsic::read_volatile_register:
5905   case Intrinsic::read_register: {
5906     Value *Reg = I.getArgOperand(0);
5907     SDValue Chain = getRoot();
5908     SDValue RegName =
5909         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5910     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5911     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5912       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5913     setValue(&I, Res);
5914     DAG.setRoot(Res.getValue(1));
5915     return;
5916   }
5917   case Intrinsic::write_register: {
5918     Value *Reg = I.getArgOperand(0);
5919     Value *RegValue = I.getArgOperand(1);
5920     SDValue Chain = getRoot();
5921     SDValue RegName =
5922         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5923     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5924                             RegName, getValue(RegValue)));
5925     return;
5926   }
5927   case Intrinsic::memcpy: {
5928     const auto &MCI = cast<MemCpyInst>(I);
5929     SDValue Op1 = getValue(I.getArgOperand(0));
5930     SDValue Op2 = getValue(I.getArgOperand(1));
5931     SDValue Op3 = getValue(I.getArgOperand(2));
5932     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5933     Align DstAlign = MCI.getDestAlign().valueOrOne();
5934     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5935     Align Alignment = std::min(DstAlign, SrcAlign);
5936     bool isVol = MCI.isVolatile();
5937     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5938     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5939     // node.
5940     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5941     SDValue MC = DAG.getMemcpy(
5942         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5943         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5944         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5945     updateDAGForMaybeTailCall(MC);
5946     return;
5947   }
5948   case Intrinsic::memcpy_inline: {
5949     const auto &MCI = cast<MemCpyInlineInst>(I);
5950     SDValue Dst = getValue(I.getArgOperand(0));
5951     SDValue Src = getValue(I.getArgOperand(1));
5952     SDValue Size = getValue(I.getArgOperand(2));
5953     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5954     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5955     Align DstAlign = MCI.getDestAlign().valueOrOne();
5956     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5957     Align Alignment = std::min(DstAlign, SrcAlign);
5958     bool isVol = MCI.isVolatile();
5959     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5960     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5961     // node.
5962     SDValue MC = DAG.getMemcpy(
5963         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5964         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5965         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5966     updateDAGForMaybeTailCall(MC);
5967     return;
5968   }
5969   case Intrinsic::memset: {
5970     const auto &MSI = cast<MemSetInst>(I);
5971     SDValue Op1 = getValue(I.getArgOperand(0));
5972     SDValue Op2 = getValue(I.getArgOperand(1));
5973     SDValue Op3 = getValue(I.getArgOperand(2));
5974     // @llvm.memset defines 0 and 1 to both mean no alignment.
5975     Align Alignment = MSI.getDestAlign().valueOrOne();
5976     bool isVol = MSI.isVolatile();
5977     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5978     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5979     SDValue MS = DAG.getMemset(
5980         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5981         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5982     updateDAGForMaybeTailCall(MS);
5983     return;
5984   }
5985   case Intrinsic::memset_inline: {
5986     const auto &MSII = cast<MemSetInlineInst>(I);
5987     SDValue Dst = getValue(I.getArgOperand(0));
5988     SDValue Value = getValue(I.getArgOperand(1));
5989     SDValue Size = getValue(I.getArgOperand(2));
5990     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5991     // @llvm.memset defines 0 and 1 to both mean no alignment.
5992     Align DstAlign = MSII.getDestAlign().valueOrOne();
5993     bool isVol = MSII.isVolatile();
5994     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5995     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5996     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5997                                /* AlwaysInline */ true, isTC,
5998                                MachinePointerInfo(I.getArgOperand(0)),
5999                                I.getAAMetadata());
6000     updateDAGForMaybeTailCall(MC);
6001     return;
6002   }
6003   case Intrinsic::memmove: {
6004     const auto &MMI = cast<MemMoveInst>(I);
6005     SDValue Op1 = getValue(I.getArgOperand(0));
6006     SDValue Op2 = getValue(I.getArgOperand(1));
6007     SDValue Op3 = getValue(I.getArgOperand(2));
6008     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6009     Align DstAlign = MMI.getDestAlign().valueOrOne();
6010     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6011     Align Alignment = std::min(DstAlign, SrcAlign);
6012     bool isVol = MMI.isVolatile();
6013     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6014     // FIXME: Support passing different dest/src alignments to the memmove DAG
6015     // node.
6016     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6017     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6018                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6019                                 MachinePointerInfo(I.getArgOperand(1)),
6020                                 I.getAAMetadata(), AA);
6021     updateDAGForMaybeTailCall(MM);
6022     return;
6023   }
6024   case Intrinsic::memcpy_element_unordered_atomic: {
6025     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6026     SDValue Dst = getValue(MI.getRawDest());
6027     SDValue Src = getValue(MI.getRawSource());
6028     SDValue Length = getValue(MI.getLength());
6029 
6030     Type *LengthTy = MI.getLength()->getType();
6031     unsigned ElemSz = MI.getElementSizeInBytes();
6032     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6033     SDValue MC =
6034         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6035                             isTC, MachinePointerInfo(MI.getRawDest()),
6036                             MachinePointerInfo(MI.getRawSource()));
6037     updateDAGForMaybeTailCall(MC);
6038     return;
6039   }
6040   case Intrinsic::memmove_element_unordered_atomic: {
6041     auto &MI = cast<AtomicMemMoveInst>(I);
6042     SDValue Dst = getValue(MI.getRawDest());
6043     SDValue Src = getValue(MI.getRawSource());
6044     SDValue Length = getValue(MI.getLength());
6045 
6046     Type *LengthTy = MI.getLength()->getType();
6047     unsigned ElemSz = MI.getElementSizeInBytes();
6048     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6049     SDValue MC =
6050         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6051                              isTC, MachinePointerInfo(MI.getRawDest()),
6052                              MachinePointerInfo(MI.getRawSource()));
6053     updateDAGForMaybeTailCall(MC);
6054     return;
6055   }
6056   case Intrinsic::memset_element_unordered_atomic: {
6057     auto &MI = cast<AtomicMemSetInst>(I);
6058     SDValue Dst = getValue(MI.getRawDest());
6059     SDValue Val = getValue(MI.getValue());
6060     SDValue Length = getValue(MI.getLength());
6061 
6062     Type *LengthTy = MI.getLength()->getType();
6063     unsigned ElemSz = MI.getElementSizeInBytes();
6064     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6065     SDValue MC =
6066         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6067                             isTC, MachinePointerInfo(MI.getRawDest()));
6068     updateDAGForMaybeTailCall(MC);
6069     return;
6070   }
6071   case Intrinsic::call_preallocated_setup: {
6072     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6073     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6074     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6075                               getRoot(), SrcValue);
6076     setValue(&I, Res);
6077     DAG.setRoot(Res);
6078     return;
6079   }
6080   case Intrinsic::call_preallocated_arg: {
6081     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6082     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6083     SDValue Ops[3];
6084     Ops[0] = getRoot();
6085     Ops[1] = SrcValue;
6086     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6087                                    MVT::i32); // arg index
6088     SDValue Res = DAG.getNode(
6089         ISD::PREALLOCATED_ARG, sdl,
6090         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6091     setValue(&I, Res);
6092     DAG.setRoot(Res.getValue(1));
6093     return;
6094   }
6095   case Intrinsic::dbg_addr:
6096   case Intrinsic::dbg_declare: {
6097     // Debug intrinsics are handled seperately in assignment tracking mode.
6098     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6099       return;
6100     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6101     // they are non-variadic.
6102     const auto &DI = cast<DbgVariableIntrinsic>(I);
6103     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6104     DILocalVariable *Variable = DI.getVariable();
6105     DIExpression *Expression = DI.getExpression();
6106     dropDanglingDebugInfo(Variable, Expression);
6107     assert(Variable && "Missing variable");
6108     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6109                       << "\n");
6110     // Check if address has undef value.
6111     const Value *Address = DI.getVariableLocationOp(0);
6112     if (!Address || isa<UndefValue>(Address) ||
6113         (Address->use_empty() && !isa<Argument>(Address))) {
6114       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6115                         << " (bad/undef/unused-arg address)\n");
6116       return;
6117     }
6118 
6119     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6120 
6121     // Check if this variable can be described by a frame index, typically
6122     // either as a static alloca or a byval parameter.
6123     int FI = std::numeric_limits<int>::max();
6124     if (const auto *AI =
6125             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6126       if (AI->isStaticAlloca()) {
6127         auto I = FuncInfo.StaticAllocaMap.find(AI);
6128         if (I != FuncInfo.StaticAllocaMap.end())
6129           FI = I->second;
6130       }
6131     } else if (const auto *Arg = dyn_cast<Argument>(
6132                    Address->stripInBoundsConstantOffsets())) {
6133       FI = FuncInfo.getArgumentFrameIndex(Arg);
6134     }
6135 
6136     // llvm.dbg.addr is control dependent and always generates indirect
6137     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6138     // the MachineFunction variable table.
6139     if (FI != std::numeric_limits<int>::max()) {
6140       if (Intrinsic == Intrinsic::dbg_addr) {
6141         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6142             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6143             dl, SDNodeOrder);
6144         DAG.AddDbgValue(SDV, isParameter);
6145       } else {
6146         LLVM_DEBUG(dbgs() << "Skipping " << DI
6147                           << " (variable info stashed in MF side table)\n");
6148       }
6149       return;
6150     }
6151 
6152     SDValue &N = NodeMap[Address];
6153     if (!N.getNode() && isa<Argument>(Address))
6154       // Check unused arguments map.
6155       N = UnusedArgNodeMap[Address];
6156     SDDbgValue *SDV;
6157     if (N.getNode()) {
6158       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6159         Address = BCI->getOperand(0);
6160       // Parameters are handled specially.
6161       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6162       if (isParameter && FINode) {
6163         // Byval parameter. We have a frame index at this point.
6164         SDV =
6165             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6166                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6167       } else if (isa<Argument>(Address)) {
6168         // Address is an argument, so try to emit its dbg value using
6169         // virtual register info from the FuncInfo.ValueMap.
6170         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6171                                  FuncArgumentDbgValueKind::Declare, N);
6172         return;
6173       } else {
6174         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6175                               true, dl, SDNodeOrder);
6176       }
6177       DAG.AddDbgValue(SDV, isParameter);
6178     } else {
6179       // If Address is an argument then try to emit its dbg value using
6180       // virtual register info from the FuncInfo.ValueMap.
6181       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6182                                     FuncArgumentDbgValueKind::Declare, N)) {
6183         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6184                           << " (could not emit func-arg dbg_value)\n");
6185       }
6186     }
6187     return;
6188   }
6189   case Intrinsic::dbg_label: {
6190     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6191     DILabel *Label = DI.getLabel();
6192     assert(Label && "Missing label");
6193 
6194     SDDbgLabel *SDV;
6195     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6196     DAG.AddDbgLabel(SDV);
6197     return;
6198   }
6199   case Intrinsic::dbg_assign: {
6200     // Debug intrinsics are handled seperately in assignment tracking mode.
6201     assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) &&
6202            "expected assignment tracking to be enabled");
6203     return;
6204   }
6205   case Intrinsic::dbg_value: {
6206     // Debug intrinsics are handled seperately in assignment tracking mode.
6207     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6208       return;
6209     const DbgValueInst &DI = cast<DbgValueInst>(I);
6210     assert(DI.getVariable() && "Missing variable");
6211 
6212     DILocalVariable *Variable = DI.getVariable();
6213     DIExpression *Expression = DI.getExpression();
6214     dropDanglingDebugInfo(Variable, Expression);
6215     SmallVector<Value *, 4> Values(DI.getValues());
6216     if (Values.empty())
6217       return;
6218 
6219     if (llvm::is_contained(Values, nullptr))
6220       return;
6221 
6222     bool IsVariadic = DI.hasArgList();
6223     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6224                           SDNodeOrder, IsVariadic))
6225       addDanglingDebugInfo(&DI, SDNodeOrder);
6226     return;
6227   }
6228 
6229   case Intrinsic::eh_typeid_for: {
6230     // Find the type id for the given typeinfo.
6231     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6232     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6233     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6234     setValue(&I, Res);
6235     return;
6236   }
6237 
6238   case Intrinsic::eh_return_i32:
6239   case Intrinsic::eh_return_i64:
6240     DAG.getMachineFunction().setCallsEHReturn(true);
6241     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6242                             MVT::Other,
6243                             getControlRoot(),
6244                             getValue(I.getArgOperand(0)),
6245                             getValue(I.getArgOperand(1))));
6246     return;
6247   case Intrinsic::eh_unwind_init:
6248     DAG.getMachineFunction().setCallsUnwindInit(true);
6249     return;
6250   case Intrinsic::eh_dwarf_cfa:
6251     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6252                              TLI.getPointerTy(DAG.getDataLayout()),
6253                              getValue(I.getArgOperand(0))));
6254     return;
6255   case Intrinsic::eh_sjlj_callsite: {
6256     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6257     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6258     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6259 
6260     MMI.setCurrentCallSite(CI->getZExtValue());
6261     return;
6262   }
6263   case Intrinsic::eh_sjlj_functioncontext: {
6264     // Get and store the index of the function context.
6265     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6266     AllocaInst *FnCtx =
6267       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6268     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6269     MFI.setFunctionContextIndex(FI);
6270     return;
6271   }
6272   case Intrinsic::eh_sjlj_setjmp: {
6273     SDValue Ops[2];
6274     Ops[0] = getRoot();
6275     Ops[1] = getValue(I.getArgOperand(0));
6276     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6277                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6278     setValue(&I, Op.getValue(0));
6279     DAG.setRoot(Op.getValue(1));
6280     return;
6281   }
6282   case Intrinsic::eh_sjlj_longjmp:
6283     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6284                             getRoot(), getValue(I.getArgOperand(0))));
6285     return;
6286   case Intrinsic::eh_sjlj_setup_dispatch:
6287     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6288                             getRoot()));
6289     return;
6290   case Intrinsic::masked_gather:
6291     visitMaskedGather(I);
6292     return;
6293   case Intrinsic::masked_load:
6294     visitMaskedLoad(I);
6295     return;
6296   case Intrinsic::masked_scatter:
6297     visitMaskedScatter(I);
6298     return;
6299   case Intrinsic::masked_store:
6300     visitMaskedStore(I);
6301     return;
6302   case Intrinsic::masked_expandload:
6303     visitMaskedLoad(I, true /* IsExpanding */);
6304     return;
6305   case Intrinsic::masked_compressstore:
6306     visitMaskedStore(I, true /* IsCompressing */);
6307     return;
6308   case Intrinsic::powi:
6309     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6310                             getValue(I.getArgOperand(1)), DAG));
6311     return;
6312   case Intrinsic::log:
6313     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6314     return;
6315   case Intrinsic::log2:
6316     setValue(&I,
6317              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6318     return;
6319   case Intrinsic::log10:
6320     setValue(&I,
6321              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6322     return;
6323   case Intrinsic::exp:
6324     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6325     return;
6326   case Intrinsic::exp2:
6327     setValue(&I,
6328              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6329     return;
6330   case Intrinsic::pow:
6331     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6332                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6333     return;
6334   case Intrinsic::sqrt:
6335   case Intrinsic::fabs:
6336   case Intrinsic::sin:
6337   case Intrinsic::cos:
6338   case Intrinsic::floor:
6339   case Intrinsic::ceil:
6340   case Intrinsic::trunc:
6341   case Intrinsic::rint:
6342   case Intrinsic::nearbyint:
6343   case Intrinsic::round:
6344   case Intrinsic::roundeven:
6345   case Intrinsic::canonicalize: {
6346     unsigned Opcode;
6347     switch (Intrinsic) {
6348     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6349     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6350     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6351     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6352     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6353     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6354     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6355     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6356     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6357     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6358     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6359     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6360     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6361     }
6362 
6363     setValue(&I, DAG.getNode(Opcode, sdl,
6364                              getValue(I.getArgOperand(0)).getValueType(),
6365                              getValue(I.getArgOperand(0)), Flags));
6366     return;
6367   }
6368   case Intrinsic::lround:
6369   case Intrinsic::llround:
6370   case Intrinsic::lrint:
6371   case Intrinsic::llrint: {
6372     unsigned Opcode;
6373     switch (Intrinsic) {
6374     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6375     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6376     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6377     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6378     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6379     }
6380 
6381     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6382     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6383                              getValue(I.getArgOperand(0))));
6384     return;
6385   }
6386   case Intrinsic::minnum:
6387     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6388                              getValue(I.getArgOperand(0)).getValueType(),
6389                              getValue(I.getArgOperand(0)),
6390                              getValue(I.getArgOperand(1)), Flags));
6391     return;
6392   case Intrinsic::maxnum:
6393     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6394                              getValue(I.getArgOperand(0)).getValueType(),
6395                              getValue(I.getArgOperand(0)),
6396                              getValue(I.getArgOperand(1)), Flags));
6397     return;
6398   case Intrinsic::minimum:
6399     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6400                              getValue(I.getArgOperand(0)).getValueType(),
6401                              getValue(I.getArgOperand(0)),
6402                              getValue(I.getArgOperand(1)), Flags));
6403     return;
6404   case Intrinsic::maximum:
6405     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6406                              getValue(I.getArgOperand(0)).getValueType(),
6407                              getValue(I.getArgOperand(0)),
6408                              getValue(I.getArgOperand(1)), Flags));
6409     return;
6410   case Intrinsic::copysign:
6411     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6412                              getValue(I.getArgOperand(0)).getValueType(),
6413                              getValue(I.getArgOperand(0)),
6414                              getValue(I.getArgOperand(1)), Flags));
6415     return;
6416   case Intrinsic::arithmetic_fence: {
6417     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6418                              getValue(I.getArgOperand(0)).getValueType(),
6419                              getValue(I.getArgOperand(0)), Flags));
6420     return;
6421   }
6422   case Intrinsic::fma:
6423     setValue(&I, DAG.getNode(
6424                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6425                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6426                      getValue(I.getArgOperand(2)), Flags));
6427     return;
6428 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6429   case Intrinsic::INTRINSIC:
6430 #include "llvm/IR/ConstrainedOps.def"
6431     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6432     return;
6433 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6434 #include "llvm/IR/VPIntrinsics.def"
6435     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6436     return;
6437   case Intrinsic::fptrunc_round: {
6438     // Get the last argument, the metadata and convert it to an integer in the
6439     // call
6440     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6441     std::optional<RoundingMode> RoundMode =
6442         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6443 
6444     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6445 
6446     // Propagate fast-math-flags from IR to node(s).
6447     SDNodeFlags Flags;
6448     Flags.copyFMF(*cast<FPMathOperator>(&I));
6449     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6450 
6451     SDValue Result;
6452     Result = DAG.getNode(
6453         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6454         DAG.getTargetConstant((int)*RoundMode, sdl,
6455                               TLI.getPointerTy(DAG.getDataLayout())));
6456     setValue(&I, Result);
6457 
6458     return;
6459   }
6460   case Intrinsic::fmuladd: {
6461     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6462     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6463         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6464       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6465                                getValue(I.getArgOperand(0)).getValueType(),
6466                                getValue(I.getArgOperand(0)),
6467                                getValue(I.getArgOperand(1)),
6468                                getValue(I.getArgOperand(2)), Flags));
6469     } else {
6470       // TODO: Intrinsic calls should have fast-math-flags.
6471       SDValue Mul = DAG.getNode(
6472           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6473           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6474       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6475                                 getValue(I.getArgOperand(0)).getValueType(),
6476                                 Mul, getValue(I.getArgOperand(2)), Flags);
6477       setValue(&I, Add);
6478     }
6479     return;
6480   }
6481   case Intrinsic::convert_to_fp16:
6482     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6483                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6484                                          getValue(I.getArgOperand(0)),
6485                                          DAG.getTargetConstant(0, sdl,
6486                                                                MVT::i32))));
6487     return;
6488   case Intrinsic::convert_from_fp16:
6489     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6490                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6491                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6492                                          getValue(I.getArgOperand(0)))));
6493     return;
6494   case Intrinsic::fptosi_sat: {
6495     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6496     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6497                              getValue(I.getArgOperand(0)),
6498                              DAG.getValueType(VT.getScalarType())));
6499     return;
6500   }
6501   case Intrinsic::fptoui_sat: {
6502     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6503     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6504                              getValue(I.getArgOperand(0)),
6505                              DAG.getValueType(VT.getScalarType())));
6506     return;
6507   }
6508   case Intrinsic::set_rounding:
6509     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6510                       {getRoot(), getValue(I.getArgOperand(0))});
6511     setValue(&I, Res);
6512     DAG.setRoot(Res.getValue(0));
6513     return;
6514   case Intrinsic::is_fpclass: {
6515     const DataLayout DLayout = DAG.getDataLayout();
6516     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6517     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6518     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6519     MachineFunction &MF = DAG.getMachineFunction();
6520     const Function &F = MF.getFunction();
6521     SDValue Op = getValue(I.getArgOperand(0));
6522     SDNodeFlags Flags;
6523     Flags.setNoFPExcept(
6524         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6525     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6526     // expansion can use illegal types. Making expansion early allows
6527     // legalizing these types prior to selection.
6528     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6529       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6530       setValue(&I, Result);
6531       return;
6532     }
6533 
6534     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6535     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6536     setValue(&I, V);
6537     return;
6538   }
6539   case Intrinsic::pcmarker: {
6540     SDValue Tmp = getValue(I.getArgOperand(0));
6541     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6542     return;
6543   }
6544   case Intrinsic::readcyclecounter: {
6545     SDValue Op = getRoot();
6546     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6547                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6548     setValue(&I, Res);
6549     DAG.setRoot(Res.getValue(1));
6550     return;
6551   }
6552   case Intrinsic::bitreverse:
6553     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6554                              getValue(I.getArgOperand(0)).getValueType(),
6555                              getValue(I.getArgOperand(0))));
6556     return;
6557   case Intrinsic::bswap:
6558     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6559                              getValue(I.getArgOperand(0)).getValueType(),
6560                              getValue(I.getArgOperand(0))));
6561     return;
6562   case Intrinsic::cttz: {
6563     SDValue Arg = getValue(I.getArgOperand(0));
6564     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6565     EVT Ty = Arg.getValueType();
6566     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6567                              sdl, Ty, Arg));
6568     return;
6569   }
6570   case Intrinsic::ctlz: {
6571     SDValue Arg = getValue(I.getArgOperand(0));
6572     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6573     EVT Ty = Arg.getValueType();
6574     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6575                              sdl, Ty, Arg));
6576     return;
6577   }
6578   case Intrinsic::ctpop: {
6579     SDValue Arg = getValue(I.getArgOperand(0));
6580     EVT Ty = Arg.getValueType();
6581     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6582     return;
6583   }
6584   case Intrinsic::fshl:
6585   case Intrinsic::fshr: {
6586     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6587     SDValue X = getValue(I.getArgOperand(0));
6588     SDValue Y = getValue(I.getArgOperand(1));
6589     SDValue Z = getValue(I.getArgOperand(2));
6590     EVT VT = X.getValueType();
6591 
6592     if (X == Y) {
6593       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6594       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6595     } else {
6596       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6597       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6598     }
6599     return;
6600   }
6601   case Intrinsic::sadd_sat: {
6602     SDValue Op1 = getValue(I.getArgOperand(0));
6603     SDValue Op2 = getValue(I.getArgOperand(1));
6604     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6605     return;
6606   }
6607   case Intrinsic::uadd_sat: {
6608     SDValue Op1 = getValue(I.getArgOperand(0));
6609     SDValue Op2 = getValue(I.getArgOperand(1));
6610     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6611     return;
6612   }
6613   case Intrinsic::ssub_sat: {
6614     SDValue Op1 = getValue(I.getArgOperand(0));
6615     SDValue Op2 = getValue(I.getArgOperand(1));
6616     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6617     return;
6618   }
6619   case Intrinsic::usub_sat: {
6620     SDValue Op1 = getValue(I.getArgOperand(0));
6621     SDValue Op2 = getValue(I.getArgOperand(1));
6622     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6623     return;
6624   }
6625   case Intrinsic::sshl_sat: {
6626     SDValue Op1 = getValue(I.getArgOperand(0));
6627     SDValue Op2 = getValue(I.getArgOperand(1));
6628     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6629     return;
6630   }
6631   case Intrinsic::ushl_sat: {
6632     SDValue Op1 = getValue(I.getArgOperand(0));
6633     SDValue Op2 = getValue(I.getArgOperand(1));
6634     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6635     return;
6636   }
6637   case Intrinsic::smul_fix:
6638   case Intrinsic::umul_fix:
6639   case Intrinsic::smul_fix_sat:
6640   case Intrinsic::umul_fix_sat: {
6641     SDValue Op1 = getValue(I.getArgOperand(0));
6642     SDValue Op2 = getValue(I.getArgOperand(1));
6643     SDValue Op3 = getValue(I.getArgOperand(2));
6644     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6645                              Op1.getValueType(), Op1, Op2, Op3));
6646     return;
6647   }
6648   case Intrinsic::sdiv_fix:
6649   case Intrinsic::udiv_fix:
6650   case Intrinsic::sdiv_fix_sat:
6651   case Intrinsic::udiv_fix_sat: {
6652     SDValue Op1 = getValue(I.getArgOperand(0));
6653     SDValue Op2 = getValue(I.getArgOperand(1));
6654     SDValue Op3 = getValue(I.getArgOperand(2));
6655     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6656                               Op1, Op2, Op3, DAG, TLI));
6657     return;
6658   }
6659   case Intrinsic::smax: {
6660     SDValue Op1 = getValue(I.getArgOperand(0));
6661     SDValue Op2 = getValue(I.getArgOperand(1));
6662     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6663     return;
6664   }
6665   case Intrinsic::smin: {
6666     SDValue Op1 = getValue(I.getArgOperand(0));
6667     SDValue Op2 = getValue(I.getArgOperand(1));
6668     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6669     return;
6670   }
6671   case Intrinsic::umax: {
6672     SDValue Op1 = getValue(I.getArgOperand(0));
6673     SDValue Op2 = getValue(I.getArgOperand(1));
6674     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6675     return;
6676   }
6677   case Intrinsic::umin: {
6678     SDValue Op1 = getValue(I.getArgOperand(0));
6679     SDValue Op2 = getValue(I.getArgOperand(1));
6680     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6681     return;
6682   }
6683   case Intrinsic::abs: {
6684     // TODO: Preserve "int min is poison" arg in SDAG?
6685     SDValue Op1 = getValue(I.getArgOperand(0));
6686     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6687     return;
6688   }
6689   case Intrinsic::stacksave: {
6690     SDValue Op = getRoot();
6691     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6692     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6693     setValue(&I, Res);
6694     DAG.setRoot(Res.getValue(1));
6695     return;
6696   }
6697   case Intrinsic::stackrestore:
6698     Res = getValue(I.getArgOperand(0));
6699     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6700     return;
6701   case Intrinsic::get_dynamic_area_offset: {
6702     SDValue Op = getRoot();
6703     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6704     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6705     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6706     // target.
6707     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6708       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6709                          " intrinsic!");
6710     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6711                       Op);
6712     DAG.setRoot(Op);
6713     setValue(&I, Res);
6714     return;
6715   }
6716   case Intrinsic::stackguard: {
6717     MachineFunction &MF = DAG.getMachineFunction();
6718     const Module &M = *MF.getFunction().getParent();
6719     SDValue Chain = getRoot();
6720     if (TLI.useLoadStackGuardNode()) {
6721       Res = getLoadStackGuard(DAG, sdl, Chain);
6722     } else {
6723       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6724       const Value *Global = TLI.getSDagStackGuard(M);
6725       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6726       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6727                         MachinePointerInfo(Global, 0), Align,
6728                         MachineMemOperand::MOVolatile);
6729     }
6730     if (TLI.useStackGuardXorFP())
6731       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6732     DAG.setRoot(Chain);
6733     setValue(&I, Res);
6734     return;
6735   }
6736   case Intrinsic::stackprotector: {
6737     // Emit code into the DAG to store the stack guard onto the stack.
6738     MachineFunction &MF = DAG.getMachineFunction();
6739     MachineFrameInfo &MFI = MF.getFrameInfo();
6740     SDValue Src, Chain = getRoot();
6741 
6742     if (TLI.useLoadStackGuardNode())
6743       Src = getLoadStackGuard(DAG, sdl, Chain);
6744     else
6745       Src = getValue(I.getArgOperand(0));   // The guard's value.
6746 
6747     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6748 
6749     int FI = FuncInfo.StaticAllocaMap[Slot];
6750     MFI.setStackProtectorIndex(FI);
6751     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6752 
6753     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6754 
6755     // Store the stack protector onto the stack.
6756     Res = DAG.getStore(
6757         Chain, sdl, Src, FIN,
6758         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6759         MaybeAlign(), MachineMemOperand::MOVolatile);
6760     setValue(&I, Res);
6761     DAG.setRoot(Res);
6762     return;
6763   }
6764   case Intrinsic::objectsize:
6765     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6766 
6767   case Intrinsic::is_constant:
6768     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6769 
6770   case Intrinsic::annotation:
6771   case Intrinsic::ptr_annotation:
6772   case Intrinsic::launder_invariant_group:
6773   case Intrinsic::strip_invariant_group:
6774     // Drop the intrinsic, but forward the value
6775     setValue(&I, getValue(I.getOperand(0)));
6776     return;
6777 
6778   case Intrinsic::assume:
6779   case Intrinsic::experimental_noalias_scope_decl:
6780   case Intrinsic::var_annotation:
6781   case Intrinsic::sideeffect:
6782     // Discard annotate attributes, noalias scope declarations, assumptions, and
6783     // artificial side-effects.
6784     return;
6785 
6786   case Intrinsic::codeview_annotation: {
6787     // Emit a label associated with this metadata.
6788     MachineFunction &MF = DAG.getMachineFunction();
6789     MCSymbol *Label =
6790         MF.getMMI().getContext().createTempSymbol("annotation", true);
6791     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6792     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6793     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6794     DAG.setRoot(Res);
6795     return;
6796   }
6797 
6798   case Intrinsic::init_trampoline: {
6799     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6800 
6801     SDValue Ops[6];
6802     Ops[0] = getRoot();
6803     Ops[1] = getValue(I.getArgOperand(0));
6804     Ops[2] = getValue(I.getArgOperand(1));
6805     Ops[3] = getValue(I.getArgOperand(2));
6806     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6807     Ops[5] = DAG.getSrcValue(F);
6808 
6809     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6810 
6811     DAG.setRoot(Res);
6812     return;
6813   }
6814   case Intrinsic::adjust_trampoline:
6815     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6816                              TLI.getPointerTy(DAG.getDataLayout()),
6817                              getValue(I.getArgOperand(0))));
6818     return;
6819   case Intrinsic::gcroot: {
6820     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6821            "only valid in functions with gc specified, enforced by Verifier");
6822     assert(GFI && "implied by previous");
6823     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6824     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6825 
6826     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6827     GFI->addStackRoot(FI->getIndex(), TypeMap);
6828     return;
6829   }
6830   case Intrinsic::gcread:
6831   case Intrinsic::gcwrite:
6832     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6833   case Intrinsic::get_rounding:
6834     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6835     setValue(&I, Res);
6836     DAG.setRoot(Res.getValue(1));
6837     return;
6838 
6839   case Intrinsic::expect:
6840     // Just replace __builtin_expect(exp, c) with EXP.
6841     setValue(&I, getValue(I.getArgOperand(0)));
6842     return;
6843 
6844   case Intrinsic::ubsantrap:
6845   case Intrinsic::debugtrap:
6846   case Intrinsic::trap: {
6847     StringRef TrapFuncName =
6848         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6849     if (TrapFuncName.empty()) {
6850       switch (Intrinsic) {
6851       case Intrinsic::trap:
6852         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6853         break;
6854       case Intrinsic::debugtrap:
6855         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6856         break;
6857       case Intrinsic::ubsantrap:
6858         DAG.setRoot(DAG.getNode(
6859             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6860             DAG.getTargetConstant(
6861                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6862                 MVT::i32)));
6863         break;
6864       default: llvm_unreachable("unknown trap intrinsic");
6865       }
6866       return;
6867     }
6868     TargetLowering::ArgListTy Args;
6869     if (Intrinsic == Intrinsic::ubsantrap) {
6870       Args.push_back(TargetLoweringBase::ArgListEntry());
6871       Args[0].Val = I.getArgOperand(0);
6872       Args[0].Node = getValue(Args[0].Val);
6873       Args[0].Ty = Args[0].Val->getType();
6874     }
6875 
6876     TargetLowering::CallLoweringInfo CLI(DAG);
6877     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6878         CallingConv::C, I.getType(),
6879         DAG.getExternalSymbol(TrapFuncName.data(),
6880                               TLI.getPointerTy(DAG.getDataLayout())),
6881         std::move(Args));
6882 
6883     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6884     DAG.setRoot(Result.second);
6885     return;
6886   }
6887 
6888   case Intrinsic::uadd_with_overflow:
6889   case Intrinsic::sadd_with_overflow:
6890   case Intrinsic::usub_with_overflow:
6891   case Intrinsic::ssub_with_overflow:
6892   case Intrinsic::umul_with_overflow:
6893   case Intrinsic::smul_with_overflow: {
6894     ISD::NodeType Op;
6895     switch (Intrinsic) {
6896     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6897     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6898     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6899     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6900     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6901     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6902     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6903     }
6904     SDValue Op1 = getValue(I.getArgOperand(0));
6905     SDValue Op2 = getValue(I.getArgOperand(1));
6906 
6907     EVT ResultVT = Op1.getValueType();
6908     EVT OverflowVT = MVT::i1;
6909     if (ResultVT.isVector())
6910       OverflowVT = EVT::getVectorVT(
6911           *Context, OverflowVT, ResultVT.getVectorElementCount());
6912 
6913     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6914     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6915     return;
6916   }
6917   case Intrinsic::prefetch: {
6918     SDValue Ops[5];
6919     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6920     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6921     Ops[0] = DAG.getRoot();
6922     Ops[1] = getValue(I.getArgOperand(0));
6923     Ops[2] = getValue(I.getArgOperand(1));
6924     Ops[3] = getValue(I.getArgOperand(2));
6925     Ops[4] = getValue(I.getArgOperand(3));
6926     SDValue Result = DAG.getMemIntrinsicNode(
6927         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6928         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6929         /* align */ std::nullopt, Flags);
6930 
6931     // Chain the prefetch in parallell with any pending loads, to stay out of
6932     // the way of later optimizations.
6933     PendingLoads.push_back(Result);
6934     Result = getRoot();
6935     DAG.setRoot(Result);
6936     return;
6937   }
6938   case Intrinsic::lifetime_start:
6939   case Intrinsic::lifetime_end: {
6940     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6941     // Stack coloring is not enabled in O0, discard region information.
6942     if (TM.getOptLevel() == CodeGenOpt::None)
6943       return;
6944 
6945     const int64_t ObjectSize =
6946         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6947     Value *const ObjectPtr = I.getArgOperand(1);
6948     SmallVector<const Value *, 4> Allocas;
6949     getUnderlyingObjects(ObjectPtr, Allocas);
6950 
6951     for (const Value *Alloca : Allocas) {
6952       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6953 
6954       // Could not find an Alloca.
6955       if (!LifetimeObject)
6956         continue;
6957 
6958       // First check that the Alloca is static, otherwise it won't have a
6959       // valid frame index.
6960       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6961       if (SI == FuncInfo.StaticAllocaMap.end())
6962         return;
6963 
6964       const int FrameIndex = SI->second;
6965       int64_t Offset;
6966       if (GetPointerBaseWithConstantOffset(
6967               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6968         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6969       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6970                                 Offset);
6971       DAG.setRoot(Res);
6972     }
6973     return;
6974   }
6975   case Intrinsic::pseudoprobe: {
6976     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6977     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6978     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6979     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6980     DAG.setRoot(Res);
6981     return;
6982   }
6983   case Intrinsic::invariant_start:
6984     // Discard region information.
6985     setValue(&I,
6986              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6987     return;
6988   case Intrinsic::invariant_end:
6989     // Discard region information.
6990     return;
6991   case Intrinsic::clear_cache:
6992     /// FunctionName may be null.
6993     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6994       lowerCallToExternalSymbol(I, FunctionName);
6995     return;
6996   case Intrinsic::donothing:
6997   case Intrinsic::seh_try_begin:
6998   case Intrinsic::seh_scope_begin:
6999   case Intrinsic::seh_try_end:
7000   case Intrinsic::seh_scope_end:
7001     // ignore
7002     return;
7003   case Intrinsic::experimental_stackmap:
7004     visitStackmap(I);
7005     return;
7006   case Intrinsic::experimental_patchpoint_void:
7007   case Intrinsic::experimental_patchpoint_i64:
7008     visitPatchpoint(I);
7009     return;
7010   case Intrinsic::experimental_gc_statepoint:
7011     LowerStatepoint(cast<GCStatepointInst>(I));
7012     return;
7013   case Intrinsic::experimental_gc_result:
7014     visitGCResult(cast<GCResultInst>(I));
7015     return;
7016   case Intrinsic::experimental_gc_relocate:
7017     visitGCRelocate(cast<GCRelocateInst>(I));
7018     return;
7019   case Intrinsic::instrprof_cover:
7020     llvm_unreachable("instrprof failed to lower a cover");
7021   case Intrinsic::instrprof_increment:
7022     llvm_unreachable("instrprof failed to lower an increment");
7023   case Intrinsic::instrprof_value_profile:
7024     llvm_unreachable("instrprof failed to lower a value profiling call");
7025   case Intrinsic::localescape: {
7026     MachineFunction &MF = DAG.getMachineFunction();
7027     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7028 
7029     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7030     // is the same on all targets.
7031     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7032       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7033       if (isa<ConstantPointerNull>(Arg))
7034         continue; // Skip null pointers. They represent a hole in index space.
7035       AllocaInst *Slot = cast<AllocaInst>(Arg);
7036       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7037              "can only escape static allocas");
7038       int FI = FuncInfo.StaticAllocaMap[Slot];
7039       MCSymbol *FrameAllocSym =
7040           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7041               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7042       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7043               TII->get(TargetOpcode::LOCAL_ESCAPE))
7044           .addSym(FrameAllocSym)
7045           .addFrameIndex(FI);
7046     }
7047 
7048     return;
7049   }
7050 
7051   case Intrinsic::localrecover: {
7052     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7053     MachineFunction &MF = DAG.getMachineFunction();
7054 
7055     // Get the symbol that defines the frame offset.
7056     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7057     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7058     unsigned IdxVal =
7059         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7060     MCSymbol *FrameAllocSym =
7061         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7062             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7063 
7064     Value *FP = I.getArgOperand(1);
7065     SDValue FPVal = getValue(FP);
7066     EVT PtrVT = FPVal.getValueType();
7067 
7068     // Create a MCSymbol for the label to avoid any target lowering
7069     // that would make this PC relative.
7070     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7071     SDValue OffsetVal =
7072         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7073 
7074     // Add the offset to the FP.
7075     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7076     setValue(&I, Add);
7077 
7078     return;
7079   }
7080 
7081   case Intrinsic::eh_exceptionpointer:
7082   case Intrinsic::eh_exceptioncode: {
7083     // Get the exception pointer vreg, copy from it, and resize it to fit.
7084     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7085     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7086     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7087     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7088     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7089     if (Intrinsic == Intrinsic::eh_exceptioncode)
7090       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7091     setValue(&I, N);
7092     return;
7093   }
7094   case Intrinsic::xray_customevent: {
7095     // Here we want to make sure that the intrinsic behaves as if it has a
7096     // specific calling convention, and only for x86_64.
7097     // FIXME: Support other platforms later.
7098     const auto &Triple = DAG.getTarget().getTargetTriple();
7099     if (Triple.getArch() != Triple::x86_64)
7100       return;
7101 
7102     SmallVector<SDValue, 8> Ops;
7103 
7104     // We want to say that we always want the arguments in registers.
7105     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7106     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7107     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7108     SDValue Chain = getRoot();
7109     Ops.push_back(LogEntryVal);
7110     Ops.push_back(StrSizeVal);
7111     Ops.push_back(Chain);
7112 
7113     // We need to enforce the calling convention for the callsite, so that
7114     // argument ordering is enforced correctly, and that register allocation can
7115     // see that some registers may be assumed clobbered and have to preserve
7116     // them across calls to the intrinsic.
7117     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7118                                            sdl, NodeTys, Ops);
7119     SDValue patchableNode = SDValue(MN, 0);
7120     DAG.setRoot(patchableNode);
7121     setValue(&I, patchableNode);
7122     return;
7123   }
7124   case Intrinsic::xray_typedevent: {
7125     // Here we want to make sure that the intrinsic behaves as if it has a
7126     // specific calling convention, and only for x86_64.
7127     // FIXME: Support other platforms later.
7128     const auto &Triple = DAG.getTarget().getTargetTriple();
7129     if (Triple.getArch() != Triple::x86_64)
7130       return;
7131 
7132     SmallVector<SDValue, 8> Ops;
7133 
7134     // We want to say that we always want the arguments in registers.
7135     // It's unclear to me how manipulating the selection DAG here forces callers
7136     // to provide arguments in registers instead of on the stack.
7137     SDValue LogTypeId = getValue(I.getArgOperand(0));
7138     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7139     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7140     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7141     SDValue Chain = getRoot();
7142     Ops.push_back(LogTypeId);
7143     Ops.push_back(LogEntryVal);
7144     Ops.push_back(StrSizeVal);
7145     Ops.push_back(Chain);
7146 
7147     // We need to enforce the calling convention for the callsite, so that
7148     // argument ordering is enforced correctly, and that register allocation can
7149     // see that some registers may be assumed clobbered and have to preserve
7150     // them across calls to the intrinsic.
7151     MachineSDNode *MN = DAG.getMachineNode(
7152         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7153     SDValue patchableNode = SDValue(MN, 0);
7154     DAG.setRoot(patchableNode);
7155     setValue(&I, patchableNode);
7156     return;
7157   }
7158   case Intrinsic::experimental_deoptimize:
7159     LowerDeoptimizeCall(&I);
7160     return;
7161   case Intrinsic::experimental_stepvector:
7162     visitStepVector(I);
7163     return;
7164   case Intrinsic::vector_reduce_fadd:
7165   case Intrinsic::vector_reduce_fmul:
7166   case Intrinsic::vector_reduce_add:
7167   case Intrinsic::vector_reduce_mul:
7168   case Intrinsic::vector_reduce_and:
7169   case Intrinsic::vector_reduce_or:
7170   case Intrinsic::vector_reduce_xor:
7171   case Intrinsic::vector_reduce_smax:
7172   case Intrinsic::vector_reduce_smin:
7173   case Intrinsic::vector_reduce_umax:
7174   case Intrinsic::vector_reduce_umin:
7175   case Intrinsic::vector_reduce_fmax:
7176   case Intrinsic::vector_reduce_fmin:
7177     visitVectorReduce(I, Intrinsic);
7178     return;
7179 
7180   case Intrinsic::icall_branch_funnel: {
7181     SmallVector<SDValue, 16> Ops;
7182     Ops.push_back(getValue(I.getArgOperand(0)));
7183 
7184     int64_t Offset;
7185     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7186         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7187     if (!Base)
7188       report_fatal_error(
7189           "llvm.icall.branch.funnel operand must be a GlobalValue");
7190     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7191 
7192     struct BranchFunnelTarget {
7193       int64_t Offset;
7194       SDValue Target;
7195     };
7196     SmallVector<BranchFunnelTarget, 8> Targets;
7197 
7198     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7199       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7200           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7201       if (ElemBase != Base)
7202         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7203                            "to the same GlobalValue");
7204 
7205       SDValue Val = getValue(I.getArgOperand(Op + 1));
7206       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7207       if (!GA)
7208         report_fatal_error(
7209             "llvm.icall.branch.funnel operand must be a GlobalValue");
7210       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7211                                      GA->getGlobal(), sdl, Val.getValueType(),
7212                                      GA->getOffset())});
7213     }
7214     llvm::sort(Targets,
7215                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7216                  return T1.Offset < T2.Offset;
7217                });
7218 
7219     for (auto &T : Targets) {
7220       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7221       Ops.push_back(T.Target);
7222     }
7223 
7224     Ops.push_back(DAG.getRoot()); // Chain
7225     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7226                                  MVT::Other, Ops),
7227               0);
7228     DAG.setRoot(N);
7229     setValue(&I, N);
7230     HasTailCall = true;
7231     return;
7232   }
7233 
7234   case Intrinsic::wasm_landingpad_index:
7235     // Information this intrinsic contained has been transferred to
7236     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7237     // delete it now.
7238     return;
7239 
7240   case Intrinsic::aarch64_settag:
7241   case Intrinsic::aarch64_settag_zero: {
7242     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7243     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7244     SDValue Val = TSI.EmitTargetCodeForSetTag(
7245         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7246         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7247         ZeroMemory);
7248     DAG.setRoot(Val);
7249     setValue(&I, Val);
7250     return;
7251   }
7252   case Intrinsic::ptrmask: {
7253     SDValue Ptr = getValue(I.getOperand(0));
7254     SDValue Const = getValue(I.getOperand(1));
7255 
7256     EVT PtrVT = Ptr.getValueType();
7257     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7258                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7259     return;
7260   }
7261   case Intrinsic::threadlocal_address: {
7262     setValue(&I, getValue(I.getOperand(0)));
7263     return;
7264   }
7265   case Intrinsic::get_active_lane_mask: {
7266     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7267     SDValue Index = getValue(I.getOperand(0));
7268     EVT ElementVT = Index.getValueType();
7269 
7270     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7271       visitTargetIntrinsic(I, Intrinsic);
7272       return;
7273     }
7274 
7275     SDValue TripCount = getValue(I.getOperand(1));
7276     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7277 
7278     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7279     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7280     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7281     SDValue VectorInduction = DAG.getNode(
7282         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7283     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7284                                  VectorTripCount, ISD::CondCode::SETULT);
7285     setValue(&I, SetCC);
7286     return;
7287   }
7288   case Intrinsic::vector_insert: {
7289     SDValue Vec = getValue(I.getOperand(0));
7290     SDValue SubVec = getValue(I.getOperand(1));
7291     SDValue Index = getValue(I.getOperand(2));
7292 
7293     // The intrinsic's index type is i64, but the SDNode requires an index type
7294     // suitable for the target. Convert the index as required.
7295     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7296     if (Index.getValueType() != VectorIdxTy)
7297       Index = DAG.getVectorIdxConstant(
7298           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7299 
7300     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7301     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7302                              Index));
7303     return;
7304   }
7305   case Intrinsic::vector_extract: {
7306     SDValue Vec = getValue(I.getOperand(0));
7307     SDValue Index = getValue(I.getOperand(1));
7308     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7309 
7310     // The intrinsic's index type is i64, but the SDNode requires an index type
7311     // suitable for the target. Convert the index as required.
7312     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7313     if (Index.getValueType() != VectorIdxTy)
7314       Index = DAG.getVectorIdxConstant(
7315           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7316 
7317     setValue(&I,
7318              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7319     return;
7320   }
7321   case Intrinsic::experimental_vector_reverse:
7322     visitVectorReverse(I);
7323     return;
7324   case Intrinsic::experimental_vector_splice:
7325     visitVectorSplice(I);
7326     return;
7327   }
7328 }
7329 
7330 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7331     const ConstrainedFPIntrinsic &FPI) {
7332   SDLoc sdl = getCurSDLoc();
7333 
7334   // We do not need to serialize constrained FP intrinsics against
7335   // each other or against (nonvolatile) loads, so they can be
7336   // chained like loads.
7337   SDValue Chain = DAG.getRoot();
7338   SmallVector<SDValue, 4> Opers;
7339   Opers.push_back(Chain);
7340   if (FPI.isUnaryOp()) {
7341     Opers.push_back(getValue(FPI.getArgOperand(0)));
7342   } else if (FPI.isTernaryOp()) {
7343     Opers.push_back(getValue(FPI.getArgOperand(0)));
7344     Opers.push_back(getValue(FPI.getArgOperand(1)));
7345     Opers.push_back(getValue(FPI.getArgOperand(2)));
7346   } else {
7347     Opers.push_back(getValue(FPI.getArgOperand(0)));
7348     Opers.push_back(getValue(FPI.getArgOperand(1)));
7349   }
7350 
7351   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7352     assert(Result.getNode()->getNumValues() == 2);
7353 
7354     // Push node to the appropriate list so that future instructions can be
7355     // chained up correctly.
7356     SDValue OutChain = Result.getValue(1);
7357     switch (EB) {
7358     case fp::ExceptionBehavior::ebIgnore:
7359       // The only reason why ebIgnore nodes still need to be chained is that
7360       // they might depend on the current rounding mode, and therefore must
7361       // not be moved across instruction that may change that mode.
7362       [[fallthrough]];
7363     case fp::ExceptionBehavior::ebMayTrap:
7364       // These must not be moved across calls or instructions that may change
7365       // floating-point exception masks.
7366       PendingConstrainedFP.push_back(OutChain);
7367       break;
7368     case fp::ExceptionBehavior::ebStrict:
7369       // These must not be moved across calls or instructions that may change
7370       // floating-point exception masks or read floating-point exception flags.
7371       // In addition, they cannot be optimized out even if unused.
7372       PendingConstrainedFPStrict.push_back(OutChain);
7373       break;
7374     }
7375   };
7376 
7377   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7378   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7379   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7380   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7381 
7382   SDNodeFlags Flags;
7383   if (EB == fp::ExceptionBehavior::ebIgnore)
7384     Flags.setNoFPExcept(true);
7385 
7386   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7387     Flags.copyFMF(*FPOp);
7388 
7389   unsigned Opcode;
7390   switch (FPI.getIntrinsicID()) {
7391   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7392 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7393   case Intrinsic::INTRINSIC:                                                   \
7394     Opcode = ISD::STRICT_##DAGN;                                               \
7395     break;
7396 #include "llvm/IR/ConstrainedOps.def"
7397   case Intrinsic::experimental_constrained_fmuladd: {
7398     Opcode = ISD::STRICT_FMA;
7399     // Break fmuladd into fmul and fadd.
7400     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7401         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7402       Opers.pop_back();
7403       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7404       pushOutChain(Mul, EB);
7405       Opcode = ISD::STRICT_FADD;
7406       Opers.clear();
7407       Opers.push_back(Mul.getValue(1));
7408       Opers.push_back(Mul.getValue(0));
7409       Opers.push_back(getValue(FPI.getArgOperand(2)));
7410     }
7411     break;
7412   }
7413   }
7414 
7415   // A few strict DAG nodes carry additional operands that are not
7416   // set up by the default code above.
7417   switch (Opcode) {
7418   default: break;
7419   case ISD::STRICT_FP_ROUND:
7420     Opers.push_back(
7421         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7422     break;
7423   case ISD::STRICT_FSETCC:
7424   case ISD::STRICT_FSETCCS: {
7425     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7426     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7427     if (TM.Options.NoNaNsFPMath)
7428       Condition = getFCmpCodeWithoutNaN(Condition);
7429     Opers.push_back(DAG.getCondCode(Condition));
7430     break;
7431   }
7432   }
7433 
7434   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7435   pushOutChain(Result, EB);
7436 
7437   SDValue FPResult = Result.getValue(0);
7438   setValue(&FPI, FPResult);
7439 }
7440 
7441 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7442   std::optional<unsigned> ResOPC;
7443   switch (VPIntrin.getIntrinsicID()) {
7444   case Intrinsic::vp_ctlz: {
7445     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7446     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7447     break;
7448   }
7449   case Intrinsic::vp_cttz: {
7450     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7451     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7452     break;
7453   }
7454 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7455   case Intrinsic::VPID:                                                        \
7456     ResOPC = ISD::VPSD;                                                        \
7457     break;
7458 #include "llvm/IR/VPIntrinsics.def"
7459   }
7460 
7461   if (!ResOPC)
7462     llvm_unreachable(
7463         "Inconsistency: no SDNode available for this VPIntrinsic!");
7464 
7465   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7466       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7467     if (VPIntrin.getFastMathFlags().allowReassoc())
7468       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7469                                                 : ISD::VP_REDUCE_FMUL;
7470   }
7471 
7472   return *ResOPC;
7473 }
7474 
7475 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7476                                       SmallVector<SDValue, 7> &OpValues) {
7477   SDLoc DL = getCurSDLoc();
7478   Value *PtrOperand = VPIntrin.getArgOperand(0);
7479   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7480   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7481   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7482   SDValue LD;
7483   bool AddToChain = true;
7484   // Do not serialize variable-length loads of constant memory with
7485   // anything.
7486   if (!Alignment)
7487     Alignment = DAG.getEVTAlign(VT);
7488   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7489   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7490   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7491   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7492       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7493       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7494   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7495                      MMO, false /*IsExpanding */);
7496   if (AddToChain)
7497     PendingLoads.push_back(LD.getValue(1));
7498   setValue(&VPIntrin, LD);
7499 }
7500 
7501 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7502                                         SmallVector<SDValue, 7> &OpValues) {
7503   SDLoc DL = getCurSDLoc();
7504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7505   Value *PtrOperand = VPIntrin.getArgOperand(0);
7506   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7507   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7508   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7509   SDValue LD;
7510   if (!Alignment)
7511     Alignment = DAG.getEVTAlign(VT.getScalarType());
7512   unsigned AS =
7513     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7514   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7515      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7516      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7517   SDValue Base, Index, Scale;
7518   ISD::MemIndexType IndexType;
7519   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7520                                     this, VPIntrin.getParent(),
7521                                     VT.getScalarStoreSize());
7522   if (!UniformBase) {
7523     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7524     Index = getValue(PtrOperand);
7525     IndexType = ISD::SIGNED_SCALED;
7526     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7527   }
7528   EVT IdxVT = Index.getValueType();
7529   EVT EltTy = IdxVT.getVectorElementType();
7530   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7531     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7532     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7533   }
7534   LD = DAG.getGatherVP(
7535       DAG.getVTList(VT, MVT::Other), VT, DL,
7536       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7537       IndexType);
7538   PendingLoads.push_back(LD.getValue(1));
7539   setValue(&VPIntrin, LD);
7540 }
7541 
7542 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7543                                        SmallVector<SDValue, 7> &OpValues) {
7544   SDLoc DL = getCurSDLoc();
7545   Value *PtrOperand = VPIntrin.getArgOperand(1);
7546   EVT VT = OpValues[0].getValueType();
7547   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7548   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7549   SDValue ST;
7550   if (!Alignment)
7551     Alignment = DAG.getEVTAlign(VT);
7552   SDValue Ptr = OpValues[1];
7553   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7554   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7555       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7556       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7557   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7558                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7559                       /* IsTruncating */ false, /*IsCompressing*/ false);
7560   DAG.setRoot(ST);
7561   setValue(&VPIntrin, ST);
7562 }
7563 
7564 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7565                                               SmallVector<SDValue, 7> &OpValues) {
7566   SDLoc DL = getCurSDLoc();
7567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7568   Value *PtrOperand = VPIntrin.getArgOperand(1);
7569   EVT VT = OpValues[0].getValueType();
7570   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7571   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7572   SDValue ST;
7573   if (!Alignment)
7574     Alignment = DAG.getEVTAlign(VT.getScalarType());
7575   unsigned AS =
7576       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7577   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7578       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7579       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7580   SDValue Base, Index, Scale;
7581   ISD::MemIndexType IndexType;
7582   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7583                                     this, VPIntrin.getParent(),
7584                                     VT.getScalarStoreSize());
7585   if (!UniformBase) {
7586     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7587     Index = getValue(PtrOperand);
7588     IndexType = ISD::SIGNED_SCALED;
7589     Scale =
7590       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7591   }
7592   EVT IdxVT = Index.getValueType();
7593   EVT EltTy = IdxVT.getVectorElementType();
7594   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7595     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7596     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7597   }
7598   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7599                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7600                          OpValues[2], OpValues[3]},
7601                         MMO, IndexType);
7602   DAG.setRoot(ST);
7603   setValue(&VPIntrin, ST);
7604 }
7605 
7606 void SelectionDAGBuilder::visitVPStridedLoad(
7607     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7608   SDLoc DL = getCurSDLoc();
7609   Value *PtrOperand = VPIntrin.getArgOperand(0);
7610   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7611   if (!Alignment)
7612     Alignment = DAG.getEVTAlign(VT.getScalarType());
7613   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7614   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7615   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7616   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7617   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7618   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7619       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7620       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7621 
7622   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7623                                     OpValues[2], OpValues[3], MMO,
7624                                     false /*IsExpanding*/);
7625 
7626   if (AddToChain)
7627     PendingLoads.push_back(LD.getValue(1));
7628   setValue(&VPIntrin, LD);
7629 }
7630 
7631 void SelectionDAGBuilder::visitVPStridedStore(
7632     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7633   SDLoc DL = getCurSDLoc();
7634   Value *PtrOperand = VPIntrin.getArgOperand(1);
7635   EVT VT = OpValues[0].getValueType();
7636   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7637   if (!Alignment)
7638     Alignment = DAG.getEVTAlign(VT.getScalarType());
7639   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7640   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7641       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7642       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7643 
7644   SDValue ST = DAG.getStridedStoreVP(
7645       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7646       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7647       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7648       /*IsCompressing*/ false);
7649 
7650   DAG.setRoot(ST);
7651   setValue(&VPIntrin, ST);
7652 }
7653 
7654 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7656   SDLoc DL = getCurSDLoc();
7657 
7658   ISD::CondCode Condition;
7659   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7660   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7661   if (IsFP) {
7662     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7663     // flags, but calls that don't return floating-point types can't be
7664     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7665     Condition = getFCmpCondCode(CondCode);
7666     if (TM.Options.NoNaNsFPMath)
7667       Condition = getFCmpCodeWithoutNaN(Condition);
7668   } else {
7669     Condition = getICmpCondCode(CondCode);
7670   }
7671 
7672   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7673   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7674   // #2 is the condition code
7675   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7676   SDValue EVL = getValue(VPIntrin.getOperand(4));
7677   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7678   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7679          "Unexpected target EVL type");
7680   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7681 
7682   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7683                                                         VPIntrin.getType());
7684   setValue(&VPIntrin,
7685            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7686 }
7687 
7688 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7689     const VPIntrinsic &VPIntrin) {
7690   SDLoc DL = getCurSDLoc();
7691   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7692 
7693   auto IID = VPIntrin.getIntrinsicID();
7694 
7695   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7696     return visitVPCmp(*CmpI);
7697 
7698   SmallVector<EVT, 4> ValueVTs;
7699   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7700   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7701   SDVTList VTs = DAG.getVTList(ValueVTs);
7702 
7703   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7704 
7705   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7706   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7707          "Unexpected target EVL type");
7708 
7709   // Request operands.
7710   SmallVector<SDValue, 7> OpValues;
7711   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7712     auto Op = getValue(VPIntrin.getArgOperand(I));
7713     if (I == EVLParamPos)
7714       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7715     OpValues.push_back(Op);
7716   }
7717 
7718   switch (Opcode) {
7719   default: {
7720     SDNodeFlags SDFlags;
7721     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7722       SDFlags.copyFMF(*FPMO);
7723     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7724     setValue(&VPIntrin, Result);
7725     break;
7726   }
7727   case ISD::VP_LOAD:
7728     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7729     break;
7730   case ISD::VP_GATHER:
7731     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7732     break;
7733   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7734     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7735     break;
7736   case ISD::VP_STORE:
7737     visitVPStore(VPIntrin, OpValues);
7738     break;
7739   case ISD::VP_SCATTER:
7740     visitVPScatter(VPIntrin, OpValues);
7741     break;
7742   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7743     visitVPStridedStore(VPIntrin, OpValues);
7744     break;
7745   case ISD::VP_FMULADD: {
7746     assert(OpValues.size() == 5 && "Unexpected number of operands");
7747     SDNodeFlags SDFlags;
7748     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7749       SDFlags.copyFMF(*FPMO);
7750     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7751         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7752       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7753     } else {
7754       SDValue Mul = DAG.getNode(
7755           ISD::VP_FMUL, DL, VTs,
7756           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7757       SDValue Add =
7758           DAG.getNode(ISD::VP_FADD, DL, VTs,
7759                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7760       setValue(&VPIntrin, Add);
7761     }
7762     break;
7763   }
7764   case ISD::VP_INTTOPTR: {
7765     SDValue N = OpValues[0];
7766     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7767     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7768     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7769                                OpValues[2]);
7770     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7771                              OpValues[2]);
7772     setValue(&VPIntrin, N);
7773     break;
7774   }
7775   case ISD::VP_PTRTOINT: {
7776     SDValue N = OpValues[0];
7777     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7778                                                           VPIntrin.getType());
7779     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7780                                        VPIntrin.getOperand(0)->getType());
7781     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7782                                OpValues[2]);
7783     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7784                              OpValues[2]);
7785     setValue(&VPIntrin, N);
7786     break;
7787   }
7788   case ISD::VP_ABS:
7789   case ISD::VP_CTLZ:
7790   case ISD::VP_CTLZ_ZERO_UNDEF:
7791   case ISD::VP_CTTZ:
7792   case ISD::VP_CTTZ_ZERO_UNDEF: {
7793     // Pop is_zero_poison operand for cp.ctlz/cttz or
7794     // is_int_min_poison operand for vp.abs.
7795     OpValues.pop_back();
7796     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7797     setValue(&VPIntrin, Result);
7798     break;
7799   }
7800   }
7801 }
7802 
7803 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7804                                           const BasicBlock *EHPadBB,
7805                                           MCSymbol *&BeginLabel) {
7806   MachineFunction &MF = DAG.getMachineFunction();
7807   MachineModuleInfo &MMI = MF.getMMI();
7808 
7809   // Insert a label before the invoke call to mark the try range.  This can be
7810   // used to detect deletion of the invoke via the MachineModuleInfo.
7811   BeginLabel = MMI.getContext().createTempSymbol();
7812 
7813   // For SjLj, keep track of which landing pads go with which invokes
7814   // so as to maintain the ordering of pads in the LSDA.
7815   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7816   if (CallSiteIndex) {
7817     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7818     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7819 
7820     // Now that the call site is handled, stop tracking it.
7821     MMI.setCurrentCallSite(0);
7822   }
7823 
7824   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7825 }
7826 
7827 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7828                                         const BasicBlock *EHPadBB,
7829                                         MCSymbol *BeginLabel) {
7830   assert(BeginLabel && "BeginLabel should've been set");
7831 
7832   MachineFunction &MF = DAG.getMachineFunction();
7833   MachineModuleInfo &MMI = MF.getMMI();
7834 
7835   // Insert a label at the end of the invoke call to mark the try range.  This
7836   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7837   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7838   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7839 
7840   // Inform MachineModuleInfo of range.
7841   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7842   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7843   // actually use outlined funclets and their LSDA info style.
7844   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7845     assert(II && "II should've been set");
7846     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7847     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7848   } else if (!isScopedEHPersonality(Pers)) {
7849     assert(EHPadBB);
7850     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7851   }
7852 
7853   return Chain;
7854 }
7855 
7856 std::pair<SDValue, SDValue>
7857 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7858                                     const BasicBlock *EHPadBB) {
7859   MCSymbol *BeginLabel = nullptr;
7860 
7861   if (EHPadBB) {
7862     // Both PendingLoads and PendingExports must be flushed here;
7863     // this call might not return.
7864     (void)getRoot();
7865     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7866     CLI.setChain(getRoot());
7867   }
7868 
7869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7870   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7871 
7872   assert((CLI.IsTailCall || Result.second.getNode()) &&
7873          "Non-null chain expected with non-tail call!");
7874   assert((Result.second.getNode() || !Result.first.getNode()) &&
7875          "Null value expected with tail call!");
7876 
7877   if (!Result.second.getNode()) {
7878     // As a special case, a null chain means that a tail call has been emitted
7879     // and the DAG root is already updated.
7880     HasTailCall = true;
7881 
7882     // Since there's no actual continuation from this block, nothing can be
7883     // relying on us setting vregs for them.
7884     PendingExports.clear();
7885   } else {
7886     DAG.setRoot(Result.second);
7887   }
7888 
7889   if (EHPadBB) {
7890     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7891                            BeginLabel));
7892   }
7893 
7894   return Result;
7895 }
7896 
7897 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7898                                       bool isTailCall,
7899                                       bool isMustTailCall,
7900                                       const BasicBlock *EHPadBB) {
7901   auto &DL = DAG.getDataLayout();
7902   FunctionType *FTy = CB.getFunctionType();
7903   Type *RetTy = CB.getType();
7904 
7905   TargetLowering::ArgListTy Args;
7906   Args.reserve(CB.arg_size());
7907 
7908   const Value *SwiftErrorVal = nullptr;
7909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7910 
7911   if (isTailCall) {
7912     // Avoid emitting tail calls in functions with the disable-tail-calls
7913     // attribute.
7914     auto *Caller = CB.getParent()->getParent();
7915     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7916         "true" && !isMustTailCall)
7917       isTailCall = false;
7918 
7919     // We can't tail call inside a function with a swifterror argument. Lowering
7920     // does not support this yet. It would have to move into the swifterror
7921     // register before the call.
7922     if (TLI.supportSwiftError() &&
7923         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7924       isTailCall = false;
7925   }
7926 
7927   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7928     TargetLowering::ArgListEntry Entry;
7929     const Value *V = *I;
7930 
7931     // Skip empty types
7932     if (V->getType()->isEmptyTy())
7933       continue;
7934 
7935     SDValue ArgNode = getValue(V);
7936     Entry.Node = ArgNode; Entry.Ty = V->getType();
7937 
7938     Entry.setAttributes(&CB, I - CB.arg_begin());
7939 
7940     // Use swifterror virtual register as input to the call.
7941     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7942       SwiftErrorVal = V;
7943       // We find the virtual register for the actual swifterror argument.
7944       // Instead of using the Value, we use the virtual register instead.
7945       Entry.Node =
7946           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7947                           EVT(TLI.getPointerTy(DL)));
7948     }
7949 
7950     Args.push_back(Entry);
7951 
7952     // If we have an explicit sret argument that is an Instruction, (i.e., it
7953     // might point to function-local memory), we can't meaningfully tail-call.
7954     if (Entry.IsSRet && isa<Instruction>(V))
7955       isTailCall = false;
7956   }
7957 
7958   // If call site has a cfguardtarget operand bundle, create and add an
7959   // additional ArgListEntry.
7960   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7961     TargetLowering::ArgListEntry Entry;
7962     Value *V = Bundle->Inputs[0];
7963     SDValue ArgNode = getValue(V);
7964     Entry.Node = ArgNode;
7965     Entry.Ty = V->getType();
7966     Entry.IsCFGuardTarget = true;
7967     Args.push_back(Entry);
7968   }
7969 
7970   // Check if target-independent constraints permit a tail call here.
7971   // Target-dependent constraints are checked within TLI->LowerCallTo.
7972   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7973     isTailCall = false;
7974 
7975   // Disable tail calls if there is an swifterror argument. Targets have not
7976   // been updated to support tail calls.
7977   if (TLI.supportSwiftError() && SwiftErrorVal)
7978     isTailCall = false;
7979 
7980   ConstantInt *CFIType = nullptr;
7981   if (CB.isIndirectCall()) {
7982     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7983       if (!TLI.supportKCFIBundles())
7984         report_fatal_error(
7985             "Target doesn't support calls with kcfi operand bundles.");
7986       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7987       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7988     }
7989   }
7990 
7991   TargetLowering::CallLoweringInfo CLI(DAG);
7992   CLI.setDebugLoc(getCurSDLoc())
7993       .setChain(getRoot())
7994       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7995       .setTailCall(isTailCall)
7996       .setConvergent(CB.isConvergent())
7997       .setIsPreallocated(
7998           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
7999       .setCFIType(CFIType);
8000   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8001 
8002   if (Result.first.getNode()) {
8003     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8004     setValue(&CB, Result.first);
8005   }
8006 
8007   // The last element of CLI.InVals has the SDValue for swifterror return.
8008   // Here we copy it to a virtual register and update SwiftErrorMap for
8009   // book-keeping.
8010   if (SwiftErrorVal && TLI.supportSwiftError()) {
8011     // Get the last element of InVals.
8012     SDValue Src = CLI.InVals.back();
8013     Register VReg =
8014         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8015     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8016     DAG.setRoot(CopyNode);
8017   }
8018 }
8019 
8020 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8021                              SelectionDAGBuilder &Builder) {
8022   // Check to see if this load can be trivially constant folded, e.g. if the
8023   // input is from a string literal.
8024   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8025     // Cast pointer to the type we really want to load.
8026     Type *LoadTy =
8027         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8028     if (LoadVT.isVector())
8029       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8030 
8031     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8032                                          PointerType::getUnqual(LoadTy));
8033 
8034     if (const Constant *LoadCst =
8035             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8036                                          LoadTy, Builder.DAG.getDataLayout()))
8037       return Builder.getValue(LoadCst);
8038   }
8039 
8040   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8041   // still constant memory, the input chain can be the entry node.
8042   SDValue Root;
8043   bool ConstantMemory = false;
8044 
8045   // Do not serialize (non-volatile) loads of constant memory with anything.
8046   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8047     Root = Builder.DAG.getEntryNode();
8048     ConstantMemory = true;
8049   } else {
8050     // Do not serialize non-volatile loads against each other.
8051     Root = Builder.DAG.getRoot();
8052   }
8053 
8054   SDValue Ptr = Builder.getValue(PtrVal);
8055   SDValue LoadVal =
8056       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8057                           MachinePointerInfo(PtrVal), Align(1));
8058 
8059   if (!ConstantMemory)
8060     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8061   return LoadVal;
8062 }
8063 
8064 /// Record the value for an instruction that produces an integer result,
8065 /// converting the type where necessary.
8066 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8067                                                   SDValue Value,
8068                                                   bool IsSigned) {
8069   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8070                                                     I.getType(), true);
8071   if (IsSigned)
8072     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8073   else
8074     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8075   setValue(&I, Value);
8076 }
8077 
8078 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8079 /// true and lower it. Otherwise return false, and it will be lowered like a
8080 /// normal call.
8081 /// The caller already checked that \p I calls the appropriate LibFunc with a
8082 /// correct prototype.
8083 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8084   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8085   const Value *Size = I.getArgOperand(2);
8086   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8087   if (CSize && CSize->getZExtValue() == 0) {
8088     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8089                                                           I.getType(), true);
8090     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8091     return true;
8092   }
8093 
8094   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8095   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8096       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8097       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8098   if (Res.first.getNode()) {
8099     processIntegerCallValue(I, Res.first, true);
8100     PendingLoads.push_back(Res.second);
8101     return true;
8102   }
8103 
8104   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8105   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8106   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8107     return false;
8108 
8109   // If the target has a fast compare for the given size, it will return a
8110   // preferred load type for that size. Require that the load VT is legal and
8111   // that the target supports unaligned loads of that type. Otherwise, return
8112   // INVALID.
8113   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8114     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8115     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8116     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8117       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8118       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8119       // TODO: Check alignment of src and dest ptrs.
8120       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8121       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8122       if (!TLI.isTypeLegal(LVT) ||
8123           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8124           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8125         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8126     }
8127 
8128     return LVT;
8129   };
8130 
8131   // This turns into unaligned loads. We only do this if the target natively
8132   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8133   // we'll only produce a small number of byte loads.
8134   MVT LoadVT;
8135   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8136   switch (NumBitsToCompare) {
8137   default:
8138     return false;
8139   case 16:
8140     LoadVT = MVT::i16;
8141     break;
8142   case 32:
8143     LoadVT = MVT::i32;
8144     break;
8145   case 64:
8146   case 128:
8147   case 256:
8148     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8149     break;
8150   }
8151 
8152   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8153     return false;
8154 
8155   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8156   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8157 
8158   // Bitcast to a wide integer type if the loads are vectors.
8159   if (LoadVT.isVector()) {
8160     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8161     LoadL = DAG.getBitcast(CmpVT, LoadL);
8162     LoadR = DAG.getBitcast(CmpVT, LoadR);
8163   }
8164 
8165   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8166   processIntegerCallValue(I, Cmp, false);
8167   return true;
8168 }
8169 
8170 /// See if we can lower a memchr call into an optimized form. If so, return
8171 /// true and lower it. Otherwise return false, and it will be lowered like a
8172 /// normal call.
8173 /// The caller already checked that \p I calls the appropriate LibFunc with a
8174 /// correct prototype.
8175 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8176   const Value *Src = I.getArgOperand(0);
8177   const Value *Char = I.getArgOperand(1);
8178   const Value *Length = I.getArgOperand(2);
8179 
8180   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8181   std::pair<SDValue, SDValue> Res =
8182     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8183                                 getValue(Src), getValue(Char), getValue(Length),
8184                                 MachinePointerInfo(Src));
8185   if (Res.first.getNode()) {
8186     setValue(&I, Res.first);
8187     PendingLoads.push_back(Res.second);
8188     return true;
8189   }
8190 
8191   return false;
8192 }
8193 
8194 /// See if we can lower a mempcpy call into an optimized form. If so, return
8195 /// true and lower it. Otherwise return false, and it will be lowered like a
8196 /// normal call.
8197 /// The caller already checked that \p I calls the appropriate LibFunc with a
8198 /// correct prototype.
8199 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8200   SDValue Dst = getValue(I.getArgOperand(0));
8201   SDValue Src = getValue(I.getArgOperand(1));
8202   SDValue Size = getValue(I.getArgOperand(2));
8203 
8204   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8205   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8206   // DAG::getMemcpy needs Alignment to be defined.
8207   Align Alignment = std::min(DstAlign, SrcAlign);
8208 
8209   bool isVol = false;
8210   SDLoc sdl = getCurSDLoc();
8211 
8212   // In the mempcpy context we need to pass in a false value for isTailCall
8213   // because the return pointer needs to be adjusted by the size of
8214   // the copied memory.
8215   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8216   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8217                              /*isTailCall=*/false,
8218                              MachinePointerInfo(I.getArgOperand(0)),
8219                              MachinePointerInfo(I.getArgOperand(1)),
8220                              I.getAAMetadata());
8221   assert(MC.getNode() != nullptr &&
8222          "** memcpy should not be lowered as TailCall in mempcpy context **");
8223   DAG.setRoot(MC);
8224 
8225   // Check if Size needs to be truncated or extended.
8226   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8227 
8228   // Adjust return pointer to point just past the last dst byte.
8229   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8230                                     Dst, Size);
8231   setValue(&I, DstPlusSize);
8232   return true;
8233 }
8234 
8235 /// See if we can lower a strcpy call into an optimized form.  If so, return
8236 /// true and lower it, otherwise return false and it will be lowered like a
8237 /// normal call.
8238 /// The caller already checked that \p I calls the appropriate LibFunc with a
8239 /// correct prototype.
8240 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8241   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8242 
8243   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8244   std::pair<SDValue, SDValue> Res =
8245     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8246                                 getValue(Arg0), getValue(Arg1),
8247                                 MachinePointerInfo(Arg0),
8248                                 MachinePointerInfo(Arg1), isStpcpy);
8249   if (Res.first.getNode()) {
8250     setValue(&I, Res.first);
8251     DAG.setRoot(Res.second);
8252     return true;
8253   }
8254 
8255   return false;
8256 }
8257 
8258 /// See if we can lower a strcmp call into an optimized form.  If so, return
8259 /// true and lower it, otherwise return false and it will be lowered like a
8260 /// normal call.
8261 /// The caller already checked that \p I calls the appropriate LibFunc with a
8262 /// correct prototype.
8263 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8264   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8265 
8266   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8267   std::pair<SDValue, SDValue> Res =
8268     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8269                                 getValue(Arg0), getValue(Arg1),
8270                                 MachinePointerInfo(Arg0),
8271                                 MachinePointerInfo(Arg1));
8272   if (Res.first.getNode()) {
8273     processIntegerCallValue(I, Res.first, true);
8274     PendingLoads.push_back(Res.second);
8275     return true;
8276   }
8277 
8278   return false;
8279 }
8280 
8281 /// See if we can lower a strlen call into an optimized form.  If so, return
8282 /// true and lower it, otherwise return false and it will be lowered like a
8283 /// normal call.
8284 /// The caller already checked that \p I calls the appropriate LibFunc with a
8285 /// correct prototype.
8286 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8287   const Value *Arg0 = I.getArgOperand(0);
8288 
8289   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8290   std::pair<SDValue, SDValue> Res =
8291     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8292                                 getValue(Arg0), MachinePointerInfo(Arg0));
8293   if (Res.first.getNode()) {
8294     processIntegerCallValue(I, Res.first, false);
8295     PendingLoads.push_back(Res.second);
8296     return true;
8297   }
8298 
8299   return false;
8300 }
8301 
8302 /// See if we can lower a strnlen call into an optimized form.  If so, return
8303 /// true and lower it, otherwise return false and it will be lowered like a
8304 /// normal call.
8305 /// The caller already checked that \p I calls the appropriate LibFunc with a
8306 /// correct prototype.
8307 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8308   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8309 
8310   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8311   std::pair<SDValue, SDValue> Res =
8312     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8313                                  getValue(Arg0), getValue(Arg1),
8314                                  MachinePointerInfo(Arg0));
8315   if (Res.first.getNode()) {
8316     processIntegerCallValue(I, Res.first, false);
8317     PendingLoads.push_back(Res.second);
8318     return true;
8319   }
8320 
8321   return false;
8322 }
8323 
8324 /// See if we can lower a unary floating-point operation into an SDNode with
8325 /// the specified Opcode.  If so, return true and lower it, otherwise return
8326 /// false and it will be lowered like a normal call.
8327 /// The caller already checked that \p I calls the appropriate LibFunc with a
8328 /// correct prototype.
8329 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8330                                               unsigned Opcode) {
8331   // We already checked this call's prototype; verify it doesn't modify errno.
8332   if (!I.onlyReadsMemory())
8333     return false;
8334 
8335   SDNodeFlags Flags;
8336   Flags.copyFMF(cast<FPMathOperator>(I));
8337 
8338   SDValue Tmp = getValue(I.getArgOperand(0));
8339   setValue(&I,
8340            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8341   return true;
8342 }
8343 
8344 /// See if we can lower a binary floating-point operation into an SDNode with
8345 /// the specified Opcode. If so, return true and lower it. Otherwise return
8346 /// false, and it will be lowered like a normal call.
8347 /// The caller already checked that \p I calls the appropriate LibFunc with a
8348 /// correct prototype.
8349 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8350                                                unsigned Opcode) {
8351   // We already checked this call's prototype; verify it doesn't modify errno.
8352   if (!I.onlyReadsMemory())
8353     return false;
8354 
8355   SDNodeFlags Flags;
8356   Flags.copyFMF(cast<FPMathOperator>(I));
8357 
8358   SDValue Tmp0 = getValue(I.getArgOperand(0));
8359   SDValue Tmp1 = getValue(I.getArgOperand(1));
8360   EVT VT = Tmp0.getValueType();
8361   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8362   return true;
8363 }
8364 
8365 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8366   // Handle inline assembly differently.
8367   if (I.isInlineAsm()) {
8368     visitInlineAsm(I);
8369     return;
8370   }
8371 
8372   diagnoseDontCall(I);
8373 
8374   if (Function *F = I.getCalledFunction()) {
8375     if (F->isDeclaration()) {
8376       // Is this an LLVM intrinsic or a target-specific intrinsic?
8377       unsigned IID = F->getIntrinsicID();
8378       if (!IID)
8379         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8380           IID = II->getIntrinsicID(F);
8381 
8382       if (IID) {
8383         visitIntrinsicCall(I, IID);
8384         return;
8385       }
8386     }
8387 
8388     // Check for well-known libc/libm calls.  If the function is internal, it
8389     // can't be a library call.  Don't do the check if marked as nobuiltin for
8390     // some reason or the call site requires strict floating point semantics.
8391     LibFunc Func;
8392     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8393         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8394         LibInfo->hasOptimizedCodeGen(Func)) {
8395       switch (Func) {
8396       default: break;
8397       case LibFunc_bcmp:
8398         if (visitMemCmpBCmpCall(I))
8399           return;
8400         break;
8401       case LibFunc_copysign:
8402       case LibFunc_copysignf:
8403       case LibFunc_copysignl:
8404         // We already checked this call's prototype; verify it doesn't modify
8405         // errno.
8406         if (I.onlyReadsMemory()) {
8407           SDValue LHS = getValue(I.getArgOperand(0));
8408           SDValue RHS = getValue(I.getArgOperand(1));
8409           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8410                                    LHS.getValueType(), LHS, RHS));
8411           return;
8412         }
8413         break;
8414       case LibFunc_fabs:
8415       case LibFunc_fabsf:
8416       case LibFunc_fabsl:
8417         if (visitUnaryFloatCall(I, ISD::FABS))
8418           return;
8419         break;
8420       case LibFunc_fmin:
8421       case LibFunc_fminf:
8422       case LibFunc_fminl:
8423         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8424           return;
8425         break;
8426       case LibFunc_fmax:
8427       case LibFunc_fmaxf:
8428       case LibFunc_fmaxl:
8429         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8430           return;
8431         break;
8432       case LibFunc_sin:
8433       case LibFunc_sinf:
8434       case LibFunc_sinl:
8435         if (visitUnaryFloatCall(I, ISD::FSIN))
8436           return;
8437         break;
8438       case LibFunc_cos:
8439       case LibFunc_cosf:
8440       case LibFunc_cosl:
8441         if (visitUnaryFloatCall(I, ISD::FCOS))
8442           return;
8443         break;
8444       case LibFunc_sqrt:
8445       case LibFunc_sqrtf:
8446       case LibFunc_sqrtl:
8447       case LibFunc_sqrt_finite:
8448       case LibFunc_sqrtf_finite:
8449       case LibFunc_sqrtl_finite:
8450         if (visitUnaryFloatCall(I, ISD::FSQRT))
8451           return;
8452         break;
8453       case LibFunc_floor:
8454       case LibFunc_floorf:
8455       case LibFunc_floorl:
8456         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8457           return;
8458         break;
8459       case LibFunc_nearbyint:
8460       case LibFunc_nearbyintf:
8461       case LibFunc_nearbyintl:
8462         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8463           return;
8464         break;
8465       case LibFunc_ceil:
8466       case LibFunc_ceilf:
8467       case LibFunc_ceill:
8468         if (visitUnaryFloatCall(I, ISD::FCEIL))
8469           return;
8470         break;
8471       case LibFunc_rint:
8472       case LibFunc_rintf:
8473       case LibFunc_rintl:
8474         if (visitUnaryFloatCall(I, ISD::FRINT))
8475           return;
8476         break;
8477       case LibFunc_round:
8478       case LibFunc_roundf:
8479       case LibFunc_roundl:
8480         if (visitUnaryFloatCall(I, ISD::FROUND))
8481           return;
8482         break;
8483       case LibFunc_trunc:
8484       case LibFunc_truncf:
8485       case LibFunc_truncl:
8486         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8487           return;
8488         break;
8489       case LibFunc_log2:
8490       case LibFunc_log2f:
8491       case LibFunc_log2l:
8492         if (visitUnaryFloatCall(I, ISD::FLOG2))
8493           return;
8494         break;
8495       case LibFunc_exp2:
8496       case LibFunc_exp2f:
8497       case LibFunc_exp2l:
8498         if (visitUnaryFloatCall(I, ISD::FEXP2))
8499           return;
8500         break;
8501       case LibFunc_memcmp:
8502         if (visitMemCmpBCmpCall(I))
8503           return;
8504         break;
8505       case LibFunc_mempcpy:
8506         if (visitMemPCpyCall(I))
8507           return;
8508         break;
8509       case LibFunc_memchr:
8510         if (visitMemChrCall(I))
8511           return;
8512         break;
8513       case LibFunc_strcpy:
8514         if (visitStrCpyCall(I, false))
8515           return;
8516         break;
8517       case LibFunc_stpcpy:
8518         if (visitStrCpyCall(I, true))
8519           return;
8520         break;
8521       case LibFunc_strcmp:
8522         if (visitStrCmpCall(I))
8523           return;
8524         break;
8525       case LibFunc_strlen:
8526         if (visitStrLenCall(I))
8527           return;
8528         break;
8529       case LibFunc_strnlen:
8530         if (visitStrNLenCall(I))
8531           return;
8532         break;
8533       }
8534     }
8535   }
8536 
8537   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8538   // have to do anything here to lower funclet bundles.
8539   // CFGuardTarget bundles are lowered in LowerCallTo.
8540   assert(!I.hasOperandBundlesOtherThan(
8541              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8542               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8543               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8544          "Cannot lower calls with arbitrary operand bundles!");
8545 
8546   SDValue Callee = getValue(I.getCalledOperand());
8547 
8548   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8549     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8550   else
8551     // Check if we can potentially perform a tail call. More detailed checking
8552     // is be done within LowerCallTo, after more information about the call is
8553     // known.
8554     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8555 }
8556 
8557 namespace {
8558 
8559 /// AsmOperandInfo - This contains information for each constraint that we are
8560 /// lowering.
8561 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8562 public:
8563   /// CallOperand - If this is the result output operand or a clobber
8564   /// this is null, otherwise it is the incoming operand to the CallInst.
8565   /// This gets modified as the asm is processed.
8566   SDValue CallOperand;
8567 
8568   /// AssignedRegs - If this is a register or register class operand, this
8569   /// contains the set of register corresponding to the operand.
8570   RegsForValue AssignedRegs;
8571 
8572   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8573     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8574   }
8575 
8576   /// Whether or not this operand accesses memory
8577   bool hasMemory(const TargetLowering &TLI) const {
8578     // Indirect operand accesses access memory.
8579     if (isIndirect)
8580       return true;
8581 
8582     for (const auto &Code : Codes)
8583       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8584         return true;
8585 
8586     return false;
8587   }
8588 };
8589 
8590 
8591 } // end anonymous namespace
8592 
8593 /// Make sure that the output operand \p OpInfo and its corresponding input
8594 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8595 /// out).
8596 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8597                                SDISelAsmOperandInfo &MatchingOpInfo,
8598                                SelectionDAG &DAG) {
8599   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8600     return;
8601 
8602   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8603   const auto &TLI = DAG.getTargetLoweringInfo();
8604 
8605   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8606       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8607                                        OpInfo.ConstraintVT);
8608   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8609       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8610                                        MatchingOpInfo.ConstraintVT);
8611   if ((OpInfo.ConstraintVT.isInteger() !=
8612        MatchingOpInfo.ConstraintVT.isInteger()) ||
8613       (MatchRC.second != InputRC.second)) {
8614     // FIXME: error out in a more elegant fashion
8615     report_fatal_error("Unsupported asm: input constraint"
8616                        " with a matching output constraint of"
8617                        " incompatible type!");
8618   }
8619   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8620 }
8621 
8622 /// Get a direct memory input to behave well as an indirect operand.
8623 /// This may introduce stores, hence the need for a \p Chain.
8624 /// \return The (possibly updated) chain.
8625 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8626                                         SDISelAsmOperandInfo &OpInfo,
8627                                         SelectionDAG &DAG) {
8628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8629 
8630   // If we don't have an indirect input, put it in the constpool if we can,
8631   // otherwise spill it to a stack slot.
8632   // TODO: This isn't quite right. We need to handle these according to
8633   // the addressing mode that the constraint wants. Also, this may take
8634   // an additional register for the computation and we don't want that
8635   // either.
8636 
8637   // If the operand is a float, integer, or vector constant, spill to a
8638   // constant pool entry to get its address.
8639   const Value *OpVal = OpInfo.CallOperandVal;
8640   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8641       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8642     OpInfo.CallOperand = DAG.getConstantPool(
8643         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8644     return Chain;
8645   }
8646 
8647   // Otherwise, create a stack slot and emit a store to it before the asm.
8648   Type *Ty = OpVal->getType();
8649   auto &DL = DAG.getDataLayout();
8650   uint64_t TySize = DL.getTypeAllocSize(Ty);
8651   MachineFunction &MF = DAG.getMachineFunction();
8652   int SSFI = MF.getFrameInfo().CreateStackObject(
8653       TySize, DL.getPrefTypeAlign(Ty), false);
8654   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8655   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8656                             MachinePointerInfo::getFixedStack(MF, SSFI),
8657                             TLI.getMemValueType(DL, Ty));
8658   OpInfo.CallOperand = StackSlot;
8659 
8660   return Chain;
8661 }
8662 
8663 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8664 /// specified operand.  We prefer to assign virtual registers, to allow the
8665 /// register allocator to handle the assignment process.  However, if the asm
8666 /// uses features that we can't model on machineinstrs, we have SDISel do the
8667 /// allocation.  This produces generally horrible, but correct, code.
8668 ///
8669 ///   OpInfo describes the operand
8670 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8671 static std::optional<unsigned>
8672 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8673                      SDISelAsmOperandInfo &OpInfo,
8674                      SDISelAsmOperandInfo &RefOpInfo) {
8675   LLVMContext &Context = *DAG.getContext();
8676   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8677 
8678   MachineFunction &MF = DAG.getMachineFunction();
8679   SmallVector<unsigned, 4> Regs;
8680   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8681 
8682   // No work to do for memory/address operands.
8683   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8684       OpInfo.ConstraintType == TargetLowering::C_Address)
8685     return std::nullopt;
8686 
8687   // If this is a constraint for a single physreg, or a constraint for a
8688   // register class, find it.
8689   unsigned AssignedReg;
8690   const TargetRegisterClass *RC;
8691   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8692       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8693   // RC is unset only on failure. Return immediately.
8694   if (!RC)
8695     return std::nullopt;
8696 
8697   // Get the actual register value type.  This is important, because the user
8698   // may have asked for (e.g.) the AX register in i32 type.  We need to
8699   // remember that AX is actually i16 to get the right extension.
8700   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8701 
8702   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8703     // If this is an FP operand in an integer register (or visa versa), or more
8704     // generally if the operand value disagrees with the register class we plan
8705     // to stick it in, fix the operand type.
8706     //
8707     // If this is an input value, the bitcast to the new type is done now.
8708     // Bitcast for output value is done at the end of visitInlineAsm().
8709     if ((OpInfo.Type == InlineAsm::isOutput ||
8710          OpInfo.Type == InlineAsm::isInput) &&
8711         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8712       // Try to convert to the first EVT that the reg class contains.  If the
8713       // types are identical size, use a bitcast to convert (e.g. two differing
8714       // vector types).  Note: output bitcast is done at the end of
8715       // visitInlineAsm().
8716       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8717         // Exclude indirect inputs while they are unsupported because the code
8718         // to perform the load is missing and thus OpInfo.CallOperand still
8719         // refers to the input address rather than the pointed-to value.
8720         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8721           OpInfo.CallOperand =
8722               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8723         OpInfo.ConstraintVT = RegVT;
8724         // If the operand is an FP value and we want it in integer registers,
8725         // use the corresponding integer type. This turns an f64 value into
8726         // i64, which can be passed with two i32 values on a 32-bit machine.
8727       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8728         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8729         if (OpInfo.Type == InlineAsm::isInput)
8730           OpInfo.CallOperand =
8731               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8732         OpInfo.ConstraintVT = VT;
8733       }
8734     }
8735   }
8736 
8737   // No need to allocate a matching input constraint since the constraint it's
8738   // matching to has already been allocated.
8739   if (OpInfo.isMatchingInputConstraint())
8740     return std::nullopt;
8741 
8742   EVT ValueVT = OpInfo.ConstraintVT;
8743   if (OpInfo.ConstraintVT == MVT::Other)
8744     ValueVT = RegVT;
8745 
8746   // Initialize NumRegs.
8747   unsigned NumRegs = 1;
8748   if (OpInfo.ConstraintVT != MVT::Other)
8749     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8750 
8751   // If this is a constraint for a specific physical register, like {r17},
8752   // assign it now.
8753 
8754   // If this associated to a specific register, initialize iterator to correct
8755   // place. If virtual, make sure we have enough registers
8756 
8757   // Initialize iterator if necessary
8758   TargetRegisterClass::iterator I = RC->begin();
8759   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8760 
8761   // Do not check for single registers.
8762   if (AssignedReg) {
8763     I = std::find(I, RC->end(), AssignedReg);
8764     if (I == RC->end()) {
8765       // RC does not contain the selected register, which indicates a
8766       // mismatch between the register and the required type/bitwidth.
8767       return {AssignedReg};
8768     }
8769   }
8770 
8771   for (; NumRegs; --NumRegs, ++I) {
8772     assert(I != RC->end() && "Ran out of registers to allocate!");
8773     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8774     Regs.push_back(R);
8775   }
8776 
8777   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8778   return std::nullopt;
8779 }
8780 
8781 static unsigned
8782 findMatchingInlineAsmOperand(unsigned OperandNo,
8783                              const std::vector<SDValue> &AsmNodeOperands) {
8784   // Scan until we find the definition we already emitted of this operand.
8785   unsigned CurOp = InlineAsm::Op_FirstOperand;
8786   for (; OperandNo; --OperandNo) {
8787     // Advance to the next operand.
8788     unsigned OpFlag =
8789         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8790     assert((InlineAsm::isRegDefKind(OpFlag) ||
8791             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8792             InlineAsm::isMemKind(OpFlag)) &&
8793            "Skipped past definitions?");
8794     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8795   }
8796   return CurOp;
8797 }
8798 
8799 namespace {
8800 
8801 class ExtraFlags {
8802   unsigned Flags = 0;
8803 
8804 public:
8805   explicit ExtraFlags(const CallBase &Call) {
8806     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8807     if (IA->hasSideEffects())
8808       Flags |= InlineAsm::Extra_HasSideEffects;
8809     if (IA->isAlignStack())
8810       Flags |= InlineAsm::Extra_IsAlignStack;
8811     if (Call.isConvergent())
8812       Flags |= InlineAsm::Extra_IsConvergent;
8813     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8814   }
8815 
8816   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8817     // Ideally, we would only check against memory constraints.  However, the
8818     // meaning of an Other constraint can be target-specific and we can't easily
8819     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8820     // for Other constraints as well.
8821     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8822         OpInfo.ConstraintType == TargetLowering::C_Other) {
8823       if (OpInfo.Type == InlineAsm::isInput)
8824         Flags |= InlineAsm::Extra_MayLoad;
8825       else if (OpInfo.Type == InlineAsm::isOutput)
8826         Flags |= InlineAsm::Extra_MayStore;
8827       else if (OpInfo.Type == InlineAsm::isClobber)
8828         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8829     }
8830   }
8831 
8832   unsigned get() const { return Flags; }
8833 };
8834 
8835 } // end anonymous namespace
8836 
8837 static bool isFunction(SDValue Op) {
8838   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8839     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8840       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8841 
8842       // In normal "call dllimport func" instruction (non-inlineasm) it force
8843       // indirect access by specifing call opcode. And usually specially print
8844       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8845       // not do in this way now. (In fact, this is similar with "Data Access"
8846       // action). So here we ignore dllimport function.
8847       if (Fn && !Fn->hasDLLImportStorageClass())
8848         return true;
8849     }
8850   }
8851   return false;
8852 }
8853 
8854 /// visitInlineAsm - Handle a call to an InlineAsm object.
8855 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8856                                          const BasicBlock *EHPadBB) {
8857   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8858 
8859   /// ConstraintOperands - Information about all of the constraints.
8860   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8861 
8862   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8863   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8864       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8865 
8866   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8867   // AsmDialect, MayLoad, MayStore).
8868   bool HasSideEffect = IA->hasSideEffects();
8869   ExtraFlags ExtraInfo(Call);
8870 
8871   for (auto &T : TargetConstraints) {
8872     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8873     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8874 
8875     if (OpInfo.CallOperandVal)
8876       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8877 
8878     if (!HasSideEffect)
8879       HasSideEffect = OpInfo.hasMemory(TLI);
8880 
8881     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8882     // FIXME: Could we compute this on OpInfo rather than T?
8883 
8884     // Compute the constraint code and ConstraintType to use.
8885     TLI.ComputeConstraintToUse(T, SDValue());
8886 
8887     if (T.ConstraintType == TargetLowering::C_Immediate &&
8888         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8889       // We've delayed emitting a diagnostic like the "n" constraint because
8890       // inlining could cause an integer showing up.
8891       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8892                                           "' expects an integer constant "
8893                                           "expression");
8894 
8895     ExtraInfo.update(T);
8896   }
8897 
8898   // We won't need to flush pending loads if this asm doesn't touch
8899   // memory and is nonvolatile.
8900   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8901 
8902   bool EmitEHLabels = isa<InvokeInst>(Call);
8903   if (EmitEHLabels) {
8904     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8905   }
8906   bool IsCallBr = isa<CallBrInst>(Call);
8907 
8908   if (IsCallBr || EmitEHLabels) {
8909     // If this is a callbr or invoke we need to flush pending exports since
8910     // inlineasm_br and invoke are terminators.
8911     // We need to do this before nodes are glued to the inlineasm_br node.
8912     Chain = getControlRoot();
8913   }
8914 
8915   MCSymbol *BeginLabel = nullptr;
8916   if (EmitEHLabels) {
8917     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8918   }
8919 
8920   int OpNo = -1;
8921   SmallVector<StringRef> AsmStrs;
8922   IA->collectAsmStrs(AsmStrs);
8923 
8924   // Second pass over the constraints: compute which constraint option to use.
8925   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8926     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8927       OpNo++;
8928 
8929     // If this is an output operand with a matching input operand, look up the
8930     // matching input. If their types mismatch, e.g. one is an integer, the
8931     // other is floating point, or their sizes are different, flag it as an
8932     // error.
8933     if (OpInfo.hasMatchingInput()) {
8934       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8935       patchMatchingInput(OpInfo, Input, DAG);
8936     }
8937 
8938     // Compute the constraint code and ConstraintType to use.
8939     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8940 
8941     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8942          OpInfo.Type == InlineAsm::isClobber) ||
8943         OpInfo.ConstraintType == TargetLowering::C_Address)
8944       continue;
8945 
8946     // In Linux PIC model, there are 4 cases about value/label addressing:
8947     //
8948     // 1: Function call or Label jmp inside the module.
8949     // 2: Data access (such as global variable, static variable) inside module.
8950     // 3: Function call or Label jmp outside the module.
8951     // 4: Data access (such as global variable) outside the module.
8952     //
8953     // Due to current llvm inline asm architecture designed to not "recognize"
8954     // the asm code, there are quite troubles for us to treat mem addressing
8955     // differently for same value/adress used in different instuctions.
8956     // For example, in pic model, call a func may in plt way or direclty
8957     // pc-related, but lea/mov a function adress may use got.
8958     //
8959     // Here we try to "recognize" function call for the case 1 and case 3 in
8960     // inline asm. And try to adjust the constraint for them.
8961     //
8962     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8963     // label, so here we don't handle jmp function label now, but we need to
8964     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8965     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8966         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8967         TM.getCodeModel() != CodeModel::Large) {
8968       OpInfo.isIndirect = false;
8969       OpInfo.ConstraintType = TargetLowering::C_Address;
8970     }
8971 
8972     // If this is a memory input, and if the operand is not indirect, do what we
8973     // need to provide an address for the memory input.
8974     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8975         !OpInfo.isIndirect) {
8976       assert((OpInfo.isMultipleAlternative ||
8977               (OpInfo.Type == InlineAsm::isInput)) &&
8978              "Can only indirectify direct input operands!");
8979 
8980       // Memory operands really want the address of the value.
8981       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8982 
8983       // There is no longer a Value* corresponding to this operand.
8984       OpInfo.CallOperandVal = nullptr;
8985 
8986       // It is now an indirect operand.
8987       OpInfo.isIndirect = true;
8988     }
8989 
8990   }
8991 
8992   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8993   std::vector<SDValue> AsmNodeOperands;
8994   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8995   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8996       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8997 
8998   // If we have a !srcloc metadata node associated with it, we want to attach
8999   // this to the ultimately generated inline asm machineinstr.  To do this, we
9000   // pass in the third operand as this (potentially null) inline asm MDNode.
9001   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9002   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9003 
9004   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9005   // bits as operand 3.
9006   AsmNodeOperands.push_back(DAG.getTargetConstant(
9007       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9008 
9009   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9010   // this, assign virtual and physical registers for inputs and otput.
9011   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9012     // Assign Registers.
9013     SDISelAsmOperandInfo &RefOpInfo =
9014         OpInfo.isMatchingInputConstraint()
9015             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9016             : OpInfo;
9017     const auto RegError =
9018         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9019     if (RegError) {
9020       const MachineFunction &MF = DAG.getMachineFunction();
9021       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9022       const char *RegName = TRI.getName(*RegError);
9023       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9024                                    "' allocated for constraint '" +
9025                                    Twine(OpInfo.ConstraintCode) +
9026                                    "' does not match required type");
9027       return;
9028     }
9029 
9030     auto DetectWriteToReservedRegister = [&]() {
9031       const MachineFunction &MF = DAG.getMachineFunction();
9032       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9033       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9034         if (Register::isPhysicalRegister(Reg) &&
9035             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9036           const char *RegName = TRI.getName(Reg);
9037           emitInlineAsmError(Call, "write to reserved register '" +
9038                                        Twine(RegName) + "'");
9039           return true;
9040         }
9041       }
9042       return false;
9043     };
9044     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9045             (OpInfo.Type == InlineAsm::isInput &&
9046              !OpInfo.isMatchingInputConstraint())) &&
9047            "Only address as input operand is allowed.");
9048 
9049     switch (OpInfo.Type) {
9050     case InlineAsm::isOutput:
9051       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9052         unsigned ConstraintID =
9053             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9054         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9055                "Failed to convert memory constraint code to constraint id.");
9056 
9057         // Add information to the INLINEASM node to know about this output.
9058         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9059         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9060         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9061                                                         MVT::i32));
9062         AsmNodeOperands.push_back(OpInfo.CallOperand);
9063       } else {
9064         // Otherwise, this outputs to a register (directly for C_Register /
9065         // C_RegisterClass, and a target-defined fashion for
9066         // C_Immediate/C_Other). Find a register that we can use.
9067         if (OpInfo.AssignedRegs.Regs.empty()) {
9068           emitInlineAsmError(
9069               Call, "couldn't allocate output register for constraint '" +
9070                         Twine(OpInfo.ConstraintCode) + "'");
9071           return;
9072         }
9073 
9074         if (DetectWriteToReservedRegister())
9075           return;
9076 
9077         // Add information to the INLINEASM node to know that this register is
9078         // set.
9079         OpInfo.AssignedRegs.AddInlineAsmOperands(
9080             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9081                                   : InlineAsm::Kind_RegDef,
9082             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9083       }
9084       break;
9085 
9086     case InlineAsm::isInput:
9087     case InlineAsm::isLabel: {
9088       SDValue InOperandVal = OpInfo.CallOperand;
9089 
9090       if (OpInfo.isMatchingInputConstraint()) {
9091         // If this is required to match an output register we have already set,
9092         // just use its register.
9093         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9094                                                   AsmNodeOperands);
9095         unsigned OpFlag =
9096           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9097         if (InlineAsm::isRegDefKind(OpFlag) ||
9098             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9099           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9100           if (OpInfo.isIndirect) {
9101             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9102             emitInlineAsmError(Call, "inline asm not supported yet: "
9103                                      "don't know how to handle tied "
9104                                      "indirect register inputs");
9105             return;
9106           }
9107 
9108           SmallVector<unsigned, 4> Regs;
9109           MachineFunction &MF = DAG.getMachineFunction();
9110           MachineRegisterInfo &MRI = MF.getRegInfo();
9111           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9112           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9113           Register TiedReg = R->getReg();
9114           MVT RegVT = R->getSimpleValueType(0);
9115           const TargetRegisterClass *RC =
9116               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9117               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9118                                       : TRI.getMinimalPhysRegClass(TiedReg);
9119           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9120           for (unsigned i = 0; i != NumRegs; ++i)
9121             Regs.push_back(MRI.createVirtualRegister(RC));
9122 
9123           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9124 
9125           SDLoc dl = getCurSDLoc();
9126           // Use the produced MatchedRegs object to
9127           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9128           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9129                                            true, OpInfo.getMatchedOperand(), dl,
9130                                            DAG, AsmNodeOperands);
9131           break;
9132         }
9133 
9134         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9135         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9136                "Unexpected number of operands");
9137         // Add information to the INLINEASM node to know about this input.
9138         // See InlineAsm.h isUseOperandTiedToDef.
9139         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9140         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9141                                                     OpInfo.getMatchedOperand());
9142         AsmNodeOperands.push_back(DAG.getTargetConstant(
9143             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9144         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9145         break;
9146       }
9147 
9148       // Treat indirect 'X' constraint as memory.
9149       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9150           OpInfo.isIndirect)
9151         OpInfo.ConstraintType = TargetLowering::C_Memory;
9152 
9153       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9154           OpInfo.ConstraintType == TargetLowering::C_Other) {
9155         std::vector<SDValue> Ops;
9156         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9157                                           Ops, DAG);
9158         if (Ops.empty()) {
9159           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9160             if (isa<ConstantSDNode>(InOperandVal)) {
9161               emitInlineAsmError(Call, "value out of range for constraint '" +
9162                                            Twine(OpInfo.ConstraintCode) + "'");
9163               return;
9164             }
9165 
9166           emitInlineAsmError(Call,
9167                              "invalid operand for inline asm constraint '" +
9168                                  Twine(OpInfo.ConstraintCode) + "'");
9169           return;
9170         }
9171 
9172         // Add information to the INLINEASM node to know about this input.
9173         unsigned ResOpType =
9174           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9175         AsmNodeOperands.push_back(DAG.getTargetConstant(
9176             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9177         llvm::append_range(AsmNodeOperands, Ops);
9178         break;
9179       }
9180 
9181       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9182         assert((OpInfo.isIndirect ||
9183                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9184                "Operand must be indirect to be a mem!");
9185         assert(InOperandVal.getValueType() ==
9186                    TLI.getPointerTy(DAG.getDataLayout()) &&
9187                "Memory operands expect pointer values");
9188 
9189         unsigned ConstraintID =
9190             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9191         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9192                "Failed to convert memory constraint code to constraint id.");
9193 
9194         // Add information to the INLINEASM node to know about this input.
9195         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9196         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9197         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9198                                                         getCurSDLoc(),
9199                                                         MVT::i32));
9200         AsmNodeOperands.push_back(InOperandVal);
9201         break;
9202       }
9203 
9204       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9205         assert(InOperandVal.getValueType() ==
9206                    TLI.getPointerTy(DAG.getDataLayout()) &&
9207                "Address operands expect pointer values");
9208 
9209         unsigned ConstraintID =
9210             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9211         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9212                "Failed to convert memory constraint code to constraint id.");
9213 
9214         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9215 
9216         SDValue AsmOp = InOperandVal;
9217         if (isFunction(InOperandVal)) {
9218           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9219           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9220           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9221                                              InOperandVal.getValueType(),
9222                                              GA->getOffset());
9223         }
9224 
9225         // Add information to the INLINEASM node to know about this input.
9226         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9227 
9228         AsmNodeOperands.push_back(
9229             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9230 
9231         AsmNodeOperands.push_back(AsmOp);
9232         break;
9233       }
9234 
9235       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9236               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9237              "Unknown constraint type!");
9238 
9239       // TODO: Support this.
9240       if (OpInfo.isIndirect) {
9241         emitInlineAsmError(
9242             Call, "Don't know how to handle indirect register inputs yet "
9243                   "for constraint '" +
9244                       Twine(OpInfo.ConstraintCode) + "'");
9245         return;
9246       }
9247 
9248       // Copy the input into the appropriate registers.
9249       if (OpInfo.AssignedRegs.Regs.empty()) {
9250         emitInlineAsmError(Call,
9251                            "couldn't allocate input reg for constraint '" +
9252                                Twine(OpInfo.ConstraintCode) + "'");
9253         return;
9254       }
9255 
9256       if (DetectWriteToReservedRegister())
9257         return;
9258 
9259       SDLoc dl = getCurSDLoc();
9260 
9261       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9262                                         &Call);
9263 
9264       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9265                                                dl, DAG, AsmNodeOperands);
9266       break;
9267     }
9268     case InlineAsm::isClobber:
9269       // Add the clobbered value to the operand list, so that the register
9270       // allocator is aware that the physreg got clobbered.
9271       if (!OpInfo.AssignedRegs.Regs.empty())
9272         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9273                                                  false, 0, getCurSDLoc(), DAG,
9274                                                  AsmNodeOperands);
9275       break;
9276     }
9277   }
9278 
9279   // Finish up input operands.  Set the input chain and add the flag last.
9280   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9281   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9282 
9283   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9284   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9285                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9286   Flag = Chain.getValue(1);
9287 
9288   // Do additional work to generate outputs.
9289 
9290   SmallVector<EVT, 1> ResultVTs;
9291   SmallVector<SDValue, 1> ResultValues;
9292   SmallVector<SDValue, 8> OutChains;
9293 
9294   llvm::Type *CallResultType = Call.getType();
9295   ArrayRef<Type *> ResultTypes;
9296   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9297     ResultTypes = StructResult->elements();
9298   else if (!CallResultType->isVoidTy())
9299     ResultTypes = ArrayRef(CallResultType);
9300 
9301   auto CurResultType = ResultTypes.begin();
9302   auto handleRegAssign = [&](SDValue V) {
9303     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9304     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9305     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9306     ++CurResultType;
9307     // If the type of the inline asm call site return value is different but has
9308     // same size as the type of the asm output bitcast it.  One example of this
9309     // is for vectors with different width / number of elements.  This can
9310     // happen for register classes that can contain multiple different value
9311     // types.  The preg or vreg allocated may not have the same VT as was
9312     // expected.
9313     //
9314     // This can also happen for a return value that disagrees with the register
9315     // class it is put in, eg. a double in a general-purpose register on a
9316     // 32-bit machine.
9317     if (ResultVT != V.getValueType() &&
9318         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9319       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9320     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9321              V.getValueType().isInteger()) {
9322       // If a result value was tied to an input value, the computed result
9323       // may have a wider width than the expected result.  Extract the
9324       // relevant portion.
9325       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9326     }
9327     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9328     ResultVTs.push_back(ResultVT);
9329     ResultValues.push_back(V);
9330   };
9331 
9332   // Deal with output operands.
9333   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9334     if (OpInfo.Type == InlineAsm::isOutput) {
9335       SDValue Val;
9336       // Skip trivial output operands.
9337       if (OpInfo.AssignedRegs.Regs.empty())
9338         continue;
9339 
9340       switch (OpInfo.ConstraintType) {
9341       case TargetLowering::C_Register:
9342       case TargetLowering::C_RegisterClass:
9343         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9344                                                   Chain, &Flag, &Call);
9345         break;
9346       case TargetLowering::C_Immediate:
9347       case TargetLowering::C_Other:
9348         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9349                                               OpInfo, DAG);
9350         break;
9351       case TargetLowering::C_Memory:
9352         break; // Already handled.
9353       case TargetLowering::C_Address:
9354         break; // Silence warning.
9355       case TargetLowering::C_Unknown:
9356         assert(false && "Unexpected unknown constraint");
9357       }
9358 
9359       // Indirect output manifest as stores. Record output chains.
9360       if (OpInfo.isIndirect) {
9361         const Value *Ptr = OpInfo.CallOperandVal;
9362         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9363         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9364                                      MachinePointerInfo(Ptr));
9365         OutChains.push_back(Store);
9366       } else {
9367         // generate CopyFromRegs to associated registers.
9368         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9369         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9370           for (const SDValue &V : Val->op_values())
9371             handleRegAssign(V);
9372         } else
9373           handleRegAssign(Val);
9374       }
9375     }
9376   }
9377 
9378   // Set results.
9379   if (!ResultValues.empty()) {
9380     assert(CurResultType == ResultTypes.end() &&
9381            "Mismatch in number of ResultTypes");
9382     assert(ResultValues.size() == ResultTypes.size() &&
9383            "Mismatch in number of output operands in asm result");
9384 
9385     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9386                             DAG.getVTList(ResultVTs), ResultValues);
9387     setValue(&Call, V);
9388   }
9389 
9390   // Collect store chains.
9391   if (!OutChains.empty())
9392     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9393 
9394   if (EmitEHLabels) {
9395     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9396   }
9397 
9398   // Only Update Root if inline assembly has a memory effect.
9399   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9400       EmitEHLabels)
9401     DAG.setRoot(Chain);
9402 }
9403 
9404 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9405                                              const Twine &Message) {
9406   LLVMContext &Ctx = *DAG.getContext();
9407   Ctx.emitError(&Call, Message);
9408 
9409   // Make sure we leave the DAG in a valid state
9410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9411   SmallVector<EVT, 1> ValueVTs;
9412   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9413 
9414   if (ValueVTs.empty())
9415     return;
9416 
9417   SmallVector<SDValue, 1> Ops;
9418   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9419     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9420 
9421   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9422 }
9423 
9424 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9425   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9426                           MVT::Other, getRoot(),
9427                           getValue(I.getArgOperand(0)),
9428                           DAG.getSrcValue(I.getArgOperand(0))));
9429 }
9430 
9431 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9433   const DataLayout &DL = DAG.getDataLayout();
9434   SDValue V = DAG.getVAArg(
9435       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9436       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9437       DL.getABITypeAlign(I.getType()).value());
9438   DAG.setRoot(V.getValue(1));
9439 
9440   if (I.getType()->isPointerTy())
9441     V = DAG.getPtrExtOrTrunc(
9442         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9443   setValue(&I, V);
9444 }
9445 
9446 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9447   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9448                           MVT::Other, getRoot(),
9449                           getValue(I.getArgOperand(0)),
9450                           DAG.getSrcValue(I.getArgOperand(0))));
9451 }
9452 
9453 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9454   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9455                           MVT::Other, getRoot(),
9456                           getValue(I.getArgOperand(0)),
9457                           getValue(I.getArgOperand(1)),
9458                           DAG.getSrcValue(I.getArgOperand(0)),
9459                           DAG.getSrcValue(I.getArgOperand(1))));
9460 }
9461 
9462 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9463                                                     const Instruction &I,
9464                                                     SDValue Op) {
9465   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9466   if (!Range)
9467     return Op;
9468 
9469   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9470   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9471     return Op;
9472 
9473   APInt Lo = CR.getUnsignedMin();
9474   if (!Lo.isMinValue())
9475     return Op;
9476 
9477   APInt Hi = CR.getUnsignedMax();
9478   unsigned Bits = std::max(Hi.getActiveBits(),
9479                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9480 
9481   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9482 
9483   SDLoc SL = getCurSDLoc();
9484 
9485   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9486                              DAG.getValueType(SmallVT));
9487   unsigned NumVals = Op.getNode()->getNumValues();
9488   if (NumVals == 1)
9489     return ZExt;
9490 
9491   SmallVector<SDValue, 4> Ops;
9492 
9493   Ops.push_back(ZExt);
9494   for (unsigned I = 1; I != NumVals; ++I)
9495     Ops.push_back(Op.getValue(I));
9496 
9497   return DAG.getMergeValues(Ops, SL);
9498 }
9499 
9500 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9501 /// the call being lowered.
9502 ///
9503 /// This is a helper for lowering intrinsics that follow a target calling
9504 /// convention or require stack pointer adjustment. Only a subset of the
9505 /// intrinsic's operands need to participate in the calling convention.
9506 void SelectionDAGBuilder::populateCallLoweringInfo(
9507     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9508     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9509     bool IsPatchPoint) {
9510   TargetLowering::ArgListTy Args;
9511   Args.reserve(NumArgs);
9512 
9513   // Populate the argument list.
9514   // Attributes for args start at offset 1, after the return attribute.
9515   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9516        ArgI != ArgE; ++ArgI) {
9517     const Value *V = Call->getOperand(ArgI);
9518 
9519     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9520 
9521     TargetLowering::ArgListEntry Entry;
9522     Entry.Node = getValue(V);
9523     Entry.Ty = V->getType();
9524     Entry.setAttributes(Call, ArgI);
9525     Args.push_back(Entry);
9526   }
9527 
9528   CLI.setDebugLoc(getCurSDLoc())
9529       .setChain(getRoot())
9530       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9531       .setDiscardResult(Call->use_empty())
9532       .setIsPatchPoint(IsPatchPoint)
9533       .setIsPreallocated(
9534           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9535 }
9536 
9537 /// Add a stack map intrinsic call's live variable operands to a stackmap
9538 /// or patchpoint target node's operand list.
9539 ///
9540 /// Constants are converted to TargetConstants purely as an optimization to
9541 /// avoid constant materialization and register allocation.
9542 ///
9543 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9544 /// generate addess computation nodes, and so FinalizeISel can convert the
9545 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9546 /// address materialization and register allocation, but may also be required
9547 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9548 /// alloca in the entry block, then the runtime may assume that the alloca's
9549 /// StackMap location can be read immediately after compilation and that the
9550 /// location is valid at any point during execution (this is similar to the
9551 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9552 /// only available in a register, then the runtime would need to trap when
9553 /// execution reaches the StackMap in order to read the alloca's location.
9554 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9555                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9556                                 SelectionDAGBuilder &Builder) {
9557   SelectionDAG &DAG = Builder.DAG;
9558   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9559     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9560 
9561     // Things on the stack are pointer-typed, meaning that they are already
9562     // legal and can be emitted directly to target nodes.
9563     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9564       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9565     } else {
9566       // Otherwise emit a target independent node to be legalised.
9567       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9568     }
9569   }
9570 }
9571 
9572 /// Lower llvm.experimental.stackmap.
9573 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9574   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9575   //                                  [live variables...])
9576 
9577   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9578 
9579   SDValue Chain, InFlag, Callee;
9580   SmallVector<SDValue, 32> Ops;
9581 
9582   SDLoc DL = getCurSDLoc();
9583   Callee = getValue(CI.getCalledOperand());
9584 
9585   // The stackmap intrinsic only records the live variables (the arguments
9586   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9587   // intrinsic, this won't be lowered to a function call. This means we don't
9588   // have to worry about calling conventions and target specific lowering code.
9589   // Instead we perform the call lowering right here.
9590   //
9591   // chain, flag = CALLSEQ_START(chain, 0, 0)
9592   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9593   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9594   //
9595   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9596   InFlag = Chain.getValue(1);
9597 
9598   // Add the STACKMAP operands, starting with DAG house-keeping.
9599   Ops.push_back(Chain);
9600   Ops.push_back(InFlag);
9601 
9602   // Add the <id>, <numShadowBytes> operands.
9603   //
9604   // These do not require legalisation, and can be emitted directly to target
9605   // constant nodes.
9606   SDValue ID = getValue(CI.getArgOperand(0));
9607   assert(ID.getValueType() == MVT::i64);
9608   SDValue IDConst = DAG.getTargetConstant(
9609       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9610   Ops.push_back(IDConst);
9611 
9612   SDValue Shad = getValue(CI.getArgOperand(1));
9613   assert(Shad.getValueType() == MVT::i32);
9614   SDValue ShadConst = DAG.getTargetConstant(
9615       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9616   Ops.push_back(ShadConst);
9617 
9618   // Add the live variables.
9619   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9620 
9621   // Create the STACKMAP node.
9622   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9623   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9624   InFlag = Chain.getValue(1);
9625 
9626   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9627 
9628   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9629 
9630   // Set the root to the target-lowered call chain.
9631   DAG.setRoot(Chain);
9632 
9633   // Inform the Frame Information that we have a stackmap in this function.
9634   FuncInfo.MF->getFrameInfo().setHasStackMap();
9635 }
9636 
9637 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9638 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9639                                           const BasicBlock *EHPadBB) {
9640   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9641   //                                                 i32 <numBytes>,
9642   //                                                 i8* <target>,
9643   //                                                 i32 <numArgs>,
9644   //                                                 [Args...],
9645   //                                                 [live variables...])
9646 
9647   CallingConv::ID CC = CB.getCallingConv();
9648   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9649   bool HasDef = !CB.getType()->isVoidTy();
9650   SDLoc dl = getCurSDLoc();
9651   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9652 
9653   // Handle immediate and symbolic callees.
9654   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9655     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9656                                    /*isTarget=*/true);
9657   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9658     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9659                                          SDLoc(SymbolicCallee),
9660                                          SymbolicCallee->getValueType(0));
9661 
9662   // Get the real number of arguments participating in the call <numArgs>
9663   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9664   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9665 
9666   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9667   // Intrinsics include all meta-operands up to but not including CC.
9668   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9669   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9670          "Not enough arguments provided to the patchpoint intrinsic");
9671 
9672   // For AnyRegCC the arguments are lowered later on manually.
9673   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9674   Type *ReturnTy =
9675       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9676 
9677   TargetLowering::CallLoweringInfo CLI(DAG);
9678   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9679                            ReturnTy, true);
9680   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9681 
9682   SDNode *CallEnd = Result.second.getNode();
9683   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9684     CallEnd = CallEnd->getOperand(0).getNode();
9685 
9686   /// Get a call instruction from the call sequence chain.
9687   /// Tail calls are not allowed.
9688   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9689          "Expected a callseq node.");
9690   SDNode *Call = CallEnd->getOperand(0).getNode();
9691   bool HasGlue = Call->getGluedNode();
9692 
9693   // Replace the target specific call node with the patchable intrinsic.
9694   SmallVector<SDValue, 8> Ops;
9695 
9696   // Push the chain.
9697   Ops.push_back(*(Call->op_begin()));
9698 
9699   // Optionally, push the glue (if any).
9700   if (HasGlue)
9701     Ops.push_back(*(Call->op_end() - 1));
9702 
9703   // Push the register mask info.
9704   if (HasGlue)
9705     Ops.push_back(*(Call->op_end() - 2));
9706   else
9707     Ops.push_back(*(Call->op_end() - 1));
9708 
9709   // Add the <id> and <numBytes> constants.
9710   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9711   Ops.push_back(DAG.getTargetConstant(
9712                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9713   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9714   Ops.push_back(DAG.getTargetConstant(
9715                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9716                   MVT::i32));
9717 
9718   // Add the callee.
9719   Ops.push_back(Callee);
9720 
9721   // Adjust <numArgs> to account for any arguments that have been passed on the
9722   // stack instead.
9723   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9724   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9725   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9726   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9727 
9728   // Add the calling convention
9729   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9730 
9731   // Add the arguments we omitted previously. The register allocator should
9732   // place these in any free register.
9733   if (IsAnyRegCC)
9734     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9735       Ops.push_back(getValue(CB.getArgOperand(i)));
9736 
9737   // Push the arguments from the call instruction.
9738   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9739   Ops.append(Call->op_begin() + 2, e);
9740 
9741   // Push live variables for the stack map.
9742   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9743 
9744   SDVTList NodeTys;
9745   if (IsAnyRegCC && HasDef) {
9746     // Create the return types based on the intrinsic definition
9747     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9748     SmallVector<EVT, 3> ValueVTs;
9749     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9750     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9751 
9752     // There is always a chain and a glue type at the end
9753     ValueVTs.push_back(MVT::Other);
9754     ValueVTs.push_back(MVT::Glue);
9755     NodeTys = DAG.getVTList(ValueVTs);
9756   } else
9757     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9758 
9759   // Replace the target specific call node with a PATCHPOINT node.
9760   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9761 
9762   // Update the NodeMap.
9763   if (HasDef) {
9764     if (IsAnyRegCC)
9765       setValue(&CB, SDValue(PPV.getNode(), 0));
9766     else
9767       setValue(&CB, Result.first);
9768   }
9769 
9770   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9771   // call sequence. Furthermore the location of the chain and glue can change
9772   // when the AnyReg calling convention is used and the intrinsic returns a
9773   // value.
9774   if (IsAnyRegCC && HasDef) {
9775     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9776     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9777     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9778   } else
9779     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9780   DAG.DeleteNode(Call);
9781 
9782   // Inform the Frame Information that we have a patchpoint in this function.
9783   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9784 }
9785 
9786 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9787                                             unsigned Intrinsic) {
9788   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9789   SDValue Op1 = getValue(I.getArgOperand(0));
9790   SDValue Op2;
9791   if (I.arg_size() > 1)
9792     Op2 = getValue(I.getArgOperand(1));
9793   SDLoc dl = getCurSDLoc();
9794   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9795   SDValue Res;
9796   SDNodeFlags SDFlags;
9797   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9798     SDFlags.copyFMF(*FPMO);
9799 
9800   switch (Intrinsic) {
9801   case Intrinsic::vector_reduce_fadd:
9802     if (SDFlags.hasAllowReassociation())
9803       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9804                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9805                         SDFlags);
9806     else
9807       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9808     break;
9809   case Intrinsic::vector_reduce_fmul:
9810     if (SDFlags.hasAllowReassociation())
9811       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9812                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9813                         SDFlags);
9814     else
9815       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9816     break;
9817   case Intrinsic::vector_reduce_add:
9818     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9819     break;
9820   case Intrinsic::vector_reduce_mul:
9821     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9822     break;
9823   case Intrinsic::vector_reduce_and:
9824     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9825     break;
9826   case Intrinsic::vector_reduce_or:
9827     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9828     break;
9829   case Intrinsic::vector_reduce_xor:
9830     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9831     break;
9832   case Intrinsic::vector_reduce_smax:
9833     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9834     break;
9835   case Intrinsic::vector_reduce_smin:
9836     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9837     break;
9838   case Intrinsic::vector_reduce_umax:
9839     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9840     break;
9841   case Intrinsic::vector_reduce_umin:
9842     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9843     break;
9844   case Intrinsic::vector_reduce_fmax:
9845     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9846     break;
9847   case Intrinsic::vector_reduce_fmin:
9848     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9849     break;
9850   default:
9851     llvm_unreachable("Unhandled vector reduce intrinsic");
9852   }
9853   setValue(&I, Res);
9854 }
9855 
9856 /// Returns an AttributeList representing the attributes applied to the return
9857 /// value of the given call.
9858 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9859   SmallVector<Attribute::AttrKind, 2> Attrs;
9860   if (CLI.RetSExt)
9861     Attrs.push_back(Attribute::SExt);
9862   if (CLI.RetZExt)
9863     Attrs.push_back(Attribute::ZExt);
9864   if (CLI.IsInReg)
9865     Attrs.push_back(Attribute::InReg);
9866 
9867   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9868                             Attrs);
9869 }
9870 
9871 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9872 /// implementation, which just calls LowerCall.
9873 /// FIXME: When all targets are
9874 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9875 std::pair<SDValue, SDValue>
9876 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9877   // Handle the incoming return values from the call.
9878   CLI.Ins.clear();
9879   Type *OrigRetTy = CLI.RetTy;
9880   SmallVector<EVT, 4> RetTys;
9881   SmallVector<uint64_t, 4> Offsets;
9882   auto &DL = CLI.DAG.getDataLayout();
9883   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9884 
9885   if (CLI.IsPostTypeLegalization) {
9886     // If we are lowering a libcall after legalization, split the return type.
9887     SmallVector<EVT, 4> OldRetTys;
9888     SmallVector<uint64_t, 4> OldOffsets;
9889     RetTys.swap(OldRetTys);
9890     Offsets.swap(OldOffsets);
9891 
9892     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9893       EVT RetVT = OldRetTys[i];
9894       uint64_t Offset = OldOffsets[i];
9895       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9896       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9897       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9898       RetTys.append(NumRegs, RegisterVT);
9899       for (unsigned j = 0; j != NumRegs; ++j)
9900         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9901     }
9902   }
9903 
9904   SmallVector<ISD::OutputArg, 4> Outs;
9905   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9906 
9907   bool CanLowerReturn =
9908       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9909                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9910 
9911   SDValue DemoteStackSlot;
9912   int DemoteStackIdx = -100;
9913   if (!CanLowerReturn) {
9914     // FIXME: equivalent assert?
9915     // assert(!CS.hasInAllocaArgument() &&
9916     //        "sret demotion is incompatible with inalloca");
9917     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9918     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9919     MachineFunction &MF = CLI.DAG.getMachineFunction();
9920     DemoteStackIdx =
9921         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9922     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9923                                               DL.getAllocaAddrSpace());
9924 
9925     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9926     ArgListEntry Entry;
9927     Entry.Node = DemoteStackSlot;
9928     Entry.Ty = StackSlotPtrType;
9929     Entry.IsSExt = false;
9930     Entry.IsZExt = false;
9931     Entry.IsInReg = false;
9932     Entry.IsSRet = true;
9933     Entry.IsNest = false;
9934     Entry.IsByVal = false;
9935     Entry.IsByRef = false;
9936     Entry.IsReturned = false;
9937     Entry.IsSwiftSelf = false;
9938     Entry.IsSwiftAsync = false;
9939     Entry.IsSwiftError = false;
9940     Entry.IsCFGuardTarget = false;
9941     Entry.Alignment = Alignment;
9942     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9943     CLI.NumFixedArgs += 1;
9944     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9945     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9946 
9947     // sret demotion isn't compatible with tail-calls, since the sret argument
9948     // points into the callers stack frame.
9949     CLI.IsTailCall = false;
9950   } else {
9951     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9952         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9953     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9954       ISD::ArgFlagsTy Flags;
9955       if (NeedsRegBlock) {
9956         Flags.setInConsecutiveRegs();
9957         if (I == RetTys.size() - 1)
9958           Flags.setInConsecutiveRegsLast();
9959       }
9960       EVT VT = RetTys[I];
9961       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9962                                                      CLI.CallConv, VT);
9963       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9964                                                        CLI.CallConv, VT);
9965       for (unsigned i = 0; i != NumRegs; ++i) {
9966         ISD::InputArg MyFlags;
9967         MyFlags.Flags = Flags;
9968         MyFlags.VT = RegisterVT;
9969         MyFlags.ArgVT = VT;
9970         MyFlags.Used = CLI.IsReturnValueUsed;
9971         if (CLI.RetTy->isPointerTy()) {
9972           MyFlags.Flags.setPointer();
9973           MyFlags.Flags.setPointerAddrSpace(
9974               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9975         }
9976         if (CLI.RetSExt)
9977           MyFlags.Flags.setSExt();
9978         if (CLI.RetZExt)
9979           MyFlags.Flags.setZExt();
9980         if (CLI.IsInReg)
9981           MyFlags.Flags.setInReg();
9982         CLI.Ins.push_back(MyFlags);
9983       }
9984     }
9985   }
9986 
9987   // We push in swifterror return as the last element of CLI.Ins.
9988   ArgListTy &Args = CLI.getArgs();
9989   if (supportSwiftError()) {
9990     for (const ArgListEntry &Arg : Args) {
9991       if (Arg.IsSwiftError) {
9992         ISD::InputArg MyFlags;
9993         MyFlags.VT = getPointerTy(DL);
9994         MyFlags.ArgVT = EVT(getPointerTy(DL));
9995         MyFlags.Flags.setSwiftError();
9996         CLI.Ins.push_back(MyFlags);
9997       }
9998     }
9999   }
10000 
10001   // Handle all of the outgoing arguments.
10002   CLI.Outs.clear();
10003   CLI.OutVals.clear();
10004   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10005     SmallVector<EVT, 4> ValueVTs;
10006     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10007     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10008     Type *FinalType = Args[i].Ty;
10009     if (Args[i].IsByVal)
10010       FinalType = Args[i].IndirectType;
10011     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10012         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10013     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10014          ++Value) {
10015       EVT VT = ValueVTs[Value];
10016       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10017       SDValue Op = SDValue(Args[i].Node.getNode(),
10018                            Args[i].Node.getResNo() + Value);
10019       ISD::ArgFlagsTy Flags;
10020 
10021       // Certain targets (such as MIPS), may have a different ABI alignment
10022       // for a type depending on the context. Give the target a chance to
10023       // specify the alignment it wants.
10024       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10025       Flags.setOrigAlign(OriginalAlignment);
10026 
10027       if (Args[i].Ty->isPointerTy()) {
10028         Flags.setPointer();
10029         Flags.setPointerAddrSpace(
10030             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10031       }
10032       if (Args[i].IsZExt)
10033         Flags.setZExt();
10034       if (Args[i].IsSExt)
10035         Flags.setSExt();
10036       if (Args[i].IsInReg) {
10037         // If we are using vectorcall calling convention, a structure that is
10038         // passed InReg - is surely an HVA
10039         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10040             isa<StructType>(FinalType)) {
10041           // The first value of a structure is marked
10042           if (0 == Value)
10043             Flags.setHvaStart();
10044           Flags.setHva();
10045         }
10046         // Set InReg Flag
10047         Flags.setInReg();
10048       }
10049       if (Args[i].IsSRet)
10050         Flags.setSRet();
10051       if (Args[i].IsSwiftSelf)
10052         Flags.setSwiftSelf();
10053       if (Args[i].IsSwiftAsync)
10054         Flags.setSwiftAsync();
10055       if (Args[i].IsSwiftError)
10056         Flags.setSwiftError();
10057       if (Args[i].IsCFGuardTarget)
10058         Flags.setCFGuardTarget();
10059       if (Args[i].IsByVal)
10060         Flags.setByVal();
10061       if (Args[i].IsByRef)
10062         Flags.setByRef();
10063       if (Args[i].IsPreallocated) {
10064         Flags.setPreallocated();
10065         // Set the byval flag for CCAssignFn callbacks that don't know about
10066         // preallocated.  This way we can know how many bytes we should've
10067         // allocated and how many bytes a callee cleanup function will pop.  If
10068         // we port preallocated to more targets, we'll have to add custom
10069         // preallocated handling in the various CC lowering callbacks.
10070         Flags.setByVal();
10071       }
10072       if (Args[i].IsInAlloca) {
10073         Flags.setInAlloca();
10074         // Set the byval flag for CCAssignFn callbacks that don't know about
10075         // inalloca.  This way we can know how many bytes we should've allocated
10076         // and how many bytes a callee cleanup function will pop.  If we port
10077         // inalloca to more targets, we'll have to add custom inalloca handling
10078         // in the various CC lowering callbacks.
10079         Flags.setByVal();
10080       }
10081       Align MemAlign;
10082       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10083         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10084         Flags.setByValSize(FrameSize);
10085 
10086         // info is not there but there are cases it cannot get right.
10087         if (auto MA = Args[i].Alignment)
10088           MemAlign = *MA;
10089         else
10090           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10091       } else if (auto MA = Args[i].Alignment) {
10092         MemAlign = *MA;
10093       } else {
10094         MemAlign = OriginalAlignment;
10095       }
10096       Flags.setMemAlign(MemAlign);
10097       if (Args[i].IsNest)
10098         Flags.setNest();
10099       if (NeedsRegBlock)
10100         Flags.setInConsecutiveRegs();
10101 
10102       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10103                                                  CLI.CallConv, VT);
10104       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10105                                                         CLI.CallConv, VT);
10106       SmallVector<SDValue, 4> Parts(NumParts);
10107       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10108 
10109       if (Args[i].IsSExt)
10110         ExtendKind = ISD::SIGN_EXTEND;
10111       else if (Args[i].IsZExt)
10112         ExtendKind = ISD::ZERO_EXTEND;
10113 
10114       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10115       // for now.
10116       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10117           CanLowerReturn) {
10118         assert((CLI.RetTy == Args[i].Ty ||
10119                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10120                  CLI.RetTy->getPointerAddressSpace() ==
10121                      Args[i].Ty->getPointerAddressSpace())) &&
10122                RetTys.size() == NumValues && "unexpected use of 'returned'");
10123         // Before passing 'returned' to the target lowering code, ensure that
10124         // either the register MVT and the actual EVT are the same size or that
10125         // the return value and argument are extended in the same way; in these
10126         // cases it's safe to pass the argument register value unchanged as the
10127         // return register value (although it's at the target's option whether
10128         // to do so)
10129         // TODO: allow code generation to take advantage of partially preserved
10130         // registers rather than clobbering the entire register when the
10131         // parameter extension method is not compatible with the return
10132         // extension method
10133         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10134             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10135              CLI.RetZExt == Args[i].IsZExt))
10136           Flags.setReturned();
10137       }
10138 
10139       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10140                      CLI.CallConv, ExtendKind);
10141 
10142       for (unsigned j = 0; j != NumParts; ++j) {
10143         // if it isn't first piece, alignment must be 1
10144         // For scalable vectors the scalable part is currently handled
10145         // by individual targets, so we just use the known minimum size here.
10146         ISD::OutputArg MyFlags(
10147             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10148             i < CLI.NumFixedArgs, i,
10149             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10150         if (NumParts > 1 && j == 0)
10151           MyFlags.Flags.setSplit();
10152         else if (j != 0) {
10153           MyFlags.Flags.setOrigAlign(Align(1));
10154           if (j == NumParts - 1)
10155             MyFlags.Flags.setSplitEnd();
10156         }
10157 
10158         CLI.Outs.push_back(MyFlags);
10159         CLI.OutVals.push_back(Parts[j]);
10160       }
10161 
10162       if (NeedsRegBlock && Value == NumValues - 1)
10163         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10164     }
10165   }
10166 
10167   SmallVector<SDValue, 4> InVals;
10168   CLI.Chain = LowerCall(CLI, InVals);
10169 
10170   // Update CLI.InVals to use outside of this function.
10171   CLI.InVals = InVals;
10172 
10173   // Verify that the target's LowerCall behaved as expected.
10174   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10175          "LowerCall didn't return a valid chain!");
10176   assert((!CLI.IsTailCall || InVals.empty()) &&
10177          "LowerCall emitted a return value for a tail call!");
10178   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10179          "LowerCall didn't emit the correct number of values!");
10180 
10181   // For a tail call, the return value is merely live-out and there aren't
10182   // any nodes in the DAG representing it. Return a special value to
10183   // indicate that a tail call has been emitted and no more Instructions
10184   // should be processed in the current block.
10185   if (CLI.IsTailCall) {
10186     CLI.DAG.setRoot(CLI.Chain);
10187     return std::make_pair(SDValue(), SDValue());
10188   }
10189 
10190 #ifndef NDEBUG
10191   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10192     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10193     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10194            "LowerCall emitted a value with the wrong type!");
10195   }
10196 #endif
10197 
10198   SmallVector<SDValue, 4> ReturnValues;
10199   if (!CanLowerReturn) {
10200     // The instruction result is the result of loading from the
10201     // hidden sret parameter.
10202     SmallVector<EVT, 1> PVTs;
10203     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10204 
10205     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10206     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10207     EVT PtrVT = PVTs[0];
10208 
10209     unsigned NumValues = RetTys.size();
10210     ReturnValues.resize(NumValues);
10211     SmallVector<SDValue, 4> Chains(NumValues);
10212 
10213     // An aggregate return value cannot wrap around the address space, so
10214     // offsets to its parts don't wrap either.
10215     SDNodeFlags Flags;
10216     Flags.setNoUnsignedWrap(true);
10217 
10218     MachineFunction &MF = CLI.DAG.getMachineFunction();
10219     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10220     for (unsigned i = 0; i < NumValues; ++i) {
10221       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10222                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10223                                                         PtrVT), Flags);
10224       SDValue L = CLI.DAG.getLoad(
10225           RetTys[i], CLI.DL, CLI.Chain, Add,
10226           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10227                                             DemoteStackIdx, Offsets[i]),
10228           HiddenSRetAlign);
10229       ReturnValues[i] = L;
10230       Chains[i] = L.getValue(1);
10231     }
10232 
10233     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10234   } else {
10235     // Collect the legal value parts into potentially illegal values
10236     // that correspond to the original function's return values.
10237     std::optional<ISD::NodeType> AssertOp;
10238     if (CLI.RetSExt)
10239       AssertOp = ISD::AssertSext;
10240     else if (CLI.RetZExt)
10241       AssertOp = ISD::AssertZext;
10242     unsigned CurReg = 0;
10243     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10244       EVT VT = RetTys[I];
10245       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10246                                                      CLI.CallConv, VT);
10247       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10248                                                        CLI.CallConv, VT);
10249 
10250       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10251                                               NumRegs, RegisterVT, VT, nullptr,
10252                                               CLI.CallConv, AssertOp));
10253       CurReg += NumRegs;
10254     }
10255 
10256     // For a function returning void, there is no return value. We can't create
10257     // such a node, so we just return a null return value in that case. In
10258     // that case, nothing will actually look at the value.
10259     if (ReturnValues.empty())
10260       return std::make_pair(SDValue(), CLI.Chain);
10261   }
10262 
10263   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10264                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10265   return std::make_pair(Res, CLI.Chain);
10266 }
10267 
10268 /// Places new result values for the node in Results (their number
10269 /// and types must exactly match those of the original return values of
10270 /// the node), or leaves Results empty, which indicates that the node is not
10271 /// to be custom lowered after all.
10272 void TargetLowering::LowerOperationWrapper(SDNode *N,
10273                                            SmallVectorImpl<SDValue> &Results,
10274                                            SelectionDAG &DAG) const {
10275   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10276 
10277   if (!Res.getNode())
10278     return;
10279 
10280   // If the original node has one result, take the return value from
10281   // LowerOperation as is. It might not be result number 0.
10282   if (N->getNumValues() == 1) {
10283     Results.push_back(Res);
10284     return;
10285   }
10286 
10287   // If the original node has multiple results, then the return node should
10288   // have the same number of results.
10289   assert((N->getNumValues() == Res->getNumValues()) &&
10290       "Lowering returned the wrong number of results!");
10291 
10292   // Places new result values base on N result number.
10293   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10294     Results.push_back(Res.getValue(I));
10295 }
10296 
10297 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10298   llvm_unreachable("LowerOperation not implemented for this target!");
10299 }
10300 
10301 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10302                                                      unsigned Reg,
10303                                                      ISD::NodeType ExtendType) {
10304   SDValue Op = getNonRegisterValue(V);
10305   assert((Op.getOpcode() != ISD::CopyFromReg ||
10306           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10307          "Copy from a reg to the same reg!");
10308   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10309 
10310   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10311   // If this is an InlineAsm we have to match the registers required, not the
10312   // notional registers required by the type.
10313 
10314   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10315                    std::nullopt); // This is not an ABI copy.
10316   SDValue Chain = DAG.getEntryNode();
10317 
10318   if (ExtendType == ISD::ANY_EXTEND) {
10319     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10320     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10321       ExtendType = PreferredExtendIt->second;
10322   }
10323   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10324   PendingExports.push_back(Chain);
10325 }
10326 
10327 #include "llvm/CodeGen/SelectionDAGISel.h"
10328 
10329 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10330 /// entry block, return true.  This includes arguments used by switches, since
10331 /// the switch may expand into multiple basic blocks.
10332 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10333   // With FastISel active, we may be splitting blocks, so force creation
10334   // of virtual registers for all non-dead arguments.
10335   if (FastISel)
10336     return A->use_empty();
10337 
10338   const BasicBlock &Entry = A->getParent()->front();
10339   for (const User *U : A->users())
10340     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10341       return false;  // Use not in entry block.
10342 
10343   return true;
10344 }
10345 
10346 using ArgCopyElisionMapTy =
10347     DenseMap<const Argument *,
10348              std::pair<const AllocaInst *, const StoreInst *>>;
10349 
10350 /// Scan the entry block of the function in FuncInfo for arguments that look
10351 /// like copies into a local alloca. Record any copied arguments in
10352 /// ArgCopyElisionCandidates.
10353 static void
10354 findArgumentCopyElisionCandidates(const DataLayout &DL,
10355                                   FunctionLoweringInfo *FuncInfo,
10356                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10357   // Record the state of every static alloca used in the entry block. Argument
10358   // allocas are all used in the entry block, so we need approximately as many
10359   // entries as we have arguments.
10360   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10361   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10362   unsigned NumArgs = FuncInfo->Fn->arg_size();
10363   StaticAllocas.reserve(NumArgs * 2);
10364 
10365   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10366     if (!V)
10367       return nullptr;
10368     V = V->stripPointerCasts();
10369     const auto *AI = dyn_cast<AllocaInst>(V);
10370     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10371       return nullptr;
10372     auto Iter = StaticAllocas.insert({AI, Unknown});
10373     return &Iter.first->second;
10374   };
10375 
10376   // Look for stores of arguments to static allocas. Look through bitcasts and
10377   // GEPs to handle type coercions, as long as the alloca is fully initialized
10378   // by the store. Any non-store use of an alloca escapes it and any subsequent
10379   // unanalyzed store might write it.
10380   // FIXME: Handle structs initialized with multiple stores.
10381   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10382     // Look for stores, and handle non-store uses conservatively.
10383     const auto *SI = dyn_cast<StoreInst>(&I);
10384     if (!SI) {
10385       // We will look through cast uses, so ignore them completely.
10386       if (I.isCast())
10387         continue;
10388       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10389       // to allocas.
10390       if (I.isDebugOrPseudoInst())
10391         continue;
10392       // This is an unknown instruction. Assume it escapes or writes to all
10393       // static alloca operands.
10394       for (const Use &U : I.operands()) {
10395         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10396           *Info = StaticAllocaInfo::Clobbered;
10397       }
10398       continue;
10399     }
10400 
10401     // If the stored value is a static alloca, mark it as escaped.
10402     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10403       *Info = StaticAllocaInfo::Clobbered;
10404 
10405     // Check if the destination is a static alloca.
10406     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10407     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10408     if (!Info)
10409       continue;
10410     const AllocaInst *AI = cast<AllocaInst>(Dst);
10411 
10412     // Skip allocas that have been initialized or clobbered.
10413     if (*Info != StaticAllocaInfo::Unknown)
10414       continue;
10415 
10416     // Check if the stored value is an argument, and that this store fully
10417     // initializes the alloca.
10418     // If the argument type has padding bits we can't directly forward a pointer
10419     // as the upper bits may contain garbage.
10420     // Don't elide copies from the same argument twice.
10421     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10422     const auto *Arg = dyn_cast<Argument>(Val);
10423     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10424         Arg->getType()->isEmptyTy() ||
10425         DL.getTypeStoreSize(Arg->getType()) !=
10426             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10427         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10428         ArgCopyElisionCandidates.count(Arg)) {
10429       *Info = StaticAllocaInfo::Clobbered;
10430       continue;
10431     }
10432 
10433     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10434                       << '\n');
10435 
10436     // Mark this alloca and store for argument copy elision.
10437     *Info = StaticAllocaInfo::Elidable;
10438     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10439 
10440     // Stop scanning if we've seen all arguments. This will happen early in -O0
10441     // builds, which is useful, because -O0 builds have large entry blocks and
10442     // many allocas.
10443     if (ArgCopyElisionCandidates.size() == NumArgs)
10444       break;
10445   }
10446 }
10447 
10448 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10449 /// ArgVal is a load from a suitable fixed stack object.
10450 static void tryToElideArgumentCopy(
10451     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10452     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10453     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10454     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10455     SDValue ArgVal, bool &ArgHasUses) {
10456   // Check if this is a load from a fixed stack object.
10457   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10458   if (!LNode)
10459     return;
10460   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10461   if (!FINode)
10462     return;
10463 
10464   // Check that the fixed stack object is the right size and alignment.
10465   // Look at the alignment that the user wrote on the alloca instead of looking
10466   // at the stack object.
10467   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10468   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10469   const AllocaInst *AI = ArgCopyIter->second.first;
10470   int FixedIndex = FINode->getIndex();
10471   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10472   int OldIndex = AllocaIndex;
10473   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10474   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10475     LLVM_DEBUG(
10476         dbgs() << "  argument copy elision failed due to bad fixed stack "
10477                   "object size\n");
10478     return;
10479   }
10480   Align RequiredAlignment = AI->getAlign();
10481   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10482     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10483                          "greater than stack argument alignment ("
10484                       << DebugStr(RequiredAlignment) << " vs "
10485                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10486     return;
10487   }
10488 
10489   // Perform the elision. Delete the old stack object and replace its only use
10490   // in the variable info map. Mark the stack object as mutable.
10491   LLVM_DEBUG({
10492     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10493            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10494            << '\n';
10495   });
10496   MFI.RemoveStackObject(OldIndex);
10497   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10498   AllocaIndex = FixedIndex;
10499   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10500   Chains.push_back(ArgVal.getValue(1));
10501 
10502   // Avoid emitting code for the store implementing the copy.
10503   const StoreInst *SI = ArgCopyIter->second.second;
10504   ElidedArgCopyInstrs.insert(SI);
10505 
10506   // Check for uses of the argument again so that we can avoid exporting ArgVal
10507   // if it is't used by anything other than the store.
10508   for (const Value *U : Arg.users()) {
10509     if (U != SI) {
10510       ArgHasUses = true;
10511       break;
10512     }
10513   }
10514 }
10515 
10516 void SelectionDAGISel::LowerArguments(const Function &F) {
10517   SelectionDAG &DAG = SDB->DAG;
10518   SDLoc dl = SDB->getCurSDLoc();
10519   const DataLayout &DL = DAG.getDataLayout();
10520   SmallVector<ISD::InputArg, 16> Ins;
10521 
10522   // In Naked functions we aren't going to save any registers.
10523   if (F.hasFnAttribute(Attribute::Naked))
10524     return;
10525 
10526   if (!FuncInfo->CanLowerReturn) {
10527     // Put in an sret pointer parameter before all the other parameters.
10528     SmallVector<EVT, 1> ValueVTs;
10529     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10530                     F.getReturnType()->getPointerTo(
10531                         DAG.getDataLayout().getAllocaAddrSpace()),
10532                     ValueVTs);
10533 
10534     // NOTE: Assuming that a pointer will never break down to more than one VT
10535     // or one register.
10536     ISD::ArgFlagsTy Flags;
10537     Flags.setSRet();
10538     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10539     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10540                          ISD::InputArg::NoArgIndex, 0);
10541     Ins.push_back(RetArg);
10542   }
10543 
10544   // Look for stores of arguments to static allocas. Mark such arguments with a
10545   // flag to ask the target to give us the memory location of that argument if
10546   // available.
10547   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10548   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10549                                     ArgCopyElisionCandidates);
10550 
10551   // Set up the incoming argument description vector.
10552   for (const Argument &Arg : F.args()) {
10553     unsigned ArgNo = Arg.getArgNo();
10554     SmallVector<EVT, 4> ValueVTs;
10555     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10556     bool isArgValueUsed = !Arg.use_empty();
10557     unsigned PartBase = 0;
10558     Type *FinalType = Arg.getType();
10559     if (Arg.hasAttribute(Attribute::ByVal))
10560       FinalType = Arg.getParamByValType();
10561     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10562         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10563     for (unsigned Value = 0, NumValues = ValueVTs.size();
10564          Value != NumValues; ++Value) {
10565       EVT VT = ValueVTs[Value];
10566       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10567       ISD::ArgFlagsTy Flags;
10568 
10569 
10570       if (Arg.getType()->isPointerTy()) {
10571         Flags.setPointer();
10572         Flags.setPointerAddrSpace(
10573             cast<PointerType>(Arg.getType())->getAddressSpace());
10574       }
10575       if (Arg.hasAttribute(Attribute::ZExt))
10576         Flags.setZExt();
10577       if (Arg.hasAttribute(Attribute::SExt))
10578         Flags.setSExt();
10579       if (Arg.hasAttribute(Attribute::InReg)) {
10580         // If we are using vectorcall calling convention, a structure that is
10581         // passed InReg - is surely an HVA
10582         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10583             isa<StructType>(Arg.getType())) {
10584           // The first value of a structure is marked
10585           if (0 == Value)
10586             Flags.setHvaStart();
10587           Flags.setHva();
10588         }
10589         // Set InReg Flag
10590         Flags.setInReg();
10591       }
10592       if (Arg.hasAttribute(Attribute::StructRet))
10593         Flags.setSRet();
10594       if (Arg.hasAttribute(Attribute::SwiftSelf))
10595         Flags.setSwiftSelf();
10596       if (Arg.hasAttribute(Attribute::SwiftAsync))
10597         Flags.setSwiftAsync();
10598       if (Arg.hasAttribute(Attribute::SwiftError))
10599         Flags.setSwiftError();
10600       if (Arg.hasAttribute(Attribute::ByVal))
10601         Flags.setByVal();
10602       if (Arg.hasAttribute(Attribute::ByRef))
10603         Flags.setByRef();
10604       if (Arg.hasAttribute(Attribute::InAlloca)) {
10605         Flags.setInAlloca();
10606         // Set the byval flag for CCAssignFn callbacks that don't know about
10607         // inalloca.  This way we can know how many bytes we should've allocated
10608         // and how many bytes a callee cleanup function will pop.  If we port
10609         // inalloca to more targets, we'll have to add custom inalloca handling
10610         // in the various CC lowering callbacks.
10611         Flags.setByVal();
10612       }
10613       if (Arg.hasAttribute(Attribute::Preallocated)) {
10614         Flags.setPreallocated();
10615         // Set the byval flag for CCAssignFn callbacks that don't know about
10616         // preallocated.  This way we can know how many bytes we should've
10617         // allocated and how many bytes a callee cleanup function will pop.  If
10618         // we port preallocated to more targets, we'll have to add custom
10619         // preallocated handling in the various CC lowering callbacks.
10620         Flags.setByVal();
10621       }
10622 
10623       // Certain targets (such as MIPS), may have a different ABI alignment
10624       // for a type depending on the context. Give the target a chance to
10625       // specify the alignment it wants.
10626       const Align OriginalAlignment(
10627           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10628       Flags.setOrigAlign(OriginalAlignment);
10629 
10630       Align MemAlign;
10631       Type *ArgMemTy = nullptr;
10632       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10633           Flags.isByRef()) {
10634         if (!ArgMemTy)
10635           ArgMemTy = Arg.getPointeeInMemoryValueType();
10636 
10637         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10638 
10639         // For in-memory arguments, size and alignment should be passed from FE.
10640         // BE will guess if this info is not there but there are cases it cannot
10641         // get right.
10642         if (auto ParamAlign = Arg.getParamStackAlign())
10643           MemAlign = *ParamAlign;
10644         else if ((ParamAlign = Arg.getParamAlign()))
10645           MemAlign = *ParamAlign;
10646         else
10647           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10648         if (Flags.isByRef())
10649           Flags.setByRefSize(MemSize);
10650         else
10651           Flags.setByValSize(MemSize);
10652       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10653         MemAlign = *ParamAlign;
10654       } else {
10655         MemAlign = OriginalAlignment;
10656       }
10657       Flags.setMemAlign(MemAlign);
10658 
10659       if (Arg.hasAttribute(Attribute::Nest))
10660         Flags.setNest();
10661       if (NeedsRegBlock)
10662         Flags.setInConsecutiveRegs();
10663       if (ArgCopyElisionCandidates.count(&Arg))
10664         Flags.setCopyElisionCandidate();
10665       if (Arg.hasAttribute(Attribute::Returned))
10666         Flags.setReturned();
10667 
10668       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10669           *CurDAG->getContext(), F.getCallingConv(), VT);
10670       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10671           *CurDAG->getContext(), F.getCallingConv(), VT);
10672       for (unsigned i = 0; i != NumRegs; ++i) {
10673         // For scalable vectors, use the minimum size; individual targets
10674         // are responsible for handling scalable vector arguments and
10675         // return values.
10676         ISD::InputArg MyFlags(
10677             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10678             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10679         if (NumRegs > 1 && i == 0)
10680           MyFlags.Flags.setSplit();
10681         // if it isn't first piece, alignment must be 1
10682         else if (i > 0) {
10683           MyFlags.Flags.setOrigAlign(Align(1));
10684           if (i == NumRegs - 1)
10685             MyFlags.Flags.setSplitEnd();
10686         }
10687         Ins.push_back(MyFlags);
10688       }
10689       if (NeedsRegBlock && Value == NumValues - 1)
10690         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10691       PartBase += VT.getStoreSize().getKnownMinValue();
10692     }
10693   }
10694 
10695   // Call the target to set up the argument values.
10696   SmallVector<SDValue, 8> InVals;
10697   SDValue NewRoot = TLI->LowerFormalArguments(
10698       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10699 
10700   // Verify that the target's LowerFormalArguments behaved as expected.
10701   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10702          "LowerFormalArguments didn't return a valid chain!");
10703   assert(InVals.size() == Ins.size() &&
10704          "LowerFormalArguments didn't emit the correct number of values!");
10705   LLVM_DEBUG({
10706     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10707       assert(InVals[i].getNode() &&
10708              "LowerFormalArguments emitted a null value!");
10709       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10710              "LowerFormalArguments emitted a value with the wrong type!");
10711     }
10712   });
10713 
10714   // Update the DAG with the new chain value resulting from argument lowering.
10715   DAG.setRoot(NewRoot);
10716 
10717   // Set up the argument values.
10718   unsigned i = 0;
10719   if (!FuncInfo->CanLowerReturn) {
10720     // Create a virtual register for the sret pointer, and put in a copy
10721     // from the sret argument into it.
10722     SmallVector<EVT, 1> ValueVTs;
10723     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10724                     F.getReturnType()->getPointerTo(
10725                         DAG.getDataLayout().getAllocaAddrSpace()),
10726                     ValueVTs);
10727     MVT VT = ValueVTs[0].getSimpleVT();
10728     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10729     std::optional<ISD::NodeType> AssertOp;
10730     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10731                                         nullptr, F.getCallingConv(), AssertOp);
10732 
10733     MachineFunction& MF = SDB->DAG.getMachineFunction();
10734     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10735     Register SRetReg =
10736         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10737     FuncInfo->DemoteRegister = SRetReg;
10738     NewRoot =
10739         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10740     DAG.setRoot(NewRoot);
10741 
10742     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10743     ++i;
10744   }
10745 
10746   SmallVector<SDValue, 4> Chains;
10747   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10748   for (const Argument &Arg : F.args()) {
10749     SmallVector<SDValue, 4> ArgValues;
10750     SmallVector<EVT, 4> ValueVTs;
10751     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10752     unsigned NumValues = ValueVTs.size();
10753     if (NumValues == 0)
10754       continue;
10755 
10756     bool ArgHasUses = !Arg.use_empty();
10757 
10758     // Elide the copying store if the target loaded this argument from a
10759     // suitable fixed stack object.
10760     if (Ins[i].Flags.isCopyElisionCandidate()) {
10761       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10762                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10763                              InVals[i], ArgHasUses);
10764     }
10765 
10766     // If this argument is unused then remember its value. It is used to generate
10767     // debugging information.
10768     bool isSwiftErrorArg =
10769         TLI->supportSwiftError() &&
10770         Arg.hasAttribute(Attribute::SwiftError);
10771     if (!ArgHasUses && !isSwiftErrorArg) {
10772       SDB->setUnusedArgValue(&Arg, InVals[i]);
10773 
10774       // Also remember any frame index for use in FastISel.
10775       if (FrameIndexSDNode *FI =
10776           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10777         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10778     }
10779 
10780     for (unsigned Val = 0; Val != NumValues; ++Val) {
10781       EVT VT = ValueVTs[Val];
10782       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10783                                                       F.getCallingConv(), VT);
10784       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10785           *CurDAG->getContext(), F.getCallingConv(), VT);
10786 
10787       // Even an apparent 'unused' swifterror argument needs to be returned. So
10788       // we do generate a copy for it that can be used on return from the
10789       // function.
10790       if (ArgHasUses || isSwiftErrorArg) {
10791         std::optional<ISD::NodeType> AssertOp;
10792         if (Arg.hasAttribute(Attribute::SExt))
10793           AssertOp = ISD::AssertSext;
10794         else if (Arg.hasAttribute(Attribute::ZExt))
10795           AssertOp = ISD::AssertZext;
10796 
10797         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10798                                              PartVT, VT, nullptr,
10799                                              F.getCallingConv(), AssertOp));
10800       }
10801 
10802       i += NumParts;
10803     }
10804 
10805     // We don't need to do anything else for unused arguments.
10806     if (ArgValues.empty())
10807       continue;
10808 
10809     // Note down frame index.
10810     if (FrameIndexSDNode *FI =
10811         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10812       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10813 
10814     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10815                                      SDB->getCurSDLoc());
10816 
10817     SDB->setValue(&Arg, Res);
10818     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10819       // We want to associate the argument with the frame index, among
10820       // involved operands, that correspond to the lowest address. The
10821       // getCopyFromParts function, called earlier, is swapping the order of
10822       // the operands to BUILD_PAIR depending on endianness. The result of
10823       // that swapping is that the least significant bits of the argument will
10824       // be in the first operand of the BUILD_PAIR node, and the most
10825       // significant bits will be in the second operand.
10826       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10827       if (LoadSDNode *LNode =
10828           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10829         if (FrameIndexSDNode *FI =
10830             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10831           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10832     }
10833 
10834     // Analyses past this point are naive and don't expect an assertion.
10835     if (Res.getOpcode() == ISD::AssertZext)
10836       Res = Res.getOperand(0);
10837 
10838     // Update the SwiftErrorVRegDefMap.
10839     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10840       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10841       if (Register::isVirtualRegister(Reg))
10842         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10843                                    Reg);
10844     }
10845 
10846     // If this argument is live outside of the entry block, insert a copy from
10847     // wherever we got it to the vreg that other BB's will reference it as.
10848     if (Res.getOpcode() == ISD::CopyFromReg) {
10849       // If we can, though, try to skip creating an unnecessary vreg.
10850       // FIXME: This isn't very clean... it would be nice to make this more
10851       // general.
10852       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10853       if (Register::isVirtualRegister(Reg)) {
10854         FuncInfo->ValueMap[&Arg] = Reg;
10855         continue;
10856       }
10857     }
10858     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10859       FuncInfo->InitializeRegForValue(&Arg);
10860       SDB->CopyToExportRegsIfNeeded(&Arg);
10861     }
10862   }
10863 
10864   if (!Chains.empty()) {
10865     Chains.push_back(NewRoot);
10866     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10867   }
10868 
10869   DAG.setRoot(NewRoot);
10870 
10871   assert(i == InVals.size() && "Argument register count mismatch!");
10872 
10873   // If any argument copy elisions occurred and we have debug info, update the
10874   // stale frame indices used in the dbg.declare variable info table.
10875   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10876   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10877     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10878       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10879       if (I != ArgCopyElisionFrameIndexMap.end())
10880         VI.Slot = I->second;
10881     }
10882   }
10883 
10884   // Finally, if the target has anything special to do, allow it to do so.
10885   emitFunctionEntryCode();
10886 }
10887 
10888 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10889 /// ensure constants are generated when needed.  Remember the virtual registers
10890 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10891 /// directly add them, because expansion might result in multiple MBB's for one
10892 /// BB.  As such, the start of the BB might correspond to a different MBB than
10893 /// the end.
10894 void
10895 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10897 
10898   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10899 
10900   // Check PHI nodes in successors that expect a value to be available from this
10901   // block.
10902   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10903     if (!isa<PHINode>(SuccBB->begin())) continue;
10904     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10905 
10906     // If this terminator has multiple identical successors (common for
10907     // switches), only handle each succ once.
10908     if (!SuccsHandled.insert(SuccMBB).second)
10909       continue;
10910 
10911     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10912 
10913     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10914     // nodes and Machine PHI nodes, but the incoming operands have not been
10915     // emitted yet.
10916     for (const PHINode &PN : SuccBB->phis()) {
10917       // Ignore dead phi's.
10918       if (PN.use_empty())
10919         continue;
10920 
10921       // Skip empty types
10922       if (PN.getType()->isEmptyTy())
10923         continue;
10924 
10925       unsigned Reg;
10926       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10927 
10928       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10929         unsigned &RegOut = ConstantsOut[C];
10930         if (RegOut == 0) {
10931           RegOut = FuncInfo.CreateRegs(C);
10932           // We need to zero/sign extend ConstantInt phi operands to match
10933           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10934           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10935           if (auto *CI = dyn_cast<ConstantInt>(C))
10936             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10937                                                     : ISD::ZERO_EXTEND;
10938           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10939         }
10940         Reg = RegOut;
10941       } else {
10942         DenseMap<const Value *, Register>::iterator I =
10943           FuncInfo.ValueMap.find(PHIOp);
10944         if (I != FuncInfo.ValueMap.end())
10945           Reg = I->second;
10946         else {
10947           assert(isa<AllocaInst>(PHIOp) &&
10948                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10949                  "Didn't codegen value into a register!??");
10950           Reg = FuncInfo.CreateRegs(PHIOp);
10951           CopyValueToVirtualRegister(PHIOp, Reg);
10952         }
10953       }
10954 
10955       // Remember that this register needs to added to the machine PHI node as
10956       // the input for this MBB.
10957       SmallVector<EVT, 4> ValueVTs;
10958       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10959       for (EVT VT : ValueVTs) {
10960         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10961         for (unsigned i = 0; i != NumRegisters; ++i)
10962           FuncInfo.PHINodesToUpdate.push_back(
10963               std::make_pair(&*MBBI++, Reg + i));
10964         Reg += NumRegisters;
10965       }
10966     }
10967   }
10968 
10969   ConstantsOut.clear();
10970 }
10971 
10972 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10973   MachineFunction::iterator I(MBB);
10974   if (++I == FuncInfo.MF->end())
10975     return nullptr;
10976   return &*I;
10977 }
10978 
10979 /// During lowering new call nodes can be created (such as memset, etc.).
10980 /// Those will become new roots of the current DAG, but complications arise
10981 /// when they are tail calls. In such cases, the call lowering will update
10982 /// the root, but the builder still needs to know that a tail call has been
10983 /// lowered in order to avoid generating an additional return.
10984 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10985   // If the node is null, we do have a tail call.
10986   if (MaybeTC.getNode() != nullptr)
10987     DAG.setRoot(MaybeTC);
10988   else
10989     HasTailCall = true;
10990 }
10991 
10992 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10993                                         MachineBasicBlock *SwitchMBB,
10994                                         MachineBasicBlock *DefaultMBB) {
10995   MachineFunction *CurMF = FuncInfo.MF;
10996   MachineBasicBlock *NextMBB = nullptr;
10997   MachineFunction::iterator BBI(W.MBB);
10998   if (++BBI != FuncInfo.MF->end())
10999     NextMBB = &*BBI;
11000 
11001   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11002 
11003   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11004 
11005   if (Size == 2 && W.MBB == SwitchMBB) {
11006     // If any two of the cases has the same destination, and if one value
11007     // is the same as the other, but has one bit unset that the other has set,
11008     // use bit manipulation to do two compares at once.  For example:
11009     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11010     // TODO: This could be extended to merge any 2 cases in switches with 3
11011     // cases.
11012     // TODO: Handle cases where W.CaseBB != SwitchBB.
11013     CaseCluster &Small = *W.FirstCluster;
11014     CaseCluster &Big = *W.LastCluster;
11015 
11016     if (Small.Low == Small.High && Big.Low == Big.High &&
11017         Small.MBB == Big.MBB) {
11018       const APInt &SmallValue = Small.Low->getValue();
11019       const APInt &BigValue = Big.Low->getValue();
11020 
11021       // Check that there is only one bit different.
11022       APInt CommonBit = BigValue ^ SmallValue;
11023       if (CommonBit.isPowerOf2()) {
11024         SDValue CondLHS = getValue(Cond);
11025         EVT VT = CondLHS.getValueType();
11026         SDLoc DL = getCurSDLoc();
11027 
11028         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11029                                  DAG.getConstant(CommonBit, DL, VT));
11030         SDValue Cond = DAG.getSetCC(
11031             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11032             ISD::SETEQ);
11033 
11034         // Update successor info.
11035         // Both Small and Big will jump to Small.BB, so we sum up the
11036         // probabilities.
11037         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11038         if (BPI)
11039           addSuccessorWithProb(
11040               SwitchMBB, DefaultMBB,
11041               // The default destination is the first successor in IR.
11042               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11043         else
11044           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11045 
11046         // Insert the true branch.
11047         SDValue BrCond =
11048             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11049                         DAG.getBasicBlock(Small.MBB));
11050         // Insert the false branch.
11051         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11052                              DAG.getBasicBlock(DefaultMBB));
11053 
11054         DAG.setRoot(BrCond);
11055         return;
11056       }
11057     }
11058   }
11059 
11060   if (TM.getOptLevel() != CodeGenOpt::None) {
11061     // Here, we order cases by probability so the most likely case will be
11062     // checked first. However, two clusters can have the same probability in
11063     // which case their relative ordering is non-deterministic. So we use Low
11064     // as a tie-breaker as clusters are guaranteed to never overlap.
11065     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11066                [](const CaseCluster &a, const CaseCluster &b) {
11067       return a.Prob != b.Prob ?
11068              a.Prob > b.Prob :
11069              a.Low->getValue().slt(b.Low->getValue());
11070     });
11071 
11072     // Rearrange the case blocks so that the last one falls through if possible
11073     // without changing the order of probabilities.
11074     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11075       --I;
11076       if (I->Prob > W.LastCluster->Prob)
11077         break;
11078       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11079         std::swap(*I, *W.LastCluster);
11080         break;
11081       }
11082     }
11083   }
11084 
11085   // Compute total probability.
11086   BranchProbability DefaultProb = W.DefaultProb;
11087   BranchProbability UnhandledProbs = DefaultProb;
11088   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11089     UnhandledProbs += I->Prob;
11090 
11091   MachineBasicBlock *CurMBB = W.MBB;
11092   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11093     bool FallthroughUnreachable = false;
11094     MachineBasicBlock *Fallthrough;
11095     if (I == W.LastCluster) {
11096       // For the last cluster, fall through to the default destination.
11097       Fallthrough = DefaultMBB;
11098       FallthroughUnreachable = isa<UnreachableInst>(
11099           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11100     } else {
11101       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11102       CurMF->insert(BBI, Fallthrough);
11103       // Put Cond in a virtual register to make it available from the new blocks.
11104       ExportFromCurrentBlock(Cond);
11105     }
11106     UnhandledProbs -= I->Prob;
11107 
11108     switch (I->Kind) {
11109       case CC_JumpTable: {
11110         // FIXME: Optimize away range check based on pivot comparisons.
11111         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11112         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11113 
11114         // The jump block hasn't been inserted yet; insert it here.
11115         MachineBasicBlock *JumpMBB = JT->MBB;
11116         CurMF->insert(BBI, JumpMBB);
11117 
11118         auto JumpProb = I->Prob;
11119         auto FallthroughProb = UnhandledProbs;
11120 
11121         // If the default statement is a target of the jump table, we evenly
11122         // distribute the default probability to successors of CurMBB. Also
11123         // update the probability on the edge from JumpMBB to Fallthrough.
11124         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11125                                               SE = JumpMBB->succ_end();
11126              SI != SE; ++SI) {
11127           if (*SI == DefaultMBB) {
11128             JumpProb += DefaultProb / 2;
11129             FallthroughProb -= DefaultProb / 2;
11130             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11131             JumpMBB->normalizeSuccProbs();
11132             break;
11133           }
11134         }
11135 
11136         if (FallthroughUnreachable)
11137           JTH->FallthroughUnreachable = true;
11138 
11139         if (!JTH->FallthroughUnreachable)
11140           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11141         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11142         CurMBB->normalizeSuccProbs();
11143 
11144         // The jump table header will be inserted in our current block, do the
11145         // range check, and fall through to our fallthrough block.
11146         JTH->HeaderBB = CurMBB;
11147         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11148 
11149         // If we're in the right place, emit the jump table header right now.
11150         if (CurMBB == SwitchMBB) {
11151           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11152           JTH->Emitted = true;
11153         }
11154         break;
11155       }
11156       case CC_BitTests: {
11157         // FIXME: Optimize away range check based on pivot comparisons.
11158         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11159 
11160         // The bit test blocks haven't been inserted yet; insert them here.
11161         for (BitTestCase &BTC : BTB->Cases)
11162           CurMF->insert(BBI, BTC.ThisBB);
11163 
11164         // Fill in fields of the BitTestBlock.
11165         BTB->Parent = CurMBB;
11166         BTB->Default = Fallthrough;
11167 
11168         BTB->DefaultProb = UnhandledProbs;
11169         // If the cases in bit test don't form a contiguous range, we evenly
11170         // distribute the probability on the edge to Fallthrough to two
11171         // successors of CurMBB.
11172         if (!BTB->ContiguousRange) {
11173           BTB->Prob += DefaultProb / 2;
11174           BTB->DefaultProb -= DefaultProb / 2;
11175         }
11176 
11177         if (FallthroughUnreachable)
11178           BTB->FallthroughUnreachable = true;
11179 
11180         // If we're in the right place, emit the bit test header right now.
11181         if (CurMBB == SwitchMBB) {
11182           visitBitTestHeader(*BTB, SwitchMBB);
11183           BTB->Emitted = true;
11184         }
11185         break;
11186       }
11187       case CC_Range: {
11188         const Value *RHS, *LHS, *MHS;
11189         ISD::CondCode CC;
11190         if (I->Low == I->High) {
11191           // Check Cond == I->Low.
11192           CC = ISD::SETEQ;
11193           LHS = Cond;
11194           RHS=I->Low;
11195           MHS = nullptr;
11196         } else {
11197           // Check I->Low <= Cond <= I->High.
11198           CC = ISD::SETLE;
11199           LHS = I->Low;
11200           MHS = Cond;
11201           RHS = I->High;
11202         }
11203 
11204         // If Fallthrough is unreachable, fold away the comparison.
11205         if (FallthroughUnreachable)
11206           CC = ISD::SETTRUE;
11207 
11208         // The false probability is the sum of all unhandled cases.
11209         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11210                      getCurSDLoc(), I->Prob, UnhandledProbs);
11211 
11212         if (CurMBB == SwitchMBB)
11213           visitSwitchCase(CB, SwitchMBB);
11214         else
11215           SL->SwitchCases.push_back(CB);
11216 
11217         break;
11218       }
11219     }
11220     CurMBB = Fallthrough;
11221   }
11222 }
11223 
11224 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11225                                               CaseClusterIt First,
11226                                               CaseClusterIt Last) {
11227   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11228     if (X.Prob != CC.Prob)
11229       return X.Prob > CC.Prob;
11230 
11231     // Ties are broken by comparing the case value.
11232     return X.Low->getValue().slt(CC.Low->getValue());
11233   });
11234 }
11235 
11236 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11237                                         const SwitchWorkListItem &W,
11238                                         Value *Cond,
11239                                         MachineBasicBlock *SwitchMBB) {
11240   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11241          "Clusters not sorted?");
11242 
11243   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11244 
11245   // Balance the tree based on branch probabilities to create a near-optimal (in
11246   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11247   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11248   CaseClusterIt LastLeft = W.FirstCluster;
11249   CaseClusterIt FirstRight = W.LastCluster;
11250   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11251   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11252 
11253   // Move LastLeft and FirstRight towards each other from opposite directions to
11254   // find a partitioning of the clusters which balances the probability on both
11255   // sides. If LeftProb and RightProb are equal, alternate which side is
11256   // taken to ensure 0-probability nodes are distributed evenly.
11257   unsigned I = 0;
11258   while (LastLeft + 1 < FirstRight) {
11259     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11260       LeftProb += (++LastLeft)->Prob;
11261     else
11262       RightProb += (--FirstRight)->Prob;
11263     I++;
11264   }
11265 
11266   while (true) {
11267     // Our binary search tree differs from a typical BST in that ours can have up
11268     // to three values in each leaf. The pivot selection above doesn't take that
11269     // into account, which means the tree might require more nodes and be less
11270     // efficient. We compensate for this here.
11271 
11272     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11273     unsigned NumRight = W.LastCluster - FirstRight + 1;
11274 
11275     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11276       // If one side has less than 3 clusters, and the other has more than 3,
11277       // consider taking a cluster from the other side.
11278 
11279       if (NumLeft < NumRight) {
11280         // Consider moving the first cluster on the right to the left side.
11281         CaseCluster &CC = *FirstRight;
11282         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11283         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11284         if (LeftSideRank <= RightSideRank) {
11285           // Moving the cluster to the left does not demote it.
11286           ++LastLeft;
11287           ++FirstRight;
11288           continue;
11289         }
11290       } else {
11291         assert(NumRight < NumLeft);
11292         // Consider moving the last element on the left to the right side.
11293         CaseCluster &CC = *LastLeft;
11294         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11295         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11296         if (RightSideRank <= LeftSideRank) {
11297           // Moving the cluster to the right does not demot it.
11298           --LastLeft;
11299           --FirstRight;
11300           continue;
11301         }
11302       }
11303     }
11304     break;
11305   }
11306 
11307   assert(LastLeft + 1 == FirstRight);
11308   assert(LastLeft >= W.FirstCluster);
11309   assert(FirstRight <= W.LastCluster);
11310 
11311   // Use the first element on the right as pivot since we will make less-than
11312   // comparisons against it.
11313   CaseClusterIt PivotCluster = FirstRight;
11314   assert(PivotCluster > W.FirstCluster);
11315   assert(PivotCluster <= W.LastCluster);
11316 
11317   CaseClusterIt FirstLeft = W.FirstCluster;
11318   CaseClusterIt LastRight = W.LastCluster;
11319 
11320   const ConstantInt *Pivot = PivotCluster->Low;
11321 
11322   // New blocks will be inserted immediately after the current one.
11323   MachineFunction::iterator BBI(W.MBB);
11324   ++BBI;
11325 
11326   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11327   // we can branch to its destination directly if it's squeezed exactly in
11328   // between the known lower bound and Pivot - 1.
11329   MachineBasicBlock *LeftMBB;
11330   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11331       FirstLeft->Low == W.GE &&
11332       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11333     LeftMBB = FirstLeft->MBB;
11334   } else {
11335     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11336     FuncInfo.MF->insert(BBI, LeftMBB);
11337     WorkList.push_back(
11338         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11339     // Put Cond in a virtual register to make it available from the new blocks.
11340     ExportFromCurrentBlock(Cond);
11341   }
11342 
11343   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11344   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11345   // directly if RHS.High equals the current upper bound.
11346   MachineBasicBlock *RightMBB;
11347   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11348       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11349     RightMBB = FirstRight->MBB;
11350   } else {
11351     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11352     FuncInfo.MF->insert(BBI, RightMBB);
11353     WorkList.push_back(
11354         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11355     // Put Cond in a virtual register to make it available from the new blocks.
11356     ExportFromCurrentBlock(Cond);
11357   }
11358 
11359   // Create the CaseBlock record that will be used to lower the branch.
11360   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11361                getCurSDLoc(), LeftProb, RightProb);
11362 
11363   if (W.MBB == SwitchMBB)
11364     visitSwitchCase(CB, SwitchMBB);
11365   else
11366     SL->SwitchCases.push_back(CB);
11367 }
11368 
11369 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11370 // from the swith statement.
11371 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11372                                             BranchProbability PeeledCaseProb) {
11373   if (PeeledCaseProb == BranchProbability::getOne())
11374     return BranchProbability::getZero();
11375   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11376 
11377   uint32_t Numerator = CaseProb.getNumerator();
11378   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11379   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11380 }
11381 
11382 // Try to peel the top probability case if it exceeds the threshold.
11383 // Return current MachineBasicBlock for the switch statement if the peeling
11384 // does not occur.
11385 // If the peeling is performed, return the newly created MachineBasicBlock
11386 // for the peeled switch statement. Also update Clusters to remove the peeled
11387 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11388 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11389     const SwitchInst &SI, CaseClusterVector &Clusters,
11390     BranchProbability &PeeledCaseProb) {
11391   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11392   // Don't perform if there is only one cluster or optimizing for size.
11393   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11394       TM.getOptLevel() == CodeGenOpt::None ||
11395       SwitchMBB->getParent()->getFunction().hasMinSize())
11396     return SwitchMBB;
11397 
11398   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11399   unsigned PeeledCaseIndex = 0;
11400   bool SwitchPeeled = false;
11401   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11402     CaseCluster &CC = Clusters[Index];
11403     if (CC.Prob < TopCaseProb)
11404       continue;
11405     TopCaseProb = CC.Prob;
11406     PeeledCaseIndex = Index;
11407     SwitchPeeled = true;
11408   }
11409   if (!SwitchPeeled)
11410     return SwitchMBB;
11411 
11412   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11413                     << TopCaseProb << "\n");
11414 
11415   // Record the MBB for the peeled switch statement.
11416   MachineFunction::iterator BBI(SwitchMBB);
11417   ++BBI;
11418   MachineBasicBlock *PeeledSwitchMBB =
11419       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11420   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11421 
11422   ExportFromCurrentBlock(SI.getCondition());
11423   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11424   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11425                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11426   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11427 
11428   Clusters.erase(PeeledCaseIt);
11429   for (CaseCluster &CC : Clusters) {
11430     LLVM_DEBUG(
11431         dbgs() << "Scale the probablity for one cluster, before scaling: "
11432                << CC.Prob << "\n");
11433     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11434     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11435   }
11436   PeeledCaseProb = TopCaseProb;
11437   return PeeledSwitchMBB;
11438 }
11439 
11440 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11441   // Extract cases from the switch.
11442   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11443   CaseClusterVector Clusters;
11444   Clusters.reserve(SI.getNumCases());
11445   for (auto I : SI.cases()) {
11446     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11447     const ConstantInt *CaseVal = I.getCaseValue();
11448     BranchProbability Prob =
11449         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11450             : BranchProbability(1, SI.getNumCases() + 1);
11451     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11452   }
11453 
11454   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11455 
11456   // Cluster adjacent cases with the same destination. We do this at all
11457   // optimization levels because it's cheap to do and will make codegen faster
11458   // if there are many clusters.
11459   sortAndRangeify(Clusters);
11460 
11461   // The branch probablity of the peeled case.
11462   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11463   MachineBasicBlock *PeeledSwitchMBB =
11464       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11465 
11466   // If there is only the default destination, jump there directly.
11467   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11468   if (Clusters.empty()) {
11469     assert(PeeledSwitchMBB == SwitchMBB);
11470     SwitchMBB->addSuccessor(DefaultMBB);
11471     if (DefaultMBB != NextBlock(SwitchMBB)) {
11472       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11473                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11474     }
11475     return;
11476   }
11477 
11478   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11479   SL->findBitTestClusters(Clusters, &SI);
11480 
11481   LLVM_DEBUG({
11482     dbgs() << "Case clusters: ";
11483     for (const CaseCluster &C : Clusters) {
11484       if (C.Kind == CC_JumpTable)
11485         dbgs() << "JT:";
11486       if (C.Kind == CC_BitTests)
11487         dbgs() << "BT:";
11488 
11489       C.Low->getValue().print(dbgs(), true);
11490       if (C.Low != C.High) {
11491         dbgs() << '-';
11492         C.High->getValue().print(dbgs(), true);
11493       }
11494       dbgs() << ' ';
11495     }
11496     dbgs() << '\n';
11497   });
11498 
11499   assert(!Clusters.empty());
11500   SwitchWorkList WorkList;
11501   CaseClusterIt First = Clusters.begin();
11502   CaseClusterIt Last = Clusters.end() - 1;
11503   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11504   // Scale the branchprobability for DefaultMBB if the peel occurs and
11505   // DefaultMBB is not replaced.
11506   if (PeeledCaseProb != BranchProbability::getZero() &&
11507       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11508     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11509   WorkList.push_back(
11510       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11511 
11512   while (!WorkList.empty()) {
11513     SwitchWorkListItem W = WorkList.pop_back_val();
11514     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11515 
11516     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11517         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11518       // For optimized builds, lower large range as a balanced binary tree.
11519       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11520       continue;
11521     }
11522 
11523     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11524   }
11525 }
11526 
11527 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11529   auto DL = getCurSDLoc();
11530   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11531   setValue(&I, DAG.getStepVector(DL, ResultVT));
11532 }
11533 
11534 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11536   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11537 
11538   SDLoc DL = getCurSDLoc();
11539   SDValue V = getValue(I.getOperand(0));
11540   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11541 
11542   if (VT.isScalableVector()) {
11543     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11544     return;
11545   }
11546 
11547   // Use VECTOR_SHUFFLE for the fixed-length vector
11548   // to maintain existing behavior.
11549   SmallVector<int, 8> Mask;
11550   unsigned NumElts = VT.getVectorMinNumElements();
11551   for (unsigned i = 0; i != NumElts; ++i)
11552     Mask.push_back(NumElts - 1 - i);
11553 
11554   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11555 }
11556 
11557 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11558   SmallVector<EVT, 4> ValueVTs;
11559   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11560                   ValueVTs);
11561   unsigned NumValues = ValueVTs.size();
11562   if (NumValues == 0) return;
11563 
11564   SmallVector<SDValue, 4> Values(NumValues);
11565   SDValue Op = getValue(I.getOperand(0));
11566 
11567   for (unsigned i = 0; i != NumValues; ++i)
11568     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11569                             SDValue(Op.getNode(), Op.getResNo() + i));
11570 
11571   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11572                            DAG.getVTList(ValueVTs), Values));
11573 }
11574 
11575 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11577   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11578 
11579   SDLoc DL = getCurSDLoc();
11580   SDValue V1 = getValue(I.getOperand(0));
11581   SDValue V2 = getValue(I.getOperand(1));
11582   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11583 
11584   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11585   if (VT.isScalableVector()) {
11586     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11587     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11588                              DAG.getConstant(Imm, DL, IdxVT)));
11589     return;
11590   }
11591 
11592   unsigned NumElts = VT.getVectorNumElements();
11593 
11594   uint64_t Idx = (NumElts + Imm) % NumElts;
11595 
11596   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11597   SmallVector<int, 8> Mask;
11598   for (unsigned i = 0; i < NumElts; ++i)
11599     Mask.push_back(Idx + i);
11600   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11601 }
11602