1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 440 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 441 // Drop the extra bits. 442 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 443 return DAG.getBitcast(ValueVT, Val); 444 } 445 446 diagnosePossiblyInvalidConstraint( 447 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 448 return DAG.getUNDEF(ValueVT); 449 } 450 451 // Handle cases such as i8 -> <1 x i1> 452 EVT ValueSVT = ValueVT.getVectorElementType(); 453 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 454 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 455 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 456 else 457 Val = ValueVT.isFloatingPoint() 458 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 459 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 460 } 461 462 return DAG.getBuildVector(ValueVT, DL, Val); 463 } 464 465 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 466 SDValue Val, SDValue *Parts, unsigned NumParts, 467 MVT PartVT, const Value *V, 468 Optional<CallingConv::ID> CallConv); 469 470 /// getCopyToParts - Create a series of nodes that contain the specified value 471 /// split into legal parts. If the parts contain more bits than Val, then, for 472 /// integers, ExtendKind can be used to specify how to generate the extra bits. 473 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 474 SDValue *Parts, unsigned NumParts, MVT PartVT, 475 const Value *V, 476 Optional<CallingConv::ID> CallConv = None, 477 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 478 // Let the target split the parts if it wants to 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 481 CallConv)) 482 return; 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 CallConv); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 567 568 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 569 CallConv); 570 571 if (DAG.getDataLayout().isBigEndian()) 572 // The odd parts were reversed by getCopyToParts - unreverse them. 573 std::reverse(Parts + RoundParts, Parts + NumParts); 574 575 NumParts = RoundParts; 576 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 577 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 578 } 579 580 // The number of parts is a power of 2. Repeatedly bisect the value using 581 // EXTRACT_ELEMENT. 582 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 583 EVT::getIntegerVT(*DAG.getContext(), 584 ValueVT.getSizeInBits()), 585 Val); 586 587 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 588 for (unsigned i = 0; i < NumParts; i += StepSize) { 589 unsigned ThisBits = StepSize * PartBits / 2; 590 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 591 SDValue &Part0 = Parts[i]; 592 SDValue &Part1 = Parts[i+StepSize/2]; 593 594 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 596 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 597 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 598 599 if (ThisBits == PartBits && ThisVT != PartVT) { 600 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 601 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 602 } 603 } 604 } 605 606 if (DAG.getDataLayout().isBigEndian()) 607 std::reverse(Parts, Parts + OrigNumParts); 608 } 609 610 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 611 const SDLoc &DL, EVT PartVT) { 612 if (!PartVT.isVector()) 613 return SDValue(); 614 615 EVT ValueVT = Val.getValueType(); 616 ElementCount PartNumElts = PartVT.getVectorElementCount(); 617 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 618 619 // We only support widening vectors with equivalent element types and 620 // fixed/scalable properties. If a target needs to widen a fixed-length type 621 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 622 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 623 PartNumElts.isScalable() != ValueNumElts.isScalable() || 624 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 625 return SDValue(); 626 627 // Widening a scalable vector to another scalable vector is done by inserting 628 // the vector into a larger undef one. 629 if (PartNumElts.isScalable()) 630 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 631 Val, DAG.getVectorIdxConstant(0, DL)); 632 633 EVT ElementVT = PartVT.getVectorElementType(); 634 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 635 // undef elements. 636 SmallVector<SDValue, 16> Ops; 637 DAG.ExtractVectorElements(Val, Ops); 638 SDValue EltUndef = DAG.getUNDEF(ElementVT); 639 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 640 641 // FIXME: Use CONCAT for 2x -> 4x. 642 return DAG.getBuildVector(PartVT, DL, Ops); 643 } 644 645 /// getCopyToPartsVector - Create a series of nodes that contain the specified 646 /// value split into legal parts. 647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 648 SDValue Val, SDValue *Parts, unsigned NumParts, 649 MVT PartVT, const Value *V, 650 Optional<CallingConv::ID> CallConv) { 651 EVT ValueVT = Val.getValueType(); 652 assert(ValueVT.isVector() && "Not a vector"); 653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 654 const bool IsABIRegCopy = CallConv.hasValue(); 655 656 if (NumParts == 1) { 657 EVT PartEVT = PartVT; 658 if (PartEVT == ValueVT) { 659 // Nothing to do. 660 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 661 // Bitconvert vector->vector case. 662 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 663 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 664 Val = Widened; 665 } else if (PartVT.isVector() && 666 PartEVT.getVectorElementType().bitsGE( 667 ValueVT.getVectorElementType()) && 668 PartEVT.getVectorElementCount() == 669 ValueVT.getVectorElementCount()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorElementCount().isScalar()) { 675 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 676 DAG.getVectorIdxConstant(0, DL)); 677 } else { 678 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 679 assert(PartVT.getFixedSizeInBits() > ValueSize && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 682 Val = DAG.getBitcast(IntermediateType, Val); 683 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 684 } 685 } 686 687 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 688 Parts[0] = Val; 689 return; 690 } 691 692 // Handle a multi-element vector. 693 EVT IntermediateVT; 694 MVT RegisterVT; 695 unsigned NumIntermediates; 696 unsigned NumRegs; 697 if (IsABIRegCopy) { 698 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 699 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 700 NumIntermediates, RegisterVT); 701 } else { 702 NumRegs = 703 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 704 NumIntermediates, RegisterVT); 705 } 706 707 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 708 NumParts = NumRegs; // Silence a compiler warning. 709 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 710 711 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 712 "Mixing scalable and fixed vectors when copying in parts"); 713 714 Optional<ElementCount> DestEltCnt; 715 716 if (IntermediateVT.isVector()) 717 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 718 else 719 DestEltCnt = ElementCount::getFixed(NumIntermediates); 720 721 EVT BuiltVectorTy = EVT::getVectorVT( 722 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 723 724 if (ValueVT == BuiltVectorTy) { 725 // Nothing to do. 726 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 727 // Bitconvert vector->vector case. 728 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 729 } else if (SDValue Widened = 730 widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 731 Val = Widened; 732 } else if (BuiltVectorTy.getVectorElementType().bitsGE( 733 ValueVT.getVectorElementType()) && 734 BuiltVectorTy.getVectorElementCount() == 735 ValueVT.getVectorElementCount()) { 736 // Promoted vector extract 737 Val = DAG.getAnyExtOrTrunc(Val, DL, BuiltVectorTy); 738 } 739 740 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 // This does something sensible for scalable vectors - see the 747 // definition of EXTRACT_SUBVECTOR for further details. 748 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 749 Ops[i] = 750 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 751 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 752 } else { 753 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 754 DAG.getVectorIdxConstant(i, DL)); 755 } 756 } 757 758 // Split the intermediate operands into legal parts. 759 if (NumParts == NumIntermediates) { 760 // If the register was not expanded, promote or copy the value, 761 // as appropriate. 762 for (unsigned i = 0; i != NumParts; ++i) 763 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 764 } else if (NumParts > 0) { 765 // If the intermediate type was expanded, split each the value into 766 // legal parts. 767 assert(NumIntermediates != 0 && "division by zero"); 768 assert(NumParts % NumIntermediates == 0 && 769 "Must expand into a divisible number of parts!"); 770 unsigned Factor = NumParts / NumIntermediates; 771 for (unsigned i = 0; i != NumIntermediates; ++i) 772 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 773 CallConv); 774 } 775 } 776 777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 778 EVT valuevt, Optional<CallingConv::ID> CC) 779 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 780 RegCount(1, regs.size()), CallConv(CC) {} 781 782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 783 const DataLayout &DL, unsigned Reg, Type *Ty, 784 Optional<CallingConv::ID> CC) { 785 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 786 787 CallConv = CC; 788 789 for (EVT ValueVT : ValueVTs) { 790 unsigned NumRegs = 791 isABIMangled() 792 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 793 : TLI.getNumRegisters(Context, ValueVT); 794 MVT RegisterVT = 795 isABIMangled() 796 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 797 : TLI.getRegisterType(Context, ValueVT); 798 for (unsigned i = 0; i != NumRegs; ++i) 799 Regs.push_back(Reg + i); 800 RegVTs.push_back(RegisterVT); 801 RegCount.push_back(NumRegs); 802 Reg += NumRegs; 803 } 804 } 805 806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 807 FunctionLoweringInfo &FuncInfo, 808 const SDLoc &dl, SDValue &Chain, 809 SDValue *Flag, const Value *V) const { 810 // A Value with type {} or [0 x %t] needs no registers. 811 if (ValueVTs.empty()) 812 return SDValue(); 813 814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 815 816 // Assemble the legal parts into the final values. 817 SmallVector<SDValue, 4> Values(ValueVTs.size()); 818 SmallVector<SDValue, 8> Parts; 819 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 820 // Copy the legal parts from the registers. 821 EVT ValueVT = ValueVTs[Value]; 822 unsigned NumRegs = RegCount[Value]; 823 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 824 *DAG.getContext(), 825 CallConv.getValue(), RegVTs[Value]) 826 : RegVTs[Value]; 827 828 Parts.resize(NumRegs); 829 for (unsigned i = 0; i != NumRegs; ++i) { 830 SDValue P; 831 if (!Flag) { 832 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 833 } else { 834 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 835 *Flag = P.getValue(2); 836 } 837 838 Chain = P.getValue(1); 839 Parts[i] = P; 840 841 // If the source register was virtual and if we know something about it, 842 // add an assert node. 843 if (!Register::isVirtualRegister(Regs[Part + i]) || 844 !RegisterVT.isInteger()) 845 continue; 846 847 const FunctionLoweringInfo::LiveOutInfo *LOI = 848 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 849 if (!LOI) 850 continue; 851 852 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 853 unsigned NumSignBits = LOI->NumSignBits; 854 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 855 856 if (NumZeroBits == RegSize) { 857 // The current value is a zero. 858 // Explicitly express that as it would be easier for 859 // optimizations to kick in. 860 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 861 continue; 862 } 863 864 // FIXME: We capture more information than the dag can represent. For 865 // now, just use the tightest assertzext/assertsext possible. 866 bool isSExt; 867 EVT FromVT(MVT::Other); 868 if (NumZeroBits) { 869 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 870 isSExt = false; 871 } else if (NumSignBits > 1) { 872 FromVT = 873 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 874 isSExt = true; 875 } else { 876 continue; 877 } 878 // Add an assertion node. 879 assert(FromVT != MVT::Other); 880 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 881 RegisterVT, P, DAG.getValueType(FromVT)); 882 } 883 884 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 885 RegisterVT, ValueVT, V, CallConv); 886 Part += NumRegs; 887 Parts.clear(); 888 } 889 890 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 891 } 892 893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 894 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 895 const Value *V, 896 ISD::NodeType PreferredExtendType) const { 897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 898 ISD::NodeType ExtendKind = PreferredExtendType; 899 900 // Get the list of the values's legal parts. 901 unsigned NumRegs = Regs.size(); 902 SmallVector<SDValue, 8> Parts(NumRegs); 903 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 904 unsigned NumParts = RegCount[Value]; 905 906 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 907 *DAG.getContext(), 908 CallConv.getValue(), RegVTs[Value]) 909 : RegVTs[Value]; 910 911 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 912 ExtendKind = ISD::ZERO_EXTEND; 913 914 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 915 NumParts, RegisterVT, V, CallConv, ExtendKind); 916 Part += NumParts; 917 } 918 919 // Copy the parts into the registers. 920 SmallVector<SDValue, 8> Chains(NumRegs); 921 for (unsigned i = 0; i != NumRegs; ++i) { 922 SDValue Part; 923 if (!Flag) { 924 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 925 } else { 926 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 927 *Flag = Part.getValue(1); 928 } 929 930 Chains[i] = Part.getValue(0); 931 } 932 933 if (NumRegs == 1 || Flag) 934 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 935 // flagged to it. That is the CopyToReg nodes and the user are considered 936 // a single scheduling unit. If we create a TokenFactor and return it as 937 // chain, then the TokenFactor is both a predecessor (operand) of the 938 // user as well as a successor (the TF operands are flagged to the user). 939 // c1, f1 = CopyToReg 940 // c2, f2 = CopyToReg 941 // c3 = TokenFactor c1, c2 942 // ... 943 // = op c3, ..., f2 944 Chain = Chains[NumRegs-1]; 945 else 946 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 947 } 948 949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 950 unsigned MatchingIdx, const SDLoc &dl, 951 SelectionDAG &DAG, 952 std::vector<SDValue> &Ops) const { 953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 954 955 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 956 if (HasMatching) 957 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 958 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 959 // Put the register class of the virtual registers in the flag word. That 960 // way, later passes can recompute register class constraints for inline 961 // assembly as well as normal instructions. 962 // Don't do this for tied operands that can use the regclass information 963 // from the def. 964 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 965 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 966 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 967 } 968 969 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 970 Ops.push_back(Res); 971 972 if (Code == InlineAsm::Kind_Clobber) { 973 // Clobbers should always have a 1:1 mapping with registers, and may 974 // reference registers that have illegal (e.g. vector) types. Hence, we 975 // shouldn't try to apply any sort of splitting logic to them. 976 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 977 "No 1:1 mapping from clobbers to regs?"); 978 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 979 (void)SP; 980 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 981 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 982 assert( 983 (Regs[I] != SP || 984 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 985 "If we clobbered the stack pointer, MFI should know about it."); 986 } 987 return; 988 } 989 990 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 991 MVT RegisterVT = RegVTs[Value]; 992 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 993 RegisterVT); 994 for (unsigned i = 0; i != NumRegs; ++i) { 995 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 996 unsigned TheReg = Regs[Reg++]; 997 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 998 } 999 } 1000 } 1001 1002 SmallVector<std::pair<unsigned, TypeSize>, 4> 1003 RegsForValue::getRegsAndSizes() const { 1004 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1005 unsigned I = 0; 1006 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1007 unsigned RegCount = std::get<0>(CountAndVT); 1008 MVT RegisterVT = std::get<1>(CountAndVT); 1009 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1010 for (unsigned E = I + RegCount; I != E; ++I) 1011 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1012 } 1013 return OutVec; 1014 } 1015 1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1017 const TargetLibraryInfo *li) { 1018 AA = aa; 1019 GFI = gfi; 1020 LibInfo = li; 1021 DL = &DAG.getDataLayout(); 1022 Context = DAG.getContext(); 1023 LPadToCallSiteMap.clear(); 1024 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1025 } 1026 1027 void SelectionDAGBuilder::clear() { 1028 NodeMap.clear(); 1029 UnusedArgNodeMap.clear(); 1030 PendingLoads.clear(); 1031 PendingExports.clear(); 1032 PendingConstrainedFP.clear(); 1033 PendingConstrainedFPStrict.clear(); 1034 CurInst = nullptr; 1035 HasTailCall = false; 1036 SDNodeOrder = LowestSDNodeOrder; 1037 StatepointLowering.clear(); 1038 } 1039 1040 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1041 DanglingDebugInfoMap.clear(); 1042 } 1043 1044 // Update DAG root to include dependencies on Pending chains. 1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1046 SDValue Root = DAG.getRoot(); 1047 1048 if (Pending.empty()) 1049 return Root; 1050 1051 // Add current root to PendingChains, unless we already indirectly 1052 // depend on it. 1053 if (Root.getOpcode() != ISD::EntryToken) { 1054 unsigned i = 0, e = Pending.size(); 1055 for (; i != e; ++i) { 1056 assert(Pending[i].getNode()->getNumOperands() > 1); 1057 if (Pending[i].getNode()->getOperand(0) == Root) 1058 break; // Don't add the root if we already indirectly depend on it. 1059 } 1060 1061 if (i == e) 1062 Pending.push_back(Root); 1063 } 1064 1065 if (Pending.size() == 1) 1066 Root = Pending[0]; 1067 else 1068 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1069 1070 DAG.setRoot(Root); 1071 Pending.clear(); 1072 return Root; 1073 } 1074 1075 SDValue SelectionDAGBuilder::getMemoryRoot() { 1076 return updateRoot(PendingLoads); 1077 } 1078 1079 SDValue SelectionDAGBuilder::getRoot() { 1080 // Chain up all pending constrained intrinsics together with all 1081 // pending loads, by simply appending them to PendingLoads and 1082 // then calling getMemoryRoot(). 1083 PendingLoads.reserve(PendingLoads.size() + 1084 PendingConstrainedFP.size() + 1085 PendingConstrainedFPStrict.size()); 1086 PendingLoads.append(PendingConstrainedFP.begin(), 1087 PendingConstrainedFP.end()); 1088 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFP.clear(); 1091 PendingConstrainedFPStrict.clear(); 1092 return getMemoryRoot(); 1093 } 1094 1095 SDValue SelectionDAGBuilder::getControlRoot() { 1096 // We need to emit pending fpexcept.strict constrained intrinsics, 1097 // so append them to the PendingExports list. 1098 PendingExports.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFPStrict.clear(); 1101 return updateRoot(PendingExports); 1102 } 1103 1104 void SelectionDAGBuilder::visit(const Instruction &I) { 1105 // Set up outgoing PHI node register values before emitting the terminator. 1106 if (I.isTerminator()) { 1107 HandlePHINodesInSuccessorBlocks(I.getParent()); 1108 } 1109 1110 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1111 if (!isa<DbgInfoIntrinsic>(I)) 1112 ++SDNodeOrder; 1113 1114 CurInst = &I; 1115 1116 visit(I.getOpcode(), I); 1117 1118 if (!I.isTerminator() && !HasTailCall && 1119 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1120 CopyToExportRegsIfNeeded(&I); 1121 1122 CurInst = nullptr; 1123 } 1124 1125 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1126 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1127 } 1128 1129 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1130 // Note: this doesn't use InstVisitor, because it has to work with 1131 // ConstantExpr's in addition to instructions. 1132 switch (Opcode) { 1133 default: llvm_unreachable("Unknown instruction type encountered!"); 1134 // Build the switch statement using the Instruction.def file. 1135 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1136 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1137 #include "llvm/IR/Instruction.def" 1138 } 1139 } 1140 1141 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1142 DebugLoc DL, unsigned Order) { 1143 // We treat variadic dbg_values differently at this stage. 1144 if (DI->hasArgList()) { 1145 // For variadic dbg_values we will now insert an undef. 1146 // FIXME: We can potentially recover these! 1147 SmallVector<SDDbgOperand, 2> Locs; 1148 for (const Value *V : DI->getValues()) { 1149 auto Undef = UndefValue::get(V->getType()); 1150 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1151 } 1152 SDDbgValue *SDV = DAG.getDbgValueList( 1153 DI->getVariable(), DI->getExpression(), Locs, {}, 1154 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1155 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1156 } else { 1157 // TODO: Dangling debug info will eventually either be resolved or produce 1158 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1159 // between the original dbg.value location and its resolved DBG_VALUE, 1160 // which we should ideally fill with an extra Undef DBG_VALUE. 1161 assert(DI->getNumVariableLocationOps() == 1 && 1162 "DbgValueInst without an ArgList should have a single location " 1163 "operand."); 1164 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1165 } 1166 } 1167 1168 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1169 const DIExpression *Expr) { 1170 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1171 const DbgValueInst *DI = DDI.getDI(); 1172 DIVariable *DanglingVariable = DI->getVariable(); 1173 DIExpression *DanglingExpr = DI->getExpression(); 1174 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1175 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1176 return true; 1177 } 1178 return false; 1179 }; 1180 1181 for (auto &DDIMI : DanglingDebugInfoMap) { 1182 DanglingDebugInfoVector &DDIV = DDIMI.second; 1183 1184 // If debug info is to be dropped, run it through final checks to see 1185 // whether it can be salvaged. 1186 for (auto &DDI : DDIV) 1187 if (isMatchingDbgValue(DDI)) 1188 salvageUnresolvedDbgValue(DDI); 1189 1190 erase_if(DDIV, isMatchingDbgValue); 1191 } 1192 } 1193 1194 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1195 // generate the debug data structures now that we've seen its definition. 1196 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1197 SDValue Val) { 1198 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1199 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1200 return; 1201 1202 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1203 for (auto &DDI : DDIV) { 1204 const DbgValueInst *DI = DDI.getDI(); 1205 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1206 assert(DI && "Ill-formed DanglingDebugInfo"); 1207 DebugLoc dl = DDI.getdl(); 1208 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1209 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1210 DILocalVariable *Variable = DI->getVariable(); 1211 DIExpression *Expr = DI->getExpression(); 1212 assert(Variable->isValidLocationForIntrinsic(dl) && 1213 "Expected inlined-at fields to agree"); 1214 SDDbgValue *SDV; 1215 if (Val.getNode()) { 1216 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1217 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1218 // we couldn't resolve it directly when examining the DbgValue intrinsic 1219 // in the first place we should not be more successful here). Unless we 1220 // have some test case that prove this to be correct we should avoid 1221 // calling EmitFuncArgumentDbgValue here. 1222 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1223 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1224 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1225 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1226 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1227 // inserted after the definition of Val when emitting the instructions 1228 // after ISel. An alternative could be to teach 1229 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1230 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1231 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1232 << ValSDNodeOrder << "\n"); 1233 SDV = getDbgValue(Val, Variable, Expr, dl, 1234 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1235 DAG.AddDbgValue(SDV, false); 1236 } else 1237 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1238 << "in EmitFuncArgumentDbgValue\n"); 1239 } else { 1240 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1241 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1242 auto SDV = 1243 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1244 DAG.AddDbgValue(SDV, false); 1245 } 1246 } 1247 DDIV.clear(); 1248 } 1249 1250 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1251 // TODO: For the variadic implementation, instead of only checking the fail 1252 // state of `handleDebugValue`, we need know specifically which values were 1253 // invalid, so that we attempt to salvage only those values when processing 1254 // a DIArgList. 1255 assert(!DDI.getDI()->hasArgList() && 1256 "Not implemented for variadic dbg_values"); 1257 Value *V = DDI.getDI()->getValue(0); 1258 DILocalVariable *Var = DDI.getDI()->getVariable(); 1259 DIExpression *Expr = DDI.getDI()->getExpression(); 1260 DebugLoc DL = DDI.getdl(); 1261 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1262 unsigned SDOrder = DDI.getSDNodeOrder(); 1263 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1264 // that DW_OP_stack_value is desired. 1265 assert(isa<DbgValueInst>(DDI.getDI())); 1266 bool StackValue = true; 1267 1268 // Can this Value can be encoded without any further work? 1269 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1270 return; 1271 1272 // Attempt to salvage back through as many instructions as possible. Bail if 1273 // a non-instruction is seen, such as a constant expression or global 1274 // variable. FIXME: Further work could recover those too. 1275 while (isa<Instruction>(V)) { 1276 Instruction &VAsInst = *cast<Instruction>(V); 1277 // Temporary "0", awaiting real implementation. 1278 SmallVector<Value *, 4> AdditionalValues; 1279 DIExpression *SalvagedExpr = 1280 salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0, AdditionalValues); 1281 1282 // If we cannot salvage any further, and haven't yet found a suitable debug 1283 // expression, bail out. 1284 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1285 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1286 // here for variadic dbg_values, remove that condition. 1287 if (!SalvagedExpr || !AdditionalValues.empty()) 1288 break; 1289 1290 // New value and expr now represent this debuginfo. 1291 V = VAsInst.getOperand(0); 1292 Expr = SalvagedExpr; 1293 1294 // Some kind of simplification occurred: check whether the operand of the 1295 // salvaged debug expression can be encoded in this DAG. 1296 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1297 /*IsVariadic=*/false)) { 1298 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1299 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1300 return; 1301 } 1302 } 1303 1304 // This was the final opportunity to salvage this debug information, and it 1305 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1306 // any earlier variable location. 1307 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1308 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1309 DAG.AddDbgValue(SDV, false); 1310 1311 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1312 << "\n"); 1313 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1314 << "\n"); 1315 } 1316 1317 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1318 DILocalVariable *Var, 1319 DIExpression *Expr, DebugLoc dl, 1320 DebugLoc InstDL, unsigned Order, 1321 bool IsVariadic) { 1322 if (Values.empty()) 1323 return true; 1324 SmallVector<SDDbgOperand> LocationOps; 1325 SmallVector<SDNode *> Dependencies; 1326 for (const Value *V : Values) { 1327 // Constant value. 1328 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1329 isa<ConstantPointerNull>(V)) { 1330 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1331 continue; 1332 } 1333 1334 // If the Value is a frame index, we can create a FrameIndex debug value 1335 // without relying on the DAG at all. 1336 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1337 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1338 if (SI != FuncInfo.StaticAllocaMap.end()) { 1339 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1340 continue; 1341 } 1342 } 1343 1344 // Do not use getValue() in here; we don't want to generate code at 1345 // this point if it hasn't been done yet. 1346 SDValue N = NodeMap[V]; 1347 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1348 N = UnusedArgNodeMap[V]; 1349 if (N.getNode()) { 1350 // Only emit func arg dbg value for non-variadic dbg.values for now. 1351 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1352 return true; 1353 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1354 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1355 // describe stack slot locations. 1356 // 1357 // Consider "int x = 0; int *px = &x;". There are two kinds of 1358 // interesting debug values here after optimization: 1359 // 1360 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1361 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1362 // 1363 // Both describe the direct values of their associated variables. 1364 Dependencies.push_back(N.getNode()); 1365 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1366 continue; 1367 } 1368 LocationOps.emplace_back( 1369 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1370 continue; 1371 } 1372 1373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1374 // Special rules apply for the first dbg.values of parameter variables in a 1375 // function. Identify them by the fact they reference Argument Values, that 1376 // they're parameters, and they are parameters of the current function. We 1377 // need to let them dangle until they get an SDNode. 1378 bool IsParamOfFunc = 1379 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1380 if (IsParamOfFunc) 1381 return false; 1382 1383 // The value is not used in this block yet (or it would have an SDNode). 1384 // We still want the value to appear for the user if possible -- if it has 1385 // an associated VReg, we can refer to that instead. 1386 auto VMI = FuncInfo.ValueMap.find(V); 1387 if (VMI != FuncInfo.ValueMap.end()) { 1388 unsigned Reg = VMI->second; 1389 // If this is a PHI node, it may be split up into several MI PHI nodes 1390 // (in FunctionLoweringInfo::set). 1391 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1392 V->getType(), None); 1393 if (RFV.occupiesMultipleRegs()) { 1394 // FIXME: We could potentially support variadic dbg_values here. 1395 if (IsVariadic) 1396 return false; 1397 unsigned Offset = 0; 1398 unsigned BitsToDescribe = 0; 1399 if (auto VarSize = Var->getSizeInBits()) 1400 BitsToDescribe = *VarSize; 1401 if (auto Fragment = Expr->getFragmentInfo()) 1402 BitsToDescribe = Fragment->SizeInBits; 1403 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1404 // Bail out if all bits are described already. 1405 if (Offset >= BitsToDescribe) 1406 break; 1407 // TODO: handle scalable vectors. 1408 unsigned RegisterSize = RegAndSize.second; 1409 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1410 ? BitsToDescribe - Offset 1411 : RegisterSize; 1412 auto FragmentExpr = DIExpression::createFragmentExpression( 1413 Expr, Offset, FragmentSize); 1414 if (!FragmentExpr) 1415 continue; 1416 SDDbgValue *SDV = DAG.getVRegDbgValue( 1417 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1418 DAG.AddDbgValue(SDV, false); 1419 Offset += RegisterSize; 1420 } 1421 return true; 1422 } 1423 // We can use simple vreg locations for variadic dbg_values as well. 1424 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1425 continue; 1426 } 1427 // We failed to create a SDDbgOperand for V. 1428 return false; 1429 } 1430 1431 // We have created a SDDbgOperand for each Value in Values. 1432 // Should use Order instead of SDNodeOrder? 1433 assert(!LocationOps.empty()); 1434 SDDbgValue *SDV = 1435 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1436 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1437 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1438 return true; 1439 } 1440 1441 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1442 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1443 for (auto &Pair : DanglingDebugInfoMap) 1444 for (auto &DDI : Pair.second) 1445 salvageUnresolvedDbgValue(DDI); 1446 clearDanglingDebugInfo(); 1447 } 1448 1449 /// getCopyFromRegs - If there was virtual register allocated for the value V 1450 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1451 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1452 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1453 SDValue Result; 1454 1455 if (It != FuncInfo.ValueMap.end()) { 1456 Register InReg = It->second; 1457 1458 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1459 DAG.getDataLayout(), InReg, Ty, 1460 None); // This is not an ABI copy. 1461 SDValue Chain = DAG.getEntryNode(); 1462 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1463 V); 1464 resolveDanglingDebugInfo(V, Result); 1465 } 1466 1467 return Result; 1468 } 1469 1470 /// getValue - Return an SDValue for the given Value. 1471 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1472 // If we already have an SDValue for this value, use it. It's important 1473 // to do this first, so that we don't create a CopyFromReg if we already 1474 // have a regular SDValue. 1475 SDValue &N = NodeMap[V]; 1476 if (N.getNode()) return N; 1477 1478 // If there's a virtual register allocated and initialized for this 1479 // value, use it. 1480 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1481 return copyFromReg; 1482 1483 // Otherwise create a new SDValue and remember it. 1484 SDValue Val = getValueImpl(V); 1485 NodeMap[V] = Val; 1486 resolveDanglingDebugInfo(V, Val); 1487 return Val; 1488 } 1489 1490 /// getNonRegisterValue - Return an SDValue for the given Value, but 1491 /// don't look in FuncInfo.ValueMap for a virtual register. 1492 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1493 // If we already have an SDValue for this value, use it. 1494 SDValue &N = NodeMap[V]; 1495 if (N.getNode()) { 1496 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1497 // Remove the debug location from the node as the node is about to be used 1498 // in a location which may differ from the original debug location. This 1499 // is relevant to Constant and ConstantFP nodes because they can appear 1500 // as constant expressions inside PHI nodes. 1501 N->setDebugLoc(DebugLoc()); 1502 } 1503 return N; 1504 } 1505 1506 // Otherwise create a new SDValue and remember it. 1507 SDValue Val = getValueImpl(V); 1508 NodeMap[V] = Val; 1509 resolveDanglingDebugInfo(V, Val); 1510 return Val; 1511 } 1512 1513 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1514 /// Create an SDValue for the given value. 1515 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1517 1518 if (const Constant *C = dyn_cast<Constant>(V)) { 1519 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1520 1521 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1522 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1523 1524 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1525 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1526 1527 if (isa<ConstantPointerNull>(C)) { 1528 unsigned AS = V->getType()->getPointerAddressSpace(); 1529 return DAG.getConstant(0, getCurSDLoc(), 1530 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1531 } 1532 1533 if (match(C, m_VScale(DAG.getDataLayout()))) 1534 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1535 1536 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1537 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1538 1539 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1540 return DAG.getUNDEF(VT); 1541 1542 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1543 visit(CE->getOpcode(), *CE); 1544 SDValue N1 = NodeMap[V]; 1545 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1546 return N1; 1547 } 1548 1549 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1550 SmallVector<SDValue, 4> Constants; 1551 for (const Use &U : C->operands()) { 1552 SDNode *Val = getValue(U).getNode(); 1553 // If the operand is an empty aggregate, there are no values. 1554 if (!Val) continue; 1555 // Add each leaf value from the operand to the Constants list 1556 // to form a flattened list of all the values. 1557 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1558 Constants.push_back(SDValue(Val, i)); 1559 } 1560 1561 return DAG.getMergeValues(Constants, getCurSDLoc()); 1562 } 1563 1564 if (const ConstantDataSequential *CDS = 1565 dyn_cast<ConstantDataSequential>(C)) { 1566 SmallVector<SDValue, 4> Ops; 1567 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1568 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1569 // Add each leaf value from the operand to the Constants list 1570 // to form a flattened list of all the values. 1571 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1572 Ops.push_back(SDValue(Val, i)); 1573 } 1574 1575 if (isa<ArrayType>(CDS->getType())) 1576 return DAG.getMergeValues(Ops, getCurSDLoc()); 1577 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1578 } 1579 1580 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1581 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1582 "Unknown struct or array constant!"); 1583 1584 SmallVector<EVT, 4> ValueVTs; 1585 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1586 unsigned NumElts = ValueVTs.size(); 1587 if (NumElts == 0) 1588 return SDValue(); // empty struct 1589 SmallVector<SDValue, 4> Constants(NumElts); 1590 for (unsigned i = 0; i != NumElts; ++i) { 1591 EVT EltVT = ValueVTs[i]; 1592 if (isa<UndefValue>(C)) 1593 Constants[i] = DAG.getUNDEF(EltVT); 1594 else if (EltVT.isFloatingPoint()) 1595 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1596 else 1597 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1598 } 1599 1600 return DAG.getMergeValues(Constants, getCurSDLoc()); 1601 } 1602 1603 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1604 return DAG.getBlockAddress(BA, VT); 1605 1606 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1607 return getValue(Equiv->getGlobalValue()); 1608 1609 VectorType *VecTy = cast<VectorType>(V->getType()); 1610 1611 // Now that we know the number and type of the elements, get that number of 1612 // elements into the Ops array based on what kind of constant it is. 1613 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1614 SmallVector<SDValue, 16> Ops; 1615 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1616 for (unsigned i = 0; i != NumElements; ++i) 1617 Ops.push_back(getValue(CV->getOperand(i))); 1618 1619 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1620 } else if (isa<ConstantAggregateZero>(C)) { 1621 EVT EltVT = 1622 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1623 1624 SDValue Op; 1625 if (EltVT.isFloatingPoint()) 1626 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1627 else 1628 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1629 1630 if (isa<ScalableVectorType>(VecTy)) 1631 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1632 else { 1633 SmallVector<SDValue, 16> Ops; 1634 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1635 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1636 } 1637 } 1638 llvm_unreachable("Unknown vector constant"); 1639 } 1640 1641 // If this is a static alloca, generate it as the frameindex instead of 1642 // computation. 1643 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1644 DenseMap<const AllocaInst*, int>::iterator SI = 1645 FuncInfo.StaticAllocaMap.find(AI); 1646 if (SI != FuncInfo.StaticAllocaMap.end()) 1647 return DAG.getFrameIndex(SI->second, 1648 TLI.getFrameIndexTy(DAG.getDataLayout())); 1649 } 1650 1651 // If this is an instruction which fast-isel has deferred, select it now. 1652 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1653 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1654 1655 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1656 Inst->getType(), None); 1657 SDValue Chain = DAG.getEntryNode(); 1658 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1659 } 1660 1661 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1662 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1663 } 1664 llvm_unreachable("Can't get register for value!"); 1665 } 1666 1667 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1670 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1671 bool IsSEH = isAsynchronousEHPersonality(Pers); 1672 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1673 if (!IsSEH) 1674 CatchPadMBB->setIsEHScopeEntry(); 1675 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1676 if (IsMSVCCXX || IsCoreCLR) 1677 CatchPadMBB->setIsEHFuncletEntry(); 1678 } 1679 1680 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1681 // Update machine-CFG edge. 1682 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1683 FuncInfo.MBB->addSuccessor(TargetMBB); 1684 TargetMBB->setIsEHCatchretTarget(true); 1685 DAG.getMachineFunction().setHasEHCatchret(true); 1686 1687 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1688 bool IsSEH = isAsynchronousEHPersonality(Pers); 1689 if (IsSEH) { 1690 // If this is not a fall-through branch or optimizations are switched off, 1691 // emit the branch. 1692 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1693 TM.getOptLevel() == CodeGenOpt::None) 1694 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1695 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1696 return; 1697 } 1698 1699 // Figure out the funclet membership for the catchret's successor. 1700 // This will be used by the FuncletLayout pass to determine how to order the 1701 // BB's. 1702 // A 'catchret' returns to the outer scope's color. 1703 Value *ParentPad = I.getCatchSwitchParentPad(); 1704 const BasicBlock *SuccessorColor; 1705 if (isa<ConstantTokenNone>(ParentPad)) 1706 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1707 else 1708 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1709 assert(SuccessorColor && "No parent funclet for catchret!"); 1710 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1711 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1712 1713 // Create the terminator node. 1714 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1715 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1716 DAG.getBasicBlock(SuccessorColorMBB)); 1717 DAG.setRoot(Ret); 1718 } 1719 1720 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1721 // Don't emit any special code for the cleanuppad instruction. It just marks 1722 // the start of an EH scope/funclet. 1723 FuncInfo.MBB->setIsEHScopeEntry(); 1724 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1725 if (Pers != EHPersonality::Wasm_CXX) { 1726 FuncInfo.MBB->setIsEHFuncletEntry(); 1727 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1728 } 1729 } 1730 1731 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1732 // not match, it is OK to add only the first unwind destination catchpad to the 1733 // successors, because there will be at least one invoke instruction within the 1734 // catch scope that points to the next unwind destination, if one exists, so 1735 // CFGSort cannot mess up with BB sorting order. 1736 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1737 // call within them, and catchpads only consisting of 'catch (...)' have a 1738 // '__cxa_end_catch' call within them, both of which generate invokes in case 1739 // the next unwind destination exists, i.e., the next unwind destination is not 1740 // the caller.) 1741 // 1742 // Having at most one EH pad successor is also simpler and helps later 1743 // transformations. 1744 // 1745 // For example, 1746 // current: 1747 // invoke void @foo to ... unwind label %catch.dispatch 1748 // catch.dispatch: 1749 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1750 // catch.start: 1751 // ... 1752 // ... in this BB or some other child BB dominated by this BB there will be an 1753 // invoke that points to 'next' BB as an unwind destination 1754 // 1755 // next: ; We don't need to add this to 'current' BB's successor 1756 // ... 1757 static void findWasmUnwindDestinations( 1758 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1759 BranchProbability Prob, 1760 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1761 &UnwindDests) { 1762 while (EHPadBB) { 1763 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1764 if (isa<CleanupPadInst>(Pad)) { 1765 // Stop on cleanup pads. 1766 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1767 UnwindDests.back().first->setIsEHScopeEntry(); 1768 break; 1769 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1770 // Add the catchpad handlers to the possible destinations. We don't 1771 // continue to the unwind destination of the catchswitch for wasm. 1772 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1773 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1774 UnwindDests.back().first->setIsEHScopeEntry(); 1775 } 1776 break; 1777 } else { 1778 continue; 1779 } 1780 } 1781 } 1782 1783 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1784 /// many places it could ultimately go. In the IR, we have a single unwind 1785 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1786 /// This function skips over imaginary basic blocks that hold catchswitch 1787 /// instructions, and finds all the "real" machine 1788 /// basic block destinations. As those destinations may not be successors of 1789 /// EHPadBB, here we also calculate the edge probability to those destinations. 1790 /// The passed-in Prob is the edge probability to EHPadBB. 1791 static void findUnwindDestinations( 1792 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1793 BranchProbability Prob, 1794 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1795 &UnwindDests) { 1796 EHPersonality Personality = 1797 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1798 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1799 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1800 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1801 bool IsSEH = isAsynchronousEHPersonality(Personality); 1802 1803 if (IsWasmCXX) { 1804 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1805 assert(UnwindDests.size() <= 1 && 1806 "There should be at most one unwind destination for wasm"); 1807 return; 1808 } 1809 1810 while (EHPadBB) { 1811 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1812 BasicBlock *NewEHPadBB = nullptr; 1813 if (isa<LandingPadInst>(Pad)) { 1814 // Stop on landingpads. They are not funclets. 1815 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1816 break; 1817 } else if (isa<CleanupPadInst>(Pad)) { 1818 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1819 // personalities. 1820 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1821 UnwindDests.back().first->setIsEHScopeEntry(); 1822 UnwindDests.back().first->setIsEHFuncletEntry(); 1823 break; 1824 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1825 // Add the catchpad handlers to the possible destinations. 1826 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1827 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1828 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1829 if (IsMSVCCXX || IsCoreCLR) 1830 UnwindDests.back().first->setIsEHFuncletEntry(); 1831 if (!IsSEH) 1832 UnwindDests.back().first->setIsEHScopeEntry(); 1833 } 1834 NewEHPadBB = CatchSwitch->getUnwindDest(); 1835 } else { 1836 continue; 1837 } 1838 1839 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1840 if (BPI && NewEHPadBB) 1841 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1842 EHPadBB = NewEHPadBB; 1843 } 1844 } 1845 1846 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1847 // Update successor info. 1848 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1849 auto UnwindDest = I.getUnwindDest(); 1850 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1851 BranchProbability UnwindDestProb = 1852 (BPI && UnwindDest) 1853 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1854 : BranchProbability::getZero(); 1855 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1856 for (auto &UnwindDest : UnwindDests) { 1857 UnwindDest.first->setIsEHPad(); 1858 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1859 } 1860 FuncInfo.MBB->normalizeSuccProbs(); 1861 1862 // Create the terminator node. 1863 SDValue Ret = 1864 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1865 DAG.setRoot(Ret); 1866 } 1867 1868 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1869 report_fatal_error("visitCatchSwitch not yet implemented!"); 1870 } 1871 1872 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1874 auto &DL = DAG.getDataLayout(); 1875 SDValue Chain = getControlRoot(); 1876 SmallVector<ISD::OutputArg, 8> Outs; 1877 SmallVector<SDValue, 8> OutVals; 1878 1879 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1880 // lower 1881 // 1882 // %val = call <ty> @llvm.experimental.deoptimize() 1883 // ret <ty> %val 1884 // 1885 // differently. 1886 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1887 LowerDeoptimizingReturn(); 1888 return; 1889 } 1890 1891 if (!FuncInfo.CanLowerReturn) { 1892 unsigned DemoteReg = FuncInfo.DemoteRegister; 1893 const Function *F = I.getParent()->getParent(); 1894 1895 // Emit a store of the return value through the virtual register. 1896 // Leave Outs empty so that LowerReturn won't try to load return 1897 // registers the usual way. 1898 SmallVector<EVT, 1> PtrValueVTs; 1899 ComputeValueVTs(TLI, DL, 1900 F->getReturnType()->getPointerTo( 1901 DAG.getDataLayout().getAllocaAddrSpace()), 1902 PtrValueVTs); 1903 1904 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1905 DemoteReg, PtrValueVTs[0]); 1906 SDValue RetOp = getValue(I.getOperand(0)); 1907 1908 SmallVector<EVT, 4> ValueVTs, MemVTs; 1909 SmallVector<uint64_t, 4> Offsets; 1910 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1911 &Offsets); 1912 unsigned NumValues = ValueVTs.size(); 1913 1914 SmallVector<SDValue, 4> Chains(NumValues); 1915 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1916 for (unsigned i = 0; i != NumValues; ++i) { 1917 // An aggregate return value cannot wrap around the address space, so 1918 // offsets to its parts don't wrap either. 1919 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1920 TypeSize::Fixed(Offsets[i])); 1921 1922 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1923 if (MemVTs[i] != ValueVTs[i]) 1924 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1925 Chains[i] = DAG.getStore( 1926 Chain, getCurSDLoc(), Val, 1927 // FIXME: better loc info would be nice. 1928 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1929 commonAlignment(BaseAlign, Offsets[i])); 1930 } 1931 1932 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1933 MVT::Other, Chains); 1934 } else if (I.getNumOperands() != 0) { 1935 SmallVector<EVT, 4> ValueVTs; 1936 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1937 unsigned NumValues = ValueVTs.size(); 1938 if (NumValues) { 1939 SDValue RetOp = getValue(I.getOperand(0)); 1940 1941 const Function *F = I.getParent()->getParent(); 1942 1943 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1944 I.getOperand(0)->getType(), F->getCallingConv(), 1945 /*IsVarArg*/ false, DL); 1946 1947 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1948 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1949 Attribute::SExt)) 1950 ExtendKind = ISD::SIGN_EXTEND; 1951 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1952 Attribute::ZExt)) 1953 ExtendKind = ISD::ZERO_EXTEND; 1954 1955 LLVMContext &Context = F->getContext(); 1956 bool RetInReg = F->getAttributes().hasAttribute( 1957 AttributeList::ReturnIndex, Attribute::InReg); 1958 1959 for (unsigned j = 0; j != NumValues; ++j) { 1960 EVT VT = ValueVTs[j]; 1961 1962 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1963 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1964 1965 CallingConv::ID CC = F->getCallingConv(); 1966 1967 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1968 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1969 SmallVector<SDValue, 4> Parts(NumParts); 1970 getCopyToParts(DAG, getCurSDLoc(), 1971 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1972 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1973 1974 // 'inreg' on function refers to return value 1975 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1976 if (RetInReg) 1977 Flags.setInReg(); 1978 1979 if (I.getOperand(0)->getType()->isPointerTy()) { 1980 Flags.setPointer(); 1981 Flags.setPointerAddrSpace( 1982 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1983 } 1984 1985 if (NeedsRegBlock) { 1986 Flags.setInConsecutiveRegs(); 1987 if (j == NumValues - 1) 1988 Flags.setInConsecutiveRegsLast(); 1989 } 1990 1991 // Propagate extension type if any 1992 if (ExtendKind == ISD::SIGN_EXTEND) 1993 Flags.setSExt(); 1994 else if (ExtendKind == ISD::ZERO_EXTEND) 1995 Flags.setZExt(); 1996 1997 for (unsigned i = 0; i < NumParts; ++i) { 1998 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1999 VT, /*isfixed=*/true, 0, 0)); 2000 OutVals.push_back(Parts[i]); 2001 } 2002 } 2003 } 2004 } 2005 2006 // Push in swifterror virtual register as the last element of Outs. This makes 2007 // sure swifterror virtual register will be returned in the swifterror 2008 // physical register. 2009 const Function *F = I.getParent()->getParent(); 2010 if (TLI.supportSwiftError() && 2011 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2012 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2013 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2014 Flags.setSwiftError(); 2015 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 2016 EVT(TLI.getPointerTy(DL)) /*argvt*/, 2017 true /*isfixed*/, 1 /*origidx*/, 2018 0 /*partOffs*/)); 2019 // Create SDNode for the swifterror virtual register. 2020 OutVals.push_back( 2021 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2022 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2023 EVT(TLI.getPointerTy(DL)))); 2024 } 2025 2026 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2027 CallingConv::ID CallConv = 2028 DAG.getMachineFunction().getFunction().getCallingConv(); 2029 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2030 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2031 2032 // Verify that the target's LowerReturn behaved as expected. 2033 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2034 "LowerReturn didn't return a valid chain!"); 2035 2036 // Update the DAG with the new chain value resulting from return lowering. 2037 DAG.setRoot(Chain); 2038 } 2039 2040 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2041 /// created for it, emit nodes to copy the value into the virtual 2042 /// registers. 2043 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2044 // Skip empty types 2045 if (V->getType()->isEmptyTy()) 2046 return; 2047 2048 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2049 if (VMI != FuncInfo.ValueMap.end()) { 2050 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2051 CopyValueToVirtualRegister(V, VMI->second); 2052 } 2053 } 2054 2055 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2056 /// the current basic block, add it to ValueMap now so that we'll get a 2057 /// CopyTo/FromReg. 2058 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2059 // No need to export constants. 2060 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2061 2062 // Already exported? 2063 if (FuncInfo.isExportedInst(V)) return; 2064 2065 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2066 CopyValueToVirtualRegister(V, Reg); 2067 } 2068 2069 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2070 const BasicBlock *FromBB) { 2071 // The operands of the setcc have to be in this block. We don't know 2072 // how to export them from some other block. 2073 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2074 // Can export from current BB. 2075 if (VI->getParent() == FromBB) 2076 return true; 2077 2078 // Is already exported, noop. 2079 return FuncInfo.isExportedInst(V); 2080 } 2081 2082 // If this is an argument, we can export it if the BB is the entry block or 2083 // if it is already exported. 2084 if (isa<Argument>(V)) { 2085 if (FromBB->isEntryBlock()) 2086 return true; 2087 2088 // Otherwise, can only export this if it is already exported. 2089 return FuncInfo.isExportedInst(V); 2090 } 2091 2092 // Otherwise, constants can always be exported. 2093 return true; 2094 } 2095 2096 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2097 BranchProbability 2098 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2099 const MachineBasicBlock *Dst) const { 2100 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2101 const BasicBlock *SrcBB = Src->getBasicBlock(); 2102 const BasicBlock *DstBB = Dst->getBasicBlock(); 2103 if (!BPI) { 2104 // If BPI is not available, set the default probability as 1 / N, where N is 2105 // the number of successors. 2106 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2107 return BranchProbability(1, SuccSize); 2108 } 2109 return BPI->getEdgeProbability(SrcBB, DstBB); 2110 } 2111 2112 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2113 MachineBasicBlock *Dst, 2114 BranchProbability Prob) { 2115 if (!FuncInfo.BPI) 2116 Src->addSuccessorWithoutProb(Dst); 2117 else { 2118 if (Prob.isUnknown()) 2119 Prob = getEdgeProbability(Src, Dst); 2120 Src->addSuccessor(Dst, Prob); 2121 } 2122 } 2123 2124 static bool InBlock(const Value *V, const BasicBlock *BB) { 2125 if (const Instruction *I = dyn_cast<Instruction>(V)) 2126 return I->getParent() == BB; 2127 return true; 2128 } 2129 2130 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2131 /// This function emits a branch and is used at the leaves of an OR or an 2132 /// AND operator tree. 2133 void 2134 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2135 MachineBasicBlock *TBB, 2136 MachineBasicBlock *FBB, 2137 MachineBasicBlock *CurBB, 2138 MachineBasicBlock *SwitchBB, 2139 BranchProbability TProb, 2140 BranchProbability FProb, 2141 bool InvertCond) { 2142 const BasicBlock *BB = CurBB->getBasicBlock(); 2143 2144 // If the leaf of the tree is a comparison, merge the condition into 2145 // the caseblock. 2146 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2147 // The operands of the cmp have to be in this block. We don't know 2148 // how to export them from some other block. If this is the first block 2149 // of the sequence, no exporting is needed. 2150 if (CurBB == SwitchBB || 2151 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2152 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2153 ISD::CondCode Condition; 2154 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2155 ICmpInst::Predicate Pred = 2156 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2157 Condition = getICmpCondCode(Pred); 2158 } else { 2159 const FCmpInst *FC = cast<FCmpInst>(Cond); 2160 FCmpInst::Predicate Pred = 2161 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2162 Condition = getFCmpCondCode(Pred); 2163 if (TM.Options.NoNaNsFPMath) 2164 Condition = getFCmpCodeWithoutNaN(Condition); 2165 } 2166 2167 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2168 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2169 SL->SwitchCases.push_back(CB); 2170 return; 2171 } 2172 } 2173 2174 // Create a CaseBlock record representing this branch. 2175 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2176 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2177 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2178 SL->SwitchCases.push_back(CB); 2179 } 2180 2181 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2182 MachineBasicBlock *TBB, 2183 MachineBasicBlock *FBB, 2184 MachineBasicBlock *CurBB, 2185 MachineBasicBlock *SwitchBB, 2186 Instruction::BinaryOps Opc, 2187 BranchProbability TProb, 2188 BranchProbability FProb, 2189 bool InvertCond) { 2190 // Skip over not part of the tree and remember to invert op and operands at 2191 // next level. 2192 Value *NotCond; 2193 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2194 InBlock(NotCond, CurBB->getBasicBlock())) { 2195 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2196 !InvertCond); 2197 return; 2198 } 2199 2200 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2201 const Value *BOpOp0, *BOpOp1; 2202 // Compute the effective opcode for Cond, taking into account whether it needs 2203 // to be inverted, e.g. 2204 // and (not (or A, B)), C 2205 // gets lowered as 2206 // and (and (not A, not B), C) 2207 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2208 if (BOp) { 2209 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2210 ? Instruction::And 2211 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2212 ? Instruction::Or 2213 : (Instruction::BinaryOps)0); 2214 if (InvertCond) { 2215 if (BOpc == Instruction::And) 2216 BOpc = Instruction::Or; 2217 else if (BOpc == Instruction::Or) 2218 BOpc = Instruction::And; 2219 } 2220 } 2221 2222 // If this node is not part of the or/and tree, emit it as a branch. 2223 // Note that all nodes in the tree should have same opcode. 2224 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2225 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2226 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2227 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2228 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2229 TProb, FProb, InvertCond); 2230 return; 2231 } 2232 2233 // Create TmpBB after CurBB. 2234 MachineFunction::iterator BBI(CurBB); 2235 MachineFunction &MF = DAG.getMachineFunction(); 2236 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2237 CurBB->getParent()->insert(++BBI, TmpBB); 2238 2239 if (Opc == Instruction::Or) { 2240 // Codegen X | Y as: 2241 // BB1: 2242 // jmp_if_X TBB 2243 // jmp TmpBB 2244 // TmpBB: 2245 // jmp_if_Y TBB 2246 // jmp FBB 2247 // 2248 2249 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2250 // The requirement is that 2251 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2252 // = TrueProb for original BB. 2253 // Assuming the original probabilities are A and B, one choice is to set 2254 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2255 // A/(1+B) and 2B/(1+B). This choice assumes that 2256 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2257 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2258 // TmpBB, but the math is more complicated. 2259 2260 auto NewTrueProb = TProb / 2; 2261 auto NewFalseProb = TProb / 2 + FProb; 2262 // Emit the LHS condition. 2263 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2264 NewFalseProb, InvertCond); 2265 2266 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2267 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2268 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2269 // Emit the RHS condition into TmpBB. 2270 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2271 Probs[1], InvertCond); 2272 } else { 2273 assert(Opc == Instruction::And && "Unknown merge op!"); 2274 // Codegen X & Y as: 2275 // BB1: 2276 // jmp_if_X TmpBB 2277 // jmp FBB 2278 // TmpBB: 2279 // jmp_if_Y TBB 2280 // jmp FBB 2281 // 2282 // This requires creation of TmpBB after CurBB. 2283 2284 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2285 // The requirement is that 2286 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2287 // = FalseProb for original BB. 2288 // Assuming the original probabilities are A and B, one choice is to set 2289 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2290 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2291 // TrueProb for BB1 * FalseProb for TmpBB. 2292 2293 auto NewTrueProb = TProb + FProb / 2; 2294 auto NewFalseProb = FProb / 2; 2295 // Emit the LHS condition. 2296 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2297 NewFalseProb, InvertCond); 2298 2299 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2300 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2301 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2302 // Emit the RHS condition into TmpBB. 2303 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2304 Probs[1], InvertCond); 2305 } 2306 } 2307 2308 /// If the set of cases should be emitted as a series of branches, return true. 2309 /// If we should emit this as a bunch of and/or'd together conditions, return 2310 /// false. 2311 bool 2312 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2313 if (Cases.size() != 2) return true; 2314 2315 // If this is two comparisons of the same values or'd or and'd together, they 2316 // will get folded into a single comparison, so don't emit two blocks. 2317 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2318 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2319 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2320 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2321 return false; 2322 } 2323 2324 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2325 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2326 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2327 Cases[0].CC == Cases[1].CC && 2328 isa<Constant>(Cases[0].CmpRHS) && 2329 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2330 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2331 return false; 2332 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2333 return false; 2334 } 2335 2336 return true; 2337 } 2338 2339 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2340 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2341 2342 // Update machine-CFG edges. 2343 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2344 2345 if (I.isUnconditional()) { 2346 // Update machine-CFG edges. 2347 BrMBB->addSuccessor(Succ0MBB); 2348 2349 // If this is not a fall-through branch or optimizations are switched off, 2350 // emit the branch. 2351 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2352 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2353 MVT::Other, getControlRoot(), 2354 DAG.getBasicBlock(Succ0MBB))); 2355 2356 return; 2357 } 2358 2359 // If this condition is one of the special cases we handle, do special stuff 2360 // now. 2361 const Value *CondVal = I.getCondition(); 2362 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2363 2364 // If this is a series of conditions that are or'd or and'd together, emit 2365 // this as a sequence of branches instead of setcc's with and/or operations. 2366 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2367 // unpredictable branches, and vector extracts because those jumps are likely 2368 // expensive for any target), this should improve performance. 2369 // For example, instead of something like: 2370 // cmp A, B 2371 // C = seteq 2372 // cmp D, E 2373 // F = setle 2374 // or C, F 2375 // jnz foo 2376 // Emit: 2377 // cmp A, B 2378 // je foo 2379 // cmp D, E 2380 // jle foo 2381 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2382 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2383 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2384 Value *Vec; 2385 const Value *BOp0, *BOp1; 2386 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2387 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2388 Opcode = Instruction::And; 2389 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2390 Opcode = Instruction::Or; 2391 2392 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2393 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2394 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2395 getEdgeProbability(BrMBB, Succ0MBB), 2396 getEdgeProbability(BrMBB, Succ1MBB), 2397 /*InvertCond=*/false); 2398 // If the compares in later blocks need to use values not currently 2399 // exported from this block, export them now. This block should always 2400 // be the first entry. 2401 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2402 2403 // Allow some cases to be rejected. 2404 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2405 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2406 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2407 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2408 } 2409 2410 // Emit the branch for this block. 2411 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2412 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2413 return; 2414 } 2415 2416 // Okay, we decided not to do this, remove any inserted MBB's and clear 2417 // SwitchCases. 2418 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2419 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2420 2421 SL->SwitchCases.clear(); 2422 } 2423 } 2424 2425 // Create a CaseBlock record representing this branch. 2426 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2427 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2428 2429 // Use visitSwitchCase to actually insert the fast branch sequence for this 2430 // cond branch. 2431 visitSwitchCase(CB, BrMBB); 2432 } 2433 2434 /// visitSwitchCase - Emits the necessary code to represent a single node in 2435 /// the binary search tree resulting from lowering a switch instruction. 2436 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2437 MachineBasicBlock *SwitchBB) { 2438 SDValue Cond; 2439 SDValue CondLHS = getValue(CB.CmpLHS); 2440 SDLoc dl = CB.DL; 2441 2442 if (CB.CC == ISD::SETTRUE) { 2443 // Branch or fall through to TrueBB. 2444 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2445 SwitchBB->normalizeSuccProbs(); 2446 if (CB.TrueBB != NextBlock(SwitchBB)) { 2447 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2448 DAG.getBasicBlock(CB.TrueBB))); 2449 } 2450 return; 2451 } 2452 2453 auto &TLI = DAG.getTargetLoweringInfo(); 2454 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2455 2456 // Build the setcc now. 2457 if (!CB.CmpMHS) { 2458 // Fold "(X == true)" to X and "(X == false)" to !X to 2459 // handle common cases produced by branch lowering. 2460 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2461 CB.CC == ISD::SETEQ) 2462 Cond = CondLHS; 2463 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2464 CB.CC == ISD::SETEQ) { 2465 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2466 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2467 } else { 2468 SDValue CondRHS = getValue(CB.CmpRHS); 2469 2470 // If a pointer's DAG type is larger than its memory type then the DAG 2471 // values are zero-extended. This breaks signed comparisons so truncate 2472 // back to the underlying type before doing the compare. 2473 if (CondLHS.getValueType() != MemVT) { 2474 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2475 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2476 } 2477 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2478 } 2479 } else { 2480 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2481 2482 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2483 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2484 2485 SDValue CmpOp = getValue(CB.CmpMHS); 2486 EVT VT = CmpOp.getValueType(); 2487 2488 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2489 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2490 ISD::SETLE); 2491 } else { 2492 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2493 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2494 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2495 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2496 } 2497 } 2498 2499 // Update successor info 2500 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2501 // TrueBB and FalseBB are always different unless the incoming IR is 2502 // degenerate. This only happens when running llc on weird IR. 2503 if (CB.TrueBB != CB.FalseBB) 2504 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2505 SwitchBB->normalizeSuccProbs(); 2506 2507 // If the lhs block is the next block, invert the condition so that we can 2508 // fall through to the lhs instead of the rhs block. 2509 if (CB.TrueBB == NextBlock(SwitchBB)) { 2510 std::swap(CB.TrueBB, CB.FalseBB); 2511 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2512 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2513 } 2514 2515 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2516 MVT::Other, getControlRoot(), Cond, 2517 DAG.getBasicBlock(CB.TrueBB)); 2518 2519 // Insert the false branch. Do this even if it's a fall through branch, 2520 // this makes it easier to do DAG optimizations which require inverting 2521 // the branch condition. 2522 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2523 DAG.getBasicBlock(CB.FalseBB)); 2524 2525 DAG.setRoot(BrCond); 2526 } 2527 2528 /// visitJumpTable - Emit JumpTable node in the current MBB 2529 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2530 // Emit the code for the jump table 2531 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2532 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2533 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2534 JT.Reg, PTy); 2535 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2536 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2537 MVT::Other, Index.getValue(1), 2538 Table, Index); 2539 DAG.setRoot(BrJumpTable); 2540 } 2541 2542 /// visitJumpTableHeader - This function emits necessary code to produce index 2543 /// in the JumpTable from switch case. 2544 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2545 JumpTableHeader &JTH, 2546 MachineBasicBlock *SwitchBB) { 2547 SDLoc dl = getCurSDLoc(); 2548 2549 // Subtract the lowest switch case value from the value being switched on. 2550 SDValue SwitchOp = getValue(JTH.SValue); 2551 EVT VT = SwitchOp.getValueType(); 2552 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2553 DAG.getConstant(JTH.First, dl, VT)); 2554 2555 // The SDNode we just created, which holds the value being switched on minus 2556 // the smallest case value, needs to be copied to a virtual register so it 2557 // can be used as an index into the jump table in a subsequent basic block. 2558 // This value may be smaller or larger than the target's pointer type, and 2559 // therefore require extension or truncating. 2560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2561 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2562 2563 unsigned JumpTableReg = 2564 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2565 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2566 JumpTableReg, SwitchOp); 2567 JT.Reg = JumpTableReg; 2568 2569 if (!JTH.OmitRangeCheck) { 2570 // Emit the range check for the jump table, and branch to the default block 2571 // for the switch statement if the value being switched on exceeds the 2572 // largest case in the switch. 2573 SDValue CMP = DAG.getSetCC( 2574 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2575 Sub.getValueType()), 2576 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2577 2578 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2579 MVT::Other, CopyTo, CMP, 2580 DAG.getBasicBlock(JT.Default)); 2581 2582 // Avoid emitting unnecessary branches to the next block. 2583 if (JT.MBB != NextBlock(SwitchBB)) 2584 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2585 DAG.getBasicBlock(JT.MBB)); 2586 2587 DAG.setRoot(BrCond); 2588 } else { 2589 // Avoid emitting unnecessary branches to the next block. 2590 if (JT.MBB != NextBlock(SwitchBB)) 2591 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2592 DAG.getBasicBlock(JT.MBB))); 2593 else 2594 DAG.setRoot(CopyTo); 2595 } 2596 } 2597 2598 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2599 /// variable if there exists one. 2600 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2601 SDValue &Chain) { 2602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2603 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2604 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2605 MachineFunction &MF = DAG.getMachineFunction(); 2606 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2607 MachineSDNode *Node = 2608 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2609 if (Global) { 2610 MachinePointerInfo MPInfo(Global); 2611 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2612 MachineMemOperand::MODereferenceable; 2613 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2614 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2615 DAG.setNodeMemRefs(Node, {MemRef}); 2616 } 2617 if (PtrTy != PtrMemTy) 2618 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2619 return SDValue(Node, 0); 2620 } 2621 2622 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2623 /// tail spliced into a stack protector check success bb. 2624 /// 2625 /// For a high level explanation of how this fits into the stack protector 2626 /// generation see the comment on the declaration of class 2627 /// StackProtectorDescriptor. 2628 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2629 MachineBasicBlock *ParentBB) { 2630 2631 // First create the loads to the guard/stack slot for the comparison. 2632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2633 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2634 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2635 2636 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2637 int FI = MFI.getStackProtectorIndex(); 2638 2639 SDValue Guard; 2640 SDLoc dl = getCurSDLoc(); 2641 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2642 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2643 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2644 2645 // Generate code to load the content of the guard slot. 2646 SDValue GuardVal = DAG.getLoad( 2647 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2648 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2649 MachineMemOperand::MOVolatile); 2650 2651 if (TLI.useStackGuardXorFP()) 2652 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2653 2654 // Retrieve guard check function, nullptr if instrumentation is inlined. 2655 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2656 // The target provides a guard check function to validate the guard value. 2657 // Generate a call to that function with the content of the guard slot as 2658 // argument. 2659 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2660 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2661 2662 TargetLowering::ArgListTy Args; 2663 TargetLowering::ArgListEntry Entry; 2664 Entry.Node = GuardVal; 2665 Entry.Ty = FnTy->getParamType(0); 2666 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2667 Entry.IsInReg = true; 2668 Args.push_back(Entry); 2669 2670 TargetLowering::CallLoweringInfo CLI(DAG); 2671 CLI.setDebugLoc(getCurSDLoc()) 2672 .setChain(DAG.getEntryNode()) 2673 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2674 getValue(GuardCheckFn), std::move(Args)); 2675 2676 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2677 DAG.setRoot(Result.second); 2678 return; 2679 } 2680 2681 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2682 // Otherwise, emit a volatile load to retrieve the stack guard value. 2683 SDValue Chain = DAG.getEntryNode(); 2684 if (TLI.useLoadStackGuardNode()) { 2685 Guard = getLoadStackGuard(DAG, dl, Chain); 2686 } else { 2687 const Value *IRGuard = TLI.getSDagStackGuard(M); 2688 SDValue GuardPtr = getValue(IRGuard); 2689 2690 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2691 MachinePointerInfo(IRGuard, 0), Align, 2692 MachineMemOperand::MOVolatile); 2693 } 2694 2695 // Perform the comparison via a getsetcc. 2696 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2697 *DAG.getContext(), 2698 Guard.getValueType()), 2699 Guard, GuardVal, ISD::SETNE); 2700 2701 // If the guard/stackslot do not equal, branch to failure MBB. 2702 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2703 MVT::Other, GuardVal.getOperand(0), 2704 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2705 // Otherwise branch to success MBB. 2706 SDValue Br = DAG.getNode(ISD::BR, dl, 2707 MVT::Other, BrCond, 2708 DAG.getBasicBlock(SPD.getSuccessMBB())); 2709 2710 DAG.setRoot(Br); 2711 } 2712 2713 /// Codegen the failure basic block for a stack protector check. 2714 /// 2715 /// A failure stack protector machine basic block consists simply of a call to 2716 /// __stack_chk_fail(). 2717 /// 2718 /// For a high level explanation of how this fits into the stack protector 2719 /// generation see the comment on the declaration of class 2720 /// StackProtectorDescriptor. 2721 void 2722 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2724 TargetLowering::MakeLibCallOptions CallOptions; 2725 CallOptions.setDiscardResult(true); 2726 SDValue Chain = 2727 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2728 None, CallOptions, getCurSDLoc()).second; 2729 // On PS4, the "return address" must still be within the calling function, 2730 // even if it's at the very end, so emit an explicit TRAP here. 2731 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2732 if (TM.getTargetTriple().isPS4CPU()) 2733 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2734 // WebAssembly needs an unreachable instruction after a non-returning call, 2735 // because the function return type can be different from __stack_chk_fail's 2736 // return type (void). 2737 if (TM.getTargetTriple().isWasm()) 2738 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2739 2740 DAG.setRoot(Chain); 2741 } 2742 2743 /// visitBitTestHeader - This function emits necessary code to produce value 2744 /// suitable for "bit tests" 2745 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2746 MachineBasicBlock *SwitchBB) { 2747 SDLoc dl = getCurSDLoc(); 2748 2749 // Subtract the minimum value. 2750 SDValue SwitchOp = getValue(B.SValue); 2751 EVT VT = SwitchOp.getValueType(); 2752 SDValue RangeSub = 2753 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2754 2755 // Determine the type of the test operands. 2756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2757 bool UsePtrType = false; 2758 if (!TLI.isTypeLegal(VT)) { 2759 UsePtrType = true; 2760 } else { 2761 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2762 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2763 // Switch table case range are encoded into series of masks. 2764 // Just use pointer type, it's guaranteed to fit. 2765 UsePtrType = true; 2766 break; 2767 } 2768 } 2769 SDValue Sub = RangeSub; 2770 if (UsePtrType) { 2771 VT = TLI.getPointerTy(DAG.getDataLayout()); 2772 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2773 } 2774 2775 B.RegVT = VT.getSimpleVT(); 2776 B.Reg = FuncInfo.CreateReg(B.RegVT); 2777 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2778 2779 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2780 2781 if (!B.OmitRangeCheck) 2782 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2783 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2784 SwitchBB->normalizeSuccProbs(); 2785 2786 SDValue Root = CopyTo; 2787 if (!B.OmitRangeCheck) { 2788 // Conditional branch to the default block. 2789 SDValue RangeCmp = DAG.getSetCC(dl, 2790 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2791 RangeSub.getValueType()), 2792 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2793 ISD::SETUGT); 2794 2795 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2796 DAG.getBasicBlock(B.Default)); 2797 } 2798 2799 // Avoid emitting unnecessary branches to the next block. 2800 if (MBB != NextBlock(SwitchBB)) 2801 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2802 2803 DAG.setRoot(Root); 2804 } 2805 2806 /// visitBitTestCase - this function produces one "bit test" 2807 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2808 MachineBasicBlock* NextMBB, 2809 BranchProbability BranchProbToNext, 2810 unsigned Reg, 2811 BitTestCase &B, 2812 MachineBasicBlock *SwitchBB) { 2813 SDLoc dl = getCurSDLoc(); 2814 MVT VT = BB.RegVT; 2815 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2816 SDValue Cmp; 2817 unsigned PopCount = countPopulation(B.Mask); 2818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2819 if (PopCount == 1) { 2820 // Testing for a single bit; just compare the shift count with what it 2821 // would need to be to shift a 1 bit in that position. 2822 Cmp = DAG.getSetCC( 2823 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2824 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2825 ISD::SETEQ); 2826 } else if (PopCount == BB.Range) { 2827 // There is only one zero bit in the range, test for it directly. 2828 Cmp = DAG.getSetCC( 2829 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2830 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2831 ISD::SETNE); 2832 } else { 2833 // Make desired shift 2834 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2835 DAG.getConstant(1, dl, VT), ShiftOp); 2836 2837 // Emit bit tests and jumps 2838 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2839 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2840 Cmp = DAG.getSetCC( 2841 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2842 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2843 } 2844 2845 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2846 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2847 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2848 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2849 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2850 // one as they are relative probabilities (and thus work more like weights), 2851 // and hence we need to normalize them to let the sum of them become one. 2852 SwitchBB->normalizeSuccProbs(); 2853 2854 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2855 MVT::Other, getControlRoot(), 2856 Cmp, DAG.getBasicBlock(B.TargetBB)); 2857 2858 // Avoid emitting unnecessary branches to the next block. 2859 if (NextMBB != NextBlock(SwitchBB)) 2860 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2861 DAG.getBasicBlock(NextMBB)); 2862 2863 DAG.setRoot(BrAnd); 2864 } 2865 2866 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2867 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2868 2869 // Retrieve successors. Look through artificial IR level blocks like 2870 // catchswitch for successors. 2871 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2872 const BasicBlock *EHPadBB = I.getSuccessor(1); 2873 2874 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2875 // have to do anything here to lower funclet bundles. 2876 assert(!I.hasOperandBundlesOtherThan( 2877 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2878 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2879 LLVMContext::OB_cfguardtarget, 2880 LLVMContext::OB_clang_arc_attachedcall}) && 2881 "Cannot lower invokes with arbitrary operand bundles yet!"); 2882 2883 const Value *Callee(I.getCalledOperand()); 2884 const Function *Fn = dyn_cast<Function>(Callee); 2885 if (isa<InlineAsm>(Callee)) 2886 visitInlineAsm(I, EHPadBB); 2887 else if (Fn && Fn->isIntrinsic()) { 2888 switch (Fn->getIntrinsicID()) { 2889 default: 2890 llvm_unreachable("Cannot invoke this intrinsic"); 2891 case Intrinsic::donothing: 2892 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2893 case Intrinsic::seh_try_begin: 2894 case Intrinsic::seh_scope_begin: 2895 case Intrinsic::seh_try_end: 2896 case Intrinsic::seh_scope_end: 2897 break; 2898 case Intrinsic::experimental_patchpoint_void: 2899 case Intrinsic::experimental_patchpoint_i64: 2900 visitPatchpoint(I, EHPadBB); 2901 break; 2902 case Intrinsic::experimental_gc_statepoint: 2903 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2904 break; 2905 case Intrinsic::wasm_rethrow: { 2906 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2907 // special because it can be invoked, so we manually lower it to a DAG 2908 // node here. 2909 SmallVector<SDValue, 8> Ops; 2910 Ops.push_back(getRoot()); // inchain 2911 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2912 Ops.push_back( 2913 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2914 TLI.getPointerTy(DAG.getDataLayout()))); 2915 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2916 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2917 break; 2918 } 2919 } 2920 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2921 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2922 // Eventually we will support lowering the @llvm.experimental.deoptimize 2923 // intrinsic, and right now there are no plans to support other intrinsics 2924 // with deopt state. 2925 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2926 } else { 2927 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2928 } 2929 2930 // If the value of the invoke is used outside of its defining block, make it 2931 // available as a virtual register. 2932 // We already took care of the exported value for the statepoint instruction 2933 // during call to the LowerStatepoint. 2934 if (!isa<GCStatepointInst>(I)) { 2935 CopyToExportRegsIfNeeded(&I); 2936 } 2937 2938 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2939 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2940 BranchProbability EHPadBBProb = 2941 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2942 : BranchProbability::getZero(); 2943 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2944 2945 // Update successor info. 2946 addSuccessorWithProb(InvokeMBB, Return); 2947 for (auto &UnwindDest : UnwindDests) { 2948 UnwindDest.first->setIsEHPad(); 2949 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2950 } 2951 InvokeMBB->normalizeSuccProbs(); 2952 2953 // Drop into normal successor. 2954 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2955 DAG.getBasicBlock(Return))); 2956 } 2957 2958 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2959 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2960 2961 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2962 // have to do anything here to lower funclet bundles. 2963 assert(!I.hasOperandBundlesOtherThan( 2964 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2965 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2966 2967 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2968 visitInlineAsm(I); 2969 CopyToExportRegsIfNeeded(&I); 2970 2971 // Retrieve successors. 2972 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2973 2974 // Update successor info. 2975 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2976 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2977 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2978 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2979 Target->setIsInlineAsmBrIndirectTarget(); 2980 } 2981 CallBrMBB->normalizeSuccProbs(); 2982 2983 // Drop into default successor. 2984 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2985 MVT::Other, getControlRoot(), 2986 DAG.getBasicBlock(Return))); 2987 } 2988 2989 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2990 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2991 } 2992 2993 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2994 assert(FuncInfo.MBB->isEHPad() && 2995 "Call to landingpad not in landing pad!"); 2996 2997 // If there aren't registers to copy the values into (e.g., during SjLj 2998 // exceptions), then don't bother to create these DAG nodes. 2999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3000 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3001 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3002 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3003 return; 3004 3005 // If landingpad's return type is token type, we don't create DAG nodes 3006 // for its exception pointer and selector value. The extraction of exception 3007 // pointer or selector value from token type landingpads is not currently 3008 // supported. 3009 if (LP.getType()->isTokenTy()) 3010 return; 3011 3012 SmallVector<EVT, 2> ValueVTs; 3013 SDLoc dl = getCurSDLoc(); 3014 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3015 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3016 3017 // Get the two live-in registers as SDValues. The physregs have already been 3018 // copied into virtual registers. 3019 SDValue Ops[2]; 3020 if (FuncInfo.ExceptionPointerVirtReg) { 3021 Ops[0] = DAG.getZExtOrTrunc( 3022 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3023 FuncInfo.ExceptionPointerVirtReg, 3024 TLI.getPointerTy(DAG.getDataLayout())), 3025 dl, ValueVTs[0]); 3026 } else { 3027 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3028 } 3029 Ops[1] = DAG.getZExtOrTrunc( 3030 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3031 FuncInfo.ExceptionSelectorVirtReg, 3032 TLI.getPointerTy(DAG.getDataLayout())), 3033 dl, ValueVTs[1]); 3034 3035 // Merge into one. 3036 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3037 DAG.getVTList(ValueVTs), Ops); 3038 setValue(&LP, Res); 3039 } 3040 3041 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3042 MachineBasicBlock *Last) { 3043 // Update JTCases. 3044 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 3045 if (SL->JTCases[i].first.HeaderBB == First) 3046 SL->JTCases[i].first.HeaderBB = Last; 3047 3048 // Update BitTestCases. 3049 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 3050 if (SL->BitTestCases[i].Parent == First) 3051 SL->BitTestCases[i].Parent = Last; 3052 } 3053 3054 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3055 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3056 3057 // Update machine-CFG edges with unique successors. 3058 SmallSet<BasicBlock*, 32> Done; 3059 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3060 BasicBlock *BB = I.getSuccessor(i); 3061 bool Inserted = Done.insert(BB).second; 3062 if (!Inserted) 3063 continue; 3064 3065 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3066 addSuccessorWithProb(IndirectBrMBB, Succ); 3067 } 3068 IndirectBrMBB->normalizeSuccProbs(); 3069 3070 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3071 MVT::Other, getControlRoot(), 3072 getValue(I.getAddress()))); 3073 } 3074 3075 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3076 if (!DAG.getTarget().Options.TrapUnreachable) 3077 return; 3078 3079 // We may be able to ignore unreachable behind a noreturn call. 3080 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3081 const BasicBlock &BB = *I.getParent(); 3082 if (&I != &BB.front()) { 3083 BasicBlock::const_iterator PredI = 3084 std::prev(BasicBlock::const_iterator(&I)); 3085 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3086 if (Call->doesNotReturn()) 3087 return; 3088 } 3089 } 3090 } 3091 3092 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3093 } 3094 3095 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3096 SDNodeFlags Flags; 3097 3098 SDValue Op = getValue(I.getOperand(0)); 3099 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3100 Op, Flags); 3101 setValue(&I, UnNodeValue); 3102 } 3103 3104 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3105 SDNodeFlags Flags; 3106 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3107 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3108 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3109 } 3110 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3111 Flags.setExact(ExactOp->isExact()); 3112 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3113 Flags.copyFMF(*FPOp); 3114 3115 SDValue Op1 = getValue(I.getOperand(0)); 3116 SDValue Op2 = getValue(I.getOperand(1)); 3117 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3118 Op1, Op2, Flags); 3119 setValue(&I, BinNodeValue); 3120 } 3121 3122 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3123 SDValue Op1 = getValue(I.getOperand(0)); 3124 SDValue Op2 = getValue(I.getOperand(1)); 3125 3126 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3127 Op1.getValueType(), DAG.getDataLayout()); 3128 3129 // Coerce the shift amount to the right type if we can. 3130 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3131 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3132 unsigned Op2Size = Op2.getValueSizeInBits(); 3133 SDLoc DL = getCurSDLoc(); 3134 3135 // If the operand is smaller than the shift count type, promote it. 3136 if (ShiftSize > Op2Size) 3137 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3138 3139 // If the operand is larger than the shift count type but the shift 3140 // count type has enough bits to represent any shift value, truncate 3141 // it now. This is a common case and it exposes the truncate to 3142 // optimization early. 3143 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3144 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3145 // Otherwise we'll need to temporarily settle for some other convenient 3146 // type. Type legalization will make adjustments once the shiftee is split. 3147 else 3148 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3149 } 3150 3151 bool nuw = false; 3152 bool nsw = false; 3153 bool exact = false; 3154 3155 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3156 3157 if (const OverflowingBinaryOperator *OFBinOp = 3158 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3159 nuw = OFBinOp->hasNoUnsignedWrap(); 3160 nsw = OFBinOp->hasNoSignedWrap(); 3161 } 3162 if (const PossiblyExactOperator *ExactOp = 3163 dyn_cast<const PossiblyExactOperator>(&I)) 3164 exact = ExactOp->isExact(); 3165 } 3166 SDNodeFlags Flags; 3167 Flags.setExact(exact); 3168 Flags.setNoSignedWrap(nsw); 3169 Flags.setNoUnsignedWrap(nuw); 3170 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3171 Flags); 3172 setValue(&I, Res); 3173 } 3174 3175 void SelectionDAGBuilder::visitSDiv(const User &I) { 3176 SDValue Op1 = getValue(I.getOperand(0)); 3177 SDValue Op2 = getValue(I.getOperand(1)); 3178 3179 SDNodeFlags Flags; 3180 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3181 cast<PossiblyExactOperator>(&I)->isExact()); 3182 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3183 Op2, Flags)); 3184 } 3185 3186 void SelectionDAGBuilder::visitICmp(const User &I) { 3187 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3188 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3189 predicate = IC->getPredicate(); 3190 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3191 predicate = ICmpInst::Predicate(IC->getPredicate()); 3192 SDValue Op1 = getValue(I.getOperand(0)); 3193 SDValue Op2 = getValue(I.getOperand(1)); 3194 ISD::CondCode Opcode = getICmpCondCode(predicate); 3195 3196 auto &TLI = DAG.getTargetLoweringInfo(); 3197 EVT MemVT = 3198 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3199 3200 // If a pointer's DAG type is larger than its memory type then the DAG values 3201 // are zero-extended. This breaks signed comparisons so truncate back to the 3202 // underlying type before doing the compare. 3203 if (Op1.getValueType() != MemVT) { 3204 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3205 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3206 } 3207 3208 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3209 I.getType()); 3210 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3211 } 3212 3213 void SelectionDAGBuilder::visitFCmp(const User &I) { 3214 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3215 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3216 predicate = FC->getPredicate(); 3217 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3218 predicate = FCmpInst::Predicate(FC->getPredicate()); 3219 SDValue Op1 = getValue(I.getOperand(0)); 3220 SDValue Op2 = getValue(I.getOperand(1)); 3221 3222 ISD::CondCode Condition = getFCmpCondCode(predicate); 3223 auto *FPMO = cast<FPMathOperator>(&I); 3224 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3225 Condition = getFCmpCodeWithoutNaN(Condition); 3226 3227 SDNodeFlags Flags; 3228 Flags.copyFMF(*FPMO); 3229 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3230 3231 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3232 I.getType()); 3233 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3234 } 3235 3236 // Check if the condition of the select has one use or two users that are both 3237 // selects with the same condition. 3238 static bool hasOnlySelectUsers(const Value *Cond) { 3239 return llvm::all_of(Cond->users(), [](const Value *V) { 3240 return isa<SelectInst>(V); 3241 }); 3242 } 3243 3244 void SelectionDAGBuilder::visitSelect(const User &I) { 3245 SmallVector<EVT, 4> ValueVTs; 3246 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3247 ValueVTs); 3248 unsigned NumValues = ValueVTs.size(); 3249 if (NumValues == 0) return; 3250 3251 SmallVector<SDValue, 4> Values(NumValues); 3252 SDValue Cond = getValue(I.getOperand(0)); 3253 SDValue LHSVal = getValue(I.getOperand(1)); 3254 SDValue RHSVal = getValue(I.getOperand(2)); 3255 SmallVector<SDValue, 1> BaseOps(1, Cond); 3256 ISD::NodeType OpCode = 3257 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3258 3259 bool IsUnaryAbs = false; 3260 bool Negate = false; 3261 3262 SDNodeFlags Flags; 3263 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3264 Flags.copyFMF(*FPOp); 3265 3266 // Min/max matching is only viable if all output VTs are the same. 3267 if (is_splat(ValueVTs)) { 3268 EVT VT = ValueVTs[0]; 3269 LLVMContext &Ctx = *DAG.getContext(); 3270 auto &TLI = DAG.getTargetLoweringInfo(); 3271 3272 // We care about the legality of the operation after it has been type 3273 // legalized. 3274 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3275 VT = TLI.getTypeToTransformTo(Ctx, VT); 3276 3277 // If the vselect is legal, assume we want to leave this as a vector setcc + 3278 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3279 // min/max is legal on the scalar type. 3280 bool UseScalarMinMax = VT.isVector() && 3281 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3282 3283 Value *LHS, *RHS; 3284 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3285 ISD::NodeType Opc = ISD::DELETED_NODE; 3286 switch (SPR.Flavor) { 3287 case SPF_UMAX: Opc = ISD::UMAX; break; 3288 case SPF_UMIN: Opc = ISD::UMIN; break; 3289 case SPF_SMAX: Opc = ISD::SMAX; break; 3290 case SPF_SMIN: Opc = ISD::SMIN; break; 3291 case SPF_FMINNUM: 3292 switch (SPR.NaNBehavior) { 3293 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3294 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3295 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3296 case SPNB_RETURNS_ANY: { 3297 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3298 Opc = ISD::FMINNUM; 3299 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3300 Opc = ISD::FMINIMUM; 3301 else if (UseScalarMinMax) 3302 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3303 ISD::FMINNUM : ISD::FMINIMUM; 3304 break; 3305 } 3306 } 3307 break; 3308 case SPF_FMAXNUM: 3309 switch (SPR.NaNBehavior) { 3310 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3311 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3312 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3313 case SPNB_RETURNS_ANY: 3314 3315 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3316 Opc = ISD::FMAXNUM; 3317 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3318 Opc = ISD::FMAXIMUM; 3319 else if (UseScalarMinMax) 3320 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3321 ISD::FMAXNUM : ISD::FMAXIMUM; 3322 break; 3323 } 3324 break; 3325 case SPF_NABS: 3326 Negate = true; 3327 LLVM_FALLTHROUGH; 3328 case SPF_ABS: 3329 IsUnaryAbs = true; 3330 Opc = ISD::ABS; 3331 break; 3332 default: break; 3333 } 3334 3335 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3336 (TLI.isOperationLegalOrCustom(Opc, VT) || 3337 (UseScalarMinMax && 3338 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3339 // If the underlying comparison instruction is used by any other 3340 // instruction, the consumed instructions won't be destroyed, so it is 3341 // not profitable to convert to a min/max. 3342 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3343 OpCode = Opc; 3344 LHSVal = getValue(LHS); 3345 RHSVal = getValue(RHS); 3346 BaseOps.clear(); 3347 } 3348 3349 if (IsUnaryAbs) { 3350 OpCode = Opc; 3351 LHSVal = getValue(LHS); 3352 BaseOps.clear(); 3353 } 3354 } 3355 3356 if (IsUnaryAbs) { 3357 for (unsigned i = 0; i != NumValues; ++i) { 3358 SDLoc dl = getCurSDLoc(); 3359 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3360 Values[i] = 3361 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3362 if (Negate) 3363 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3364 Values[i]); 3365 } 3366 } else { 3367 for (unsigned i = 0; i != NumValues; ++i) { 3368 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3369 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3370 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3371 Values[i] = DAG.getNode( 3372 OpCode, getCurSDLoc(), 3373 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3374 } 3375 } 3376 3377 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3378 DAG.getVTList(ValueVTs), Values)); 3379 } 3380 3381 void SelectionDAGBuilder::visitTrunc(const User &I) { 3382 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3383 SDValue N = getValue(I.getOperand(0)); 3384 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3385 I.getType()); 3386 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3387 } 3388 3389 void SelectionDAGBuilder::visitZExt(const User &I) { 3390 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3391 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3392 SDValue N = getValue(I.getOperand(0)); 3393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3394 I.getType()); 3395 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3396 } 3397 3398 void SelectionDAGBuilder::visitSExt(const User &I) { 3399 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3400 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3401 SDValue N = getValue(I.getOperand(0)); 3402 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3403 I.getType()); 3404 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3405 } 3406 3407 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3408 // FPTrunc is never a no-op cast, no need to check 3409 SDValue N = getValue(I.getOperand(0)); 3410 SDLoc dl = getCurSDLoc(); 3411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3412 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3413 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3414 DAG.getTargetConstant( 3415 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3416 } 3417 3418 void SelectionDAGBuilder::visitFPExt(const User &I) { 3419 // FPExt is never a no-op cast, no need to check 3420 SDValue N = getValue(I.getOperand(0)); 3421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3422 I.getType()); 3423 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3427 // FPToUI is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3435 // FPToSI is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3443 // UIToFP is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3451 // SIToFP is never a no-op cast, no need to check 3452 SDValue N = getValue(I.getOperand(0)); 3453 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3454 I.getType()); 3455 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3456 } 3457 3458 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3459 // What to do depends on the size of the integer and the size of the pointer. 3460 // We can either truncate, zero extend, or no-op, accordingly. 3461 SDValue N = getValue(I.getOperand(0)); 3462 auto &TLI = DAG.getTargetLoweringInfo(); 3463 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3464 I.getType()); 3465 EVT PtrMemVT = 3466 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3467 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3468 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3469 setValue(&I, N); 3470 } 3471 3472 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3473 // What to do depends on the size of the integer and the size of the pointer. 3474 // We can either truncate, zero extend, or no-op, accordingly. 3475 SDValue N = getValue(I.getOperand(0)); 3476 auto &TLI = DAG.getTargetLoweringInfo(); 3477 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3478 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3479 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3480 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3481 setValue(&I, N); 3482 } 3483 3484 void SelectionDAGBuilder::visitBitCast(const User &I) { 3485 SDValue N = getValue(I.getOperand(0)); 3486 SDLoc dl = getCurSDLoc(); 3487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3488 I.getType()); 3489 3490 // BitCast assures us that source and destination are the same size so this is 3491 // either a BITCAST or a no-op. 3492 if (DestVT != N.getValueType()) 3493 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3494 DestVT, N)); // convert types. 3495 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3496 // might fold any kind of constant expression to an integer constant and that 3497 // is not what we are looking for. Only recognize a bitcast of a genuine 3498 // constant integer as an opaque constant. 3499 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3500 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3501 /*isOpaque*/true)); 3502 else 3503 setValue(&I, N); // noop cast. 3504 } 3505 3506 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3508 const Value *SV = I.getOperand(0); 3509 SDValue N = getValue(SV); 3510 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3511 3512 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3513 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3514 3515 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3516 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3517 3518 setValue(&I, N); 3519 } 3520 3521 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3523 SDValue InVec = getValue(I.getOperand(0)); 3524 SDValue InVal = getValue(I.getOperand(1)); 3525 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3526 TLI.getVectorIdxTy(DAG.getDataLayout())); 3527 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3528 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3529 InVec, InVal, InIdx)); 3530 } 3531 3532 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3534 SDValue InVec = getValue(I.getOperand(0)); 3535 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3536 TLI.getVectorIdxTy(DAG.getDataLayout())); 3537 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3538 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3539 InVec, InIdx)); 3540 } 3541 3542 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3543 SDValue Src1 = getValue(I.getOperand(0)); 3544 SDValue Src2 = getValue(I.getOperand(1)); 3545 ArrayRef<int> Mask; 3546 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3547 Mask = SVI->getShuffleMask(); 3548 else 3549 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3550 SDLoc DL = getCurSDLoc(); 3551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3552 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3553 EVT SrcVT = Src1.getValueType(); 3554 3555 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3556 VT.isScalableVector()) { 3557 // Canonical splat form of first element of first input vector. 3558 SDValue FirstElt = 3559 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3560 DAG.getVectorIdxConstant(0, DL)); 3561 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3562 return; 3563 } 3564 3565 // For now, we only handle splats for scalable vectors. 3566 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3567 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3568 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3569 3570 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3571 unsigned MaskNumElts = Mask.size(); 3572 3573 if (SrcNumElts == MaskNumElts) { 3574 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3575 return; 3576 } 3577 3578 // Normalize the shuffle vector since mask and vector length don't match. 3579 if (SrcNumElts < MaskNumElts) { 3580 // Mask is longer than the source vectors. We can use concatenate vector to 3581 // make the mask and vectors lengths match. 3582 3583 if (MaskNumElts % SrcNumElts == 0) { 3584 // Mask length is a multiple of the source vector length. 3585 // Check if the shuffle is some kind of concatenation of the input 3586 // vectors. 3587 unsigned NumConcat = MaskNumElts / SrcNumElts; 3588 bool IsConcat = true; 3589 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3590 for (unsigned i = 0; i != MaskNumElts; ++i) { 3591 int Idx = Mask[i]; 3592 if (Idx < 0) 3593 continue; 3594 // Ensure the indices in each SrcVT sized piece are sequential and that 3595 // the same source is used for the whole piece. 3596 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3597 (ConcatSrcs[i / SrcNumElts] >= 0 && 3598 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3599 IsConcat = false; 3600 break; 3601 } 3602 // Remember which source this index came from. 3603 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3604 } 3605 3606 // The shuffle is concatenating multiple vectors together. Just emit 3607 // a CONCAT_VECTORS operation. 3608 if (IsConcat) { 3609 SmallVector<SDValue, 8> ConcatOps; 3610 for (auto Src : ConcatSrcs) { 3611 if (Src < 0) 3612 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3613 else if (Src == 0) 3614 ConcatOps.push_back(Src1); 3615 else 3616 ConcatOps.push_back(Src2); 3617 } 3618 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3619 return; 3620 } 3621 } 3622 3623 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3624 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3625 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3626 PaddedMaskNumElts); 3627 3628 // Pad both vectors with undefs to make them the same length as the mask. 3629 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3630 3631 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3632 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3633 MOps1[0] = Src1; 3634 MOps2[0] = Src2; 3635 3636 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3637 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3638 3639 // Readjust mask for new input vector length. 3640 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3641 for (unsigned i = 0; i != MaskNumElts; ++i) { 3642 int Idx = Mask[i]; 3643 if (Idx >= (int)SrcNumElts) 3644 Idx -= SrcNumElts - PaddedMaskNumElts; 3645 MappedOps[i] = Idx; 3646 } 3647 3648 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3649 3650 // If the concatenated vector was padded, extract a subvector with the 3651 // correct number of elements. 3652 if (MaskNumElts != PaddedMaskNumElts) 3653 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3654 DAG.getVectorIdxConstant(0, DL)); 3655 3656 setValue(&I, Result); 3657 return; 3658 } 3659 3660 if (SrcNumElts > MaskNumElts) { 3661 // Analyze the access pattern of the vector to see if we can extract 3662 // two subvectors and do the shuffle. 3663 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3664 bool CanExtract = true; 3665 for (int Idx : Mask) { 3666 unsigned Input = 0; 3667 if (Idx < 0) 3668 continue; 3669 3670 if (Idx >= (int)SrcNumElts) { 3671 Input = 1; 3672 Idx -= SrcNumElts; 3673 } 3674 3675 // If all the indices come from the same MaskNumElts sized portion of 3676 // the sources we can use extract. Also make sure the extract wouldn't 3677 // extract past the end of the source. 3678 int NewStartIdx = alignDown(Idx, MaskNumElts); 3679 if (NewStartIdx + MaskNumElts > SrcNumElts || 3680 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3681 CanExtract = false; 3682 // Make sure we always update StartIdx as we use it to track if all 3683 // elements are undef. 3684 StartIdx[Input] = NewStartIdx; 3685 } 3686 3687 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3688 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3689 return; 3690 } 3691 if (CanExtract) { 3692 // Extract appropriate subvector and generate a vector shuffle 3693 for (unsigned Input = 0; Input < 2; ++Input) { 3694 SDValue &Src = Input == 0 ? Src1 : Src2; 3695 if (StartIdx[Input] < 0) 3696 Src = DAG.getUNDEF(VT); 3697 else { 3698 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3699 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3700 } 3701 } 3702 3703 // Calculate new mask. 3704 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3705 for (int &Idx : MappedOps) { 3706 if (Idx >= (int)SrcNumElts) 3707 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3708 else if (Idx >= 0) 3709 Idx -= StartIdx[0]; 3710 } 3711 3712 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3713 return; 3714 } 3715 } 3716 3717 // We can't use either concat vectors or extract subvectors so fall back to 3718 // replacing the shuffle with extract and build vector. 3719 // to insert and build vector. 3720 EVT EltVT = VT.getVectorElementType(); 3721 SmallVector<SDValue,8> Ops; 3722 for (int Idx : Mask) { 3723 SDValue Res; 3724 3725 if (Idx < 0) { 3726 Res = DAG.getUNDEF(EltVT); 3727 } else { 3728 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3729 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3730 3731 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3732 DAG.getVectorIdxConstant(Idx, DL)); 3733 } 3734 3735 Ops.push_back(Res); 3736 } 3737 3738 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3739 } 3740 3741 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3742 ArrayRef<unsigned> Indices; 3743 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3744 Indices = IV->getIndices(); 3745 else 3746 Indices = cast<ConstantExpr>(&I)->getIndices(); 3747 3748 const Value *Op0 = I.getOperand(0); 3749 const Value *Op1 = I.getOperand(1); 3750 Type *AggTy = I.getType(); 3751 Type *ValTy = Op1->getType(); 3752 bool IntoUndef = isa<UndefValue>(Op0); 3753 bool FromUndef = isa<UndefValue>(Op1); 3754 3755 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3756 3757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3758 SmallVector<EVT, 4> AggValueVTs; 3759 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3760 SmallVector<EVT, 4> ValValueVTs; 3761 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3762 3763 unsigned NumAggValues = AggValueVTs.size(); 3764 unsigned NumValValues = ValValueVTs.size(); 3765 SmallVector<SDValue, 4> Values(NumAggValues); 3766 3767 // Ignore an insertvalue that produces an empty object 3768 if (!NumAggValues) { 3769 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3770 return; 3771 } 3772 3773 SDValue Agg = getValue(Op0); 3774 unsigned i = 0; 3775 // Copy the beginning value(s) from the original aggregate. 3776 for (; i != LinearIndex; ++i) 3777 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3778 SDValue(Agg.getNode(), Agg.getResNo() + i); 3779 // Copy values from the inserted value(s). 3780 if (NumValValues) { 3781 SDValue Val = getValue(Op1); 3782 for (; i != LinearIndex + NumValValues; ++i) 3783 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3784 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3785 } 3786 // Copy remaining value(s) from the original aggregate. 3787 for (; i != NumAggValues; ++i) 3788 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3789 SDValue(Agg.getNode(), Agg.getResNo() + i); 3790 3791 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3792 DAG.getVTList(AggValueVTs), Values)); 3793 } 3794 3795 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3796 ArrayRef<unsigned> Indices; 3797 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3798 Indices = EV->getIndices(); 3799 else 3800 Indices = cast<ConstantExpr>(&I)->getIndices(); 3801 3802 const Value *Op0 = I.getOperand(0); 3803 Type *AggTy = Op0->getType(); 3804 Type *ValTy = I.getType(); 3805 bool OutOfUndef = isa<UndefValue>(Op0); 3806 3807 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3808 3809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3810 SmallVector<EVT, 4> ValValueVTs; 3811 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3812 3813 unsigned NumValValues = ValValueVTs.size(); 3814 3815 // Ignore a extractvalue that produces an empty object 3816 if (!NumValValues) { 3817 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3818 return; 3819 } 3820 3821 SmallVector<SDValue, 4> Values(NumValValues); 3822 3823 SDValue Agg = getValue(Op0); 3824 // Copy out the selected value(s). 3825 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3826 Values[i - LinearIndex] = 3827 OutOfUndef ? 3828 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3829 SDValue(Agg.getNode(), Agg.getResNo() + i); 3830 3831 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3832 DAG.getVTList(ValValueVTs), Values)); 3833 } 3834 3835 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3836 Value *Op0 = I.getOperand(0); 3837 // Note that the pointer operand may be a vector of pointers. Take the scalar 3838 // element which holds a pointer. 3839 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3840 SDValue N = getValue(Op0); 3841 SDLoc dl = getCurSDLoc(); 3842 auto &TLI = DAG.getTargetLoweringInfo(); 3843 3844 // Normalize Vector GEP - all scalar operands should be converted to the 3845 // splat vector. 3846 bool IsVectorGEP = I.getType()->isVectorTy(); 3847 ElementCount VectorElementCount = 3848 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3849 : ElementCount::getFixed(0); 3850 3851 if (IsVectorGEP && !N.getValueType().isVector()) { 3852 LLVMContext &Context = *DAG.getContext(); 3853 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3854 if (VectorElementCount.isScalable()) 3855 N = DAG.getSplatVector(VT, dl, N); 3856 else 3857 N = DAG.getSplatBuildVector(VT, dl, N); 3858 } 3859 3860 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3861 GTI != E; ++GTI) { 3862 const Value *Idx = GTI.getOperand(); 3863 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3864 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3865 if (Field) { 3866 // N = N + Offset 3867 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3868 3869 // In an inbounds GEP with an offset that is nonnegative even when 3870 // interpreted as signed, assume there is no unsigned overflow. 3871 SDNodeFlags Flags; 3872 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3873 Flags.setNoUnsignedWrap(true); 3874 3875 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3876 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3877 } 3878 } else { 3879 // IdxSize is the width of the arithmetic according to IR semantics. 3880 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3881 // (and fix up the result later). 3882 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3883 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3884 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3885 // We intentionally mask away the high bits here; ElementSize may not 3886 // fit in IdxTy. 3887 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3888 bool ElementScalable = ElementSize.isScalable(); 3889 3890 // If this is a scalar constant or a splat vector of constants, 3891 // handle it quickly. 3892 const auto *C = dyn_cast<Constant>(Idx); 3893 if (C && isa<VectorType>(C->getType())) 3894 C = C->getSplatValue(); 3895 3896 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3897 if (CI && CI->isZero()) 3898 continue; 3899 if (CI && !ElementScalable) { 3900 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3901 LLVMContext &Context = *DAG.getContext(); 3902 SDValue OffsVal; 3903 if (IsVectorGEP) 3904 OffsVal = DAG.getConstant( 3905 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3906 else 3907 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3908 3909 // In an inbounds GEP with an offset that is nonnegative even when 3910 // interpreted as signed, assume there is no unsigned overflow. 3911 SDNodeFlags Flags; 3912 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3913 Flags.setNoUnsignedWrap(true); 3914 3915 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3916 3917 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3918 continue; 3919 } 3920 3921 // N = N + Idx * ElementMul; 3922 SDValue IdxN = getValue(Idx); 3923 3924 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3925 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3926 VectorElementCount); 3927 if (VectorElementCount.isScalable()) 3928 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3929 else 3930 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3931 } 3932 3933 // If the index is smaller or larger than intptr_t, truncate or extend 3934 // it. 3935 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3936 3937 if (ElementScalable) { 3938 EVT VScaleTy = N.getValueType().getScalarType(); 3939 SDValue VScale = DAG.getNode( 3940 ISD::VSCALE, dl, VScaleTy, 3941 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3942 if (IsVectorGEP) 3943 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3944 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3945 } else { 3946 // If this is a multiply by a power of two, turn it into a shl 3947 // immediately. This is a very common case. 3948 if (ElementMul != 1) { 3949 if (ElementMul.isPowerOf2()) { 3950 unsigned Amt = ElementMul.logBase2(); 3951 IdxN = DAG.getNode(ISD::SHL, dl, 3952 N.getValueType(), IdxN, 3953 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3954 } else { 3955 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3956 IdxN.getValueType()); 3957 IdxN = DAG.getNode(ISD::MUL, dl, 3958 N.getValueType(), IdxN, Scale); 3959 } 3960 } 3961 } 3962 3963 N = DAG.getNode(ISD::ADD, dl, 3964 N.getValueType(), N, IdxN); 3965 } 3966 } 3967 3968 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3969 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3970 if (IsVectorGEP) { 3971 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3972 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3973 } 3974 3975 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3976 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3977 3978 setValue(&I, N); 3979 } 3980 3981 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3982 // If this is a fixed sized alloca in the entry block of the function, 3983 // allocate it statically on the stack. 3984 if (FuncInfo.StaticAllocaMap.count(&I)) 3985 return; // getValue will auto-populate this. 3986 3987 SDLoc dl = getCurSDLoc(); 3988 Type *Ty = I.getAllocatedType(); 3989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3990 auto &DL = DAG.getDataLayout(); 3991 uint64_t TySize = DL.getTypeAllocSize(Ty); 3992 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3993 3994 SDValue AllocSize = getValue(I.getArraySize()); 3995 3996 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3997 if (AllocSize.getValueType() != IntPtr) 3998 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3999 4000 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4001 AllocSize, 4002 DAG.getConstant(TySize, dl, IntPtr)); 4003 4004 // Handle alignment. If the requested alignment is less than or equal to 4005 // the stack alignment, ignore it. If the size is greater than or equal to 4006 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4007 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4008 if (*Alignment <= StackAlign) 4009 Alignment = None; 4010 4011 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4012 // Round the size of the allocation up to the stack alignment size 4013 // by add SA-1 to the size. This doesn't overflow because we're computing 4014 // an address inside an alloca. 4015 SDNodeFlags Flags; 4016 Flags.setNoUnsignedWrap(true); 4017 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4018 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4019 4020 // Mask out the low bits for alignment purposes. 4021 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4022 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4023 4024 SDValue Ops[] = { 4025 getRoot(), AllocSize, 4026 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4027 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4028 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4029 setValue(&I, DSA); 4030 DAG.setRoot(DSA.getValue(1)); 4031 4032 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4033 } 4034 4035 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4036 if (I.isAtomic()) 4037 return visitAtomicLoad(I); 4038 4039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4040 const Value *SV = I.getOperand(0); 4041 if (TLI.supportSwiftError()) { 4042 // Swifterror values can come from either a function parameter with 4043 // swifterror attribute or an alloca with swifterror attribute. 4044 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4045 if (Arg->hasSwiftErrorAttr()) 4046 return visitLoadFromSwiftError(I); 4047 } 4048 4049 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4050 if (Alloca->isSwiftError()) 4051 return visitLoadFromSwiftError(I); 4052 } 4053 } 4054 4055 SDValue Ptr = getValue(SV); 4056 4057 Type *Ty = I.getType(); 4058 Align Alignment = I.getAlign(); 4059 4060 AAMDNodes AAInfo; 4061 I.getAAMetadata(AAInfo); 4062 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4063 4064 SmallVector<EVT, 4> ValueVTs, MemVTs; 4065 SmallVector<uint64_t, 4> Offsets; 4066 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4067 unsigned NumValues = ValueVTs.size(); 4068 if (NumValues == 0) 4069 return; 4070 4071 bool isVolatile = I.isVolatile(); 4072 4073 SDValue Root; 4074 bool ConstantMemory = false; 4075 if (isVolatile) 4076 // Serialize volatile loads with other side effects. 4077 Root = getRoot(); 4078 else if (NumValues > MaxParallelChains) 4079 Root = getMemoryRoot(); 4080 else if (AA && 4081 AA->pointsToConstantMemory(MemoryLocation( 4082 SV, 4083 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4084 AAInfo))) { 4085 // Do not serialize (non-volatile) loads of constant memory with anything. 4086 Root = DAG.getEntryNode(); 4087 ConstantMemory = true; 4088 } else { 4089 // Do not serialize non-volatile loads against each other. 4090 Root = DAG.getRoot(); 4091 } 4092 4093 SDLoc dl = getCurSDLoc(); 4094 4095 if (isVolatile) 4096 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4097 4098 // An aggregate load cannot wrap around the address space, so offsets to its 4099 // parts don't wrap either. 4100 SDNodeFlags Flags; 4101 Flags.setNoUnsignedWrap(true); 4102 4103 SmallVector<SDValue, 4> Values(NumValues); 4104 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4105 EVT PtrVT = Ptr.getValueType(); 4106 4107 MachineMemOperand::Flags MMOFlags 4108 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4109 4110 unsigned ChainI = 0; 4111 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4112 // Serializing loads here may result in excessive register pressure, and 4113 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4114 // could recover a bit by hoisting nodes upward in the chain by recognizing 4115 // they are side-effect free or do not alias. The optimizer should really 4116 // avoid this case by converting large object/array copies to llvm.memcpy 4117 // (MaxParallelChains should always remain as failsafe). 4118 if (ChainI == MaxParallelChains) { 4119 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4120 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4121 makeArrayRef(Chains.data(), ChainI)); 4122 Root = Chain; 4123 ChainI = 0; 4124 } 4125 SDValue A = DAG.getNode(ISD::ADD, dl, 4126 PtrVT, Ptr, 4127 DAG.getConstant(Offsets[i], dl, PtrVT), 4128 Flags); 4129 4130 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4131 MachinePointerInfo(SV, Offsets[i]), Alignment, 4132 MMOFlags, AAInfo, Ranges); 4133 Chains[ChainI] = L.getValue(1); 4134 4135 if (MemVTs[i] != ValueVTs[i]) 4136 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4137 4138 Values[i] = L; 4139 } 4140 4141 if (!ConstantMemory) { 4142 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4143 makeArrayRef(Chains.data(), ChainI)); 4144 if (isVolatile) 4145 DAG.setRoot(Chain); 4146 else 4147 PendingLoads.push_back(Chain); 4148 } 4149 4150 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4151 DAG.getVTList(ValueVTs), Values)); 4152 } 4153 4154 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4155 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4156 "call visitStoreToSwiftError when backend supports swifterror"); 4157 4158 SmallVector<EVT, 4> ValueVTs; 4159 SmallVector<uint64_t, 4> Offsets; 4160 const Value *SrcV = I.getOperand(0); 4161 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4162 SrcV->getType(), ValueVTs, &Offsets); 4163 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4164 "expect a single EVT for swifterror"); 4165 4166 SDValue Src = getValue(SrcV); 4167 // Create a virtual register, then update the virtual register. 4168 Register VReg = 4169 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4170 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4171 // Chain can be getRoot or getControlRoot. 4172 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4173 SDValue(Src.getNode(), Src.getResNo())); 4174 DAG.setRoot(CopyNode); 4175 } 4176 4177 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4178 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4179 "call visitLoadFromSwiftError when backend supports swifterror"); 4180 4181 assert(!I.isVolatile() && 4182 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4183 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4184 "Support volatile, non temporal, invariant for load_from_swift_error"); 4185 4186 const Value *SV = I.getOperand(0); 4187 Type *Ty = I.getType(); 4188 AAMDNodes AAInfo; 4189 I.getAAMetadata(AAInfo); 4190 assert( 4191 (!AA || 4192 !AA->pointsToConstantMemory(MemoryLocation( 4193 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4194 AAInfo))) && 4195 "load_from_swift_error should not be constant memory"); 4196 4197 SmallVector<EVT, 4> ValueVTs; 4198 SmallVector<uint64_t, 4> Offsets; 4199 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4200 ValueVTs, &Offsets); 4201 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4202 "expect a single EVT for swifterror"); 4203 4204 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4205 SDValue L = DAG.getCopyFromReg( 4206 getRoot(), getCurSDLoc(), 4207 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4208 4209 setValue(&I, L); 4210 } 4211 4212 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4213 if (I.isAtomic()) 4214 return visitAtomicStore(I); 4215 4216 const Value *SrcV = I.getOperand(0); 4217 const Value *PtrV = I.getOperand(1); 4218 4219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4220 if (TLI.supportSwiftError()) { 4221 // Swifterror values can come from either a function parameter with 4222 // swifterror attribute or an alloca with swifterror attribute. 4223 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4224 if (Arg->hasSwiftErrorAttr()) 4225 return visitStoreToSwiftError(I); 4226 } 4227 4228 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4229 if (Alloca->isSwiftError()) 4230 return visitStoreToSwiftError(I); 4231 } 4232 } 4233 4234 SmallVector<EVT, 4> ValueVTs, MemVTs; 4235 SmallVector<uint64_t, 4> Offsets; 4236 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4237 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4238 unsigned NumValues = ValueVTs.size(); 4239 if (NumValues == 0) 4240 return; 4241 4242 // Get the lowered operands. Note that we do this after 4243 // checking if NumResults is zero, because with zero results 4244 // the operands won't have values in the map. 4245 SDValue Src = getValue(SrcV); 4246 SDValue Ptr = getValue(PtrV); 4247 4248 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4249 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4250 SDLoc dl = getCurSDLoc(); 4251 Align Alignment = I.getAlign(); 4252 AAMDNodes AAInfo; 4253 I.getAAMetadata(AAInfo); 4254 4255 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4256 4257 // An aggregate load cannot wrap around the address space, so offsets to its 4258 // parts don't wrap either. 4259 SDNodeFlags Flags; 4260 Flags.setNoUnsignedWrap(true); 4261 4262 unsigned ChainI = 0; 4263 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4264 // See visitLoad comments. 4265 if (ChainI == MaxParallelChains) { 4266 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4267 makeArrayRef(Chains.data(), ChainI)); 4268 Root = Chain; 4269 ChainI = 0; 4270 } 4271 SDValue Add = 4272 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4273 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4274 if (MemVTs[i] != ValueVTs[i]) 4275 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4276 SDValue St = 4277 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4278 Alignment, MMOFlags, AAInfo); 4279 Chains[ChainI] = St; 4280 } 4281 4282 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4283 makeArrayRef(Chains.data(), ChainI)); 4284 DAG.setRoot(StoreNode); 4285 } 4286 4287 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4288 bool IsCompressing) { 4289 SDLoc sdl = getCurSDLoc(); 4290 4291 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4292 MaybeAlign &Alignment) { 4293 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4294 Src0 = I.getArgOperand(0); 4295 Ptr = I.getArgOperand(1); 4296 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4297 Mask = I.getArgOperand(3); 4298 }; 4299 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4300 MaybeAlign &Alignment) { 4301 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4302 Src0 = I.getArgOperand(0); 4303 Ptr = I.getArgOperand(1); 4304 Mask = I.getArgOperand(2); 4305 Alignment = None; 4306 }; 4307 4308 Value *PtrOperand, *MaskOperand, *Src0Operand; 4309 MaybeAlign Alignment; 4310 if (IsCompressing) 4311 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4312 else 4313 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4314 4315 SDValue Ptr = getValue(PtrOperand); 4316 SDValue Src0 = getValue(Src0Operand); 4317 SDValue Mask = getValue(MaskOperand); 4318 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4319 4320 EVT VT = Src0.getValueType(); 4321 if (!Alignment) 4322 Alignment = DAG.getEVTAlign(VT); 4323 4324 AAMDNodes AAInfo; 4325 I.getAAMetadata(AAInfo); 4326 4327 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4328 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4329 // TODO: Make MachineMemOperands aware of scalable 4330 // vectors. 4331 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4332 SDValue StoreNode = 4333 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4334 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4335 DAG.setRoot(StoreNode); 4336 setValue(&I, StoreNode); 4337 } 4338 4339 // Get a uniform base for the Gather/Scatter intrinsic. 4340 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4341 // We try to represent it as a base pointer + vector of indices. 4342 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4343 // The first operand of the GEP may be a single pointer or a vector of pointers 4344 // Example: 4345 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4346 // or 4347 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4348 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4349 // 4350 // When the first GEP operand is a single pointer - it is the uniform base we 4351 // are looking for. If first operand of the GEP is a splat vector - we 4352 // extract the splat value and use it as a uniform base. 4353 // In all other cases the function returns 'false'. 4354 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4355 ISD::MemIndexType &IndexType, SDValue &Scale, 4356 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4357 SelectionDAG& DAG = SDB->DAG; 4358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4359 const DataLayout &DL = DAG.getDataLayout(); 4360 4361 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4362 4363 // Handle splat constant pointer. 4364 if (auto *C = dyn_cast<Constant>(Ptr)) { 4365 C = C->getSplatValue(); 4366 if (!C) 4367 return false; 4368 4369 Base = SDB->getValue(C); 4370 4371 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4372 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4373 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4374 IndexType = ISD::SIGNED_SCALED; 4375 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4376 return true; 4377 } 4378 4379 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4380 if (!GEP || GEP->getParent() != CurBB) 4381 return false; 4382 4383 if (GEP->getNumOperands() != 2) 4384 return false; 4385 4386 const Value *BasePtr = GEP->getPointerOperand(); 4387 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4388 4389 // Make sure the base is scalar and the index is a vector. 4390 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4391 return false; 4392 4393 Base = SDB->getValue(BasePtr); 4394 Index = SDB->getValue(IndexVal); 4395 IndexType = ISD::SIGNED_SCALED; 4396 Scale = DAG.getTargetConstant( 4397 DL.getTypeAllocSize(GEP->getResultElementType()), 4398 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4399 return true; 4400 } 4401 4402 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4403 SDLoc sdl = getCurSDLoc(); 4404 4405 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4406 const Value *Ptr = I.getArgOperand(1); 4407 SDValue Src0 = getValue(I.getArgOperand(0)); 4408 SDValue Mask = getValue(I.getArgOperand(3)); 4409 EVT VT = Src0.getValueType(); 4410 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4411 ->getMaybeAlignValue() 4412 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4414 4415 AAMDNodes AAInfo; 4416 I.getAAMetadata(AAInfo); 4417 4418 SDValue Base; 4419 SDValue Index; 4420 ISD::MemIndexType IndexType; 4421 SDValue Scale; 4422 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4423 I.getParent()); 4424 4425 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4426 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4427 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4428 // TODO: Make MachineMemOperands aware of scalable 4429 // vectors. 4430 MemoryLocation::UnknownSize, Alignment, AAInfo); 4431 if (!UniformBase) { 4432 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4433 Index = getValue(Ptr); 4434 IndexType = ISD::SIGNED_UNSCALED; 4435 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4436 } 4437 4438 EVT IdxVT = Index.getValueType(); 4439 EVT EltTy = IdxVT.getVectorElementType(); 4440 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4441 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4442 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4443 } 4444 4445 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4446 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4447 Ops, MMO, IndexType, false); 4448 DAG.setRoot(Scatter); 4449 setValue(&I, Scatter); 4450 } 4451 4452 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4453 SDLoc sdl = getCurSDLoc(); 4454 4455 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4456 MaybeAlign &Alignment) { 4457 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4458 Ptr = I.getArgOperand(0); 4459 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4460 Mask = I.getArgOperand(2); 4461 Src0 = I.getArgOperand(3); 4462 }; 4463 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4464 MaybeAlign &Alignment) { 4465 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4466 Ptr = I.getArgOperand(0); 4467 Alignment = None; 4468 Mask = I.getArgOperand(1); 4469 Src0 = I.getArgOperand(2); 4470 }; 4471 4472 Value *PtrOperand, *MaskOperand, *Src0Operand; 4473 MaybeAlign Alignment; 4474 if (IsExpanding) 4475 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4476 else 4477 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4478 4479 SDValue Ptr = getValue(PtrOperand); 4480 SDValue Src0 = getValue(Src0Operand); 4481 SDValue Mask = getValue(MaskOperand); 4482 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4483 4484 EVT VT = Src0.getValueType(); 4485 if (!Alignment) 4486 Alignment = DAG.getEVTAlign(VT); 4487 4488 AAMDNodes AAInfo; 4489 I.getAAMetadata(AAInfo); 4490 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4491 4492 // Do not serialize masked loads of constant memory with anything. 4493 MemoryLocation ML; 4494 if (VT.isScalableVector()) 4495 ML = MemoryLocation::getAfter(PtrOperand); 4496 else 4497 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4498 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4499 AAInfo); 4500 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4501 4502 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4503 4504 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4505 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4506 // TODO: Make MachineMemOperands aware of scalable 4507 // vectors. 4508 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4509 4510 SDValue Load = 4511 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4512 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4513 if (AddToChain) 4514 PendingLoads.push_back(Load.getValue(1)); 4515 setValue(&I, Load); 4516 } 4517 4518 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4519 SDLoc sdl = getCurSDLoc(); 4520 4521 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4522 const Value *Ptr = I.getArgOperand(0); 4523 SDValue Src0 = getValue(I.getArgOperand(3)); 4524 SDValue Mask = getValue(I.getArgOperand(2)); 4525 4526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4527 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4528 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4529 ->getMaybeAlignValue() 4530 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4531 4532 AAMDNodes AAInfo; 4533 I.getAAMetadata(AAInfo); 4534 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4535 4536 SDValue Root = DAG.getRoot(); 4537 SDValue Base; 4538 SDValue Index; 4539 ISD::MemIndexType IndexType; 4540 SDValue Scale; 4541 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4542 I.getParent()); 4543 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4544 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4545 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4546 // TODO: Make MachineMemOperands aware of scalable 4547 // vectors. 4548 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4549 4550 if (!UniformBase) { 4551 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4552 Index = getValue(Ptr); 4553 IndexType = ISD::SIGNED_UNSCALED; 4554 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4555 } 4556 4557 EVT IdxVT = Index.getValueType(); 4558 EVT EltTy = IdxVT.getVectorElementType(); 4559 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4560 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4561 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4562 } 4563 4564 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4565 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4566 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4567 4568 PendingLoads.push_back(Gather.getValue(1)); 4569 setValue(&I, Gather); 4570 } 4571 4572 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4573 SDLoc dl = getCurSDLoc(); 4574 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4575 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4576 SyncScope::ID SSID = I.getSyncScopeID(); 4577 4578 SDValue InChain = getRoot(); 4579 4580 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4581 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4582 4583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4584 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4585 4586 MachineFunction &MF = DAG.getMachineFunction(); 4587 MachineMemOperand *MMO = MF.getMachineMemOperand( 4588 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4589 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4590 FailureOrdering); 4591 4592 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4593 dl, MemVT, VTs, InChain, 4594 getValue(I.getPointerOperand()), 4595 getValue(I.getCompareOperand()), 4596 getValue(I.getNewValOperand()), MMO); 4597 4598 SDValue OutChain = L.getValue(2); 4599 4600 setValue(&I, L); 4601 DAG.setRoot(OutChain); 4602 } 4603 4604 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4605 SDLoc dl = getCurSDLoc(); 4606 ISD::NodeType NT; 4607 switch (I.getOperation()) { 4608 default: llvm_unreachable("Unknown atomicrmw operation"); 4609 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4610 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4611 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4612 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4613 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4614 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4615 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4616 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4617 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4618 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4619 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4620 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4621 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4622 } 4623 AtomicOrdering Ordering = I.getOrdering(); 4624 SyncScope::ID SSID = I.getSyncScopeID(); 4625 4626 SDValue InChain = getRoot(); 4627 4628 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4630 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4631 4632 MachineFunction &MF = DAG.getMachineFunction(); 4633 MachineMemOperand *MMO = MF.getMachineMemOperand( 4634 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4635 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4636 4637 SDValue L = 4638 DAG.getAtomic(NT, dl, MemVT, InChain, 4639 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4640 MMO); 4641 4642 SDValue OutChain = L.getValue(1); 4643 4644 setValue(&I, L); 4645 DAG.setRoot(OutChain); 4646 } 4647 4648 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4649 SDLoc dl = getCurSDLoc(); 4650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4651 SDValue Ops[3]; 4652 Ops[0] = getRoot(); 4653 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4654 TLI.getFenceOperandTy(DAG.getDataLayout())); 4655 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4656 TLI.getFenceOperandTy(DAG.getDataLayout())); 4657 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4658 } 4659 4660 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4661 SDLoc dl = getCurSDLoc(); 4662 AtomicOrdering Order = I.getOrdering(); 4663 SyncScope::ID SSID = I.getSyncScopeID(); 4664 4665 SDValue InChain = getRoot(); 4666 4667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4668 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4669 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4670 4671 if (!TLI.supportsUnalignedAtomics() && 4672 I.getAlignment() < MemVT.getSizeInBits() / 8) 4673 report_fatal_error("Cannot generate unaligned atomic load"); 4674 4675 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4676 4677 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4678 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4679 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4680 4681 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4682 4683 SDValue Ptr = getValue(I.getPointerOperand()); 4684 4685 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4686 // TODO: Once this is better exercised by tests, it should be merged with 4687 // the normal path for loads to prevent future divergence. 4688 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4689 if (MemVT != VT) 4690 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4691 4692 setValue(&I, L); 4693 SDValue OutChain = L.getValue(1); 4694 if (!I.isUnordered()) 4695 DAG.setRoot(OutChain); 4696 else 4697 PendingLoads.push_back(OutChain); 4698 return; 4699 } 4700 4701 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4702 Ptr, MMO); 4703 4704 SDValue OutChain = L.getValue(1); 4705 if (MemVT != VT) 4706 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4707 4708 setValue(&I, L); 4709 DAG.setRoot(OutChain); 4710 } 4711 4712 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4713 SDLoc dl = getCurSDLoc(); 4714 4715 AtomicOrdering Ordering = I.getOrdering(); 4716 SyncScope::ID SSID = I.getSyncScopeID(); 4717 4718 SDValue InChain = getRoot(); 4719 4720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4721 EVT MemVT = 4722 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4723 4724 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4725 report_fatal_error("Cannot generate unaligned atomic store"); 4726 4727 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4728 4729 MachineFunction &MF = DAG.getMachineFunction(); 4730 MachineMemOperand *MMO = MF.getMachineMemOperand( 4731 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4732 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4733 4734 SDValue Val = getValue(I.getValueOperand()); 4735 if (Val.getValueType() != MemVT) 4736 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4737 SDValue Ptr = getValue(I.getPointerOperand()); 4738 4739 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4740 // TODO: Once this is better exercised by tests, it should be merged with 4741 // the normal path for stores to prevent future divergence. 4742 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4743 DAG.setRoot(S); 4744 return; 4745 } 4746 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4747 Ptr, Val, MMO); 4748 4749 4750 DAG.setRoot(OutChain); 4751 } 4752 4753 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4754 /// node. 4755 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4756 unsigned Intrinsic) { 4757 // Ignore the callsite's attributes. A specific call site may be marked with 4758 // readnone, but the lowering code will expect the chain based on the 4759 // definition. 4760 const Function *F = I.getCalledFunction(); 4761 bool HasChain = !F->doesNotAccessMemory(); 4762 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4763 4764 // Build the operand list. 4765 SmallVector<SDValue, 8> Ops; 4766 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4767 if (OnlyLoad) { 4768 // We don't need to serialize loads against other loads. 4769 Ops.push_back(DAG.getRoot()); 4770 } else { 4771 Ops.push_back(getRoot()); 4772 } 4773 } 4774 4775 // Info is set by getTgtMemInstrinsic 4776 TargetLowering::IntrinsicInfo Info; 4777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4778 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4779 DAG.getMachineFunction(), 4780 Intrinsic); 4781 4782 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4783 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4784 Info.opc == ISD::INTRINSIC_W_CHAIN) 4785 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4786 TLI.getPointerTy(DAG.getDataLayout()))); 4787 4788 // Add all operands of the call to the operand list. 4789 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4790 const Value *Arg = I.getArgOperand(i); 4791 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4792 Ops.push_back(getValue(Arg)); 4793 continue; 4794 } 4795 4796 // Use TargetConstant instead of a regular constant for immarg. 4797 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4798 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4799 assert(CI->getBitWidth() <= 64 && 4800 "large intrinsic immediates not handled"); 4801 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4802 } else { 4803 Ops.push_back( 4804 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4805 } 4806 } 4807 4808 SmallVector<EVT, 4> ValueVTs; 4809 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4810 4811 if (HasChain) 4812 ValueVTs.push_back(MVT::Other); 4813 4814 SDVTList VTs = DAG.getVTList(ValueVTs); 4815 4816 // Propagate fast-math-flags from IR to node(s). 4817 SDNodeFlags Flags; 4818 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4819 Flags.copyFMF(*FPMO); 4820 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4821 4822 // Create the node. 4823 SDValue Result; 4824 if (IsTgtIntrinsic) { 4825 // This is target intrinsic that touches memory 4826 AAMDNodes AAInfo; 4827 I.getAAMetadata(AAInfo); 4828 Result = 4829 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4830 MachinePointerInfo(Info.ptrVal, Info.offset), 4831 Info.align, Info.flags, Info.size, AAInfo); 4832 } else if (!HasChain) { 4833 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4834 } else if (!I.getType()->isVoidTy()) { 4835 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4836 } else { 4837 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4838 } 4839 4840 if (HasChain) { 4841 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4842 if (OnlyLoad) 4843 PendingLoads.push_back(Chain); 4844 else 4845 DAG.setRoot(Chain); 4846 } 4847 4848 if (!I.getType()->isVoidTy()) { 4849 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4850 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4851 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4852 } else 4853 Result = lowerRangeToAssertZExt(DAG, I, Result); 4854 4855 MaybeAlign Alignment = I.getRetAlign(); 4856 if (!Alignment) 4857 Alignment = F->getAttributes().getRetAlignment(); 4858 // Insert `assertalign` node if there's an alignment. 4859 if (InsertAssertAlign && Alignment) { 4860 Result = 4861 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4862 } 4863 4864 setValue(&I, Result); 4865 } 4866 } 4867 4868 /// GetSignificand - Get the significand and build it into a floating-point 4869 /// number with exponent of 1: 4870 /// 4871 /// Op = (Op & 0x007fffff) | 0x3f800000; 4872 /// 4873 /// where Op is the hexadecimal representation of floating point value. 4874 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4875 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4876 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4877 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4878 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4879 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4880 } 4881 4882 /// GetExponent - Get the exponent: 4883 /// 4884 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4885 /// 4886 /// where Op is the hexadecimal representation of floating point value. 4887 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4888 const TargetLowering &TLI, const SDLoc &dl) { 4889 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4890 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4891 SDValue t1 = DAG.getNode( 4892 ISD::SRL, dl, MVT::i32, t0, 4893 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4894 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4895 DAG.getConstant(127, dl, MVT::i32)); 4896 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4897 } 4898 4899 /// getF32Constant - Get 32-bit floating point constant. 4900 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4901 const SDLoc &dl) { 4902 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4903 MVT::f32); 4904 } 4905 4906 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4907 SelectionDAG &DAG) { 4908 // TODO: What fast-math-flags should be set on the floating-point nodes? 4909 4910 // IntegerPartOfX = ((int32_t)(t0); 4911 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4912 4913 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4914 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4915 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4916 4917 // IntegerPartOfX <<= 23; 4918 IntegerPartOfX = DAG.getNode( 4919 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4920 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4921 DAG.getDataLayout()))); 4922 4923 SDValue TwoToFractionalPartOfX; 4924 if (LimitFloatPrecision <= 6) { 4925 // For floating-point precision of 6: 4926 // 4927 // TwoToFractionalPartOfX = 4928 // 0.997535578f + 4929 // (0.735607626f + 0.252464424f * x) * x; 4930 // 4931 // error 0.0144103317, which is 6 bits 4932 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4933 getF32Constant(DAG, 0x3e814304, dl)); 4934 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4935 getF32Constant(DAG, 0x3f3c50c8, dl)); 4936 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4937 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4938 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4939 } else if (LimitFloatPrecision <= 12) { 4940 // For floating-point precision of 12: 4941 // 4942 // TwoToFractionalPartOfX = 4943 // 0.999892986f + 4944 // (0.696457318f + 4945 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4946 // 4947 // error 0.000107046256, which is 13 to 14 bits 4948 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4949 getF32Constant(DAG, 0x3da235e3, dl)); 4950 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4951 getF32Constant(DAG, 0x3e65b8f3, dl)); 4952 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4953 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4954 getF32Constant(DAG, 0x3f324b07, dl)); 4955 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4956 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4957 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4958 } else { // LimitFloatPrecision <= 18 4959 // For floating-point precision of 18: 4960 // 4961 // TwoToFractionalPartOfX = 4962 // 0.999999982f + 4963 // (0.693148872f + 4964 // (0.240227044f + 4965 // (0.554906021e-1f + 4966 // (0.961591928e-2f + 4967 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4968 // error 2.47208000*10^(-7), which is better than 18 bits 4969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4970 getF32Constant(DAG, 0x3924b03e, dl)); 4971 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4972 getF32Constant(DAG, 0x3ab24b87, dl)); 4973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4975 getF32Constant(DAG, 0x3c1d8c17, dl)); 4976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4977 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4978 getF32Constant(DAG, 0x3d634a1d, dl)); 4979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4981 getF32Constant(DAG, 0x3e75fe14, dl)); 4982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4983 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4984 getF32Constant(DAG, 0x3f317234, dl)); 4985 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4986 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4987 getF32Constant(DAG, 0x3f800000, dl)); 4988 } 4989 4990 // Add the exponent into the result in integer domain. 4991 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4992 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4993 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4994 } 4995 4996 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4997 /// limited-precision mode. 4998 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4999 const TargetLowering &TLI, SDNodeFlags Flags) { 5000 if (Op.getValueType() == MVT::f32 && 5001 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5002 5003 // Put the exponent in the right bit position for later addition to the 5004 // final result: 5005 // 5006 // t0 = Op * log2(e) 5007 5008 // TODO: What fast-math-flags should be set here? 5009 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5010 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5011 return getLimitedPrecisionExp2(t0, dl, DAG); 5012 } 5013 5014 // No special expansion. 5015 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5016 } 5017 5018 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5019 /// limited-precision mode. 5020 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5021 const TargetLowering &TLI, SDNodeFlags Flags) { 5022 // TODO: What fast-math-flags should be set on the floating-point nodes? 5023 5024 if (Op.getValueType() == MVT::f32 && 5025 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5026 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5027 5028 // Scale the exponent by log(2). 5029 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5030 SDValue LogOfExponent = 5031 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5032 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5033 5034 // Get the significand and build it into a floating-point number with 5035 // exponent of 1. 5036 SDValue X = GetSignificand(DAG, Op1, dl); 5037 5038 SDValue LogOfMantissa; 5039 if (LimitFloatPrecision <= 6) { 5040 // For floating-point precision of 6: 5041 // 5042 // LogofMantissa = 5043 // -1.1609546f + 5044 // (1.4034025f - 0.23903021f * x) * x; 5045 // 5046 // error 0.0034276066, which is better than 8 bits 5047 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5048 getF32Constant(DAG, 0xbe74c456, dl)); 5049 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5050 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5051 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5052 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5053 getF32Constant(DAG, 0x3f949a29, dl)); 5054 } else if (LimitFloatPrecision <= 12) { 5055 // For floating-point precision of 12: 5056 // 5057 // LogOfMantissa = 5058 // -1.7417939f + 5059 // (2.8212026f + 5060 // (-1.4699568f + 5061 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5062 // 5063 // error 0.000061011436, which is 14 bits 5064 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5065 getF32Constant(DAG, 0xbd67b6d6, dl)); 5066 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5067 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5068 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5069 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5070 getF32Constant(DAG, 0x3fbc278b, dl)); 5071 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5072 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5073 getF32Constant(DAG, 0x40348e95, dl)); 5074 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5075 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5076 getF32Constant(DAG, 0x3fdef31a, dl)); 5077 } else { // LimitFloatPrecision <= 18 5078 // For floating-point precision of 18: 5079 // 5080 // LogOfMantissa = 5081 // -2.1072184f + 5082 // (4.2372794f + 5083 // (-3.7029485f + 5084 // (2.2781945f + 5085 // (-0.87823314f + 5086 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5087 // 5088 // error 0.0000023660568, which is better than 18 bits 5089 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5090 getF32Constant(DAG, 0xbc91e5ac, dl)); 5091 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5092 getF32Constant(DAG, 0x3e4350aa, dl)); 5093 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5094 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5095 getF32Constant(DAG, 0x3f60d3e3, dl)); 5096 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5097 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5098 getF32Constant(DAG, 0x4011cdf0, dl)); 5099 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5100 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5101 getF32Constant(DAG, 0x406cfd1c, dl)); 5102 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5103 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5104 getF32Constant(DAG, 0x408797cb, dl)); 5105 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5106 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5107 getF32Constant(DAG, 0x4006dcab, dl)); 5108 } 5109 5110 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5111 } 5112 5113 // No special expansion. 5114 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5115 } 5116 5117 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5118 /// limited-precision mode. 5119 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5120 const TargetLowering &TLI, SDNodeFlags Flags) { 5121 // TODO: What fast-math-flags should be set on the floating-point nodes? 5122 5123 if (Op.getValueType() == MVT::f32 && 5124 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5125 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5126 5127 // Get the exponent. 5128 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5129 5130 // Get the significand and build it into a floating-point number with 5131 // exponent of 1. 5132 SDValue X = GetSignificand(DAG, Op1, dl); 5133 5134 // Different possible minimax approximations of significand in 5135 // floating-point for various degrees of accuracy over [1,2]. 5136 SDValue Log2ofMantissa; 5137 if (LimitFloatPrecision <= 6) { 5138 // For floating-point precision of 6: 5139 // 5140 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5141 // 5142 // error 0.0049451742, which is more than 7 bits 5143 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5144 getF32Constant(DAG, 0xbeb08fe0, dl)); 5145 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5146 getF32Constant(DAG, 0x40019463, dl)); 5147 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5148 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5149 getF32Constant(DAG, 0x3fd6633d, dl)); 5150 } else if (LimitFloatPrecision <= 12) { 5151 // For floating-point precision of 12: 5152 // 5153 // Log2ofMantissa = 5154 // -2.51285454f + 5155 // (4.07009056f + 5156 // (-2.12067489f + 5157 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5158 // 5159 // error 0.0000876136000, which is better than 13 bits 5160 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5161 getF32Constant(DAG, 0xbda7262e, dl)); 5162 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5163 getF32Constant(DAG, 0x3f25280b, dl)); 5164 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5165 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5166 getF32Constant(DAG, 0x4007b923, dl)); 5167 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5168 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5169 getF32Constant(DAG, 0x40823e2f, dl)); 5170 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5171 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5172 getF32Constant(DAG, 0x4020d29c, dl)); 5173 } else { // LimitFloatPrecision <= 18 5174 // For floating-point precision of 18: 5175 // 5176 // Log2ofMantissa = 5177 // -3.0400495f + 5178 // (6.1129976f + 5179 // (-5.3420409f + 5180 // (3.2865683f + 5181 // (-1.2669343f + 5182 // (0.27515199f - 5183 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5184 // 5185 // error 0.0000018516, which is better than 18 bits 5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0xbcd2769e, dl)); 5188 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5189 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5191 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5192 getF32Constant(DAG, 0x3fa22ae7, dl)); 5193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5194 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5195 getF32Constant(DAG, 0x40525723, dl)); 5196 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5197 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5198 getF32Constant(DAG, 0x40aaf200, dl)); 5199 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5200 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5201 getF32Constant(DAG, 0x40c39dad, dl)); 5202 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5203 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5204 getF32Constant(DAG, 0x4042902c, dl)); 5205 } 5206 5207 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5208 } 5209 5210 // No special expansion. 5211 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5212 } 5213 5214 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5215 /// limited-precision mode. 5216 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5217 const TargetLowering &TLI, SDNodeFlags Flags) { 5218 // TODO: What fast-math-flags should be set on the floating-point nodes? 5219 5220 if (Op.getValueType() == MVT::f32 && 5221 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5222 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5223 5224 // Scale the exponent by log10(2) [0.30102999f]. 5225 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5226 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5227 getF32Constant(DAG, 0x3e9a209a, dl)); 5228 5229 // Get the significand and build it into a floating-point number with 5230 // exponent of 1. 5231 SDValue X = GetSignificand(DAG, Op1, dl); 5232 5233 SDValue Log10ofMantissa; 5234 if (LimitFloatPrecision <= 6) { 5235 // For floating-point precision of 6: 5236 // 5237 // Log10ofMantissa = 5238 // -0.50419619f + 5239 // (0.60948995f - 0.10380950f * x) * x; 5240 // 5241 // error 0.0014886165, which is 6 bits 5242 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5243 getF32Constant(DAG, 0xbdd49a13, dl)); 5244 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5245 getF32Constant(DAG, 0x3f1c0789, dl)); 5246 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5247 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5248 getF32Constant(DAG, 0x3f011300, dl)); 5249 } else if (LimitFloatPrecision <= 12) { 5250 // For floating-point precision of 12: 5251 // 5252 // Log10ofMantissa = 5253 // -0.64831180f + 5254 // (0.91751397f + 5255 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5256 // 5257 // error 0.00019228036, which is better than 12 bits 5258 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5259 getF32Constant(DAG, 0x3d431f31, dl)); 5260 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5261 getF32Constant(DAG, 0x3ea21fb2, dl)); 5262 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5263 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5264 getF32Constant(DAG, 0x3f6ae232, dl)); 5265 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5266 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5267 getF32Constant(DAG, 0x3f25f7c3, dl)); 5268 } else { // LimitFloatPrecision <= 18 5269 // For floating-point precision of 18: 5270 // 5271 // Log10ofMantissa = 5272 // -0.84299375f + 5273 // (1.5327582f + 5274 // (-1.0688956f + 5275 // (0.49102474f + 5276 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5277 // 5278 // error 0.0000037995730, which is better than 18 bits 5279 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5280 getF32Constant(DAG, 0x3c5d51ce, dl)); 5281 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5282 getF32Constant(DAG, 0x3e00685a, dl)); 5283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5284 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5285 getF32Constant(DAG, 0x3efb6798, dl)); 5286 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5287 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5288 getF32Constant(DAG, 0x3f88d192, dl)); 5289 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5290 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5291 getF32Constant(DAG, 0x3fc4316c, dl)); 5292 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5293 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5294 getF32Constant(DAG, 0x3f57ce70, dl)); 5295 } 5296 5297 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5298 } 5299 5300 // No special expansion. 5301 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5302 } 5303 5304 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5305 /// limited-precision mode. 5306 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5307 const TargetLowering &TLI, SDNodeFlags Flags) { 5308 if (Op.getValueType() == MVT::f32 && 5309 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5310 return getLimitedPrecisionExp2(Op, dl, DAG); 5311 5312 // No special expansion. 5313 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5314 } 5315 5316 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5317 /// limited-precision mode with x == 10.0f. 5318 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5319 SelectionDAG &DAG, const TargetLowering &TLI, 5320 SDNodeFlags Flags) { 5321 bool IsExp10 = false; 5322 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5323 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5324 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5325 APFloat Ten(10.0f); 5326 IsExp10 = LHSC->isExactlyValue(Ten); 5327 } 5328 } 5329 5330 // TODO: What fast-math-flags should be set on the FMUL node? 5331 if (IsExp10) { 5332 // Put the exponent in the right bit position for later addition to the 5333 // final result: 5334 // 5335 // #define LOG2OF10 3.3219281f 5336 // t0 = Op * LOG2OF10; 5337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5338 getF32Constant(DAG, 0x40549a78, dl)); 5339 return getLimitedPrecisionExp2(t0, dl, DAG); 5340 } 5341 5342 // No special expansion. 5343 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5344 } 5345 5346 /// ExpandPowI - Expand a llvm.powi intrinsic. 5347 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5348 SelectionDAG &DAG) { 5349 // If RHS is a constant, we can expand this out to a multiplication tree, 5350 // otherwise we end up lowering to a call to __powidf2 (for example). When 5351 // optimizing for size, we only want to do this if the expansion would produce 5352 // a small number of multiplies, otherwise we do the full expansion. 5353 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5354 // Get the exponent as a positive value. 5355 unsigned Val = RHSC->getSExtValue(); 5356 if ((int)Val < 0) Val = -Val; 5357 5358 // powi(x, 0) -> 1.0 5359 if (Val == 0) 5360 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5361 5362 bool OptForSize = DAG.shouldOptForSize(); 5363 if (!OptForSize || 5364 // If optimizing for size, don't insert too many multiplies. 5365 // This inserts up to 5 multiplies. 5366 countPopulation(Val) + Log2_32(Val) < 7) { 5367 // We use the simple binary decomposition method to generate the multiply 5368 // sequence. There are more optimal ways to do this (for example, 5369 // powi(x,15) generates one more multiply than it should), but this has 5370 // the benefit of being both really simple and much better than a libcall. 5371 SDValue Res; // Logically starts equal to 1.0 5372 SDValue CurSquare = LHS; 5373 // TODO: Intrinsics should have fast-math-flags that propagate to these 5374 // nodes. 5375 while (Val) { 5376 if (Val & 1) { 5377 if (Res.getNode()) 5378 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5379 else 5380 Res = CurSquare; // 1.0*CurSquare. 5381 } 5382 5383 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5384 CurSquare, CurSquare); 5385 Val >>= 1; 5386 } 5387 5388 // If the original was negative, invert the result, producing 1/(x*x*x). 5389 if (RHSC->getSExtValue() < 0) 5390 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5391 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5392 return Res; 5393 } 5394 } 5395 5396 // Otherwise, expand to a libcall. 5397 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5398 } 5399 5400 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5401 SDValue LHS, SDValue RHS, SDValue Scale, 5402 SelectionDAG &DAG, const TargetLowering &TLI) { 5403 EVT VT = LHS.getValueType(); 5404 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5405 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5406 LLVMContext &Ctx = *DAG.getContext(); 5407 5408 // If the type is legal but the operation isn't, this node might survive all 5409 // the way to operation legalization. If we end up there and we do not have 5410 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5411 // node. 5412 5413 // Coax the legalizer into expanding the node during type legalization instead 5414 // by bumping the size by one bit. This will force it to Promote, enabling the 5415 // early expansion and avoiding the need to expand later. 5416 5417 // We don't have to do this if Scale is 0; that can always be expanded, unless 5418 // it's a saturating signed operation. Those can experience true integer 5419 // division overflow, a case which we must avoid. 5420 5421 // FIXME: We wouldn't have to do this (or any of the early 5422 // expansion/promotion) if it was possible to expand a libcall of an 5423 // illegal type during operation legalization. But it's not, so things 5424 // get a bit hacky. 5425 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5426 if ((ScaleInt > 0 || (Saturating && Signed)) && 5427 (TLI.isTypeLegal(VT) || 5428 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5429 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5430 Opcode, VT, ScaleInt); 5431 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5432 EVT PromVT; 5433 if (VT.isScalarInteger()) 5434 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5435 else if (VT.isVector()) { 5436 PromVT = VT.getVectorElementType(); 5437 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5438 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5439 } else 5440 llvm_unreachable("Wrong VT for DIVFIX?"); 5441 if (Signed) { 5442 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5443 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5444 } else { 5445 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5446 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5447 } 5448 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5449 // For saturating operations, we need to shift up the LHS to get the 5450 // proper saturation width, and then shift down again afterwards. 5451 if (Saturating) 5452 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5453 DAG.getConstant(1, DL, ShiftTy)); 5454 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5455 if (Saturating) 5456 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5457 DAG.getConstant(1, DL, ShiftTy)); 5458 return DAG.getZExtOrTrunc(Res, DL, VT); 5459 } 5460 } 5461 5462 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5463 } 5464 5465 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5466 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5467 static void 5468 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5469 const SDValue &N) { 5470 switch (N.getOpcode()) { 5471 case ISD::CopyFromReg: { 5472 SDValue Op = N.getOperand(1); 5473 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5474 Op.getValueType().getSizeInBits()); 5475 return; 5476 } 5477 case ISD::BITCAST: 5478 case ISD::AssertZext: 5479 case ISD::AssertSext: 5480 case ISD::TRUNCATE: 5481 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5482 return; 5483 case ISD::BUILD_PAIR: 5484 case ISD::BUILD_VECTOR: 5485 case ISD::CONCAT_VECTORS: 5486 for (SDValue Op : N->op_values()) 5487 getUnderlyingArgRegs(Regs, Op); 5488 return; 5489 default: 5490 return; 5491 } 5492 } 5493 5494 /// If the DbgValueInst is a dbg_value of a function argument, create the 5495 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5496 /// instruction selection, they will be inserted to the entry BB. 5497 /// We don't currently support this for variadic dbg_values, as they shouldn't 5498 /// appear for function arguments or in the prologue. 5499 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5500 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5501 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5502 const Argument *Arg = dyn_cast<Argument>(V); 5503 if (!Arg) 5504 return false; 5505 5506 MachineFunction &MF = DAG.getMachineFunction(); 5507 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5508 5509 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5510 // we've been asked to pursue. 5511 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5512 bool Indirect) { 5513 if (Reg.isVirtual() && TM.Options.ValueTrackingVariableLocations) { 5514 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5515 // pointing at the VReg, which will be patched up later. 5516 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5517 auto MIB = BuildMI(MF, DL, Inst); 5518 MIB.addReg(Reg, RegState::Debug); 5519 MIB.addImm(0); 5520 MIB.addMetadata(Variable); 5521 auto *NewDIExpr = FragExpr; 5522 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5523 // the DIExpression. 5524 if (Indirect) 5525 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5526 MIB.addMetadata(NewDIExpr); 5527 return MIB; 5528 } else { 5529 // Create a completely standard DBG_VALUE. 5530 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5531 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5532 } 5533 }; 5534 5535 if (!IsDbgDeclare) { 5536 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5537 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5538 // the entry block. 5539 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5540 if (!IsInEntryBlock) 5541 return false; 5542 5543 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5544 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5545 // variable that also is a param. 5546 // 5547 // Although, if we are at the top of the entry block already, we can still 5548 // emit using ArgDbgValue. This might catch some situations when the 5549 // dbg.value refers to an argument that isn't used in the entry block, so 5550 // any CopyToReg node would be optimized out and the only way to express 5551 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5552 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5553 // we should only emit as ArgDbgValue if the Variable is an argument to the 5554 // current function, and the dbg.value intrinsic is found in the entry 5555 // block. 5556 bool VariableIsFunctionInputArg = Variable->isParameter() && 5557 !DL->getInlinedAt(); 5558 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5559 if (!IsInPrologue && !VariableIsFunctionInputArg) 5560 return false; 5561 5562 // Here we assume that a function argument on IR level only can be used to 5563 // describe one input parameter on source level. If we for example have 5564 // source code like this 5565 // 5566 // struct A { long x, y; }; 5567 // void foo(struct A a, long b) { 5568 // ... 5569 // b = a.x; 5570 // ... 5571 // } 5572 // 5573 // and IR like this 5574 // 5575 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5576 // entry: 5577 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5578 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5579 // call void @llvm.dbg.value(metadata i32 %b, "b", 5580 // ... 5581 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5582 // ... 5583 // 5584 // then the last dbg.value is describing a parameter "b" using a value that 5585 // is an argument. But since we already has used %a1 to describe a parameter 5586 // we should not handle that last dbg.value here (that would result in an 5587 // incorrect hoisting of the DBG_VALUE to the function entry). 5588 // Notice that we allow one dbg.value per IR level argument, to accommodate 5589 // for the situation with fragments above. 5590 if (VariableIsFunctionInputArg) { 5591 unsigned ArgNo = Arg->getArgNo(); 5592 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5593 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5594 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5595 return false; 5596 FuncInfo.DescribedArgs.set(ArgNo); 5597 } 5598 } 5599 5600 bool IsIndirect = false; 5601 Optional<MachineOperand> Op; 5602 // Some arguments' frame index is recorded during argument lowering. 5603 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5604 if (FI != std::numeric_limits<int>::max()) 5605 Op = MachineOperand::CreateFI(FI); 5606 5607 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5608 if (!Op && N.getNode()) { 5609 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5610 Register Reg; 5611 if (ArgRegsAndSizes.size() == 1) 5612 Reg = ArgRegsAndSizes.front().first; 5613 5614 if (Reg && Reg.isVirtual()) { 5615 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5616 Register PR = RegInfo.getLiveInPhysReg(Reg); 5617 if (PR) 5618 Reg = PR; 5619 } 5620 if (Reg) { 5621 Op = MachineOperand::CreateReg(Reg, false); 5622 IsIndirect = IsDbgDeclare; 5623 } 5624 } 5625 5626 if (!Op && N.getNode()) { 5627 // Check if frame index is available. 5628 SDValue LCandidate = peekThroughBitcasts(N); 5629 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5630 if (FrameIndexSDNode *FINode = 5631 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5632 Op = MachineOperand::CreateFI(FINode->getIndex()); 5633 } 5634 5635 if (!Op) { 5636 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5637 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5638 SplitRegs) { 5639 unsigned Offset = 0; 5640 for (auto RegAndSize : SplitRegs) { 5641 // If the expression is already a fragment, the current register 5642 // offset+size might extend beyond the fragment. In this case, only 5643 // the register bits that are inside the fragment are relevant. 5644 int RegFragmentSizeInBits = RegAndSize.second; 5645 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5646 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5647 // The register is entirely outside the expression fragment, 5648 // so is irrelevant for debug info. 5649 if (Offset >= ExprFragmentSizeInBits) 5650 break; 5651 // The register is partially outside the expression fragment, only 5652 // the low bits within the fragment are relevant for debug info. 5653 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5654 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5655 } 5656 } 5657 5658 auto FragmentExpr = DIExpression::createFragmentExpression( 5659 Expr, Offset, RegFragmentSizeInBits); 5660 Offset += RegAndSize.second; 5661 // If a valid fragment expression cannot be created, the variable's 5662 // correct value cannot be determined and so it is set as Undef. 5663 if (!FragmentExpr) { 5664 SDDbgValue *SDV = DAG.getConstantDbgValue( 5665 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5666 DAG.AddDbgValue(SDV, false); 5667 continue; 5668 } 5669 MachineInstr *NewMI = 5670 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5671 FuncInfo.ArgDbgValues.push_back(NewMI); 5672 } 5673 }; 5674 5675 // Check if ValueMap has reg number. 5676 DenseMap<const Value *, Register>::const_iterator 5677 VMI = FuncInfo.ValueMap.find(V); 5678 if (VMI != FuncInfo.ValueMap.end()) { 5679 const auto &TLI = DAG.getTargetLoweringInfo(); 5680 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5681 V->getType(), None); 5682 if (RFV.occupiesMultipleRegs()) { 5683 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5684 return true; 5685 } 5686 5687 Op = MachineOperand::CreateReg(VMI->second, false); 5688 IsIndirect = IsDbgDeclare; 5689 } else if (ArgRegsAndSizes.size() > 1) { 5690 // This was split due to the calling convention, and no virtual register 5691 // mapping exists for the value. 5692 splitMultiRegDbgValue(ArgRegsAndSizes); 5693 return true; 5694 } 5695 } 5696 5697 if (!Op) 5698 return false; 5699 5700 assert(Variable->isValidLocationForIntrinsic(DL) && 5701 "Expected inlined-at fields to agree"); 5702 MachineInstr *NewMI = nullptr; 5703 5704 if (Op->isReg()) 5705 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5706 else 5707 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5708 Variable, Expr); 5709 5710 FuncInfo.ArgDbgValues.push_back(NewMI); 5711 return true; 5712 } 5713 5714 /// Return the appropriate SDDbgValue based on N. 5715 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5716 DILocalVariable *Variable, 5717 DIExpression *Expr, 5718 const DebugLoc &dl, 5719 unsigned DbgSDNodeOrder) { 5720 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5721 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5722 // stack slot locations. 5723 // 5724 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5725 // debug values here after optimization: 5726 // 5727 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5728 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5729 // 5730 // Both describe the direct values of their associated variables. 5731 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5732 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5733 } 5734 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5735 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5736 } 5737 5738 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5739 switch (Intrinsic) { 5740 case Intrinsic::smul_fix: 5741 return ISD::SMULFIX; 5742 case Intrinsic::umul_fix: 5743 return ISD::UMULFIX; 5744 case Intrinsic::smul_fix_sat: 5745 return ISD::SMULFIXSAT; 5746 case Intrinsic::umul_fix_sat: 5747 return ISD::UMULFIXSAT; 5748 case Intrinsic::sdiv_fix: 5749 return ISD::SDIVFIX; 5750 case Intrinsic::udiv_fix: 5751 return ISD::UDIVFIX; 5752 case Intrinsic::sdiv_fix_sat: 5753 return ISD::SDIVFIXSAT; 5754 case Intrinsic::udiv_fix_sat: 5755 return ISD::UDIVFIXSAT; 5756 default: 5757 llvm_unreachable("Unhandled fixed point intrinsic"); 5758 } 5759 } 5760 5761 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5762 const char *FunctionName) { 5763 assert(FunctionName && "FunctionName must not be nullptr"); 5764 SDValue Callee = DAG.getExternalSymbol( 5765 FunctionName, 5766 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5767 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5768 } 5769 5770 /// Given a @llvm.call.preallocated.setup, return the corresponding 5771 /// preallocated call. 5772 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5773 assert(cast<CallBase>(PreallocatedSetup) 5774 ->getCalledFunction() 5775 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5776 "expected call_preallocated_setup Value"); 5777 for (auto *U : PreallocatedSetup->users()) { 5778 auto *UseCall = cast<CallBase>(U); 5779 const Function *Fn = UseCall->getCalledFunction(); 5780 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5781 return UseCall; 5782 } 5783 } 5784 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5785 } 5786 5787 /// Lower the call to the specified intrinsic function. 5788 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5789 unsigned Intrinsic) { 5790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5791 SDLoc sdl = getCurSDLoc(); 5792 DebugLoc dl = getCurDebugLoc(); 5793 SDValue Res; 5794 5795 SDNodeFlags Flags; 5796 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5797 Flags.copyFMF(*FPOp); 5798 5799 switch (Intrinsic) { 5800 default: 5801 // By default, turn this into a target intrinsic node. 5802 visitTargetIntrinsic(I, Intrinsic); 5803 return; 5804 case Intrinsic::vscale: { 5805 match(&I, m_VScale(DAG.getDataLayout())); 5806 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5807 setValue(&I, 5808 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5809 return; 5810 } 5811 case Intrinsic::vastart: visitVAStart(I); return; 5812 case Intrinsic::vaend: visitVAEnd(I); return; 5813 case Intrinsic::vacopy: visitVACopy(I); return; 5814 case Intrinsic::returnaddress: 5815 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5816 TLI.getPointerTy(DAG.getDataLayout()), 5817 getValue(I.getArgOperand(0)))); 5818 return; 5819 case Intrinsic::addressofreturnaddress: 5820 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5821 TLI.getPointerTy(DAG.getDataLayout()))); 5822 return; 5823 case Intrinsic::sponentry: 5824 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5825 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5826 return; 5827 case Intrinsic::frameaddress: 5828 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5829 TLI.getFrameIndexTy(DAG.getDataLayout()), 5830 getValue(I.getArgOperand(0)))); 5831 return; 5832 case Intrinsic::read_volatile_register: 5833 case Intrinsic::read_register: { 5834 Value *Reg = I.getArgOperand(0); 5835 SDValue Chain = getRoot(); 5836 SDValue RegName = 5837 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5838 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5839 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5840 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5841 setValue(&I, Res); 5842 DAG.setRoot(Res.getValue(1)); 5843 return; 5844 } 5845 case Intrinsic::write_register: { 5846 Value *Reg = I.getArgOperand(0); 5847 Value *RegValue = I.getArgOperand(1); 5848 SDValue Chain = getRoot(); 5849 SDValue RegName = 5850 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5851 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5852 RegName, getValue(RegValue))); 5853 return; 5854 } 5855 case Intrinsic::memcpy: { 5856 const auto &MCI = cast<MemCpyInst>(I); 5857 SDValue Op1 = getValue(I.getArgOperand(0)); 5858 SDValue Op2 = getValue(I.getArgOperand(1)); 5859 SDValue Op3 = getValue(I.getArgOperand(2)); 5860 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5861 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5862 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5863 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5864 bool isVol = MCI.isVolatile(); 5865 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5866 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5867 // node. 5868 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5869 AAMDNodes AAInfo; 5870 I.getAAMetadata(AAInfo); 5871 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5872 /* AlwaysInline */ false, isTC, 5873 MachinePointerInfo(I.getArgOperand(0)), 5874 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5875 updateDAGForMaybeTailCall(MC); 5876 return; 5877 } 5878 case Intrinsic::memcpy_inline: { 5879 const auto &MCI = cast<MemCpyInlineInst>(I); 5880 SDValue Dst = getValue(I.getArgOperand(0)); 5881 SDValue Src = getValue(I.getArgOperand(1)); 5882 SDValue Size = getValue(I.getArgOperand(2)); 5883 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5884 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5885 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5886 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5887 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5888 bool isVol = MCI.isVolatile(); 5889 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5890 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5891 // node. 5892 AAMDNodes AAInfo; 5893 I.getAAMetadata(AAInfo); 5894 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5895 /* AlwaysInline */ true, isTC, 5896 MachinePointerInfo(I.getArgOperand(0)), 5897 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5898 updateDAGForMaybeTailCall(MC); 5899 return; 5900 } 5901 case Intrinsic::memset: { 5902 const auto &MSI = cast<MemSetInst>(I); 5903 SDValue Op1 = getValue(I.getArgOperand(0)); 5904 SDValue Op2 = getValue(I.getArgOperand(1)); 5905 SDValue Op3 = getValue(I.getArgOperand(2)); 5906 // @llvm.memset defines 0 and 1 to both mean no alignment. 5907 Align Alignment = MSI.getDestAlign().valueOrOne(); 5908 bool isVol = MSI.isVolatile(); 5909 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5910 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5911 AAMDNodes AAInfo; 5912 I.getAAMetadata(AAInfo); 5913 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5914 MachinePointerInfo(I.getArgOperand(0)), AAInfo); 5915 updateDAGForMaybeTailCall(MS); 5916 return; 5917 } 5918 case Intrinsic::memmove: { 5919 const auto &MMI = cast<MemMoveInst>(I); 5920 SDValue Op1 = getValue(I.getArgOperand(0)); 5921 SDValue Op2 = getValue(I.getArgOperand(1)); 5922 SDValue Op3 = getValue(I.getArgOperand(2)); 5923 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5924 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5925 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5926 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5927 bool isVol = MMI.isVolatile(); 5928 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5929 // FIXME: Support passing different dest/src alignments to the memmove DAG 5930 // node. 5931 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5932 AAMDNodes AAInfo; 5933 I.getAAMetadata(AAInfo); 5934 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5935 isTC, MachinePointerInfo(I.getArgOperand(0)), 5936 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5937 updateDAGForMaybeTailCall(MM); 5938 return; 5939 } 5940 case Intrinsic::memcpy_element_unordered_atomic: { 5941 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5942 SDValue Dst = getValue(MI.getRawDest()); 5943 SDValue Src = getValue(MI.getRawSource()); 5944 SDValue Length = getValue(MI.getLength()); 5945 5946 unsigned DstAlign = MI.getDestAlignment(); 5947 unsigned SrcAlign = MI.getSourceAlignment(); 5948 Type *LengthTy = MI.getLength()->getType(); 5949 unsigned ElemSz = MI.getElementSizeInBytes(); 5950 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5951 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5952 SrcAlign, Length, LengthTy, ElemSz, isTC, 5953 MachinePointerInfo(MI.getRawDest()), 5954 MachinePointerInfo(MI.getRawSource())); 5955 updateDAGForMaybeTailCall(MC); 5956 return; 5957 } 5958 case Intrinsic::memmove_element_unordered_atomic: { 5959 auto &MI = cast<AtomicMemMoveInst>(I); 5960 SDValue Dst = getValue(MI.getRawDest()); 5961 SDValue Src = getValue(MI.getRawSource()); 5962 SDValue Length = getValue(MI.getLength()); 5963 5964 unsigned DstAlign = MI.getDestAlignment(); 5965 unsigned SrcAlign = MI.getSourceAlignment(); 5966 Type *LengthTy = MI.getLength()->getType(); 5967 unsigned ElemSz = MI.getElementSizeInBytes(); 5968 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5969 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5970 SrcAlign, Length, LengthTy, ElemSz, isTC, 5971 MachinePointerInfo(MI.getRawDest()), 5972 MachinePointerInfo(MI.getRawSource())); 5973 updateDAGForMaybeTailCall(MC); 5974 return; 5975 } 5976 case Intrinsic::memset_element_unordered_atomic: { 5977 auto &MI = cast<AtomicMemSetInst>(I); 5978 SDValue Dst = getValue(MI.getRawDest()); 5979 SDValue Val = getValue(MI.getValue()); 5980 SDValue Length = getValue(MI.getLength()); 5981 5982 unsigned DstAlign = MI.getDestAlignment(); 5983 Type *LengthTy = MI.getLength()->getType(); 5984 unsigned ElemSz = MI.getElementSizeInBytes(); 5985 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5986 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5987 LengthTy, ElemSz, isTC, 5988 MachinePointerInfo(MI.getRawDest())); 5989 updateDAGForMaybeTailCall(MC); 5990 return; 5991 } 5992 case Intrinsic::call_preallocated_setup: { 5993 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5994 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5995 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5996 getRoot(), SrcValue); 5997 setValue(&I, Res); 5998 DAG.setRoot(Res); 5999 return; 6000 } 6001 case Intrinsic::call_preallocated_arg: { 6002 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6003 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6004 SDValue Ops[3]; 6005 Ops[0] = getRoot(); 6006 Ops[1] = SrcValue; 6007 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6008 MVT::i32); // arg index 6009 SDValue Res = DAG.getNode( 6010 ISD::PREALLOCATED_ARG, sdl, 6011 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6012 setValue(&I, Res); 6013 DAG.setRoot(Res.getValue(1)); 6014 return; 6015 } 6016 case Intrinsic::dbg_addr: 6017 case Intrinsic::dbg_declare: { 6018 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6019 // they are non-variadic. 6020 const auto &DI = cast<DbgVariableIntrinsic>(I); 6021 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6022 DILocalVariable *Variable = DI.getVariable(); 6023 DIExpression *Expression = DI.getExpression(); 6024 dropDanglingDebugInfo(Variable, Expression); 6025 assert(Variable && "Missing variable"); 6026 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6027 << "\n"); 6028 // Check if address has undef value. 6029 const Value *Address = DI.getVariableLocationOp(0); 6030 if (!Address || isa<UndefValue>(Address) || 6031 (Address->use_empty() && !isa<Argument>(Address))) { 6032 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6033 << " (bad/undef/unused-arg address)\n"); 6034 return; 6035 } 6036 6037 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6038 6039 // Check if this variable can be described by a frame index, typically 6040 // either as a static alloca or a byval parameter. 6041 int FI = std::numeric_limits<int>::max(); 6042 if (const auto *AI = 6043 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6044 if (AI->isStaticAlloca()) { 6045 auto I = FuncInfo.StaticAllocaMap.find(AI); 6046 if (I != FuncInfo.StaticAllocaMap.end()) 6047 FI = I->second; 6048 } 6049 } else if (const auto *Arg = dyn_cast<Argument>( 6050 Address->stripInBoundsConstantOffsets())) { 6051 FI = FuncInfo.getArgumentFrameIndex(Arg); 6052 } 6053 6054 // llvm.dbg.addr is control dependent and always generates indirect 6055 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6056 // the MachineFunction variable table. 6057 if (FI != std::numeric_limits<int>::max()) { 6058 if (Intrinsic == Intrinsic::dbg_addr) { 6059 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6060 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6061 dl, SDNodeOrder); 6062 DAG.AddDbgValue(SDV, isParameter); 6063 } else { 6064 LLVM_DEBUG(dbgs() << "Skipping " << DI 6065 << " (variable info stashed in MF side table)\n"); 6066 } 6067 return; 6068 } 6069 6070 SDValue &N = NodeMap[Address]; 6071 if (!N.getNode() && isa<Argument>(Address)) 6072 // Check unused arguments map. 6073 N = UnusedArgNodeMap[Address]; 6074 SDDbgValue *SDV; 6075 if (N.getNode()) { 6076 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6077 Address = BCI->getOperand(0); 6078 // Parameters are handled specially. 6079 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6080 if (isParameter && FINode) { 6081 // Byval parameter. We have a frame index at this point. 6082 SDV = 6083 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6084 /*IsIndirect*/ true, dl, SDNodeOrder); 6085 } else if (isa<Argument>(Address)) { 6086 // Address is an argument, so try to emit its dbg value using 6087 // virtual register info from the FuncInfo.ValueMap. 6088 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6089 return; 6090 } else { 6091 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6092 true, dl, SDNodeOrder); 6093 } 6094 DAG.AddDbgValue(SDV, isParameter); 6095 } else { 6096 // If Address is an argument then try to emit its dbg value using 6097 // virtual register info from the FuncInfo.ValueMap. 6098 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6099 N)) { 6100 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6101 << " (could not emit func-arg dbg_value)\n"); 6102 } 6103 } 6104 return; 6105 } 6106 case Intrinsic::dbg_label: { 6107 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6108 DILabel *Label = DI.getLabel(); 6109 assert(Label && "Missing label"); 6110 6111 SDDbgLabel *SDV; 6112 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6113 DAG.AddDbgLabel(SDV); 6114 return; 6115 } 6116 case Intrinsic::dbg_value: { 6117 const DbgValueInst &DI = cast<DbgValueInst>(I); 6118 assert(DI.getVariable() && "Missing variable"); 6119 6120 DILocalVariable *Variable = DI.getVariable(); 6121 DIExpression *Expression = DI.getExpression(); 6122 dropDanglingDebugInfo(Variable, Expression); 6123 SmallVector<Value *, 4> Values(DI.getValues()); 6124 if (Values.empty()) 6125 return; 6126 6127 if (std::count(Values.begin(), Values.end(), nullptr)) 6128 return; 6129 6130 bool IsVariadic = DI.hasArgList(); 6131 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6132 SDNodeOrder, IsVariadic)) 6133 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6134 return; 6135 } 6136 6137 case Intrinsic::eh_typeid_for: { 6138 // Find the type id for the given typeinfo. 6139 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6140 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6141 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6142 setValue(&I, Res); 6143 return; 6144 } 6145 6146 case Intrinsic::eh_return_i32: 6147 case Intrinsic::eh_return_i64: 6148 DAG.getMachineFunction().setCallsEHReturn(true); 6149 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6150 MVT::Other, 6151 getControlRoot(), 6152 getValue(I.getArgOperand(0)), 6153 getValue(I.getArgOperand(1)))); 6154 return; 6155 case Intrinsic::eh_unwind_init: 6156 DAG.getMachineFunction().setCallsUnwindInit(true); 6157 return; 6158 case Intrinsic::eh_dwarf_cfa: 6159 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6160 TLI.getPointerTy(DAG.getDataLayout()), 6161 getValue(I.getArgOperand(0)))); 6162 return; 6163 case Intrinsic::eh_sjlj_callsite: { 6164 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6165 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6166 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6167 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6168 6169 MMI.setCurrentCallSite(CI->getZExtValue()); 6170 return; 6171 } 6172 case Intrinsic::eh_sjlj_functioncontext: { 6173 // Get and store the index of the function context. 6174 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6175 AllocaInst *FnCtx = 6176 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6177 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6178 MFI.setFunctionContextIndex(FI); 6179 return; 6180 } 6181 case Intrinsic::eh_sjlj_setjmp: { 6182 SDValue Ops[2]; 6183 Ops[0] = getRoot(); 6184 Ops[1] = getValue(I.getArgOperand(0)); 6185 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6186 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6187 setValue(&I, Op.getValue(0)); 6188 DAG.setRoot(Op.getValue(1)); 6189 return; 6190 } 6191 case Intrinsic::eh_sjlj_longjmp: 6192 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6193 getRoot(), getValue(I.getArgOperand(0)))); 6194 return; 6195 case Intrinsic::eh_sjlj_setup_dispatch: 6196 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6197 getRoot())); 6198 return; 6199 case Intrinsic::masked_gather: 6200 visitMaskedGather(I); 6201 return; 6202 case Intrinsic::masked_load: 6203 visitMaskedLoad(I); 6204 return; 6205 case Intrinsic::masked_scatter: 6206 visitMaskedScatter(I); 6207 return; 6208 case Intrinsic::masked_store: 6209 visitMaskedStore(I); 6210 return; 6211 case Intrinsic::masked_expandload: 6212 visitMaskedLoad(I, true /* IsExpanding */); 6213 return; 6214 case Intrinsic::masked_compressstore: 6215 visitMaskedStore(I, true /* IsCompressing */); 6216 return; 6217 case Intrinsic::powi: 6218 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6219 getValue(I.getArgOperand(1)), DAG)); 6220 return; 6221 case Intrinsic::log: 6222 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6223 return; 6224 case Intrinsic::log2: 6225 setValue(&I, 6226 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6227 return; 6228 case Intrinsic::log10: 6229 setValue(&I, 6230 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6231 return; 6232 case Intrinsic::exp: 6233 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6234 return; 6235 case Intrinsic::exp2: 6236 setValue(&I, 6237 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6238 return; 6239 case Intrinsic::pow: 6240 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6241 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6242 return; 6243 case Intrinsic::sqrt: 6244 case Intrinsic::fabs: 6245 case Intrinsic::sin: 6246 case Intrinsic::cos: 6247 case Intrinsic::floor: 6248 case Intrinsic::ceil: 6249 case Intrinsic::trunc: 6250 case Intrinsic::rint: 6251 case Intrinsic::nearbyint: 6252 case Intrinsic::round: 6253 case Intrinsic::roundeven: 6254 case Intrinsic::canonicalize: { 6255 unsigned Opcode; 6256 switch (Intrinsic) { 6257 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6258 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6259 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6260 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6261 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6262 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6263 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6264 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6265 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6266 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6267 case Intrinsic::round: Opcode = ISD::FROUND; break; 6268 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6269 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6270 } 6271 6272 setValue(&I, DAG.getNode(Opcode, sdl, 6273 getValue(I.getArgOperand(0)).getValueType(), 6274 getValue(I.getArgOperand(0)), Flags)); 6275 return; 6276 } 6277 case Intrinsic::lround: 6278 case Intrinsic::llround: 6279 case Intrinsic::lrint: 6280 case Intrinsic::llrint: { 6281 unsigned Opcode; 6282 switch (Intrinsic) { 6283 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6284 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6285 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6286 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6287 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6288 } 6289 6290 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6291 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6292 getValue(I.getArgOperand(0)))); 6293 return; 6294 } 6295 case Intrinsic::minnum: 6296 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6297 getValue(I.getArgOperand(0)).getValueType(), 6298 getValue(I.getArgOperand(0)), 6299 getValue(I.getArgOperand(1)), Flags)); 6300 return; 6301 case Intrinsic::maxnum: 6302 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6303 getValue(I.getArgOperand(0)).getValueType(), 6304 getValue(I.getArgOperand(0)), 6305 getValue(I.getArgOperand(1)), Flags)); 6306 return; 6307 case Intrinsic::minimum: 6308 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6309 getValue(I.getArgOperand(0)).getValueType(), 6310 getValue(I.getArgOperand(0)), 6311 getValue(I.getArgOperand(1)), Flags)); 6312 return; 6313 case Intrinsic::maximum: 6314 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6315 getValue(I.getArgOperand(0)).getValueType(), 6316 getValue(I.getArgOperand(0)), 6317 getValue(I.getArgOperand(1)), Flags)); 6318 return; 6319 case Intrinsic::copysign: 6320 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6321 getValue(I.getArgOperand(0)).getValueType(), 6322 getValue(I.getArgOperand(0)), 6323 getValue(I.getArgOperand(1)), Flags)); 6324 return; 6325 case Intrinsic::arithmetic_fence: { 6326 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6327 getValue(I.getArgOperand(0)).getValueType(), 6328 getValue(I.getArgOperand(0)), Flags)); 6329 return; 6330 } 6331 case Intrinsic::fma: 6332 setValue(&I, DAG.getNode( 6333 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6334 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6335 getValue(I.getArgOperand(2)), Flags)); 6336 return; 6337 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6338 case Intrinsic::INTRINSIC: 6339 #include "llvm/IR/ConstrainedOps.def" 6340 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6341 return; 6342 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6343 #include "llvm/IR/VPIntrinsics.def" 6344 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6345 return; 6346 case Intrinsic::fmuladd: { 6347 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6348 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6349 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6350 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6351 getValue(I.getArgOperand(0)).getValueType(), 6352 getValue(I.getArgOperand(0)), 6353 getValue(I.getArgOperand(1)), 6354 getValue(I.getArgOperand(2)), Flags)); 6355 } else { 6356 // TODO: Intrinsic calls should have fast-math-flags. 6357 SDValue Mul = DAG.getNode( 6358 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6359 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6360 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6361 getValue(I.getArgOperand(0)).getValueType(), 6362 Mul, getValue(I.getArgOperand(2)), Flags); 6363 setValue(&I, Add); 6364 } 6365 return; 6366 } 6367 case Intrinsic::convert_to_fp16: 6368 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6369 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6370 getValue(I.getArgOperand(0)), 6371 DAG.getTargetConstant(0, sdl, 6372 MVT::i32)))); 6373 return; 6374 case Intrinsic::convert_from_fp16: 6375 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6376 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6377 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6378 getValue(I.getArgOperand(0))))); 6379 return; 6380 case Intrinsic::fptosi_sat: { 6381 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6382 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6383 getValue(I.getArgOperand(0)), 6384 DAG.getValueType(VT.getScalarType()))); 6385 return; 6386 } 6387 case Intrinsic::fptoui_sat: { 6388 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6389 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6390 getValue(I.getArgOperand(0)), 6391 DAG.getValueType(VT.getScalarType()))); 6392 return; 6393 } 6394 case Intrinsic::set_rounding: 6395 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6396 {getRoot(), getValue(I.getArgOperand(0))}); 6397 setValue(&I, Res); 6398 DAG.setRoot(Res.getValue(0)); 6399 return; 6400 case Intrinsic::pcmarker: { 6401 SDValue Tmp = getValue(I.getArgOperand(0)); 6402 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6403 return; 6404 } 6405 case Intrinsic::readcyclecounter: { 6406 SDValue Op = getRoot(); 6407 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6408 DAG.getVTList(MVT::i64, MVT::Other), Op); 6409 setValue(&I, Res); 6410 DAG.setRoot(Res.getValue(1)); 6411 return; 6412 } 6413 case Intrinsic::bitreverse: 6414 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6415 getValue(I.getArgOperand(0)).getValueType(), 6416 getValue(I.getArgOperand(0)))); 6417 return; 6418 case Intrinsic::bswap: 6419 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6420 getValue(I.getArgOperand(0)).getValueType(), 6421 getValue(I.getArgOperand(0)))); 6422 return; 6423 case Intrinsic::cttz: { 6424 SDValue Arg = getValue(I.getArgOperand(0)); 6425 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6426 EVT Ty = Arg.getValueType(); 6427 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6428 sdl, Ty, Arg)); 6429 return; 6430 } 6431 case Intrinsic::ctlz: { 6432 SDValue Arg = getValue(I.getArgOperand(0)); 6433 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6434 EVT Ty = Arg.getValueType(); 6435 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6436 sdl, Ty, Arg)); 6437 return; 6438 } 6439 case Intrinsic::ctpop: { 6440 SDValue Arg = getValue(I.getArgOperand(0)); 6441 EVT Ty = Arg.getValueType(); 6442 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6443 return; 6444 } 6445 case Intrinsic::fshl: 6446 case Intrinsic::fshr: { 6447 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6448 SDValue X = getValue(I.getArgOperand(0)); 6449 SDValue Y = getValue(I.getArgOperand(1)); 6450 SDValue Z = getValue(I.getArgOperand(2)); 6451 EVT VT = X.getValueType(); 6452 6453 if (X == Y) { 6454 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6455 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6456 } else { 6457 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6458 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6459 } 6460 return; 6461 } 6462 case Intrinsic::sadd_sat: { 6463 SDValue Op1 = getValue(I.getArgOperand(0)); 6464 SDValue Op2 = getValue(I.getArgOperand(1)); 6465 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6466 return; 6467 } 6468 case Intrinsic::uadd_sat: { 6469 SDValue Op1 = getValue(I.getArgOperand(0)); 6470 SDValue Op2 = getValue(I.getArgOperand(1)); 6471 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6472 return; 6473 } 6474 case Intrinsic::ssub_sat: { 6475 SDValue Op1 = getValue(I.getArgOperand(0)); 6476 SDValue Op2 = getValue(I.getArgOperand(1)); 6477 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6478 return; 6479 } 6480 case Intrinsic::usub_sat: { 6481 SDValue Op1 = getValue(I.getArgOperand(0)); 6482 SDValue Op2 = getValue(I.getArgOperand(1)); 6483 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6484 return; 6485 } 6486 case Intrinsic::sshl_sat: { 6487 SDValue Op1 = getValue(I.getArgOperand(0)); 6488 SDValue Op2 = getValue(I.getArgOperand(1)); 6489 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6490 return; 6491 } 6492 case Intrinsic::ushl_sat: { 6493 SDValue Op1 = getValue(I.getArgOperand(0)); 6494 SDValue Op2 = getValue(I.getArgOperand(1)); 6495 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6496 return; 6497 } 6498 case Intrinsic::smul_fix: 6499 case Intrinsic::umul_fix: 6500 case Intrinsic::smul_fix_sat: 6501 case Intrinsic::umul_fix_sat: { 6502 SDValue Op1 = getValue(I.getArgOperand(0)); 6503 SDValue Op2 = getValue(I.getArgOperand(1)); 6504 SDValue Op3 = getValue(I.getArgOperand(2)); 6505 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6506 Op1.getValueType(), Op1, Op2, Op3)); 6507 return; 6508 } 6509 case Intrinsic::sdiv_fix: 6510 case Intrinsic::udiv_fix: 6511 case Intrinsic::sdiv_fix_sat: 6512 case Intrinsic::udiv_fix_sat: { 6513 SDValue Op1 = getValue(I.getArgOperand(0)); 6514 SDValue Op2 = getValue(I.getArgOperand(1)); 6515 SDValue Op3 = getValue(I.getArgOperand(2)); 6516 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6517 Op1, Op2, Op3, DAG, TLI)); 6518 return; 6519 } 6520 case Intrinsic::smax: { 6521 SDValue Op1 = getValue(I.getArgOperand(0)); 6522 SDValue Op2 = getValue(I.getArgOperand(1)); 6523 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6524 return; 6525 } 6526 case Intrinsic::smin: { 6527 SDValue Op1 = getValue(I.getArgOperand(0)); 6528 SDValue Op2 = getValue(I.getArgOperand(1)); 6529 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6530 return; 6531 } 6532 case Intrinsic::umax: { 6533 SDValue Op1 = getValue(I.getArgOperand(0)); 6534 SDValue Op2 = getValue(I.getArgOperand(1)); 6535 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6536 return; 6537 } 6538 case Intrinsic::umin: { 6539 SDValue Op1 = getValue(I.getArgOperand(0)); 6540 SDValue Op2 = getValue(I.getArgOperand(1)); 6541 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6542 return; 6543 } 6544 case Intrinsic::abs: { 6545 // TODO: Preserve "int min is poison" arg in SDAG? 6546 SDValue Op1 = getValue(I.getArgOperand(0)); 6547 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6548 return; 6549 } 6550 case Intrinsic::stacksave: { 6551 SDValue Op = getRoot(); 6552 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6553 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6554 setValue(&I, Res); 6555 DAG.setRoot(Res.getValue(1)); 6556 return; 6557 } 6558 case Intrinsic::stackrestore: 6559 Res = getValue(I.getArgOperand(0)); 6560 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6561 return; 6562 case Intrinsic::get_dynamic_area_offset: { 6563 SDValue Op = getRoot(); 6564 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6565 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6566 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6567 // target. 6568 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6569 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6570 " intrinsic!"); 6571 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6572 Op); 6573 DAG.setRoot(Op); 6574 setValue(&I, Res); 6575 return; 6576 } 6577 case Intrinsic::stackguard: { 6578 MachineFunction &MF = DAG.getMachineFunction(); 6579 const Module &M = *MF.getFunction().getParent(); 6580 SDValue Chain = getRoot(); 6581 if (TLI.useLoadStackGuardNode()) { 6582 Res = getLoadStackGuard(DAG, sdl, Chain); 6583 } else { 6584 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6585 const Value *Global = TLI.getSDagStackGuard(M); 6586 Align Align = DL->getPrefTypeAlign(Global->getType()); 6587 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6588 MachinePointerInfo(Global, 0), Align, 6589 MachineMemOperand::MOVolatile); 6590 } 6591 if (TLI.useStackGuardXorFP()) 6592 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6593 DAG.setRoot(Chain); 6594 setValue(&I, Res); 6595 return; 6596 } 6597 case Intrinsic::stackprotector: { 6598 // Emit code into the DAG to store the stack guard onto the stack. 6599 MachineFunction &MF = DAG.getMachineFunction(); 6600 MachineFrameInfo &MFI = MF.getFrameInfo(); 6601 SDValue Src, Chain = getRoot(); 6602 6603 if (TLI.useLoadStackGuardNode()) 6604 Src = getLoadStackGuard(DAG, sdl, Chain); 6605 else 6606 Src = getValue(I.getArgOperand(0)); // The guard's value. 6607 6608 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6609 6610 int FI = FuncInfo.StaticAllocaMap[Slot]; 6611 MFI.setStackProtectorIndex(FI); 6612 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6613 6614 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6615 6616 // Store the stack protector onto the stack. 6617 Res = DAG.getStore( 6618 Chain, sdl, Src, FIN, 6619 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6620 MaybeAlign(), MachineMemOperand::MOVolatile); 6621 setValue(&I, Res); 6622 DAG.setRoot(Res); 6623 return; 6624 } 6625 case Intrinsic::objectsize: 6626 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6627 6628 case Intrinsic::is_constant: 6629 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6630 6631 case Intrinsic::annotation: 6632 case Intrinsic::ptr_annotation: 6633 case Intrinsic::launder_invariant_group: 6634 case Intrinsic::strip_invariant_group: 6635 // Drop the intrinsic, but forward the value 6636 setValue(&I, getValue(I.getOperand(0))); 6637 return; 6638 6639 case Intrinsic::assume: 6640 case Intrinsic::experimental_noalias_scope_decl: 6641 case Intrinsic::var_annotation: 6642 case Intrinsic::sideeffect: 6643 // Discard annotate attributes, noalias scope declarations, assumptions, and 6644 // artificial side-effects. 6645 return; 6646 6647 case Intrinsic::codeview_annotation: { 6648 // Emit a label associated with this metadata. 6649 MachineFunction &MF = DAG.getMachineFunction(); 6650 MCSymbol *Label = 6651 MF.getMMI().getContext().createTempSymbol("annotation", true); 6652 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6653 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6654 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6655 DAG.setRoot(Res); 6656 return; 6657 } 6658 6659 case Intrinsic::init_trampoline: { 6660 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6661 6662 SDValue Ops[6]; 6663 Ops[0] = getRoot(); 6664 Ops[1] = getValue(I.getArgOperand(0)); 6665 Ops[2] = getValue(I.getArgOperand(1)); 6666 Ops[3] = getValue(I.getArgOperand(2)); 6667 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6668 Ops[5] = DAG.getSrcValue(F); 6669 6670 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6671 6672 DAG.setRoot(Res); 6673 return; 6674 } 6675 case Intrinsic::adjust_trampoline: 6676 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6677 TLI.getPointerTy(DAG.getDataLayout()), 6678 getValue(I.getArgOperand(0)))); 6679 return; 6680 case Intrinsic::gcroot: { 6681 assert(DAG.getMachineFunction().getFunction().hasGC() && 6682 "only valid in functions with gc specified, enforced by Verifier"); 6683 assert(GFI && "implied by previous"); 6684 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6685 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6686 6687 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6688 GFI->addStackRoot(FI->getIndex(), TypeMap); 6689 return; 6690 } 6691 case Intrinsic::gcread: 6692 case Intrinsic::gcwrite: 6693 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6694 case Intrinsic::flt_rounds: 6695 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6696 setValue(&I, Res); 6697 DAG.setRoot(Res.getValue(1)); 6698 return; 6699 6700 case Intrinsic::expect: 6701 // Just replace __builtin_expect(exp, c) with EXP. 6702 setValue(&I, getValue(I.getArgOperand(0))); 6703 return; 6704 6705 case Intrinsic::ubsantrap: 6706 case Intrinsic::debugtrap: 6707 case Intrinsic::trap: { 6708 StringRef TrapFuncName = 6709 I.getAttributes() 6710 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6711 .getValueAsString(); 6712 if (TrapFuncName.empty()) { 6713 switch (Intrinsic) { 6714 case Intrinsic::trap: 6715 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6716 break; 6717 case Intrinsic::debugtrap: 6718 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6719 break; 6720 case Intrinsic::ubsantrap: 6721 DAG.setRoot(DAG.getNode( 6722 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6723 DAG.getTargetConstant( 6724 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6725 MVT::i32))); 6726 break; 6727 default: llvm_unreachable("unknown trap intrinsic"); 6728 } 6729 return; 6730 } 6731 TargetLowering::ArgListTy Args; 6732 if (Intrinsic == Intrinsic::ubsantrap) { 6733 Args.push_back(TargetLoweringBase::ArgListEntry()); 6734 Args[0].Val = I.getArgOperand(0); 6735 Args[0].Node = getValue(Args[0].Val); 6736 Args[0].Ty = Args[0].Val->getType(); 6737 } 6738 6739 TargetLowering::CallLoweringInfo CLI(DAG); 6740 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6741 CallingConv::C, I.getType(), 6742 DAG.getExternalSymbol(TrapFuncName.data(), 6743 TLI.getPointerTy(DAG.getDataLayout())), 6744 std::move(Args)); 6745 6746 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6747 DAG.setRoot(Result.second); 6748 return; 6749 } 6750 6751 case Intrinsic::uadd_with_overflow: 6752 case Intrinsic::sadd_with_overflow: 6753 case Intrinsic::usub_with_overflow: 6754 case Intrinsic::ssub_with_overflow: 6755 case Intrinsic::umul_with_overflow: 6756 case Intrinsic::smul_with_overflow: { 6757 ISD::NodeType Op; 6758 switch (Intrinsic) { 6759 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6760 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6761 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6762 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6763 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6764 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6765 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6766 } 6767 SDValue Op1 = getValue(I.getArgOperand(0)); 6768 SDValue Op2 = getValue(I.getArgOperand(1)); 6769 6770 EVT ResultVT = Op1.getValueType(); 6771 EVT OverflowVT = MVT::i1; 6772 if (ResultVT.isVector()) 6773 OverflowVT = EVT::getVectorVT( 6774 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6775 6776 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6777 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6778 return; 6779 } 6780 case Intrinsic::prefetch: { 6781 SDValue Ops[5]; 6782 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6783 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6784 Ops[0] = DAG.getRoot(); 6785 Ops[1] = getValue(I.getArgOperand(0)); 6786 Ops[2] = getValue(I.getArgOperand(1)); 6787 Ops[3] = getValue(I.getArgOperand(2)); 6788 Ops[4] = getValue(I.getArgOperand(3)); 6789 SDValue Result = DAG.getMemIntrinsicNode( 6790 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6791 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6792 /* align */ None, Flags); 6793 6794 // Chain the prefetch in parallell with any pending loads, to stay out of 6795 // the way of later optimizations. 6796 PendingLoads.push_back(Result); 6797 Result = getRoot(); 6798 DAG.setRoot(Result); 6799 return; 6800 } 6801 case Intrinsic::lifetime_start: 6802 case Intrinsic::lifetime_end: { 6803 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6804 // Stack coloring is not enabled in O0, discard region information. 6805 if (TM.getOptLevel() == CodeGenOpt::None) 6806 return; 6807 6808 const int64_t ObjectSize = 6809 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6810 Value *const ObjectPtr = I.getArgOperand(1); 6811 SmallVector<const Value *, 4> Allocas; 6812 getUnderlyingObjects(ObjectPtr, Allocas); 6813 6814 for (const Value *Alloca : Allocas) { 6815 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6816 6817 // Could not find an Alloca. 6818 if (!LifetimeObject) 6819 continue; 6820 6821 // First check that the Alloca is static, otherwise it won't have a 6822 // valid frame index. 6823 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6824 if (SI == FuncInfo.StaticAllocaMap.end()) 6825 return; 6826 6827 const int FrameIndex = SI->second; 6828 int64_t Offset; 6829 if (GetPointerBaseWithConstantOffset( 6830 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6831 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6832 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6833 Offset); 6834 DAG.setRoot(Res); 6835 } 6836 return; 6837 } 6838 case Intrinsic::pseudoprobe: { 6839 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6840 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6841 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6842 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6843 DAG.setRoot(Res); 6844 return; 6845 } 6846 case Intrinsic::invariant_start: 6847 // Discard region information. 6848 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6849 return; 6850 case Intrinsic::invariant_end: 6851 // Discard region information. 6852 return; 6853 case Intrinsic::clear_cache: 6854 /// FunctionName may be null. 6855 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6856 lowerCallToExternalSymbol(I, FunctionName); 6857 return; 6858 case Intrinsic::donothing: 6859 case Intrinsic::seh_try_begin: 6860 case Intrinsic::seh_scope_begin: 6861 case Intrinsic::seh_try_end: 6862 case Intrinsic::seh_scope_end: 6863 // ignore 6864 return; 6865 case Intrinsic::experimental_stackmap: 6866 visitStackmap(I); 6867 return; 6868 case Intrinsic::experimental_patchpoint_void: 6869 case Intrinsic::experimental_patchpoint_i64: 6870 visitPatchpoint(I); 6871 return; 6872 case Intrinsic::experimental_gc_statepoint: 6873 LowerStatepoint(cast<GCStatepointInst>(I)); 6874 return; 6875 case Intrinsic::experimental_gc_result: 6876 visitGCResult(cast<GCResultInst>(I)); 6877 return; 6878 case Intrinsic::experimental_gc_relocate: 6879 visitGCRelocate(cast<GCRelocateInst>(I)); 6880 return; 6881 case Intrinsic::instrprof_increment: 6882 llvm_unreachable("instrprof failed to lower an increment"); 6883 case Intrinsic::instrprof_value_profile: 6884 llvm_unreachable("instrprof failed to lower a value profiling call"); 6885 case Intrinsic::localescape: { 6886 MachineFunction &MF = DAG.getMachineFunction(); 6887 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6888 6889 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6890 // is the same on all targets. 6891 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6892 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6893 if (isa<ConstantPointerNull>(Arg)) 6894 continue; // Skip null pointers. They represent a hole in index space. 6895 AllocaInst *Slot = cast<AllocaInst>(Arg); 6896 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6897 "can only escape static allocas"); 6898 int FI = FuncInfo.StaticAllocaMap[Slot]; 6899 MCSymbol *FrameAllocSym = 6900 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6901 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6902 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6903 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6904 .addSym(FrameAllocSym) 6905 .addFrameIndex(FI); 6906 } 6907 6908 return; 6909 } 6910 6911 case Intrinsic::localrecover: { 6912 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6913 MachineFunction &MF = DAG.getMachineFunction(); 6914 6915 // Get the symbol that defines the frame offset. 6916 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6917 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6918 unsigned IdxVal = 6919 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6920 MCSymbol *FrameAllocSym = 6921 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6922 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6923 6924 Value *FP = I.getArgOperand(1); 6925 SDValue FPVal = getValue(FP); 6926 EVT PtrVT = FPVal.getValueType(); 6927 6928 // Create a MCSymbol for the label to avoid any target lowering 6929 // that would make this PC relative. 6930 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6931 SDValue OffsetVal = 6932 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6933 6934 // Add the offset to the FP. 6935 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6936 setValue(&I, Add); 6937 6938 return; 6939 } 6940 6941 case Intrinsic::eh_exceptionpointer: 6942 case Intrinsic::eh_exceptioncode: { 6943 // Get the exception pointer vreg, copy from it, and resize it to fit. 6944 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6945 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6946 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6947 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6948 SDValue N = 6949 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6950 if (Intrinsic == Intrinsic::eh_exceptioncode) 6951 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6952 setValue(&I, N); 6953 return; 6954 } 6955 case Intrinsic::xray_customevent: { 6956 // Here we want to make sure that the intrinsic behaves as if it has a 6957 // specific calling convention, and only for x86_64. 6958 // FIXME: Support other platforms later. 6959 const auto &Triple = DAG.getTarget().getTargetTriple(); 6960 if (Triple.getArch() != Triple::x86_64) 6961 return; 6962 6963 SDLoc DL = getCurSDLoc(); 6964 SmallVector<SDValue, 8> Ops; 6965 6966 // We want to say that we always want the arguments in registers. 6967 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6968 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6969 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6970 SDValue Chain = getRoot(); 6971 Ops.push_back(LogEntryVal); 6972 Ops.push_back(StrSizeVal); 6973 Ops.push_back(Chain); 6974 6975 // We need to enforce the calling convention for the callsite, so that 6976 // argument ordering is enforced correctly, and that register allocation can 6977 // see that some registers may be assumed clobbered and have to preserve 6978 // them across calls to the intrinsic. 6979 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6980 DL, NodeTys, Ops); 6981 SDValue patchableNode = SDValue(MN, 0); 6982 DAG.setRoot(patchableNode); 6983 setValue(&I, patchableNode); 6984 return; 6985 } 6986 case Intrinsic::xray_typedevent: { 6987 // Here we want to make sure that the intrinsic behaves as if it has a 6988 // specific calling convention, and only for x86_64. 6989 // FIXME: Support other platforms later. 6990 const auto &Triple = DAG.getTarget().getTargetTriple(); 6991 if (Triple.getArch() != Triple::x86_64) 6992 return; 6993 6994 SDLoc DL = getCurSDLoc(); 6995 SmallVector<SDValue, 8> Ops; 6996 6997 // We want to say that we always want the arguments in registers. 6998 // It's unclear to me how manipulating the selection DAG here forces callers 6999 // to provide arguments in registers instead of on the stack. 7000 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7001 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7002 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7003 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7004 SDValue Chain = getRoot(); 7005 Ops.push_back(LogTypeId); 7006 Ops.push_back(LogEntryVal); 7007 Ops.push_back(StrSizeVal); 7008 Ops.push_back(Chain); 7009 7010 // We need to enforce the calling convention for the callsite, so that 7011 // argument ordering is enforced correctly, and that register allocation can 7012 // see that some registers may be assumed clobbered and have to preserve 7013 // them across calls to the intrinsic. 7014 MachineSDNode *MN = DAG.getMachineNode( 7015 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 7016 SDValue patchableNode = SDValue(MN, 0); 7017 DAG.setRoot(patchableNode); 7018 setValue(&I, patchableNode); 7019 return; 7020 } 7021 case Intrinsic::experimental_deoptimize: 7022 LowerDeoptimizeCall(&I); 7023 return; 7024 case Intrinsic::experimental_stepvector: 7025 visitStepVector(I); 7026 return; 7027 case Intrinsic::vector_reduce_fadd: 7028 case Intrinsic::vector_reduce_fmul: 7029 case Intrinsic::vector_reduce_add: 7030 case Intrinsic::vector_reduce_mul: 7031 case Intrinsic::vector_reduce_and: 7032 case Intrinsic::vector_reduce_or: 7033 case Intrinsic::vector_reduce_xor: 7034 case Intrinsic::vector_reduce_smax: 7035 case Intrinsic::vector_reduce_smin: 7036 case Intrinsic::vector_reduce_umax: 7037 case Intrinsic::vector_reduce_umin: 7038 case Intrinsic::vector_reduce_fmax: 7039 case Intrinsic::vector_reduce_fmin: 7040 visitVectorReduce(I, Intrinsic); 7041 return; 7042 7043 case Intrinsic::icall_branch_funnel: { 7044 SmallVector<SDValue, 16> Ops; 7045 Ops.push_back(getValue(I.getArgOperand(0))); 7046 7047 int64_t Offset; 7048 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7049 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7050 if (!Base) 7051 report_fatal_error( 7052 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7053 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 7054 7055 struct BranchFunnelTarget { 7056 int64_t Offset; 7057 SDValue Target; 7058 }; 7059 SmallVector<BranchFunnelTarget, 8> Targets; 7060 7061 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 7062 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7063 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7064 if (ElemBase != Base) 7065 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7066 "to the same GlobalValue"); 7067 7068 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7069 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7070 if (!GA) 7071 report_fatal_error( 7072 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7073 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7074 GA->getGlobal(), getCurSDLoc(), 7075 Val.getValueType(), GA->getOffset())}); 7076 } 7077 llvm::sort(Targets, 7078 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7079 return T1.Offset < T2.Offset; 7080 }); 7081 7082 for (auto &T : Targets) { 7083 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 7084 Ops.push_back(T.Target); 7085 } 7086 7087 Ops.push_back(DAG.getRoot()); // Chain 7088 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 7089 getCurSDLoc(), MVT::Other, Ops), 7090 0); 7091 DAG.setRoot(N); 7092 setValue(&I, N); 7093 HasTailCall = true; 7094 return; 7095 } 7096 7097 case Intrinsic::wasm_landingpad_index: 7098 // Information this intrinsic contained has been transferred to 7099 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7100 // delete it now. 7101 return; 7102 7103 case Intrinsic::aarch64_settag: 7104 case Intrinsic::aarch64_settag_zero: { 7105 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7106 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7107 SDValue Val = TSI.EmitTargetCodeForSetTag( 7108 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 7109 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7110 ZeroMemory); 7111 DAG.setRoot(Val); 7112 setValue(&I, Val); 7113 return; 7114 } 7115 case Intrinsic::ptrmask: { 7116 SDValue Ptr = getValue(I.getOperand(0)); 7117 SDValue Const = getValue(I.getOperand(1)); 7118 7119 EVT PtrVT = Ptr.getValueType(); 7120 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 7121 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 7122 return; 7123 } 7124 case Intrinsic::get_active_lane_mask: { 7125 auto DL = getCurSDLoc(); 7126 SDValue Index = getValue(I.getOperand(0)); 7127 SDValue TripCount = getValue(I.getOperand(1)); 7128 Type *ElementTy = I.getOperand(0)->getType(); 7129 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7130 unsigned VecWidth = VT.getVectorNumElements(); 7131 7132 SmallVector<SDValue, 16> OpsTripCount; 7133 SmallVector<SDValue, 16> OpsIndex; 7134 SmallVector<SDValue, 16> OpsStepConstants; 7135 for (unsigned i = 0; i < VecWidth; i++) { 7136 OpsTripCount.push_back(TripCount); 7137 OpsIndex.push_back(Index); 7138 OpsStepConstants.push_back( 7139 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 7140 } 7141 7142 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 7143 7144 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 7145 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 7146 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 7147 SDValue VectorInduction = DAG.getNode( 7148 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 7149 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 7150 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 7151 VectorTripCount, ISD::CondCode::SETULT); 7152 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 7153 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 7154 SetCC)); 7155 return; 7156 } 7157 case Intrinsic::experimental_vector_insert: { 7158 auto DL = getCurSDLoc(); 7159 7160 SDValue Vec = getValue(I.getOperand(0)); 7161 SDValue SubVec = getValue(I.getOperand(1)); 7162 SDValue Index = getValue(I.getOperand(2)); 7163 7164 // The intrinsic's index type is i64, but the SDNode requires an index type 7165 // suitable for the target. Convert the index as required. 7166 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7167 if (Index.getValueType() != VectorIdxTy) 7168 Index = DAG.getVectorIdxConstant( 7169 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7170 7171 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7172 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec, 7173 Index)); 7174 return; 7175 } 7176 case Intrinsic::experimental_vector_extract: { 7177 auto DL = getCurSDLoc(); 7178 7179 SDValue Vec = getValue(I.getOperand(0)); 7180 SDValue Index = getValue(I.getOperand(1)); 7181 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7182 7183 // The intrinsic's index type is i64, but the SDNode requires an index type 7184 // suitable for the target. Convert the index as required. 7185 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7186 if (Index.getValueType() != VectorIdxTy) 7187 Index = DAG.getVectorIdxConstant( 7188 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7189 7190 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index)); 7191 return; 7192 } 7193 case Intrinsic::experimental_vector_reverse: 7194 visitVectorReverse(I); 7195 return; 7196 case Intrinsic::experimental_vector_splice: 7197 visitVectorSplice(I); 7198 return; 7199 } 7200 } 7201 7202 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7203 const ConstrainedFPIntrinsic &FPI) { 7204 SDLoc sdl = getCurSDLoc(); 7205 7206 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7207 SmallVector<EVT, 4> ValueVTs; 7208 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7209 ValueVTs.push_back(MVT::Other); // Out chain 7210 7211 // We do not need to serialize constrained FP intrinsics against 7212 // each other or against (nonvolatile) loads, so they can be 7213 // chained like loads. 7214 SDValue Chain = DAG.getRoot(); 7215 SmallVector<SDValue, 4> Opers; 7216 Opers.push_back(Chain); 7217 if (FPI.isUnaryOp()) { 7218 Opers.push_back(getValue(FPI.getArgOperand(0))); 7219 } else if (FPI.isTernaryOp()) { 7220 Opers.push_back(getValue(FPI.getArgOperand(0))); 7221 Opers.push_back(getValue(FPI.getArgOperand(1))); 7222 Opers.push_back(getValue(FPI.getArgOperand(2))); 7223 } else { 7224 Opers.push_back(getValue(FPI.getArgOperand(0))); 7225 Opers.push_back(getValue(FPI.getArgOperand(1))); 7226 } 7227 7228 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7229 assert(Result.getNode()->getNumValues() == 2); 7230 7231 // Push node to the appropriate list so that future instructions can be 7232 // chained up correctly. 7233 SDValue OutChain = Result.getValue(1); 7234 switch (EB) { 7235 case fp::ExceptionBehavior::ebIgnore: 7236 // The only reason why ebIgnore nodes still need to be chained is that 7237 // they might depend on the current rounding mode, and therefore must 7238 // not be moved across instruction that may change that mode. 7239 LLVM_FALLTHROUGH; 7240 case fp::ExceptionBehavior::ebMayTrap: 7241 // These must not be moved across calls or instructions that may change 7242 // floating-point exception masks. 7243 PendingConstrainedFP.push_back(OutChain); 7244 break; 7245 case fp::ExceptionBehavior::ebStrict: 7246 // These must not be moved across calls or instructions that may change 7247 // floating-point exception masks or read floating-point exception flags. 7248 // In addition, they cannot be optimized out even if unused. 7249 PendingConstrainedFPStrict.push_back(OutChain); 7250 break; 7251 } 7252 }; 7253 7254 SDVTList VTs = DAG.getVTList(ValueVTs); 7255 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7256 7257 SDNodeFlags Flags; 7258 if (EB == fp::ExceptionBehavior::ebIgnore) 7259 Flags.setNoFPExcept(true); 7260 7261 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7262 Flags.copyFMF(*FPOp); 7263 7264 unsigned Opcode; 7265 switch (FPI.getIntrinsicID()) { 7266 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7267 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7268 case Intrinsic::INTRINSIC: \ 7269 Opcode = ISD::STRICT_##DAGN; \ 7270 break; 7271 #include "llvm/IR/ConstrainedOps.def" 7272 case Intrinsic::experimental_constrained_fmuladd: { 7273 Opcode = ISD::STRICT_FMA; 7274 // Break fmuladd into fmul and fadd. 7275 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7276 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7277 ValueVTs[0])) { 7278 Opers.pop_back(); 7279 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7280 pushOutChain(Mul, EB); 7281 Opcode = ISD::STRICT_FADD; 7282 Opers.clear(); 7283 Opers.push_back(Mul.getValue(1)); 7284 Opers.push_back(Mul.getValue(0)); 7285 Opers.push_back(getValue(FPI.getArgOperand(2))); 7286 } 7287 break; 7288 } 7289 } 7290 7291 // A few strict DAG nodes carry additional operands that are not 7292 // set up by the default code above. 7293 switch (Opcode) { 7294 default: break; 7295 case ISD::STRICT_FP_ROUND: 7296 Opers.push_back( 7297 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7298 break; 7299 case ISD::STRICT_FSETCC: 7300 case ISD::STRICT_FSETCCS: { 7301 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7302 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7303 if (TM.Options.NoNaNsFPMath) 7304 Condition = getFCmpCodeWithoutNaN(Condition); 7305 Opers.push_back(DAG.getCondCode(Condition)); 7306 break; 7307 } 7308 } 7309 7310 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7311 pushOutChain(Result, EB); 7312 7313 SDValue FPResult = Result.getValue(0); 7314 setValue(&FPI, FPResult); 7315 } 7316 7317 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7318 Optional<unsigned> ResOPC; 7319 switch (VPIntrin.getIntrinsicID()) { 7320 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN: 7321 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID; 7322 #define END_REGISTER_VP_INTRINSIC(...) break; 7323 #include "llvm/IR/VPIntrinsics.def" 7324 } 7325 7326 if (!ResOPC.hasValue()) 7327 llvm_unreachable( 7328 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7329 7330 return ResOPC.getValue(); 7331 } 7332 7333 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7334 const VPIntrinsic &VPIntrin) { 7335 SDLoc DL = getCurSDLoc(); 7336 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7337 7338 SmallVector<EVT, 4> ValueVTs; 7339 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7340 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7341 SDVTList VTs = DAG.getVTList(ValueVTs); 7342 7343 auto EVLParamPos = 7344 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7345 7346 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7347 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7348 "Unexpected target EVL type"); 7349 7350 // Request operands. 7351 SmallVector<SDValue, 7> OpValues; 7352 for (unsigned I = 0; I < VPIntrin.getNumArgOperands(); ++I) { 7353 auto Op = getValue(VPIntrin.getArgOperand(I)); 7354 if (I == EVLParamPos) 7355 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7356 OpValues.push_back(Op); 7357 } 7358 7359 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7360 setValue(&VPIntrin, Result); 7361 } 7362 7363 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7364 const BasicBlock *EHPadBB, 7365 MCSymbol *&BeginLabel) { 7366 MachineFunction &MF = DAG.getMachineFunction(); 7367 MachineModuleInfo &MMI = MF.getMMI(); 7368 7369 // Insert a label before the invoke call to mark the try range. This can be 7370 // used to detect deletion of the invoke via the MachineModuleInfo. 7371 BeginLabel = MMI.getContext().createTempSymbol(); 7372 7373 // For SjLj, keep track of which landing pads go with which invokes 7374 // so as to maintain the ordering of pads in the LSDA. 7375 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7376 if (CallSiteIndex) { 7377 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7378 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7379 7380 // Now that the call site is handled, stop tracking it. 7381 MMI.setCurrentCallSite(0); 7382 } 7383 7384 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7385 } 7386 7387 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7388 const BasicBlock *EHPadBB, 7389 MCSymbol *BeginLabel) { 7390 assert(BeginLabel && "BeginLabel should've been set"); 7391 7392 MachineFunction &MF = DAG.getMachineFunction(); 7393 MachineModuleInfo &MMI = MF.getMMI(); 7394 7395 // Insert a label at the end of the invoke call to mark the try range. This 7396 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7397 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7398 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7399 7400 // Inform MachineModuleInfo of range. 7401 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7402 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7403 // actually use outlined funclets and their LSDA info style. 7404 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7405 assert(II && "II should've been set"); 7406 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7407 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7408 } else if (!isScopedEHPersonality(Pers)) { 7409 assert(EHPadBB); 7410 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7411 } 7412 7413 return Chain; 7414 } 7415 7416 std::pair<SDValue, SDValue> 7417 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7418 const BasicBlock *EHPadBB) { 7419 MCSymbol *BeginLabel = nullptr; 7420 7421 if (EHPadBB) { 7422 // Both PendingLoads and PendingExports must be flushed here; 7423 // this call might not return. 7424 (void)getRoot(); 7425 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7426 CLI.setChain(getRoot()); 7427 } 7428 7429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7430 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7431 7432 assert((CLI.IsTailCall || Result.second.getNode()) && 7433 "Non-null chain expected with non-tail call!"); 7434 assert((Result.second.getNode() || !Result.first.getNode()) && 7435 "Null value expected with tail call!"); 7436 7437 if (!Result.second.getNode()) { 7438 // As a special case, a null chain means that a tail call has been emitted 7439 // and the DAG root is already updated. 7440 HasTailCall = true; 7441 7442 // Since there's no actual continuation from this block, nothing can be 7443 // relying on us setting vregs for them. 7444 PendingExports.clear(); 7445 } else { 7446 DAG.setRoot(Result.second); 7447 } 7448 7449 if (EHPadBB) { 7450 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7451 BeginLabel)); 7452 } 7453 7454 return Result; 7455 } 7456 7457 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7458 bool isTailCall, 7459 bool isMustTailCall, 7460 const BasicBlock *EHPadBB) { 7461 auto &DL = DAG.getDataLayout(); 7462 FunctionType *FTy = CB.getFunctionType(); 7463 Type *RetTy = CB.getType(); 7464 7465 TargetLowering::ArgListTy Args; 7466 Args.reserve(CB.arg_size()); 7467 7468 const Value *SwiftErrorVal = nullptr; 7469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7470 7471 if (isTailCall) { 7472 // Avoid emitting tail calls in functions with the disable-tail-calls 7473 // attribute. 7474 auto *Caller = CB.getParent()->getParent(); 7475 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7476 "true" && !isMustTailCall) 7477 isTailCall = false; 7478 7479 // We can't tail call inside a function with a swifterror argument. Lowering 7480 // does not support this yet. It would have to move into the swifterror 7481 // register before the call. 7482 if (TLI.supportSwiftError() && 7483 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7484 isTailCall = false; 7485 } 7486 7487 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7488 TargetLowering::ArgListEntry Entry; 7489 const Value *V = *I; 7490 7491 // Skip empty types 7492 if (V->getType()->isEmptyTy()) 7493 continue; 7494 7495 SDValue ArgNode = getValue(V); 7496 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7497 7498 Entry.setAttributes(&CB, I - CB.arg_begin()); 7499 7500 // Use swifterror virtual register as input to the call. 7501 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7502 SwiftErrorVal = V; 7503 // We find the virtual register for the actual swifterror argument. 7504 // Instead of using the Value, we use the virtual register instead. 7505 Entry.Node = 7506 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7507 EVT(TLI.getPointerTy(DL))); 7508 } 7509 7510 Args.push_back(Entry); 7511 7512 // If we have an explicit sret argument that is an Instruction, (i.e., it 7513 // might point to function-local memory), we can't meaningfully tail-call. 7514 if (Entry.IsSRet && isa<Instruction>(V)) 7515 isTailCall = false; 7516 } 7517 7518 // If call site has a cfguardtarget operand bundle, create and add an 7519 // additional ArgListEntry. 7520 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7521 TargetLowering::ArgListEntry Entry; 7522 Value *V = Bundle->Inputs[0]; 7523 SDValue ArgNode = getValue(V); 7524 Entry.Node = ArgNode; 7525 Entry.Ty = V->getType(); 7526 Entry.IsCFGuardTarget = true; 7527 Args.push_back(Entry); 7528 } 7529 7530 // Check if target-independent constraints permit a tail call here. 7531 // Target-dependent constraints are checked within TLI->LowerCallTo. 7532 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7533 isTailCall = false; 7534 7535 // Disable tail calls if there is an swifterror argument. Targets have not 7536 // been updated to support tail calls. 7537 if (TLI.supportSwiftError() && SwiftErrorVal) 7538 isTailCall = false; 7539 7540 TargetLowering::CallLoweringInfo CLI(DAG); 7541 CLI.setDebugLoc(getCurSDLoc()) 7542 .setChain(getRoot()) 7543 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7544 .setTailCall(isTailCall) 7545 .setConvergent(CB.isConvergent()) 7546 .setIsPreallocated( 7547 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7548 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7549 7550 if (Result.first.getNode()) { 7551 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7552 setValue(&CB, Result.first); 7553 } 7554 7555 // The last element of CLI.InVals has the SDValue for swifterror return. 7556 // Here we copy it to a virtual register and update SwiftErrorMap for 7557 // book-keeping. 7558 if (SwiftErrorVal && TLI.supportSwiftError()) { 7559 // Get the last element of InVals. 7560 SDValue Src = CLI.InVals.back(); 7561 Register VReg = 7562 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7563 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7564 DAG.setRoot(CopyNode); 7565 } 7566 } 7567 7568 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7569 SelectionDAGBuilder &Builder) { 7570 // Check to see if this load can be trivially constant folded, e.g. if the 7571 // input is from a string literal. 7572 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7573 // Cast pointer to the type we really want to load. 7574 Type *LoadTy = 7575 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7576 if (LoadVT.isVector()) 7577 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7578 7579 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7580 PointerType::getUnqual(LoadTy)); 7581 7582 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7583 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7584 return Builder.getValue(LoadCst); 7585 } 7586 7587 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7588 // still constant memory, the input chain can be the entry node. 7589 SDValue Root; 7590 bool ConstantMemory = false; 7591 7592 // Do not serialize (non-volatile) loads of constant memory with anything. 7593 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7594 Root = Builder.DAG.getEntryNode(); 7595 ConstantMemory = true; 7596 } else { 7597 // Do not serialize non-volatile loads against each other. 7598 Root = Builder.DAG.getRoot(); 7599 } 7600 7601 SDValue Ptr = Builder.getValue(PtrVal); 7602 SDValue LoadVal = 7603 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7604 MachinePointerInfo(PtrVal), Align(1)); 7605 7606 if (!ConstantMemory) 7607 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7608 return LoadVal; 7609 } 7610 7611 /// Record the value for an instruction that produces an integer result, 7612 /// converting the type where necessary. 7613 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7614 SDValue Value, 7615 bool IsSigned) { 7616 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7617 I.getType(), true); 7618 if (IsSigned) 7619 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7620 else 7621 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7622 setValue(&I, Value); 7623 } 7624 7625 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7626 /// true and lower it. Otherwise return false, and it will be lowered like a 7627 /// normal call. 7628 /// The caller already checked that \p I calls the appropriate LibFunc with a 7629 /// correct prototype. 7630 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7631 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7632 const Value *Size = I.getArgOperand(2); 7633 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7634 if (CSize && CSize->getZExtValue() == 0) { 7635 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7636 I.getType(), true); 7637 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7638 return true; 7639 } 7640 7641 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7642 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7643 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7644 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7645 if (Res.first.getNode()) { 7646 processIntegerCallValue(I, Res.first, true); 7647 PendingLoads.push_back(Res.second); 7648 return true; 7649 } 7650 7651 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7652 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7653 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7654 return false; 7655 7656 // If the target has a fast compare for the given size, it will return a 7657 // preferred load type for that size. Require that the load VT is legal and 7658 // that the target supports unaligned loads of that type. Otherwise, return 7659 // INVALID. 7660 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7662 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7663 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7664 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7665 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7666 // TODO: Check alignment of src and dest ptrs. 7667 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7668 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7669 if (!TLI.isTypeLegal(LVT) || 7670 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7671 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7672 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7673 } 7674 7675 return LVT; 7676 }; 7677 7678 // This turns into unaligned loads. We only do this if the target natively 7679 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7680 // we'll only produce a small number of byte loads. 7681 MVT LoadVT; 7682 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7683 switch (NumBitsToCompare) { 7684 default: 7685 return false; 7686 case 16: 7687 LoadVT = MVT::i16; 7688 break; 7689 case 32: 7690 LoadVT = MVT::i32; 7691 break; 7692 case 64: 7693 case 128: 7694 case 256: 7695 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7696 break; 7697 } 7698 7699 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7700 return false; 7701 7702 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7703 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7704 7705 // Bitcast to a wide integer type if the loads are vectors. 7706 if (LoadVT.isVector()) { 7707 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7708 LoadL = DAG.getBitcast(CmpVT, LoadL); 7709 LoadR = DAG.getBitcast(CmpVT, LoadR); 7710 } 7711 7712 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7713 processIntegerCallValue(I, Cmp, false); 7714 return true; 7715 } 7716 7717 /// See if we can lower a memchr call into an optimized form. If so, return 7718 /// true and lower it. Otherwise return false, and it will be lowered like a 7719 /// normal call. 7720 /// The caller already checked that \p I calls the appropriate LibFunc with a 7721 /// correct prototype. 7722 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7723 const Value *Src = I.getArgOperand(0); 7724 const Value *Char = I.getArgOperand(1); 7725 const Value *Length = I.getArgOperand(2); 7726 7727 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7728 std::pair<SDValue, SDValue> Res = 7729 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7730 getValue(Src), getValue(Char), getValue(Length), 7731 MachinePointerInfo(Src)); 7732 if (Res.first.getNode()) { 7733 setValue(&I, Res.first); 7734 PendingLoads.push_back(Res.second); 7735 return true; 7736 } 7737 7738 return false; 7739 } 7740 7741 /// See if we can lower a mempcpy call into an optimized form. If so, return 7742 /// true and lower it. Otherwise return false, and it will be lowered like a 7743 /// normal call. 7744 /// The caller already checked that \p I calls the appropriate LibFunc with a 7745 /// correct prototype. 7746 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7747 SDValue Dst = getValue(I.getArgOperand(0)); 7748 SDValue Src = getValue(I.getArgOperand(1)); 7749 SDValue Size = getValue(I.getArgOperand(2)); 7750 7751 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7752 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7753 // DAG::getMemcpy needs Alignment to be defined. 7754 Align Alignment = std::min(DstAlign, SrcAlign); 7755 7756 bool isVol = false; 7757 SDLoc sdl = getCurSDLoc(); 7758 7759 // In the mempcpy context we need to pass in a false value for isTailCall 7760 // because the return pointer needs to be adjusted by the size of 7761 // the copied memory. 7762 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7763 AAMDNodes AAInfo; 7764 I.getAAMetadata(AAInfo); 7765 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7766 /*isTailCall=*/false, 7767 MachinePointerInfo(I.getArgOperand(0)), 7768 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 7769 assert(MC.getNode() != nullptr && 7770 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7771 DAG.setRoot(MC); 7772 7773 // Check if Size needs to be truncated or extended. 7774 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7775 7776 // Adjust return pointer to point just past the last dst byte. 7777 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7778 Dst, Size); 7779 setValue(&I, DstPlusSize); 7780 return true; 7781 } 7782 7783 /// See if we can lower a strcpy call into an optimized form. If so, return 7784 /// true and lower it, otherwise return false and it will be lowered like a 7785 /// normal call. 7786 /// The caller already checked that \p I calls the appropriate LibFunc with a 7787 /// correct prototype. 7788 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7789 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7790 7791 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7792 std::pair<SDValue, SDValue> Res = 7793 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7794 getValue(Arg0), getValue(Arg1), 7795 MachinePointerInfo(Arg0), 7796 MachinePointerInfo(Arg1), isStpcpy); 7797 if (Res.first.getNode()) { 7798 setValue(&I, Res.first); 7799 DAG.setRoot(Res.second); 7800 return true; 7801 } 7802 7803 return false; 7804 } 7805 7806 /// See if we can lower a strcmp call into an optimized form. If so, return 7807 /// true and lower it, otherwise return false and it will be lowered like a 7808 /// normal call. 7809 /// The caller already checked that \p I calls the appropriate LibFunc with a 7810 /// correct prototype. 7811 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7812 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7813 7814 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7815 std::pair<SDValue, SDValue> Res = 7816 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7817 getValue(Arg0), getValue(Arg1), 7818 MachinePointerInfo(Arg0), 7819 MachinePointerInfo(Arg1)); 7820 if (Res.first.getNode()) { 7821 processIntegerCallValue(I, Res.first, true); 7822 PendingLoads.push_back(Res.second); 7823 return true; 7824 } 7825 7826 return false; 7827 } 7828 7829 /// See if we can lower a strlen call into an optimized form. If so, return 7830 /// true and lower it, otherwise return false and it will be lowered like a 7831 /// normal call. 7832 /// The caller already checked that \p I calls the appropriate LibFunc with a 7833 /// correct prototype. 7834 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7835 const Value *Arg0 = I.getArgOperand(0); 7836 7837 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7838 std::pair<SDValue, SDValue> Res = 7839 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7840 getValue(Arg0), MachinePointerInfo(Arg0)); 7841 if (Res.first.getNode()) { 7842 processIntegerCallValue(I, Res.first, false); 7843 PendingLoads.push_back(Res.second); 7844 return true; 7845 } 7846 7847 return false; 7848 } 7849 7850 /// See if we can lower a strnlen call into an optimized form. If so, return 7851 /// true and lower it, otherwise return false and it will be lowered like a 7852 /// normal call. 7853 /// The caller already checked that \p I calls the appropriate LibFunc with a 7854 /// correct prototype. 7855 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7856 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7857 7858 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7859 std::pair<SDValue, SDValue> Res = 7860 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7861 getValue(Arg0), getValue(Arg1), 7862 MachinePointerInfo(Arg0)); 7863 if (Res.first.getNode()) { 7864 processIntegerCallValue(I, Res.first, false); 7865 PendingLoads.push_back(Res.second); 7866 return true; 7867 } 7868 7869 return false; 7870 } 7871 7872 /// See if we can lower a unary floating-point operation into an SDNode with 7873 /// the specified Opcode. If so, return true and lower it, otherwise return 7874 /// false and it will be lowered like a normal call. 7875 /// The caller already checked that \p I calls the appropriate LibFunc with a 7876 /// correct prototype. 7877 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7878 unsigned Opcode) { 7879 // We already checked this call's prototype; verify it doesn't modify errno. 7880 if (!I.onlyReadsMemory()) 7881 return false; 7882 7883 SDNodeFlags Flags; 7884 Flags.copyFMF(cast<FPMathOperator>(I)); 7885 7886 SDValue Tmp = getValue(I.getArgOperand(0)); 7887 setValue(&I, 7888 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7889 return true; 7890 } 7891 7892 /// See if we can lower a binary floating-point operation into an SDNode with 7893 /// the specified Opcode. If so, return true and lower it. Otherwise return 7894 /// false, and it will be lowered like a normal call. 7895 /// The caller already checked that \p I calls the appropriate LibFunc with a 7896 /// correct prototype. 7897 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7898 unsigned Opcode) { 7899 // We already checked this call's prototype; verify it doesn't modify errno. 7900 if (!I.onlyReadsMemory()) 7901 return false; 7902 7903 SDNodeFlags Flags; 7904 Flags.copyFMF(cast<FPMathOperator>(I)); 7905 7906 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7907 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7908 EVT VT = Tmp0.getValueType(); 7909 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7910 return true; 7911 } 7912 7913 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7914 // Handle inline assembly differently. 7915 if (I.isInlineAsm()) { 7916 visitInlineAsm(I); 7917 return; 7918 } 7919 7920 if (Function *F = I.getCalledFunction()) { 7921 if (F->isDeclaration()) { 7922 // Is this an LLVM intrinsic or a target-specific intrinsic? 7923 unsigned IID = F->getIntrinsicID(); 7924 if (!IID) 7925 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7926 IID = II->getIntrinsicID(F); 7927 7928 if (IID) { 7929 visitIntrinsicCall(I, IID); 7930 return; 7931 } 7932 } 7933 7934 // Check for well-known libc/libm calls. If the function is internal, it 7935 // can't be a library call. Don't do the check if marked as nobuiltin for 7936 // some reason or the call site requires strict floating point semantics. 7937 LibFunc Func; 7938 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7939 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7940 LibInfo->hasOptimizedCodeGen(Func)) { 7941 switch (Func) { 7942 default: break; 7943 case LibFunc_bcmp: 7944 if (visitMemCmpBCmpCall(I)) 7945 return; 7946 break; 7947 case LibFunc_copysign: 7948 case LibFunc_copysignf: 7949 case LibFunc_copysignl: 7950 // We already checked this call's prototype; verify it doesn't modify 7951 // errno. 7952 if (I.onlyReadsMemory()) { 7953 SDValue LHS = getValue(I.getArgOperand(0)); 7954 SDValue RHS = getValue(I.getArgOperand(1)); 7955 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7956 LHS.getValueType(), LHS, RHS)); 7957 return; 7958 } 7959 break; 7960 case LibFunc_fabs: 7961 case LibFunc_fabsf: 7962 case LibFunc_fabsl: 7963 if (visitUnaryFloatCall(I, ISD::FABS)) 7964 return; 7965 break; 7966 case LibFunc_fmin: 7967 case LibFunc_fminf: 7968 case LibFunc_fminl: 7969 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7970 return; 7971 break; 7972 case LibFunc_fmax: 7973 case LibFunc_fmaxf: 7974 case LibFunc_fmaxl: 7975 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7976 return; 7977 break; 7978 case LibFunc_sin: 7979 case LibFunc_sinf: 7980 case LibFunc_sinl: 7981 if (visitUnaryFloatCall(I, ISD::FSIN)) 7982 return; 7983 break; 7984 case LibFunc_cos: 7985 case LibFunc_cosf: 7986 case LibFunc_cosl: 7987 if (visitUnaryFloatCall(I, ISD::FCOS)) 7988 return; 7989 break; 7990 case LibFunc_sqrt: 7991 case LibFunc_sqrtf: 7992 case LibFunc_sqrtl: 7993 case LibFunc_sqrt_finite: 7994 case LibFunc_sqrtf_finite: 7995 case LibFunc_sqrtl_finite: 7996 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7997 return; 7998 break; 7999 case LibFunc_floor: 8000 case LibFunc_floorf: 8001 case LibFunc_floorl: 8002 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8003 return; 8004 break; 8005 case LibFunc_nearbyint: 8006 case LibFunc_nearbyintf: 8007 case LibFunc_nearbyintl: 8008 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8009 return; 8010 break; 8011 case LibFunc_ceil: 8012 case LibFunc_ceilf: 8013 case LibFunc_ceill: 8014 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8015 return; 8016 break; 8017 case LibFunc_rint: 8018 case LibFunc_rintf: 8019 case LibFunc_rintl: 8020 if (visitUnaryFloatCall(I, ISD::FRINT)) 8021 return; 8022 break; 8023 case LibFunc_round: 8024 case LibFunc_roundf: 8025 case LibFunc_roundl: 8026 if (visitUnaryFloatCall(I, ISD::FROUND)) 8027 return; 8028 break; 8029 case LibFunc_trunc: 8030 case LibFunc_truncf: 8031 case LibFunc_truncl: 8032 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8033 return; 8034 break; 8035 case LibFunc_log2: 8036 case LibFunc_log2f: 8037 case LibFunc_log2l: 8038 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8039 return; 8040 break; 8041 case LibFunc_exp2: 8042 case LibFunc_exp2f: 8043 case LibFunc_exp2l: 8044 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8045 return; 8046 break; 8047 case LibFunc_memcmp: 8048 if (visitMemCmpBCmpCall(I)) 8049 return; 8050 break; 8051 case LibFunc_mempcpy: 8052 if (visitMemPCpyCall(I)) 8053 return; 8054 break; 8055 case LibFunc_memchr: 8056 if (visitMemChrCall(I)) 8057 return; 8058 break; 8059 case LibFunc_strcpy: 8060 if (visitStrCpyCall(I, false)) 8061 return; 8062 break; 8063 case LibFunc_stpcpy: 8064 if (visitStrCpyCall(I, true)) 8065 return; 8066 break; 8067 case LibFunc_strcmp: 8068 if (visitStrCmpCall(I)) 8069 return; 8070 break; 8071 case LibFunc_strlen: 8072 if (visitStrLenCall(I)) 8073 return; 8074 break; 8075 case LibFunc_strnlen: 8076 if (visitStrNLenCall(I)) 8077 return; 8078 break; 8079 } 8080 } 8081 } 8082 8083 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8084 // have to do anything here to lower funclet bundles. 8085 // CFGuardTarget bundles are lowered in LowerCallTo. 8086 assert(!I.hasOperandBundlesOtherThan( 8087 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8088 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8089 LLVMContext::OB_clang_arc_attachedcall}) && 8090 "Cannot lower calls with arbitrary operand bundles!"); 8091 8092 SDValue Callee = getValue(I.getCalledOperand()); 8093 8094 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8095 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8096 else 8097 // Check if we can potentially perform a tail call. More detailed checking 8098 // is be done within LowerCallTo, after more information about the call is 8099 // known. 8100 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8101 } 8102 8103 namespace { 8104 8105 /// AsmOperandInfo - This contains information for each constraint that we are 8106 /// lowering. 8107 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8108 public: 8109 /// CallOperand - If this is the result output operand or a clobber 8110 /// this is null, otherwise it is the incoming operand to the CallInst. 8111 /// This gets modified as the asm is processed. 8112 SDValue CallOperand; 8113 8114 /// AssignedRegs - If this is a register or register class operand, this 8115 /// contains the set of register corresponding to the operand. 8116 RegsForValue AssignedRegs; 8117 8118 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8119 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8120 } 8121 8122 /// Whether or not this operand accesses memory 8123 bool hasMemory(const TargetLowering &TLI) const { 8124 // Indirect operand accesses access memory. 8125 if (isIndirect) 8126 return true; 8127 8128 for (const auto &Code : Codes) 8129 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8130 return true; 8131 8132 return false; 8133 } 8134 8135 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8136 /// corresponds to. If there is no Value* for this operand, it returns 8137 /// MVT::Other. 8138 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8139 const DataLayout &DL) const { 8140 if (!CallOperandVal) return MVT::Other; 8141 8142 if (isa<BasicBlock>(CallOperandVal)) 8143 return TLI.getProgramPointerTy(DL); 8144 8145 llvm::Type *OpTy = CallOperandVal->getType(); 8146 8147 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8148 // If this is an indirect operand, the operand is a pointer to the 8149 // accessed type. 8150 if (isIndirect) { 8151 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 8152 if (!PtrTy) 8153 report_fatal_error("Indirect operand for inline asm not a pointer!"); 8154 OpTy = PtrTy->getElementType(); 8155 } 8156 8157 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8158 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8159 if (STy->getNumElements() == 1) 8160 OpTy = STy->getElementType(0); 8161 8162 // If OpTy is not a single value, it may be a struct/union that we 8163 // can tile with integers. 8164 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8165 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8166 switch (BitSize) { 8167 default: break; 8168 case 1: 8169 case 8: 8170 case 16: 8171 case 32: 8172 case 64: 8173 case 128: 8174 OpTy = IntegerType::get(Context, BitSize); 8175 break; 8176 } 8177 } 8178 8179 return TLI.getAsmOperandValueType(DL, OpTy, true); 8180 } 8181 }; 8182 8183 8184 } // end anonymous namespace 8185 8186 /// Make sure that the output operand \p OpInfo and its corresponding input 8187 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8188 /// out). 8189 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8190 SDISelAsmOperandInfo &MatchingOpInfo, 8191 SelectionDAG &DAG) { 8192 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8193 return; 8194 8195 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8196 const auto &TLI = DAG.getTargetLoweringInfo(); 8197 8198 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8199 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8200 OpInfo.ConstraintVT); 8201 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8202 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8203 MatchingOpInfo.ConstraintVT); 8204 if ((OpInfo.ConstraintVT.isInteger() != 8205 MatchingOpInfo.ConstraintVT.isInteger()) || 8206 (MatchRC.second != InputRC.second)) { 8207 // FIXME: error out in a more elegant fashion 8208 report_fatal_error("Unsupported asm: input constraint" 8209 " with a matching output constraint of" 8210 " incompatible type!"); 8211 } 8212 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8213 } 8214 8215 /// Get a direct memory input to behave well as an indirect operand. 8216 /// This may introduce stores, hence the need for a \p Chain. 8217 /// \return The (possibly updated) chain. 8218 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8219 SDISelAsmOperandInfo &OpInfo, 8220 SelectionDAG &DAG) { 8221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8222 8223 // If we don't have an indirect input, put it in the constpool if we can, 8224 // otherwise spill it to a stack slot. 8225 // TODO: This isn't quite right. We need to handle these according to 8226 // the addressing mode that the constraint wants. Also, this may take 8227 // an additional register for the computation and we don't want that 8228 // either. 8229 8230 // If the operand is a float, integer, or vector constant, spill to a 8231 // constant pool entry to get its address. 8232 const Value *OpVal = OpInfo.CallOperandVal; 8233 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8234 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8235 OpInfo.CallOperand = DAG.getConstantPool( 8236 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8237 return Chain; 8238 } 8239 8240 // Otherwise, create a stack slot and emit a store to it before the asm. 8241 Type *Ty = OpVal->getType(); 8242 auto &DL = DAG.getDataLayout(); 8243 uint64_t TySize = DL.getTypeAllocSize(Ty); 8244 MachineFunction &MF = DAG.getMachineFunction(); 8245 int SSFI = MF.getFrameInfo().CreateStackObject( 8246 TySize, DL.getPrefTypeAlign(Ty), false); 8247 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8248 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8249 MachinePointerInfo::getFixedStack(MF, SSFI), 8250 TLI.getMemValueType(DL, Ty)); 8251 OpInfo.CallOperand = StackSlot; 8252 8253 return Chain; 8254 } 8255 8256 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8257 /// specified operand. We prefer to assign virtual registers, to allow the 8258 /// register allocator to handle the assignment process. However, if the asm 8259 /// uses features that we can't model on machineinstrs, we have SDISel do the 8260 /// allocation. This produces generally horrible, but correct, code. 8261 /// 8262 /// OpInfo describes the operand 8263 /// RefOpInfo describes the matching operand if any, the operand otherwise 8264 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8265 SDISelAsmOperandInfo &OpInfo, 8266 SDISelAsmOperandInfo &RefOpInfo) { 8267 LLVMContext &Context = *DAG.getContext(); 8268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8269 8270 MachineFunction &MF = DAG.getMachineFunction(); 8271 SmallVector<unsigned, 4> Regs; 8272 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8273 8274 // No work to do for memory operations. 8275 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8276 return; 8277 8278 // If this is a constraint for a single physreg, or a constraint for a 8279 // register class, find it. 8280 unsigned AssignedReg; 8281 const TargetRegisterClass *RC; 8282 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8283 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8284 // RC is unset only on failure. Return immediately. 8285 if (!RC) 8286 return; 8287 8288 // Get the actual register value type. This is important, because the user 8289 // may have asked for (e.g.) the AX register in i32 type. We need to 8290 // remember that AX is actually i16 to get the right extension. 8291 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8292 8293 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8294 // If this is an FP operand in an integer register (or visa versa), or more 8295 // generally if the operand value disagrees with the register class we plan 8296 // to stick it in, fix the operand type. 8297 // 8298 // If this is an input value, the bitcast to the new type is done now. 8299 // Bitcast for output value is done at the end of visitInlineAsm(). 8300 if ((OpInfo.Type == InlineAsm::isOutput || 8301 OpInfo.Type == InlineAsm::isInput) && 8302 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8303 // Try to convert to the first EVT that the reg class contains. If the 8304 // types are identical size, use a bitcast to convert (e.g. two differing 8305 // vector types). Note: output bitcast is done at the end of 8306 // visitInlineAsm(). 8307 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8308 // Exclude indirect inputs while they are unsupported because the code 8309 // to perform the load is missing and thus OpInfo.CallOperand still 8310 // refers to the input address rather than the pointed-to value. 8311 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8312 OpInfo.CallOperand = 8313 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8314 OpInfo.ConstraintVT = RegVT; 8315 // If the operand is an FP value and we want it in integer registers, 8316 // use the corresponding integer type. This turns an f64 value into 8317 // i64, which can be passed with two i32 values on a 32-bit machine. 8318 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8319 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8320 if (OpInfo.Type == InlineAsm::isInput) 8321 OpInfo.CallOperand = 8322 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8323 OpInfo.ConstraintVT = VT; 8324 } 8325 } 8326 } 8327 8328 // No need to allocate a matching input constraint since the constraint it's 8329 // matching to has already been allocated. 8330 if (OpInfo.isMatchingInputConstraint()) 8331 return; 8332 8333 EVT ValueVT = OpInfo.ConstraintVT; 8334 if (OpInfo.ConstraintVT == MVT::Other) 8335 ValueVT = RegVT; 8336 8337 // Initialize NumRegs. 8338 unsigned NumRegs = 1; 8339 if (OpInfo.ConstraintVT != MVT::Other) 8340 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8341 8342 // If this is a constraint for a specific physical register, like {r17}, 8343 // assign it now. 8344 8345 // If this associated to a specific register, initialize iterator to correct 8346 // place. If virtual, make sure we have enough registers 8347 8348 // Initialize iterator if necessary 8349 TargetRegisterClass::iterator I = RC->begin(); 8350 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8351 8352 // Do not check for single registers. 8353 if (AssignedReg) { 8354 for (; *I != AssignedReg; ++I) 8355 assert(I != RC->end() && "AssignedReg should be member of RC"); 8356 } 8357 8358 for (; NumRegs; --NumRegs, ++I) { 8359 assert(I != RC->end() && "Ran out of registers to allocate!"); 8360 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8361 Regs.push_back(R); 8362 } 8363 8364 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8365 } 8366 8367 static unsigned 8368 findMatchingInlineAsmOperand(unsigned OperandNo, 8369 const std::vector<SDValue> &AsmNodeOperands) { 8370 // Scan until we find the definition we already emitted of this operand. 8371 unsigned CurOp = InlineAsm::Op_FirstOperand; 8372 for (; OperandNo; --OperandNo) { 8373 // Advance to the next operand. 8374 unsigned OpFlag = 8375 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8376 assert((InlineAsm::isRegDefKind(OpFlag) || 8377 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8378 InlineAsm::isMemKind(OpFlag)) && 8379 "Skipped past definitions?"); 8380 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8381 } 8382 return CurOp; 8383 } 8384 8385 namespace { 8386 8387 class ExtraFlags { 8388 unsigned Flags = 0; 8389 8390 public: 8391 explicit ExtraFlags(const CallBase &Call) { 8392 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8393 if (IA->hasSideEffects()) 8394 Flags |= InlineAsm::Extra_HasSideEffects; 8395 if (IA->isAlignStack()) 8396 Flags |= InlineAsm::Extra_IsAlignStack; 8397 if (Call.isConvergent()) 8398 Flags |= InlineAsm::Extra_IsConvergent; 8399 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8400 } 8401 8402 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8403 // Ideally, we would only check against memory constraints. However, the 8404 // meaning of an Other constraint can be target-specific and we can't easily 8405 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8406 // for Other constraints as well. 8407 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8408 OpInfo.ConstraintType == TargetLowering::C_Other) { 8409 if (OpInfo.Type == InlineAsm::isInput) 8410 Flags |= InlineAsm::Extra_MayLoad; 8411 else if (OpInfo.Type == InlineAsm::isOutput) 8412 Flags |= InlineAsm::Extra_MayStore; 8413 else if (OpInfo.Type == InlineAsm::isClobber) 8414 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8415 } 8416 } 8417 8418 unsigned get() const { return Flags; } 8419 }; 8420 8421 } // end anonymous namespace 8422 8423 /// visitInlineAsm - Handle a call to an InlineAsm object. 8424 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8425 const BasicBlock *EHPadBB) { 8426 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8427 8428 /// ConstraintOperands - Information about all of the constraints. 8429 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8430 8431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8432 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8433 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8434 8435 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8436 // AsmDialect, MayLoad, MayStore). 8437 bool HasSideEffect = IA->hasSideEffects(); 8438 ExtraFlags ExtraInfo(Call); 8439 8440 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8441 unsigned ResNo = 0; // ResNo - The result number of the next output. 8442 unsigned NumMatchingOps = 0; 8443 for (auto &T : TargetConstraints) { 8444 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8445 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8446 8447 // Compute the value type for each operand. 8448 if (OpInfo.Type == InlineAsm::isInput || 8449 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8450 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8451 8452 // Process the call argument. BasicBlocks are labels, currently appearing 8453 // only in asm's. 8454 if (isa<CallBrInst>(Call) && 8455 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8456 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8457 NumMatchingOps) && 8458 (NumMatchingOps == 0 || 8459 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8460 NumMatchingOps))) { 8461 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8462 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8463 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8464 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8465 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8466 } else { 8467 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8468 } 8469 8470 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8471 DAG.getDataLayout()); 8472 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8473 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8474 // The return value of the call is this value. As such, there is no 8475 // corresponding argument. 8476 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8477 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8478 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8479 DAG.getDataLayout(), STy->getElementType(ResNo)); 8480 } else { 8481 assert(ResNo == 0 && "Asm only has one result!"); 8482 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8483 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8484 } 8485 ++ResNo; 8486 } else { 8487 OpInfo.ConstraintVT = MVT::Other; 8488 } 8489 8490 if (OpInfo.hasMatchingInput()) 8491 ++NumMatchingOps; 8492 8493 if (!HasSideEffect) 8494 HasSideEffect = OpInfo.hasMemory(TLI); 8495 8496 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8497 // FIXME: Could we compute this on OpInfo rather than T? 8498 8499 // Compute the constraint code and ConstraintType to use. 8500 TLI.ComputeConstraintToUse(T, SDValue()); 8501 8502 if (T.ConstraintType == TargetLowering::C_Immediate && 8503 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8504 // We've delayed emitting a diagnostic like the "n" constraint because 8505 // inlining could cause an integer showing up. 8506 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8507 "' expects an integer constant " 8508 "expression"); 8509 8510 ExtraInfo.update(T); 8511 } 8512 8513 // We won't need to flush pending loads if this asm doesn't touch 8514 // memory and is nonvolatile. 8515 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8516 8517 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8518 if (EmitEHLabels) { 8519 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8520 } 8521 bool IsCallBr = isa<CallBrInst>(Call); 8522 8523 if (IsCallBr || EmitEHLabels) { 8524 // If this is a callbr or invoke we need to flush pending exports since 8525 // inlineasm_br and invoke are terminators. 8526 // We need to do this before nodes are glued to the inlineasm_br node. 8527 Chain = getControlRoot(); 8528 } 8529 8530 MCSymbol *BeginLabel = nullptr; 8531 if (EmitEHLabels) { 8532 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8533 } 8534 8535 // Second pass over the constraints: compute which constraint option to use. 8536 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8537 // If this is an output operand with a matching input operand, look up the 8538 // matching input. If their types mismatch, e.g. one is an integer, the 8539 // other is floating point, or their sizes are different, flag it as an 8540 // error. 8541 if (OpInfo.hasMatchingInput()) { 8542 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8543 patchMatchingInput(OpInfo, Input, DAG); 8544 } 8545 8546 // Compute the constraint code and ConstraintType to use. 8547 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8548 8549 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8550 OpInfo.Type == InlineAsm::isClobber) 8551 continue; 8552 8553 // If this is a memory input, and if the operand is not indirect, do what we 8554 // need to provide an address for the memory input. 8555 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8556 !OpInfo.isIndirect) { 8557 assert((OpInfo.isMultipleAlternative || 8558 (OpInfo.Type == InlineAsm::isInput)) && 8559 "Can only indirectify direct input operands!"); 8560 8561 // Memory operands really want the address of the value. 8562 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8563 8564 // There is no longer a Value* corresponding to this operand. 8565 OpInfo.CallOperandVal = nullptr; 8566 8567 // It is now an indirect operand. 8568 OpInfo.isIndirect = true; 8569 } 8570 8571 } 8572 8573 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8574 std::vector<SDValue> AsmNodeOperands; 8575 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8576 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8577 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8578 8579 // If we have a !srcloc metadata node associated with it, we want to attach 8580 // this to the ultimately generated inline asm machineinstr. To do this, we 8581 // pass in the third operand as this (potentially null) inline asm MDNode. 8582 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8583 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8584 8585 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8586 // bits as operand 3. 8587 AsmNodeOperands.push_back(DAG.getTargetConstant( 8588 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8589 8590 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8591 // this, assign virtual and physical registers for inputs and otput. 8592 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8593 // Assign Registers. 8594 SDISelAsmOperandInfo &RefOpInfo = 8595 OpInfo.isMatchingInputConstraint() 8596 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8597 : OpInfo; 8598 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8599 8600 auto DetectWriteToReservedRegister = [&]() { 8601 const MachineFunction &MF = DAG.getMachineFunction(); 8602 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8603 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8604 if (Register::isPhysicalRegister(Reg) && 8605 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8606 const char *RegName = TRI.getName(Reg); 8607 emitInlineAsmError(Call, "write to reserved register '" + 8608 Twine(RegName) + "'"); 8609 return true; 8610 } 8611 } 8612 return false; 8613 }; 8614 8615 switch (OpInfo.Type) { 8616 case InlineAsm::isOutput: 8617 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8618 unsigned ConstraintID = 8619 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8620 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8621 "Failed to convert memory constraint code to constraint id."); 8622 8623 // Add information to the INLINEASM node to know about this output. 8624 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8625 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8626 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8627 MVT::i32)); 8628 AsmNodeOperands.push_back(OpInfo.CallOperand); 8629 } else { 8630 // Otherwise, this outputs to a register (directly for C_Register / 8631 // C_RegisterClass, and a target-defined fashion for 8632 // C_Immediate/C_Other). Find a register that we can use. 8633 if (OpInfo.AssignedRegs.Regs.empty()) { 8634 emitInlineAsmError( 8635 Call, "couldn't allocate output register for constraint '" + 8636 Twine(OpInfo.ConstraintCode) + "'"); 8637 return; 8638 } 8639 8640 if (DetectWriteToReservedRegister()) 8641 return; 8642 8643 // Add information to the INLINEASM node to know that this register is 8644 // set. 8645 OpInfo.AssignedRegs.AddInlineAsmOperands( 8646 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8647 : InlineAsm::Kind_RegDef, 8648 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8649 } 8650 break; 8651 8652 case InlineAsm::isInput: { 8653 SDValue InOperandVal = OpInfo.CallOperand; 8654 8655 if (OpInfo.isMatchingInputConstraint()) { 8656 // If this is required to match an output register we have already set, 8657 // just use its register. 8658 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8659 AsmNodeOperands); 8660 unsigned OpFlag = 8661 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8662 if (InlineAsm::isRegDefKind(OpFlag) || 8663 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8664 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8665 if (OpInfo.isIndirect) { 8666 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8667 emitInlineAsmError(Call, "inline asm not supported yet: " 8668 "don't know how to handle tied " 8669 "indirect register inputs"); 8670 return; 8671 } 8672 8673 SmallVector<unsigned, 4> Regs; 8674 MachineFunction &MF = DAG.getMachineFunction(); 8675 MachineRegisterInfo &MRI = MF.getRegInfo(); 8676 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8677 RegisterSDNode *R = dyn_cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8678 Register TiedReg = R->getReg(); 8679 MVT RegVT = R->getSimpleValueType(0); 8680 const TargetRegisterClass *RC = 8681 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8682 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8683 : TRI.getMinimalPhysRegClass(TiedReg); 8684 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8685 for (unsigned i = 0; i != NumRegs; ++i) 8686 Regs.push_back(MRI.createVirtualRegister(RC)); 8687 8688 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8689 8690 SDLoc dl = getCurSDLoc(); 8691 // Use the produced MatchedRegs object to 8692 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8693 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8694 true, OpInfo.getMatchedOperand(), dl, 8695 DAG, AsmNodeOperands); 8696 break; 8697 } 8698 8699 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8700 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8701 "Unexpected number of operands"); 8702 // Add information to the INLINEASM node to know about this input. 8703 // See InlineAsm.h isUseOperandTiedToDef. 8704 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8705 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8706 OpInfo.getMatchedOperand()); 8707 AsmNodeOperands.push_back(DAG.getTargetConstant( 8708 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8709 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8710 break; 8711 } 8712 8713 // Treat indirect 'X' constraint as memory. 8714 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8715 OpInfo.isIndirect) 8716 OpInfo.ConstraintType = TargetLowering::C_Memory; 8717 8718 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8719 OpInfo.ConstraintType == TargetLowering::C_Other) { 8720 std::vector<SDValue> Ops; 8721 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8722 Ops, DAG); 8723 if (Ops.empty()) { 8724 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8725 if (isa<ConstantSDNode>(InOperandVal)) { 8726 emitInlineAsmError(Call, "value out of range for constraint '" + 8727 Twine(OpInfo.ConstraintCode) + "'"); 8728 return; 8729 } 8730 8731 emitInlineAsmError(Call, 8732 "invalid operand for inline asm constraint '" + 8733 Twine(OpInfo.ConstraintCode) + "'"); 8734 return; 8735 } 8736 8737 // Add information to the INLINEASM node to know about this input. 8738 unsigned ResOpType = 8739 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8740 AsmNodeOperands.push_back(DAG.getTargetConstant( 8741 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8742 llvm::append_range(AsmNodeOperands, Ops); 8743 break; 8744 } 8745 8746 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8747 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8748 assert(InOperandVal.getValueType() == 8749 TLI.getPointerTy(DAG.getDataLayout()) && 8750 "Memory operands expect pointer values"); 8751 8752 unsigned ConstraintID = 8753 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8754 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8755 "Failed to convert memory constraint code to constraint id."); 8756 8757 // Add information to the INLINEASM node to know about this input. 8758 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8759 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8760 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8761 getCurSDLoc(), 8762 MVT::i32)); 8763 AsmNodeOperands.push_back(InOperandVal); 8764 break; 8765 } 8766 8767 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8768 OpInfo.ConstraintType == TargetLowering::C_Register) && 8769 "Unknown constraint type!"); 8770 8771 // TODO: Support this. 8772 if (OpInfo.isIndirect) { 8773 emitInlineAsmError( 8774 Call, "Don't know how to handle indirect register inputs yet " 8775 "for constraint '" + 8776 Twine(OpInfo.ConstraintCode) + "'"); 8777 return; 8778 } 8779 8780 // Copy the input into the appropriate registers. 8781 if (OpInfo.AssignedRegs.Regs.empty()) { 8782 emitInlineAsmError(Call, 8783 "couldn't allocate input reg for constraint '" + 8784 Twine(OpInfo.ConstraintCode) + "'"); 8785 return; 8786 } 8787 8788 if (DetectWriteToReservedRegister()) 8789 return; 8790 8791 SDLoc dl = getCurSDLoc(); 8792 8793 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8794 &Call); 8795 8796 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8797 dl, DAG, AsmNodeOperands); 8798 break; 8799 } 8800 case InlineAsm::isClobber: 8801 // Add the clobbered value to the operand list, so that the register 8802 // allocator is aware that the physreg got clobbered. 8803 if (!OpInfo.AssignedRegs.Regs.empty()) 8804 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8805 false, 0, getCurSDLoc(), DAG, 8806 AsmNodeOperands); 8807 break; 8808 } 8809 } 8810 8811 // Finish up input operands. Set the input chain and add the flag last. 8812 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8813 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8814 8815 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8816 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8817 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8818 Flag = Chain.getValue(1); 8819 8820 // Do additional work to generate outputs. 8821 8822 SmallVector<EVT, 1> ResultVTs; 8823 SmallVector<SDValue, 1> ResultValues; 8824 SmallVector<SDValue, 8> OutChains; 8825 8826 llvm::Type *CallResultType = Call.getType(); 8827 ArrayRef<Type *> ResultTypes; 8828 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8829 ResultTypes = StructResult->elements(); 8830 else if (!CallResultType->isVoidTy()) 8831 ResultTypes = makeArrayRef(CallResultType); 8832 8833 auto CurResultType = ResultTypes.begin(); 8834 auto handleRegAssign = [&](SDValue V) { 8835 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8836 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8837 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8838 ++CurResultType; 8839 // If the type of the inline asm call site return value is different but has 8840 // same size as the type of the asm output bitcast it. One example of this 8841 // is for vectors with different width / number of elements. This can 8842 // happen for register classes that can contain multiple different value 8843 // types. The preg or vreg allocated may not have the same VT as was 8844 // expected. 8845 // 8846 // This can also happen for a return value that disagrees with the register 8847 // class it is put in, eg. a double in a general-purpose register on a 8848 // 32-bit machine. 8849 if (ResultVT != V.getValueType() && 8850 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8851 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8852 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8853 V.getValueType().isInteger()) { 8854 // If a result value was tied to an input value, the computed result 8855 // may have a wider width than the expected result. Extract the 8856 // relevant portion. 8857 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8858 } 8859 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8860 ResultVTs.push_back(ResultVT); 8861 ResultValues.push_back(V); 8862 }; 8863 8864 // Deal with output operands. 8865 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8866 if (OpInfo.Type == InlineAsm::isOutput) { 8867 SDValue Val; 8868 // Skip trivial output operands. 8869 if (OpInfo.AssignedRegs.Regs.empty()) 8870 continue; 8871 8872 switch (OpInfo.ConstraintType) { 8873 case TargetLowering::C_Register: 8874 case TargetLowering::C_RegisterClass: 8875 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8876 Chain, &Flag, &Call); 8877 break; 8878 case TargetLowering::C_Immediate: 8879 case TargetLowering::C_Other: 8880 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8881 OpInfo, DAG); 8882 break; 8883 case TargetLowering::C_Memory: 8884 break; // Already handled. 8885 case TargetLowering::C_Unknown: 8886 assert(false && "Unexpected unknown constraint"); 8887 } 8888 8889 // Indirect output manifest as stores. Record output chains. 8890 if (OpInfo.isIndirect) { 8891 const Value *Ptr = OpInfo.CallOperandVal; 8892 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8893 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8894 MachinePointerInfo(Ptr)); 8895 OutChains.push_back(Store); 8896 } else { 8897 // generate CopyFromRegs to associated registers. 8898 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8899 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8900 for (const SDValue &V : Val->op_values()) 8901 handleRegAssign(V); 8902 } else 8903 handleRegAssign(Val); 8904 } 8905 } 8906 } 8907 8908 // Set results. 8909 if (!ResultValues.empty()) { 8910 assert(CurResultType == ResultTypes.end() && 8911 "Mismatch in number of ResultTypes"); 8912 assert(ResultValues.size() == ResultTypes.size() && 8913 "Mismatch in number of output operands in asm result"); 8914 8915 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8916 DAG.getVTList(ResultVTs), ResultValues); 8917 setValue(&Call, V); 8918 } 8919 8920 // Collect store chains. 8921 if (!OutChains.empty()) 8922 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8923 8924 if (EmitEHLabels) { 8925 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 8926 } 8927 8928 // Only Update Root if inline assembly has a memory effect. 8929 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 8930 EmitEHLabels) 8931 DAG.setRoot(Chain); 8932 } 8933 8934 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8935 const Twine &Message) { 8936 LLVMContext &Ctx = *DAG.getContext(); 8937 Ctx.emitError(&Call, Message); 8938 8939 // Make sure we leave the DAG in a valid state 8940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8941 SmallVector<EVT, 1> ValueVTs; 8942 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8943 8944 if (ValueVTs.empty()) 8945 return; 8946 8947 SmallVector<SDValue, 1> Ops; 8948 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8949 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8950 8951 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8952 } 8953 8954 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8955 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8956 MVT::Other, getRoot(), 8957 getValue(I.getArgOperand(0)), 8958 DAG.getSrcValue(I.getArgOperand(0)))); 8959 } 8960 8961 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8963 const DataLayout &DL = DAG.getDataLayout(); 8964 SDValue V = DAG.getVAArg( 8965 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8966 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8967 DL.getABITypeAlign(I.getType()).value()); 8968 DAG.setRoot(V.getValue(1)); 8969 8970 if (I.getType()->isPointerTy()) 8971 V = DAG.getPtrExtOrTrunc( 8972 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8973 setValue(&I, V); 8974 } 8975 8976 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8977 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8978 MVT::Other, getRoot(), 8979 getValue(I.getArgOperand(0)), 8980 DAG.getSrcValue(I.getArgOperand(0)))); 8981 } 8982 8983 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8984 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8985 MVT::Other, getRoot(), 8986 getValue(I.getArgOperand(0)), 8987 getValue(I.getArgOperand(1)), 8988 DAG.getSrcValue(I.getArgOperand(0)), 8989 DAG.getSrcValue(I.getArgOperand(1)))); 8990 } 8991 8992 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8993 const Instruction &I, 8994 SDValue Op) { 8995 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8996 if (!Range) 8997 return Op; 8998 8999 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9000 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9001 return Op; 9002 9003 APInt Lo = CR.getUnsignedMin(); 9004 if (!Lo.isMinValue()) 9005 return Op; 9006 9007 APInt Hi = CR.getUnsignedMax(); 9008 unsigned Bits = std::max(Hi.getActiveBits(), 9009 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9010 9011 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9012 9013 SDLoc SL = getCurSDLoc(); 9014 9015 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9016 DAG.getValueType(SmallVT)); 9017 unsigned NumVals = Op.getNode()->getNumValues(); 9018 if (NumVals == 1) 9019 return ZExt; 9020 9021 SmallVector<SDValue, 4> Ops; 9022 9023 Ops.push_back(ZExt); 9024 for (unsigned I = 1; I != NumVals; ++I) 9025 Ops.push_back(Op.getValue(I)); 9026 9027 return DAG.getMergeValues(Ops, SL); 9028 } 9029 9030 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9031 /// the call being lowered. 9032 /// 9033 /// This is a helper for lowering intrinsics that follow a target calling 9034 /// convention or require stack pointer adjustment. Only a subset of the 9035 /// intrinsic's operands need to participate in the calling convention. 9036 void SelectionDAGBuilder::populateCallLoweringInfo( 9037 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9038 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9039 bool IsPatchPoint) { 9040 TargetLowering::ArgListTy Args; 9041 Args.reserve(NumArgs); 9042 9043 // Populate the argument list. 9044 // Attributes for args start at offset 1, after the return attribute. 9045 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9046 ArgI != ArgE; ++ArgI) { 9047 const Value *V = Call->getOperand(ArgI); 9048 9049 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9050 9051 TargetLowering::ArgListEntry Entry; 9052 Entry.Node = getValue(V); 9053 Entry.Ty = V->getType(); 9054 Entry.setAttributes(Call, ArgI); 9055 Args.push_back(Entry); 9056 } 9057 9058 CLI.setDebugLoc(getCurSDLoc()) 9059 .setChain(getRoot()) 9060 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9061 .setDiscardResult(Call->use_empty()) 9062 .setIsPatchPoint(IsPatchPoint) 9063 .setIsPreallocated( 9064 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9065 } 9066 9067 /// Add a stack map intrinsic call's live variable operands to a stackmap 9068 /// or patchpoint target node's operand list. 9069 /// 9070 /// Constants are converted to TargetConstants purely as an optimization to 9071 /// avoid constant materialization and register allocation. 9072 /// 9073 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9074 /// generate addess computation nodes, and so FinalizeISel can convert the 9075 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9076 /// address materialization and register allocation, but may also be required 9077 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9078 /// alloca in the entry block, then the runtime may assume that the alloca's 9079 /// StackMap location can be read immediately after compilation and that the 9080 /// location is valid at any point during execution (this is similar to the 9081 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9082 /// only available in a register, then the runtime would need to trap when 9083 /// execution reaches the StackMap in order to read the alloca's location. 9084 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9085 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9086 SelectionDAGBuilder &Builder) { 9087 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9088 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9089 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9090 Ops.push_back( 9091 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9092 Ops.push_back( 9093 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9094 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9095 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9096 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9097 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9098 } else 9099 Ops.push_back(OpVal); 9100 } 9101 } 9102 9103 /// Lower llvm.experimental.stackmap directly to its target opcode. 9104 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9105 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9106 // [live variables...]) 9107 9108 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9109 9110 SDValue Chain, InFlag, Callee, NullPtr; 9111 SmallVector<SDValue, 32> Ops; 9112 9113 SDLoc DL = getCurSDLoc(); 9114 Callee = getValue(CI.getCalledOperand()); 9115 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9116 9117 // The stackmap intrinsic only records the live variables (the arguments 9118 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9119 // intrinsic, this won't be lowered to a function call. This means we don't 9120 // have to worry about calling conventions and target specific lowering code. 9121 // Instead we perform the call lowering right here. 9122 // 9123 // chain, flag = CALLSEQ_START(chain, 0, 0) 9124 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9125 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9126 // 9127 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9128 InFlag = Chain.getValue(1); 9129 9130 // Add the <id> and <numBytes> constants. 9131 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9132 Ops.push_back(DAG.getTargetConstant( 9133 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9134 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9135 Ops.push_back(DAG.getTargetConstant( 9136 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9137 MVT::i32)); 9138 9139 // Push live variables for the stack map. 9140 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9141 9142 // We are not pushing any register mask info here on the operands list, 9143 // because the stackmap doesn't clobber anything. 9144 9145 // Push the chain and the glue flag. 9146 Ops.push_back(Chain); 9147 Ops.push_back(InFlag); 9148 9149 // Create the STACKMAP node. 9150 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9151 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9152 Chain = SDValue(SM, 0); 9153 InFlag = Chain.getValue(1); 9154 9155 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9156 9157 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9158 9159 // Set the root to the target-lowered call chain. 9160 DAG.setRoot(Chain); 9161 9162 // Inform the Frame Information that we have a stackmap in this function. 9163 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9164 } 9165 9166 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9167 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9168 const BasicBlock *EHPadBB) { 9169 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9170 // i32 <numBytes>, 9171 // i8* <target>, 9172 // i32 <numArgs>, 9173 // [Args...], 9174 // [live variables...]) 9175 9176 CallingConv::ID CC = CB.getCallingConv(); 9177 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9178 bool HasDef = !CB.getType()->isVoidTy(); 9179 SDLoc dl = getCurSDLoc(); 9180 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9181 9182 // Handle immediate and symbolic callees. 9183 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9184 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9185 /*isTarget=*/true); 9186 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9187 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9188 SDLoc(SymbolicCallee), 9189 SymbolicCallee->getValueType(0)); 9190 9191 // Get the real number of arguments participating in the call <numArgs> 9192 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9193 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9194 9195 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9196 // Intrinsics include all meta-operands up to but not including CC. 9197 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9198 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9199 "Not enough arguments provided to the patchpoint intrinsic"); 9200 9201 // For AnyRegCC the arguments are lowered later on manually. 9202 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9203 Type *ReturnTy = 9204 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9205 9206 TargetLowering::CallLoweringInfo CLI(DAG); 9207 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9208 ReturnTy, true); 9209 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9210 9211 SDNode *CallEnd = Result.second.getNode(); 9212 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9213 CallEnd = CallEnd->getOperand(0).getNode(); 9214 9215 /// Get a call instruction from the call sequence chain. 9216 /// Tail calls are not allowed. 9217 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9218 "Expected a callseq node."); 9219 SDNode *Call = CallEnd->getOperand(0).getNode(); 9220 bool HasGlue = Call->getGluedNode(); 9221 9222 // Replace the target specific call node with the patchable intrinsic. 9223 SmallVector<SDValue, 8> Ops; 9224 9225 // Add the <id> and <numBytes> constants. 9226 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9227 Ops.push_back(DAG.getTargetConstant( 9228 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9229 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9230 Ops.push_back(DAG.getTargetConstant( 9231 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9232 MVT::i32)); 9233 9234 // Add the callee. 9235 Ops.push_back(Callee); 9236 9237 // Adjust <numArgs> to account for any arguments that have been passed on the 9238 // stack instead. 9239 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9240 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9241 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9242 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9243 9244 // Add the calling convention 9245 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9246 9247 // Add the arguments we omitted previously. The register allocator should 9248 // place these in any free register. 9249 if (IsAnyRegCC) 9250 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9251 Ops.push_back(getValue(CB.getArgOperand(i))); 9252 9253 // Push the arguments from the call instruction up to the register mask. 9254 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9255 Ops.append(Call->op_begin() + 2, e); 9256 9257 // Push live variables for the stack map. 9258 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9259 9260 // Push the register mask info. 9261 if (HasGlue) 9262 Ops.push_back(*(Call->op_end()-2)); 9263 else 9264 Ops.push_back(*(Call->op_end()-1)); 9265 9266 // Push the chain (this is originally the first operand of the call, but 9267 // becomes now the last or second to last operand). 9268 Ops.push_back(*(Call->op_begin())); 9269 9270 // Push the glue flag (last operand). 9271 if (HasGlue) 9272 Ops.push_back(*(Call->op_end()-1)); 9273 9274 SDVTList NodeTys; 9275 if (IsAnyRegCC && HasDef) { 9276 // Create the return types based on the intrinsic definition 9277 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9278 SmallVector<EVT, 3> ValueVTs; 9279 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9280 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9281 9282 // There is always a chain and a glue type at the end 9283 ValueVTs.push_back(MVT::Other); 9284 ValueVTs.push_back(MVT::Glue); 9285 NodeTys = DAG.getVTList(ValueVTs); 9286 } else 9287 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9288 9289 // Replace the target specific call node with a PATCHPOINT node. 9290 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9291 dl, NodeTys, Ops); 9292 9293 // Update the NodeMap. 9294 if (HasDef) { 9295 if (IsAnyRegCC) 9296 setValue(&CB, SDValue(MN, 0)); 9297 else 9298 setValue(&CB, Result.first); 9299 } 9300 9301 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9302 // call sequence. Furthermore the location of the chain and glue can change 9303 // when the AnyReg calling convention is used and the intrinsic returns a 9304 // value. 9305 if (IsAnyRegCC && HasDef) { 9306 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9307 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9308 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9309 } else 9310 DAG.ReplaceAllUsesWith(Call, MN); 9311 DAG.DeleteNode(Call); 9312 9313 // Inform the Frame Information that we have a patchpoint in this function. 9314 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9315 } 9316 9317 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9318 unsigned Intrinsic) { 9319 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9320 SDValue Op1 = getValue(I.getArgOperand(0)); 9321 SDValue Op2; 9322 if (I.getNumArgOperands() > 1) 9323 Op2 = getValue(I.getArgOperand(1)); 9324 SDLoc dl = getCurSDLoc(); 9325 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9326 SDValue Res; 9327 SDNodeFlags SDFlags; 9328 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9329 SDFlags.copyFMF(*FPMO); 9330 9331 switch (Intrinsic) { 9332 case Intrinsic::vector_reduce_fadd: 9333 if (SDFlags.hasAllowReassociation()) 9334 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9335 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9336 SDFlags); 9337 else 9338 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9339 break; 9340 case Intrinsic::vector_reduce_fmul: 9341 if (SDFlags.hasAllowReassociation()) 9342 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9343 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9344 SDFlags); 9345 else 9346 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9347 break; 9348 case Intrinsic::vector_reduce_add: 9349 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9350 break; 9351 case Intrinsic::vector_reduce_mul: 9352 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9353 break; 9354 case Intrinsic::vector_reduce_and: 9355 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9356 break; 9357 case Intrinsic::vector_reduce_or: 9358 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9359 break; 9360 case Intrinsic::vector_reduce_xor: 9361 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9362 break; 9363 case Intrinsic::vector_reduce_smax: 9364 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9365 break; 9366 case Intrinsic::vector_reduce_smin: 9367 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9368 break; 9369 case Intrinsic::vector_reduce_umax: 9370 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9371 break; 9372 case Intrinsic::vector_reduce_umin: 9373 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9374 break; 9375 case Intrinsic::vector_reduce_fmax: 9376 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9377 break; 9378 case Intrinsic::vector_reduce_fmin: 9379 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9380 break; 9381 default: 9382 llvm_unreachable("Unhandled vector reduce intrinsic"); 9383 } 9384 setValue(&I, Res); 9385 } 9386 9387 /// Returns an AttributeList representing the attributes applied to the return 9388 /// value of the given call. 9389 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9390 SmallVector<Attribute::AttrKind, 2> Attrs; 9391 if (CLI.RetSExt) 9392 Attrs.push_back(Attribute::SExt); 9393 if (CLI.RetZExt) 9394 Attrs.push_back(Attribute::ZExt); 9395 if (CLI.IsInReg) 9396 Attrs.push_back(Attribute::InReg); 9397 9398 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9399 Attrs); 9400 } 9401 9402 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9403 /// implementation, which just calls LowerCall. 9404 /// FIXME: When all targets are 9405 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9406 std::pair<SDValue, SDValue> 9407 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9408 // Handle the incoming return values from the call. 9409 CLI.Ins.clear(); 9410 Type *OrigRetTy = CLI.RetTy; 9411 SmallVector<EVT, 4> RetTys; 9412 SmallVector<uint64_t, 4> Offsets; 9413 auto &DL = CLI.DAG.getDataLayout(); 9414 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9415 9416 if (CLI.IsPostTypeLegalization) { 9417 // If we are lowering a libcall after legalization, split the return type. 9418 SmallVector<EVT, 4> OldRetTys; 9419 SmallVector<uint64_t, 4> OldOffsets; 9420 RetTys.swap(OldRetTys); 9421 Offsets.swap(OldOffsets); 9422 9423 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9424 EVT RetVT = OldRetTys[i]; 9425 uint64_t Offset = OldOffsets[i]; 9426 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9427 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9428 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9429 RetTys.append(NumRegs, RegisterVT); 9430 for (unsigned j = 0; j != NumRegs; ++j) 9431 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9432 } 9433 } 9434 9435 SmallVector<ISD::OutputArg, 4> Outs; 9436 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9437 9438 bool CanLowerReturn = 9439 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9440 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9441 9442 SDValue DemoteStackSlot; 9443 int DemoteStackIdx = -100; 9444 if (!CanLowerReturn) { 9445 // FIXME: equivalent assert? 9446 // assert(!CS.hasInAllocaArgument() && 9447 // "sret demotion is incompatible with inalloca"); 9448 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9449 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9450 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9451 DemoteStackIdx = 9452 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9453 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9454 DL.getAllocaAddrSpace()); 9455 9456 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9457 ArgListEntry Entry; 9458 Entry.Node = DemoteStackSlot; 9459 Entry.Ty = StackSlotPtrType; 9460 Entry.IsSExt = false; 9461 Entry.IsZExt = false; 9462 Entry.IsInReg = false; 9463 Entry.IsSRet = true; 9464 Entry.IsNest = false; 9465 Entry.IsByVal = false; 9466 Entry.IsByRef = false; 9467 Entry.IsReturned = false; 9468 Entry.IsSwiftSelf = false; 9469 Entry.IsSwiftAsync = false; 9470 Entry.IsSwiftError = false; 9471 Entry.IsCFGuardTarget = false; 9472 Entry.Alignment = Alignment; 9473 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9474 CLI.NumFixedArgs += 1; 9475 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9476 9477 // sret demotion isn't compatible with tail-calls, since the sret argument 9478 // points into the callers stack frame. 9479 CLI.IsTailCall = false; 9480 } else { 9481 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9482 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9483 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9484 ISD::ArgFlagsTy Flags; 9485 if (NeedsRegBlock) { 9486 Flags.setInConsecutiveRegs(); 9487 if (I == RetTys.size() - 1) 9488 Flags.setInConsecutiveRegsLast(); 9489 } 9490 EVT VT = RetTys[I]; 9491 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9492 CLI.CallConv, VT); 9493 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9494 CLI.CallConv, VT); 9495 for (unsigned i = 0; i != NumRegs; ++i) { 9496 ISD::InputArg MyFlags; 9497 MyFlags.Flags = Flags; 9498 MyFlags.VT = RegisterVT; 9499 MyFlags.ArgVT = VT; 9500 MyFlags.Used = CLI.IsReturnValueUsed; 9501 if (CLI.RetTy->isPointerTy()) { 9502 MyFlags.Flags.setPointer(); 9503 MyFlags.Flags.setPointerAddrSpace( 9504 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9505 } 9506 if (CLI.RetSExt) 9507 MyFlags.Flags.setSExt(); 9508 if (CLI.RetZExt) 9509 MyFlags.Flags.setZExt(); 9510 if (CLI.IsInReg) 9511 MyFlags.Flags.setInReg(); 9512 CLI.Ins.push_back(MyFlags); 9513 } 9514 } 9515 } 9516 9517 // We push in swifterror return as the last element of CLI.Ins. 9518 ArgListTy &Args = CLI.getArgs(); 9519 if (supportSwiftError()) { 9520 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9521 if (Args[i].IsSwiftError) { 9522 ISD::InputArg MyFlags; 9523 MyFlags.VT = getPointerTy(DL); 9524 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9525 MyFlags.Flags.setSwiftError(); 9526 CLI.Ins.push_back(MyFlags); 9527 } 9528 } 9529 } 9530 9531 // Handle all of the outgoing arguments. 9532 CLI.Outs.clear(); 9533 CLI.OutVals.clear(); 9534 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9535 SmallVector<EVT, 4> ValueVTs; 9536 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9537 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9538 Type *FinalType = Args[i].Ty; 9539 if (Args[i].IsByVal) 9540 FinalType = Args[i].IndirectType; 9541 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9542 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9543 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9544 ++Value) { 9545 EVT VT = ValueVTs[Value]; 9546 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9547 SDValue Op = SDValue(Args[i].Node.getNode(), 9548 Args[i].Node.getResNo() + Value); 9549 ISD::ArgFlagsTy Flags; 9550 9551 // Certain targets (such as MIPS), may have a different ABI alignment 9552 // for a type depending on the context. Give the target a chance to 9553 // specify the alignment it wants. 9554 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9555 Flags.setOrigAlign(OriginalAlignment); 9556 9557 if (Args[i].Ty->isPointerTy()) { 9558 Flags.setPointer(); 9559 Flags.setPointerAddrSpace( 9560 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9561 } 9562 if (Args[i].IsZExt) 9563 Flags.setZExt(); 9564 if (Args[i].IsSExt) 9565 Flags.setSExt(); 9566 if (Args[i].IsInReg) { 9567 // If we are using vectorcall calling convention, a structure that is 9568 // passed InReg - is surely an HVA 9569 if (CLI.CallConv == CallingConv::X86_VectorCall && 9570 isa<StructType>(FinalType)) { 9571 // The first value of a structure is marked 9572 if (0 == Value) 9573 Flags.setHvaStart(); 9574 Flags.setHva(); 9575 } 9576 // Set InReg Flag 9577 Flags.setInReg(); 9578 } 9579 if (Args[i].IsSRet) 9580 Flags.setSRet(); 9581 if (Args[i].IsSwiftSelf) 9582 Flags.setSwiftSelf(); 9583 if (Args[i].IsSwiftAsync) 9584 Flags.setSwiftAsync(); 9585 if (Args[i].IsSwiftError) 9586 Flags.setSwiftError(); 9587 if (Args[i].IsCFGuardTarget) 9588 Flags.setCFGuardTarget(); 9589 if (Args[i].IsByVal) 9590 Flags.setByVal(); 9591 if (Args[i].IsByRef) 9592 Flags.setByRef(); 9593 if (Args[i].IsPreallocated) { 9594 Flags.setPreallocated(); 9595 // Set the byval flag for CCAssignFn callbacks that don't know about 9596 // preallocated. This way we can know how many bytes we should've 9597 // allocated and how many bytes a callee cleanup function will pop. If 9598 // we port preallocated to more targets, we'll have to add custom 9599 // preallocated handling in the various CC lowering callbacks. 9600 Flags.setByVal(); 9601 } 9602 if (Args[i].IsInAlloca) { 9603 Flags.setInAlloca(); 9604 // Set the byval flag for CCAssignFn callbacks that don't know about 9605 // inalloca. This way we can know how many bytes we should've allocated 9606 // and how many bytes a callee cleanup function will pop. If we port 9607 // inalloca to more targets, we'll have to add custom inalloca handling 9608 // in the various CC lowering callbacks. 9609 Flags.setByVal(); 9610 } 9611 Align MemAlign; 9612 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9613 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9614 Flags.setByValSize(FrameSize); 9615 9616 // info is not there but there are cases it cannot get right. 9617 if (auto MA = Args[i].Alignment) 9618 MemAlign = *MA; 9619 else 9620 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9621 } else if (auto MA = Args[i].Alignment) { 9622 MemAlign = *MA; 9623 } else { 9624 MemAlign = OriginalAlignment; 9625 } 9626 Flags.setMemAlign(MemAlign); 9627 if (Args[i].IsNest) 9628 Flags.setNest(); 9629 if (NeedsRegBlock) 9630 Flags.setInConsecutiveRegs(); 9631 9632 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9633 CLI.CallConv, VT); 9634 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9635 CLI.CallConv, VT); 9636 SmallVector<SDValue, 4> Parts(NumParts); 9637 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9638 9639 if (Args[i].IsSExt) 9640 ExtendKind = ISD::SIGN_EXTEND; 9641 else if (Args[i].IsZExt) 9642 ExtendKind = ISD::ZERO_EXTEND; 9643 9644 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9645 // for now. 9646 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9647 CanLowerReturn) { 9648 assert((CLI.RetTy == Args[i].Ty || 9649 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9650 CLI.RetTy->getPointerAddressSpace() == 9651 Args[i].Ty->getPointerAddressSpace())) && 9652 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9653 // Before passing 'returned' to the target lowering code, ensure that 9654 // either the register MVT and the actual EVT are the same size or that 9655 // the return value and argument are extended in the same way; in these 9656 // cases it's safe to pass the argument register value unchanged as the 9657 // return register value (although it's at the target's option whether 9658 // to do so) 9659 // TODO: allow code generation to take advantage of partially preserved 9660 // registers rather than clobbering the entire register when the 9661 // parameter extension method is not compatible with the return 9662 // extension method 9663 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9664 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9665 CLI.RetZExt == Args[i].IsZExt)) 9666 Flags.setReturned(); 9667 } 9668 9669 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9670 CLI.CallConv, ExtendKind); 9671 9672 for (unsigned j = 0; j != NumParts; ++j) { 9673 // if it isn't first piece, alignment must be 1 9674 // For scalable vectors the scalable part is currently handled 9675 // by individual targets, so we just use the known minimum size here. 9676 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9677 i < CLI.NumFixedArgs, i, 9678 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9679 if (NumParts > 1 && j == 0) 9680 MyFlags.Flags.setSplit(); 9681 else if (j != 0) { 9682 MyFlags.Flags.setOrigAlign(Align(1)); 9683 if (j == NumParts - 1) 9684 MyFlags.Flags.setSplitEnd(); 9685 } 9686 9687 CLI.Outs.push_back(MyFlags); 9688 CLI.OutVals.push_back(Parts[j]); 9689 } 9690 9691 if (NeedsRegBlock && Value == NumValues - 1) 9692 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9693 } 9694 } 9695 9696 SmallVector<SDValue, 4> InVals; 9697 CLI.Chain = LowerCall(CLI, InVals); 9698 9699 // Update CLI.InVals to use outside of this function. 9700 CLI.InVals = InVals; 9701 9702 // Verify that the target's LowerCall behaved as expected. 9703 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9704 "LowerCall didn't return a valid chain!"); 9705 assert((!CLI.IsTailCall || InVals.empty()) && 9706 "LowerCall emitted a return value for a tail call!"); 9707 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9708 "LowerCall didn't emit the correct number of values!"); 9709 9710 // For a tail call, the return value is merely live-out and there aren't 9711 // any nodes in the DAG representing it. Return a special value to 9712 // indicate that a tail call has been emitted and no more Instructions 9713 // should be processed in the current block. 9714 if (CLI.IsTailCall) { 9715 CLI.DAG.setRoot(CLI.Chain); 9716 return std::make_pair(SDValue(), SDValue()); 9717 } 9718 9719 #ifndef NDEBUG 9720 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9721 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9722 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9723 "LowerCall emitted a value with the wrong type!"); 9724 } 9725 #endif 9726 9727 SmallVector<SDValue, 4> ReturnValues; 9728 if (!CanLowerReturn) { 9729 // The instruction result is the result of loading from the 9730 // hidden sret parameter. 9731 SmallVector<EVT, 1> PVTs; 9732 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9733 9734 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9735 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9736 EVT PtrVT = PVTs[0]; 9737 9738 unsigned NumValues = RetTys.size(); 9739 ReturnValues.resize(NumValues); 9740 SmallVector<SDValue, 4> Chains(NumValues); 9741 9742 // An aggregate return value cannot wrap around the address space, so 9743 // offsets to its parts don't wrap either. 9744 SDNodeFlags Flags; 9745 Flags.setNoUnsignedWrap(true); 9746 9747 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9748 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9749 for (unsigned i = 0; i < NumValues; ++i) { 9750 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9751 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9752 PtrVT), Flags); 9753 SDValue L = CLI.DAG.getLoad( 9754 RetTys[i], CLI.DL, CLI.Chain, Add, 9755 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9756 DemoteStackIdx, Offsets[i]), 9757 HiddenSRetAlign); 9758 ReturnValues[i] = L; 9759 Chains[i] = L.getValue(1); 9760 } 9761 9762 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9763 } else { 9764 // Collect the legal value parts into potentially illegal values 9765 // that correspond to the original function's return values. 9766 Optional<ISD::NodeType> AssertOp; 9767 if (CLI.RetSExt) 9768 AssertOp = ISD::AssertSext; 9769 else if (CLI.RetZExt) 9770 AssertOp = ISD::AssertZext; 9771 unsigned CurReg = 0; 9772 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9773 EVT VT = RetTys[I]; 9774 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9775 CLI.CallConv, VT); 9776 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9777 CLI.CallConv, VT); 9778 9779 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9780 NumRegs, RegisterVT, VT, nullptr, 9781 CLI.CallConv, AssertOp)); 9782 CurReg += NumRegs; 9783 } 9784 9785 // For a function returning void, there is no return value. We can't create 9786 // such a node, so we just return a null return value in that case. In 9787 // that case, nothing will actually look at the value. 9788 if (ReturnValues.empty()) 9789 return std::make_pair(SDValue(), CLI.Chain); 9790 } 9791 9792 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9793 CLI.DAG.getVTList(RetTys), ReturnValues); 9794 return std::make_pair(Res, CLI.Chain); 9795 } 9796 9797 /// Places new result values for the node in Results (their number 9798 /// and types must exactly match those of the original return values of 9799 /// the node), or leaves Results empty, which indicates that the node is not 9800 /// to be custom lowered after all. 9801 void TargetLowering::LowerOperationWrapper(SDNode *N, 9802 SmallVectorImpl<SDValue> &Results, 9803 SelectionDAG &DAG) const { 9804 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9805 9806 if (!Res.getNode()) 9807 return; 9808 9809 // If the original node has one result, take the return value from 9810 // LowerOperation as is. It might not be result number 0. 9811 if (N->getNumValues() == 1) { 9812 Results.push_back(Res); 9813 return; 9814 } 9815 9816 // If the original node has multiple results, then the return node should 9817 // have the same number of results. 9818 assert((N->getNumValues() == Res->getNumValues()) && 9819 "Lowering returned the wrong number of results!"); 9820 9821 // Places new result values base on N result number. 9822 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9823 Results.push_back(Res.getValue(I)); 9824 } 9825 9826 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9827 llvm_unreachable("LowerOperation not implemented for this target!"); 9828 } 9829 9830 void 9831 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9832 SDValue Op = getNonRegisterValue(V); 9833 assert((Op.getOpcode() != ISD::CopyFromReg || 9834 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9835 "Copy from a reg to the same reg!"); 9836 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9837 9838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9839 // If this is an InlineAsm we have to match the registers required, not the 9840 // notional registers required by the type. 9841 9842 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9843 None); // This is not an ABI copy. 9844 SDValue Chain = DAG.getEntryNode(); 9845 9846 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9847 FuncInfo.PreferredExtendType.end()) 9848 ? ISD::ANY_EXTEND 9849 : FuncInfo.PreferredExtendType[V]; 9850 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9851 PendingExports.push_back(Chain); 9852 } 9853 9854 #include "llvm/CodeGen/SelectionDAGISel.h" 9855 9856 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9857 /// entry block, return true. This includes arguments used by switches, since 9858 /// the switch may expand into multiple basic blocks. 9859 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9860 // With FastISel active, we may be splitting blocks, so force creation 9861 // of virtual registers for all non-dead arguments. 9862 if (FastISel) 9863 return A->use_empty(); 9864 9865 const BasicBlock &Entry = A->getParent()->front(); 9866 for (const User *U : A->users()) 9867 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9868 return false; // Use not in entry block. 9869 9870 return true; 9871 } 9872 9873 using ArgCopyElisionMapTy = 9874 DenseMap<const Argument *, 9875 std::pair<const AllocaInst *, const StoreInst *>>; 9876 9877 /// Scan the entry block of the function in FuncInfo for arguments that look 9878 /// like copies into a local alloca. Record any copied arguments in 9879 /// ArgCopyElisionCandidates. 9880 static void 9881 findArgumentCopyElisionCandidates(const DataLayout &DL, 9882 FunctionLoweringInfo *FuncInfo, 9883 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9884 // Record the state of every static alloca used in the entry block. Argument 9885 // allocas are all used in the entry block, so we need approximately as many 9886 // entries as we have arguments. 9887 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9888 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9889 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9890 StaticAllocas.reserve(NumArgs * 2); 9891 9892 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9893 if (!V) 9894 return nullptr; 9895 V = V->stripPointerCasts(); 9896 const auto *AI = dyn_cast<AllocaInst>(V); 9897 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9898 return nullptr; 9899 auto Iter = StaticAllocas.insert({AI, Unknown}); 9900 return &Iter.first->second; 9901 }; 9902 9903 // Look for stores of arguments to static allocas. Look through bitcasts and 9904 // GEPs to handle type coercions, as long as the alloca is fully initialized 9905 // by the store. Any non-store use of an alloca escapes it and any subsequent 9906 // unanalyzed store might write it. 9907 // FIXME: Handle structs initialized with multiple stores. 9908 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9909 // Look for stores, and handle non-store uses conservatively. 9910 const auto *SI = dyn_cast<StoreInst>(&I); 9911 if (!SI) { 9912 // We will look through cast uses, so ignore them completely. 9913 if (I.isCast()) 9914 continue; 9915 // Ignore debug info and pseudo op intrinsics, they don't escape or store 9916 // to allocas. 9917 if (I.isDebugOrPseudoInst()) 9918 continue; 9919 // This is an unknown instruction. Assume it escapes or writes to all 9920 // static alloca operands. 9921 for (const Use &U : I.operands()) { 9922 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9923 *Info = StaticAllocaInfo::Clobbered; 9924 } 9925 continue; 9926 } 9927 9928 // If the stored value is a static alloca, mark it as escaped. 9929 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9930 *Info = StaticAllocaInfo::Clobbered; 9931 9932 // Check if the destination is a static alloca. 9933 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9934 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9935 if (!Info) 9936 continue; 9937 const AllocaInst *AI = cast<AllocaInst>(Dst); 9938 9939 // Skip allocas that have been initialized or clobbered. 9940 if (*Info != StaticAllocaInfo::Unknown) 9941 continue; 9942 9943 // Check if the stored value is an argument, and that this store fully 9944 // initializes the alloca. 9945 // If the argument type has padding bits we can't directly forward a pointer 9946 // as the upper bits may contain garbage. 9947 // Don't elide copies from the same argument twice. 9948 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9949 const auto *Arg = dyn_cast<Argument>(Val); 9950 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9951 Arg->getType()->isEmptyTy() || 9952 DL.getTypeStoreSize(Arg->getType()) != 9953 DL.getTypeAllocSize(AI->getAllocatedType()) || 9954 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 9955 ArgCopyElisionCandidates.count(Arg)) { 9956 *Info = StaticAllocaInfo::Clobbered; 9957 continue; 9958 } 9959 9960 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9961 << '\n'); 9962 9963 // Mark this alloca and store for argument copy elision. 9964 *Info = StaticAllocaInfo::Elidable; 9965 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9966 9967 // Stop scanning if we've seen all arguments. This will happen early in -O0 9968 // builds, which is useful, because -O0 builds have large entry blocks and 9969 // many allocas. 9970 if (ArgCopyElisionCandidates.size() == NumArgs) 9971 break; 9972 } 9973 } 9974 9975 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9976 /// ArgVal is a load from a suitable fixed stack object. 9977 static void tryToElideArgumentCopy( 9978 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9979 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9980 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9981 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9982 SDValue ArgVal, bool &ArgHasUses) { 9983 // Check if this is a load from a fixed stack object. 9984 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9985 if (!LNode) 9986 return; 9987 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9988 if (!FINode) 9989 return; 9990 9991 // Check that the fixed stack object is the right size and alignment. 9992 // Look at the alignment that the user wrote on the alloca instead of looking 9993 // at the stack object. 9994 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9995 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9996 const AllocaInst *AI = ArgCopyIter->second.first; 9997 int FixedIndex = FINode->getIndex(); 9998 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9999 int OldIndex = AllocaIndex; 10000 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10001 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10002 LLVM_DEBUG( 10003 dbgs() << " argument copy elision failed due to bad fixed stack " 10004 "object size\n"); 10005 return; 10006 } 10007 Align RequiredAlignment = AI->getAlign(); 10008 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10009 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10010 "greater than stack argument alignment (" 10011 << DebugStr(RequiredAlignment) << " vs " 10012 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10013 return; 10014 } 10015 10016 // Perform the elision. Delete the old stack object and replace its only use 10017 // in the variable info map. Mark the stack object as mutable. 10018 LLVM_DEBUG({ 10019 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10020 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10021 << '\n'; 10022 }); 10023 MFI.RemoveStackObject(OldIndex); 10024 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10025 AllocaIndex = FixedIndex; 10026 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10027 Chains.push_back(ArgVal.getValue(1)); 10028 10029 // Avoid emitting code for the store implementing the copy. 10030 const StoreInst *SI = ArgCopyIter->second.second; 10031 ElidedArgCopyInstrs.insert(SI); 10032 10033 // Check for uses of the argument again so that we can avoid exporting ArgVal 10034 // if it is't used by anything other than the store. 10035 for (const Value *U : Arg.users()) { 10036 if (U != SI) { 10037 ArgHasUses = true; 10038 break; 10039 } 10040 } 10041 } 10042 10043 void SelectionDAGISel::LowerArguments(const Function &F) { 10044 SelectionDAG &DAG = SDB->DAG; 10045 SDLoc dl = SDB->getCurSDLoc(); 10046 const DataLayout &DL = DAG.getDataLayout(); 10047 SmallVector<ISD::InputArg, 16> Ins; 10048 10049 // In Naked functions we aren't going to save any registers. 10050 if (F.hasFnAttribute(Attribute::Naked)) 10051 return; 10052 10053 if (!FuncInfo->CanLowerReturn) { 10054 // Put in an sret pointer parameter before all the other parameters. 10055 SmallVector<EVT, 1> ValueVTs; 10056 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10057 F.getReturnType()->getPointerTo( 10058 DAG.getDataLayout().getAllocaAddrSpace()), 10059 ValueVTs); 10060 10061 // NOTE: Assuming that a pointer will never break down to more than one VT 10062 // or one register. 10063 ISD::ArgFlagsTy Flags; 10064 Flags.setSRet(); 10065 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10066 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10067 ISD::InputArg::NoArgIndex, 0); 10068 Ins.push_back(RetArg); 10069 } 10070 10071 // Look for stores of arguments to static allocas. Mark such arguments with a 10072 // flag to ask the target to give us the memory location of that argument if 10073 // available. 10074 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10075 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10076 ArgCopyElisionCandidates); 10077 10078 // Set up the incoming argument description vector. 10079 for (const Argument &Arg : F.args()) { 10080 unsigned ArgNo = Arg.getArgNo(); 10081 SmallVector<EVT, 4> ValueVTs; 10082 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10083 bool isArgValueUsed = !Arg.use_empty(); 10084 unsigned PartBase = 0; 10085 Type *FinalType = Arg.getType(); 10086 if (Arg.hasAttribute(Attribute::ByVal)) 10087 FinalType = Arg.getParamByValType(); 10088 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10089 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10090 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10091 Value != NumValues; ++Value) { 10092 EVT VT = ValueVTs[Value]; 10093 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10094 ISD::ArgFlagsTy Flags; 10095 10096 10097 if (Arg.getType()->isPointerTy()) { 10098 Flags.setPointer(); 10099 Flags.setPointerAddrSpace( 10100 cast<PointerType>(Arg.getType())->getAddressSpace()); 10101 } 10102 if (Arg.hasAttribute(Attribute::ZExt)) 10103 Flags.setZExt(); 10104 if (Arg.hasAttribute(Attribute::SExt)) 10105 Flags.setSExt(); 10106 if (Arg.hasAttribute(Attribute::InReg)) { 10107 // If we are using vectorcall calling convention, a structure that is 10108 // passed InReg - is surely an HVA 10109 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10110 isa<StructType>(Arg.getType())) { 10111 // The first value of a structure is marked 10112 if (0 == Value) 10113 Flags.setHvaStart(); 10114 Flags.setHva(); 10115 } 10116 // Set InReg Flag 10117 Flags.setInReg(); 10118 } 10119 if (Arg.hasAttribute(Attribute::StructRet)) 10120 Flags.setSRet(); 10121 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10122 Flags.setSwiftSelf(); 10123 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10124 Flags.setSwiftAsync(); 10125 if (Arg.hasAttribute(Attribute::SwiftError)) 10126 Flags.setSwiftError(); 10127 if (Arg.hasAttribute(Attribute::ByVal)) 10128 Flags.setByVal(); 10129 if (Arg.hasAttribute(Attribute::ByRef)) 10130 Flags.setByRef(); 10131 if (Arg.hasAttribute(Attribute::InAlloca)) { 10132 Flags.setInAlloca(); 10133 // Set the byval flag for CCAssignFn callbacks that don't know about 10134 // inalloca. This way we can know how many bytes we should've allocated 10135 // and how many bytes a callee cleanup function will pop. If we port 10136 // inalloca to more targets, we'll have to add custom inalloca handling 10137 // in the various CC lowering callbacks. 10138 Flags.setByVal(); 10139 } 10140 if (Arg.hasAttribute(Attribute::Preallocated)) { 10141 Flags.setPreallocated(); 10142 // Set the byval flag for CCAssignFn callbacks that don't know about 10143 // preallocated. This way we can know how many bytes we should've 10144 // allocated and how many bytes a callee cleanup function will pop. If 10145 // we port preallocated to more targets, we'll have to add custom 10146 // preallocated handling in the various CC lowering callbacks. 10147 Flags.setByVal(); 10148 } 10149 10150 // Certain targets (such as MIPS), may have a different ABI alignment 10151 // for a type depending on the context. Give the target a chance to 10152 // specify the alignment it wants. 10153 const Align OriginalAlignment( 10154 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10155 Flags.setOrigAlign(OriginalAlignment); 10156 10157 Align MemAlign; 10158 Type *ArgMemTy = nullptr; 10159 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10160 Flags.isByRef()) { 10161 if (!ArgMemTy) 10162 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10163 10164 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10165 10166 // For in-memory arguments, size and alignment should be passed from FE. 10167 // BE will guess if this info is not there but there are cases it cannot 10168 // get right. 10169 if (auto ParamAlign = Arg.getParamStackAlign()) 10170 MemAlign = *ParamAlign; 10171 else if ((ParamAlign = Arg.getParamAlign())) 10172 MemAlign = *ParamAlign; 10173 else 10174 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10175 if (Flags.isByRef()) 10176 Flags.setByRefSize(MemSize); 10177 else 10178 Flags.setByValSize(MemSize); 10179 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10180 MemAlign = *ParamAlign; 10181 } else { 10182 MemAlign = OriginalAlignment; 10183 } 10184 Flags.setMemAlign(MemAlign); 10185 10186 if (Arg.hasAttribute(Attribute::Nest)) 10187 Flags.setNest(); 10188 if (NeedsRegBlock) 10189 Flags.setInConsecutiveRegs(); 10190 if (ArgCopyElisionCandidates.count(&Arg)) 10191 Flags.setCopyElisionCandidate(); 10192 if (Arg.hasAttribute(Attribute::Returned)) 10193 Flags.setReturned(); 10194 10195 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10196 *CurDAG->getContext(), F.getCallingConv(), VT); 10197 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10198 *CurDAG->getContext(), F.getCallingConv(), VT); 10199 for (unsigned i = 0; i != NumRegs; ++i) { 10200 // For scalable vectors, use the minimum size; individual targets 10201 // are responsible for handling scalable vector arguments and 10202 // return values. 10203 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10204 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10205 if (NumRegs > 1 && i == 0) 10206 MyFlags.Flags.setSplit(); 10207 // if it isn't first piece, alignment must be 1 10208 else if (i > 0) { 10209 MyFlags.Flags.setOrigAlign(Align(1)); 10210 if (i == NumRegs - 1) 10211 MyFlags.Flags.setSplitEnd(); 10212 } 10213 Ins.push_back(MyFlags); 10214 } 10215 if (NeedsRegBlock && Value == NumValues - 1) 10216 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10217 PartBase += VT.getStoreSize().getKnownMinSize(); 10218 } 10219 } 10220 10221 // Call the target to set up the argument values. 10222 SmallVector<SDValue, 8> InVals; 10223 SDValue NewRoot = TLI->LowerFormalArguments( 10224 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10225 10226 // Verify that the target's LowerFormalArguments behaved as expected. 10227 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10228 "LowerFormalArguments didn't return a valid chain!"); 10229 assert(InVals.size() == Ins.size() && 10230 "LowerFormalArguments didn't emit the correct number of values!"); 10231 LLVM_DEBUG({ 10232 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10233 assert(InVals[i].getNode() && 10234 "LowerFormalArguments emitted a null value!"); 10235 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10236 "LowerFormalArguments emitted a value with the wrong type!"); 10237 } 10238 }); 10239 10240 // Update the DAG with the new chain value resulting from argument lowering. 10241 DAG.setRoot(NewRoot); 10242 10243 // Set up the argument values. 10244 unsigned i = 0; 10245 if (!FuncInfo->CanLowerReturn) { 10246 // Create a virtual register for the sret pointer, and put in a copy 10247 // from the sret argument into it. 10248 SmallVector<EVT, 1> ValueVTs; 10249 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10250 F.getReturnType()->getPointerTo( 10251 DAG.getDataLayout().getAllocaAddrSpace()), 10252 ValueVTs); 10253 MVT VT = ValueVTs[0].getSimpleVT(); 10254 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10255 Optional<ISD::NodeType> AssertOp = None; 10256 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10257 nullptr, F.getCallingConv(), AssertOp); 10258 10259 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10260 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10261 Register SRetReg = 10262 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10263 FuncInfo->DemoteRegister = SRetReg; 10264 NewRoot = 10265 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10266 DAG.setRoot(NewRoot); 10267 10268 // i indexes lowered arguments. Bump it past the hidden sret argument. 10269 ++i; 10270 } 10271 10272 SmallVector<SDValue, 4> Chains; 10273 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10274 for (const Argument &Arg : F.args()) { 10275 SmallVector<SDValue, 4> ArgValues; 10276 SmallVector<EVT, 4> ValueVTs; 10277 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10278 unsigned NumValues = ValueVTs.size(); 10279 if (NumValues == 0) 10280 continue; 10281 10282 bool ArgHasUses = !Arg.use_empty(); 10283 10284 // Elide the copying store if the target loaded this argument from a 10285 // suitable fixed stack object. 10286 if (Ins[i].Flags.isCopyElisionCandidate()) { 10287 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10288 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10289 InVals[i], ArgHasUses); 10290 } 10291 10292 // If this argument is unused then remember its value. It is used to generate 10293 // debugging information. 10294 bool isSwiftErrorArg = 10295 TLI->supportSwiftError() && 10296 Arg.hasAttribute(Attribute::SwiftError); 10297 if (!ArgHasUses && !isSwiftErrorArg) { 10298 SDB->setUnusedArgValue(&Arg, InVals[i]); 10299 10300 // Also remember any frame index for use in FastISel. 10301 if (FrameIndexSDNode *FI = 10302 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10303 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10304 } 10305 10306 for (unsigned Val = 0; Val != NumValues; ++Val) { 10307 EVT VT = ValueVTs[Val]; 10308 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10309 F.getCallingConv(), VT); 10310 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10311 *CurDAG->getContext(), F.getCallingConv(), VT); 10312 10313 // Even an apparent 'unused' swifterror argument needs to be returned. So 10314 // we do generate a copy for it that can be used on return from the 10315 // function. 10316 if (ArgHasUses || isSwiftErrorArg) { 10317 Optional<ISD::NodeType> AssertOp; 10318 if (Arg.hasAttribute(Attribute::SExt)) 10319 AssertOp = ISD::AssertSext; 10320 else if (Arg.hasAttribute(Attribute::ZExt)) 10321 AssertOp = ISD::AssertZext; 10322 10323 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10324 PartVT, VT, nullptr, 10325 F.getCallingConv(), AssertOp)); 10326 } 10327 10328 i += NumParts; 10329 } 10330 10331 // We don't need to do anything else for unused arguments. 10332 if (ArgValues.empty()) 10333 continue; 10334 10335 // Note down frame index. 10336 if (FrameIndexSDNode *FI = 10337 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10338 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10339 10340 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10341 SDB->getCurSDLoc()); 10342 10343 SDB->setValue(&Arg, Res); 10344 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10345 // We want to associate the argument with the frame index, among 10346 // involved operands, that correspond to the lowest address. The 10347 // getCopyFromParts function, called earlier, is swapping the order of 10348 // the operands to BUILD_PAIR depending on endianness. The result of 10349 // that swapping is that the least significant bits of the argument will 10350 // be in the first operand of the BUILD_PAIR node, and the most 10351 // significant bits will be in the second operand. 10352 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10353 if (LoadSDNode *LNode = 10354 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10355 if (FrameIndexSDNode *FI = 10356 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10357 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10358 } 10359 10360 // Analyses past this point are naive and don't expect an assertion. 10361 if (Res.getOpcode() == ISD::AssertZext) 10362 Res = Res.getOperand(0); 10363 10364 // Update the SwiftErrorVRegDefMap. 10365 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10366 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10367 if (Register::isVirtualRegister(Reg)) 10368 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10369 Reg); 10370 } 10371 10372 // If this argument is live outside of the entry block, insert a copy from 10373 // wherever we got it to the vreg that other BB's will reference it as. 10374 if (Res.getOpcode() == ISD::CopyFromReg) { 10375 // If we can, though, try to skip creating an unnecessary vreg. 10376 // FIXME: This isn't very clean... it would be nice to make this more 10377 // general. 10378 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10379 if (Register::isVirtualRegister(Reg)) { 10380 FuncInfo->ValueMap[&Arg] = Reg; 10381 continue; 10382 } 10383 } 10384 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10385 FuncInfo->InitializeRegForValue(&Arg); 10386 SDB->CopyToExportRegsIfNeeded(&Arg); 10387 } 10388 } 10389 10390 if (!Chains.empty()) { 10391 Chains.push_back(NewRoot); 10392 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10393 } 10394 10395 DAG.setRoot(NewRoot); 10396 10397 assert(i == InVals.size() && "Argument register count mismatch!"); 10398 10399 // If any argument copy elisions occurred and we have debug info, update the 10400 // stale frame indices used in the dbg.declare variable info table. 10401 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10402 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10403 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10404 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10405 if (I != ArgCopyElisionFrameIndexMap.end()) 10406 VI.Slot = I->second; 10407 } 10408 } 10409 10410 // Finally, if the target has anything special to do, allow it to do so. 10411 emitFunctionEntryCode(); 10412 } 10413 10414 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10415 /// ensure constants are generated when needed. Remember the virtual registers 10416 /// that need to be added to the Machine PHI nodes as input. We cannot just 10417 /// directly add them, because expansion might result in multiple MBB's for one 10418 /// BB. As such, the start of the BB might correspond to a different MBB than 10419 /// the end. 10420 void 10421 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10422 const Instruction *TI = LLVMBB->getTerminator(); 10423 10424 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10425 10426 // Check PHI nodes in successors that expect a value to be available from this 10427 // block. 10428 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10429 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10430 if (!isa<PHINode>(SuccBB->begin())) continue; 10431 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10432 10433 // If this terminator has multiple identical successors (common for 10434 // switches), only handle each succ once. 10435 if (!SuccsHandled.insert(SuccMBB).second) 10436 continue; 10437 10438 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10439 10440 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10441 // nodes and Machine PHI nodes, but the incoming operands have not been 10442 // emitted yet. 10443 for (const PHINode &PN : SuccBB->phis()) { 10444 // Ignore dead phi's. 10445 if (PN.use_empty()) 10446 continue; 10447 10448 // Skip empty types 10449 if (PN.getType()->isEmptyTy()) 10450 continue; 10451 10452 unsigned Reg; 10453 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10454 10455 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10456 unsigned &RegOut = ConstantsOut[C]; 10457 if (RegOut == 0) { 10458 RegOut = FuncInfo.CreateRegs(C); 10459 CopyValueToVirtualRegister(C, RegOut); 10460 } 10461 Reg = RegOut; 10462 } else { 10463 DenseMap<const Value *, Register>::iterator I = 10464 FuncInfo.ValueMap.find(PHIOp); 10465 if (I != FuncInfo.ValueMap.end()) 10466 Reg = I->second; 10467 else { 10468 assert(isa<AllocaInst>(PHIOp) && 10469 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10470 "Didn't codegen value into a register!??"); 10471 Reg = FuncInfo.CreateRegs(PHIOp); 10472 CopyValueToVirtualRegister(PHIOp, Reg); 10473 } 10474 } 10475 10476 // Remember that this register needs to added to the machine PHI node as 10477 // the input for this MBB. 10478 SmallVector<EVT, 4> ValueVTs; 10479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10480 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10481 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10482 EVT VT = ValueVTs[vti]; 10483 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10484 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10485 FuncInfo.PHINodesToUpdate.push_back( 10486 std::make_pair(&*MBBI++, Reg + i)); 10487 Reg += NumRegisters; 10488 } 10489 } 10490 } 10491 10492 ConstantsOut.clear(); 10493 } 10494 10495 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10496 /// is 0. 10497 MachineBasicBlock * 10498 SelectionDAGBuilder::StackProtectorDescriptor:: 10499 AddSuccessorMBB(const BasicBlock *BB, 10500 MachineBasicBlock *ParentMBB, 10501 bool IsLikely, 10502 MachineBasicBlock *SuccMBB) { 10503 // If SuccBB has not been created yet, create it. 10504 if (!SuccMBB) { 10505 MachineFunction *MF = ParentMBB->getParent(); 10506 MachineFunction::iterator BBI(ParentMBB); 10507 SuccMBB = MF->CreateMachineBasicBlock(BB); 10508 MF->insert(++BBI, SuccMBB); 10509 } 10510 // Add it as a successor of ParentMBB. 10511 ParentMBB->addSuccessor( 10512 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10513 return SuccMBB; 10514 } 10515 10516 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10517 MachineFunction::iterator I(MBB); 10518 if (++I == FuncInfo.MF->end()) 10519 return nullptr; 10520 return &*I; 10521 } 10522 10523 /// During lowering new call nodes can be created (such as memset, etc.). 10524 /// Those will become new roots of the current DAG, but complications arise 10525 /// when they are tail calls. In such cases, the call lowering will update 10526 /// the root, but the builder still needs to know that a tail call has been 10527 /// lowered in order to avoid generating an additional return. 10528 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10529 // If the node is null, we do have a tail call. 10530 if (MaybeTC.getNode() != nullptr) 10531 DAG.setRoot(MaybeTC); 10532 else 10533 HasTailCall = true; 10534 } 10535 10536 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10537 MachineBasicBlock *SwitchMBB, 10538 MachineBasicBlock *DefaultMBB) { 10539 MachineFunction *CurMF = FuncInfo.MF; 10540 MachineBasicBlock *NextMBB = nullptr; 10541 MachineFunction::iterator BBI(W.MBB); 10542 if (++BBI != FuncInfo.MF->end()) 10543 NextMBB = &*BBI; 10544 10545 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10546 10547 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10548 10549 if (Size == 2 && W.MBB == SwitchMBB) { 10550 // If any two of the cases has the same destination, and if one value 10551 // is the same as the other, but has one bit unset that the other has set, 10552 // use bit manipulation to do two compares at once. For example: 10553 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10554 // TODO: This could be extended to merge any 2 cases in switches with 3 10555 // cases. 10556 // TODO: Handle cases where W.CaseBB != SwitchBB. 10557 CaseCluster &Small = *W.FirstCluster; 10558 CaseCluster &Big = *W.LastCluster; 10559 10560 if (Small.Low == Small.High && Big.Low == Big.High && 10561 Small.MBB == Big.MBB) { 10562 const APInt &SmallValue = Small.Low->getValue(); 10563 const APInt &BigValue = Big.Low->getValue(); 10564 10565 // Check that there is only one bit different. 10566 APInt CommonBit = BigValue ^ SmallValue; 10567 if (CommonBit.isPowerOf2()) { 10568 SDValue CondLHS = getValue(Cond); 10569 EVT VT = CondLHS.getValueType(); 10570 SDLoc DL = getCurSDLoc(); 10571 10572 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10573 DAG.getConstant(CommonBit, DL, VT)); 10574 SDValue Cond = DAG.getSetCC( 10575 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10576 ISD::SETEQ); 10577 10578 // Update successor info. 10579 // Both Small and Big will jump to Small.BB, so we sum up the 10580 // probabilities. 10581 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10582 if (BPI) 10583 addSuccessorWithProb( 10584 SwitchMBB, DefaultMBB, 10585 // The default destination is the first successor in IR. 10586 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10587 else 10588 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10589 10590 // Insert the true branch. 10591 SDValue BrCond = 10592 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10593 DAG.getBasicBlock(Small.MBB)); 10594 // Insert the false branch. 10595 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10596 DAG.getBasicBlock(DefaultMBB)); 10597 10598 DAG.setRoot(BrCond); 10599 return; 10600 } 10601 } 10602 } 10603 10604 if (TM.getOptLevel() != CodeGenOpt::None) { 10605 // Here, we order cases by probability so the most likely case will be 10606 // checked first. However, two clusters can have the same probability in 10607 // which case their relative ordering is non-deterministic. So we use Low 10608 // as a tie-breaker as clusters are guaranteed to never overlap. 10609 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10610 [](const CaseCluster &a, const CaseCluster &b) { 10611 return a.Prob != b.Prob ? 10612 a.Prob > b.Prob : 10613 a.Low->getValue().slt(b.Low->getValue()); 10614 }); 10615 10616 // Rearrange the case blocks so that the last one falls through if possible 10617 // without changing the order of probabilities. 10618 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10619 --I; 10620 if (I->Prob > W.LastCluster->Prob) 10621 break; 10622 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10623 std::swap(*I, *W.LastCluster); 10624 break; 10625 } 10626 } 10627 } 10628 10629 // Compute total probability. 10630 BranchProbability DefaultProb = W.DefaultProb; 10631 BranchProbability UnhandledProbs = DefaultProb; 10632 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10633 UnhandledProbs += I->Prob; 10634 10635 MachineBasicBlock *CurMBB = W.MBB; 10636 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10637 bool FallthroughUnreachable = false; 10638 MachineBasicBlock *Fallthrough; 10639 if (I == W.LastCluster) { 10640 // For the last cluster, fall through to the default destination. 10641 Fallthrough = DefaultMBB; 10642 FallthroughUnreachable = isa<UnreachableInst>( 10643 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10644 } else { 10645 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10646 CurMF->insert(BBI, Fallthrough); 10647 // Put Cond in a virtual register to make it available from the new blocks. 10648 ExportFromCurrentBlock(Cond); 10649 } 10650 UnhandledProbs -= I->Prob; 10651 10652 switch (I->Kind) { 10653 case CC_JumpTable: { 10654 // FIXME: Optimize away range check based on pivot comparisons. 10655 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10656 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10657 10658 // The jump block hasn't been inserted yet; insert it here. 10659 MachineBasicBlock *JumpMBB = JT->MBB; 10660 CurMF->insert(BBI, JumpMBB); 10661 10662 auto JumpProb = I->Prob; 10663 auto FallthroughProb = UnhandledProbs; 10664 10665 // If the default statement is a target of the jump table, we evenly 10666 // distribute the default probability to successors of CurMBB. Also 10667 // update the probability on the edge from JumpMBB to Fallthrough. 10668 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10669 SE = JumpMBB->succ_end(); 10670 SI != SE; ++SI) { 10671 if (*SI == DefaultMBB) { 10672 JumpProb += DefaultProb / 2; 10673 FallthroughProb -= DefaultProb / 2; 10674 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10675 JumpMBB->normalizeSuccProbs(); 10676 break; 10677 } 10678 } 10679 10680 if (FallthroughUnreachable) { 10681 // Skip the range check if the fallthrough block is unreachable. 10682 JTH->OmitRangeCheck = true; 10683 } 10684 10685 if (!JTH->OmitRangeCheck) 10686 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10687 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10688 CurMBB->normalizeSuccProbs(); 10689 10690 // The jump table header will be inserted in our current block, do the 10691 // range check, and fall through to our fallthrough block. 10692 JTH->HeaderBB = CurMBB; 10693 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10694 10695 // If we're in the right place, emit the jump table header right now. 10696 if (CurMBB == SwitchMBB) { 10697 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10698 JTH->Emitted = true; 10699 } 10700 break; 10701 } 10702 case CC_BitTests: { 10703 // FIXME: Optimize away range check based on pivot comparisons. 10704 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10705 10706 // The bit test blocks haven't been inserted yet; insert them here. 10707 for (BitTestCase &BTC : BTB->Cases) 10708 CurMF->insert(BBI, BTC.ThisBB); 10709 10710 // Fill in fields of the BitTestBlock. 10711 BTB->Parent = CurMBB; 10712 BTB->Default = Fallthrough; 10713 10714 BTB->DefaultProb = UnhandledProbs; 10715 // If the cases in bit test don't form a contiguous range, we evenly 10716 // distribute the probability on the edge to Fallthrough to two 10717 // successors of CurMBB. 10718 if (!BTB->ContiguousRange) { 10719 BTB->Prob += DefaultProb / 2; 10720 BTB->DefaultProb -= DefaultProb / 2; 10721 } 10722 10723 if (FallthroughUnreachable) { 10724 // Skip the range check if the fallthrough block is unreachable. 10725 BTB->OmitRangeCheck = true; 10726 } 10727 10728 // If we're in the right place, emit the bit test header right now. 10729 if (CurMBB == SwitchMBB) { 10730 visitBitTestHeader(*BTB, SwitchMBB); 10731 BTB->Emitted = true; 10732 } 10733 break; 10734 } 10735 case CC_Range: { 10736 const Value *RHS, *LHS, *MHS; 10737 ISD::CondCode CC; 10738 if (I->Low == I->High) { 10739 // Check Cond == I->Low. 10740 CC = ISD::SETEQ; 10741 LHS = Cond; 10742 RHS=I->Low; 10743 MHS = nullptr; 10744 } else { 10745 // Check I->Low <= Cond <= I->High. 10746 CC = ISD::SETLE; 10747 LHS = I->Low; 10748 MHS = Cond; 10749 RHS = I->High; 10750 } 10751 10752 // If Fallthrough is unreachable, fold away the comparison. 10753 if (FallthroughUnreachable) 10754 CC = ISD::SETTRUE; 10755 10756 // The false probability is the sum of all unhandled cases. 10757 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10758 getCurSDLoc(), I->Prob, UnhandledProbs); 10759 10760 if (CurMBB == SwitchMBB) 10761 visitSwitchCase(CB, SwitchMBB); 10762 else 10763 SL->SwitchCases.push_back(CB); 10764 10765 break; 10766 } 10767 } 10768 CurMBB = Fallthrough; 10769 } 10770 } 10771 10772 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10773 CaseClusterIt First, 10774 CaseClusterIt Last) { 10775 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10776 if (X.Prob != CC.Prob) 10777 return X.Prob > CC.Prob; 10778 10779 // Ties are broken by comparing the case value. 10780 return X.Low->getValue().slt(CC.Low->getValue()); 10781 }); 10782 } 10783 10784 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10785 const SwitchWorkListItem &W, 10786 Value *Cond, 10787 MachineBasicBlock *SwitchMBB) { 10788 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10789 "Clusters not sorted?"); 10790 10791 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10792 10793 // Balance the tree based on branch probabilities to create a near-optimal (in 10794 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10795 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10796 CaseClusterIt LastLeft = W.FirstCluster; 10797 CaseClusterIt FirstRight = W.LastCluster; 10798 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10799 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10800 10801 // Move LastLeft and FirstRight towards each other from opposite directions to 10802 // find a partitioning of the clusters which balances the probability on both 10803 // sides. If LeftProb and RightProb are equal, alternate which side is 10804 // taken to ensure 0-probability nodes are distributed evenly. 10805 unsigned I = 0; 10806 while (LastLeft + 1 < FirstRight) { 10807 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10808 LeftProb += (++LastLeft)->Prob; 10809 else 10810 RightProb += (--FirstRight)->Prob; 10811 I++; 10812 } 10813 10814 while (true) { 10815 // Our binary search tree differs from a typical BST in that ours can have up 10816 // to three values in each leaf. The pivot selection above doesn't take that 10817 // into account, which means the tree might require more nodes and be less 10818 // efficient. We compensate for this here. 10819 10820 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10821 unsigned NumRight = W.LastCluster - FirstRight + 1; 10822 10823 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10824 // If one side has less than 3 clusters, and the other has more than 3, 10825 // consider taking a cluster from the other side. 10826 10827 if (NumLeft < NumRight) { 10828 // Consider moving the first cluster on the right to the left side. 10829 CaseCluster &CC = *FirstRight; 10830 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10831 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10832 if (LeftSideRank <= RightSideRank) { 10833 // Moving the cluster to the left does not demote it. 10834 ++LastLeft; 10835 ++FirstRight; 10836 continue; 10837 } 10838 } else { 10839 assert(NumRight < NumLeft); 10840 // Consider moving the last element on the left to the right side. 10841 CaseCluster &CC = *LastLeft; 10842 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10843 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10844 if (RightSideRank <= LeftSideRank) { 10845 // Moving the cluster to the right does not demot it. 10846 --LastLeft; 10847 --FirstRight; 10848 continue; 10849 } 10850 } 10851 } 10852 break; 10853 } 10854 10855 assert(LastLeft + 1 == FirstRight); 10856 assert(LastLeft >= W.FirstCluster); 10857 assert(FirstRight <= W.LastCluster); 10858 10859 // Use the first element on the right as pivot since we will make less-than 10860 // comparisons against it. 10861 CaseClusterIt PivotCluster = FirstRight; 10862 assert(PivotCluster > W.FirstCluster); 10863 assert(PivotCluster <= W.LastCluster); 10864 10865 CaseClusterIt FirstLeft = W.FirstCluster; 10866 CaseClusterIt LastRight = W.LastCluster; 10867 10868 const ConstantInt *Pivot = PivotCluster->Low; 10869 10870 // New blocks will be inserted immediately after the current one. 10871 MachineFunction::iterator BBI(W.MBB); 10872 ++BBI; 10873 10874 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10875 // we can branch to its destination directly if it's squeezed exactly in 10876 // between the known lower bound and Pivot - 1. 10877 MachineBasicBlock *LeftMBB; 10878 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10879 FirstLeft->Low == W.GE && 10880 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10881 LeftMBB = FirstLeft->MBB; 10882 } else { 10883 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10884 FuncInfo.MF->insert(BBI, LeftMBB); 10885 WorkList.push_back( 10886 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10887 // Put Cond in a virtual register to make it available from the new blocks. 10888 ExportFromCurrentBlock(Cond); 10889 } 10890 10891 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10892 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10893 // directly if RHS.High equals the current upper bound. 10894 MachineBasicBlock *RightMBB; 10895 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10896 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10897 RightMBB = FirstRight->MBB; 10898 } else { 10899 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10900 FuncInfo.MF->insert(BBI, RightMBB); 10901 WorkList.push_back( 10902 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10903 // Put Cond in a virtual register to make it available from the new blocks. 10904 ExportFromCurrentBlock(Cond); 10905 } 10906 10907 // Create the CaseBlock record that will be used to lower the branch. 10908 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10909 getCurSDLoc(), LeftProb, RightProb); 10910 10911 if (W.MBB == SwitchMBB) 10912 visitSwitchCase(CB, SwitchMBB); 10913 else 10914 SL->SwitchCases.push_back(CB); 10915 } 10916 10917 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10918 // from the swith statement. 10919 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10920 BranchProbability PeeledCaseProb) { 10921 if (PeeledCaseProb == BranchProbability::getOne()) 10922 return BranchProbability::getZero(); 10923 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10924 10925 uint32_t Numerator = CaseProb.getNumerator(); 10926 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10927 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10928 } 10929 10930 // Try to peel the top probability case if it exceeds the threshold. 10931 // Return current MachineBasicBlock for the switch statement if the peeling 10932 // does not occur. 10933 // If the peeling is performed, return the newly created MachineBasicBlock 10934 // for the peeled switch statement. Also update Clusters to remove the peeled 10935 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10936 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10937 const SwitchInst &SI, CaseClusterVector &Clusters, 10938 BranchProbability &PeeledCaseProb) { 10939 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10940 // Don't perform if there is only one cluster or optimizing for size. 10941 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10942 TM.getOptLevel() == CodeGenOpt::None || 10943 SwitchMBB->getParent()->getFunction().hasMinSize()) 10944 return SwitchMBB; 10945 10946 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10947 unsigned PeeledCaseIndex = 0; 10948 bool SwitchPeeled = false; 10949 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10950 CaseCluster &CC = Clusters[Index]; 10951 if (CC.Prob < TopCaseProb) 10952 continue; 10953 TopCaseProb = CC.Prob; 10954 PeeledCaseIndex = Index; 10955 SwitchPeeled = true; 10956 } 10957 if (!SwitchPeeled) 10958 return SwitchMBB; 10959 10960 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10961 << TopCaseProb << "\n"); 10962 10963 // Record the MBB for the peeled switch statement. 10964 MachineFunction::iterator BBI(SwitchMBB); 10965 ++BBI; 10966 MachineBasicBlock *PeeledSwitchMBB = 10967 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10968 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10969 10970 ExportFromCurrentBlock(SI.getCondition()); 10971 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10972 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10973 nullptr, nullptr, TopCaseProb.getCompl()}; 10974 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10975 10976 Clusters.erase(PeeledCaseIt); 10977 for (CaseCluster &CC : Clusters) { 10978 LLVM_DEBUG( 10979 dbgs() << "Scale the probablity for one cluster, before scaling: " 10980 << CC.Prob << "\n"); 10981 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10982 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10983 } 10984 PeeledCaseProb = TopCaseProb; 10985 return PeeledSwitchMBB; 10986 } 10987 10988 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10989 // Extract cases from the switch. 10990 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10991 CaseClusterVector Clusters; 10992 Clusters.reserve(SI.getNumCases()); 10993 for (auto I : SI.cases()) { 10994 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10995 const ConstantInt *CaseVal = I.getCaseValue(); 10996 BranchProbability Prob = 10997 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10998 : BranchProbability(1, SI.getNumCases() + 1); 10999 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11000 } 11001 11002 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11003 11004 // Cluster adjacent cases with the same destination. We do this at all 11005 // optimization levels because it's cheap to do and will make codegen faster 11006 // if there are many clusters. 11007 sortAndRangeify(Clusters); 11008 11009 // The branch probablity of the peeled case. 11010 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11011 MachineBasicBlock *PeeledSwitchMBB = 11012 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11013 11014 // If there is only the default destination, jump there directly. 11015 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11016 if (Clusters.empty()) { 11017 assert(PeeledSwitchMBB == SwitchMBB); 11018 SwitchMBB->addSuccessor(DefaultMBB); 11019 if (DefaultMBB != NextBlock(SwitchMBB)) { 11020 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11021 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11022 } 11023 return; 11024 } 11025 11026 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11027 SL->findBitTestClusters(Clusters, &SI); 11028 11029 LLVM_DEBUG({ 11030 dbgs() << "Case clusters: "; 11031 for (const CaseCluster &C : Clusters) { 11032 if (C.Kind == CC_JumpTable) 11033 dbgs() << "JT:"; 11034 if (C.Kind == CC_BitTests) 11035 dbgs() << "BT:"; 11036 11037 C.Low->getValue().print(dbgs(), true); 11038 if (C.Low != C.High) { 11039 dbgs() << '-'; 11040 C.High->getValue().print(dbgs(), true); 11041 } 11042 dbgs() << ' '; 11043 } 11044 dbgs() << '\n'; 11045 }); 11046 11047 assert(!Clusters.empty()); 11048 SwitchWorkList WorkList; 11049 CaseClusterIt First = Clusters.begin(); 11050 CaseClusterIt Last = Clusters.end() - 1; 11051 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11052 // Scale the branchprobability for DefaultMBB if the peel occurs and 11053 // DefaultMBB is not replaced. 11054 if (PeeledCaseProb != BranchProbability::getZero() && 11055 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11056 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11057 WorkList.push_back( 11058 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11059 11060 while (!WorkList.empty()) { 11061 SwitchWorkListItem W = WorkList.pop_back_val(); 11062 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11063 11064 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11065 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11066 // For optimized builds, lower large range as a balanced binary tree. 11067 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11068 continue; 11069 } 11070 11071 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11072 } 11073 } 11074 11075 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11077 auto DL = getCurSDLoc(); 11078 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11079 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11080 } 11081 11082 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11084 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11085 11086 SDLoc DL = getCurSDLoc(); 11087 SDValue V = getValue(I.getOperand(0)); 11088 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11089 11090 if (VT.isScalableVector()) { 11091 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11092 return; 11093 } 11094 11095 // Use VECTOR_SHUFFLE for the fixed-length vector 11096 // to maintain existing behavior. 11097 SmallVector<int, 8> Mask; 11098 unsigned NumElts = VT.getVectorMinNumElements(); 11099 for (unsigned i = 0; i != NumElts; ++i) 11100 Mask.push_back(NumElts - 1 - i); 11101 11102 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11103 } 11104 11105 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11106 SmallVector<EVT, 4> ValueVTs; 11107 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11108 ValueVTs); 11109 unsigned NumValues = ValueVTs.size(); 11110 if (NumValues == 0) return; 11111 11112 SmallVector<SDValue, 4> Values(NumValues); 11113 SDValue Op = getValue(I.getOperand(0)); 11114 11115 for (unsigned i = 0; i != NumValues; ++i) 11116 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11117 SDValue(Op.getNode(), Op.getResNo() + i)); 11118 11119 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11120 DAG.getVTList(ValueVTs), Values)); 11121 } 11122 11123 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11125 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11126 11127 SDLoc DL = getCurSDLoc(); 11128 SDValue V1 = getValue(I.getOperand(0)); 11129 SDValue V2 = getValue(I.getOperand(1)); 11130 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11131 11132 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11133 if (VT.isScalableVector()) { 11134 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11135 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11136 DAG.getConstant(Imm, DL, IdxVT))); 11137 return; 11138 } 11139 11140 unsigned NumElts = VT.getVectorNumElements(); 11141 11142 if ((-Imm > NumElts) || (Imm >= NumElts)) { 11143 // Result is undefined if immediate is out-of-bounds. 11144 setValue(&I, DAG.getUNDEF(VT)); 11145 return; 11146 } 11147 11148 uint64_t Idx = (NumElts + Imm) % NumElts; 11149 11150 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11151 SmallVector<int, 8> Mask; 11152 for (unsigned i = 0; i < NumElts; ++i) 11153 Mask.push_back(Idx + i); 11154 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11155 } 11156